##// END OF EJS Templates
Commit to nov2013 branch
Commit to nov2013 branch

File last commit:

r63:82d0f7d680ce default
r67:1e5c5864272a default
Show More
wf_handler.c
1225 lines | 47.7 KiB | text/x-c | CLexer
/** Functions and tasks related to waveform packet generation.
*
* @file
* @author P. LEROY
*
* A group of functions to handle waveforms, in snapshot or continuous format.\n
*
*/
#include "wf_handler.h"
// SWF
Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
// CWF
Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
unsigned char doubleSendCWF1 = 0;
unsigned char doubleSendCWF2 = 0;
rtems_isr waveforms_isr( rtems_vector_number vector )
{
/** This is the interrupt sub routine called by the waveform picker core.
*
* This ISR launch different actions depending mainly on two pieces of information:
* 1. the values read in the registers of the waveform picker.
* 2. the current LFR mode.
*
*/
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff00f; // clear new_err and full_err
#ifdef GSA
#else
if ( (lfrCurrentMode == LFR_MODE_NORMAL)
|| (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
{ // in modes other than STANDBY and BURST, send the CWF_F3 data
if ((new_waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
// (1) change the receiving buffer for the waveform picker
if (new_waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_bis);
}
else {
new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3);
}
// (2) send an event for the waveforms transmission
if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
}
}
#endif
switch(lfrCurrentMode)
{
//********
// STANDBY
case(LFR_MODE_STANDBY):
break;
//******
// NORMAL
case(LFR_MODE_NORMAL):
#ifdef GSA
PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
#else
if ( (new_waveform_picker_regs->run_burst_enable & 0x7) == 0x0 ){ // if no channel is enable
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
else {
if ( (new_waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable & 0x08;
if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
// new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0x00;
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff888;
new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x07; // [0111] enable f2 f1 f0
}
}
#endif
break;
//******
// BURST
case(LFR_MODE_BURST):
#ifdef GSA
PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
#else
if ((new_waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
// (1) change the receiving buffer for the waveform picker
if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
}
else {
new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
}
// (2) send an event for the waveforms transmission
if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
}
#endif
break;
//*****
// SBM1
case(LFR_MODE_SBM1):
#ifdef GSA
PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
#else
if ((new_waveform_picker_regs->status & 0x02) == 0x02){ // [0010] check the f1 full bit
// (1) change the receiving buffer for the waveform picker
if ( param_local.local_sbm1_nb_cwf_sent == (param_local.local_sbm1_nb_cwf_max-1) )
{
new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_norm);
}
else if ( new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1_norm )
{
doubleSendCWF1 = 1;
new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
}
else if ( new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1 ) {
new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_bis);
}
else {
new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
}
// (2) send an event for the waveforms transmission
if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
}
if ( ( (new_waveform_picker_regs->status & 0x05) == 0x05 ) ) { // [0101] check the f2 and f0 full bit
if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
reset_local_sbm1_nb_cwf_sent();
}
#endif
break;
//*****
// SBM2
case(LFR_MODE_SBM2):
#ifdef GSA
PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
#else
if ((new_waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
// (1) change the receiving buffer for the waveform picker
if ( param_local.local_sbm2_nb_cwf_sent == (param_local.local_sbm2_nb_cwf_max-1) )
{
new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_norm);
}
else if ( new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2_norm ) {
new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
doubleSendCWF2 = 1;
if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2_WFRM ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
reset_local_sbm2_nb_cwf_sent();
}
else if ( new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2 ) {
new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
}
else {
new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
}
// (2) send an event for the waveforms transmission
if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
}
if ( ( (new_waveform_picker_regs->status & 0x03) == 0x03 ) ) { // [0011] f3 f2 f1 f0, f1 and f0 are full
if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
}
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
}
#endif
break;
//********
// DEFAULT
default:
break;
}
}
rtems_isr waveforms_simulator_isr( rtems_vector_number vector )
{
/** This is the interrupt sub routine called by the waveform picker simulator.
