##// END OF EJS Templates
Minor bug corrected in the tc_acceptance function...
Minor bug corrected in the tc_acceptance function when the TC is corrupted, the packet TM_LFR_TC_EXE_CORRUPTED is sent

File last commit:

r42:939c648d248c default
r42:939c648d248c default
Show More
tc_handler.c
1284 lines | 40.6 KiB | text/x-c | CLexer
/** Functions and tasks related to TeleCommand handling.
*
* @file
* @author P. LEROY
*
* A group of functions to handle TeleCommands:\n
* action launching\n
* TC parsing\n
* ...
*
*/
#include "tc_handler.h"
char *DumbMessages[6] = {"in DUMB *** default", // RTEMS_EVENT_0
"in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
"in DUMB *** waveforms_isr", // RTEMS_EVENT_2
"in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
"in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
"in DUMB *** waveforms_simulator_isr" // RTEMS_EVENT_5
};
unsigned char currentTC_LEN_RCV[2]; // SHALL be equal to the current TC packet estimated packet length field
unsigned int currentTC_LEN_RCV_AsUnsignedInt;
unsigned int currentTM_length;
unsigned char currentTC_processedFlag;
unsigned int lookUpTableForCRC[256];
//**********************
// GENERAL USE FUNCTIONS
unsigned int Crc_opt( unsigned char D, unsigned int Chk)
{
/** This function generate the CRC for one byte and returns the value of the new syndrome.
*
* @param D is the current byte of data.
* @param Chk is the current syndrom value.
* @return the value of the new syndrome on two bytes.
*
*/
return(((Chk << 8) & 0xff00)^lookUpTableForCRC [(((Chk >> 8)^D) & 0x00ff)]);
}
void initLookUpTableForCRC( void )
{
/** This function is used to initiates the look-up table for fast CRC computation.
*
* The global table lookUpTableForCRC[256] is initiated.
*
*/
unsigned int i;
unsigned int tmp;
for (i=0; i<256; i++)
{
tmp = 0;
if((i & 1) != 0) {
tmp = tmp ^ 0x1021;
}
if((i & 2) != 0) {
tmp = tmp ^ 0x2042;
}
if((i & 4) != 0) {
tmp = tmp ^ 0x4084;
}
if((i & 8) != 0) {
tmp = tmp ^ 0x8108;
}
if((i & 16) != 0) {
tmp = tmp ^ 0x1231;
}
if((i & 32) != 0) {
tmp = tmp ^ 0x2462;
}
if((i & 64) != 0) {
tmp = tmp ^ 0x48c4;
}
if((i & 128) != 0) {
tmp = tmp ^ 0x9188;
}
lookUpTableForCRC[i] = tmp;
}
}
void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
{
/** This function calculates a two bytes Cyclic Redundancy Code.
*
* @param data points to a buffer containing the data on which to compute the CRC.
* @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
* @param sizeOfData is the number of bytes of *data* used to compute the CRC.
*
* The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
*
*/
unsigned int Chk;
int j;
Chk = 0xffff; // reset the syndrom to all ones
for (j=0; j<sizeOfData; j++) {
Chk = Crc_opt(data[j], Chk);
}
crcAsTwoBytes[0] = (unsigned char) (Chk >> 8);
crcAsTwoBytes[1] = (unsigned char) (Chk & 0x00ff);
}
void updateLFRCurrentMode()
{
/** This function updates the value of the global variable lfrCurrentMode.
*
* lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
*
*/
// update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
}
//*********************
// ACCEPTANCE FUNCTIONS
int tc_acceptance(ccsdsTelecommandPacket_t *TC, unsigned int tc_len_recv, rtems_id queue_recv_id, rtems_id queue_send_id)
{
/** This function executes the TeleCommand acceptance steps.
*
* @param TC points to the TeleCommand packet which is under investigation.
* @param tc_len_recv contains the length of the packet that has been received.
* @param queue_recv_id is the id of the rtems queue in which messages are written if the acceptance is not successful
* @param queue_send_id is the id of the rtems queue in which messages are written if the acceptance is successful
* @return status code
*
* The acceptance steps can result in two different actions.
* 1. If the acceptance is successful, the TC is sent in the receiving queue for processing.
