##// END OF EJS Templates
version 1.6 suite a
chust -
r14:fc753d9d5cc7 TCH
parent child
Show More
@@ -0,0 +1,20
1 TEMPLATE = app
2 CONFIG += console
3 CONFIG -= app_bundle
4 CONFIG -= qt
5
6 DEFINES += DEBUG_TCH
7 #DEFINES += MSB_FIRST_TCH # SPARC convention
8 DEFINES += LSB_FIRST_TCH # PC convention
9
10 SOURCES += main.c \
11 basic_parameters.c \
12 file_utilities.c
13
14 HEADERS += \
15 basic_parameters.h \
16 basic_parameters_params.h \
17 basic_parameters_utilities.h \
18 file_utilities.h
19
20
@@ -1,55 +1,57
1 // In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013)
1 // In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013)
2 // version 1.0: 31/07/2013
2 // version 1.0: 31/07/2013
3 // version 1.1: 02/04/2014
3 // version 1.1: 02/04/2014
4 // version 1.2: 30/04/2014
4 // version 1.2: 30/04/2014
5 // version 1.3: 02/05/2014
5 // version 1.3: 02/05/2014
6 // version 1.4: 16/05/2014
6 // version 1.4: 16/05/2014
7 // version 1.5: 20/05/2014
7 // version 1.5: 20/05/2014
8 // version 1.6: 19/12/2014
8 // version 1.6: 19/12/2014
9
9
10 #include <stdint.h>
10 #include <stdint.h>
11
11
12 #include "basic_parameters_utilities.h"
12 #include "basic_parameters_params.h"
13
13
14 void init_k_coefficients_f0( void )
14 void init_k_coefficients( float *k_coefficients_f0, \
15 float *k_coefficients_f1, \
16 float *k_coefficients_f2 )
15 {
17 {
16 uint16_t i; // 16 bits unsigned
18 uint16_t i; // 16 bits unsigned
17
19
18 for(i=0; i<NB_BINS_COMPRESSED_MATRIX_f0; i++){
20 for(i=0; i<NB_BINS_COMPRESSED_MATRIX_f0; i++){
19 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K44_PE] = 1;
21 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K44_PE] = 1;
20 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K55_PE] = 1;
22 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K55_PE] = 1;
21 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K45_PE_RE] = 1;
23 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K45_PE_RE] = 1;
22 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K45_PE_IM] = 1;
24 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K45_PE_IM] = 1;
23
25
24 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K14_SX_RE] = 1;
26 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K14_SX_RE] = 1;
25 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K14_SX_IM] = 1;
27 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K14_SX_IM] = 1;
26 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K15_SX_RE] = 1;
28 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K15_SX_RE] = 1;
27 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K15_SX_IM] = 1;
29 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K15_SX_IM] = 1;
28 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_SX_RE] = 1;
30 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_SX_RE] = 1;
29 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_SX_IM] = 1;
31 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_SX_IM] = 1;
30 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_SX_RE] = 1;
32 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_SX_RE] = 1;
31 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_SX_IM] = 1;
33 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_SX_IM] = 1;
32 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_SX_RE] = 1;
34 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_SX_RE] = 1;
33 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_SX_IM] = 1;
35 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_SX_IM] = 1;
34 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_SX_RE] = 1;
36 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_SX_RE] = 1;
35 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_SX_IM] = 1;
37 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_SX_IM] = 1;
36
38
37 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NY_RE] = 1;
39 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NY_RE] = 1;
38 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NY_IM] = 1;
40 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NY_IM] = 1;
39 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NY_RE] = 1;
41 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NY_RE] = 1;
40 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NY_IM] = 1;
42 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NY_IM] = 1;
41 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NY_RE] = 1;
43 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NY_RE] = 1;
42 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NY_IM] = 1;
44 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NY_IM] = 1;
43 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NY_RE] = 1;
45 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NY_RE] = 1;
44 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NY_IM] = 1;
46 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NY_IM] = 1;
45
47
46 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NZ_RE] = 1;
48 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NZ_RE] = 1;
47 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NZ_IM] = 1;
49 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K24_NZ_IM] = 1;
48 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NZ_RE] = 1;
50 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NZ_RE] = 1;
49 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NZ_IM] = 1;
51 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K25_NZ_IM] = 1;
50 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NZ_RE] = 1;
52 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NZ_RE] = 1;
51 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NZ_IM] = 1;
53 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K34_NZ_IM] = 1;
52 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NZ_RE] = 1;
54 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NZ_RE] = 1;
53 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NZ_IM] = 1;
55 k_coefficients_f0[i*NB_K_COEFF_PER_BIN+K35_NZ_IM] = 1;
54 }
56 }
55 }
57 }
@@ -1,867 +1,867
1 // In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013)
1 // In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013)
2 // version 1.0: 31/07/2013
2 // version 1.0: 31/07/2013
3 // version 1.1: 02/04/2014
3 // version 1.1: 02/04/2014
4 // version 1.2: 30/04/2014
4 // version 1.2: 30/04/2014
5 // version 1.3: 02/05/2014
5 // version 1.3: 02/05/2014
6 // version 1.4: 16/05/2014
6 // version 1.4: 16/05/2014
7 // version 1.5: 20/05/2014
7 // version 1.5: 20/05/2014
8 // version 1.6: 19/12/2014
8 // version 1.6: 19/12/2014
9
9
10 #ifndef BASIC_PARAMETERS_H_INCLUDED
10 #ifndef BASIC_PARAMETERS_H_INCLUDED
11 #define BASIC_PARAMETERS_H_INCLUDED
11 #define BASIC_PARAMETERS_H_INCLUDED
12
12
13 #include <math.h>
13 #include <math.h>
14 #include <stdio.h>
14 #include <stdio.h>
15 #include <stdint.h>
15 #include <stdint.h>
16
16
17 #include "basic_parameters_params.h"
17 #include "basic_parameters_params.h"
18
18
19 static inline void BP1_set(float * compressed_spec_mat, float * k_coeff_intercalib, unsigned char nb_bins_compressed_spec_mat, unsigned char * lfr_bp1);
19 static inline void BP1_set(float * compressed_spec_mat, float * k_coeff_intercalib, unsigned char nb_bins_compressed_spec_mat, unsigned char * lfr_bp1);
20 static inline void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * lfr_bp2);
20 static inline void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * lfr_bp2);
21
21
22 void init_k_coefficients_f0( void );
22 void init_k_coefficients( float *k_coefficients_f0, float *k_coefficients_f1, float *k_coefficients_f2 );
23
23
24 //***********************************
24 //***********************************
25 // STATIC INLINE FUNCTION DEFINITIONS
25 // STATIC INLINE FUNCTION DEFINITIONS
26
26
27 void BP1_set( float * compressed_spec_mat, float * k_coeff_intercalib, uint8_t nb_bins_compressed_spec_mat, uint8_t * lfr_bp1 ){
27 void BP1_set( float * compressed_spec_mat, float * k_coeff_intercalib, uint8_t nb_bins_compressed_spec_mat, uint8_t * lfr_bp1 ){
28 float PSDB; // 32-bit floating point
28 float PSDB; // 32-bit floating point
29 float PSDE;
29 float PSDE;
30 float tmp;
30 float tmp;
31 float NVEC_V0;
31 float NVEC_V0;
32 float NVEC_V1;
32 float NVEC_V1;
33 float NVEC_V2;
33 float NVEC_V2;
34 float aux;
34 float aux;
35 float tr_SB_SB;
35 float tr_SB_SB;
36 float e_cross_b_re;
36 float e_cross_b_re;
37 float e_cross_b_im;
37 float e_cross_b_im;
38 float n_cross_e_scal_b_re;
38 float n_cross_e_scal_b_re;
39 float n_cross_e_scal_b_im;
39 float n_cross_e_scal_b_im;
40 float ny;
40 float ny;
41 float nz;
41 float nz;
42 float bx_bx_star;
42 float bx_bx_star;
43 float vphi;
43 float vphi;
44 float significand;
44 float significand;
45 int exponent; // 32-bit signed integer
45 int exponent; // 32-bit signed integer
46 float alpha_M;
46 float alpha_M;
47
47
48 uint8_t nbitexp; // 8-bit unsigned integer
48 uint8_t nbitexp; // 8-bit unsigned integer
49 uint8_t nbitsig;
49 uint8_t nbitsig;
50 uint8_t tmp_uint8;
50 uint8_t tmp_uint8;
51 uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
51 uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
52 int8_t expmin; // 8-bit signed integer
52 int8_t expmin; // 8-bit signed integer
53 int8_t expmax;
53 int8_t expmax;
54 uint16_t rangesig; // 16-bit unsigned integer
54 uint16_t rangesig; // 16-bit unsigned integer
55 uint16_t psd;
55 uint16_t psd;
56 uint16_t exp;
56 uint16_t exp;
57 uint16_t tmp_uint16;
57 uint16_t tmp_uint16;
58 uint16_t i;
58 uint16_t i;
59
59
60 alpha_M = 45 * (3.1415927/180);
60 alpha_M = 45 * (3.1415927/180);
61
61
62 #ifdef DEBUG_TCH
62 #ifdef DEBUG_TCH
63 printf("BP1 : \n");
63 printf("BP1 : \n");
64 printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
64 printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
65 #endif
65 #endif
66
66
67 // initialization for managing the exponents of the floating point data:
67 // initialization for managing the exponents of the floating point data:
68 nbitexp = 5; // number of bits for the exponent
68 nbitexp = 5; // number of bits for the exponent
69 expmax = 30; // maximum value of the exponent
69 expmax = 30; // maximum value of the exponent
70 expmin = expmax - (1 << nbitexp) + 1; // accordingly the minimum exponent value
70 expmin = expmax - (1 << nbitexp) + 1; // accordingly the minimum exponent value
71 // for floating point data to be recorded on 12-bit words:
71 // for floating point data to be recorded on 12-bit words:
72 nbitsig = 12 - nbitexp; // number of bits for the significand
72 nbitsig = 12 - nbitexp; // number of bits for the significand
73 rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
73 rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
74
74
75 #ifdef DEBUG_TCH
75 #ifdef DEBUG_TCH
76 printf("nbitexp : %d, expmax : %d, expmin : %d\n", nbitexp, expmax, expmin);
76 printf("nbitexp : %d, expmax : %d, expmin : %d\n", nbitexp, expmax, expmin);
77 printf("nbitsig : %d, rangesig : %d\n", nbitsig, rangesig);
77 printf("nbitsig : %d, rangesig : %d\n", nbitsig, rangesig);
78 #endif
78 #endif
79
79
80 for(i=0; i<nb_bins_compressed_spec_mat; i++){
80 for(i=0; i<nb_bins_compressed_spec_mat; i++){
81 //==============================================
81 //==============================================
82 // BP1 PSDB == PA_LFR_SC_BP1_PB_F0 == 12 bits = 5 bits (exponent) + 7 bits (significand)
82 // BP1 PSDB == PA_LFR_SC_BP1_PB_F0 == 12 bits = 5 bits (exponent) + 7 bits (significand)
83 PSDB = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] // S11
83 PSDB = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] // S11
84 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9] // S22
84 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9] // S22
85 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]; // S33
85 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]; // S33
86
86
87 significand = frexpf(PSDB/3, &exponent); // 0.5 <= significand < 1
87 significand = frexpf(PSDB/3, &exponent); // 0.5 <= significand < 1
88 // PSDB/3 = significand * 2^exponent
88 // PSDB/3 = significand * 2^exponent
89 // the division by 3 is to ensure that max value <= 2^30
89 // the division by 3 is to ensure that max value <= 2^30
90
90
91 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
91 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
92 exponent = expmin;
92 exponent = expmin;
93 significand = 0.5; // min value that can be recorded
93 significand = 0.5; // min value that can be recorded
94 }
94 }
95 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
95 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
96 exponent = expmax;
96 exponent = expmax;
97 significand = 1.0; // max value that can be recorded
97 significand = 1.0; // max value that can be recorded
98 }
98 }
99 if (significand == 0) { // in that case exponent == 0 too
99 if (significand == 0) { // in that case exponent == 0 too
100 exponent = expmin;
100 exponent = expmin;
101 significand = 0.5; // min value that can be recorded
101 significand = 0.5; // min value that can be recorded
102 }
102 }
103
103
104 psd = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
104 psd = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
105 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
105 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
106 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
106 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
107 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
107 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
108 tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
108 tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
109 // left place of the significand bits (nbitsig),
109 // left place of the significand bits (nbitsig),
110 // making the 16-bit word to be recorded
110 // making the 16-bit word to be recorded
