##// END OF EJS Templates

Compare Commits r331:a05d13cb0957...r337:e784d0191567

Target:

Source:

Compare was calculated based on this common ancestor commit: 5af3ab05fe7b
Time Author Commit Description
7 commits hidden, click expand to show them.
@@ -1,2 +1,2
1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 7c46de6059673d3239fcc7103e16510727f35923 header/lfr_common_headers
2 a34c50cabb1bc5e778bfc8374242e4683e4defc2 header/lfr_common_headers
@@ -1,111 +1,115
1 #ifndef TC_HANDLER_H_INCLUDED
1 #ifndef TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <leon.h>
5 #include <leon.h>
6
6
7 #include "tc_load_dump_parameters.h"
7 #include "tc_load_dump_parameters.h"
8 #include "tc_acceptance.h"
8 #include "tc_acceptance.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 #include "lfr_cpu_usage_report.h"
13 #include "lfr_cpu_usage_report.h"
14
14
15 #define MAX_DELTA_COARSE_TIME 3
15 #define MAX_DELTA_COARSE_TIME 3
16 #define NB_SCIENCE_TASKS 10
16 #define NB_SCIENCE_TASKS 10
17 #define NB_ASM_TASKS 6
17 #define NB_ASM_TASKS 6
18 #define STATUS_0 0
18 #define STATUS_0 0
19 #define STATUS_1 1
19 #define STATUS_1 1
20 #define STATUS_2 2
20 #define STATUS_2 2
21 #define STATUS_3 3
21 #define STATUS_3 3
22 #define STATUS_4 4
22 #define STATUS_4 4
23 #define STATUS_5 5
23 #define STATUS_5 5
24 #define STATUS_6 6
24 #define STATUS_6 6
25 #define STATUS_7 7
25 #define STATUS_7 7
26 #define STATUS_8 8
26 #define STATUS_8 8
27 #define STATUS_9 9
27 #define STATUS_9 9
28
28
29 #define CAL_F0 625
29 #define CAL_F0 625.
30 #define CAL_F1 10000
30 #define CAL_F1 10000.
31 #define CAL_W0 (2. * pi * CAL_F0)
32 #define CAL_W1 (2. * pi * CAL_F1)
33 #define CAL_A0 1.
34 #define CAL_A1 2.
31 #define CAL_FS 160256.410
35 #define CAL_FS 160256.410
32 #define CAL_SCALE_FACTOR (0.250 / 0.000654) // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
36 #define CAL_SCALE_FACTOR (0.250 / 0.000654) // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
33 #define CAL_NB_PTS 256
37 #define CAL_NB_PTS 256
34 #define CAL_DATA_MASK 0xfff
38 #define CAL_DATA_MASK 0xfff
35 #define CAL_F_DIVISOR 38 // 25 MHz => 160 256 (39 - 1)
39 #define CAL_F_DIVISOR 38 // 25 MHz => 160 256 (39 - 1)
36 // INTERLEAVED MODE
40 // INTERLEAVED MODE
37 #define CAL_FS_INTER 240384.615
41 #define CAL_FS_INTER 240384.615
38 #define CAL_NB_PTS_INTER 384
42 #define CAL_NB_PTS_INTER 384
39 #define CAL_DATA_MASK_INTER 0x3f
43 #define CAL_DATA_MASK_INTER 0x3f
40 #define CAL_DATA_SHIFT_INTER 12
44 #define CAL_DATA_SHIFT_INTER 12
41 #define BYTES_FOR_2_SAMPLES 3 // one need 3 bytes = 24 bits to store 3 samples of 12 bits in interleaved mode
45 #define BYTES_FOR_2_SAMPLES 3 // one need 3 bytes = 24 bits to store 3 samples of 12 bits in interleaved mode
42 #define STEPS_FOR_STORAGE_INTER 128
46 #define STEPS_FOR_STORAGE_INTER 128
43 #define CAL_F_DIVISOR_INTER 26 // 25 MHz => 240 384
47 #define CAL_F_DIVISOR_INTER 26 // 25 MHz => 240 384
44
48
45 extern unsigned int lastValidEnterModeTime;
49 extern unsigned int lastValidEnterModeTime;
46 extern unsigned char oneTcLfrUpdateTimeReceived;
50 extern unsigned char oneTcLfrUpdateTimeReceived;
47
51
48 //****
52 //****
49 // ISR
53 // ISR
50 rtems_isr commutation_isr1( rtems_vector_number vector );
54 rtems_isr commutation_isr1( rtems_vector_number vector );
51 rtems_isr commutation_isr2( rtems_vector_number vector );
55 rtems_isr commutation_isr2( rtems_vector_number vector );
52
56
53 //***********
57 //***********
54 // RTEMS TASK
58 // RTEMS TASK
55 rtems_task actn_task( rtems_task_argument unused );
59 rtems_task actn_task( rtems_task_argument unused );
56
60
57 //***********
61 //***********
58 // TC ACTIONS
62 // TC ACTIONS
59 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
63 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
60 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
64 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
61 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
65 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
62 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
66 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
63 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
67 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
64 int action_update_time( ccsdsTelecommandPacket_t *TC);
68 int action_update_time( ccsdsTelecommandPacket_t *TC);
65
69
66 // mode transition
70 // mode transition
67 int check_mode_value( unsigned char requestedMode );
71 int check_mode_value( unsigned char requestedMode );
68 int check_mode_transition( unsigned char requestedMode );
72 int check_mode_transition( unsigned char requestedMode );
69 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
73 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
70 int check_transition_date( unsigned int transitionCoarseTime );
74 int check_transition_date( unsigned int transitionCoarseTime );
71 int stop_spectral_matrices( void );
75 int stop_spectral_matrices( void );
72 int stop_current_mode( void );
76 int stop_current_mode( void );
73 int enter_mode_standby(void );
77 int enter_mode_standby(void );
74 int enter_mode_normal( unsigned int transitionCoarseTime );
78 int enter_mode_normal( unsigned int transitionCoarseTime );
75 int enter_mode_burst( unsigned int transitionCoarseTime );
79 int enter_mode_burst( unsigned int transitionCoarseTime );
76 int enter_mode_sbm1( unsigned int transitionCoarseTime );
80 int enter_mode_sbm1( unsigned int transitionCoarseTime );
77 int enter_mode_sbm2( unsigned int transitionCoarseTime );
81 int enter_mode_sbm2( unsigned int transitionCoarseTime );
78 int restart_science_tasks( unsigned char lfrRequestedMode );
82 int restart_science_tasks( unsigned char lfrRequestedMode );
79 int restart_asm_tasks(unsigned char lfrRequestedMode );
83 int restart_asm_tasks(unsigned char lfrRequestedMode );
80 int suspend_science_tasks(void);
84 int suspend_science_tasks(void);
81 int suspend_asm_tasks( void );
85 int suspend_asm_tasks( void );
82 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
86 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
83 void launch_spectral_matrix( void );
87 void launch_spectral_matrix( void );
84 void set_sm_irq_onNewMatrix( unsigned char value );
88 void set_sm_irq_onNewMatrix( unsigned char value );
85 void set_sm_irq_onError( unsigned char value );
89 void set_sm_irq_onError( unsigned char value );
86
90
87 // other functions
91 // other functions
88 void updateLFRCurrentMode(unsigned char requestedMode);
92 void updateLFRCurrentMode(unsigned char requestedMode);
89 void set_lfr_soft_reset( unsigned char value );
93 void set_lfr_soft_reset( unsigned char value );
90 void reset_lfr( void );
94 void reset_lfr( void );
91 // CALIBRATION
95 // CALIBRATION
92 void setCalibrationPrescaler( unsigned int prescaler );
96 void setCalibrationPrescaler( unsigned int prescaler );
93 void setCalibrationDivisor( unsigned int divisionFactor );
97 void setCalibrationDivisor( unsigned int divisionFactor );
94 void setCalibrationData( void );
98 void setCalibrationData( void );
95 void setCalibrationReload( bool state);
99 void setCalibrationReload( bool state);
96 void setCalibrationEnable( bool state );
100 void setCalibrationEnable( bool state );
97 void setCalibrationInterleaved( bool state );
101 void setCalibrationInterleaved( bool state );
98 void setCalibration( bool state );
102 void setCalibration( bool state );
99 void configureCalibration( bool interleaved );
103 void configureCalibration( bool interleaved );
100 //
104 //
101 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
105 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
102 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
106 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
103 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
107 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
104
108
105 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
109 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
106 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
110 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
107
111
108 #endif // TC_HANDLER_H_INCLUDED
112 #endif // TC_HANDLER_H_INCLUDED
109
113
110
114
111
115
@@ -1,101 +1,103
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6
6
7 #include "fsw_params.h"
7 #include "fsw_params.h"
8 #include "wf_handler.h"
8 #include "wf_handler.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "fsw_misc.h"
10 #include "fsw_misc.h"
11 #include "basic_parameters_params.h"
11 #include "basic_parameters_params.h"
12 #include "avf0_prc0.h"
12 #include "avf0_prc0.h"
13
13
14 #define FLOAT_EQUAL_ZERO 0.001
14 #define FLOAT_EQUAL_ZERO 0.001
15 #define NB_BINS_TO_REMOVE 3
15 #define NB_BINS_TO_REMOVE 3
16 #define FI_INTERVAL_COEFF 0.285
16 #define FI_INTERVAL_COEFF 0.285
17 #define BIN_MIN 0
17 #define BIN_MIN 0
18 #define BIN_MAX 127
18 #define BIN_MAX 127
19 #define DELTAF_F0 96.
