##// END OF EJS Templates
HK packet changed due to misalignment of one int data...
HK packet changed due to misalignment of one int data v e1 and e2 are now valid in the HK packet

File last commit:

r107:c303d2da6108 VHDLib206
r132:f919b72104cf VHDLib206
Show More
timegen_tc_handler.c
793 lines | 26.0 KiB | text/x-c | CLexer
/** Functions and tasks related to TeleCommand handling.
*
* @file
* @author P. LEROY
*
* A group of functions to handle TeleCommands:\n
* action launching\n
* TC parsing\n
* ...
*
*/
#include "timegen_tc_handler.h"
//***********
// RTEMS TASK
rtems_task actn_task( rtems_task_argument unused )
{
/** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
*
* @param unused is the starting argument of the RTEMS task
*
* The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
* on the incoming TeleCommand.
*
*/
int result;
rtems_status_code status; // RTEMS status code
ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
size_t size; // size of the incoming TC packet
unsigned char subtype; // subtype of the current TC packet
unsigned char time[6];
rtems_id queue_rcv_id;
rtems_id queue_snd_id;
status = get_message_queue_id_recv( &queue_rcv_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
}
status = get_message_queue_id_send( &queue_snd_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
}
result = LFR_SUCCESSFUL;
subtype = 0; // subtype of the current TC packet
BOOT_PRINTF("in ACTN *** \n")
while(1)
{
status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
RTEMS_WAIT, RTEMS_NO_TIMEOUT);
getTime( time ); // set time to the current time
if (status!=RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
}
else
{
subtype = TC.serviceSubType;
switch(subtype)
{
case TC_SUBTYPE_RESET:
// result = action_reset( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_COMM:
// result = action_load_common_par( &TC );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_NORM:
// result = action_load_normal_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_BURST:
// result = action_load_burst_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_SBM1:
// result = action_load_sbm1_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_SBM2:
// result = action_load_sbm2_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_DUMP:
// result = action_dump_par( queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_ENTER:
result = action_enter_mode( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_UPDT_INFO:
// result = action_update_info( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_EN_CAL:
// result = action_enable_calibration( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_DIS_CAL:
// result = action_disable_calibration( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_UPDT_TIME:
result = action_update_time( &TC );
close_action( &TC, result, queue_snd_id );
break;
//
default:
break;
}
}
}
}
//***********
// TC ACTIONS
int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
return LFR_DEFAULT;
}
int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
rtems_status_code status;
unsigned char requestedMode;
requestedMode = TC->dataAndCRC[1];
if ( (requestedMode != LFR_MODE_STANDBY)
&& (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
&& (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
{
status = RTEMS_UNSATISFIED;
send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode );
}
else
{
printf("in action_enter_mode *** enter mode %d\n", requestedMode);
status = transition_validation(requestedMode);
if ( status == LFR_SUCCESSFUL ) {
if ( lfrCurrentMode != LFR_MODE_STANDBY)
{
status = stop_current_mode();
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF("ERR *** in action_enter *** stop_current_mode\n")
}
status = enter_mode( requestedMode );
}
else
{
PRINTF("ERR *** in action_enter *** transition rejected\n")
send_tm_lfr_tc_exe_not_executable( TC, queue_id );
}
}
return status;
}
int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
// /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
// *
// * @param TC points to the TeleCommand packet that is being processed
// * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
// *
// * @return LFR directive status code:
// * - LFR_DEFAULT
// * - LFR_SUCCESSFUL
// *
// */
// unsigned int val;
int result;
result = LFR_DEFAULT;
// unsigned int status;
// unsigned char mode;
// // check LFR MODE
// mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET5 ] & 0x1e) >> 1;
// status = check_update_info_hk_lfr_mode( mode );
// if (status != LFR_DEFAULT) // check TDS mode
// {
// mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0xf0) >> 4;
// status = check_update_info_hk_tds_mode( mode );
// }
// if (status != LFR_DEFAULT) // check THR mode
// {
// mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0x0f);
// status = check_update_info_hk_thr_mode( mode );
// }
// if (status != LFR_DEFAULT) // if the parameter check is successful
// {
// val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
// + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
// val++;
// housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
// housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
// }
// result = status;
return result;
}
int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
unsigned char lfrMode;