111 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
111 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
112 #ifdef LSB_FIRST_TCH
112 #ifdef LSB_FIRST_TCH
113 lfr_bp1[i*NB_BYTES_BP1+2] = pt_uint8[0]; // Record LSB of tmp_uint16
113 lfr_bp1[i*NB_BYTES_BP1+2] = pt_uint8[0]; // Record LSB of tmp_uint16
114 lfr_bp1[i*NB_BYTES_BP1+3] = pt_uint8[1]; // Record MSB of tmp_uint16
114 lfr_bp1[i*NB_BYTES_BP1+3] = pt_uint8[1]; // Record MSB of tmp_uint16
115 #endif
115 #endif
116 #ifdef MSB_FIRST_TCH
116 #ifdef MSB_FIRST_TCH
117 lfr_bp1[i*NB_BYTES_BP1+2] = pt_uint8[1]; // Record LSB of tmp_uint16
117 lfr_bp1[i*NB_BYTES_BP1+2] = pt_uint8[1]; // Record LSB of tmp_uint16
118 lfr_bp1[i*NB_BYTES_BP1+3] = pt_uint8[0]; // Record MSB of tmp_uint16
118 lfr_bp1[i*NB_BYTES_BP1+3] = pt_uint8[0]; // Record MSB of tmp_uint16
119 #endif
119 #endif
120 #ifdef DEBUG_TCH
120 #ifdef DEBUG_TCH
121 printf("\nBin number: %d\n", i);
121 printf("\nBin number: %d\n", i);
122 printf("PSDB / 3 : %16.8e\n",PSDB/3);
122 printf("PSDB / 3 : %16.8e\n",PSDB/3);
123 printf("significand : %16.8e\n",significand);
123 printf("significand : %16.8e\n",significand);
124 printf("exponent : %d\n" ,exponent);
124 printf("exponent : %d\n" ,exponent);
125 printf("psd for PSDB significand : %d\n",psd);
125 printf("psd for PSDB significand : %d\n",psd);
126 printf("exp for PSDB exponent : %d\n",exp);
126 printf("exp for PSDB exponent : %d\n",exp);
127 printf("pt_uint8[1] for PSDB exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
127 printf("pt_uint8[1] for PSDB exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
128 printf("pt_uint8[0] for PSDB exponent + significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
128 printf("pt_uint8[0] for PSDB exponent + significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
129 printf("lfr_bp1[i*NB_BYTES_BP1+3] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+3], lfr_bp1[i*NB_BYTES_BP1+3]);
129 printf("lfr_bp1[i*NB_BYTES_BP1+3] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+3], lfr_bp1[i*NB_BYTES_BP1+3]);
130 printf("lfr_bp1[i*NB_BYTES_BP1+2] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+2], lfr_bp1[i*NB_BYTES_BP1+2]);
130 printf("lfr_bp1[i*NB_BYTES_BP1+2] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+2], lfr_bp1[i*NB_BYTES_BP1+2]);
131 #endif
131 #endif
132 //==============================================
132 //==============================================
133 // BP1 PSDE == PA_LFR_SC_BP1_PE_F0 == 12 bits = 5 bits (exponent) + 7 bits (significand)
133 // BP1 PSDE == PA_LFR_SC_BP1_PE_F0 == 12 bits = 5 bits (exponent) + 7 bits (significand)
134 PSDE = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K44_PE] // S44
134 PSDE = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K44_PE] // S44
135 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K55_PE] // S55
135 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K55_PE] // S55
136 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+22] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K45_PE_RE] // S45 Re
136 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+22] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K45_PE_RE] // S45 Re
137 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+23] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K45_PE_IM]; // S45 Im
137 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+23] * k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K45_PE_IM]; // S45 Im
138
138
139 significand = frexpf(PSDE/2, &exponent); // 0.5 <= significand < 1
139 significand = frexpf(PSDE/2, &exponent); // 0.5 <= significand < 1
140 // PSDE/2 = significand * 2^exponent
140 // PSDE/2 = significand * 2^exponent
141 // the division by 2 is to ensure that max value <= 2^30
141 // the division by 2 is to ensure that max value <= 2^30
142 // should be reconsidered by taking into account the k-coefficients ...
142 // should be reconsidered by taking into account the k-coefficients ...
143
143
144 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
144 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
145 exponent = expmin;
145 exponent = expmin;
146 significand = 0.5; // min value that can be recorded
146 significand = 0.5; // min value that can be recorded
147 }
147 }
148 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
148 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
149 exponent = expmax;
149 exponent = expmax;
150 significand = 1.0; // max value that can be recorded
150 significand = 1.0; // max value that can be recorded
151 }
151 }
152 if (significand == 0) {// in that case exponent == 0 too
152 if (significand == 0) {// in that case exponent == 0 too
153 exponent = expmin;
153 exponent = expmin;
154 significand = 0.5; // min value that can be recorded
154 significand = 0.5; // min value that can be recorded
155 }
155 }
156
156
157 psd = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
157 psd = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
158 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
158 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
159 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
159 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
160 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
160 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
161 tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
161 tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
162 // left place of the significand bits (nbitsig),
162 // left place of the significand bits (nbitsig),
163 // making the 16-bit word to be recorded
163 // making the 16-bit word to be recorded
164 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
164 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
165 #ifdef LSB_FIRST_TCH
165 #ifdef LSB_FIRST_TCH
166 lfr_bp1[i*NB_BYTES_BP1+0] = pt_uint8[0]; // Record LSB of tmp_uint16
166 lfr_bp1[i*NB_BYTES_BP1+0] = pt_uint8[0]; // Record LSB of tmp_uint16
167 lfr_bp1[i*NB_BYTES_BP1+1] = pt_uint8[1]; // Record MSB of tmp_uint16
167 lfr_bp1[i*NB_BYTES_BP1+1] = pt_uint8[1]; // Record MSB of tmp_uint16
168 #endif
168 #endif
169 #ifdef MSB_FIRST_TCH
169 #ifdef MSB_FIRST_TCH
170 lfr_bp1[i*NB_BYTES_BP1+0] = pt_uint8[1]; // Record LSB of tmp_uint16
170 lfr_bp1[i*NB_BYTES_BP1+0] = pt_uint8[1]; // Record LSB of tmp_uint16
171 lfr_bp1[i*NB_BYTES_BP1+1] = pt_uint8[0]; // Record MSB of tmp_uint16
171 lfr_bp1[i*NB_BYTES_BP1+1] = pt_uint8[0]; // Record MSB of tmp_uint16
172 #endif
172 #endif
173 #ifdef DEBUG_TCH
173 #ifdef DEBUG_TCH
174 printf("Bin number: %d\n", i);
174 printf("Bin number: %d\n", i);
175 printf("PSDE/2 : %16.8e\n",PSDE/2);
175 printf("PSDE/2 : %16.8e\n",PSDE/2);
176 printf("significand : %16.8e\n",significand);
176 printf("significand : %16.8e\n",significand);
177 printf("exponent : %d\n" ,exponent);
177 printf("exponent : %d\n" ,exponent);
178 printf("psd for PSDE significand : %d\n",psd);
178 printf("psd for PSDE significand : %d\n",psd);
179 printf("exp for PSDE exponent : %d\n",exp);
179 printf("exp for PSDE exponent : %d\n",exp);
180 printf("pt_uint8[1] for PSDE exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
180 printf("pt_uint8[1] for PSDE exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
181 printf("pt_uint8[0] for PSDE exponent + significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
181 printf("pt_uint8[0] for PSDE exponent + significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
182 printf("lfr_bp1[i*NB_BYTES_BP1+1] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+1], lfr_bp1[i*NB_BYTES_BP1+1]);
182 printf("lfr_bp1[i*NB_BYTES_BP1+1] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+1], lfr_bp1[i*NB_BYTES_BP1+1]);
183 printf("lfr_bp1[i*NB_BYTES_BP1+0] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+0], lfr_bp1[i*NB_BYTES_BP1+0]);
183 printf("lfr_bp1[i*NB_BYTES_BP1+0] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+0], lfr_bp1[i*NB_BYTES_BP1+0]);
184 #endif
184 #endif
185 //==============================================================================
185 //==============================================================================
186 // BP1 normal wave vector == PA_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
186 // BP1 normal wave vector == PA_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
187 // == PA_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
187 // == PA_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
188 // == PA_LFR_SC_BP1_NVEC_V2_F0 == 1 sign bit
188 // == PA_LFR_SC_BP1_NVEC_V2_F0 == 1 sign bit
189 tmp = sqrt( compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] //Im S12
189 tmp = sqrt( compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] //Im S12
190 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] //Im S13
190 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] //Im S13
191 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11] //Im S23
191 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11] //Im S23
192 );
192 );
193 NVEC_V0 = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11]/ tmp; // S23 Im => n1
193 NVEC_V0 = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11]/ tmp; // S23 Im => n1
194 NVEC_V1 = -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] / tmp; // S13 Im => n2
194 NVEC_V1 = -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] / tmp; // S13 Im => n2
195 NVEC_V2 = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] / tmp; // S12 Im => n3
195 NVEC_V2 = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] / tmp; // S12 Im => n3
196
196
197 lfr_bp1[i*NB_BYTES_BP1+4] = (uint8_t) (NVEC_V0*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
197 lfr_bp1[i*NB_BYTES_BP1+4] = (uint8_t) (NVEC_V0*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
198 lfr_bp1[i*NB_BYTES_BP1+5] = (uint8_t) (NVEC_V1*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
198 lfr_bp1[i*NB_BYTES_BP1+5] = (uint8_t) (NVEC_V1*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
199 pt_uint8 = (uint8_t*) &NVEC_V2; // Affect an uint8_t pointer with the adress of NVEC_V2
199 pt_uint8 = (uint8_t*) &NVEC_V2; // Affect an uint8_t pointer with the adress of NVEC_V2
200 #ifdef LSB_FIRST_TCH
200 #ifdef LSB_FIRST_TCH
201 lfr_bp1[i*NB_BYTES_BP1+6] = pt_uint8[3] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 4th octet:PC convention)
201 lfr_bp1[i*NB_BYTES_BP1+6] = pt_uint8[3] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 4th octet:PC convention)
202 // Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
202 // Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
203 #endif
203 #endif
204 #ifdef MSB_FIRST_TCH
204 #ifdef MSB_FIRST_TCH
205 lfr_bp1[i*NB_BYTES_BP1+6] = pt_uint8[0] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 0th octet:SPARC convention)
205 lfr_bp1[i*NB_BYTES_BP1+6] = pt_uint8[0] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 0th octet:SPARC convention)
206 // Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
206 // Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
207 #endif
207 #endif
208 #ifdef DEBUG_TCH
208 #ifdef DEBUG_TCH
209 printf("NVEC_V0 : %16.8e\n",NVEC_V0);
209 printf("NVEC_V0 : %16.8e\n",NVEC_V0);
210 printf("NVEC_V1 : %16.8e\n",NVEC_V1);
210 printf("NVEC_V1 : %16.8e\n",NVEC_V1);
211 printf("NVEC_V2 : %16.8e\n",NVEC_V2);
211 printf("NVEC_V2 : %16.8e\n",NVEC_V2);
212 printf("lfr_bp1[i*NB_BYTES_BP1+4] for NVEC_V0 : %u\n",lfr_bp1[i*NB_BYTES_BP1+4]);
212 printf("lfr_bp1[i*NB_BYTES_BP1+4] for NVEC_V0 : %u\n",lfr_bp1[i*NB_BYTES_BP1+4]);
213 printf("lfr_bp1[i*NB_BYTES_BP1+5] for NVEC_V1 : %u\n",lfr_bp1[i*NB_BYTES_BP1+5]);
213 printf("lfr_bp1[i*NB_BYTES_BP1+5] for NVEC_V1 : %u\n",lfr_bp1[i*NB_BYTES_BP1+5]);
214 printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
214 printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
215 #endif
215 #endif
216 //=======================================================
216 //=======================================================
217 // BP1 ellipticity == PA_LFR_SC_BP1_ELLIP_F0 == 4 bits
217 // BP1 ellipticity == PA_LFR_SC_BP1_ELLIP_F0 == 4 bits
218 aux = 2*tmp / PSDB; // Compute the ellipticity
218 aux = 2*tmp / PSDB; // Compute the ellipticity
219
219
220 tmp_uint8 = (uint8_t) (aux*15 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
220 tmp_uint8 = (uint8_t) (aux*15 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
221 // where just the first 4 bits are used (0, ..., 15)
221 // where just the first 4 bits are used (0, ..., 15)
222 lfr_bp1[i*NB_BYTES_BP1+6] = lfr_bp1[i*NB_BYTES_BP1+6] | (tmp_uint8 << 3); // Put these 4 bits next to the right place
222 lfr_bp1[i*NB_BYTES_BP1+6] = lfr_bp1[i*NB_BYTES_BP1+6] | (tmp_uint8 << 3); // Put these 4 bits next to the right place
223 // of the sign bit of NVEC_V2 (recorded
223 // of the sign bit of NVEC_V2 (recorded
224 // previously in lfr_bp1[i*NB_BYTES_BP1+6])
224 // previously in lfr_bp1[i*NB_BYTES_BP1+6])
225 #ifdef DEBUG_TCH
225 #ifdef DEBUG_TCH
226 printf("ellipticity : %16.8e\n",aux);
226 printf("ellipticity : %16.8e\n",aux);
227 printf("tmp_uint8 for ellipticity : %u\n",tmp_uint8);
227 printf("tmp_uint8 for ellipticity : %u\n",tmp_uint8);
228 printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
228 printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
229 #endif
229 #endif
230 //==============================================================
230 //==============================================================
231 // BP1 degree of polarization == PA_LFR_SC_BP1_DOP_F0 == 3 bits
231 // BP1 degree of polarization == PA_LFR_SC_BP1_DOP_F0 == 3 bits
232 tr_SB_SB = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]
232 tr_SB_SB = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]
233 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]
233 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]