*
* This ISR is for debug purpose only.
*
*/
unsigned char lfrMode;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
switch(lfrMode) {
case (LFR_MODE_STANDBY):
break;
case (LFR_MODE_NORMAL):
if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_5 );
}
break;
case (LFR_MODE_BURST):
break;
case (LFR_MODE_SBM1):
break;
case (LFR_MODE_SBM2):
break;
}
}
rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
{
/** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packets are sent by this task:
* - TM_LFR_SCIENCE_NORMAL_SWF_F0
* - TM_LFR_SCIENCE_NORMAL_SWF_F1
* - TM_LFR_SCIENCE_NORMAL_SWF_F2
*
*/
rtems_event_set event_out;
rtems_id queue_id;
init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
init_waveforms();
queue_id = get_pkts_queue_id();
BOOT_PRINTF("in WFRM ***\n")
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
| RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
if (event_out == RTEMS_EVENT_MODE_NORMAL)
{
send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
#ifdef GSA
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xf888; // [1111 1000 1000 1000] f2, f1, f0 bits =0
#endif
}
else if (event_out == RTEMS_EVENT_MODE_SBM1)
{
send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
send_waveform_SWF(wf_snap_f1_norm, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
#ifdef GSA
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2, f0 bits = 0
#endif
}
else if (event_out == RTEMS_EVENT_MODE_SBM2)
{
send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
#ifdef GSA
new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
#endif
}
else if (event_out == RTEMS_EVENT_MODE_SBM2_WFRM)
{
send_waveform_SWF(wf_snap_f2_norm, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
}
else
{
PRINTF("in WFRM *** unexpected event")
}
#ifdef GSA
// irq processed, reset the related register of the timer unit
gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl = gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl | 0x00000010;
// clear the interruption
LEON_Unmask_interrupt( IRQ_WF );
#endif
}
}
rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
{
/** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packet is sent by this task:
* - TM_LFR_SCIENCE_NORMAL_CWF_F3
*
*/
rtems_event_set event_out;
rtems_id queue_id;
init_header_continuous_wf_table( SID_NORM_CWF_F3, headerCWF_F3 );
init_header_continuous_wf3_light_table( headerCWF_F3_light );
queue_id = get_pkts_queue_id();
BOOT_PRINTF("in CWF3 ***\n")
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive( RTEMS_EVENT_0,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
PRINTF("send CWF F3 \n")
#ifdef GSA
#else
if (new_waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
send_waveform_CWF3_light( wf_cont_f3_bis, headerCWF_F3_light, queue_id );
}
else {
send_waveform_CWF3_light( wf_cont_f3, headerCWF_F3_light, queue_id );
}
#endif
}
}
rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
{
/** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packet is sent by this function:
* - TM_LFR_SCIENCE_BURST_CWF_F2
* - TM_LFR_SCIENCE_SBM2_CWF_F2
*
*/
rtems_event_set event_out;
rtems_id queue_id;
init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
queue_id = get_pkts_queue_id();
BOOT_PRINTF("in CWF2 ***\n")
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
if (event_out == RTEMS_EVENT_MODE_BURST)
{
// F2
#ifdef GSA
#else
if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
send_waveform_CWF( wf_snap_f2_bis, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
}
else {
send_waveform_CWF( wf_snap_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
}
#endif
}
else if (event_out == RTEMS_EVENT_MODE_SBM2)
{
#ifdef GSA
#else
if (doubleSendCWF2 == 1)
{
doubleSendCWF2 = 0;
send_waveform_CWF( wf_snap_f2_norm, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
}
else if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
send_waveform_CWF( wf_snap_f2_bis, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
}
else {
send_waveform_CWF( wf_snap_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
}
param_local.local_sbm2_nb_cwf_sent ++;
#endif
}
else
{
PRINTF1("in CWF2 *** ERR mode = %d\n", lfrCurrentMode)
}
}
}
rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
{
/** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packet is sent by this function:
* - TM_LFR_SCIENCE_SBM1_CWF_F1
*
*/
rtems_event_set event_out;
rtems_id queue_id;
init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
queue_id = get_pkts_queue_id();
BOOT_PRINTF("in CWF1 ***\n")
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
if (event_out == RTEMS_EVENT_MODE_SBM1)
{
#ifdef GSA
#else
if (doubleSendCWF1 == 1)
{
doubleSendCWF1 = 0;
send_waveform_CWF( wf_snap_f1_norm, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
}