* 2. If the acceptance fails, a TM packet is transmitted to report the error.
*
*/
int ret = 0;
rtems_status_code status;
unsigned int parserCode = 0;
unsigned char computed_CRC[2];
GetCRCAsTwoBytes( (unsigned char*) TC->packetID, computed_CRC, tc_len_recv + 5 );
parserCode = tc_parser( TC, tc_len_recv ) ;
if ( (parserCode == ILLEGAL_APID) | (parserCode == WRONG_LEN_PACKET) | (parserCode == INCOR_CHECKSUM)
| (parserCode == ILL_TYPE) | (parserCode == ILL_SUBTYPE) | (parserCode == WRONG_APP_DATA) )
{ // send TM_LFR_TC_EXE_CORRUPTED
send_tm_lfr_tc_exe_corrupted( TC, queue_send_id, computed_CRC, currentTC_LEN_RCV );
}
else { // send valid TC to the action launcher
status = rtems_message_queue_send( queue_recv_id, TC, tc_len_recv + CCSDS_TC_TM_PACKET_OFFSET + 3);
ret = LFR_SUCCESSFUL;
}
return ret;
}
int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int TC_LEN_RCV)
{
/** This function parses TeleCommands.
*
* @param TC points to the TeleCommand that will be parsed.
* @param TC_LEN_RCV is the received packet length.
* @return Status code of the parsing.
*
* The parsing checks:
* - process id
* - category
* - length: a global check is performed and a per subtype check also
* - type
* - subtype
* - crc
*
*/
int status;
unsigned char pid;
unsigned char category;
unsigned int length;
unsigned char packetType;
unsigned char packetSubtype;
status = CCSDS_TM_VALID;
// APID check *** APID on 2 bytes
pid = ((TCPacket->packetID[0] & 0x07)<<4) + ( (TCPacket->packetID[1]>>4) & 0x0f ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
category = (TCPacket->packetID[1] & 0x0f); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
length = (TCPacket->packetLength[0] * 256) + TCPacket->packetLength[1];
packetType = TCPacket->serviceType;
packetSubtype = TCPacket->serviceSubType;
if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
{
status = ILLEGAL_APID;
}
if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
{
if ( category != CCSDS_PACKET_CATEGORY )
{
status = ILLEGAL_APID;
}
}
if (status == CCSDS_TM_VALID) // CHECK THE PACKET LENGTH FIELD AND THE ACTUAL LENGTH COMPLIANCE
{
if (length != TC_LEN_RCV ) {
status = WRONG_LEN_PACKET;
}
}
if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
{
if ( length >= CCSDS_TC_PKT_MAX_SIZE ) {
status = WRONG_LEN_PACKET;
}
}
if (status == CCSDS_TM_VALID) // CHECK THE TYPE
{
status = tc_check_type( packetType );
}
if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
{
status = tc_check_subtype( packetSubtype );
}
if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
{
status = tc_check_length( packetSubtype, length );
}
if (status == CCSDS_TM_VALID ) // CHECK CRC
{
status = tc_check_crc( TCPacket, length );
}
return status;
}
int tc_check_type( unsigned char packetType )
{
/** This function checks that the type of a TeleCommand is valid.
*
* @param packetType is the type to check.
* @return Status code CCSDS_TM_VALID or ILL_TYPE.
*
*/
int status;
if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
{
status = CCSDS_TM_VALID;
}
else
{
status = ILL_TYPE;
}
return status;
}
int tc_check_subtype( unsigned char packetSubType )
{
/** This function checks that the subtype of a TeleCommand is valid.
*
* @param packetSubType is the subtype to check.
* @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
*
*/
int status;
if ( (packetSubType == TC_SUBTYPE_RESET)
|| (packetSubType == TC_SUBTYPE_LOAD_COMM)
|| (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
|| (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
|| (packetSubType == TC_SUBTYPE_DUMP)
|| (packetSubType == TC_SUBTYPE_ENTER)
|| (packetSubType == TC_SUBTYPE_UPDT_INFO) || (packetSubType == TC_SUBTYPE_UPDT_TIME)
|| (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL) )
{
status = CCSDS_TM_VALID;
}
else
{
status = ILL_TYPE;
}
return status;
}
int tc_check_length( unsigned char packetSubType, unsigned int length )
{
/** This function checks that the subtype and the length are compliant.
