##// END OF EJS Templates
STAT task removec...
STAT task removec LOAD task added for periodical watchdog timer reload

File last commit:

r239:1c5814170464 R3
r239:1c5814170464 R3
Show More
fsw_processing.c
640 lines | 21.6 KiB | text/x-c | CLexer
/** Functions related to data processing.
*
* @file
* @author P. LEROY
*
* These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
*
*/
#include "fsw_processing.h"
#include "fsw_processing_globals.c"
#include "fsw_init.h"
unsigned int nb_sm_f0;
unsigned int nb_sm_f0_aux_f1;
unsigned int nb_sm_f1;
unsigned int nb_sm_f0_aux_f2;
//************************
// spectral matrices rings
ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
ring_node *current_ring_node_sm_f0;
ring_node *current_ring_node_sm_f1;
ring_node *current_ring_node_sm_f2;
ring_node *ring_node_for_averaging_sm_f0;
ring_node *ring_node_for_averaging_sm_f1;
ring_node *ring_node_for_averaging_sm_f2;
//
ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
{
ring_node *node;
node = NULL;
switch ( frequencyChannel ) {
case 0:
node = ring_node_for_averaging_sm_f0;
break;
case 1:
node = ring_node_for_averaging_sm_f1;
break;
case 2:
node = ring_node_for_averaging_sm_f2;
break;
default:
break;
}
return node;
}
//***********************************************************
// Interrupt Service Routine for spectral matrices processing
void spectral_matrices_isr_f0( unsigned char statusReg )
{
unsigned char status;
rtems_status_code status_code;
ring_node *full_ring_node;
status = statusReg & 0x03; // [0011] get the status_ready_matrix_f0_x bits
switch(status)
{
case 0:
break;
case 3:
// UNEXPECTED VALUE
spectral_matrix_regs->status = 0x03; // [0011]
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
break;
case 1:
full_ring_node = current_ring_node_sm_f0->previous;
full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
// if there are enough ring nodes ready, wake up an AVFx task
nb_sm_f0 = nb_sm_f0 + 1;
if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
{
ring_node_for_averaging_sm_f0 = full_ring_node;
if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
nb_sm_f0 = 0;
}
spectral_matrix_regs->status = 0x01; // [0000 0001]
break;
case 2:
full_ring_node = current_ring_node_sm_f0->previous;
full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
// if there are enough ring nodes ready, wake up an AVFx task
nb_sm_f0 = nb_sm_f0 + 1;
if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
{
ring_node_for_averaging_sm_f0 = full_ring_node;
if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
nb_sm_f0 = 0;
}
spectral_matrix_regs->status = 0x02; // [0000 0010]
break;
}
}
void spectral_matrices_isr_f1( unsigned char statusReg )
{
rtems_status_code status_code;
unsigned char status;
ring_node *full_ring_node;
status = (statusReg & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
switch(status)
{
case 0:
break;
case 3:
// UNEXPECTED VALUE
spectral_matrix_regs->status = 0xc0; // [1100]
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
break;
case 1:
full_ring_node = current_ring_node_sm_f1->previous;
full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
// if there are enough ring nodes ready, wake up an AVFx task
nb_sm_f1 = nb_sm_f1 + 1;
if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
{
ring_node_for_averaging_sm_f1 = full_ring_node;
if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
nb_sm_f1 = 0;
}
spectral_matrix_regs->status = 0x04; // [0000 0100]
break;
case 2:
full_ring_node = current_ring_node_sm_f1->previous;
full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
// if there are enough ring nodes ready, wake up an AVFx task
nb_sm_f1 = nb_sm_f1 + 1;
if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
{
ring_node_for_averaging_sm_f1 = full_ring_node;
if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
nb_sm_f1 = 0;
}
spectral_matrix_regs->status = 0x08; // [1000 0000]
break;
}
}
void spectral_matrices_isr_f2( unsigned char statusReg )
{
unsigned char status;
rtems_status_code status_code;
status = (statusReg & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
switch(status)
{
case 0:
break;
case 3:
// UNEXPECTED VALUE
spectral_matrix_regs->status = 0x30; // [0011 0000]
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
break;
case 1:
ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
spectral_matrix_regs->status = 0x10; // [0001 0000]
if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
break;
case 2:
ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
spectral_matrix_regs->status = 0x20; // [0010 0000]
if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
break;
}
}
