##// END OF EJS Templates
Initial commit
Initial commit

File last commit:

r0:f328b9239ea0 default
r0:f328b9239ea0 default
Show More
basic_parameters_1_ICD_issue1rev6.c
743 lines | 50.5 KiB | text/x-c | CLexer
/ basic_parameters_1_ICD_issue1rev6.c
#include "basic_parameters_1_ICD_issue1rev6.h"
#include <math.h>
#include <stdio.h>
float k44_pe = 1;
float k55_pe = 1;
float k45_pe_re = 1;
float k45_pe_im = 1;
float k14_sx_re = 1;
float k14_sx_im = 1;
float k15_sx_re = 1;
float k15_sx_im = 1;
float k24_sx_re = 1;
float k24_sx_im = 1;
float k25_sx_re = 1;
float k25_sx_im = 1;
float k34_sx_re = 1;
float k34_sx_im = 1;
float k35_sx_re = 1;
float k35_sx_im = 1;
float k24_ny_re = 1;
float k24_ny_im = 1;
float k25_ny_re = 1;
float k25_ny_im = 1;
float k34_ny_re = 1;
float k34_ny_im = 1;
float k35_ny_re = 1;
float k35_ny_im = 1;
float k24_nz_re = 1;
float k24_nz_im = 1;
float k25_nz_re = 1;
float k25_nz_im = 1;
float k34_nz_re = 1;
float k34_nz_im = 1;
float k35_nz_re = 1;
float k35_nz_im = 1;
float alpha_M = 45 * (3.1415927/180);
void BP1_set(){
int i, exponent;
// int j;
float PSDB, PSDE, tmp, NVEC_V0, NVEC_V1, NVEC_V2, aux, tr_SB_SB,
e_cross_b_re, e_cross_b_im,
n_cross_e_scal_b_re, n_cross_e_scal_b_im,
ny, nz, bx_bx_star, vphi,
significand;
signed char nbitexp, nbitsig, expmin, expmax; // 8 bits
short int rangesig; // 16 bits
unsigned short int psd, tmp_u_short_int; // 16 bits
unsigned short int *pt_u_short_int; // pointer on unsigned 16-bit words
unsigned char tmp_u_char; // 8 bits
unsigned char *pt_u_char; // pointer on unsigned 8-bit bytes
// unsigned char toto_u_char;
// unsigned char *pt_toto_u_char;
// signed char toto_s_char;
// float toto_f;
printf("Number of bins: %d\n", NB_BINS_COMPRESSED_MATRIX_f0);
printf("BP1 : \n");
// initialization for managing the exponents of the floating point data:
nbitexp = 5; // number of bits for the exponent
expmax = 30; // maximum value of the exponent
expmin = expmax - (1 << nbitexp) + 1; // accordingly the minimum exponent value
printf("nbitexp : %d, expmax : %d, expmin : %d\n", nbitexp, expmax, expmin);
// for floating point data to be recorded on 12-bit words:
nbitsig = 12 - nbitexp; // number of bits for the significand
rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
printf("nbitsig : %d, rangesig : %d\n", nbitsig, rangesig);
for(i=0; i<1; i++){
//==============================================
// BP1 PSDB == PA_LFR_SC_BP1_PB_F0 == 12 bits = 5 bits (exponent) + 7 bits (significand)
PSDB = compressed_spectral_matrix_f0[i*30] // S11
+ compressed_spectral_matrix_f0[i*30+10] // S22
+ compressed_spectral_matrix_f0[i*30+18]; // S33
significand = frexpf(PSDB/3, &exponent); // 0.5 <= significand < 1
// PSDB/3 = significand * 2^exponent
// the division by 3 is to ensure that max value <= 2^30
printf("PSDB / 3 : %16.8e\n",PSDB/3);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
psd = (unsigned short int) ((significand*2-1)*rangesig + 0.5); // shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
tmp_u_short_int = (unsigned short int) (exponent-expmin); // shift and cast into a 16-bit unsigned int
// where just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
pt_u_short_int = (unsigned short int*) &LFR_BP1_F0[i*9+7]; // affect an unsigned short int pointer with the
// adress where the 16-bit word result will be stored
*pt_u_short_int = psd | (tmp_u_short_int << nbitsig); // put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig), making
// the 16-bit word to be recorded, and record it using the pointer
#ifdef DEBUG_TCH
printf("psd for PSDB significand : %d\n",psd);
printf("tmp_u_short_int for PSDB exponent : %d\n",tmp_u_short_int);
printf("*pt_u_short_int for PSDB significand + exponent: %.3d or %.4x\n",*pt_u_short_int, *pt_u_short_int);
printf("LFR_BP1_F0[i*9+8] : %.3d or %.2x\n",LFR_BP1_F0[i*9+8], LFR_BP1_F0[i*9+8]);
printf("LFR_BP1_F0[i*9+7] : %.3d or %.2x\n",LFR_BP1_F0[i*9+7], LFR_BP1_F0[i*9+7]);
#endif
//toto_f = 32768*32768; // max value ?