234 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]
234 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]
235 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+1] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+1]
235 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+1] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+1]
236 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2]
236 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2]
237 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+3] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+3]
237 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+3] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+3]
238 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4]
238 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] *compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4]
239 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10]
239 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10]
240 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11];
240 + 2 * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11];
241 aux = PSDB*PSDB;
241 aux = PSDB*PSDB;
242 tmp = ( 3*tr_SB_SB - aux ) / ( 2 * aux ); // Compute the degree of polarisation
242 tmp = ( 3*tr_SB_SB - aux ) / ( 2 * aux ); // Compute the degree of polarisation
243
243
244 tmp_uint8 = (uint8_t) (tmp*7 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
244 tmp_uint8 = (uint8_t) (tmp*7 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
245 // where just the first 3 bits are used (0, ..., 7)
245 // where just the first 3 bits are used (0, ..., 7)
246 lfr_bp1[i*NB_BYTES_BP1+6] = lfr_bp1[i*NB_BYTES_BP1+6] | tmp_uint8; // Record these 3 bits at the 3 first bit positions
246 lfr_bp1[i*NB_BYTES_BP1+6] = lfr_bp1[i*NB_BYTES_BP1+6] | tmp_uint8; // Record these 3 bits at the 3 first bit positions
247 // (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
247 // (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
248 #ifdef DEBUG_TCH
248 #ifdef DEBUG_TCH
249 printf("DOP : %16.8e\n",tmp);
249 printf("DOP : %16.8e\n",tmp);
250 printf("tmp_uint8 for DOP : %u\n",tmp_uint8);
250 printf("tmp_uint8 for DOP : %u\n",tmp_uint8);
251 printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity + DOP : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
251 printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity + DOP : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
252 #endif
252 #endif
253 //=======================================================================================
253 //=======================================================================================
254 // BP1 X_SO-component of the Poynting flux == PA_LFR_SC_BP1_SX_F0 == 8 (+ 2) bits
254 // BP1 X_SO-component of the Poynting flux == PA_LFR_SC_BP1_SX_F0 == 8 (+ 2) bits
255 // = 5 bits (exponent) + 3 bits (significand)
255 // = 5 bits (exponent) + 3 bits (significand)
256 // + 1 sign bit + 1 argument bit (two sectors)
256 // + 1 sign bit + 1 argument bit (two sectors)
257 e_cross_b_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_RE] //S34 Re
257 e_cross_b_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_RE] //S34 Re
258 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_RE] //S35 Re
258 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_RE] //S35 Re
259 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+5] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_RE] //S14 Re
259 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+5] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_RE] //S14 Re
260 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+7] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_RE] //S15 Re
260 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+7] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_RE] //S15 Re
261 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_RE] //S24 Re
261 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_RE] //S24 Re
262 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_RE] //S25 Re
262 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_RE] //S25 Re
263 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_IM] //S34 Im
263 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_IM] //S34 Im
264 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_IM] //S35 Im
264 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_IM] //S35 Im
265 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+6] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_IM] //S14 Im
265 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+6] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_IM] //S14 Im
266 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+8] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_IM] //S15 Im
266 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+8] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_IM] //S15 Im
267 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_IM] //S24 Im
267 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_IM] //S24 Im
268 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_IM]; //S25 Im
268 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_IM]; //S25 Im
269 // Im(S_ji) = -Im(S_ij)
269 // Im(S_ji) = -Im(S_ij)
270 // k_ji = k_ij
270 // k_ji = k_ij
271 e_cross_b_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_IM] //S34 Re
271 e_cross_b_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_IM] //S34 Re
272 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_IM] //S35 Re
272 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_IM] //S35 Re
273 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+5] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_IM] //S14 Re
273 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+5] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_IM] //S14 Re
274 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+7] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_IM] //S15 Re
274 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+7] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_IM] //S15 Re
275 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_IM] //S24 Re
275 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_IM] //S24 Re
276 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_IM] //S25 Re
276 + compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_IM] //S25 Re
277 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_RE] //S34 Im
277 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_SX_RE] //S34 Im
278 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_RE] //S35 Im
278 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_SX_RE] //S35 Im
279 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+6] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_RE] //S14 Im
279 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+6] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K14_SX_RE] //S14 Im
280 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+8] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_RE] //S15 Im
280 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+8] *k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K15_SX_RE] //S15 Im
281 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_RE] //S24 Im
281 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_SX_RE] //S24 Im
282 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_RE]; //S25 Im
282 - compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_SX_RE]; //S25 Im
283 #ifdef DEBUG_TCH
283 #ifdef DEBUG_TCH
284 printf("ReaSX / 2 : %16.8e\n",e_cross_b_re/2);
284 printf("ReaSX / 2 : %16.8e\n",e_cross_b_re/2);
285 #endif
285 #endif
286 pt_uint8 = (uint8_t*) &e_cross_b_re; // Affect an uint8_t pointer with the adress of e_cross_b_re
286 pt_uint8 = (uint8_t*) &e_cross_b_re; // Affect an uint8_t pointer with the adress of e_cross_b_re
287 #ifdef LSB_FIRST_TCH
287 #ifdef LSB_FIRST_TCH
288 lfr_bp1[i*NB_BYTES_BP1+1] = lfr_bp1[i*NB_BYTES_BP1+1] | (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
288 lfr_bp1[i*NB_BYTES_BP1+1] = lfr_bp1[i*NB_BYTES_BP1+1] | (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
289 // Record it at the 8th bit position (from the right to the left)
289 // Record it at the 8th bit position (from the right to the left)
290 // of lfr_bp1[i*NB_BYTES_BP1+1]
290 // of lfr_bp1[i*NB_BYTES_BP1+1]
291 pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
291 pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
292 #endif
292 #endif
293 #ifdef MSB_FIRST_TCH
293 #ifdef MSB_FIRST_TCH
294 lfr_bp1[i*NB_BYTES_BP1+1] = lfr_bp1[i*NB_BYTES_BP1+1] | (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 0th octet:SPARC convention)
294 lfr_bp1[i*NB_BYTES_BP1+1] = lfr_bp1[i*NB_BYTES_BP1+1] | (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 0th octet:SPARC convention)
295 // Record it at the 8th bit position (from the right to the left)
295 // Record it at the 8th bit position (from the right to the left)
296 // of lfr_bp1[i*NB_BYTES_BP1+1]
296 // of lfr_bp1[i*NB_BYTES_BP1+1]
297 pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
297 pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
298 #endif
298 #endif
299 significand = frexpf(e_cross_b_re/2, &exponent); // 0.5 <= significand < 1
299 significand = frexpf(e_cross_b_re/2, &exponent); // 0.5 <= significand < 1
300 // ReaSX/2 = significand * 2^exponent
300 // ReaSX/2 = significand * 2^exponent
301 // The division by 2 is to ensure that max value <= 2^30 (rough estimate)
301 // The division by 2 is to ensure that max value <= 2^30 (rough estimate)
302 // Should be reconsidered by taking into account the k-coefficients ...
302 // Should be reconsidered by taking into account the k-coefficients ...
303
303
304 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
304 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
305 exponent = expmin;
305 exponent = expmin;
306 significand = 0.5; // min value that can be recorded
306 significand = 0.5; // min value that can be recorded
307 }
307 }
308 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
308 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
309 exponent = expmax;
309 exponent = expmax;
310 significand = 1.0; // max value that can be recorded
310 significand = 1.0; // max value that can be recorded
311 }
311 }
312 if (significand == 0) { // in that case exponent == 0 too
312 if (significand == 0) { // in that case exponent == 0 too
313 exponent = expmin;
313 exponent = expmin;
314 significand = 0.5; // min value that can be recorded
314 significand = 0.5; // min value that can be recorded
315 }
315 }
316
316
317 lfr_bp1[i*NB_BYTES_BP1+7] = (uint8_t) ((significand*2-1)*7 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
317 lfr_bp1[i*NB_BYTES_BP1+7] = (uint8_t) ((significand*2-1)*7 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
318 // where just the first 3 bits are used (0, ..., 7)
318 // where just the first 3 bits are used (0, ..., 7)
319 tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
319 tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
320 // just the first 5 bits are used (0, ..., 2^5-1)
320 // just the first 5 bits are used (0, ..., 2^5-1)
321 #ifdef DEBUG_TCH
321 #ifdef DEBUG_TCH
322 printf("|ReaSX| / 2 : %16.8e\n",e_cross_b_re/2);
322 printf("|ReaSX| / 2 : %16.8e\n",e_cross_b_re/2);
323 printf("significand : %16.8e\n",significand);
323 printf("significand : %16.8e\n",significand);
324 printf("exponent : %d\n" ,exponent);
324 printf("exponent : %d\n" ,exponent);
325 printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
325 printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
326 printf("tmp_uint8 for ReaSX exponent : %d\n",tmp_uint8);
326 printf("tmp_uint8 for ReaSX exponent : %d\n",tmp_uint8);
327 #endif
327 #endif
328 lfr_bp1[i*NB_BYTES_BP1+7] = lfr_bp1[i*NB_BYTES_BP1+7] | (tmp_uint8 << 3); // Shift these 5 bits to the left before logical addition
328 lfr_bp1[i*NB_BYTES_BP1+7] = lfr_bp1[i*NB_BYTES_BP1+7] | (tmp_uint8 << 3); // Shift these 5 bits to the left before logical addition
329 // with lfr_bp1[i*NB_BYTES_BP1+7]
329 // with lfr_bp1[i*NB_BYTES_BP1+7]
330 #ifdef DEBUG_TCH
330 #ifdef DEBUG_TCH
331 printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX exponent + significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
331 printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX exponent + significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
332 printf("lfr_bp1[i*NB_BYTES_BP1+1] for ReaSX sign + PSDE 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+1]);
332 printf("lfr_bp1[i*NB_BYTES_BP1+1] for ReaSX sign + PSDE 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+1]);
333 printf("ImaSX / 2 : %16.8e\n",e_cross_b_im/2);
333 printf("ImaSX / 2 : %16.8e\n",e_cross_b_im/2);
334 #endif
334 #endif
335 pt_uint8 = (uint8_t*) &e_cross_b_im; // Affect an uint8_t pointer with the adress of e_cross_b_im
335 pt_uint8 = (uint8_t*) &e_cross_b_im; // Affect an uint8_t pointer with the adress of e_cross_b_im
336 #ifdef LSB_FIRST_TCH
336 #ifdef LSB_FIRST_TCH
337 pt_uint8[3] = pt_uint8[3] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX|
337 pt_uint8[3] = pt_uint8[3] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX|
338 #endif
338 #endif
339 #ifdef MSB_FIRST_TCH
339 #ifdef MSB_FIRST_TCH
340 pt_uint8[0] = pt_uint8[0] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX|
340 pt_uint8[0] = pt_uint8[0] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX|
341 #endif
341 #endif
342 tmp_uint8 = (e_cross_b_im > e_cross_b_re) ? 0x40 : 0x00; // Determine the sector argument of SX. If |Im| > |Re| affect
342 tmp_uint8 = (e_cross_b_im > e_cross_b_re) ? 0x40 : 0x00; // Determine the sector argument of SX. If |Im| > |Re| affect
343 // an unsigned 8-bit char with 01000000; otherwise with null.