19 #define DELTAF_F0 96.
20 #define DELTAF_F1 16.
20 #define DELTAF_F1 16.
21 #define DELTAF_F2 1.
21 #define DELTAF_F2 1.
22
22
23 #define BIT_RW1_F1 0x80
23 #define BIT_RW1_F1 0x80
24 #define BIT_RW1_F2 0x40
24 #define BIT_RW1_F2 0x40
25 #define BIT_RW2_F1 0x20
25 #define BIT_RW2_F1 0x20
26 #define BIT_RW2_F2 0x10
26 #define BIT_RW2_F2 0x10
27 #define BIT_RW3_F1 0x08
27 #define BIT_RW3_F1 0x08
28 #define BIT_RW3_F2 0x04
28 #define BIT_RW3_F2 0x04
29 #define BIT_RW4_F1 0x02
29 #define BIT_RW4_F1 0x02
30 #define BIT_RW4_F2 0x01
30 #define BIT_RW4_F2 0x01
31
31
32 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
32 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
33
33
34 extern unsigned short sequenceCounterParameterDump;
34 extern unsigned short sequenceCounterParameterDump;
35 extern unsigned short sequenceCounters_TM_DUMP[];
35 extern unsigned short sequenceCounters_TM_DUMP[];
36 extern float k_coeff_intercalib_f0_norm[ ];
36 extern float k_coeff_intercalib_f0_norm[ ];
37 extern float k_coeff_intercalib_f0_sbm[ ];
37 extern float k_coeff_intercalib_f0_sbm[ ];
38 extern float k_coeff_intercalib_f1_norm[ ];
38 extern float k_coeff_intercalib_f1_norm[ ];
39 extern float k_coeff_intercalib_f1_sbm[ ];
39 extern float k_coeff_intercalib_f1_sbm[ ];
40 extern float k_coeff_intercalib_f2[ ];
40 extern float k_coeff_intercalib_f2[ ];
41 extern fbins_masks_t fbins_masks;
41 extern fbins_masks_t fbins_masks;
42
42
43 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
43 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
44 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
44 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
45 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
45 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
46 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
46 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
47 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
47 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
48 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
48 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
49 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
49 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
50 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
50 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
51 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
51 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
52 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
52 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
53
53
54 // NORMAL
54 // NORMAL
55 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
55 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
56 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
56 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
57 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
57 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
58 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
58 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
59 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
59 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
60 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
60 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
61 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
61 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
62
62
63 // BURST
63 // BURST
64 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
64 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
65 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
65 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
66
66
67 // SBM1
67 // SBM1
68 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
68 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
69 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
69 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
70
70
71 // SBM2
71 // SBM2
72 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
72 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
73 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
73 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
74
74
75 // TC_LFR_UPDATE_INFO
75 // TC_LFR_UPDATE_INFO
76 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
76 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
77 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
77 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
78 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
78 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
79 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
79 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
80 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag );
80 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag, float sy_lfr_rw_k );
81 void build_sy_lfr_rw_mask( unsigned int channel );
81 void build_sy_lfr_rw_mask( unsigned int channel );
82 void build_sy_lfr_rw_masks();
82 void build_sy_lfr_rw_masks();
83 void merge_fbins_masks( void );
83 void merge_fbins_masks( void );
84
84
85 // FBINS_MASK
85 // FBINS_MASK
86 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
86 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
87
87
88 // TC_LFR_LOAD_PARS_FILTER_PAR
88 // TC_LFR_LOAD_PARS_FILTER_PAR
89 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
89 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
90
90
91 // KCOEFFICIENTS
91 // KCOEFFICIENTS
92 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
92 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
93 void copyFloatByChar( unsigned char *destination, unsigned char *source );
93 void copyFloatByChar( unsigned char *destination, unsigned char *source );
94 void copyInt32ByChar( unsigned char *destination, unsigned char *source );
95 void copyInt16ByChar( unsigned char *destination, unsigned char *source );
94 void floatToChar( float value, unsigned char* ptr);
96 void floatToChar( float value, unsigned char* ptr);
95
97
96 void init_parameter_dump( void );
98 void init_parameter_dump( void );
97 void init_kcoefficients_dump( void );
99 void init_kcoefficients_dump( void );
98 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
100 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
99 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
101 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
100
102
101 #endif // TC_LOAD_DUMP_PARAMETERS_H
103 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,107 +1,107
1 cmake_minimum_required (VERSION 2.6)
1 cmake_minimum_required (VERSION 2.6)
2 project (fsw)
2 project (fsw)
3
3
4 include(sparc-rtems)
4 include(sparc-rtems)
5 include(cppcheck)
5 include(cppcheck)
6
6
7 include_directories("../header"
7 include_directories("../header"
8 "../header/lfr_common_headers"
8 "../header/lfr_common_headers"
9 "../header/processing"
9 "../header/processing"
10 "../LFR_basic-parameters"
10 "../LFR_basic-parameters"
11 "../src")
11 "../src")
12
12
13 set(SOURCES wf_handler.c
13 set(SOURCES wf_handler.c
14 tc_handler.c
14 tc_handler.c
15 fsw_misc.c
15 fsw_misc.c
16 fsw_init.c
16 fsw_init.c
17 fsw_globals.c
17 fsw_globals.c
18 fsw_spacewire.c
18 fsw_spacewire.c
19 tc_load_dump_parameters.c
19 tc_load_dump_parameters.c
20 tm_lfr_tc_exe.c
20 tm_lfr_tc_exe.c
21 tc_acceptance.c
21 tc_acceptance.c
22 processing/fsw_processing.c
22 processing/fsw_processing.c
23 processing/avf0_prc0.c
23 processing/avf0_prc0.c
24 processing/avf1_prc1.c
24 processing/avf1_prc1.c
25 processing/avf2_prc2.c
25 processing/avf2_prc2.c
26 lfr_cpu_usage_report.c
26 lfr_cpu_usage_report.c
27 ${LFR_BP_SRC}
27 ${LFR_BP_SRC}
28 ../header/wf_handler.h
28 ../header/wf_handler.h
29 ../header/tc_handler.h
29 ../header/tc_handler.h
30 ../header/grlib_regs.h
30 ../header/grlib_regs.h
31 ../header/fsw_misc.h
31 ../header/fsw_misc.h
32 ../header/fsw_init.h
32 ../header/fsw_init.h
33 ../header/fsw_spacewire.h
33 ../header/fsw_spacewire.h
34 ../header/tc_load_dump_parameters.h
34 ../header/tc_load_dump_parameters.h
35 ../header/tm_lfr_tc_exe.h
35 ../header/tm_lfr_tc_exe.h
36 ../header/tc_acceptance.h
36 ../header/tc_acceptance.h
37 ../header/processing/fsw_processing.h
37 ../header/processing/fsw_processing.h
38 ../header/processing/avf0_prc0.h
38 ../header/processing/avf0_prc0.h
39 ../header/processing/avf1_prc1.h
39 ../header/processing/avf1_prc1.h
40 ../header/processing/avf2_prc2.h
40 ../header/processing/avf2_prc2.h
41 ../header/fsw_params_wf_handler.h
41 ../header/fsw_params_wf_handler.h
42 ../header/lfr_cpu_usage_report.h
42 ../header/lfr_cpu_usage_report.h
43 ../header/lfr_common_headers/ccsds_types.h
43 ../header/lfr_common_headers/ccsds_types.h
44 ../header/lfr_common_headers/fsw_params.h
44 ../header/lfr_common_headers/fsw_params.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 ../header/lfr_common_headers/fsw_params_processing.h
46 ../header/lfr_common_headers/fsw_params_processing.h
47 ../header/lfr_common_headers/tm_byte_positions.h
47 ../header/lfr_common_headers/tm_byte_positions.h
48 ../LFR_basic-parameters/basic_parameters.h
48 ../LFR_basic-parameters/basic_parameters.h
49 ../LFR_basic-parameters/basic_parameters_params.h
49 ../LFR_basic-parameters/basic_parameters_params.h
50 ../header/GscMemoryLPP.hpp
50 ../header/GscMemoryLPP.hpp
51 )
51 )
52
52
53
53
54 option(FSW_verbose "Enable verbose LFR" OFF)
54 option(FSW_verbose "Enable verbose LFR" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 option(FSW_vhdl_dev "?" OFF)
59 option(FSW_vhdl_dev "?" OFF)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 option(FSW_debug_tch "?" OFF)
62 option(FSW_debug_tch "?" OFF)
63
63
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
65 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "5" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "7" CACHE STRING "Choose N4 FSW Version." FORCE)
68
68
69 if(FSW_verbose)
69 if(FSW_verbose)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 endif()
71 endif()
72 if(FSW_boot_messages)
72 if(FSW_boot_messages)
73 add_definitions(-DBOOT_MESSAGES)
73 add_definitions(-DBOOT_MESSAGES)
74 endif()
74 endif()
75 if(FSW_debug_messages)
75 if(FSW_debug_messages)
76 add_definitions(-DDEBUG_MESSAGES)
76 add_definitions(-DDEBUG_MESSAGES)
77 endif()
77 endif()
78 if(FSW_cpu_usage_report)
78 if(FSW_cpu_usage_report)
79 add_definitions(-DPRINT_TASK_STATISTICS)
79 add_definitions(-DPRINT_TASK_STATISTICS)
80 endif()
80 endif()
81 if(FSW_stack_report)
81 if(FSW_stack_report)
82 add_definitions(-DPRINT_STACK_REPORT)
82 add_definitions(-DPRINT_STACK_REPORT)
83 endif()
83 endif()
84 if(FSW_vhdl_dev)
84 if(FSW_vhdl_dev)
85 add_definitions(-DVHDL_DEV)
85 add_definitions(-DVHDL_DEV)
86 endif()
86 endif()
87 if(FSW_lpp_dpu_destid)
87 if(FSW_lpp_dpu_destid)
88 add_definitions(-DLPP_DPU_DESTID)
88 add_definitions(-DLPP_DPU_DESTID)
89 endif()
89 endif()
90 if(FSW_debug_watchdog)
90 if(FSW_debug_watchdog)
91 add_definitions(-DDEBUG_WATCHDOG)
91 add_definitions(-DDEBUG_WATCHDOG)
92 endif()
92 endif()
93 if(FSW_debug_tch)
93 if(FSW_debug_tch)
94 add_definitions(-DDEBUG_TCH)
94 add_definitions(-DDEBUG_TCH)
95 endif()
95 endif()
96
96
97 add_definitions(-DMSB_FIRST_TCH)
97 add_definitions(-DMSB_FIRST_TCH)
98
98
99 add_definitions(-DSWVERSION=-1-0)
99 add_definitions(-DSWVERSION=-1-0)
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104
104
105 add_executable(fsw ${SOURCES})
105 add_executable(fsw ${SOURCES})
106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107
107
@@ -1,988 +1,988
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 void timer_configure(unsigned char timer, unsigned int clock_divider,
10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 {
12 {
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 *
14 *
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 * @param interrupt_level is the interrupt level that the timer drives.