result = LFR_DEFAULT;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
result = LFR_DEFAULT;
return result;
}
int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
unsigned char lfrMode;
result = LFR_DEFAULT;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
result = LFR_DEFAULT;
return result;
}
int action_update_time(ccsdsTelecommandPacket_t *TC)
{
/** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
* @return LFR_SUCCESSFUL
*
*/
unsigned int val;
time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
+ (TC->dataAndCRC[1] << 16)
+ (TC->dataAndCRC[2] << 8)
+ TC->dataAndCRC[3];
val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
+ housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
// time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
return LFR_SUCCESSFUL;
}
//*******************
// ENTERING THE MODES
int transition_validation(unsigned char requestedMode)
{
/** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
*
* @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
*
* @return LFR directive status codes:
* - LFR_SUCCESSFUL - the transition is authorized
* - LFR_DEFAULT - the transition is not authorized
*
*/
int status;
switch (requestedMode)
{
case LFR_MODE_STANDBY:
if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
status = LFR_DEFAULT;
}
else
{
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_NORMAL:
if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_BURST:
if ( lfrCurrentMode == LFR_MODE_BURST ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM1:
if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM2:
if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
default:
status = LFR_DEFAULT;
break;
}
return status;
}
int stop_current_mode(void)
{
/** This function stops the current mode by masking interrupt lines and suspending science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = RTEMS_SUCCESSFUL;
// (1) mask interruptions
LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
// (2) clear interruptions
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
// (3) reset registers
// waveform picker
// reset_wfp_burst_enable(); // reset burst and enable bits
// reset_wfp_status(); // reset all the status bits
// spectral matrices
set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
// reset_extractSWF(); // reset the extractSWF flag to false
// <Spectral Matrices simulator>
LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
// </Spectral Matrices simulator>
// suspend several tasks
if (lfrCurrentMode != LFR_MODE_STANDBY) {
status = suspend_science_tasks();
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
}
return status;
}
int enter_mode(unsigned char mode )
{
/** This function is launched after a mode transition validation.
*
* @param mode is the mode in which LFR will be put.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - the mode has been entered successfully
* - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
*
*/
rtems_status_code status;
status = RTEMS_UNSATISFIED;
housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
updateLFRCurrentMode();
if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
|| (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
{
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_reset();
maxCount = 0;
#endif
status = restart_science_tasks();
// launch_waveform_picker( mode );
// launch_spectral_matrix( mode );
}
else if ( mode == LFR_MODE_STANDBY )
{
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_report();
#endif
#ifdef PRINT_STACK_REPORT
rtems_stack_checker_report_usage();
#endif
status = stop_current_mode();
PRINTF1("maxCount = %d\n", maxCount)
}
else
{
status = RTEMS_UNSATISFIED;
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in enter_mode *** ERR = %d\n", status)
status = RTEMS_UNSATISFIED;
}
return status;
}
int restart_science_tasks()
{
/** This function is used to restart all science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
*
*/
rtems_status_code status[6];
rtems_status_code ret;
ret = RTEMS_SUCCESSFUL;
status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
if (status[0] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
}
status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
if (status[2] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
}
status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
if (status[3] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
}
status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
if (status[4] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
}
status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
if (status[5] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
}
if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
(status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
{
ret = RTEMS_UNSATISFIED;
}
return ret;
}
int suspend_science_tasks()
{
/** This function suspends the science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = rtems_task_suspend( Task_id[TASKID_AVF0] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
}
if (status == RTEMS_SUCCESSFUL) // suspend WFRM
{
status = rtems_task_suspend( Task_id[TASKID_WFRM] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF3
{
status = rtems_task_suspend( Task_id[TASKID_CWF3] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF2