343 // an unsigned 8-bit char with 01000000; otherwise with null.
344 lfr_bp1[i*NB_BYTES_BP1+1] = lfr_bp1[i*NB_BYTES_BP1+1] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
344 lfr_bp1[i*NB_BYTES_BP1+1] = lfr_bp1[i*NB_BYTES_BP1+1] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
345 // to the left) of lfr_bp1[i*NB_BYTES_BP1+1], by simple logical addition.
345 // to the left) of lfr_bp1[i*NB_BYTES_BP1+1], by simple logical addition.
346 #ifdef DEBUG_TCH
346 #ifdef DEBUG_TCH
347 printf("|ImaSX| / 2 : %16.8e\n",e_cross_b_im/2);
347 printf("|ImaSX| / 2 : %16.8e\n",e_cross_b_im/2);
348 printf("ArgSX sign : %u\n",tmp_uint8);
348 printf("ArgSX sign : %u\n",tmp_uint8);
349 printf("lfr_bp1[i*NB_BYTES_BP1+1] for ReaSX & ArgSX signs + PSDE 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+1]);
349 printf("lfr_bp1[i*NB_BYTES_BP1+1] for ReaSX & ArgSX signs + PSDE 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+1]);
350 #endif
350 #endif
351 //======================================================================
351 //======================================================================
352 // BP1 phase velocity estimator == PA_LFR_SC_BP1_VPHI_F0 == 8 (+ 2) bits
352 // BP1 phase velocity estimator == PA_LFR_SC_BP1_VPHI_F0 == 8 (+ 2) bits
353 // = 5 bits (exponent) + 3 bits (significand)
353 // = 5 bits (exponent) + 3 bits (significand)
354 // + 1 sign bit + 1 argument bit (two sectors)
354 // + 1 sign bit + 1 argument bit (two sectors)
355 ny = sin(alpha_M)*NVEC_V1 + cos(alpha_M)*NVEC_V2;
355 ny = sin(alpha_M)*NVEC_V1 + cos(alpha_M)*NVEC_V2;
356 nz = NVEC_V0;
356 nz = NVEC_V0;
357 bx_bx_star = cos(alpha_M)*cos(alpha_M)*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9] // S22 Re
357 bx_bx_star = cos(alpha_M)*cos(alpha_M)*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9] // S22 Re
358 + sin(alpha_M)*sin(alpha_M)*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16] // S33 Re
358 + sin(alpha_M)*sin(alpha_M)*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16] // S33 Re
359 - 2*sin(alpha_M)*cos(alpha_M)*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10]; // S23 Re
359 - 2*sin(alpha_M)*cos(alpha_M)*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10]; // S23 Re
360
360
361 n_cross_e_scal_b_re = ny * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_RE] //S24 Re
361 n_cross_e_scal_b_re = ny * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_RE] //S24 Re
362 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_RE] //S25 Re
362 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_RE] //S25 Re
363 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_RE] //S34 Re
363 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_RE] //S34 Re
364 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_RE] //S35 Re
364 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_RE] //S35 Re
365 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_IM] //S24 Im
365 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_IM] //S24 Im
366 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_IM] //S25 Im
366 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_IM] //S25 Im
367 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_IM] //S34 Im
367 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_IM] //S34 Im
368 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_IM]) //S35 Im
368 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_IM]) //S35 Im
369 + nz * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_RE] //S24 Re
369 + nz * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_RE] //S24 Re
370 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_RE] //S25 Re
370 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_RE] //S25 Re
371 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_RE] //S34 Re
371 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_RE] //S34 Re
372 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_RE] //S35 Re
372 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_RE] //S35 Re
373 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_IM] //S24 Im
373 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_IM] //S24 Im
374 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_IM] //S25 Im
374 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_IM] //S25 Im
375 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_IM] //S34 Im
375 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_IM] //S34 Im
376 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_IM]);//S35 Im
376 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_IM]);//S35 Im
377 // Im(S_ji) = -Im(S_ij)
377 // Im(S_ji) = -Im(S_ij)
378 // k_ji = k_ij
378 // k_ji = k_ij
379 n_cross_e_scal_b_im = ny * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_IM] //S24 Re
379 n_cross_e_scal_b_im = ny * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_IM] //S24 Re
380 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_IM] //S25 Re
380 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_IM] //S25 Re
381 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_IM] //S34 Re
381 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_IM] //S34 Re
382 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_IM] //S35 Re
382 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_IM] //S35 Re
383 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_RE] //S24 Im
383 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NY_RE] //S24 Im
384 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_RE] //S25 Im
384 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NY_RE] //S25 Im
385 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_RE] //S34 Im
385 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NY_RE] //S34 Im
386 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_RE]) //S35 Im
386 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NY_RE]) //S35 Im
387 + nz * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_IM] //S24 Re
387 + nz * (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_IM] //S24 Re
388 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_IM] //S25 Re
388 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_IM] //S25 Re
389 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_IM] //S34 Re
389 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_IM] //S34 Re
390 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_IM] //S35 Re
390 +compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_IM] //S35 Re
391 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_RE] //S24 Im
391 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K24_NZ_RE] //S24 Im
392 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_RE] //S25 Im
392 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K25_NZ_RE] //S25 Im
393 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_RE] //S34 Im
393 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K34_NZ_RE] //S34 Im
394 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_RE]);//S35 Im
394 -compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20]*k_coeff_intercalib[i*NB_K_COEFF_PER_BIN+K35_NZ_RE]);//S35 Im
395 #ifdef DEBUG_TCH
395 #ifdef DEBUG_TCH
396 printf("n_cross_e_scal_b_re : %16.8e\n",n_cross_e_scal_b_re);
396 printf("n_cross_e_scal_b_re : %16.8e\n",n_cross_e_scal_b_re);
397 printf("n_cross_e_scal_b_im : %16.8e\n",n_cross_e_scal_b_im);
397 printf("n_cross_e_scal_b_im : %16.8e\n",n_cross_e_scal_b_im);
398 #endif
398 #endif
399 // vphi = n_cross_e_scal_b_re / bx_bx_star => sign(VPHI) = sign(n_cross_e_scal_b_re)
399 // vphi = n_cross_e_scal_b_re / bx_bx_star => sign(VPHI) = sign(n_cross_e_scal_b_re)
400 pt_uint8 = (uint8_t*) &n_cross_e_scal_b_re; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_re
400 pt_uint8 = (uint8_t*) &n_cross_e_scal_b_re; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_re
401 #ifdef LSB_FIRST_TCH
401 #ifdef LSB_FIRST_TCH
402 lfr_bp1[i*NB_BYTES_BP1+3] = lfr_bp1[i*NB_BYTES_BP1+3] | (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
402 lfr_bp1[i*NB_BYTES_BP1+3] = lfr_bp1[i*NB_BYTES_BP1+3] | (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
403 // Record it at the 8th bit position (from the right to the left)
403 // Record it at the 8th bit position (from the right to the left)
404 // of lfr_bp1[i*NB_BYTES_BP1+3]
404 // of lfr_bp1[i*NB_BYTES_BP1+3]
405 pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
405 pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
406 #endif
406 #endif
407 #ifdef MSB_FIRST_TCH
407 #ifdef MSB_FIRST_TCH
408 lfr_bp1[i*NB_BYTES_BP1+3] = lfr_bp1[i*NB_BYTES_BP1+3] | (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 0th octet:SPARC convention)
408 lfr_bp1[i*NB_BYTES_BP1+3] = lfr_bp1[i*NB_BYTES_BP1+3] | (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 0th octet:SPARC convention)
409 // Record it at the 8th bit position (from the right to the left)
409 // Record it at the 8th bit position (from the right to the left)
410 // of lfr_bp1[i*NB_BYTES_BP1+3]
410 // of lfr_bp1[i*NB_BYTES_BP1+3]
411 pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
411 pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
412 #endif
412 #endif
413 vphi = n_cross_e_scal_b_re / bx_bx_star; // Compute |VPHI|
413 vphi = n_cross_e_scal_b_re / bx_bx_star; // Compute |VPHI|
414
414
415 significand = frexpf(vphi/2, &exponent); // 0.5 <= significand < 1
415 significand = frexpf(vphi/2, &exponent); // 0.5 <= significand < 1
416 // vphi/2 = significand * 2^exponent
416 // vphi/2 = significand * 2^exponent
417 // The division by 2 is to ensure that max value <= 2^30 (rough estimate)
417 // The division by 2 is to ensure that max value <= 2^30 (rough estimate)
418 // Should be reconsidered by taking into account the k-coefficients ...
418 // Should be reconsidered by taking into account the k-coefficients ...
419
419
420 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
420 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
421 exponent = expmin;
421 exponent = expmin;
422 significand = 0.5; // min value that can be recorded
422 significand = 0.5; // min value that can be recorded
423 }
423 }
424 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
424 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
425 exponent = expmax;
425 exponent = expmax;
426 significand = 1.0; // max value that can be recorded
426 significand = 1.0; // max value that can be recorded
427 }
427 }
428 if (significand == 0) {// in that case exponent == 0 too
428 if (significand == 0) {// in that case exponent == 0 too
429 exponent = expmin;
429 exponent = expmin;
430 significand = 0.5; // min value that can be recorded
430 significand = 0.5; // min value that can be recorded
431 }
431 }
432 #ifdef DEBUG_TCH
432 #ifdef DEBUG_TCH
433 printf("|VPHI| / 2 : %16.8e\n",vphi/2);
433 printf("|VPHI| / 2 : %16.8e\n",vphi/2);
434 printf("significand : %16.8e\n",significand);
434 printf("significand : %16.8e\n",significand);
435 printf("exponent : %d\n" ,exponent);
435 printf("exponent : %d\n" ,exponent);
436 #endif
436 #endif
437 lfr_bp1[i*NB_BYTES_BP1+8] = (uint8_t) ((significand*2-1)*7 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
437 lfr_bp1[i*NB_BYTES_BP1+8] = (uint8_t) ((significand*2-1)*7 + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
438 // where just the first 3 bits are used (0, ..., 7)
438 // where just the first 3 bits are used (0, ..., 7)
439 tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
439 tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
440 // just the first 5 bits are used (0, ..., 2^5-1)
440 // just the first 5 bits are used (0, ..., 2^5-1)
441 #ifdef DEBUG_TCH
441 #ifdef DEBUG_TCH
442 printf("lfr_bp1[i*NB_BYTES_BP1+8] for VPHI significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+8]);
442 printf("lfr_bp1[i*NB_BYTES_BP1+8] for VPHI significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+8]);
443 printf("tmp_uint8 for VPHI exponent : %d\n",tmp_uint8);
443 printf("tmp_uint8 for VPHI exponent : %d\n",tmp_uint8);
444 #endif
444 #endif
445 lfr_bp1[i*NB_BYTES_BP1+8] = lfr_bp1[i*NB_BYTES_BP1+8] | (tmp_uint8 << 3); // shift these 5 bits to the left before logical addition
445 lfr_bp1[i*NB_BYTES_BP1+8] = lfr_bp1[i*NB_BYTES_BP1+8] | (tmp_uint8 << 3); // shift these 5 bits to the left before logical addition
446 // with lfr_bp1[i*NB_BYTES_BP1+8]
446 // with lfr_bp1[i*NB_BYTES_BP1+8]
447 #ifdef DEBUG_TCH
447 #ifdef DEBUG_TCH
448 printf("lfr_bp1[i*NB_BYTES_BP1+8] for VPHI exponent + significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+8]);
448 printf("lfr_bp1[i*NB_BYTES_BP1+8] for VPHI exponent + significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+8]);
449 printf("lfr_bp1[i*NB_BYTES_BP1+3] for VPHI sign + PSDB 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+3]);
449 printf("lfr_bp1[i*NB_BYTES_BP1+3] for VPHI sign + PSDB 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+3]);
450 #endif
450 #endif
451 pt_uint8 = (uint8_t*) &n_cross_e_scal_b_im; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_im
451 pt_uint8 = (uint8_t*) &n_cross_e_scal_b_im; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_im
452 #ifdef LSB_FIRST_TCH
452 #ifdef LSB_FIRST_TCH
453 pt_uint8[3] = pt_uint8[3] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaSX|
453 pt_uint8[3] = pt_uint8[3] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaSX|
454 #endif
454 #endif
455 #ifdef MSB_FIRST_TCH
455 #ifdef MSB_FIRST_TCH
456 pt_uint8[0] = pt_uint8[0] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaSX|
456 pt_uint8[0] = pt_uint8[0] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaSX|
457 #endif
457 #endif
458 tmp_uint8 = (n_cross_e_scal_b_im > n_cross_e_scal_b_re) ? 0x40 : 0x00; // Determine the sector argument of SX. If |Im| > |Re| affect
458 tmp_uint8 = (n_cross_e_scal_b_im > n_cross_e_scal_b_re) ? 0x40 : 0x00; // Determine the sector argument of SX. If |Im| > |Re| affect
459 // an unsigned 8-bit char with 01000000; otherwise with null.