//toto_f = 1./3; // min value ?
//significand = frexp(toto_f, &exponent);
//printf("toto_f : %16.8e\n",toto_f);
//printf("significand : %16.8e\n",significand);
//printf("exponent : %d\n" ,exponent);
//==============================================
// BP1 PSDE == PA_LFR_SC_BP1_PE_F0 == 12 bits = 5 bits (exponent) + 7 bits (significand)
PSDE = compressed_spectral_matrix_f0[i*30+24] * k44_pe // S44
+ compressed_spectral_matrix_f0[i*30+28] * k55_pe // S55
+ compressed_spectral_matrix_f0[i*30+26] * k45_pe_re // S45 Re
- compressed_spectral_matrix_f0[i*30+27] * k45_pe_im; // S45 Im
significand = frexpf(PSDE/2, &exponent); // 0.5 <= significand < 1
// PSDE/2 = significand * 2^exponent
// the division by 2 is to ensure that max value <= 2^30
// should be reconsidered by taking into account the k-coefficients ...
printf("PSDE / 2 : %16.8e\n",PSDE/2);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
psd = (unsigned short int) ((significand*2-1)*rangesig + 0.5); // shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
tmp_u_short_int = (unsigned short int) (exponent-expmin); // shift and cast into a 16-bit unsigned int
// where just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
pt_u_short_int = (unsigned short int*) &LFR_BP1_F0[i*9+5]; // affect an unsigned short int pointer with the
// adress where the 16-bit word result will be stored
*pt_u_short_int = psd | (tmp_u_short_int << nbitsig); // put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig), making
// the 16-bit word to be recorded, and record it using the pointer
printf("psd for PSDE significand : %d\n",psd);
printf("tmp_u_short_int for PSDE exponent : %d\n",tmp_u_short_int);
printf("*pt_u_short_int for PSDE significand + exponent: %.3d or %.4x\n",*pt_u_short_int, *pt_u_short_int);
printf("LFR_BP1_F0[i*9+6] : %.3d or %.2x\n",LFR_BP1_F0[i*9+6], LFR_BP1_F0[i*9+6]);
printf("LFR_BP1_F0[i*9+5] : %.3d or %.2x\n",LFR_BP1_F0[i*9+5], LFR_BP1_F0[i*9+5]);
//==============================================================================
// BP1 normal wave vector == PA_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
// == PA_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
// == PA_LFR_SC_BP1_NVEC_V2_F0 == 1 sign bit
tmp = sqrt( compressed_spectral_matrix_f0[i*30+3] *compressed_spectral_matrix_f0[i*30+3] //Im S12
+compressed_spectral_matrix_f0[i*30+5] *compressed_spectral_matrix_f0[i*30+5] //Im S13
+compressed_spectral_matrix_f0[i*30+13]*compressed_spectral_matrix_f0[i*30+13] //Im S23
);
NVEC_V0 = compressed_spectral_matrix_f0[i*30+13]/ tmp; // S23 Im => n1
NVEC_V1 = -compressed_spectral_matrix_f0[i*30+5] / tmp; // S13 Im => n2
NVEC_V2 = compressed_spectral_matrix_f0[i*30+3] / tmp; // S12 Im => n3
printf("NVEC_V0 : %16.8e\n",NVEC_V0);
printf("NVEC_V1 : %16.8e\n",NVEC_V1);
printf("NVEC_V2 : %16.8e\n",NVEC_V2);
LFR_BP1_F0[i*9+4] = (unsigned char) (NVEC_V0*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP1_F0[i*9+3] = (unsigned char) (NVEC_V1*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
pt_u_char = (unsigned char*) &NVEC_V2; // affect an unsigned char pointer with the adress of NVEC_V2
LFR_BP1_F0[i*9+2] = pt_u_char[3] & 0x80; // extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 4th octet)
// record it at the 8th bit position (from the right to the left) of LFR_BP1_F0[i*9+2]
printf("LFR_BP1_F0[i*9+4] for NVEC_V0 : %u\n",LFR_BP1_F0[i*9+4]);
printf("LFR_BP1_F0[i*9+3] for NVEC_V1 : %u\n",LFR_BP1_F0[i*9+3]);
printf("LFR_BP1_F0[i*9+2] for NVEC_V2 : %u\n",LFR_BP1_F0[i*9+2]);
//toto_f = 128.9999 ;
//toto_s_char = (signed char) toto_f;
//printf("toto_s_char : %d\n",toto_s_char);
//toto_f = 255.999 ;
//toto_u_char = (unsigned char) (toto_f);
//printf("toto_u_char : %d\n",toto_u_char);
//toto_f = -1110.999 ;
//pt_toto_u_char = (unsigned char*) &toto_f;
//printf("pt_toto_u_char : %u\n", pt_toto_u_char[3] & 0x80);
//=======================================================
// BP1 ellipticity == PA_LFR_SC_BP1_ELLIP_F0 == 4 bits
aux = 2*tmp / PSDB; // compute the ellipticity
printf("ellipticity : %16.8e\n",aux);
tmp_u_char = (unsigned char) (aux*15 + 0.5); // shift and cast into a 8-bit unsigned char with rounding
// where just the first 4 bits are used (0, ..., 15)