*
* @param packetSubType is the subtype to check.
* @param length is the length to check.
* @return Status code CCSDS_TM_VALID or ILL_TYPE.
*
*/
int status;
status = LFR_SUCCESSFUL;
switch(packetSubType)
{
case TC_SUBTYPE_RESET:
if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_LOAD_COMM:
if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_LOAD_NORM:
if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_LOAD_BURST:
if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_LOAD_SBM1:
if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_LOAD_SBM2:
if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_DUMP:
if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_ENTER:
if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_UPDT_INFO:
if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_EN_CAL:
if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_DIS_CAL:
if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
case TC_SUBTYPE_UPDT_TIME:
if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
status = WRONG_LEN_PACKET;
}
else {
status = CCSDS_TM_VALID;
}
break;
default: // if the subtype is not a legal value, return ILL_SUBTYPE
status = ILL_SUBTYPE;
break ;
}
return status;
}
int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length )
{
/** This function checks the CRC validity of the corresponding TeleCommand packet.
*
* @param TCPacket points to the TeleCommand packet to check.
* @param length is the length of the TC packet.
* @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
*
*/
int status;
unsigned char * CCSDSContent;
unsigned char currentTC_COMPUTED_CRC[2];
CCSDSContent = (unsigned char*) TCPacket->packetID;
GetCRCAsTwoBytes(CCSDSContent, currentTC_COMPUTED_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - 2); // 2 CRC bytes removed from the calculation of the CRC
if (currentTC_COMPUTED_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -2]) {
status = INCOR_CHECKSUM;
}
else if (currentTC_COMPUTED_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
status = INCOR_CHECKSUM;
}
else {
status = CCSDS_TM_VALID;
}
return status;
}
//***********
// RTEMS TASK
rtems_task recv_task( rtems_task_argument unused )
{
/** This RTEMS task is dedicated to the reception of incoming TeleCommands.
*
* @param unused is the starting argument of the RTEMS task
*
* The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
* 1. It reads the incoming data.
* 2. Launches the acceptance procedure.
* 3. If the Telecommand is valid, sends it to the ACTN task using an RTEMS message queue.
*
*/
int len = 0;
unsigned int i = 0;
ccsdsTelecommandPacket_t currentTC;
char data[100];
rtems_status_code status;
rtems_id queue_recv_id;
rtems_id queue_send_id;
for(i=0; i<100; i++) data[i] = 0;
initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
status = rtems_message_queue_ident( misc_name[QUEUE_RECV], 0, &queue_recv_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in RECV *** ERR getting QUEUE_RECV id, %d\n", status)
}
status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_send_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in RECV *** ERR getting QUEUE_SEND id, %d\n", status)
}
BOOT_PRINTF("in RECV *** \n")
while(1)
{
len = read(fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE); // the call to read is blocking
if (len == -1){ // error during the read call
PRINTF("In RECV *** last read call returned -1\n")
}
else {
if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
PRINTF("In RECV *** packet lenght too short\n")
}
else {
currentTC_LEN_RCV[0] = 0x00;
currentTC_LEN_RCV[1] = (unsigned char) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // build the corresponding packet size field
currentTC_LEN_RCV_AsUnsignedInt = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
// CHECK THE TC
tc_acceptance(&currentTC, currentTC_LEN_RCV_AsUnsignedInt, queue_recv_id, queue_send_id);
}
}
}
}
rtems_task actn_task( rtems_task_argument unused )
{
/** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
*
* @param unused is the starting argument of the RTEMS task
*
* The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
* on the incoming TeleCommand.