{
status = rtems_task_suspend( Task_id[TASKID_CWF2] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF1
{
status = rtems_task_suspend( Task_id[TASKID_CWF1] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
}
}
return status;
}
void launch_waveform_picker( unsigned char mode )
{
// int startDate;
// reset_current_ring_nodes();
// reset_waveform_picker_regs();
// set_wfp_burst_enable_register( mode );
// LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
// LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
// startDate = time_management_regs->coarse_time + 2;
// waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
// waveform_picker_regs->start_date = startDate;
}
void launch_spectral_matrix( unsigned char mode )
{
// reset_nb_sm_f0();
// reset_current_sm_ring_nodes();
// reset_spectral_matrix_regs();
//#ifdef VHDL_DEV
// set_irq_on_new_ready_matrix( 1 );
// LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
// LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
// set_run_matrix_spectral( 1 );
//#else
// // Spectral Matrices simulator
// timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
// LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
// LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
//#endif
}
void set_irq_on_new_ready_matrix( unsigned char value )
{
if (value == 1)
{
spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
}
else
{
spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
}
}
void set_run_matrix_spectral( unsigned char value )
{
if (value == 1)
{
spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // 0100 set run_matrix spectral to 1
}
else
{
spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // 1011 set run_matrix spectral to 0
}
}
void launch_spectral_matrix_simu( unsigned char mode )
{
// reset_nb_sm_f0();
// reset_current_sm_ring_nodes();
// reset_spectral_matrix_regs();
// // Spectral Matrices simulator
// timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
// LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
// LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
// set_local_nb_interrupt_f0_MAX();
}
//****************
// CLOSING ACTIONS
void update_last_TC_exe(ccsdsTelecommandPacket_t *TC)
{
/** This function is used to update the HK packets statistics after a successful TC execution.
*
* @param TC points to the TC being processed
* @param time is the time used to date the TC execution
*
*/
housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_exe_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
housekeeping_packet.hk_lfr_last_exe_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
housekeeping_packet.hk_lfr_last_exe_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
housekeeping_packet.hk_lfr_last_exe_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
housekeeping_packet.hk_lfr_last_exe_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
housekeeping_packet.hk_lfr_last_exe_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
}
void update_last_TC_rej(ccsdsTelecommandPacket_t *TC )
{
/** This function is used to update the HK packets statistics after a TC rejection.
*
* @param TC points to the TC being processed
* @param time is the time used to date the TC rejection
*
*/
housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_rej_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
housekeeping_packet.hk_lfr_last_rej_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
housekeeping_packet.hk_lfr_last_rej_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
housekeeping_packet.hk_lfr_last_rej_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
housekeeping_packet.hk_lfr_last_rej_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
housekeeping_packet.hk_lfr_last_rej_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
}
void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
{
/** This function is the last step of the TC execution workflow.
*
* @param TC points to the TC being processed
* @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
* @param queue_id is the id of the RTEMS message queue used to send TM packets
* @param time is the time used to date the TC execution
*
*/
unsigned int val = 0;
if (result == LFR_SUCCESSFUL)
{
if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
&&
!( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
)
{
send_tm_lfr_tc_exe_success( TC, queue_id );
}
update_last_TC_exe( TC );
val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
}
else
{
update_last_TC_rej( TC );
val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
}
}
//***************************
// Interrupt Service Routines
rtems_isr commutation_isr1( rtems_vector_number vector )
{
if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
printf("In commutation_isr1 *** Error sending event to DUMB\n");
}
}
rtems_isr commutation_isr2( rtems_vector_number vector )
{
if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
printf("In commutation_isr2 *** Error sending event to DUMB\n");
}
}
//****************
// OTHER FUNCTIONS
void updateLFRCurrentMode()
{
/** This function updates the value of the global variable lfrCurrentMode.
*
* lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
*
*/
// update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
}