LFR_BP1_F0[i*9+2] = LFR_BP1_F0[i*9+2] | (tmp_u_char << 3); // put these 4 bits next to the right place
// of the sign bit of NVEC_V2 (recorded
// previously in LFR_BP1_F0[i*9+2])
printf("tmp_u_char for ellipticity : %u\n",tmp_u_char);
printf("LFR_BP1_F0[i*9+2] for NVEC_V2 + ellipticity : %u\n",LFR_BP1_F0[i*9+2]);
//==============================================================
// BP1 degree of polarization == PA_LFR_SC_BP1_DOP_F0 == 3 bits
tr_SB_SB = compressed_spectral_matrix_f0[i*30] *compressed_spectral_matrix_f0[i*30]
+ compressed_spectral_matrix_f0[i*30+10]*compressed_spectral_matrix_f0[i*30+10]
+ compressed_spectral_matrix_f0[i*30+18]*compressed_spectral_matrix_f0[i*30+18]
+ 2 * compressed_spectral_matrix_f0[i*30+2] *compressed_spectral_matrix_f0[i*30+2]
+ 2 * compressed_spectral_matrix_f0[i*30+3] *compressed_spectral_matrix_f0[i*30+3]
+ 2 * compressed_spectral_matrix_f0[i*30+4] *compressed_spectral_matrix_f0[i*30+4]
+ 2 * compressed_spectral_matrix_f0[i*30+5] *compressed_spectral_matrix_f0[i*30+5]
+ 2 * compressed_spectral_matrix_f0[i*30+12]*compressed_spectral_matrix_f0[i*30+12]
+ 2 * compressed_spectral_matrix_f0[i*30+13]*compressed_spectral_matrix_f0[i*30+13];
aux = PSDB*PSDB;
tmp = ( 3*tr_SB_SB - aux ) / ( 2 * aux ); // compute the degree of polarisation
printf("DOP : %16.8e\n",tmp);
tmp_u_char = (unsigned char) (tmp*7 + 0.5);// shift and cast into a 8-bit unsigned char with rounding
// where just the first 3 bits are used (0, ..., 7)
LFR_BP1_F0[i*9+2] = LFR_BP1_F0[i*9+2] | tmp_u_char; // record these 3 bits at the 3 first bit positions
// (from the right to the left) of LFR_BP1_F0[i*9+2]
printf("tmp_u_char for DOP : %u\n",tmp_u_char);
printf("LFR_BP1_F0[i*9+2] for NVEC_V2 + ellipticity + DOP : %u\n",LFR_BP1_F0[i*9+2]);
//=======================================================================================
// BP1 X_SO-component of the Poynting flux == PA_LFR_SC_BP1_SX_F0 == 8 (+ 2) bits
// = 5 bits (exponent) + 3 bits (significand)
// + 1 sign bit + 1 argument bit (two sectors)
e_cross_b_re = compressed_spectral_matrix_f0[i*30+20]*k34_sx_re //S34 Re
+ compressed_spectral_matrix_f0[i*30+22]*k35_sx_re //S35 Re
+ compressed_spectral_matrix_f0[i*30+6] *k14_sx_re //S14 Re
+ compressed_spectral_matrix_f0[i*30+8] *k15_sx_re //S15 Re
+ compressed_spectral_matrix_f0[i*30+14]*k24_sx_re //S24 Re
+ compressed_spectral_matrix_f0[i*30+16]*k25_sx_re //S25 Re
+ compressed_spectral_matrix_f0[i*30+21]*k34_sx_im //S34 Im
+ compressed_spectral_matrix_f0[i*30+23]*k35_sx_im //S35 Im
+ compressed_spectral_matrix_f0[i*30+7] *k14_sx_im //S14 Im
+ compressed_spectral_matrix_f0[i*30+9] *k15_sx_im //S15 Im
+ compressed_spectral_matrix_f0[i*30+15]*k24_sx_im //S24 Im
+ compressed_spectral_matrix_f0[i*30+17]*k25_sx_im; //S25 Im
// Im(S_ji) = -Im(S_ij)
// k_ji = k_ij
e_cross_b_im = compressed_spectral_matrix_f0[i*30+20]*k34_sx_im //S34 Re
+ compressed_spectral_matrix_f0[i*30+22]*k35_sx_im //S35 Re
+ compressed_spectral_matrix_f0[i*30+6] *k14_sx_im //S14 Re
+ compressed_spectral_matrix_f0[i*30+8] *k15_sx_im //S15 Re
+ compressed_spectral_matrix_f0[i*30+14]*k24_sx_im //S24 Re
+ compressed_spectral_matrix_f0[i*30+16]*k25_sx_im //S25 Re
- compressed_spectral_matrix_f0[i*30+21]*k34_sx_re //S34 Im
- compressed_spectral_matrix_f0[i*30+23]*k35_sx_re //S35 Im
- compressed_spectral_matrix_f0[i*30+7] *k14_sx_re //S14 Im
- compressed_spectral_matrix_f0[i*30+9] *k15_sx_re //S15 Im
- compressed_spectral_matrix_f0[i*30+15]*k24_sx_re //S24 Im
- compressed_spectral_matrix_f0[i*30+17]*k25_sx_re; //S25 Im
printf("ReaSX / 2 : %16.8e\n",e_cross_b_re/2);
pt_u_char = (unsigned char*) &e_cross_b_re; // Affect an unsigned char pointer with the adress of e_cross_b_re
LFR_BP1_F0[i*9+8] = LFR_BP1_F0[i*9+8] | (pt_u_char[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet)
// Record it at the 8th bit position (from the right to the left)
// of LFR_BP1_F0[i*9+8]
pt_u_char[3] = (pt_u_char[3] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
significand = frexpf(e_cross_b_re/2, &exponent);// 0.5 <= significand < 1
// ReaSX/2 = significand * 2^exponent
// The division by 2 is to ensure that max value <= 2^30 (rough estimate)
// Should be reconsidered by taking into account the k-coefficients ...