18 * @param interrupt_level is the interrupt level that the timer drives.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 *
20 *
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 *
22 *
23 */
23 */
24
24
25 rtems_status_code status;
25 rtems_status_code status;
26 rtems_isr_entry old_isr_handler;
26 rtems_isr_entry old_isr_handler;
27
27
28 old_isr_handler = NULL;
28 old_isr_handler = NULL;
29
29
30 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
30 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
31
31
32 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
32 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
33 if (status!=RTEMS_SUCCESSFUL)
33 if (status!=RTEMS_SUCCESSFUL)
34 {
34 {
35 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
35 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
36 }
36 }
37
37
38 timer_set_clock_divider( timer, clock_divider);
38 timer_set_clock_divider( timer, clock_divider);
39 }
39 }
40
40
41 void timer_start(unsigned char timer)
41 void timer_start(unsigned char timer)
42 {
42 {
43 /** This function starts a GPTIMER timer.
43 /** This function starts a GPTIMER timer.
44 *
44 *
45 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
45 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
46 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
46 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
47 *
47 *
48 */
48 */
49
49
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
53 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
53 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
55 }
55 }
56
56
57 void timer_stop(unsigned char timer)
57 void timer_stop(unsigned char timer)
58 {
58 {
59 /** This function stops a GPTIMER timer.
59 /** This function stops a GPTIMER timer.
60 *
60 *
61 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
61 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
62 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
62 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
63 *
63 *
64 */
64 */
65
65
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
67 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
67 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
68 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
68 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
69 }
69 }
70
70
71 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
71 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
72 {
72 {
73 /** This function sets the clock divider of a GPTIMER timer.
73 /** This function sets the clock divider of a GPTIMER timer.
74 *
74 *
75 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
75 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
76 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
76 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
77 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
77 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
78 *
78 *
79 */
79 */
80
80
81 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
81 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
82 }
82 }
83
83
84 // WATCHDOG
84 // WATCHDOG
85
85
86 rtems_isr watchdog_isr( rtems_vector_number vector )
86 rtems_isr watchdog_isr( rtems_vector_number vector )
87 {
87 {
88 rtems_status_code status_code;
88 rtems_status_code status_code;
89
89
90 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
90 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
91
91
92 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
92 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
93
93
94 exit(0);
94 exit(0);
95 }
95 }
96
96
97 void watchdog_configure(void)
97 void watchdog_configure(void)
98 {
98 {
99 /** This function configure the watchdog.
99 /** This function configure the watchdog.
100 *
100 *
101 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
101 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
102 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
102 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
103 *
103 *
104 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
104 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
105 *
105 *
106 */
106 */
107
107
108 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
108 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
109
109
110 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
110 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
111
111
112 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
112 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
113 }
113 }
114
114
115 void watchdog_stop(void)
115 void watchdog_stop(void)
116 {
116 {
117 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
117 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
118 timer_stop( TIMER_WATCHDOG );
118 timer_stop( TIMER_WATCHDOG );
119 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
119 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
120 }
120 }
121
121
122 void watchdog_reload(void)
122 void watchdog_reload(void)
123 {
123 {
124 /** This function reloads the watchdog timer counter with the timer reload value.
124 /** This function reloads the watchdog timer counter with the timer reload value.
125 *
125 *
126 * @param void
126 * @param void
127 *
127 *
128 * @return void
128 * @return void
129 *
129 *
130 */
130 */
131
131
132 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
132 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
133 }
133 }
134
134
135 void watchdog_start(void)
135 void watchdog_start(void)
136 {
136 {
137 /** This function starts the watchdog timer.
137 /** This function starts the watchdog timer.
138 *
138 *
139 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
139 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
140 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
140 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
141 *
141 *
142 */
142 */
143
143
144 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
144 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
145
145
146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
148 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
148 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
149 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
149 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
150
150
151 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
151 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
152
152
153 }
153 }
154
154
155 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
155 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
156 {
156 {
157 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
157 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
158
158
159 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
159 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
160
160
161 return 0;
161 return 0;
162 }
162 }
163
163
164 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
164 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
165 {
165 {
166 /** This function sets the scaler reload register of the apbuart module
166 /** This function sets the scaler reload register of the apbuart module
167 *
167 *
168 * @param regs is the address of the apbuart registers in memory
168 * @param regs is the address of the apbuart registers in memory
169 * @param value is the value that will be stored in the scaler register
169 * @param value is the value that will be stored in the scaler register
170 *
170 *
171 * The value shall be set by the software to get data on the serial interface.
171 * The value shall be set by the software to get data on the serial interface.
