##// END OF EJS Templates
printf removed or replaced by PRINTF macros...
printf removed or replaced by PRINTF macros sequence counts modified for DUMP packets, now it depends on the source id bug 516 corrected

File last commit:

r227:919e10e56ea1 R3
r227:919e10e56ea1 R3
Show More
tc_load_dump_parameters.c
1201 lines | 41.0 KiB | text/x-c | CLexer
/ src / tc_load_dump_parameters.c
/** Functions to load and dump parameters in the LFR registers.
*
* @file
* @author P. LEROY
*
* A group of functions to handle TC related to parameter loading and dumping.\n
* TC_LFR_LOAD_COMMON_PAR\n
* TC_LFR_LOAD_NORMAL_PAR\n
* TC_LFR_LOAD_BURST_PAR\n
* TC_LFR_LOAD_SBM1_PAR\n
* TC_LFR_LOAD_SBM2_PAR\n
*
*/
#include "tc_load_dump_parameters.h"
Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
ring_node kcoefficient_node_1;
ring_node kcoefficient_node_2;
int action_load_common_par(ccsdsTelecommandPacket_t *TC)
{
/** This function updates the LFR registers with the incoming common parameters.
*
* @param TC points to the TeleCommand packet that is being processed
*
*
*/
parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
set_wfp_data_shaping( );
return LFR_SUCCESSFUL;
}
int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function updates the LFR registers with the incoming normal parameters.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int result;
int flag;
rtems_status_code status;
flag = LFR_SUCCESSFUL;
if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
(lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
flag = LFR_DEFAULT;
}
// CHECK THE PARAMETERS SET CONSISTENCY
if (flag == LFR_SUCCESSFUL)
{
flag = check_common_par_consistency( TC, queue_id );
}
// SET THE PARAMETERS IF THEY ARE CONSISTENT
if (flag == LFR_SUCCESSFUL)
{
result = set_sy_lfr_n_swf_l( TC );
result = set_sy_lfr_n_swf_p( TC );
result = set_sy_lfr_n_bp_p0( TC );
result = set_sy_lfr_n_bp_p1( TC );
result = set_sy_lfr_n_asm_p( TC );
result = set_sy_lfr_n_cwf_long_f3( TC );
}
return flag;
}
int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function updates the LFR registers with the incoming burst parameters.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int flag;
rtems_status_code status;
unsigned char sy_lfr_b_bp_p0;
unsigned char sy_lfr_b_bp_p1;
float aux;
flag = LFR_SUCCESSFUL;
if ( lfrCurrentMode == LFR_MODE_BURST ) {
status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
flag = LFR_DEFAULT;
}
sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
// sy_lfr_b_bp_p0 shall not be lower than its default value
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_b_bp_p1 shall not be lower than its default value
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
flag = WRONG_APP_DATA;
}
}
//****************************************************************
// check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
if (flag == LFR_SUCCESSFUL)
{
sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
if (aux > FLOAT_EQUAL_ZERO)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
flag = LFR_DEFAULT;
}
}
// SET THE PARAMETERS
if (flag == LFR_SUCCESSFUL)
{
flag = set_sy_lfr_b_bp_p0( TC );
flag = set_sy_lfr_b_bp_p1( TC );
}
return flag;
}
int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function updates the LFR registers with the incoming sbm1 parameters.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int flag;
rtems_status_code status;
unsigned char sy_lfr_s1_bp_p0;
unsigned char sy_lfr_s1_bp_p1;
float aux;
flag = LFR_SUCCESSFUL;
if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
flag = LFR_DEFAULT;
}
sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
// sy_lfr_s1_bp_p0
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_s1_bp_p1
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
flag = WRONG_APP_DATA;
}
}
//******************************************************************
// check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
if (flag == LFR_SUCCESSFUL)
{
aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
if (aux > FLOAT_EQUAL_ZERO)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
flag = LFR_DEFAULT;
}
}
// SET THE PARAMETERS
if (flag == LFR_SUCCESSFUL)
{
flag = set_sy_lfr_s1_bp_p0( TC );
flag = set_sy_lfr_s1_bp_p1( TC );
}
return flag;
}
int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function updates the LFR registers with the incoming sbm2 parameters.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int flag;
rtems_status_code status;
unsigned char sy_lfr_s2_bp_p0;
unsigned char sy_lfr_s2_bp_p1;
float aux;
flag = LFR_SUCCESSFUL;
if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
flag = LFR_DEFAULT;
}
sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
// sy_lfr_s2_bp_p0
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_s2_bp_p1
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
flag = WRONG_APP_DATA;
}
}
//******************************************************************
// check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
if (flag == LFR_SUCCESSFUL)
{
sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
if (aux > FLOAT_EQUAL_ZERO)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
flag = LFR_DEFAULT;
}
}
// SET THE PARAMETERS
if (flag == LFR_SUCCESSFUL)
{
flag = set_sy_lfr_s2_bp_p0( TC );
flag = set_sy_lfr_s2_bp_p1( TC );
}
return flag;
}
int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function updates the LFR registers with the incoming sbm2 parameters.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int flag;
flag = LFR_DEFAULT;
flag = set_sy_lfr_kcoeff( TC, queue_id );