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
printf("|ReaSX| / 2 : %16.8e\n",e_cross_b_re/2);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
LFR_BP1_F0[i*9+1] = (unsigned char) ((significand*2-1)*7 + 0.5); // Shift and cast into a 8-bit unsigned char with rounding
// where just the first 3 bits are used (0, ..., 7)
tmp_u_char = (unsigned char) (exponent-expmin); // Shift and cast into a 8-bit unsigned char where
// just the first 5 bits are used (0, ..., 2^5-1)
printf("LFR_BP1_F0[i*9+1] for ReaSX significand : %u\n",LFR_BP1_F0[i*9+1]);
printf("tmp_u_char for ReaSX exponent : %d\n",tmp_u_char);
LFR_BP1_F0[i*9+1] = LFR_BP1_F0[i*9+1] | (tmp_u_char << 3); // shift these 5 bits to the left before logical addition
// with LFR_BP1_F0[i*9+1]
printf("LFR_BP1_F0[i*9+1] for ReaSX exponent + significand : %u\n",LFR_BP1_F0[i*9+1]);
printf("LFR_BP1_F0[i*9+8] for ReaSX sign + PSDB 'exponent' : %u\n",LFR_BP1_F0[i*9+8]);
printf("ImaSX / 2 : %16.8e\n",e_cross_b_im/2);
pt_u_char = (unsigned char*) &e_cross_b_im; // Affect an unsigned char pointer with the adress of e_cross_b_im
pt_u_char[3] = pt_u_char[3] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX|
tmp_u_char = (e_cross_b_im > e_cross_b_re) ? 0x40 : 0x00; // Determine the sector argument of SX. If |Im| > |Re| affect
// an unsigned 8-bit char with 01000000; otherwise with null.
LFR_BP1_F0[i*9+8] = LFR_BP1_F0[i*9+8] | tmp_u_char; // Record it as a sign bit at the 7th bit position (from the right
// to the left) of LFR_BP1_F0[i*9+7], by simple logical addition.
printf("|ImaSX| / 2 : %16.8e\n",e_cross_b_im/2);
printf("ArgSX sign : %u\n",tmp_u_char);
printf("LFR_BP1_F0[i*9+8] for ReaSX & ArgSX signs + PSDB 'exponent' : %u\n",LFR_BP1_F0[i*9+8]);
//======================================================================
// BP1 phase velocity estimator == PA_LFR_SC_BP1_VPHI_F0 == 8 (+ 2) bits
// = 5 bits (exponent) + 3 bits (significand)
// + 1 sign bit + 1 argument bit (two sectors)
ny = sin(alpha_M)*NVEC_V1 + cos(alpha_M)*NVEC_V2;
nz = NVEC_V0;
bx_bx_star = cos(alpha_M)*cos(alpha_M)*compressed_spectral_matrix_f0[i*30+10] // S22 Re
+ sin(alpha_M)*sin(alpha_M)*compressed_spectral_matrix_f0[i*30+18] // S33 Re
- 2*sin(alpha_M)*cos(alpha_M)*compressed_spectral_matrix_f0[i*30+12]; // S23 Re
n_cross_e_scal_b_re = ny * (compressed_spectral_matrix_f0[i*30+14]*k24_ny_re //S24 Re
+compressed_spectral_matrix_f0[i*30+16]*k25_ny_re //S25 Re
+compressed_spectral_matrix_f0[i*30+20]*k34_ny_re //S34 Re
+compressed_spectral_matrix_f0[i*30+22]*k35_ny_re //S35 Re
+compressed_spectral_matrix_f0[i*30+15]*k24_ny_im //S24 Im
+compressed_spectral_matrix_f0[i*30+17]*k25_ny_im //S25 Im
+compressed_spectral_matrix_f0[i*30+21]*k34_ny_im //S34 Im
+compressed_spectral_matrix_f0[i*30+23]*k35_ny_im) //S35 Im
+ nz * (compressed_spectral_matrix_f0[i*30+14]*k24_nz_re //S24 Re
+compressed_spectral_matrix_f0[i*30+16]*k25_nz_re //S25 Re
+compressed_spectral_matrix_f0[i*30+20]*k34_nz_re //S34 Re
+compressed_spectral_matrix_f0[i*30+22]*k35_nz_re //S35 Re
+compressed_spectral_matrix_f0[i*30+15]*k24_nz_im //S24 Im
+compressed_spectral_matrix_f0[i*30+17]*k25_nz_im //S25 Im
+compressed_spectral_matrix_f0[i*30+21]*k34_nz_im //S34 Im
+compressed_spectral_matrix_f0[i*30+23]*k35_nz_im);//S35 Im