172 *
172 *
173 */
173 */
174
174
175 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
175 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
176
176
177 apbuart_regs->scaler = value;
177 apbuart_regs->scaler = value;
178
178
179 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
179 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
180 }
180 }
181
181
182 //************
182 //************
183 // RTEMS TASKS
183 // RTEMS TASKS
184
184
185 rtems_task load_task(rtems_task_argument argument)
185 rtems_task load_task(rtems_task_argument argument)
186 {
186 {
187 BOOT_PRINTF("in LOAD *** \n")
187 BOOT_PRINTF("in LOAD *** \n")
188
188
189 rtems_status_code status;
189 rtems_status_code status;
190 unsigned int i;
190 unsigned int i;
191 unsigned int j;
191 unsigned int j;
192 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
192 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
193 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
193 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
194
194
195 watchdog_period_id = RTEMS_ID_NONE;
195 watchdog_period_id = RTEMS_ID_NONE;
196
196
197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
198
198
199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
200 if( status != RTEMS_SUCCESSFUL ) {
200 if( status != RTEMS_SUCCESSFUL ) {
201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
202 }
202 }
203
203
204 i = 0;
204 i = 0;
205 j = 0;
205 j = 0;
206
206
207 watchdog_configure();
207 watchdog_configure();
208
208
209 watchdog_start();
209 watchdog_start();
210
210
211 set_sy_lfr_watchdog_enabled( true );
211 set_sy_lfr_watchdog_enabled( true );
212
212
213 while(1){
213 while(1){
214 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
214 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
215 watchdog_reload();
215 watchdog_reload();
216 i = i + 1;
216 i = i + 1;
217 if ( i == WATCHDOG_LOOP_PRINTF )
217 if ( i == WATCHDOG_LOOP_PRINTF )
218 {
218 {
219 i = 0;
219 i = 0;
220 j = j + 1;
220 j = j + 1;
221 PRINTF1("%d\n", j)
221 PRINTF1("%d\n", j)
222 }
222 }
223 #ifdef DEBUG_WATCHDOG
223 #ifdef DEBUG_WATCHDOG
224 if (j == WATCHDOG_LOOP_DEBUG )
224 if (j == WATCHDOG_LOOP_DEBUG )
225 {
225 {
226 status = rtems_task_delete(RTEMS_SELF);
226 status = rtems_task_delete(RTEMS_SELF);
227 }
227 }
228 #endif
228 #endif
229 }
229 }
230 }
230 }
231
231
232 rtems_task hous_task(rtems_task_argument argument)
232 rtems_task hous_task(rtems_task_argument argument)
233 {
233 {
234 rtems_status_code status;
234 rtems_status_code status;
235 rtems_status_code spare_status;
235 rtems_status_code spare_status;
236 rtems_id queue_id;
236 rtems_id queue_id;
237 rtems_rate_monotonic_period_status period_status;
237 rtems_rate_monotonic_period_status period_status;
238 bool isSynchronized;
238 bool isSynchronized;
239
239
240 queue_id = RTEMS_ID_NONE;
240 queue_id = RTEMS_ID_NONE;
241 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
241 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
242 isSynchronized = false;
242 isSynchronized = false;
243
243
244 status = get_message_queue_id_send( &queue_id );
244 status = get_message_queue_id_send( &queue_id );
245 if (status != RTEMS_SUCCESSFUL)
245 if (status != RTEMS_SUCCESSFUL)
246 {
246 {
247 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
247 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
248 }
248 }
249
249
250 BOOT_PRINTF("in HOUS ***\n");
250 BOOT_PRINTF("in HOUS ***\n");
251
251
252 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
252 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
253 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
253 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
254 if( status != RTEMS_SUCCESSFUL ) {
254 if( status != RTEMS_SUCCESSFUL ) {
255 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
255 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
256 }
256 }
257 }
257 }
258
258
259 status = rtems_rate_monotonic_cancel(HK_id);
259 status = rtems_rate_monotonic_cancel(HK_id);
260 if( status != RTEMS_SUCCESSFUL ) {
260 if( status != RTEMS_SUCCESSFUL ) {
261 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
261 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
262 }
262 }
263 else {
263 else {
264 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
264 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
265 }
265 }
266
266
267 // startup phase
267 // startup phase
268 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
268 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
269 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
269 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
270 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
270 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
271 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
271 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
272 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
272 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
273 {
273 {
274 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
274 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
275 {
275 {
276 isSynchronized = true;
276 isSynchronized = true;
277 }
277 }
278 else
278 else
279 {
279 {
280 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
280 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
281
281
282 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
282 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
283 }
283 }
284 }
284 }
285 status = rtems_rate_monotonic_cancel(HK_id);
285 status = rtems_rate_monotonic_cancel(HK_id);
286 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
286 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
287
287
288 set_hk_lfr_reset_cause( POWER_ON );
288 set_hk_lfr_reset_cause( POWER_ON );
289
289
290 while(1){ // launch the rate monotonic task
290 while(1){ // launch the rate monotonic task
291 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
291 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
292 if ( status != RTEMS_SUCCESSFUL ) {
292 if ( status != RTEMS_SUCCESSFUL ) {
293 PRINTF1( "in HOUS *** ERR period: %d\n", status);
293 PRINTF1( "in HOUS *** ERR period: %d\n", status);
294 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
294 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
295 }
295 }
296 else {
296 else {
297 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
297 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
298 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
298 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
299 increment_seq_counter( &sequenceCounterHK );
299 increment_seq_counter( &sequenceCounterHK );
300
300
301 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
301 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
302 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
302 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
303 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
303 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
304 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
304 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
305 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
305 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
306 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
306 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
307
307
308 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
308 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
309
309
310 spacewire_read_statistics();
310 spacewire_read_statistics();
311
311
312 update_hk_with_grspw_stats();
312 update_hk_with_grspw_stats();
313
313
314 set_hk_lfr_time_not_synchro();
314 set_hk_lfr_time_not_synchro();
315
315
316 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
316 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
317 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
317 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
318 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
318 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
319 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
319 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
321
321
322 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
322 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
323 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
323 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
324 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
324 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
325 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
325 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
326 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
326 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
327
327
328 hk_lfr_le_me_he_update();
328 hk_lfr_le_me_he_update();
329
329
330 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
330 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
331
331
332 // SEND PACKET
332 // SEND PACKET
333 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
333 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
334 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
334 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
335 if (status != RTEMS_SUCCESSFUL) {
335 if (status != RTEMS_SUCCESSFUL) {
336 PRINTF1("in HOUS *** ERR send: %d\n", status)
336 PRINTF1("in HOUS *** ERR send: %d\n", status)
337 }
337 }
338 }
338 }
339 }
339 }
340
340
341 PRINTF("in HOUS *** deleting task\n")
341 PRINTF("in HOUS *** deleting task\n")
342
342
343 status = rtems_task_delete( RTEMS_SELF ); // should not return
343 status = rtems_task_delete( RTEMS_SELF ); // should not return
344
344
345 return;
345 return;
346 }
346 }
347
347
348 rtems_task avgv_task(rtems_task_argument argument)
348 rtems_task avgv_task(rtems_task_argument argument)
349 {
349 {
350 #define MOVING_AVERAGE 16
350 #define MOVING_AVERAGE 16
351 rtems_status_code status;
351 rtems_status_code status;
352 static unsigned int v[MOVING_AVERAGE] = {0};
352 static unsigned int v[MOVING_AVERAGE] = {0};
353 static unsigned int e1[MOVING_AVERAGE] = {0};
353 static unsigned int e1[MOVING_AVERAGE] = {0};
354 static unsigned int e2[MOVING_AVERAGE] = {0};
354 static unsigned int e2[MOVING_AVERAGE] = {0};
355 float average_v;
355 float average_v;
356 float average_e1;
356 float average_e1;
357 float average_e2;
357 float average_e2;
358 unsigned char k;
358 unsigned char k;
359 unsigned char indexOfOldValue;
359 unsigned char indexOfOldValue;
360
360
361 BOOT_PRINTF("in AVGV ***\n");
361 BOOT_PRINTF("in AVGV ***\n");
362
362
363 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
363 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
364 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
364 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
365 if( status != RTEMS_SUCCESSFUL ) {
365 if( status != RTEMS_SUCCESSFUL ) {
366 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
366 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
367 }
367 }
368 }
368 }
369
369
370 status = rtems_rate_monotonic_cancel(AVGV_id);
370 status = rtems_rate_monotonic_cancel(AVGV_id);
371 if( status != RTEMS_SUCCESSFUL ) {
371 if( status != RTEMS_SUCCESSFUL ) {
372 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
372 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
373 }
373 }
374 else {
374 else {
375 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
375 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
376 }
376 }
377
377
378 // initialize values
378 // initialize values
379 indexOfOldValue = MOVING_AVERAGE - 1;
379 indexOfOldValue = MOVING_AVERAGE - 1;
380 average_v = 0.;
380 average_v = 0.;