*
*/
int result;
rtems_status_code status; // RTEMS status code
ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
size_t size; // size of the incoming TC packet
unsigned char subtype; // subtype of the current TC packet
rtems_id queue_rcv_id;
rtems_id queue_snd_id;
status = rtems_message_queue_ident( misc_name[QUEUE_RECV], 0, &queue_rcv_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR getting queue_rcv_id %d\n", status)
}
status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_snd_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR getting queue_snd_id %d\n", status)
}
result = LFR_SUCCESSFUL;
subtype = 0; // subtype of the current TC packet
BOOT_PRINTF("in ACTN *** \n")
while(1)
{
status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
RTEMS_WAIT, RTEMS_NO_TIMEOUT);
if (status!=RTEMS_SUCCESSFUL) PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
else
{
subtype = TC.serviceSubType;
switch(subtype)
{
case TC_SUBTYPE_RESET:
result = action_reset( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_COMM:
result = action_load_common_par( &TC );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_NORM:
result = action_load_normal_par( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_BURST:
result = action_load_burst_par( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_SBM1:
result = action_load_sbm1_par( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_SBM2:
result = action_load_sbm2_par( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_DUMP:
result = action_dump_par( queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_ENTER:
result = action_enter_mode( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_UPDT_INFO:
result = action_update_info( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_EN_CAL:
result = action_enable_calibration( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_DIS_CAL:
result = action_disable_calibration( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_UPDT_TIME:
result = action_update_time( &TC );
close_action( &TC, result, queue_snd_id );
break;
//
default:
break;
}
}
}
}
rtems_task dumb_task( rtems_task_argument unused )
{
/** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
*
* @param unused is the starting argument of the RTEMS task
*
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
*
*/
unsigned int i;
unsigned int intEventOut;
unsigned int coarse_time = 0;
unsigned int fine_time = 0;
rtems_event_set event_out;
BOOT_PRINTF("in DUMB *** \n")
while(1){
rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | RTEMS_EVENT_4 | RTEMS_EVENT_5,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
intEventOut = (unsigned int) event_out;
for ( i=0; i<32; i++)
{
if ( ((intEventOut >> i) & 0x0001) != 0)
{
coarse_time = time_management_regs->coarse_time;
fine_time = time_management_regs->fine_time;
printf("in DUMB *** time = coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
}
}
}
}
//***********
// TC ACTIONS
int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
/** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
return LFR_DEFAULT;
}
int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
/** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
rtems_status_code status;
unsigned char requestedMode;
requestedMode = TC->dataAndCRC[1];
if ( (requestedMode != LFR_MODE_STANDBY)
&& (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
&& (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
{
status = RTEMS_UNSATISFIED;
send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode );
}
else
{
printf("try to enter mode %d\n", requestedMode);
#ifdef PRINT_TASK_STATISTICS
if (requestedMode != LFR_MODE_STANDBY)
{
rtems_cpu_usage_reset();
maxCount = 0;
}
#endif
status = transition_validation(requestedMode);
if ( status == LFR_SUCCESSFUL ) {
if ( lfrCurrentMode != LFR_MODE_STANDBY)
{
status = stop_current_mode();
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF("ERR *** in action_enter *** stop_current_mode\n")
}
status = enter_mode(requestedMode, TC);
}
else
{
PRINTF("ERR *** in action_enter *** transition rejected\n")
send_tm_lfr_tc_exe_not_executable( TC, queue_id );
}
}
return status;
}
int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
/** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
unsigned int val;
int result;
unsigned char lfrMode;
result = LFR_DEFAULT;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
if ( (lfrMode == LFR_MODE_STANDBY) ) {
send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
result = LFR_DEFAULT;
}
else {
val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
+ housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
result = LFR_SUCCESSFUL;
}
return result;
}
int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
/** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
unsigned char lfrMode;
result = LFR_DEFAULT;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
if ( (lfrMode == LFR_MODE_STANDBY) | (lfrMode == LFR_MODE_BURST) | (lfrMode == LFR_MODE_SBM2) ) {
send_tm_lfr_tc_exe_not_executable( TC, queue_id );
result = LFR_DEFAULT;
}
else {
send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
result = LFR_DEFAULT;
}
return result;
}