return flag;
}
int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function updates the LFR registers with the incoming sbm2 parameters.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int flag;
flag = LFR_DEFAULT;
flag = set_sy_lfr_fbins( TC );
return flag;
}
int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function updates the LFR registers with the incoming sbm2 parameters.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
unsigned int address;
rtems_status_code status;
unsigned int freq;
unsigned int bin;
unsigned int coeff;
unsigned char *kCoeffPtr;
unsigned char *kCoeffDumpPtr;
// for each sy_lfr_kcoeff_frequency there is 32 kcoeff
// F0 => 11 bins
// F1 => 13 bins
// F2 => 12 bins
// 36 bins to dump in two packets (30 bins max per packet)
//*********
// PACKET 1
// 11 F0 bins, 13 F1 bins and 6 F2 bins
kcoefficients_dump_1.destinationID = TC->sourceID;
increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
for( freq=0;
freq<NB_BINS_COMPRESSED_SM_F0;
freq++ )
{
kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
bin = freq;
// printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
{
kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
}
}
for( freq=NB_BINS_COMPRESSED_SM_F0;
freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
freq++ )
{
kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
bin = freq - NB_BINS_COMPRESSED_SM_F0;
// printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
{
kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
}
}
for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
freq++ )
{
kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
// printKCoefficients( freq, bin, k_coeff_intercalib_f2);
for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
{
kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
}
}
kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
// SEND DATA
kcoefficient_node_1.status = 1;
address = (unsigned int) &kcoefficient_node_1;
status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
if (status != RTEMS_SUCCESSFUL) {
PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
}
//********
// PACKET 2
// 6 F2 bins
kcoefficients_dump_2.destinationID = TC->sourceID;
increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
for( freq=0; freq<6; freq++ )
{
kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
bin = freq + 6;
// printKCoefficients( freq, bin, k_coeff_intercalib_f2);
for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
{
kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
}
}
kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
// SEND DATA
kcoefficient_node_2.status = 1;
address = (unsigned int) &kcoefficient_node_2;
status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
if (status != RTEMS_SUCCESSFUL) {
PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
}
return status;
}
int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
{
/** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
*
* @param queue_id is the id of the queue which handles TM related to this execution step.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - message sent successfully
* - RTEMS_INVALID_ID - invalid queue id
* - RTEMS_INVALID_SIZE - invalid message size
* - RTEMS_INVALID_ADDRESS - buffer is NULL
* - RTEMS_UNSATISFIED - out of message buffers
* - RTEMS_TOO_MANY - queue s limit has been reached
*
*/
int status;
increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
parameter_dump_packet.destinationID = TC->sourceID;
// UPDATE TIME
parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
// SEND DATA
status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
if (status != RTEMS_SUCCESSFUL) {
PRINTF1("in action_dump *** ERR sending packet, code %d", status)
}
return status;
}
//***********************
// NORMAL MODE PARAMETERS
int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
{
unsigned char msb;
unsigned char lsb;
int flag;
float aux;
rtems_status_code status;
unsigned int sy_lfr_n_swf_l;
unsigned int sy_lfr_n_swf_p;
unsigned int sy_lfr_n_asm_p;
unsigned char sy_lfr_n_bp_p0;
unsigned char sy_lfr_n_bp_p1;
unsigned char sy_lfr_n_cwf_long_f3;
flag = LFR_SUCCESSFUL;
//***************
// get parameters
msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
sy_lfr_n_swf_l = msb * 256 + lsb;
msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
sy_lfr_n_swf_p = msb * 256 + lsb;
msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
sy_lfr_n_asm_p = msb * 256 + lsb;
sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
//******************
// check consistency
// sy_lfr_n_swf_l
if (sy_lfr_n_swf_l != 2048)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
flag = WRONG_APP_DATA;
}
// sy_lfr_n_swf_p
if (flag == LFR_SUCCESSFUL)
{
if ( sy_lfr_n_swf_p < 16 )
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_n_bp_p0
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_n_asm_p
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_n_asm_p == 0)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
if (flag == LFR_SUCCESSFUL)
{
aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
if (aux > FLOAT_EQUAL_ZERO)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_n_bp_p1
if (flag == LFR_SUCCESSFUL)
{
if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
flag = WRONG_APP_DATA;
}
}
// sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
if (flag == LFR_SUCCESSFUL)
{
aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
if (aux > FLOAT_EQUAL_ZERO)
{
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