459 // an unsigned 8-bit char with 01000000; otherwise with null.
460 lfr_bp1[i*NB_BYTES_BP1+3] = lfr_bp1[i*NB_BYTES_BP1+3] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
460 lfr_bp1[i*NB_BYTES_BP1+3] = lfr_bp1[i*NB_BYTES_BP1+3] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
461 // to the left) of lfr_bp1[i*NB_BYTES_BP1+3], by simple logical addition.
461 // to the left) of lfr_bp1[i*NB_BYTES_BP1+3], by simple logical addition.
462 #ifdef DEBUG_TCH
462 #ifdef DEBUG_TCH
463 printf("|n_cross_e_scal_b_im| : %16.8e\n",n_cross_e_scal_b_im);
463 printf("|n_cross_e_scal_b_im| : %16.8e\n",n_cross_e_scal_b_im);
464 printf("|n_cross_e_scal_b_im|/bx_bx_star/2: %16.8e\n",n_cross_e_scal_b_im/bx_bx_star/2);
464 printf("|n_cross_e_scal_b_im|/bx_bx_star/2: %16.8e\n",n_cross_e_scal_b_im/bx_bx_star/2);
465 printf("ArgNEBX sign : %u\n",tmp_uint8);
465 printf("ArgNEBX sign : %u\n",tmp_uint8);
466 printf("lfr_bp1[i*NB_BYTES_BP1+3] for VPHI & ArgNEBX signs + PSDB 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+3]);
466 printf("lfr_bp1[i*NB_BYTES_BP1+3] for VPHI & ArgNEBX signs + PSDB 'exponent' : %u\n",lfr_bp1[i*NB_BYTES_BP1+3]);
467 #endif
467 #endif
468 }
468 }
469 }
469 }
470
470
471 void BP2_set( float * compressed_spec_mat, uint8_t nb_bins_compressed_spec_mat, uint8_t * lfr_bp2 )
471 void BP2_set( float * compressed_spec_mat, uint8_t nb_bins_compressed_spec_mat, uint8_t * lfr_bp2 )
472 {
472 {
473 float cross_re; // 32-bit floating point
473 float cross_re; // 32-bit floating point
474 float cross_im;
474 float cross_im;
475 float aux;
475 float aux;
476 float significand;
476 float significand;
477 int exponent; // 32-bit signed integer
477 int exponent; // 32-bit signed integer
478 uint8_t nbitexp; // 8-bit unsigned integer
478 uint8_t nbitexp; // 8-bit unsigned integer
479 uint8_t nbitsig;
479 uint8_t nbitsig;
480 uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
480 uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
481 int8_t expmin; // 8-bit signed integer
481 int8_t expmin; // 8-bit signed integer
482 int8_t expmax;
482 int8_t expmax;
483 uint16_t rangesig; // 16-bit unsigned integer
483 uint16_t rangesig; // 16-bit unsigned integer
484 uint16_t autocor;
484 uint16_t autocor;
485 uint16_t exp;
485 uint16_t exp;
486 uint16_t tmp_uint16;
486 uint16_t tmp_uint16;
487 uint16_t i;
487 uint16_t i;
488
488
489 #ifdef DEBUG_TCH
489 #ifdef DEBUG_TCH
490 printf("BP2 : \n");
490 printf("BP2 : \n");
491 printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
491 printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
492 #endif
492 #endif
493
493
494 // For floating point data to be recorded on 16-bit words :
494 // For floating point data to be recorded on 16-bit words :
495 nbitexp = 6; // number of bits for the exponent
495 nbitexp = 6; // number of bits for the exponent
496 nbitsig = 16 - nbitexp; // number of bits for the significand
496 nbitsig = 16 - nbitexp; // number of bits for the significand
497 rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
497 rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
498 expmax = 32;
498 expmax = 32;
499 expmin = expmax - (1 << nbitexp) + 1;
499 expmin = expmax - (1 << nbitexp) + 1;
500
500
501 #ifdef DEBUG_TCH
501 #ifdef DEBUG_TCH
502 printf("nbitexp : %d, nbitsig : %d, rangesig : %d\n", nbitexp, nbitsig, rangesig);
502 printf("nbitexp : %d, nbitsig : %d, rangesig : %d\n", nbitexp, nbitsig, rangesig);
503 printf("expmin : %d, expmax : %d\n", expmin, expmax);
503 printf("expmin : %d, expmax : %d\n", expmin, expmax);
504 #endif
504 #endif
505
505
506 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
506 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
507 //==============================================
507 //==============================================
508 // BP2 normalized cross correlations == PA_LFR_SC_BP2_CROSS_F0 == 10 * (8+8) bits
508 // BP2 normalized cross correlations == PA_LFR_SC_BP2_CROSS_F0 == 10 * (8+8) bits
509 // == PA_LFR_SC_BP2_CROSS_RE_0_F0 == 8 bits
509 // == PA_LFR_SC_BP2_CROSS_RE_0_F0 == 8 bits
510 // == PA_LFR_SC_BP2_CROSS_IM_0_F0 == 8 bits
510 // == PA_LFR_SC_BP2_CROSS_IM_0_F0 == 8 bits
511 // == PA_LFR_SC_BP2_CROSS_RE_1_F0 == 8 bits
511 // == PA_LFR_SC_BP2_CROSS_RE_1_F0 == 8 bits
512 // == PA_LFR_SC_BP2_CROSS_IM_1_F0 == 8 bits
512 // == PA_LFR_SC_BP2_CROSS_IM_1_F0 == 8 bits
513 // == PA_LFR_SC_BP2_CROSS_RE_2_F0 == 8 bits
513 // == PA_LFR_SC_BP2_CROSS_RE_2_F0 == 8 bits
514 // == PA_LFR_SC_BP2_CROSS_IM_2_F0 == 8 bits
514 // == PA_LFR_SC_BP2_CROSS_IM_2_F0 == 8 bits
515 // == PA_LFR_SC_BP2_CROSS_RE_3_F0 == 8 bits
515 // == PA_LFR_SC_BP2_CROSS_RE_3_F0 == 8 bits
516 // == PA_LFR_SC_BP2_CROSS_IM_3_F0 == 8 bits
516 // == PA_LFR_SC_BP2_CROSS_IM_3_F0 == 8 bits
517 // == PA_LFR_SC_BP2_CROSS_RE_4_F0 == 8 bits
517 // == PA_LFR_SC_BP2_CROSS_RE_4_F0 == 8 bits
518 // == PA_LFR_SC_BP2_CROSS_IM_4_F0 == 8 bits
518 // == PA_LFR_SC_BP2_CROSS_IM_4_F0 == 8 bits
519 // == PA_LFR_SC_BP2_CROSS_RE_5_F0 == 8 bits
519 // == PA_LFR_SC_BP2_CROSS_RE_5_F0 == 8 bits
520 // == PA_LFR_SC_BP2_CROSS_IM_5_F0 == 8 bits
520 // == PA_LFR_SC_BP2_CROSS_IM_5_F0 == 8 bits
521 // == PA_LFR_SC_BP2_CROSS_RE_6_F0 == 8 bits
521 // == PA_LFR_SC_BP2_CROSS_RE_6_F0 == 8 bits
522 // == PA_LFR_SC_BP2_CROSS_IM_6_F0 == 8 bits
522 // == PA_LFR_SC_BP2_CROSS_IM_6_F0 == 8 bits
523 // == PA_LFR_SC_BP2_CROSS_RE_7_F0 == 8 bits
523 // == PA_LFR_SC_BP2_CROSS_RE_7_F0 == 8 bits
524 // == PA_LFR_SC_BP2_CROSS_IM_7_F0 == 8 bits
524 // == PA_LFR_SC_BP2_CROSS_IM_7_F0 == 8 bits
525 // == PA_LFR_SC_BP2_CROSS_RE_8_F0 == 8 bits
525 // == PA_LFR_SC_BP2_CROSS_RE_8_F0 == 8 bits
526 // == PA_LFR_SC_BP2_CROSS_IM_8_F0 == 8 bits
526 // == PA_LFR_SC_BP2_CROSS_IM_8_F0 == 8 bits
527 // == PA_LFR_SC_BP2_CROSS_RE_9_F0 == 8 bits
527 // == PA_LFR_SC_BP2_CROSS_RE_9_F0 == 8 bits
528 // == PA_LFR_SC_BP2_CROSS_IM_9_F0 == 8 bits
528 // == PA_LFR_SC_BP2_CROSS_IM_9_F0 == 8 bits
529 // S12
529 // S12
530 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]);
530 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]);
531 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+1] / aux;
531 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+1] / aux;
532 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] / aux;
532 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+2] / aux;
533 lfr_bp2[i*NB_BYTES_BP2+10] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
533 lfr_bp2[i*NB_BYTES_BP2+10] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
534 lfr_bp2[i*NB_BYTES_BP2+20] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
534 lfr_bp2[i*NB_BYTES_BP2+20] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
535 #ifdef DEBUG_TCH
535 #ifdef DEBUG_TCH
536 printf("\nBin number: %d\n", i);
536 printf("\nBin number: %d\n", i);
537 printf("lfr_bp2[i*NB_BYTES_BP2+10] for cross12_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+10]);
537 printf("lfr_bp2[i*NB_BYTES_BP2+10] for cross12_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+10]);
538 printf("lfr_bp2[i*NB_BYTES_BP2+20] for cross12_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+20]);
538 printf("lfr_bp2[i*NB_BYTES_BP2+20] for cross12_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+20]);
539 #endif
539 #endif
540 // S13
540 // S13
541 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
541 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
542 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+3] / aux;
542 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+3] / aux;
543 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] / aux;
543 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+4] / aux;
544 lfr_bp2[i*NB_BYTES_BP2+11] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
544 lfr_bp2[i*NB_BYTES_BP2+11] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
545 lfr_bp2[i*NB_BYTES_BP2+21] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
545 lfr_bp2[i*NB_BYTES_BP2+21] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
546 #ifdef DEBUG_TCH
546 #ifdef DEBUG_TCH
547 printf("lfr_bp2[i*NB_BYTES_BP2+11] for cross13_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+11]);
547 printf("lfr_bp2[i*NB_BYTES_BP2+11] for cross13_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+11]);
548 printf("lfr_bp2[i*NB_BYTES_BP2+21] for cross13_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+21]);
548 printf("lfr_bp2[i*NB_BYTES_BP2+21] for cross13_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+21]);
549 #endif
549 #endif
550 // S14
550 // S14
551 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
551 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
552 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+5] / aux;
552 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+5] / aux;
553 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+6] / aux;
553 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+6] / aux;
554 lfr_bp2[i*NB_BYTES_BP2+12] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
554 lfr_bp2[i*NB_BYTES_BP2+12] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
555 lfr_bp2[i*NB_BYTES_BP2+22] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
555 lfr_bp2[i*NB_BYTES_BP2+22] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
556 #ifdef DEBUG_TCH
556 #ifdef DEBUG_TCH
557 printf("lfr_bp2[i*NB_BYTES_BP2+12] for cross14_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+12]);
557 printf("lfr_bp2[i*NB_BYTES_BP2+12] for cross14_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+12]);
558 printf("lfr_bp2[i*NB_BYTES_BP2+22] for cross14_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+22]);
558 printf("lfr_bp2[i*NB_BYTES_BP2+22] for cross14_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+22]);
559 #endif
559 #endif
560 // S15
560 // S15
561 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
561 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
562 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+7] / aux;
562 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+7] / aux;
563 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+8] / aux;
563 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+8] / aux;
564 lfr_bp2[i*NB_BYTES_BP2+13] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
564 lfr_bp2[i*NB_BYTES_BP2+13] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
565 lfr_bp2[i*NB_BYTES_BP2+23] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
565 lfr_bp2[i*NB_BYTES_BP2+23] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
566 #ifdef DEBUG_TCH
566 #ifdef DEBUG_TCH
567 printf("lfr_bp2[i*NB_BYTES_BP2+13] for cross15_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+13]);
567 printf("lfr_bp2[i*NB_BYTES_BP2+13] for cross15_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+13]);
568 printf("lfr_bp2[i*NB_BYTES_BP2+23] for cross15_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+23]);
568 printf("lfr_bp2[i*NB_BYTES_BP2+23] for cross15_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+23]);
569 #endif
569 #endif
570 // S23
570 // S23
571 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
571 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
572 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10] / aux;
572 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+10] / aux;
573 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11] / aux;
573 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+11] / aux;
574 lfr_bp2[i*NB_BYTES_BP2+14] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
574 lfr_bp2[i*NB_BYTES_BP2+14] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
575 lfr_bp2[i*NB_BYTES_BP2+24] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
575 lfr_bp2[i*NB_BYTES_BP2+24] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
576 #ifdef DEBUG_TCH
576 #ifdef DEBUG_TCH
577 printf("lfr_bp2[i*NB_BYTES_BP2+14] for cross23_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+14]);
577 printf("lfr_bp2[i*NB_BYTES_BP2+14] for cross23_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+14]);
