##// END OF EJS Templates
waveform picker registers updated to be compliant with the new VHDL design
waveform picker registers updated to be compliant with the new VHDL design

File last commit:

r51:b0e1ec810ca1 default
r52:e2d761f8e287 nov2013
Show More
fsw_misc.c
292 lines | 10.9 KiB | text/x-c | CLexer
/** General usage functions and RTEMS tasks.
*
* @file
* @author P. LEROY
*
*/
#include "fsw_misc.h"
char *DumbMessages[6] = {"in DUMB *** default", // RTEMS_EVENT_0
"in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
"in DUMB *** waveforms_isr", // RTEMS_EVENT_2
"in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
"in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
"in DUMB *** waveforms_simulator_isr" // RTEMS_EVENT_5
};
int configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
unsigned char interrupt_level, rtems_isr (*timer_isr)() )
{
/** This function configures a GPTIMER timer instantiated in the VHDL design.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
* @param interrupt_level is the interrupt level that the timer drives.
* @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
*
* @return
*
* Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
*
*/
rtems_status_code status;
rtems_isr_entry old_isr_handler;
status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
if (status!=RTEMS_SUCCESSFUL)
{
PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
}
timer_set_clock_divider( gptimer_regs, timer, clock_divider);
return 1;
}
int timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
{
/** This function starts a GPTIMER timer.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
*
* @return 1
*
*/
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
return 1;
}
int timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
{
/** This function stops a GPTIMER timer.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
*
* @return 1
*
*/
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
return 1;
}
int timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
{
/** This function sets the clock divider of a GPTIMER timer.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
*
* @return 1
*
*/
gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
return 1;
}
int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
{
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
apbuart_regs->ctrl = apbuart_regs->ctrl & APBUART_CTRL_REG_MASK_DB;
PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
return 0;
}
void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
{
/** This function sets the scaler reload register of the apbuart module
*
* @param regs is the address of the apbuart registers in memory
* @param value is the value that will be stored in the scaler register
*
* The value shall be set by the software to get data on the serial interface.
*
*/
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
apbuart_regs->scaler = value;
BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
}
//************
// RTEMS TASKS
rtems_task stat_task(rtems_task_argument argument)
{
int i;
int j;
i = 0;
j = 0;
BOOT_PRINTF("in STAT *** \n")
while(1){
rtems_task_wake_after(1000);
PRINTF1("%d\n", j)
if (i == CPU_USAGE_REPORT_PERIOD) {
// #ifdef PRINT_TASK_STATISTICS
// rtems_cpu_usage_report();
// rtems_cpu_usage_reset();
// #endif
i = 0;
}
else i++;
j++;
}
}
rtems_task hous_task(rtems_task_argument argument)
{
rtems_status_code status;
rtems_id queue_id;
status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in HOUS *** ERR %d\n", status)
}
BOOT_PRINTF("in HOUS ***\n")
if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
if( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
}
}
housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
housekeeping_packet.reserved = DEFAULT_RESERVED;
housekeeping_packet.userApplication = CCSDS_USER_APP;
housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
housekeeping_packet.serviceType = TM_TYPE_HK;
housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
status = rtems_rate_monotonic_cancel(HK_id);
if( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
}
else {
DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
}
while(1){ // launch the rate monotonic task
status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
if ( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "in HOUS *** ERR period: %d\n", status);
}
else {
housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
housekeeping_packet.sid = SID_HK;
spacewire_update_statistics();
// SEND PACKET
status = rtems_message_queue_send( queue_id, &housekeeping_packet,
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
if (status != RTEMS_SUCCESSFUL) {
PRINTF1("in HOUS *** ERR send: %d\n", status)
}
}
}
PRINTF("in HOUS *** deleting task\n")
status = rtems_task_delete( RTEMS_SELF ); // should not return
printf( "rtems_task_delete returned with status of %d.\n", status );
return;
}
rtems_task dumb_task( rtems_task_argument unused )
{
/** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
*
* @param unused is the starting argument of the RTEMS task
*
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
*
*/
unsigned int i;
unsigned int intEventOut;
unsigned int coarse_time = 0;
unsigned int fine_time = 0;
rtems_event_set event_out;
BOOT_PRINTF("in DUMB *** \n")
while(1){
rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | RTEMS_EVENT_4 | RTEMS_EVENT_5,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
intEventOut = (unsigned int) event_out;
for ( i=0; i<32; i++)
{
if ( ((intEventOut >> i) & 0x0001) != 0)
{
coarse_time = time_management_regs->coarse_time;
fine_time = time_management_regs->fine_time;
printf("in DUMB *** time = coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
}
}
}
}
//*****************************
// init housekeeping parameters
void init_housekeeping_parameters( void )
{
/** This function initialize the housekeeping_packet global variable with default values.
*
*/
unsigned int i = 0;
char *parameters;
parameters = (char*) &housekeeping_packet.lfr_status_word;
for(i = 0; i< SIZE_HK_PARAMETERS; i++)
{
parameters[i] = 0x00;
}
// init status word
housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
// init software version
housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
}