else if (new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1) {
send_waveform_CWF( wf_snap_f1_bis, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
}
else {
send_waveform_CWF( wf_snap_f1, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
}
param_local.local_sbm1_nb_cwf_sent ++;
#endif
}
else
{
PRINTF1("in CWF1 *** ERR mode = %d\n", lfrCurrentMode)
}
}
}
//******************
// general functions
void init_waveforms( void )
{
int i = 0;
for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
{
//***
// F0
wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
//***
// F1
wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
//***
// F2
wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
//***
// F3
//wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
//wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
//wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
}
}
int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
{
unsigned char i;
for (i=0; i<7; i++)
{
headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
headerSWF[ i ].reserved = DEFAULT_RESERVED;
headerSWF[ i ].userApplication = CCSDS_USER_APP;
headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
if (i == 0)
{
headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
}
else if (i == 6)
{
headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_8 >> 8);
headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_8 );
headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
}
else
{
headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
}
headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
headerSWF[ i ].pktNr = i+1; // PKT_NR
// DATA FIELD HEADER
headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
// AUXILIARY DATA HEADER
headerSWF[ i ].sid = sid;
headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
headerSWF[ i ].time[0] = 0x00;
headerSWF[ i ].time[0] = 0x00;
headerSWF[ i ].time[0] = 0x00;
headerSWF[ i ].time[0] = 0x00;
headerSWF[ i ].time[0] = 0x00;
headerSWF[ i ].time[0] = 0x00;
}
return LFR_SUCCESSFUL;
}
int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
{
unsigned int i;
for (i=0; i<7; i++)
{
headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
headerCWF[ i ].reserved = DEFAULT_RESERVED;
headerCWF[ i ].userApplication = CCSDS_USER_APP;
if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
{
headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
}
else
{
headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
}
if (i == 0)
{
headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
}
else if (i == 6)
{
headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
}
else
{
headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
}
headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
// PKT_CNT
// PKT_NR
// DATA FIELD HEADER
headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
// AUXILIARY DATA HEADER
headerCWF[ i ].sid = sid;
headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
}
return LFR_SUCCESSFUL;
}
int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
{
unsigned int i;
for (i=0; i<7; i++)
{
headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
headerCWF[ i ].reserved = DEFAULT_RESERVED;
headerCWF[ i ].userApplication = CCSDS_USER_APP;
headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
if (i == 0)
{
headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
}
else if (i == 6)
{
headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
}
else
{
headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
}
headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
// DATA FIELD HEADER
headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
// AUXILIARY DATA HEADER
headerCWF[ i ].sid = SID_NORM_CWF_F3;
headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
headerCWF[ i ].time[0] = 0x00;
}
return LFR_SUCCESSFUL;
}
void reset_waveforms( void )
{
int i = 0;
for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
{
wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x10002000;
wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
//***
// F1
wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x1000f000;
wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0xf0001000;
wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
//***
// F2
wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x40008000;
wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x10002000;
//***
// F3
/*wf_cont_f3[ i* NB_WORDS_SWF_BLK + 0 ] = build_value( i, i ); // v and 1
wf_cont_f3[ i* NB_WORDS_SWF_BLK + 1 ] = build_value( i, i ); // e2 and b1
wf_cont_f3[ i* NB_WORDS_SWF_BLK + 2 ] = build_value( i, i ); // b2 and b3*/
}
}
int send_waveform_SWF( volatile int *waveform, unsigned int sid,
Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
{
/** This function sends SWF CCSDS packets (F2, F1 or F0).
