/** General usage functions and RTEMS tasks. * * @file * @author P. LEROY * */ #include "fsw_misc.h" void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider, unsigned char interrupt_level, rtems_isr (*timer_isr)() ) { /** This function configures a GPTIMER timer instantiated in the VHDL design. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * @param clock_divider is the divider of the 1 MHz clock that will be configured. * @param interrupt_level is the interrupt level that the timer drives. * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. * * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 * */ rtems_status_code status; rtems_isr_entry old_isr_handler; gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels if (status!=RTEMS_SUCCESSFUL) { PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") } timer_set_clock_divider( gptimer_regs, timer, clock_divider); } void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer) { /** This function starts a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * */ gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable } void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer) { /** This function stops a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * */ gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any } void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider) { /** This function sets the clock divider of a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * @param clock_divider is the divider of the 1 MHz clock that will be configured. * */ gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz } int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port { struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE; return 0; } int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register { struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE; return 0; } void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) { /** This function sets the scaler reload register of the apbuart module * * @param regs is the address of the apbuart registers in memory * @param value is the value that will be stored in the scaler register * * The value shall be set by the software to get data on the serial interface. * */ struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; apbuart_regs->scaler = value; BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) } //************ // RTEMS TASKS rtems_task stat_task(rtems_task_argument argument) { int i; int j; i = 0; j = 0; BOOT_PRINTF("in STAT *** \n") while(1){ rtems_task_wake_after(1000); PRINTF1("%d\n", j) if (i == CPU_USAGE_REPORT_PERIOD) { // #ifdef PRINT_TASK_STATISTICS // rtems_cpu_usage_report(); // rtems_cpu_usage_reset(); // #endif i = 0; } else i++; j++; } } rtems_task hous_task(rtems_task_argument argument) { rtems_status_code status; rtems_status_code spare_status; rtems_id queue_id; rtems_rate_monotonic_period_status period_status; status = get_message_queue_id_send( &queue_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status) } BOOT_PRINTF("in HOUS ***\n") if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id ); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ) } } housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; housekeeping_packet.reserved = DEFAULT_RESERVED; housekeeping_packet.userApplication = CCSDS_USER_APP; housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8); housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK); housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8); housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; housekeeping_packet.serviceType = TM_TYPE_HK; housekeeping_packet.serviceSubType = TM_SUBTYPE_HK; housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND; housekeeping_packet.sid = SID_HK; status = rtems_rate_monotonic_cancel(HK_id); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ) } else { DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n") } // startup phase status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks ); status = rtems_rate_monotonic_get_status( HK_id, &period_status ); DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway { if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization { break; // break if LFR is synchronized } else { status = rtems_rate_monotonic_get_status( HK_id, &period_status ); // sched_yield(); status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms } } status = rtems_rate_monotonic_cancel(HK_id); DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) while(1){ // launch the rate monotonic task status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); if ( status != RTEMS_SUCCESSFUL ) { PRINTF1( "in HOUS *** ERR period: %d\n", status); spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 ); } else { housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8); housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK ); increment_seq_counter( &sequenceCounterHK ); housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24); housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16); housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8); housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time); housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8); housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time); spacewire_update_statistics(); // get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 ); get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load ); // SEND PACKET status = rtems_message_queue_send( queue_id, &housekeeping_packet, PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in HOUS *** ERR send: %d\n", status) } } } PRINTF("in HOUS *** deleting task\n") status = rtems_task_delete( RTEMS_SELF ); // should not return printf( "rtems_task_delete returned with status of %d.\n", status ); return; } rtems_task dumb_task( rtems_task_argument unused ) { /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. * * @param unused is the starting argument of the RTEMS task * * The DUMB taks waits for RTEMS events and print messages depending on the incoming events. * */ unsigned int i; unsigned int intEventOut; unsigned int coarse_time = 0; unsigned int fine_time = 0; rtems_event_set event_out; char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6 "ready for dump", // RTEMS_EVENT_7 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8 "tick", // RTEMS_EVENT_9 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11 }; BOOT_PRINTF("in DUMB *** \n") while(1){ rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7 | RTEMS_EVENT_8 | RTEMS_EVENT_9, RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT intEventOut = (unsigned int) event_out; for ( i=0; i<32; i++) { if ( ((intEventOut >> i) & 0x0001) != 0) { coarse_time = time_management_regs->coarse_time; fine_time = time_management_regs->fine_time; printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]); if (i==8) { } if (i==10) { } } } } } //***************************** // init housekeeping parameters void init_housekeeping_parameters( void ) { /** This function initialize the housekeeping_packet global variable with