578 printf("lfr_bp2[i*NB_BYTES_BP2+24] for cross23_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+24]);
578 printf("lfr_bp2[i*NB_BYTES_BP2+24] for cross23_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+24]);
579 #endif
579 #endif
580 // S24
580 // S24
581 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
581 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
582 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12] / aux;
582 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+12] / aux;
583 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13] / aux;
583 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+13] / aux;
584 lfr_bp2[i*NB_BYTES_BP2+15] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
584 lfr_bp2[i*NB_BYTES_BP2+15] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
585 lfr_bp2[i*NB_BYTES_BP2+25] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
585 lfr_bp2[i*NB_BYTES_BP2+25] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
586 #ifdef DEBUG_TCH
586 #ifdef DEBUG_TCH
587 printf("lfr_bp2[i*NB_BYTES_BP2+15] for cross24_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+15]);
587 printf("lfr_bp2[i*NB_BYTES_BP2+15] for cross24_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+15]);
588 printf("lfr_bp2[i*NB_BYTES_BP2+25] for cross24_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+25]);
588 printf("lfr_bp2[i*NB_BYTES_BP2+25] for cross24_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+25]);
589 #endif
589 #endif
590 // S25
590 // S25
591 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
591 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
592 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14] / aux;
592 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+14] / aux;
593 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15] / aux;
593 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+15] / aux;
594 lfr_bp2[i*NB_BYTES_BP2+16] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
594 lfr_bp2[i*NB_BYTES_BP2+16] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
595 lfr_bp2[i*NB_BYTES_BP2+26] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
595 lfr_bp2[i*NB_BYTES_BP2+26] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
596 #ifdef DEBUG_TCH
596 #ifdef DEBUG_TCH
597 printf("lfr_bp2[i*NB_BYTES_BP2+16] for cross25_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+16]);
597 printf("lfr_bp2[i*NB_BYTES_BP2+16] for cross25_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+16]);
598 printf("lfr_bp2[i*NB_BYTES_BP2+26] for cross25_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+26]);
598 printf("lfr_bp2[i*NB_BYTES_BP2+26] for cross25_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+26]);
599 #endif
599 #endif
600 // S34
600 // S34
601 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
601 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
602 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17] / aux;
602 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+17] / aux;
603 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18] / aux;
603 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+18] / aux;
604 lfr_bp2[i*NB_BYTES_BP2+17] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
604 lfr_bp2[i*NB_BYTES_BP2+17] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
605 lfr_bp2[i*NB_BYTES_BP2+27] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
605 lfr_bp2[i*NB_BYTES_BP2+27] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
606 #ifdef DEBUG_TCH
606 #ifdef DEBUG_TCH
607 printf("lfr_bp2[i*NB_BYTES_BP2+17] for cross34_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+17]);
607 printf("lfr_bp2[i*NB_BYTES_BP2+17] for cross34_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+17]);
608 printf("lfr_bp2[i*NB_BYTES_BP2+27] for cross34_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+27]);
608 printf("lfr_bp2[i*NB_BYTES_BP2+27] for cross34_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+27]);
609 #endif
609 #endif
610 // S35
610 // S35
611 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
611 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
612 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19] / aux;
612 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+19] / aux;
613 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20] / aux;
613 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+20] / aux;
614 lfr_bp2[i*NB_BYTES_BP2+18] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
614 lfr_bp2[i*NB_BYTES_BP2+18] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
615 lfr_bp2[i*NB_BYTES_BP2+28] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
615 lfr_bp2[i*NB_BYTES_BP2+28] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
616 #ifdef DEBUG_TCH
616 #ifdef DEBUG_TCH
617 printf("lfr_bp2[i*NB_BYTES_BP2+18] for cross35_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+18]);
617 printf("lfr_bp2[i*NB_BYTES_BP2+18] for cross35_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+18]);
618 printf("lfr_bp2[i*NB_BYTES_BP2+28] for cross35_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+28]);
618 printf("lfr_bp2[i*NB_BYTES_BP2+28] for cross35_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+28]);
619 #endif
619 #endif
620 // S45
620 // S45
621 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
621 aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]*compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
622 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+22] / aux;
622 cross_re = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+22] / aux;
623 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+23] / aux;
623 cross_im = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+23] / aux;
624 lfr_bp2[i*NB_BYTES_BP2+19] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
624 lfr_bp2[i*NB_BYTES_BP2+19] = (uint8_t) (cross_re*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
625 lfr_bp2[i*NB_BYTES_BP2+29] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
625 lfr_bp2[i*NB_BYTES_BP2+29] = (uint8_t) (cross_im*127.5 + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
626 #ifdef DEBUG_TCH
626 #ifdef DEBUG_TCH
627 printf("lfr_bp2[i*NB_BYTES_BP2+19] for cross45_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+19]);
627 printf("lfr_bp2[i*NB_BYTES_BP2+19] for cross45_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+19]);
628 printf("lfr_bp2[i*NB_BYTES_BP2+29] for cross45_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+29]);
628 printf("lfr_bp2[i*NB_BYTES_BP2+29] for cross45_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+29]);
629 #endif
629 #endif
630 //==============================================
630 //==============================================
631 // BP2 auto correlations == PA_LFR_SC_BP2_AUTO_F0 == 5*16 bits = 5*[6 bits (exponent) + 10 bits (significand)]
631 // BP2 auto correlations == PA_LFR_SC_BP2_AUTO_F0 == 5*16 bits = 5*[6 bits (exponent) + 10 bits (significand)]
632 // == PA_LFR_SC_BP2_AUTO_A0_F0 == 16 bits
632 // == PA_LFR_SC_BP2_AUTO_A0_F0 == 16 bits
633 // == PA_LFR_SC_BP2_AUTO_A1_F0 == 16 bits
633 // == PA_LFR_SC_BP2_AUTO_A1_F0 == 16 bits
634 // == PA_LFR_SC_BP2_AUTO_A2_F0 == 16 bits
634 // == PA_LFR_SC_BP2_AUTO_A2_F0 == 16 bits
635 // == PA_LFR_SC_BP2_AUTO_A3_F0 == 16 bits
635 // == PA_LFR_SC_BP2_AUTO_A3_F0 == 16 bits
636 // == PA_LFR_SC_BP2_AUTO_A4_F0 == 16 bits
636 // == PA_LFR_SC_BP2_AUTO_A4_F0 == 16 bits
637 // S11
637 // S11
638 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX], &exponent); // 0.5 <= significand < 1
638 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX], &exponent); // 0.5 <= significand < 1
639 // S11 = significand * 2^exponent
639 // S11 = significand * 2^exponent
640 #ifdef DEBUG_TCH
640 #ifdef DEBUG_TCH
641 printf("S11 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]);
641 printf("S11 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]);
642 printf("significand : %16.8e\n",significand);
642 printf("significand : %16.8e\n",significand);
643 printf("exponent : %d\n" ,exponent);
643 printf("exponent : %d\n" ,exponent);
644 #endif
644 #endif
645 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
645 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
646 exponent = expmin;
646 exponent = expmin;
647 significand = 0.5; // min value that can be recorded
647 significand = 0.5; // min value that can be recorded
648 }
648 }
649 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
649 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
650 exponent = expmax;
650 exponent = expmax;
651 significand = 1.0; // max value that can be recorded
651 significand = 1.0; // max value that can be recorded
652 }
652 }
653 if (significand == 0) { // in that case exponent == 0 too
653 if (significand == 0) { // in that case exponent == 0 too
654 exponent = expmin;
654 exponent = expmin;
655 significand = 0.5; // min value that can be recorded
655 significand = 0.5; // min value that can be recorded
656 }
656 }
657
657
658 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
658 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
659 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
659 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
660 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
660 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
661 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
661 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
662 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
662 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
663 // left place of the significand bits (nbitsig),
663 // left place of the significand bits (nbitsig),
664 // making the 16-bit word to be recorded
664 // making the 16-bit word to be recorded
665 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
665 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
666 #ifdef LSB_FIRST_TCH
666 #ifdef LSB_FIRST_TCH
667 lfr_bp2[i*NB_BYTES_BP2+0] = pt_uint8[0]; // Record LSB of tmp_uint16
667 lfr_bp2[i*NB_BYTES_BP2+0] = pt_uint8[0]; // Record LSB of tmp_uint16
668 lfr_bp2[i*NB_BYTES_BP2+1] = pt_uint8[1]; // Record MSB of tmp_uint16
668 lfr_bp2[i*NB_BYTES_BP2+1] = pt_uint8[1]; // Record MSB of tmp_uint16
669 #endif
669 #endif
670 #ifdef MSB_FIRST_TCH
670 #ifdef MSB_FIRST_TCH
671 lfr_bp2[i*NB_BYTES_BP2+0] = pt_uint8[1]; // Record LSB of tmp_uint16
671 lfr_bp2[i*NB_BYTES_BP2+0] = pt_uint8[1]; // Record LSB of tmp_uint16
672 lfr_bp2[i*NB_BYTES_BP2+1] = pt_uint8[0]; // Record MSB of tmp_uint16
672 lfr_bp2[i*NB_BYTES_BP2+1] = pt_uint8[0]; // Record MSB of tmp_uint16
673 #endif
673 #endif
674 #ifdef DEBUG_TCH
674 #ifdef DEBUG_TCH
675 printf("autocor for S11 significand : %u\n",autocor);
675 printf("autocor for S11 significand : %u\n",autocor);
676 printf("exp for S11 exponent : %u\n",exp);
676 printf("exp for S11 exponent : %u\n",exp);
677 printf("pt_uint8[1] for S11 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
677 printf("pt_uint8[1] for S11 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
678 printf("pt_uint8[0] for S11 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
678 printf("pt_uint8[0] for S11 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
679 printf("lfr_bp2[i*NB_BYTES_BP2+1] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+1], lfr_bp2[i*NB_BYTES_BP2+1]);
679 printf("lfr_bp2[i*NB_BYTES_BP2+1] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+1], lfr_bp2[i*NB_BYTES_BP2+1]);
680 printf("lfr_bp2[i*NB_BYTES_BP2+0] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+0], lfr_bp2[i*NB_BYTES_BP2+0]);
680 printf("lfr_bp2[i*NB_BYTES_BP2+0] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+0], lfr_bp2[i*NB_BYTES_BP2+0]);
681 #endif
681 #endif
682 // S22
682 // S22
683 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9], &exponent); // 0.5 <= significand < 1
683 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9], &exponent); // 0.5 <= significand < 1