void spectral_matrix_isr_error_handler( unsigned char statusReg )
{
rtems_status_code status_code;
if (statusReg & 0x7c0) // [0111 1100 0000]
{
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
}
spectral_matrix_regs->status = spectral_matrix_regs->status & 0x7c0;
}
rtems_isr spectral_matrices_isr( rtems_vector_number vector )
{
// STATUS REGISTER
// input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
// 10 9 8
// buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
// 7 6 5 4 3 2 1 0
unsigned char statusReg;
statusReg = spectral_matrix_regs->status;
spectral_matrices_isr_f0( statusReg );
spectral_matrices_isr_f1( statusReg );
spectral_matrices_isr_f2( statusReg );
spectral_matrix_isr_error_handler( statusReg );
}
//******************
// Spectral Matrices
void reset_nb_sm( void )
{
nb_sm_f0 = 0;
nb_sm_f0_aux_f1 = 0;
nb_sm_f0_aux_f2 = 0;
nb_sm_f1 = 0;
}
void SM_init_rings( void )
{
init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
}
void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
{
unsigned char i;
ring[ nbNodes - 1 ].next
= (ring_node_asm*) &ring[ 0 ];
for(i=0; i<nbNodes-1; i++)
{
ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
}
}
void SM_reset_current_ring_nodes( void )
{
current_ring_node_sm_f0 = sm_ring_f0[0].next;
current_ring_node_sm_f1 = sm_ring_f1[0].next;
current_ring_node_sm_f2 = sm_ring_f2[0].next;
ring_node_for_averaging_sm_f0 = NULL;
ring_node_for_averaging_sm_f1 = NULL;
ring_node_for_averaging_sm_f2 = NULL;
}
//*****************
// Basic Parameters
void BP_init_header( bp_packet *packet,
unsigned int apid, unsigned char sid,
unsigned int packetLength, unsigned char blkNr )
{
packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
packet->reserved = 0x00;
packet->userApplication = CCSDS_USER_APP;
packet->packetID[0] = (unsigned char) (apid >> 8);
packet->packetID[1] = (unsigned char) (apid);
packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
packet->packetSequenceControl[1] = 0x00;
packet->packetLength[0] = (unsigned char) (packetLength >> 8);
packet->packetLength[1] = (unsigned char) (packetLength);
// DATA FIELD HEADER
packet->spare1_pusVersion_spare2 = 0x10;
packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
packet->destinationID = TM_DESTINATION_ID_GROUND;
packet->time[0] = 0x00;
packet->time[1] = 0x00;
packet->time[2] = 0x00;
packet->time[3] = 0x00;
packet->time[4] = 0x00;
packet->time[5] = 0x00;
// AUXILIARY DATA HEADER
packet->sid = sid;
packet->biaStatusInfo = 0x00;
packet->sy_lfr_common_parameters_spare = 0x00;
packet->sy_lfr_common_parameters = 0x00;
packet->acquisitionTime[0] = 0x00;
packet->acquisitionTime[1] = 0x00;
packet->acquisitionTime[2] = 0x00;
packet->acquisitionTime[3] = 0x00;
packet->acquisitionTime[4] = 0x00;
packet->acquisitionTime[5] = 0x00;
packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
}
void BP_init_header_with_spare( bp_packet_with_spare *packet,
unsigned int apid, unsigned char sid,
unsigned int packetLength , unsigned char blkNr)
{
packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
packet->reserved = 0x00;
packet->userApplication = CCSDS_USER_APP;
packet->packetID[0] = (unsigned char) (apid >> 8);
packet->packetID[1] = (unsigned char) (apid);
packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
packet->packetSequenceControl[1] = 0x00;
packet->packetLength[0] = (unsigned char) (packetLength >> 8);
packet->packetLength[1] = (unsigned char) (packetLength);
// DATA FIELD HEADER
packet->spare1_pusVersion_spare2 = 0x10;
packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
packet->destinationID = TM_DESTINATION_ID_GROUND;
// AUXILIARY DATA HEADER
packet->sid = sid;
packet->biaStatusInfo = 0x00;
packet->sy_lfr_common_parameters_spare = 0x00;
packet->sy_lfr_common_parameters = 0x00;
packet->time[0] = 0x00;
packet->time[0] = 0x00;
packet->time[0] = 0x00;
packet->time[0] = 0x00;
packet->time[0] = 0x00;
packet->time[0] = 0x00;
packet->source_data_spare = 0x00;
packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
}
void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
{
rtems_status_code status;
// SEND PACKET
status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
}
}
//******************
// general functions
void reset_sm_status( void )
{
// error
// 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
// input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
// ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
// ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
spectral_matrix_regs->status = 0x7ff; // [0111 1111 1111]
}
void reset_spectral_matrix_regs( void )
{
/** This function resets the spectral matrices module registers.