// Im(S_ji) = -Im(S_ij)
// k_ji = k_ij
n_cross_e_scal_b_im = ny * (compressed_spectral_matrix_f0[i*30+14]*k24_ny_im //S24 Re
+compressed_spectral_matrix_f0[i*30+16]*k25_ny_im //S25 Re
+compressed_spectral_matrix_f0[i*30+20]*k34_ny_im //S34 Re
+compressed_spectral_matrix_f0[i*30+22]*k35_ny_im //S35 Re
-compressed_spectral_matrix_f0[i*30+15]*k24_ny_re //S24 Im
-compressed_spectral_matrix_f0[i*30+17]*k25_ny_re //S25 Im
-compressed_spectral_matrix_f0[i*30+21]*k34_ny_re //S34 Im
-compressed_spectral_matrix_f0[i*30+23]*k35_ny_re) //S35 Im
+ nz * (compressed_spectral_matrix_f0[i*30+14]*k24_nz_im //S24 Re
+compressed_spectral_matrix_f0[i*30+16]*k25_nz_im //S25 Re
+compressed_spectral_matrix_f0[i*30+20]*k34_nz_im //S34 Re
+compressed_spectral_matrix_f0[i*30+22]*k35_nz_im //S35 Re
-compressed_spectral_matrix_f0[i*30+15]*k24_nz_re //S24 Im
-compressed_spectral_matrix_f0[i*30+17]*k25_nz_re //S25 Im
-compressed_spectral_matrix_f0[i*30+21]*k34_nz_re //S34 Im
-compressed_spectral_matrix_f0[i*30+23]*k35_nz_re);//S35 Im
printf("n_cross_e_scal_b_re : %16.8e\n",n_cross_e_scal_b_re);
printf("n_cross_e_scal_b_im : %16.8e\n",n_cross_e_scal_b_im);
// vphi = n_cross_e_scal_b_re / bx_bx_star => sign(VPHI) = sign(n_cross_e_scal_b_re)
pt_u_char = (unsigned char*) &n_cross_e_scal_b_re; // Affect an unsigned char pointer with the adress of n_cross_e_scal_b_re
LFR_BP1_F0[i*9+7] = LFR_BP1_F0[i*9+7] | (pt_u_char[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet)
// Record it at the 8th bit position (from the right to the left)
// of LFR_BP1_F0[i*9+7]
pt_u_char[3] = (pt_u_char[3] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
vphi = n_cross_e_scal_b_re / bx_bx_star; // Compute |VPHI|
significand = frexpf(vphi/2, &exponent); // 0.5 <= significand < 1
// vphi/2 = significand * 2^exponent
// The division by 2 is to ensure that max value <= 2^30 (rough estimate)
// Should be reconsidered by taking into account the k-coefficients ...
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
printf("|VPHI| / 2 : %16.8e\n",vphi/2);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
LFR_BP1_F0[i*9+0] = (unsigned char) ((significand*2-1)*7 + 0.5); // Shift and cast into a 8-bit unsigned char with rounding
// where just the first 3 bits are used (0, ..., 7)
tmp_u_char = (unsigned char) (exponent-expmin); // Shift and cast into a 8-bit unsigned char where
// just the first 5 bits are used (0, ..., 2^5-1)
printf("LFR_BP1_F0[i*9+0] for VPHI significand : %u\n",LFR_BP1_F0[i*9+0]);
printf("tmp_u_char for VPHI exponent : %d\n",tmp_u_char);
LFR_BP1_F0[i*9+0] = LFR_BP1_F0[i*9+0] | (tmp_u_char << 3); // shift these 5 bits to the left before logical addition
// with LFR_BP1_F0[i*9+0]
printf("LFR_BP1_F0[i*9+0] for VPHI exponent + significand : %u\n",LFR_BP1_F0[i*9+0]);
printf("LFR_BP1_F0[i*9+6] for VPHI sign + PSDE 'exponent' : %u\n",LFR_BP1_F0[i*9+6]);
pt_u_char = (unsigned char*) &n_cross_e_scal_b_im; // Affect an unsigned char pointer with the adress of n_cross_e_scal_b_im
pt_u_char[3] = pt_u_char[3] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaSX|
tmp_u_char = (n_cross_e_scal_b_im > n_cross_e_scal_b_re) ? 0x40 : 0x00; // Determine the sector argument of SX. If |Im| > |Re| affect
// an unsigned 8-bit char with 01000000; otherwise with null.