684 // S22 = significand * 2^exponent
684 // S22 = significand * 2^exponent
685 #ifdef DEBUG_TCH
685 #ifdef DEBUG_TCH
686 printf("S22 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]);
686 printf("S22 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]);
687 printf("significand : %16.8e\n",significand);
687 printf("significand : %16.8e\n",significand);
688 printf("exponent : %d\n" ,exponent);
688 printf("exponent : %d\n" ,exponent);
689 #endif
689 #endif
690 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
690 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
691 exponent = expmin;
691 exponent = expmin;
692 significand = 0.5; // min value that can be recorded
692 significand = 0.5; // min value that can be recorded
693 }
693 }
694 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
694 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
695 exponent = expmax;
695 exponent = expmax;
696 significand = 1.0; // max value that can be recorded
696 significand = 1.0; // max value that can be recorded
697 }
697 }
698 if (significand == 0) { // in that case exponent == 0 too
698 if (significand == 0) { // in that case exponent == 0 too
699 exponent = expmin;
699 exponent = expmin;
700 significand = 0.5; // min value that can be recorded
700 significand = 0.5; // min value that can be recorded
701 }
701 }
702
702
703 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
703 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
704 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
704 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
705 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
705 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
706 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
706 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
707 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
707 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
708 // left place of the significand bits (nbitsig),
708 // left place of the significand bits (nbitsig),
709 // making the 16-bit word to be recorded
709 // making the 16-bit word to be recorded
710 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
710 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
711 #ifdef LSB_FIRST_TCH
711 #ifdef LSB_FIRST_TCH
712 lfr_bp2[i*NB_BYTES_BP2+2] = pt_uint8[0]; // Record LSB of tmp_uint16
712 lfr_bp2[i*NB_BYTES_BP2+2] = pt_uint8[0]; // Record LSB of tmp_uint16
713 lfr_bp2[i*NB_BYTES_BP2+3] = pt_uint8[1]; // Record MSB of tmp_uint16
713 lfr_bp2[i*NB_BYTES_BP2+3] = pt_uint8[1]; // Record MSB of tmp_uint16
714 #endif
714 #endif
715 #ifdef MSB_FIRST_TCH
715 #ifdef MSB_FIRST_TCH
716 lfr_bp2[i*NB_BYTES_BP2+2] = pt_uint8[1]; // Record LSB of tmp_uint16
716 lfr_bp2[i*NB_BYTES_BP2+2] = pt_uint8[1]; // Record LSB of tmp_uint16
717 lfr_bp2[i*NB_BYTES_BP2+3] = pt_uint8[0]; // Record MSB of tmp_uint16
717 lfr_bp2[i*NB_BYTES_BP2+3] = pt_uint8[0]; // Record MSB of tmp_uint16
718 #endif
718 #endif
719 #ifdef DEBUG_TCH
719 #ifdef DEBUG_TCH
720 printf("autocor for S22 significand : %u\n",autocor);
720 printf("autocor for S22 significand : %u\n",autocor);
721 printf("exp for S11 exponent : %u\n",exp);
721 printf("exp for S11 exponent : %u\n",exp);
722 printf("pt_uint8[1] for S22 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
722 printf("pt_uint8[1] for S22 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
723 printf("pt_uint8[0] for S22 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
723 printf("pt_uint8[0] for S22 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
724 printf("lfr_bp2[i*NB_BYTES_BP2+3] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+3], lfr_bp2[i*NB_BYTES_BP2+3]);
724 printf("lfr_bp2[i*NB_BYTES_BP2+3] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+3], lfr_bp2[i*NB_BYTES_BP2+3]);
725 printf("lfr_bp2[i*NB_BYTES_BP2+2] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+2], lfr_bp2[i*NB_BYTES_BP2+2]);
725 printf("lfr_bp2[i*NB_BYTES_BP2+2] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+2], lfr_bp2[i*NB_BYTES_BP2+2]);
726 #endif
726 #endif
727 // S33
727 // S33
728 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16], &exponent); // 0.5 <= significand < 1
728 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16], &exponent); // 0.5 <= significand < 1
729 // S33 = significand * 2^exponent
729 // S33 = significand * 2^exponent
730 #ifdef DEBUG_TCH
730 #ifdef DEBUG_TCH
731 printf("S33 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
731 printf("S33 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
732 printf("significand : %16.8e\n",significand);
732 printf("significand : %16.8e\n",significand);
733 printf("exponent : %d\n" ,exponent);
733 printf("exponent : %d\n" ,exponent);
734 #endif
734 #endif
735 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
735 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
736 exponent = expmin;
736 exponent = expmin;
737 significand = 0.5; // min value that can be recorded
737 significand = 0.5; // min value that can be recorded
738 }
738 }
739 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
739 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
740 exponent = expmax;
740 exponent = expmax;
741 significand = 1.0; // max value that can be recorded
741 significand = 1.0; // max value that can be recorded
742 }
742 }
743 if (significand == 0) { // in that case exponent == 0 too
743 if (significand == 0) { // in that case exponent == 0 too
744 exponent = expmin;
744 exponent = expmin;
745 significand = 0.5; // min value that can be recorded
745 significand = 0.5; // min value that can be recorded
746 }
746 }
747
747
748 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
748 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
749 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
749 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
750 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
750 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
751 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
751 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
752 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
752 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
753 // left place of the significand bits (nbitsig),
753 // left place of the significand bits (nbitsig),
754 // making the 16-bit word to be recorded
754 // making the 16-bit word to be recorded
755 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
755 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
756 #ifdef LSB_FIRST_TCH
756 #ifdef LSB_FIRST_TCH
757 lfr_bp2[i*NB_BYTES_BP2+4] = pt_uint8[0]; // Record LSB of tmp_uint16
757 lfr_bp2[i*NB_BYTES_BP2+4] = pt_uint8[0]; // Record LSB of tmp_uint16
758 lfr_bp2[i*NB_BYTES_BP2+5] = pt_uint8[1]; // Record MSB of tmp_uint16
758 lfr_bp2[i*NB_BYTES_BP2+5] = pt_uint8[1]; // Record MSB of tmp_uint16
759 #endif
759 #endif
760 #ifdef MSB_FIRST_TCH
760 #ifdef MSB_FIRST_TCH
761 lfr_bp2[i*NB_BYTES_BP2+4] = pt_uint8[1]; // Record LSB of tmp_uint16
761 lfr_bp2[i*NB_BYTES_BP2+4] = pt_uint8[1]; // Record LSB of tmp_uint16
762 lfr_bp2[i*NB_BYTES_BP2+5] = pt_uint8[0]; // Record MSB of tmp_uint16
762 lfr_bp2[i*NB_BYTES_BP2+5] = pt_uint8[0]; // Record MSB of tmp_uint16
763 #endif
763 #endif
764 #ifdef DEBUG_TCH
764 #ifdef DEBUG_TCH
765 printf("autocor for S33 significand : %u\n",autocor);
765 printf("autocor for S33 significand : %u\n",autocor);
766 printf("exp for S33 exponent : %u\n",exp);
766 printf("exp for S33 exponent : %u\n",exp);
767 printf("pt_uint8[1] for S33 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
767 printf("pt_uint8[1] for S33 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
768 printf("pt_uint8[0] for S33 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
768 printf("pt_uint8[0] for S33 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
769 printf("lfr_bp2[i*NB_BYTES_BP2+5] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+5], lfr_bp2[i*NB_BYTES_BP2+5]);
769 printf("lfr_bp2[i*NB_BYTES_BP2+5] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+5], lfr_bp2[i*NB_BYTES_BP2+5]);
770 printf("lfr_bp2[i*NB_BYTES_BP2+4] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+4], lfr_bp2[i*NB_BYTES_BP2+4]);
770 printf("lfr_bp2[i*NB_BYTES_BP2+4] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+4], lfr_bp2[i*NB_BYTES_BP2+4]);
771 #endif
771 #endif
772 // S44
772 // S44
773 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21], &exponent); // 0.5 <= significand < 1
773 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21], &exponent); // 0.5 <= significand < 1
774 // S44 = significand * 2^exponent
774 // S44 = significand * 2^exponent
775 #ifdef DEBUG_TCH
775 #ifdef DEBUG_TCH
776 printf("S44 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
776 printf("S44 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
777 printf("significand : %16.8e\n",significand);
777 printf("significand : %16.8e\n",significand);
778 printf("exponent : %d\n" ,exponent);
778 printf("exponent : %d\n" ,exponent);
779 #endif
779 #endif
780
780
781 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
781 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
782 exponent = expmin;
782 exponent = expmin;
783 significand = 0.5; // min value that can be recorded
783 significand = 0.5; // min value that can be recorded
784 }
784 }
785 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
785 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
786 exponent = expmax;
786 exponent = expmax;
787 significand = 1.0; // max value that can be recorded
787 significand = 1.0; // max value that can be recorded
788 }
788 }
789 if (significand == 0) { // in that case exponent == 0 too
789 if (significand == 0) { // in that case exponent == 0 too
790 exponent = expmin;
790 exponent = expmin;
791 significand = 0.5; // min value that can be recorded
791 significand = 0.5; // min value that can be recorded
792 }
792 }
793
793
794 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
794 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
795 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
795 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
796 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
796 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
797 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
797 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
798 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
798 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
799 // left place of the significand bits (nbitsig),
799 // left place of the significand bits (nbitsig),
800 // making the 16-bit word to be recorded
800 // making the 16-bit word to be recorded
801 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
801 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
802 #ifdef LSB_FIRST_TCH
802 #ifdef LSB_FIRST_TCH
803 lfr_bp2[i*NB_BYTES_BP2+6] = pt_uint8[0]; // Record LSB of tmp_uint16
803 lfr_bp2[i*NB_BYTES_BP2+6] = pt_uint8[0]; // Record LSB of tmp_uint16
804 lfr_bp2[i*NB_BYTES_BP2+7] = pt_uint8[1]; // Record MSB of tmp_uint16
804 lfr_bp2[i*NB_BYTES_BP2+7] = pt_uint8[1]; // Record MSB of tmp_uint16
805 #endif
805 #endif
806 #ifdef MSB_FIRST_TCH
806 #ifdef MSB_FIRST_TCH
807 lfr_bp2[i*NB_BYTES_BP2+6] = pt_uint8[1]; // Record LSB of tmp_uint16
807 lfr_bp2[i*NB_BYTES_BP2+6] = pt_uint8[1]; // Record LSB of tmp_uint16
808 lfr_bp2[i*NB_BYTES_BP2+7] = pt_uint8[0]; // Record MSB of tmp_uint16
808 lfr_bp2[i*NB_BYTES_BP2+7] = pt_uint8[0]; // Record MSB of tmp_uint16
809 #endif
809 #endif
810 #ifdef DEBUG_TCH
810 #ifdef DEBUG_TCH
811 printf("autocor for S44 significand : %u\n",autocor);
811 printf("autocor for S44 significand : %u\n",autocor);
812 printf("exp for S44 exponent : %u\n",exp);
812 printf("exp for S44 exponent : %u\n",exp);
813 printf("pt_uint8[1] for S44 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
813 printf("pt_uint8[1] for S44 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