381 average_e1 = 0.;
381 average_e1 = 0.;
382 average_e2 = 0.;
382 average_e2 = 0.;
383
383
384 k = 0;
384 k = 0;
385
385
386 while(1){ // launch the rate monotonic task
386 while(1){ // launch the rate monotonic task
387 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
387 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
388 if ( status != RTEMS_SUCCESSFUL ) {
388 if ( status != RTEMS_SUCCESSFUL ) {
389 PRINTF1( "in AVGV *** ERR period: %d\n", status);
389 PRINTF1( "in AVGV *** ERR period: %d\n", status);
390 }
390 }
391 else {
391 else {
392 // store new value in buffer
392 // store new value in buffer
393 v[k] = waveform_picker_regs->v;
393 v[k] = waveform_picker_regs->v;
394 e1[k] = waveform_picker_regs->e1;
394 e1[k] = waveform_picker_regs->e1;
395 e2[k] = waveform_picker_regs->e2;
395 e2[k] = waveform_picker_regs->e2;
396 if (k == (MOVING_AVERAGE - 1))
396 if (k == (MOVING_AVERAGE - 1))
397 {
397 {
398 indexOfOldValue = 0;
398 indexOfOldValue = 0;
399 }
399 }
400 else
400 else
401 {
401 {
402 indexOfOldValue = k + 1;
402 indexOfOldValue = k + 1;
403 }
403 }
404 average_v = average_v + v[k] - v[indexOfOldValue];
404 average_v = average_v + v[k] - v[indexOfOldValue];
405 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
405 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
406 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
406 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
407 }
407 }
408 if (k == (MOVING_AVERAGE-1))
408 if (k == (MOVING_AVERAGE-1))
409 {
409 {
410 k = 0;
410 k = 0;
411 printf("tick\n");
411 PRINTF("tick\n");
412 }
412 }
413 else
413 else
414 {
414 {
415 k++;
415 k++;
416 }
416 }
417 }
417 }
418
418
419 PRINTF("in AVGV *** deleting task\n")
419 PRINTF("in AVGV *** deleting task\n")
420
420
421 status = rtems_task_delete( RTEMS_SELF ); // should not return
421 status = rtems_task_delete( RTEMS_SELF ); // should not return
422
422
423 return;
423 return;
424 }
424 }
425
425
426 rtems_task dumb_task( rtems_task_argument unused )
426 rtems_task dumb_task( rtems_task_argument unused )
427 {
427 {
428 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
428 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
429 *
429 *
430 * @param unused is the starting argument of the RTEMS task
430 * @param unused is the starting argument of the RTEMS task
431 *
431 *
432 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
432 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
433 *
433 *
434 */
434 */
435
435
436 unsigned int i;
436 unsigned int i;
437 unsigned int intEventOut;
437 unsigned int intEventOut;
438 unsigned int coarse_time = 0;
438 unsigned int coarse_time = 0;
439 unsigned int fine_time = 0;
439 unsigned int fine_time = 0;
440 rtems_event_set event_out;
440 rtems_event_set event_out;
441
441
442 event_out = EVENT_SETS_NONE_PENDING;
442 event_out = EVENT_SETS_NONE_PENDING;
443
443
444 BOOT_PRINTF("in DUMB *** \n")
444 BOOT_PRINTF("in DUMB *** \n")
445
445
446 while(1){
446 while(1){
447 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
447 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
448 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
448 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
449 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
449 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
450 | RTEMS_EVENT_14,
450 | RTEMS_EVENT_14,
451 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
451 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
452 intEventOut = (unsigned int) event_out;
452 intEventOut = (unsigned int) event_out;
453 for ( i=0; i<NB_RTEMS_EVENTS; i++)
453 for ( i=0; i<NB_RTEMS_EVENTS; i++)
454 {
454 {
455 if ( ((intEventOut >> i) & 1) != 0)
455 if ( ((intEventOut >> i) & 1) != 0)
456 {
456 {
457 coarse_time = time_management_regs->coarse_time;
457 coarse_time = time_management_regs->coarse_time;
458 fine_time = time_management_regs->fine_time;
458 fine_time = time_management_regs->fine_time;
459 if (i==EVENT_12)
459 if (i==EVENT_12)
460 {
460 {
461 PRINTF1("%s\n", DUMB_MESSAGE_12)
461 PRINTF1("%s\n", DUMB_MESSAGE_12)
462 }
462 }
463 if (i==EVENT_13)
463 if (i==EVENT_13)
464 {
464 {
465 PRINTF1("%s\n", DUMB_MESSAGE_13)
465 PRINTF1("%s\n", DUMB_MESSAGE_13)
466 }
466 }
467 if (i==EVENT_14)
467 if (i==EVENT_14)
468 {
468 {
469 PRINTF1("%s\n", DUMB_MESSAGE_1)
469 PRINTF1("%s\n", DUMB_MESSAGE_1)
470 }
470 }
471 }
471 }
472 }
472 }
473 }
473 }
474 }
474 }
475
475
476 //*****************************
476 //*****************************
477 // init housekeeping parameters
477 // init housekeeping parameters
478
478
479 void init_housekeeping_parameters( void )
479 void init_housekeeping_parameters( void )
480 {
480 {
481 /** This function initialize the housekeeping_packet global variable with default values.
481 /** This function initialize the housekeeping_packet global variable with default values.
482 *
482 *
483 */
483 */
484
484
485 unsigned int i = 0;
485 unsigned int i = 0;
486 unsigned char *parameters;
486 unsigned char *parameters;
487 unsigned char sizeOfHK;
487 unsigned char sizeOfHK;
488
488
489 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
489 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
490
490
491 parameters = (unsigned char*) &housekeeping_packet;
491 parameters = (unsigned char*) &housekeeping_packet;
492
492
493 for(i = 0; i< sizeOfHK; i++)
493 for(i = 0; i< sizeOfHK; i++)
494 {
494 {
495 parameters[i] = INIT_CHAR;
495 parameters[i] = INIT_CHAR;
496 }
496 }
497
497
498 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
498 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
499 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
499 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
500 housekeeping_packet.reserved = DEFAULT_RESERVED;
500 housekeeping_packet.reserved = DEFAULT_RESERVED;
501 housekeeping_packet.userApplication = CCSDS_USER_APP;
501 housekeeping_packet.userApplication = CCSDS_USER_APP;
502 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
502 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
503 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
503 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
504 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
504 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
505 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
505 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
506 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
506 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
507 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
507 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
508 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
508 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
509 housekeeping_packet.serviceType = TM_TYPE_HK;
509 housekeeping_packet.serviceType = TM_TYPE_HK;
510 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
510 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
511 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
511 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
512 housekeeping_packet.sid = SID_HK;
512 housekeeping_packet.sid = SID_HK;
513
513
514 // init status word
514 // init status word
515 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
515 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
516 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
516 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
517 // init software version
517 // init software version
518 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
518 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
519 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
519 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
520 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
520 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
521 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
521 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
522 // init fpga version
522 // init fpga version
523 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
523 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
524 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
524 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
525 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
525 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
526 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
526 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
527
527
528 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
528 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
529 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
529 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
530 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
530 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
531 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
531 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
532 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
532 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
533 }
533 }
534
534
535 void increment_seq_counter( unsigned short *packetSequenceControl )
535 void increment_seq_counter( unsigned short *packetSequenceControl )
536 {
536 {
537 /** This function increment the sequence counter passes in argument.
537 /** This function increment the sequence counter passes in argument.
538 *
538 *
539 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
539 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
540 *
540 *
541 */
541 */
542
542
543 unsigned short segmentation_grouping_flag;
543 unsigned short segmentation_grouping_flag;
544 unsigned short sequence_cnt;
544 unsigned short sequence_cnt;
545
545
546 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
546 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
547 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
547 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
548
548
549 if ( sequence_cnt < SEQ_CNT_MAX)
549 if ( sequence_cnt < SEQ_CNT_MAX)
550 {
550 {
551 sequence_cnt = sequence_cnt + 1;
551 sequence_cnt = sequence_cnt + 1;
552 }
552 }
553 else
553 else
554 {
554 {
555 sequence_cnt = 0;
555 sequence_cnt = 0;
556 }
556 }
557
557
558 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
558 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
559 }
559 }
560
560
561 void getTime( unsigned char *time)
561 void getTime( unsigned char *time)
562 {
562 {
563 /** This function write the current local time in the time buffer passed in argument.
563 /** This function write the current local time in the time buffer passed in argument.
564 *
564 *
565 */
565 */
566
566
567 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
567 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
568 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
568 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
569 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
569 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
570 time[3] = (unsigned char) (time_management_regs->coarse_time);
570 time[3] = (unsigned char) (time_management_regs->coarse_time);
571 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
571 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
572 time[5] = (unsigned char) (time_management_regs->fine_time);
572 time[5] = (unsigned char) (time_management_regs->fine_time);
573 }
573 }
574
574
575 unsigned long long int getTimeAsUnsignedLongLongInt( )
575 unsigned long long int getTimeAsUnsignedLongLongInt( )
576 {
576 {
577 /** This function write the current local time in the time buffer passed in argument.
577 /** This function write the current local time in the time buffer passed in argument.