int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
/** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
unsigned char lfrMode;
result = LFR_DEFAULT;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
if ( (lfrMode == LFR_MODE_STANDBY) | (lfrMode == LFR_MODE_BURST) | (lfrMode == LFR_MODE_SBM2) ) {
send_tm_lfr_tc_exe_not_executable( TC, queue_id );
result = LFR_DEFAULT;
}
else {
send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
result = LFR_DEFAULT;
}
return result;
}
int action_update_time(ccsdsTelecommandPacket_t *TC)
{
/** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
unsigned int val;
time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
+ (TC->dataAndCRC[1] << 16)
+ (TC->dataAndCRC[2] << 8)
+ TC->dataAndCRC[3];
val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
+ housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
time_management_regs->ctrl = time_management_regs->ctrl | 1;
return LFR_SUCCESSFUL;
}
//*******************
// ENTERING THE MODES
int transition_validation(unsigned char requestedMode)
{
int status;
switch (requestedMode)
{
case LFR_MODE_STANDBY:
if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
status = LFR_DEFAULT;
}
else
{
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_NORMAL:
if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_BURST:
if ( lfrCurrentMode == LFR_MODE_BURST ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM1:
if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM2:
if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
default:
status = LFR_DEFAULT;
break;
}
return status;
}
int stop_current_mode()
{
/** This function stops the current mode by masking interrupt lines and suspending science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = RTEMS_SUCCESSFUL;
// mask all IRQ lines related to signal processing
LEON_Mask_interrupt( IRQ_SM ); // mask spectral matrices interrupt (coming from the timer VHDL IP)
LEON_Clear_interrupt( IRQ_SM ); // clear spectral matrices interrupt (coming from the timer VHDL IP)
#ifdef GSA
LEON_Mask_interrupt( IRQ_WF ); // mask waveform interrupt (coming from the timer VHDL IP)
LEON_Clear_interrupt( IRQ_WF ); // clear waveform interrupt (coming from the timer VHDL IP)
timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR );
#else
LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
LEON_Mask_interrupt( IRQ_SM ); // for SM simulation
LEON_Clear_interrupt( IRQ_SM ); // for SM simulation
#endif
//**********************
// suspend several tasks
if (lfrCurrentMode != LFR_MODE_STANDBY) {
status = suspend_science_tasks();
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
}
//*************************
// initialize the registers
#ifdef GSA
#else
reset_wfp_burst_enable(); // reset burst and enable bits
reset_wfp_status(); // reset all the status bits
#endif
return status;
}
int enter_mode(unsigned char mode, ccsdsTelecommandPacket_t *TC )
{
rtems_status_code status;
status = RTEMS_UNSATISFIED;
housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
lfrCurrentMode = mode;
switch(mode){
case LFR_MODE_STANDBY:
status = enter_standby_mode( TC );
break;
case LFR_MODE_NORMAL:
status = enter_normal_mode( TC );
break;
case LFR_MODE_BURST:
status = enter_burst_mode( TC );
break;
case LFR_MODE_SBM1:
status = enter_sbm1_mode( TC );
break;
case LFR_MODE_SBM2:
status = enter_sbm2_mode( TC );
break;
default:
status = RTEMS_UNSATISFIED;
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF("in enter_mode *** ERR\n")
status = RTEMS_UNSATISFIED;
}
return status;
}
int enter_standby_mode()
{
reset_waveform_picker_regs();
PRINTF1("maxCount = %d\n", maxCount)
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_report();
#endif
#ifdef PRINT_STACK_REPORT
rtems_stack_checker_report_usage();
#endif
return LFR_SUCCESSFUL;
}
int enter_normal_mode()
{
rtems_status_code status;
status = restart_science_tasks();
#ifdef GSA
timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR );
timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
LEON_Clear_interrupt( IRQ_WF );
LEON_Unmask_interrupt( IRQ_WF );
//
set_local_nb_interrupt_f0_MAX();
LEON_Clear_interrupt( IRQ_SM ); // the IRQ_SM seems to be incompatible with the IRQ_WF on the xilinx board
LEON_Unmask_interrupt( IRQ_SM );
#else
//****************
// waveform picker
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
reset_waveform_picker_regs();
set_wfp_burst_enable_register(LFR_MODE_NORMAL);
//****************
// spectral matrix
// set_local_nb_interrupt_f0_MAX();
// LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // the IRQ_SM seems to be incompatible with the IRQ_WF on the xilinx board
// LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
// spectral_matrix_regs->config = 0x01;
// spectral_matrix_regs->status = 0x00;
#endif
return status;
}
int enter_burst_mode()
{
rtems_status_code status;
status = restart_science_tasks();
#ifdef GSA
LEON_Unmask_interrupt( IRQ_SM );
#else
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
reset_waveform_picker_regs();
set_wfp_burst_enable_register(LFR_MODE_BURST);
#endif
return status;
}
int enter_sbm1_mode()
{
rtems_status_code status;
status = restart_science_tasks();
set_local_sbm1_nb_cwf_max();
reset_local_sbm1_nb_cwf_sent();