814 printf("pt_uint8[0] for S44 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
814 printf("pt_uint8[0] for S44 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
815 printf("lfr_bp2[i*NB_BYTES_BP2+7] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+7], lfr_bp2[i*NB_BYTES_BP2+7]);
815 printf("lfr_bp2[i*NB_BYTES_BP2+7] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+7], lfr_bp2[i*NB_BYTES_BP2+7]);
816 printf("lfr_bp2[i*NB_BYTES_BP2+6] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+6], lfr_bp2[i*NB_BYTES_BP2+6]);
816 printf("lfr_bp2[i*NB_BYTES_BP2+6] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+6], lfr_bp2[i*NB_BYTES_BP2+6]);
817 #endif
817 #endif
818 // S55
818 // S55
819 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24], &exponent); // 0.5 <= significand < 1
819 significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24], &exponent); // 0.5 <= significand < 1
820 // S55 = significand * 2^exponent
820 // S55 = significand * 2^exponent
821 #ifdef DEBUG_TCH
821 #ifdef DEBUG_TCH
822 printf("S55 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
822 printf("S55 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
823 printf("significand : %16.8e\n",significand);
823 printf("significand : %16.8e\n",significand);
824 printf("exponent : %d\n" ,exponent);
824 printf("exponent : %d\n" ,exponent);
825 #endif
825 #endif
826 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
826 if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
827 exponent = expmin;
827 exponent = expmin;
828 significand = 0.5; // min value that can be recorded
828 significand = 0.5; // min value that can be recorded
829 }
829 }
830 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
830 if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
831 exponent = expmax;
831 exponent = expmax;
832 significand = 1.0; // max value that can be recorded
832 significand = 1.0; // max value that can be recorded
833 }
833 }
834 if (significand == 0) { // in that case exponent == 0 too
834 if (significand == 0) { // in that case exponent == 0 too
835 exponent = expmin;
835 exponent = expmin;
836 significand = 0.5; // min value that can be recorded
836 significand = 0.5; // min value that can be recorded
837 }
837 }
838
838
839 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
839 autocor = (uint16_t) ((significand*2-1)*rangesig + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
840 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
840 // where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
841 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
841 exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
842 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
842 // the first nbitexp bits are used (0, ..., 2^nbitexp-1)
843 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
843 tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
844 // left place of the significand bits (nbitsig),
844 // left place of the significand bits (nbitsig),
845 // making the 16-bit word to be recorded
845 // making the 16-bit word to be recorded
846 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
846 pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
847 #ifdef LSB_FIRST_TCH
847 #ifdef LSB_FIRST_TCH
848 lfr_bp2[i*NB_BYTES_BP2+8] = pt_uint8[0]; // Record LSB of tmp_uint16
848 lfr_bp2[i*NB_BYTES_BP2+8] = pt_uint8[0]; // Record LSB of tmp_uint16
849 lfr_bp2[i*NB_BYTES_BP2+9] = pt_uint8[1]; // Record MSB of tmp_uint16
849 lfr_bp2[i*NB_BYTES_BP2+9] = pt_uint8[1]; // Record MSB of tmp_uint16
850 #endif
850 #endif
851 #ifdef MSB_FIRST_TCH
851 #ifdef MSB_FIRST_TCH
852 lfr_bp2[i*NB_BYTES_BP2+8] = pt_uint8[1]; // Record LSB of tmp_uint16
852 lfr_bp2[i*NB_BYTES_BP2+8] = pt_uint8[1]; // Record LSB of tmp_uint16
853 lfr_bp2[i*NB_BYTES_BP2+9] = pt_uint8[0]; // Record MSB of tmp_uint16
853 lfr_bp2[i*NB_BYTES_BP2+9] = pt_uint8[0]; // Record MSB of tmp_uint16
854 #endif
854 #endif
855 #ifdef DEBUG_TCH
855 #ifdef DEBUG_TCH
856 printf("autocor for S55 significand : %u\n",autocor);
856 printf("autocor for S55 significand : %u\n",autocor);
857 printf("exp for S55 exponent : %u\n",exp);
857 printf("exp for S55 exponent : %u\n",exp);
858 printf("pt_uint8[1] for S55 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
858 printf("pt_uint8[1] for S55 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
859 printf("pt_uint8[0] for S55 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
859 printf("pt_uint8[0] for S55 exponent + significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
860 printf("lfr_bp2[i*NB_BYTES_BP2+9] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+9], lfr_bp2[i*NB_BYTES_BP2+9]);
860 printf("lfr_bp2[i*NB_BYTES_BP2+9] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+9], lfr_bp2[i*NB_BYTES_BP2+9]);
861 printf("lfr_bp2[i*NB_BYTES_BP2+8] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+8], lfr_bp2[i*NB_BYTES_BP2+8]);
861 printf("lfr_bp2[i*NB_BYTES_BP2+8] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+8], lfr_bp2[i*NB_BYTES_BP2+8]);
862 #endif
862 #endif
863 }
863 }
864 }
864 }
865
865
866
866
867 #endif // BASIC_PARAMETERS_H_INCLUDED
867 #endif // BASIC_PARAMETERS_H_INCLUDED
@@ -1,55 +1,57
1 // version 1.4: 16/05/2014
1 // version 1.4: 16/05/2014
2 // version 1.5: 20/05/2014
2 // version 1.5: 20/05/2014
3 // version 1.6: 19/12/2014
3 // version 1.6: 19/12/2014
4
4
5 #ifndef BASIC_PARAMETERS_PARAMS_H
5 #ifndef BASIC_PARAMETERS_PARAMS_H
6 #define BASIC_PARAMETERS_PARAMS_H
6 #define BASIC_PARAMETERS_PARAMS_H
7
7
8 #define NB_VALUES_PER_SPECTRAL_MATRIX 25
8 #define NB_VALUES_PER_SPECTRAL_MATRIX 25
9 #define NB_BINS_COMPRESSED_MATRIX_f0 1
9 #define NB_BINS_COMPRESSED_MATRIX_f0 1
10 #define NB_BINS_COMPRESSED_MATRIX_f1 13
11 #define NB_BINS_COMPRESSED_MATRIX_f2 12
10
12
11 #define NB_BYTES_BP1 9
13 #define NB_BYTES_BP1 9
12 #define NB_BYTES_BP2 30
14 #define NB_BYTES_BP2 30
13
15
14 //********************************************
16 //********************************************
15 // K-COEFFICIENTS FOR ONBOARD INTERCALIBRATION
17 // K-COEFFICIENTS FOR ONBOARD INTERCALIBRATION
16
18
17 #define NB_K_COEFF_PER_BIN 32
19 #define NB_K_COEFF_PER_BIN 32
18
20
19 #define K44_PE 0
21 #define K44_PE 0
20 #define K55_PE 1
22 #define K55_PE 1
21 #define K45_PE_RE 2
23 #define K45_PE_RE 2
22 #define K45_PE_IM 3
24 #define K45_PE_IM 3
23
25
24 #define K14_SX_RE 4
26 #define K14_SX_RE 4
25 #define K14_SX_IM 5
27 #define K14_SX_IM 5
26 #define K15_SX_RE 6
28 #define K15_SX_RE 6
27 #define K15_SX_IM 7
29 #define K15_SX_IM 7
28 #define K24_SX_RE 8
30 #define K24_SX_RE 8
29 #define K24_SX_IM 9
31 #define K24_SX_IM 9
30 #define K25_SX_RE 10
32 #define K25_SX_RE 10
31 #define K25_SX_IM 11
33 #define K25_SX_IM 11
32 #define K34_SX_RE 12
34 #define K34_SX_RE 12
33 #define K34_SX_IM 13
35 #define K34_SX_IM 13
34 #define K35_SX_RE 14
36 #define K35_SX_RE 14
35 #define K35_SX_IM 15
37 #define K35_SX_IM 15
36
38
37 #define K24_NY_RE 16
39 #define K24_NY_RE 16
38 #define K24_NY_IM 17
40 #define K24_NY_IM 17
39 #define K25_NY_RE 18
41 #define K25_NY_RE 18
40 #define K25_NY_IM 19
42 #define K25_NY_IM 19
41 #define K34_NY_RE 20
43 #define K34_NY_RE 20
42 #define K34_NY_IM 21
44 #define K34_NY_IM 21
43 #define K35_NY_RE 22
45 #define K35_NY_RE 22
44 #define K35_NY_IM 23
46 #define K35_NY_IM 23
45
47
46 #define K24_NZ_RE 24
48 #define K24_NZ_RE 24
47 #define K24_NZ_IM 25
49 #define K24_NZ_IM 25
48 #define K25_NZ_RE 26
50 #define K25_NZ_RE 26
49 #define K25_NZ_IM 27
51 #define K25_NZ_IM 27
50 #define K34_NZ_RE 28
52 #define K34_NZ_RE 28
51 #define K34_NZ_IM 29
53 #define K34_NZ_IM 29
52 #define K35_NZ_RE 30
54 #define K35_NZ_RE 30
53 #define K35_NZ_IM 31
55 #define K35_NZ_IM 31
54
56
55 #endif // BASIC_PARAMETERS_PARAMS_H
57 #endif // BASIC_PARAMETERS_PARAMS_H
@@ -1,17 +1,19
1 // version 1.6: 19/12/2014
1 // version 1.6: 19/12/2014
2
2
3 #ifndef BASIC_PARAMETERS_UTILITIES_H
3 #ifndef BASIC_PARAMETERS_UTILITIES_H
4 #define BASIC_PARAMETERS_UTILITIES_H
4 #define BASIC_PARAMETERS_UTILITIES_H
5
5
6 #include <stdio.h>
6 #include <stdio.h>
7 #include <malloc.h>
7 #include <malloc.h>
8
8
9 #include "basic_parameters_params.h"
9 #include "basic_parameters_params.h"
10
10
11 float compressed_spectral_matrix_f0[NB_BINS_COMPRESSED_MATRIX_f0 * NB_VALUES_PER_SPECTRAL_MATRIX];
11 float compressed_spectral_matrix_f0[NB_BINS_COMPRESSED_MATRIX_f0 * NB_VALUES_PER_SPECTRAL_MATRIX];
12 float k_coefficients_f0[NB_BINS_COMPRESSED_MATRIX_f0 * NB_K_COEFF_PER_BIN];
12 float k_coefficients_f0[NB_BINS_COMPRESSED_MATRIX_f0 * NB_K_COEFF_PER_BIN];
13 float k_coefficients_f1[NB_BINS_COMPRESSED_MATRIX_f1 * NB_K_COEFF_PER_BIN];
14 float k_coefficients_f2[NB_BINS_COMPRESSED_MATRIX_f2 * NB_K_COEFF_PER_BIN];
13
15
14 unsigned char LFR_BP1_f0[NB_BINS_COMPRESSED_MATRIX_f0*NB_BYTES_BP1];
16 unsigned char LFR_BP1_f0[NB_BINS_COMPRESSED_MATRIX_f0*NB_BYTES_BP1];
15 unsigned char LFR_BP2_f0[NB_BINS_COMPRESSED_MATRIX_f0*NB_BYTES_BP2];
17 unsigned char LFR_BP2_f0[NB_BINS_COMPRESSED_MATRIX_f0*NB_BYTES_BP2];
16
18
17 #endif // BASIC_PARAMETERS_UTILITIES_H
19 #endif // BASIC_PARAMETERS_UTILITIES_H
@@ -1,64 +1,64
1 // In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013)
1 // In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013)
2 // version 1.O: 31/07/2013
2 // version 1.O: 31/07/2013
3 // version 1.1: 02/04/2014
3 // version 1.1: 02/04/2014
4 // version 1.2: 30/04/2014
4 // version 1.2: 30/04/2014
5 // version 1.3: 02/05/2014
5 // version 1.3: 02/05/2014
6 // version 1.4: 16/05/2014
6 // version 1.4: 16/05/2014
7 // version 1.5: 20/05/2014
7 // version 1.5: 20/05/2014
8 // version 1.6: 19/12/2014
8 // version 1.6: 19/12/2014
9
9
10 #include <stdio.h>
10 #include <stdio.h>
11
11
12 #include "file_utilities.h"
12 #include "file_utilities.h"
13 #include "basic_parameters_utilities.h"
13 #include "basic_parameters_utilities.h"
14 #include "basic_parameters.h"
14 #include "basic_parameters.h"
15
15
16 int main(void)
16 int main(void)
17 {
17 {
18 const char *filename;
18 const char *filename;
19 printf("Hello World!\n\n");
19 printf("Hello World!\n\n");
20
20
21 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
21 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
22 //LSB FIRST
22 //LSB FIRST
23 printf("The multi-byte quantities are laid out in a LSB FIRST (little endian) fashion \n\n");
23 printf("The multi-byte quantities are laid out in a LSB FIRST (little endian) fashion \n\n");
24 #endif
24 #endif
25
25
26 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
26 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
27 //MSB FIRST
27 //MSB FIRST
28 printf("The multi-byte quantities are laid out in a MSB FIRST (big endian) fashion\n\n");
28 printf("The multi-byte quantities are laid out in a MSB FIRST (big endian) fashion\n\n");
29 #endif
29 #endif
30
30
31 //filename="/WIN/Users/chust/DD CHUST/Missions/Solar Orbiter/LFR/Prog C/tests bp Paul/tests2/sm_test2.dat";
31 //filename="/WIN/Users/chust/DD CHUST/Missions/Solar Orbiter/LFR/Prog C/tests bp Paul/tests2/sm_test2.dat";
32 filename="sm_test2.dat";
32 filename="sm_test2.dat";
33 lecture_file_sm(filename);
33 lecture_file_sm(filename);
34
34
35 init_k_coefficients_f0();
35 init_k_coefficients(k_coefficients_f0, k_coefficients_f1, k_coefficients_f2);
36
36
37 printf("\n");
37 printf("\n");
38
38
39 BP1_set(compressed_spectral_matrix_f0, k_coefficients_f0, NB_BINS_COMPRESSED_MATRIX_f0, LFR_BP1_f0);
39 BP1_set(compressed_spectral_matrix_f0, k_coefficients_f0, NB_BINS_COMPRESSED_MATRIX_f0, LFR_BP1_f0);
40
40
41 printf("\n");
41 printf("\n");
42
42
43 BP2_set(compressed_spectral_matrix_f0, NB_BINS_COMPRESSED_MATRIX_f0, LFR_BP2_f0);
43 BP2_set(compressed_spectral_matrix_f0, NB_BINS_COMPRESSED_MATRIX_f0, LFR_BP2_f0);
44
44
45 return 0;
45 return 0;
46 }
46 }
47
47
48
48
49
49
50
50
51
51
52
52
53
53
54
54
55
55
56
56
57
57
58
58
59
59
60
60
61
61
62
62
63
63
64
64
General Comments 0
You need to be logged in to leave comments. Login now