LFR_BP1_F0[i*9+6] = LFR_BP1_F0[i*9+6] | tmp_u_char; // Record it as a sign bit at the 7th bit position (from the right
// to the left) of LFR_BP1_F0[i*9+6], by simple logical addition.
printf("|n_cross_e_scal_b_im| : %16.8e\n",n_cross_e_scal_b_im);
printf("|n_cross_e_scal_b_im|/bx_bx_star/2: %16.8e\n",n_cross_e_scal_b_im/bx_bx_star/2);
printf("ArgNEBX sign : %u\n",tmp_u_char);
printf("LFR_BP1_F0[i*9+6] for VPHI & ArgNEBX signs + PSDE 'exponent' : %u\n",LFR_BP1_F0[i*9+6]);
}
}
void BP2_set(){
int i, exponent;
float aux, significand, cross_re, cross_im;
signed char nbitexp, nbitsig, expmin, expmax; // 8 bits
short int rangesig; // 16 bits
unsigned short int autocor, tmp_u_short_int; // 16 bits
unsigned short int *pt_u_short_int; // pointer on unsigned 16-bit words
printf("Number of bins: %d\n", NB_BINS_COMPRESSED_MATRIX_f0);
printf("BP2 : \n");
// For floating point data to be recorded on 16-bit words :
nbitexp = 6; // number of bits for the exponent
nbitsig = 16 - nbitexp; // number of bits for the significand
rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
printf("nbitexp : %d, nbitsig : %d, rangesig : %d\n", nbitexp, nbitsig, rangesig);
expmax = 32;
expmin = expmax - (1 << nbitexp) + 1;
printf("expmin : %d, expmax : %d\n", expmin, expmax);
for(i = 0; i<1; i++){
//==============================================
// BP2 normalized cross correlations == PA_LFR_SC_BP2_CROSS_F0 == 10 * (8+8) bits
// == PA_LFR_SC_BP2_CROSS_RE_0_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_0_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_1_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_1_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_2_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_2_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_3_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_3_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_4_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_4_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_5_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_5_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_6_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_6_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_7_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_7_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_8_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_8_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_9_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_9_F0 == 8 bits
// S12
aux = sqrt(compressed_spectral_matrix_f0[i*30]*compressed_spectral_matrix_f0[i*30+10]);
cross_re = compressed_spectral_matrix_f0[i*30+2] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+3] / aux;
LFR_BP2_F0[i*30+19] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+9] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+19] for cross12_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+19]);
printf("LFR_BP2_F0[i*30+9] for cross12_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+9]);
// S13
aux = sqrt(compressed_spectral_matrix_f0[i*30]*compressed_spectral_matrix_f0[i*30+18]);
cross_re = compressed_spectral_matrix_f0[i*30+4] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+5] / aux;
LFR_BP2_F0[i*30+18] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+8] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+18] for cross13_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+18]);
printf("LFR_BP2_F0[i*30+8] for cross13_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+8]);
// S14
aux = sqrt(compressed_spectral_matrix_f0[i*30]*compressed_spectral_matrix_f0[i*30+24]);
cross_re = compressed_spectral_matrix_f0[i*30+6] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+7] / aux;
LFR_BP2_F0[i*30+17] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+7] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+17] for cross14_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+17]);
printf("LFR_BP2_F0[i*30+7] for cross14_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+7]);
// S15
aux = sqrt(compressed_spectral_matrix_f0[i*30]*compressed_spectral_matrix_f0[i*30+28]);
cross_re = compressed_spectral_matrix_f0[i*30+8] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+9] / aux;
LFR_BP2_F0[i*30+16] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+6] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+16] for cross15_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+16]);
printf("LFR_BP2_F0[i*30+6] for cross15_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+6]);
// S23
aux = sqrt(compressed_spectral_matrix_f0[i*30+10]*compressed_spectral_matrix_f0[i*30+18]);
cross_re = compressed_spectral_matrix_f0[i*30+12] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+13] / aux;
LFR_BP2_F0[i*30+15] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+5] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+15] for cross23_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+15]);