default values. * */ unsigned int i = 0; unsigned char *parameters; parameters = (unsigned char*) &housekeeping_packet.lfr_status_word; for(i = 0; i< SIZE_HK_PARAMETERS; i++) { parameters[i] = 0x00; } // init status word housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0; housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1; // init software version housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1; housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2; housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3; housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4; // init fpga version parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION); housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3 } void increment_seq_counter( unsigned short *packetSequenceControl ) { /** This function increment the sequence counter psased in argument. * * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0. * */ unsigned short segmentation_grouping_flag; unsigned short sequence_cnt; segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111] if ( sequence_cnt < SEQ_CNT_MAX) { sequence_cnt = sequence_cnt + 1; } else { sequence_cnt = 0; } *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ; } void getTime( unsigned char *time) { /** This function write the current local time in the time buffer passed in argument. * */ time[0] = (unsigned char) (time_management_regs->coarse_time>>24); time[1] = (unsigned char) (time_management_regs->coarse_time>>16); time[2] = (unsigned char) (time_management_regs->coarse_time>>8); time[3] = (unsigned char) (time_management_regs->coarse_time); time[4] = (unsigned char) (time_management_regs->fine_time>>8); time[5] = (unsigned char) (time_management_regs->fine_time); } unsigned long long int getTimeAsUnsignedLongLongInt( ) { /** This function write the current local time in the time buffer passed in argument. * */ unsigned long long int time; time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 ) + time_management_regs->fine_time; return time; } void send_dumb_hk( void ) { Packet_TM_LFR_HK_t dummy_hk_packet; unsigned char *parameters; unsigned int i; rtems_id queue_id; dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; dummy_hk_packet.reserved = DEFAULT_RESERVED; dummy_hk_packet.userApplication = CCSDS_USER_APP; dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8); dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK); dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8); dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; dummy_hk_packet.serviceType = TM_TYPE_HK; dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK; dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND; dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24); dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16); dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8); dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time); dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8); dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time); dummy_hk_packet.sid = SID_HK; // init status word dummy_hk_packet.lfr_status_word[0] = 0xff; dummy_hk_packet.lfr_status_word[1] = 0xff; // init software version dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1; dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2; dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3; dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4; // init fpga version parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0); dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load; for (i=0; i<100; i++) { parameters[i] = 0xff; } get_message_queue_id_send( &queue_id ); rtems_message_queue_send( queue_id, &dummy_hk_packet, PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); } void get_v_e1_e2_f3( unsigned char *spacecraft_potential ) { unsigned long long int localTime_asLong; unsigned long long int f3_0_AcquisitionTime_asLong; unsigned long long int f3_1_AcquisitionTime_asLong; unsigned long long int deltaT; unsigned long long int deltaT_f3_0; unsigned long long int deltaT_f3_1; unsigned char *bufferPtr; unsigned int offset_in_samples; unsigned int offset_in_bytes; unsigned char f3; bufferPtr = NULL; deltaT = 0; deltaT_f3_0 = 0xffffffff; deltaT_f3_1 = 0xffffffff; f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz if (lfrCurrentMode == LFR_MODE_STANDBY) { spacecraft_potential[0] = 0x00; spacecraft_potential[1] = 0x00; spacecraft_potential[2] = 0x00; spacecraft_potential[3] = 0x00; spacecraft_potential[4] = 0x00; spacecraft_potential[5] = 0x00; } else { localTime_asLong = get_acquisition_time( (unsigned char *) &time_management_regs->coarse_time ); f3_0_AcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &waveform_picker_regs->f3_0_coarse_time ); f3_1_AcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &waveform_picker_regs->f3_1_coarse_time ); printf("localTime 0x%llx, f3_0 0x%llx, f3_1 0x%llx\n", localTime_asLong, f3_0_AcquisitionTime_asLong, f3_1_AcquisitionTime_asLong); if ( localTime_asLong >= f3_0_AcquisitionTime_asLong ) { deltaT_f3_0 = localTime_asLong - f3_0_AcquisitionTime_asLong; } if ( localTime_asLong > f3_1_AcquisitionTime_asLong ) { deltaT_f3_1 = localTime_asLong - f3_1_AcquisitionTime_asLong; } if ( (deltaT_f3_0 != 0xffffffff) && (deltaT_f3_1 != 0xffffffff) ) { if ( deltaT_f3_0 > deltaT_f3_1 ) { deltaT = deltaT_f3_1; bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_1; } else { deltaT = deltaT_f3_0; bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_0; } } else if ( (deltaT_f3_0 == 0xffffffff) && (deltaT_f3_1 != 0xffffffff) ) { deltaT = deltaT_f3_1; bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_1; } else if ( (deltaT_f3_0 != 0xffffffff) && (deltaT_f3_1 == 0xffffffff) ) { deltaT = deltaT_f3_0; bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_1; } else { deltaT = 0xffffffff; } if ( deltaT == 0xffffffff ) { spacecraft_potential[0] = 0x00; spacecraft_potential[1] = 0x00; spacecraft_potential[2] = 0x00; spacecraft_potential[3] = 0x00; spacecraft_potential[4] = 0x00; spacecraft_potential[5] = 0x00; } else { offset_in_samples = ( (double) deltaT ) / 65536. * f3; if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) ) { PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples) offset_in_samples = NB_SAMPLES_PER_SNAPSHOT - 1; } offset_in_bytes = offset_in_samples * NB_WORDS_SWF_BLK * 4; spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0]; spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1]; spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2]; spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3]; spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4]; spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5]; } } } void get_cpu_load( unsigned char *resource_statistics ) { unsigned char cpu_load; cpu_load = lfr_rtems_cpu_usage_report(); // HK_LFR_CPU_LOAD resource_statistics[0] = cpu_load; // HK_LFR_CPU_LOAD_MAX if (cpu_load > resource_statistics[1]) { resource_statistics[1] = cpu_load; } // CPU_LOAD_AVE resource_statistics[2] = 0; #ifndef PRINT_TASK_STATISTICS rtems_cpu_usage_reset(); #endif }