*
* @param waveform points to the buffer containing the data that will be send.
* @param sid is the source identifier of the data that will be sent.
* @param headerSWF points to a table of headers that have been prepared for the data transmission.
* @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
* contain information to setup the transmission of the data packets.
*
* One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
*
*/
unsigned int i;
int ret;
rtems_status_code status;
spw_ioctl_pkt_send spw_ioctl_send_SWF;
spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
spw_ioctl_send_SWF.options = 0;
ret = LFR_DEFAULT;
for (i=0; i<7; i++) // send waveform
{
spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
// BUILD THE DATA
if (i==6) {
spw_ioctl_send_SWF.dlen = 8 * NB_BYTES_SWF_BLK;
}
else {
spw_ioctl_send_SWF.dlen = 340 * NB_BYTES_SWF_BLK;
}
// SET PACKET SEQUENCE COUNTER
increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
// SET PACKET TIME
headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
// SEND PACKET
status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
if (status != RTEMS_SUCCESSFUL) {
printf("%d-%d, ERR %d\n", sid, i, (int) status);
ret = LFR_DEFAULT;
}
rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
}
return ret;
}
int send_waveform_CWF(volatile int *waveform, unsigned int sid,
Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
{
/** This function sends CWF CCSDS packets (F2, F1 or F0).
*
* @param waveform points to the buffer containing the data that will be send.
* @param sid is the source identifier of the data that will be sent.
* @param headerCWF points to a table of headers that have been prepared for the data transmission.
* @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
* contain information to setup the transmission of the data packets.
*
* One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
*
*/
unsigned int i;
int ret;
rtems_status_code status;
spw_ioctl_pkt_send spw_ioctl_send_CWF;
spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
spw_ioctl_send_CWF.options = 0;
ret = LFR_DEFAULT;
for (i=0; i<7; i++) // send waveform
{
int coarseTime = 0x00;
int fineTime = 0x00;
spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
// BUILD THE DATA
if (i==6) {
spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
}
else {
spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
}
// SET PACKET SEQUENCE COUNTER
increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
// SET PACKET TIME
coarseTime = time_management_regs->coarse_time;
fineTime = time_management_regs->fine_time;
headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
headerCWF[ i ].time[5] = (unsigned char) (fineTime);
// SEND PACKET
if (sid == SID_NORM_CWF_F3)
{
status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
if (status != RTEMS_SUCCESSFUL) {
printf("%d-%d, ERR %d\n", sid, i, (int) status);
ret = LFR_DEFAULT;
}
rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
}
else
{
status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
if (status != RTEMS_SUCCESSFUL) {
printf("%d-%d, ERR %d\n", sid, i, (int) status);
ret = LFR_DEFAULT;
}
}
}
return ret;
}
int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
{
/** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
*
* @param waveform points to the buffer containing the data that will be send.
* @param headerCWF points to a table of headers that have been prepared for the data transmission.
* @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
* contain information to setup the transmission of the data packets.
*
* By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
* from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
*
*/
unsigned int i;
int ret;
rtems_status_code status;
spw_ioctl_pkt_send spw_ioctl_send_CWF;
char *sample;
spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
spw_ioctl_send_CWF.options = 0;
ret = LFR_DEFAULT;
//**********************
// BUILD CWF3_light DATA
for ( i=0; i< 2048; i++)
{
sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
}
//*********************
// SEND CWF3_light DATA
for (i=0; i<7; i++) // send waveform
{
int coarseTime = 0x00;
int fineTime = 0x00;
spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
// BUILD THE DATA
if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
}
else {
spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
}
// SET PACKET SEQUENCE COUNTER
increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
// SET PACKET TIME
coarseTime = time_management_regs->coarse_time;
fineTime = time_management_regs->fine_time;
headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
headerCWF[ i ].time[5] = (unsigned char) (fineTime);
// SEND PACKET
status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
if (status != RTEMS_SUCCESSFUL) {
printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
ret = LFR_DEFAULT;
}
rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
}
return ret;
}
//**************
// wfp registers
void set_wfp_data_shaping()
{
/** This function sets the data_shaping register of the waveform picker module.