printf("LFR_BP2_F0[i*30+5] for cross23_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+5]);
// S24
aux = sqrt(compressed_spectral_matrix_f0[i*30+10]*compressed_spectral_matrix_f0[i*30+24]);
cross_re = compressed_spectral_matrix_f0[i*30+14] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+15] / aux;
LFR_BP2_F0[i*30+14] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+4] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+14] for cross24_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+14]);
printf("LFR_BP2_F0[i*30+4] for cross24_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+4]);
// S25
aux = sqrt(compressed_spectral_matrix_f0[i*30+10]*compressed_spectral_matrix_f0[i*30+28]);
cross_re = compressed_spectral_matrix_f0[i*30+16] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+17] / aux;
LFR_BP2_F0[i*30+13] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+3] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+13] for cross25_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+13]);
printf("LFR_BP2_F0[i*30+3] for cross25_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+3]);
// S34
aux = sqrt(compressed_spectral_matrix_f0[i*30+18]*compressed_spectral_matrix_f0[i*30+24]);
cross_re = compressed_spectral_matrix_f0[i*30+20] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+21] / aux;
LFR_BP2_F0[i*30+12] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+2] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+12] for cross34_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+12]);
printf("LFR_BP2_F0[i*30+2] for cross34_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+2]);
// S35
aux = sqrt(compressed_spectral_matrix_f0[i*30+18]*compressed_spectral_matrix_f0[i*30+28]);
cross_re = compressed_spectral_matrix_f0[i*30+22] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+23] / aux;
LFR_BP2_F0[i*30+11] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+1] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+11] for cross35_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+11]);
printf("LFR_BP2_F0[i*30+1] for cross35_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+1]);
// S45
aux = sqrt(compressed_spectral_matrix_f0[i*30+24]*compressed_spectral_matrix_f0[i*30+28]);
cross_re = compressed_spectral_matrix_f0[i*30+26] / aux;
cross_im = compressed_spectral_matrix_f0[i*30+27] / aux;
LFR_BP2_F0[i*30+10] = (unsigned char) (cross_re*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
LFR_BP2_F0[i*30+0] = (unsigned char) (cross_im*127.5 + 128); // shift and cast into a 8-bit unsigned char (0, ..., 255) with rounding
printf("LFR_BP2_F0[i*30+10] for cross45_re (%16.8e) : %.3u\n",cross_re, LFR_BP2_F0[i*30+10]);
printf("LFR_BP2_F0[i*30+0] for cross45_im (%16.8e) : %.3u\n",cross_im, LFR_BP2_F0[i*30+0]);
//==============================================
// BP2 auto correlations == PA_LFR_SC_BP2_AUTO_F0 == 5*16 bits = 5*[6 bits (exponent) + 10 bits (significand)]
// == PA_LFR_SC_BP2_AUTO_A0_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A1_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A2_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A3_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A4_F0 == 16 bits
// S11
significand = frexpf(compressed_spectral_matrix_f0[i*30], &exponent); // 0.5 <= significand < 1
// S11 = significand * 2^exponent
printf("S11 : %16.8e\n",compressed_spectral_matrix_f0[i*30]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (unsigned short int) ((significand*2-1)*rangesig + 0.5); // shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
tmp_u_short_int = (unsigned short int) (exponent-expmin); // shift and cast into a 16-bit unsigned int
// where just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
pt_u_short_int = (unsigned short int*) &LFR_BP2_F0[i*30+28]; // affect an unsigned short int pointer with the
// adress where the 16-bit word result will be stored
*pt_u_short_int = autocor | (tmp_u_short_int << nbitsig); // put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig), making
// the 16-bit word to be recorded, and record it using the pointer
//printf("size of autocor : %d\n",sizeof(autocor) );
//printf("size of tmp_u_short_int : %d\n",sizeof(tmp_u_short_int) );
printf("autocor for S11 significand : %u\n",autocor );
printf("tmp_u_char for S11 exponent : %u\n",tmp_u_short_int );
printf("*pt_u_short_int for S11 significand + exponent: %u or %x\n",*pt_u_short_int, *pt_u_short_int);
printf("LFR_BP2_F0[i*30+29] : %u or %x\n",LFR_BP2_F0[i*30+29], LFR_BP2_F0[i*30+29]);
printf("LFR_BP2_F0[i*30+28] : %u or %x\n",LFR_BP2_F0[i*30+28], LFR_BP2_F0[i*30+28]);
// S22
significand = frexpf(compressed_spectral_matrix_f0[i*30+10], &exponent); // 0.5 <= significand < 1
// S22 = significand * 2^exponent
printf("S22 : %16.8e\n",compressed_spectral_matrix_f0[i*30+10]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (unsigned short int) ((significand*2-1)*rangesig + 0.5); // shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