flag = LFR_DEFAULT;
}
}
// sy_lfr_n_cwf_long_f3
return flag;
}
int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
{
/** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int result;
result = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
return result;
}
int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int result;
result = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
return result;
}
int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int result;
result = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
return result;
}
int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
return status;
}
int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
return status;
}
int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
{
/** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
return status;
}
//**********************
// BURST MODE PARAMETERS
int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
{
/** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
return status;
}
int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
return status;
}
//*********************
// SBM1 MODE PARAMETERS
int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
return status;
}
int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
return status;
}
//*********************
// SBM2 MODE PARAMETERS
int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
{
/** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
return status;
}
int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
{
/** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM related to this execution step
*
*/
int status;
status = LFR_SUCCESSFUL;
parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
return status;
}
//*******************
// TC_LFR_UPDATE_INFO
unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
{
unsigned int status;
if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
|| (mode == LFR_MODE_BURST)
|| (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
{
status = LFR_SUCCESSFUL;
}
else
{
status = LFR_DEFAULT;
}
return status;
}
unsigned int check_update_info_hk_tds_mode( unsigned char mode )
{
unsigned int status;
if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
|| (mode == TDS_MODE_BURST)
|| (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
|| (mode == TDS_MODE_LFM))
{
status = LFR_SUCCESSFUL;
}
else
{
status = LFR_DEFAULT;
}
return status;
}
unsigned int check_update_info_hk_thr_mode( unsigned char mode )
{
unsigned int status;
if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
|| (mode == THR_MODE_BURST))
{
status = LFR_SUCCESSFUL;
}
else
{
status = LFR_DEFAULT;
}
return status;
}
//***********
// FBINS MASK
int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
{
int status;
unsigned int k;
unsigned char *fbins_mask_dump;
unsigned char *fbins_mask_TC;
status = LFR_SUCCESSFUL;
fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
fbins_mask_TC = TC->dataAndCRC;
for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
{
fbins_mask_dump[k] = fbins_mask_TC[k];
}
for (k=0; k < NB_FBINS_MASKS; k++)
{
unsigned char *auxPtr;
auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
}
return status;
}
//**************
// KCOEFFICIENTS
int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
{
unsigned int kcoeff;
unsigned short sy_lfr_kcoeff_frequency;
unsigned short bin;
unsigned short *freqPtr;
float *kcoeffPtr_norm;
float *kcoeffPtr_sbm;
int status;
unsigned char *kcoeffLoadPtr;
unsigned char *kcoeffNormPtr;
unsigned char *kcoeffSbmPtr_a;
unsigned char *kcoeffSbmPtr_b;
status = LFR_SUCCESSFUL;
kcoeffPtr_norm = NULL;
kcoeffPtr_sbm = NULL;
bin = 0;
freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
sy_lfr_kcoeff_frequency = *freqPtr;
if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
{
PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
status = LFR_DEFAULT;
}
else
{
if ( ( sy_lfr_kcoeff_frequency >= 0 )
&& ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
{
kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
bin = sy_lfr_kcoeff_frequency;
}
else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
&& ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
{
kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
}
else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
&& ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
{
kcoeffPtr_norm = k_coeff_intercalib_f2;
kcoeffPtr_sbm = NULL;
bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
}
}
if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
{
for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
{
// destination
kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
// source
kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
// copy source to destination
copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
}
}
if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
{
for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
{
// destination
kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
// source
kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
// copy source to destination
copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
}
}
// print_k_coeff();
return status;
}
void copyFloatByChar( unsigned char *destination, unsigned char *source )
{
destination[0] = source[0];
destination[1] = source[1];
destination[2] = source[2];
destination[3] = source[3];
}
//**********
// init dump
void init_parameter_dump( void )
{
/** This function initialize the parameter_dump_packet global variable with default values.