578 *
578 *
579 */
579 */
580 unsigned long long int time;
580 unsigned long long int time;
581
581
582 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
582 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
583 + time_management_regs->fine_time;
583 + time_management_regs->fine_time;
584
584
585 return time;
585 return time;
586 }
586 }
587
587
588 void send_dumb_hk( void )
588 void send_dumb_hk( void )
589 {
589 {
590 Packet_TM_LFR_HK_t dummy_hk_packet;
590 Packet_TM_LFR_HK_t dummy_hk_packet;
591 unsigned char *parameters;
591 unsigned char *parameters;
592 unsigned int i;
592 unsigned int i;
593 rtems_id queue_id;
593 rtems_id queue_id;
594
594
595 queue_id = RTEMS_ID_NONE;
595 queue_id = RTEMS_ID_NONE;
596
596
597 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
597 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
598 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
598 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
599 dummy_hk_packet.reserved = DEFAULT_RESERVED;
599 dummy_hk_packet.reserved = DEFAULT_RESERVED;
600 dummy_hk_packet.userApplication = CCSDS_USER_APP;
600 dummy_hk_packet.userApplication = CCSDS_USER_APP;
601 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
601 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
602 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
602 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
603 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
603 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
604 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
604 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
605 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
605 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
606 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
606 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
607 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
607 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
608 dummy_hk_packet.serviceType = TM_TYPE_HK;
608 dummy_hk_packet.serviceType = TM_TYPE_HK;
609 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
609 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
610 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
610 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
611 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
611 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
612 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
612 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
613 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
613 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
614 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
614 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
615 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
615 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
616 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
616 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
617 dummy_hk_packet.sid = SID_HK;
617 dummy_hk_packet.sid = SID_HK;
618
618
619 // init status word
619 // init status word
620 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
620 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
621 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
621 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
622 // init software version
622 // init software version
623 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
623 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
624 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
624 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
625 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
625 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
626 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
626 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
627 // init fpga version
627 // init fpga version
628 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
628 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
629 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
629 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
630 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
630 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
631 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
631 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
632
632
633 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
633 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
634
634
635 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
635 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
636 {
636 {
637 parameters[i] = INT8_ALL_F;
637 parameters[i] = INT8_ALL_F;
638 }
638 }
639
639
640 get_message_queue_id_send( &queue_id );
640 get_message_queue_id_send( &queue_id );
641
641
642 rtems_message_queue_send( queue_id, &dummy_hk_packet,
642 rtems_message_queue_send( queue_id, &dummy_hk_packet,
643 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
643 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
644 }
644 }
645
645
646 void get_temperatures( unsigned char *temperatures )
646 void get_temperatures( unsigned char *temperatures )
647 {
647 {
648 unsigned char* temp_scm_ptr;
648 unsigned char* temp_scm_ptr;
649 unsigned char* temp_pcb_ptr;
649 unsigned char* temp_pcb_ptr;
650 unsigned char* temp_fpga_ptr;
650 unsigned char* temp_fpga_ptr;
651
651
652 // SEL1 SEL0
652 // SEL1 SEL0
653 // 0 0 => PCB
653 // 0 0 => PCB
654 // 0 1 => FPGA
654 // 0 1 => FPGA
655 // 1 0 => SCM
655 // 1 0 => SCM
656
656
657 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
657 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
658 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
658 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
659 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
659 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
660
660
661 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
661 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
662 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
662 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
663 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
663 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
664 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
664 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
665 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
665 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
666 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
666 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
667 }
667 }
668
668
669 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
669 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
670 {
670 {
671 unsigned char* v_ptr;
671 unsigned char* v_ptr;
672 unsigned char* e1_ptr;
672 unsigned char* e1_ptr;
673 unsigned char* e2_ptr;
673 unsigned char* e2_ptr;
674
674
675 v_ptr = (unsigned char *) &waveform_picker_regs->v;
675 v_ptr = (unsigned char *) &waveform_picker_regs->v;
676 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
676 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
677 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
677 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
678
678
679 spacecraft_potential[ BYTE_0 ] = v_ptr[ BYTE_2 ];
679 spacecraft_potential[ BYTE_0 ] = v_ptr[ BYTE_2 ];
680 spacecraft_potential[ BYTE_1 ] = v_ptr[ BYTE_3 ];
680 spacecraft_potential[ BYTE_1 ] = v_ptr[ BYTE_3 ];
681 spacecraft_potential[ BYTE_2 ] = e1_ptr[ BYTE_2 ];
681 spacecraft_potential[ BYTE_2 ] = e1_ptr[ BYTE_2 ];
682 spacecraft_potential[ BYTE_3 ] = e1_ptr[ BYTE_3 ];
682 spacecraft_potential[ BYTE_3 ] = e1_ptr[ BYTE_3 ];
683 spacecraft_potential[ BYTE_4 ] = e2_ptr[ BYTE_2 ];
683 spacecraft_potential[ BYTE_4 ] = e2_ptr[ BYTE_2 ];
684 spacecraft_potential[ BYTE_5 ] = e2_ptr[ BYTE_3 ];
684 spacecraft_potential[ BYTE_5 ] = e2_ptr[ BYTE_3 ];
685 }
685 }
686
686
687 void get_cpu_load( unsigned char *resource_statistics )
687 void get_cpu_load( unsigned char *resource_statistics )
688 {
688 {
689 unsigned char cpu_load;
689 unsigned char cpu_load;
690
690
691 cpu_load = lfr_rtems_cpu_usage_report();
691 cpu_load = lfr_rtems_cpu_usage_report();
692
692
693 // HK_LFR_CPU_LOAD
693 // HK_LFR_CPU_LOAD
694 resource_statistics[0] = cpu_load;
694 resource_statistics[0] = cpu_load;
695
695
696 // HK_LFR_CPU_LOAD_MAX
696 // HK_LFR_CPU_LOAD_MAX
697 if (cpu_load > resource_statistics[1])
697 if (cpu_load > resource_statistics[1])
698 {
698 {
699 resource_statistics[1] = cpu_load;
699 resource_statistics[1] = cpu_load;
700 }
700 }
701
701
702 // CPU_LOAD_AVE
702 // CPU_LOAD_AVE
703 resource_statistics[BYTE_2] = 0;
703 resource_statistics[BYTE_2] = 0;
704
704
705 #ifndef PRINT_TASK_STATISTICS
705 #ifndef PRINT_TASK_STATISTICS
706 rtems_cpu_usage_reset();
706 rtems_cpu_usage_reset();
707 #endif
707 #endif
708
708
709 }
709 }
710
710
711 void set_hk_lfr_sc_potential_flag( bool state )
711 void set_hk_lfr_sc_potential_flag( bool state )
712 {
712 {
713 if (state == true)
713 if (state == true)
714 {
714 {
715 housekeeping_packet.lfr_status_word[1] =
715 housekeeping_packet.lfr_status_word[1] =
716 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
716 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
717 }
717 }
718 else
718 else
719 {
719 {
720 housekeeping_packet.lfr_status_word[1] =
720 housekeeping_packet.lfr_status_word[1] =
721 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
721 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
722 }
722 }
723 }
723 }
724
724
725 void set_sy_lfr_pas_filter_enabled( bool state )
725 void set_sy_lfr_pas_filter_enabled( bool state )
726 {
726 {
727 if (state == true)
727 if (state == true)
728 {
728 {
729 housekeeping_packet.lfr_status_word[1] =
729 housekeeping_packet.lfr_status_word[1] =
730 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
730 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
731 }
731 }
732 else
732 else
733 {
733 {
734 housekeeping_packet.lfr_status_word[1] =
734 housekeeping_packet.lfr_status_word[1] =
735 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
735 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
736 }
736 }
737 }
737 }
738
738
739 void set_sy_lfr_watchdog_enabled( bool state )
739 void set_sy_lfr_watchdog_enabled( bool state )
740 {
740 {
741 if (state == true)
741 if (state == true)
742 {
742 {
743 housekeeping_packet.lfr_status_word[1] =
743 housekeeping_packet.lfr_status_word[1] =
744 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
744 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
745 }
745 }
746 else
746 else
747 {
747 {
748 housekeeping_packet.lfr_status_word[1] =
748 housekeeping_packet.lfr_status_word[1] =
749 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
749 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
750 }
750 }
751 }
751 }
752
752
753 void set_hk_lfr_calib_enable( bool state )
753 void set_hk_lfr_calib_enable( bool state )
754 {
754 {
755 if (state == true)
755 if (state == true)
756 {
756 {
757 housekeeping_packet.lfr_status_word[1] =
757 housekeeping_packet.lfr_status_word[1] =
758 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
758 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
759 }
759 }
760 else
760 else
761 {
761 {
762 housekeeping_packet.lfr_status_word[1] =
762 housekeeping_packet.lfr_status_word[1] =
763 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
763 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
764 }
764 }
765 }
765 }
766
766
767 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
767 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
768 {
768 {
769 housekeeping_packet.lfr_status_word[1] =
769 housekeeping_packet.lfr_status_word[1] =
770 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
770 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
771
771
772 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
772 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
773 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
773 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
774
774
775 }
775 }
776
776
777 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
777 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
778 {
778 {
779 int delta;
779 int delta;
780
780
781 delta = 0;
781 delta = 0;
782
782
783 if (newValue >= oldValue)
783 if (newValue >= oldValue)
784 {
784 {
785 delta = newValue - oldValue;
785 delta = newValue - oldValue;
786 }
786 }
787 else
787 else
788 {
788 {
789 delta = (255 - oldValue) + newValue;
789 delta = (CONST_256 - oldValue) + newValue;
790 }
790 }
791
791
792 *counter = *counter + delta;
792 *counter = *counter + delta;
793 }
793 }
794
794
795 void hk_lfr_le_update( void )
795 void hk_lfr_le_update( void )
796 {
796 {
797 static hk_lfr_le_t old_hk_lfr_le = {0};
797 static hk_lfr_le_t old_hk_lfr_le = {0};
798 hk_lfr_le_t new_hk_lfr_le;
798 hk_lfr_le_t new_hk_lfr_le;
799 unsigned int counter;
799 unsigned int counter;
800
800
801 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
801 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
802
802
803 // DPU
803 // DPU
804 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
804 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
805 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
805 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
806 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
806 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
807 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
807 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
808 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
808 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
809 // TIMECODE
809 // TIMECODE
810 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
810 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
811 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
811 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
812 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
812 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
813 // TIME
813 // TIME
814 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
814 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
815 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
815 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
816 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
816 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
817 //AHB
817 //AHB
818 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
818 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
819 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
819 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
820 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
820 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
821
821
822 // update the le counter
822 // update the le counter
823 // DPU
823 // DPU