*
* The value is read from one field of the parameter_dump_packet structure:\n
* bw_sp0_sp1_r0_r1
*
*/
unsigned char data_shaping;
// get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
// waveform picker : [R1 R0 SP1 SP0 BW]
data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
#ifdef GSA
#else
new_waveform_picker_regs->data_shaping =
( (data_shaping & 0x10) >> 4 ) // BW
+ ( (data_shaping & 0x08) >> 2 ) // SP0
+ ( (data_shaping & 0x04) ) // SP1
+ ( (data_shaping & 0x02) << 2 ) // R0
+ ( (data_shaping & 0x01) << 4 ); // R1
#endif
}
char set_wfp_delta_snapshot()
{
/** This function sets the delta_snapshot register of the waveform picker module.
*
* The value is read from two (unsigned char) of the parameter_dump_packet structure:
* - sy_lfr_n_swf_p[0]
* - sy_lfr_n_swf_p[1]
*
*/
char ret;
unsigned int delta_snapshot;
unsigned int aux;
aux = 0;
ret = LFR_DEFAULT;
delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
+ parameter_dump_packet.sy_lfr_n_swf_p[1];
#ifdef GSA
#else
if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
{
aux = MIN_DELTA_SNAPSHOT;
ret = LFR_DEFAULT;
}
else
{
aux = delta_snapshot ;
ret = LFR_SUCCESSFUL;
}
new_waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
#endif
return ret;
}
void set_wfp_burst_enable_register( unsigned char mode)
{
/** This function sets the waveform picker burst_enable register depending on the mode.
*
* @param mode is the LFR mode to launch.
*
* The burst bits shall be before the enable bits.
*
*/
#ifdef GSA
#else
// [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
// the burst bits shall be set first, before the enable bits
switch(mode) {
case(LFR_MODE_NORMAL):
new_waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
// new_waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
new_waveform_picker_regs->run_burst_enable = 0x07; // [0000 0111] enable f2 f1 f0
break;
case(LFR_MODE_BURST):
new_waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
break;
case(LFR_MODE_SBM1):
new_waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
break;
case(LFR_MODE_SBM2):
new_waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
break;
default:
new_waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
break;
}
#endif
}
void reset_wfp_run_burst_enable()
{
/** This function resets the waveform picker burst_enable register.
*
* The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
*
*/
#ifdef GSA
#else
new_waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
#endif
}
void reset_wfp_status()
{
/** This function resets the waveform picker status register.
*
* All status bits are set to 0 [new_err full_err full].
*
*/
#ifdef GSA
#else
new_waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
#endif
}
void reset_new_waveform_picker_regs()
{
/** This function resets the waveform picker module registers.