tmp_u_short_int = (unsigned short int) (exponent-expmin); // shift and cast into a 16-bit unsigned int
// where just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
pt_u_short_int = (unsigned short int*) &LFR_BP2_F0[i*30+26]; // affect an unsigned short int pointer with the
// adress where the 16-bit word result will be stored
*pt_u_short_int = autocor | (tmp_u_short_int << nbitsig); // put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig), making
// the 16-bit word to be recorded, and record it using the pointer
printf("autocor for S22 significand : %d\n",autocor );
printf("tmp_u_char for S22 exponent : %d\n",tmp_u_short_int );
printf("*pt_u_short_int for S22 significand + exponent: %.3d or %x\n",*pt_u_short_int, *pt_u_short_int);
printf("LFR_BP2_F0[i*30+27] : %.3d or %x\n",LFR_BP2_F0[i*30+27], LFR_BP2_F0[i*30+27]);
printf("LFR_BP2_F0[i*30+26] : %.3d or %x\n",LFR_BP2_F0[i*30+26], LFR_BP2_F0[i*30+26]);
// S33
significand = frexpf(compressed_spectral_matrix_f0[i*30+18], &exponent); // 0.5 <= significand < 1
// S33 = significand * 2^exponent
printf("S33 : %16.8e\n",compressed_spectral_matrix_f0[i*30+18]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (unsigned short int) ((significand*2-1)*rangesig + 0.5); // shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
tmp_u_short_int = (unsigned short int) (exponent-expmin); // shift and cast into a 16-bit unsigned int
// where just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
pt_u_short_int = (unsigned short int*) &LFR_BP2_F0[i*30+24]; // affect an unsigned short int pointer with the
// adress where the 16-bit word result will be stored
*pt_u_short_int = autocor | (tmp_u_short_int << nbitsig); // put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig), making
// the 16-bit word to be recorded, and record it using the pointer
printf("autocor for S33 significand : %d\n",autocor );
printf("tmp_u_char for S33 exponent : %d\n",tmp_u_short_int );
printf("*pt_u_short_int for S33 significand + exponent: %.3d or %x\n",*pt_u_short_int, *pt_u_short_int);
printf("LFR_BP2_F0[i*30+25] : %.3d or %x\n",LFR_BP2_F0[i*30+25], LFR_BP2_F0[i*30+25]);
printf("LFR_BP2_F0[i*30+24] : %.3d or %x\n",LFR_BP2_F0[i*30+24], LFR_BP2_F0[i*30+24]);
// S44
significand = frexpf(compressed_spectral_matrix_f0[i*30+24], &exponent); // 0.5 <= significand < 1
// S44 = significand * 2^exponent
printf("S44 : %16.8e\n",compressed_spectral_matrix_f0[i*30+24]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (unsigned short int) ((significand*2-1)*rangesig + 0.5); // shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
tmp_u_short_int = (unsigned short int) (exponent-expmin); // shift and cast into a 16-bit unsigned int
// where just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
pt_u_short_int = (unsigned short int*) &LFR_BP2_F0[i*30+22]; // affect an unsigned short int pointer with the
// adress where the 16-bit word result will be stored
*pt_u_short_int = autocor | (tmp_u_short_int << nbitsig); // put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig), making
// the 16-bit word to be recorded, and record it using the pointer
printf("autocor for S44 significand : %d\n",autocor );
printf("tmp_u_char for S44 exponent : %d\n",tmp_u_short_int );
printf("*pt_u_short_int for S44 significand + exponent: %.3d or %x\n",*pt_u_short_int, *pt_u_short_int);
printf("LFR_BP2_F0[i*30+23] : %.3d or %x\n",LFR_BP2_F0[i*30+23], LFR_BP2_F0[i*30+23]);
printf("LFR_BP2_F0[i*30+22] : %.3d or %x\n",LFR_BP2_F0[i*30+22], LFR_BP2_F0[i*30+22]);
// S55
significand = frexpf(compressed_spectral_matrix_f0[i*30+28], &exponent); // 0.5 <= significand < 1
// S55 = significand * 2^exponent
printf("S55 : %16.8e\n",compressed_spectral_matrix_f0[i*30+28]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (unsigned short int) ((significand*2-1)*rangesig + 0.5); // shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
tmp_u_short_int = (unsigned short int) (exponent-expmin); // shift and cast into a 16-bit unsigned int
// where just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
pt_u_short_int = (unsigned short int*) &LFR_BP2_F0[i*30+20]; // affect an unsigned short int pointer with the
// adress where the 16-bit word result will be stored
*pt_u_short_int = autocor | (tmp_u_short_int << nbitsig); // put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig), making
// the 16-bit word to be recorded, and record it using the pointer
printf("autocor for S55 significand : %d\n",autocor );
printf("tmp_u_char for S55 exponent : %d\n",tmp_u_short_int );
printf("*pt_u_short_int for S55 significand + exponent: %.3d or %x\n",*pt_u_short_int, *pt_u_short_int);
printf("LFR_BP2_F0[i*30+21] : %.3d or %x\n",LFR_BP2_F0[i*30+21], LFR_BP2_F0[i*30+21]);
printf("LFR_BP2_F0[i*30+20] : %.3d or %x\n",LFR_BP2_F0[i*30+20], LFR_BP2_F0[i*30+20]);
}
}