#ifdef GSA
LEON_Unmask_interrupt( IRQ_SM );
#else
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
reset_waveform_picker_regs();
set_wfp_burst_enable_register(LFR_MODE_SBM1);
// SM simulation
// timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
// LEON_Clear_interrupt( IRQ_SM ); // the IRQ_SM seems to be incompatible with the IRQ_WF on the xilinx board
// LEON_Unmask_interrupt( IRQ_SM );
#endif
return status;
}
int enter_sbm2_mode()
{
rtems_status_code status;
status = restart_science_tasks();
set_local_sbm2_nb_cwf_max();
reset_local_sbm2_nb_cwf_sent();
#ifdef GSA
LEON_Unmask_interrupt( IRQ_SM );
#else
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
reset_waveform_picker_regs();
set_wfp_burst_enable_register(LFR_MODE_SBM2);
#endif
return status;
}
int restart_science_tasks()
{
rtems_status_code status[6];
rtems_status_code ret;
ret = RTEMS_SUCCESSFUL;
status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
if (status[0] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
}
status[1] = rtems_task_restart( Task_id[TASKID_BPF0],1 );
if (status[1] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 1 ERR %d\n", status[1])
}
status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
if (status[2] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
}
status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
if (status[3] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
}
status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
if (status[4] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
}
status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
if (status[5] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
}
if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
(status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
{
ret = RTEMS_UNSATISFIED;
}
return ret;
}
int suspend_science_tasks()
{
/** This function suspends the science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = rtems_task_suspend( Task_id[TASKID_AVF0] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
}
if (status == RTEMS_SUCCESSFUL) // suspend BPF0
{
status = rtems_task_suspend( Task_id[TASKID_BPF0] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** BPF0 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend WFRM
{
status = rtems_task_suspend( Task_id[TASKID_WFRM] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF3
{
status = rtems_task_suspend( Task_id[TASKID_CWF3] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF2
{
status = rtems_task_suspend( Task_id[TASKID_CWF2] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF1
{
status = rtems_task_suspend( Task_id[TASKID_CWF1] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
}
}
return status;
}
//****************
// CLOSING ACTIONS
void update_last_TC_exe(ccsdsTelecommandPacket_t *TC)
{
housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_exe_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
housekeeping_packet.hk_lfr_last_exe_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
housekeeping_packet.hk_lfr_last_exe_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
housekeeping_packet.hk_lfr_last_exe_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
housekeeping_packet.hk_lfr_last_exe_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
housekeeping_packet.hk_lfr_last_exe_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
}
void update_last_TC_rej(ccsdsTelecommandPacket_t *TC)
{
housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_rej_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
housekeeping_packet.hk_lfr_last_rej_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
housekeeping_packet.hk_lfr_last_rej_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
housekeeping_packet.hk_lfr_last_rej_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
housekeeping_packet.hk_lfr_last_rej_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
housekeeping_packet.hk_lfr_last_rej_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
}
void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id)
{
unsigned int val = 0;
if (result == LFR_SUCCESSFUL)
{
if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) ) )
{
send_tm_lfr_tc_exe_success( TC, queue_id );
}
update_last_TC_exe( TC );
val = housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[0] * 256 + housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[1];
val++;
housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[1] = (unsigned char) (val);
}
else
{
update_last_TC_rej( TC );
val = housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[0] * 256 + housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[1];
val++;
housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[1] = (unsigned char) (val);
}
}
//***************************
// Interrupt Service Routines
rtems_isr commutation_isr1( rtems_vector_number vector )
{
if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
printf("In commutation_isr1 *** Error sending event to DUMB\n");
}
}
rtems_isr commutation_isr2( rtems_vector_number vector )
{
if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
printf("In commutation_isr2 *** Error sending event to DUMB\n");
}
}