*
* The registers affected by this function are located at the following offset addresses:
*
* - 0x00 config
* - 0x04 status
* - 0x08 matrixF0_Address0
* - 0x10 matrixFO_Address1
* - 0x14 matrixF1_Address
* - 0x18 matrixF2_Address
*
*/
set_sm_irq_onError( 0 );
set_sm_irq_onNewMatrix( 0 );
reset_sm_status();
// F1
spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
// F2
spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
// F3
spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
spectral_matrix_regs->matrix_length = 0xc8; // 25 * 128 / 16 = 200 = 0xc8
}
void set_time( unsigned char *time, unsigned char * timeInBuffer )
{
time[0] = timeInBuffer[0];
time[1] = timeInBuffer[1];
time[2] = timeInBuffer[2];
time[3] = timeInBuffer[3];
time[4] = timeInBuffer[6];
time[5] = timeInBuffer[7];
}
unsigned long long int get_acquisition_time( unsigned char *timePtr )
{
unsigned long long int acquisitionTimeAslong;
acquisitionTimeAslong = 0x00;
acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
+ ( (unsigned long long int) timePtr[1] << 32 )
+ ( (unsigned long long int) timePtr[2] << 24 )
+ ( (unsigned long long int) timePtr[3] << 16 )
+ ( (unsigned long long int) timePtr[6] << 8 )
+ ( (unsigned long long int) timePtr[7] );
return acquisitionTimeAslong;
}
unsigned char getSID( rtems_event_set event )
{
unsigned char sid;
rtems_event_set eventSetBURST;
rtems_event_set eventSetSBM;
//******
// BURST
eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
| RTEMS_EVENT_BURST_BP1_F1
| RTEMS_EVENT_BURST_BP2_F0
| RTEMS_EVENT_BURST_BP2_F1;
//****
// SBM
eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
| RTEMS_EVENT_SBM_BP1_F1
| RTEMS_EVENT_SBM_BP2_F0
| RTEMS_EVENT_SBM_BP2_F1;
if (event & eventSetBURST)
{
sid = SID_BURST_BP1_F0;
}
else if (event & eventSetSBM)
{
sid = SID_SBM1_BP1_F0;
}
else
{
sid = 0;
}
return sid;
}
void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
{
unsigned int i;
float re;
float im;
for (i=0; i<NB_BINS_PER_SM; i++){
re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 ];
im = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 + 1];
outputASM[ (asmComponent *NB_BINS_PER_SM) + i] = re;
outputASM[ (asmComponent+1)*NB_BINS_PER_SM + i] = im;
}
}
void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
{
unsigned int i;
float re;
for (i=0; i<NB_BINS_PER_SM; i++){
re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
}
}
void ASM_patch( float *inputASM, float *outputASM )
{
extractReImVectors( inputASM, outputASM, 1); // b1b2
extractReImVectors( inputASM, outputASM, 3 ); // b1b3
extractReImVectors( inputASM, outputASM, 5 ); // b1e1
extractReImVectors( inputASM, outputASM, 7 ); // b1e2
extractReImVectors( inputASM, outputASM, 10 ); // b2b3
extractReImVectors( inputASM, outputASM, 12 ); // b2e1
extractReImVectors( inputASM, outputASM, 14 ); // b2e2
extractReImVectors( inputASM, outputASM, 17 ); // b3e1
extractReImVectors( inputASM, outputASM, 19 ); // b3e2
extractReImVectors( inputASM, outputASM, 22 ); // e1e2
copyReVectors(inputASM, outputASM, 0 ); // b1b1
copyReVectors(inputASM, outputASM, 9 ); // b2b2
copyReVectors(inputASM, outputASM, 16); // b3b3
copyReVectors(inputASM, outputASM, 21); // e1e1
copyReVectors(inputASM, outputASM, 24); // e2e2
}
void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
unsigned char ASMIndexStart,
unsigned char channel )
{
//*************
// input format
// component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
//**************
// output format
// matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
//************
// compression
// matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
// matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
int frequencyBin;
int asmComponent;
int offsetASM;
int offsetCompressed;
int offsetFBin;
int fBinMask;
int k;
// BUILD DATA
for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
{
for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
{
offsetCompressed = // NO TIME OFFSET
frequencyBin * NB_VALUES_PER_SM
+ asmComponent;
offsetASM = // NO TIME OFFSET
asmComponent * NB_BINS_PER_SM
+ ASMIndexStart
+ frequencyBin * nbBinsToAverage;
offsetFBin = ASMIndexStart
+ frequencyBin * nbBinsToAverage;
compressed_spec_mat[ offsetCompressed ] = 0;
for ( k = 0; k < nbBinsToAverage; k++ )
{
fBinMask = getFBinMask( offsetFBin + k, channel );
compressed_spec_mat[offsetCompressed ] =
( compressed_spec_mat[ offsetCompressed ]
+ averaged_spec_mat[ offsetASM + k ] * fBinMask );
}
compressed_spec_mat[ offsetCompressed ] =
compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
}
}
}
int getFBinMask( int index, unsigned char channel )
{
unsigned int indexInChar;
unsigned int indexInTheChar;
int fbin;
unsigned char *sy_lfr_fbins_fx_word1;
sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
switch(channel)
{
case 0:
sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
break;
case 1:
sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
break;
case 2:
sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
break;
default:
PRINTF("ERR *** in getFBinMask, wrong frequency channel")
}
indexInChar = index >> 3;
indexInTheChar = index - indexInChar * 8;
fbin = (int) ((sy_lfr_fbins_fx_word1[ NB_BYTES_PER_FREQ_MASK - 1 - indexInChar] >> indexInTheChar) & 0x1);
return fbin;
}
void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
{
unsigned char bin;
unsigned char kcoeff;
for (bin=0; bin<nb_bins_norm; bin++)
{
for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
{
output_kcoeff[ (bin*NB_K_COEFF_PER_BIN + kcoeff)*2 ] = input_kcoeff[ bin*NB_K_COEFF_PER_BIN + kcoeff ];
output_kcoeff[ (bin*NB_K_COEFF_PER_BIN + kcoeff)*2 + 1 ] = input_kcoeff[ bin*NB_K_COEFF_PER_BIN + kcoeff ];
}
}
}