*
* The registers affected by this function are located at the following offset addresses:
* - 0x00 data_shaping
* - 0x04 run_burst_enable
* - 0x08 addr_data_f0
* - 0x0C addr_data_f1
* - 0x10 addr_data_f2
* - 0x14 addr_data_f3
* - 0x18 status
* - 0x1C delta_snapshot
* - 0x20 delta_f0
* - 0x24 delta_f0_2
* - 0x28 delta_f1
* - 0x2c delta_f2
* - 0x30 nb_data_by_buffer
* - 0x34 nb_snapshot_param
* - 0x38 start_date
*
*/
new_waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
new_waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
new_waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); // 0x0c
new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); // 0x10
new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); // 0x14
new_waveform_picker_regs->status = 0x00; // 0x18
// new_waveform_picker_regs->delta_snapshot = 0x12800; // 0x1c 296 * 256 = 75776
new_waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c 16 * 256 = 4096
new_waveform_picker_regs->delta_f0 = 0x3f5; // 0x20 *** 1013
new_waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7
new_waveform_picker_regs->delta_f1 = 0x3c0; // 0x28 *** 960
// new_waveform_picker_regs->delta_f2 = 0x12200; // 0x2c *** 74240
new_waveform_picker_regs->delta_f2 = 0xc00; // 0x2c *** 12 * 256 = 2048
new_waveform_picker_regs->nb_data_by_buffer = 0x1802; // 0x30 *** 2048 * 3 + 2
new_waveform_picker_regs->snapshot_param = 0x7ff; // 0x34 *** 2048 -1
new_waveform_picker_regs->start_date = 0x00; // 0x38
}
//*****************
// local parameters
void set_local_sbm1_nb_cwf_max()
{
/** This function sets the value of the sbm1_nb_cwf_max local parameter.
*
* The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
* This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.\n\n
* (2 snapshots of 2048 points per seconds) * (period of the NORM snashots) - 8 s (duration of the f2 snapshot)
*
*/
param_local.local_sbm1_nb_cwf_max = 2 *
(parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
+ parameter_dump_packet.sy_lfr_n_swf_p[1]) - 8; // 16 CWF1 parts during 1 SWF2
}
void set_local_sbm2_nb_cwf_max()
{
/** This function sets the value of the sbm1_nb_cwf_max local parameter.
*
* The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
* This parameter is used to send CWF_F2 data as normal data when the SBM2 is active.\n\n
* (period of the NORM snashots) / (8 seconds per snapshot at f2 = 256 Hz)
*
*/
param_local.local_sbm2_nb_cwf_max = (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
+ parameter_dump_packet.sy_lfr_n_swf_p[1]) / 8;
}
void set_local_nb_interrupt_f0_MAX()
{
/** This function sets the value of the nb_interrupt_f0_MAX local parameter.
*
* This parameter is used for the SM validation only.\n
* The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
* module before launching a basic processing.
*
*/
param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
+ parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
}
void reset_local_sbm1_nb_cwf_sent()
{
/** This function resets the value of the sbm1_nb_cwf_sent local parameter.
*
* The sbm1_nb_cwf_sent parameter counts the number of CWF_F1 records that have been sent.\n
* This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.
*
*/
param_local.local_sbm1_nb_cwf_sent = 0;
}
void reset_local_sbm2_nb_cwf_sent()
{
/** This function resets the value of the sbm2_nb_cwf_sent local parameter.
*
* The sbm2_nb_cwf_sent parameter counts the number of CWF_F2 records that have been sent.\n
* This parameter is used to send CWF_F2 data as normal data when the SBM2 mode is active.
*
*/
param_local.local_sbm2_nb_cwf_sent = 0;
}
rtems_id get_pkts_queue_id( void )
{
rtems_id queue_id;
rtems_status_code status;
rtems_name queue_send_name;
queue_send_name = rtems_build_name( 'Q', '_', 'S', 'D' );
status = rtems_message_queue_ident( queue_send_name, 0, &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in get_pkts_queue_id *** ERR %d\n", status)
}
return queue_id;
}
void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
{
unsigned short *sequence_cnt;
unsigned short segmentation_grouping_flag;
unsigned short new_packet_sequence_control;
if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
|| (sid ==SID_NORM_CWF_F3) || (sid ==SID_BURST_CWF_F2) )
{
sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
}
else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
{
sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
}
else
{
sequence_cnt = &sequenceCounters_TC_EXE[ UNKNOWN ];
PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
}
segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
*sequence_cnt = (*sequence_cnt) & 0x3fff;
new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
// increment the sequence counter for the next packet
if ( *sequence_cnt < SEQ_CNT_MAX)
{
*sequence_cnt = *sequence_cnt + 1;
}
else
{
*sequence_cnt = 0;
}
}