824 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
824 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
825 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
825 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
826 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
826 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
827 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
827 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
828 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
828 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
829 // TIMECODE
829 // TIMECODE
830 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
830 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
831 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
831 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
832 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
832 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
833 // TIME
833 // TIME
834 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
834 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
835 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
835 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
836 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
836 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
837 // AHB
837 // AHB
838 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
838 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
839
839
840 // DPU
840 // DPU
841 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
841 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
842 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
842 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
843 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
843 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
844 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
844 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
845 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
845 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
846 // TIMECODE
846 // TIMECODE
847 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
847 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
848 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
848 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
849 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
849 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
850 // TIME
850 // TIME
851 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
851 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
852 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
852 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
853 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
853 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
854 //AHB
854 //AHB
855 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
855 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
856 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
856 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
857 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
857 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
858
858
859 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
859 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
860 // LE
860 // LE
861 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
861 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
862 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
862 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
863 }
863 }
864
864
865 void hk_lfr_me_update( void )
865 void hk_lfr_me_update( void )
866 {
866 {
867 static hk_lfr_me_t old_hk_lfr_me = {0};
867 static hk_lfr_me_t old_hk_lfr_me = {0};
868 hk_lfr_me_t new_hk_lfr_me;
868 hk_lfr_me_t new_hk_lfr_me;
869 unsigned int counter;
869 unsigned int counter;
870
870
871 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
871 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
872
872
873 // get the current values
873 // get the current values
874 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
874 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
875 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
875 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
876 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
876 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
877 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
877 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
878
878
879 // update the me counter
879 // update the me counter
880 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
880 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
881 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
881 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
882 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
882 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
883 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
883 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
884
884
885 // store the counters for the next time
885 // store the counters for the next time
886 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
886 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
887 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
887 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
888 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
888 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
889 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
889 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
890
890
891 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
891 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
892 // ME
892 // ME
893 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
893 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
894 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
894 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
895 }
895 }
896
896
897 void hk_lfr_le_me_he_update()
897 void hk_lfr_le_me_he_update()
898 {
898 {
899
899
900 unsigned int hk_lfr_he_cnt;
900 unsigned int hk_lfr_he_cnt;
901
901
902 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
902 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
903
903
904 //update the low severity error counter
904 //update the low severity error counter
905 hk_lfr_le_update( );
905 hk_lfr_le_update( );
906
906
907 //update the medium severity error counter
907 //update the medium severity error counter
908 hk_lfr_me_update();
908 hk_lfr_me_update();
909
909
910 //update the high severity error counter
910 //update the high severity error counter
911 hk_lfr_he_cnt = 0;
911 hk_lfr_he_cnt = 0;
912
912
913 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
913 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
914 // HE
914 // HE
915 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
915 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
916 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
916 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
917
917
918 }
918 }
919
919
920 void set_hk_lfr_time_not_synchro()
920 void set_hk_lfr_time_not_synchro()
921 {
921 {
922 static unsigned char synchroLost = 1;
922 static unsigned char synchroLost = 1;
923 int synchronizationBit;
923 int synchronizationBit;
924
924
925 // get the synchronization bit
925 // get the synchronization bit
926 synchronizationBit =
926 synchronizationBit =
927 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
927 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
928
928
929 switch (synchronizationBit)
929 switch (synchronizationBit)
930 {
930 {
931 case 0:
931 case 0:
932 if (synchroLost == 1)
932 if (synchroLost == 1)
933 {
933 {
934 synchroLost = 0;
934 synchroLost = 0;
935 }
935 }
936 break;
936 break;
937 case 1:
937 case 1:
938 if (synchroLost == 0 )
938 if (synchroLost == 0 )
939 {
939 {
940 synchroLost = 1;
940 synchroLost = 1;
941 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
941 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
942 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
942 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
943 }
943 }
944 break;
944 break;
945 default:
945 default:
946 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
946 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
947 break;
947 break;
948 }
948 }
949
949
950 }
950 }
951
951
952 void set_hk_lfr_ahb_correctable() // CRITICITY L
952 void set_hk_lfr_ahb_correctable() // CRITICITY L
953 {
953 {
954 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
954 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
955 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
955 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
956 * detected errors in the cache, in the integer unit and in the floating point unit.
956 * detected errors in the cache, in the integer unit and in the floating point unit.
957 *
957 *
958 * @param void
958 * @param void
959 *
959 *
960 * @return void
960 * @return void
961 *
961 *
962 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
962 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
963 *
963 *
964 */
964 */
965
965
966 unsigned int ahb_correctable;
966 unsigned int ahb_correctable;
967 unsigned int instructionErrorCounter;
967 unsigned int instructionErrorCounter;
968 unsigned int dataErrorCounter;
968 unsigned int dataErrorCounter;
969 unsigned int fprfErrorCounter;
969 unsigned int fprfErrorCounter;
970 unsigned int iurfErrorCounter;
970 unsigned int iurfErrorCounter;
971
971
972 instructionErrorCounter = 0;
972 instructionErrorCounter = 0;
973 dataErrorCounter = 0;
973 dataErrorCounter = 0;
974 fprfErrorCounter = 0;
974 fprfErrorCounter = 0;
975 iurfErrorCounter = 0;
975 iurfErrorCounter = 0;
976
976
977 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
977 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
978 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
978 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
979
979
980 ahb_correctable = instructionErrorCounter
980 ahb_correctable = instructionErrorCounter
981 + dataErrorCounter
981 + dataErrorCounter
982 + fprfErrorCounter
982 + fprfErrorCounter
983 + iurfErrorCounter
983 + iurfErrorCounter
984 + housekeeping_packet.hk_lfr_ahb_correctable;
984 + housekeeping_packet.hk_lfr_ahb_correctable;
985
985
986 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
986 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
987
987
988 }
988 }
@@ -1,1633 +1,1633
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name = 0;
16 rtems_name semq_name = 0;
17 rtems_id semq_id = RTEMS_ID_NONE;
17 rtems_id semq_id = RTEMS_ID_NONE;
18
18
19 //*****************
19 //*****************
20 // waveform headers
20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF = {0};
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF = {0};
23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
24
24
25 unsigned char previousTimecodeCtr = 0;
25 unsigned char previousTimecodeCtr = 0;
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27
27
28 //***********
28 //***********
29 // RTEMS TASK
29 // RTEMS TASK
30 rtems_task spiq_task(rtems_task_argument unused)
30 rtems_task spiq_task(rtems_task_argument unused)
31 {
31 {
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 *
33 *
34 * @param unused is the starting argument of the RTEMS task
34 * @param unused is the starting argument of the RTEMS task
35 *
35 *
36 */
36 */
37
37
38 rtems_event_set event_out;
38 rtems_event_set event_out;
39 rtems_status_code status;
39 rtems_status_code status;
40 int linkStatus;
40 int linkStatus;
41
41
42 event_out = EVENT_SETS_NONE_PENDING;
42 event_out = EVENT_SETS_NONE_PENDING;
43 linkStatus = 0;
43 linkStatus = 0;
44
44
45 BOOT_PRINTF("in SPIQ *** \n")
45 BOOT_PRINTF("in SPIQ *** \n")
46
46
47 while(true){
47 while(true){
48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
50
50
51 // [0] SUSPEND RECV AND SEND TASKS
51 // [0] SUSPEND RECV AND SEND TASKS
52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
53 if ( status != RTEMS_SUCCESSFUL ) {
53 if ( status != RTEMS_SUCCESSFUL ) {
54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
55 }
55 }
56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
57 if ( status != RTEMS_SUCCESSFUL ) {
57 if ( status != RTEMS_SUCCESSFUL ) {
58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
59 }
59 }
60
60
61 // [1] CHECK THE LINK
61 // [1] CHECK THE LINK
62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
63 if ( linkStatus != SPW_LINK_OK) {
63 if ( linkStatus != SPW_LINK_OK) {
64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
66 }
66 }
67
67
68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
71 {
71 {
72 spacewire_read_statistics();
72 spacewire_read_statistics();
73 status = spacewire_several_connect_attemps( );
73 status = spacewire_several_connect_attemps( );
74 }
74 }
75 else // [2.b] in run state, start the link
75 else // [2.b] in run state, start the link
76 {
76 {
77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
78 if ( status != RTEMS_SUCCESSFUL)
78 if ( status != RTEMS_SUCCESSFUL)
79 {
79 {
80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
81 }
81 }
82 }
82 }
83
83
84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
86 {
86 {
87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
88 if ( status != RTEMS_SUCCESSFUL ) {
88 if ( status != RTEMS_SUCCESSFUL ) {
89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
90 }
90 }
91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
92 if ( status != RTEMS_SUCCESSFUL ) {
92 if ( status != RTEMS_SUCCESSFUL ) {
93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
94 }
94 }
95 }
95 }
96 else // [3.b] the link is not in run state, go in STANDBY mode
96 else // [3.b] the link is not in run state, go in STANDBY mode
97 {
97 {
98 status = enter_mode_standby();
98 status = enter_mode_standby();
99 if ( status != RTEMS_SUCCESSFUL )
99 if ( status != RTEMS_SUCCESSFUL )
100 {
100 {
101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
102 }
102 }
103 {
103 {
104 updateLFRCurrentMode( LFR_MODE_STANDBY );
104 updateLFRCurrentMode( LFR_MODE_STANDBY );
105 }
105 }
106 // wake the LINK task up to wait for the link recovery
106 // wake the LINK task up to wait for the link recovery
107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
108 status = rtems_task_suspend( RTEMS_SELF );
108 status = rtems_task_suspend( RTEMS_SELF );
109 }
109 }
110 }
110 }
111 }
111 }
112
112
113 rtems_task recv_task( rtems_task_argument unused )
113 rtems_task recv_task( rtems_task_argument unused )
114 {
114 {
115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
116 *
116 *
117 * @param unused is the starting argument of the RTEMS task
117 * @param unused is the starting argument of the RTEMS task
118 *
118 *
119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
120 * 1. It reads the incoming data.
