/** General usage functions and RTEMS tasks. * * @file * @author P. LEROY * */ #include "fsw_misc.h" char *DumbMessages[6] = {"in DUMB *** default", // RTEMS_EVENT_0 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1 "in DUMB *** waveforms_isr", // RTEMS_EVENT_2 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4 "in DUMB *** waveforms_simulator_isr" // RTEMS_EVENT_5 }; int configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider, unsigned char interrupt_level, rtems_isr (*timer_isr)() ) { /** This function configures a GPTIMER timer instantiated in the VHDL design. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * @param clock_divider is the divider of the 1 MHz clock that will be configured. * @param interrupt_level is the interrupt level that the timer drives. * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. * * @return * * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 * */ rtems_status_code status; rtems_isr_entry old_isr_handler; status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels if (status!=RTEMS_SUCCESSFUL) { PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") } timer_set_clock_divider( gptimer_regs, timer, clock_divider); return 1; } int timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer) { /** This function starts a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * * @return 1 * */ gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable return 1; } int timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer) { /** This function stops a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * * @return 1 * */ gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any return 1; } int timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider) { /** This function sets the clock divider of a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * @param clock_divider is the divider of the 1 MHz clock that will be configured. * * @return 1 * */ gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz return 1; } int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port { struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; apbuart_regs->ctrl = apbuart_regs->ctrl & APBUART_CTRL_REG_MASK_DB; PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n") return 0; } void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) { /** This function sets the scaler reload register of the apbuart module * * @param regs is the address of the apbuart registers in memory * @param value is the value that will be stored in the scaler register * * The value shall be set by the software to get data on the serial interface. * */ struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; apbuart_regs->scaler = value; BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) } //************ // RTEMS TASKS rtems_task stat_task(rtems_task_argument argument) { int i; int j; i = 0; j = 0; BOOT_PRINTF("in STAT *** \n") while(1){ rtems_task_wake_after(1000); PRINTF1("%d\n", j) if (i == CPU_USAGE_REPORT_PERIOD) { // #ifdef PRINT_TASK_STATISTICS // rtems_cpu_usage_report(); // rtems_cpu_usage_reset(); // #endif i = 0; } else i++; j++; } } rtems_task hous_task(rtems_task_argument argument) { rtems_status_code status; spw_ioctl_pkt_send spw_ioctl_send; rtems_id queue_id; spw_ioctl_send.hlen = 0; spw_ioctl_send.hdr = NULL; spw_ioctl_send.dlen = PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES; spw_ioctl_send.data = (char*) &housekeeping_packet; spw_ioctl_send.options = 0; status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in HOUS *** ERR %d\n", status) } BOOT_PRINTF("in HOUS ***\n") if (rtems_rate_monotonic_ident( HK_name, &HK_id) != RTEMS_SUCCESSFUL) { status = rtems_rate_monotonic_create( HK_name, &HK_id ); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ) } } housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; housekeeping_packet.reserved = DEFAULT_RESERVED; housekeeping_packet.userApplication = CCSDS_USER_APP; housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8); housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK); housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8); housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; housekeeping_packet.serviceType = TM_TYPE_HK; housekeeping_packet.serviceSubType = TM_SUBTYPE_HK; housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND; status = rtems_rate_monotonic_cancel(HK_id); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ) } else { DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n") } while(1){ // launch the rate monotonic task status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); if ( status != RTEMS_SUCCESSFUL ) { PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_period *** code %d\n", status); } else { housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24); housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16); housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8); housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time); housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8); housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time); housekeeping_packet.sid = SID_HK; spacewire_update_statistics(); // SEND PACKET status = rtems_message_queue_send( queue_id, &spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in HOUS *** ERR %d\n", status) } } } PRINTF("in HOUS *** deleting task\n") status = rtems_task_delete( RTEMS_SELF ); // should not return printf( "rtems_task_delete returned with status of %d.\n", status ); return; } rtems_task dumb_task( rtems_task_argument unused ) { /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. * * @param unused is the starting argument of the RTEMS task * * The DUMB taks waits for RTEMS events and print messages depending on the incoming events. * */ unsigned int i; unsigned int intEventOut; unsigned int coarse_time = 0; unsigned int fine_time = 0; rtems_event_set event_out; BOOT_PRINTF("in DUMB *** \n") while(1){ rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | RTEMS_EVENT_4 | RTEMS_EVENT_5, RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT intEventOut = (unsigned int) event_out; for ( i=0; i<32; i++) { if ( ((intEventOut >> i) & 0x0001) != 0) { coarse_time = time_management_regs->coarse_time; fine_time = time_management_regs->fine_time; printf("in DUMB *** time = coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]); } } } }