##// END OF EJS Templates
Sync
Sync

File last commit:

r173:c2ac646b3bc4 VHDL_0_1_28
r175:d2561e02408b VHDL_0_1_28
Show More
avf1_prc1.c
367 lines | 14.9 KiB | text/x-c | CLexer
/** Functions related to data processing.
*
* @file
* @author P. LEROY
*
* These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
*
*/
#include "avf1_prc1.h"
nb_sm_before_bp_asm_f1 nb_sm_before_f1;
//***
// F1
ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
float asm_f1_reorganized [ TOTAL_SIZE_SM ];
char asm_f1_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
//************
// RTEMS TASKS
rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
{
int i;
rtems_event_set event_out;
rtems_status_code status;
rtems_id queue_id_prc1;
asm_msg msgForMATR;
ring_node *ring_node_tab[8];
ring_node_asm *current_ring_node_asm_burst_sbm_f1;
ring_node_asm *current_ring_node_asm_norm_f1;
unsigned int nb_norm_bp1;
unsigned int nb_norm_bp2;
unsigned int nb_norm_asm;
unsigned int nb_sbm_bp1;
unsigned int nb_sbm_bp2;
nb_norm_bp1 = 0;
nb_norm_bp2 = 0;
nb_norm_asm = 0;
nb_sbm_bp1 = 0;
nb_sbm_bp2 = 0;
reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
status = get_message_queue_id_prc1( &queue_id_prc1 );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
}
while(1){
rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
//****************************************
// initialize the mesage for the MATR task
msgForMATR.norm = current_ring_node_asm_norm_f1;
msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
msgForMATR.coarseTime = ring_node_for_averaging_sm_f1->coarseTime;
msgForMATR.fineTime = ring_node_for_averaging_sm_f1->fineTime;
//
//****************************************
ring_node_tab[NB_SM_BEFORE_AVF1-1] = ring_node_for_averaging_sm_f1;
for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
{
ring_node_for_averaging_sm_f1 = ring_node_for_averaging_sm_f1->previous;
ring_node_tab[NB_SM_BEFORE_AVF1-i] = ring_node_for_averaging_sm_f1;
}
// compute the average and store it in the averaged_sm_f1 buffer
SM_average( current_ring_node_asm_norm_f1->matrix,
current_ring_node_asm_burst_sbm_f1->matrix,
ring_node_tab,
nb_norm_bp1, nb_sbm_bp1 );
// update nb_average
nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
{
nb_sbm_bp1 = 0;
// set another ring for the ASM storage
current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
if ( lfrCurrentMode == LFR_MODE_BURST )
{
msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F1;
}
else if ( lfrCurrentMode == LFR_MODE_SBM2 )
{
msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F1;
}
}
if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
{
nb_sbm_bp2 = 0;
if ( lfrCurrentMode == LFR_MODE_BURST )
{
msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F1;
}
else if ( lfrCurrentMode == LFR_MODE_SBM2 )
{
msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F1;
}
}
if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
{
nb_norm_bp1 = 0;
// set another ring for the ASM storage
current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
if ( (lfrCurrentMode == LFR_MODE_NORMAL)
|| (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
{
msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
}
}
if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
{
nb_norm_bp2 = 0;
if ( (lfrCurrentMode == LFR_MODE_NORMAL)
|| (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
{
msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
}
}
if (nb_norm_asm == nb_sm_before_f1.norm_asm)
{
nb_norm_asm = 0;
if ( (lfrCurrentMode == LFR_MODE_NORMAL)
|| (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
{
msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
}
}
//*************************
// send the message to MATR
if (msgForMATR.event != 0x00)
{
status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
}
if (status != RTEMS_SUCCESSFUL) {
printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
}
}
}
rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
{
char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
size_t size; // size of the incoming TC packet
asm_msg *incomingMsg;
//
unsigned char sid;
rtems_status_code status;
rtems_id queue_id_send;
rtems_id queue_id_q_p1;
bp_packet_with_spare packet_norm_bp1;
bp_packet packet_norm_bp2;
bp_packet packet_sbm_bp1;
bp_packet packet_sbm_bp2;
ring_node *current_ring_node_to_send_asm_f1;
unsigned long long int localTime;
// init the ring of the averaged spectral matrices which will be transmitted to the DPU
init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
//*************
// NORM headers
BP_init_header_with_spare( &packet_norm_bp1.header,
APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
BP_init_header( &packet_norm_bp2.header,
APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
//***********************
// BURST and SBM2 headers
if ( lfrRequestedMode == LFR_MODE_BURST )
{
BP_init_header( &packet_sbm_bp1.header,
APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
BP_init_header( &packet_sbm_bp2.header,
APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
}
else if ( lfrRequestedMode == LFR_MODE_SBM2 )
{
BP_init_header( &packet_sbm_bp1.header,
APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
BP_init_header( &packet_sbm_bp2.header,
APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
}
else
{
PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
}
status = get_message_queue_id_send( &queue_id_send );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
}
status = get_message_queue_id_prc1( &queue_id_q_p1);
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
}
BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
while(1){
status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
incomingMsg = (asm_msg*) incomingData;
localTime = getTimeAsUnsignedLongLongInt( );
//***********
//***********
// BURST SBM2
//***********
//***********
if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
{
sid = getSID( incomingMsg->event );
// 1) compress the matrix for Basic Parameters calculation
ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f1,
nb_sm_before_f1.burst_sbm_bp1,
NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
ASM_F1_INDICE_START);
// 2) compute the BP1 set
// 3) send the BP1 set
set_time( packet_sbm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
set_time( packet_sbm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
BP_send( (char *) &packet_sbm_bp1, queue_id_send,
PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
sid );
// 4) compute the BP2 set if needed
if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
{
// 1) compute the BP2 set
// 2) send the BP2 set
set_time( packet_sbm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
set_time( packet_sbm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
BP_send( (char *) &packet_sbm_bp2, queue_id_send,
PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
sid );
}
}
//*****
//*****
// NORM
//*****
//*****
if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
{
// 1) compress the matrix for Basic Parameters calculation
ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f1,
nb_sm_before_f1.norm_bp1,
NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
ASM_F0_INDICE_START );
// 2) compute the BP1 set
// 3) send the BP1 set
set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
BP_send( (char *) &packet_norm_bp1, queue_id_send,
PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
SID_NORM_BP1_F1 );
if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
{
// 1) compute the BP2 set
// 2) send the BP2 set
set_time( packet_norm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
set_time( packet_norm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
BP_send( (char *) &packet_norm_bp2, queue_id_send,
PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
SID_NORM_BP2_F1 );
}
}
if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
{
// 1) reorganize the ASM and divide
ASM_reorganize_and_divide( incomingMsg->norm->matrix,
asm_f1_reorganized,
nb_sm_before_f1.norm_bp1 );
// 2) convert the float array in a char array
ASM_convert( asm_f1_reorganized, (char*) current_ring_node_to_send_asm_f1->buffer_address );
current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTime;
current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTime;
current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
// 3) send the spectral matrix packets
status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
// change asm ring node
current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
}
}
}
//**********
// FUNCTIONS
void reset_nb_sm_f1( unsigned char lfrMode )
{
nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
if (lfrMode == LFR_MODE_SBM2)
{
nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
}
else if (lfrMode == LFR_MODE_BURST)
{
nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
}
else
{
nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
}
}