*
*/
unsigned int k;
parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
parameter_dump_packet.reserved = CCSDS_RESERVED;
parameter_dump_packet.userApplication = CCSDS_USER_APP;
parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
// DATA FIELD HEADER
parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
parameter_dump_packet.sid = SID_PARAMETER_DUMP;
//******************
// COMMON PARAMETERS
parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
//******************
// NORMAL PARAMETERS
parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
//*****************
// BURST PARAMETERS
parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
//****************
// SBM1 PARAMETERS
parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
//****************
// SBM2 PARAMETERS
parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
//************
// FBINS MASKS
for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
{
parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
}
}
void init_kcoefficients_dump( void )
{
init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
kcoefficient_node_1.previous = NULL;
kcoefficient_node_1.next = NULL;
kcoefficient_node_1.sid = TM_CODE_K_DUMP;
kcoefficient_node_1.coarseTime = 0x00;
kcoefficient_node_1.fineTime = 0x00;
kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
kcoefficient_node_1.status = 0x00;
kcoefficient_node_2.previous = NULL;
kcoefficient_node_2.next = NULL;
kcoefficient_node_2.sid = TM_CODE_K_DUMP;
kcoefficient_node_2.coarseTime = 0x00;
kcoefficient_node_2.fineTime = 0x00;
kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
kcoefficient_node_2.status = 0x00;
}
void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
{
unsigned int k;
unsigned int packetLength;
packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
kcoefficients_dump->reserved = CCSDS_RESERVED;
kcoefficients_dump->userApplication = CCSDS_USER_APP;
kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
// DATA FIELD HEADER
kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
kcoefficients_dump->time[0] = 0x00;
kcoefficients_dump->time[1] = 0x00;
kcoefficients_dump->time[2] = 0x00;
kcoefficients_dump->time[3] = 0x00;
kcoefficients_dump->time[4] = 0x00;
kcoefficients_dump->time[5] = 0x00;
kcoefficients_dump->sid = SID_K_DUMP;
kcoefficients_dump->pkt_cnt = 2;
kcoefficients_dump->pkt_nr = pkt_nr;
kcoefficients_dump->blk_nr = blk_nr;
//******************
// SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
// one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
for (k=0; k<3900; k++)
{
kcoefficients_dump->kcoeff_blks[k] = 0x00;
}
}
void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
{
/** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
*
* @param packet_sequence_control points to the packet sequence control which will be incremented
* @param destination_id is the destination ID of the TM, there is one counter by destination ID
*
* If the destination ID is not known, a dedicated counter is incremented.
*
*/
unsigned short sequence_cnt;
unsigned short segmentation_grouping_flag;
unsigned short new_packet_sequence_control;
unsigned char i;
switch (destination_id)
{
case SID_TC_GROUND:
i = GROUND;
break;
case SID_TC_MISSION_TIMELINE:
i = MISSION_TIMELINE;
break;
case SID_TC_TC_SEQUENCES:
i = TC_SEQUENCES;
break;
case SID_TC_RECOVERY_ACTION_CMD:
i = RECOVERY_ACTION_CMD;
break;
case SID_TC_BACKUP_MISSION_TIMELINE:
i = BACKUP_MISSION_TIMELINE;
break;
case SID_TC_DIRECT_CMD:
i = DIRECT_CMD;
break;
case SID_TC_SPARE_GRD_SRC1:
i = SPARE_GRD_SRC1;
break;
case SID_TC_SPARE_GRD_SRC2:
i = SPARE_GRD_SRC2;
break;
case SID_TC_OBCP:
i = OBCP;
break;
case SID_TC_SYSTEM_CONTROL:
i = SYSTEM_CONTROL;
break;
case SID_TC_AOCS:
i = AOCS;
break;
case SID_TC_RPW_INTERNAL:
i = RPW_INTERNAL;
break;
default:
i = GROUND;
break;
}
segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
// increment the sequence counter
if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
{
sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
}
else
{
sequenceCounters_TM_DUMP[ i ] = 0;
}
}