120 * 1. It reads the incoming data.
121 * 2. Launches the acceptance procedure.
121 * 2. Launches the acceptance procedure.
122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
123 *
123 *
124 */
124 */
125
125
126 int len;
126 int len;
127 ccsdsTelecommandPacket_t currentTC;
127 ccsdsTelecommandPacket_t __attribute__((aligned(4))) currentTC;
128 unsigned char computed_CRC[ BYTES_PER_CRC ];
128 unsigned char computed_CRC[ BYTES_PER_CRC ];
129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
130 unsigned char destinationID;
130 unsigned char destinationID;
131 unsigned int estimatedPacketLength;
131 unsigned int estimatedPacketLength;
132 unsigned int parserCode;
132 unsigned int parserCode;
133 rtems_status_code status;
133 rtems_status_code status;
134 rtems_id queue_recv_id;
134 rtems_id queue_recv_id;
135 rtems_id queue_send_id;
135 rtems_id queue_send_id;
136
136
137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
138 destinationID = 0;
138 destinationID = 0;
139 queue_recv_id = RTEMS_ID_NONE;
139 queue_recv_id = RTEMS_ID_NONE;
140 queue_send_id = RTEMS_ID_NONE;
140 queue_send_id = RTEMS_ID_NONE;
141
141
142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
143
143
144 status = get_message_queue_id_recv( &queue_recv_id );
144 status = get_message_queue_id_recv( &queue_recv_id );
145 if (status != RTEMS_SUCCESSFUL)
145 if (status != RTEMS_SUCCESSFUL)
146 {
146 {
147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
148 }
148 }
149
149
150 status = get_message_queue_id_send( &queue_send_id );
150 status = get_message_queue_id_send( &queue_send_id );
151 if (status != RTEMS_SUCCESSFUL)
151 if (status != RTEMS_SUCCESSFUL)
152 {
152 {
153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
154 }
154 }
155
155
156 BOOT_PRINTF("in RECV *** \n")
156 BOOT_PRINTF("in RECV *** \n")
157
157
158 while(1)
158 while(1)
159 {
159 {
160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
161 if (len == -1){ // error during the read call
161 if (len == -1){ // error during the read call
162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
163 }
163 }
164 else {
164 else {
165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
166 PRINTF("in RECV *** packet lenght too short\n")
166 PRINTF("in RECV *** packet lenght too short\n")
167 }
167 }
168 else {
168 else {
169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
170 PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
173 // CHECK THE TC
173 // CHECK THE TC
174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
178 || (parserCode == WRONG_SRC_ID) )
178 || (parserCode == WRONG_SRC_ID) )
179 { // send TM_LFR_TC_EXE_CORRUPTED
179 { // send TM_LFR_TC_EXE_CORRUPTED
180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
182 &&
182 &&
183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
184 )
184 )
185 {
185 {
186 if ( parserCode == WRONG_SRC_ID )
186 if ( parserCode == WRONG_SRC_ID )
187 {
187 {
188 destinationID = SID_TC_GROUND;
188 destinationID = SID_TC_GROUND;
189 }
189 }
190 else
190 else
191 {
191 {
192 destinationID = currentTC.sourceID;
192 destinationID = currentTC.sourceID;
193 }
193 }
194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
195 computed_CRC, currentTC_LEN_RCV,
195 computed_CRC, currentTC_LEN_RCV,
196 destinationID );
196 destinationID );
197 }
197 }
198 }
198 }
199 else
199 else
200 { // send valid TC to the action launcher
200 { // send valid TC to the action launcher
201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
203 }
203 }
204 }
204 }
205 }
205 }
206
206
207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
208
208
209 }
209 }
210 }
210 }
211
211
212 rtems_task send_task( rtems_task_argument argument)
212 rtems_task send_task( rtems_task_argument argument)
213 {
213 {
214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
215 *
215 *
216 * @param unused is the starting argument of the RTEMS task
216 * @param unused is the starting argument of the RTEMS task
217 *
217 *
218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
222 * data it contains.
222 * data it contains.
223 *
223 *
224 */
224 */
225
225
226 rtems_status_code status; // RTEMS status code
226 rtems_status_code status; // RTEMS status code
227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
228 ring_node *incomingRingNodePtr;
228 ring_node *incomingRingNodePtr;
229 int ring_node_address;
229 int ring_node_address;
230 char *charPtr;
230 char *charPtr;
231 spw_ioctl_pkt_send *spw_ioctl_send;
231 spw_ioctl_pkt_send *spw_ioctl_send;
232 size_t size; // size of the incoming TC packet
232 size_t size; // size of the incoming TC packet
233 rtems_id queue_send_id;
233 rtems_id queue_send_id;
234 unsigned int sid;
234 unsigned int sid;
235 unsigned char sidAsUnsignedChar;
235 unsigned char sidAsUnsignedChar;
236 unsigned char type;
236 unsigned char type;
237
237
238 incomingRingNodePtr = NULL;
238 incomingRingNodePtr = NULL;
239 ring_node_address = 0;
239 ring_node_address = 0;
240 charPtr = (char *) &ring_node_address;
240 charPtr = (char *) &ring_node_address;
241 size = 0;
241 size = 0;
242 queue_send_id = RTEMS_ID_NONE;
242 queue_send_id = RTEMS_ID_NONE;
243 sid = 0;
243 sid = 0;
244 sidAsUnsignedChar = 0;
244 sidAsUnsignedChar = 0;
245
245
246 init_header_cwf( &headerCWF );
246 init_header_cwf( &headerCWF );
247 init_header_swf( &headerSWF );
247 init_header_swf( &headerSWF );
248 init_header_asm( &headerASM );
248 init_header_asm( &headerASM );
249
249
250 status = get_message_queue_id_send( &queue_send_id );
250 status = get_message_queue_id_send( &queue_send_id );
251 if (status != RTEMS_SUCCESSFUL)
251 if (status != RTEMS_SUCCESSFUL)
252 {
252 {
253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
254 }
254 }
255
255
256 BOOT_PRINTF("in SEND *** \n")
256 BOOT_PRINTF("in SEND *** \n")
257
257
258 while(1)
258 while(1)
259 {
259 {
260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
262
262
263 if (status!=RTEMS_SUCCESSFUL)
263 if (status!=RTEMS_SUCCESSFUL)
264 {
264 {
265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
266 }
266 }
267 else
267 else
268 {
268 {
269 if ( size == sizeof(ring_node*) )
269 if ( size == sizeof(ring_node*) )
270 {
270 {
271 charPtr[0] = incomingData[0];
271 charPtr[0] = incomingData[0];
272 charPtr[1] = incomingData[1];
272 charPtr[1] = incomingData[1];
273 charPtr[BYTE_2] = incomingData[BYTE_2];
273 charPtr[BYTE_2] = incomingData[BYTE_2];
274 charPtr[BYTE_3] = incomingData[BYTE_3];
274 charPtr[BYTE_3] = incomingData[BYTE_3];
275 incomingRingNodePtr = (ring_node*) ring_node_address;
275 incomingRingNodePtr = (ring_node*) ring_node_address;
276 sid = incomingRingNodePtr->sid;
276 sid = incomingRingNodePtr->sid;
277 if ( (sid==SID_NORM_CWF_LONG_F3)
277 if ( (sid==SID_NORM_CWF_LONG_F3)
278 || (sid==SID_BURST_CWF_F2 )
278 || (sid==SID_BURST_CWF_F2 )
279 || (sid==SID_SBM1_CWF_F1 )
279 || (sid==SID_SBM1_CWF_F1 )
280 || (sid==SID_SBM2_CWF_F2 ))
280 || (sid==SID_SBM2_CWF_F2 ))
281 {
281 {
282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
283 }
283 }
284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
285 {
285 {
286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
287 }
287 }
288 else if ( (sid==SID_NORM_CWF_F3) )
288 else if ( (sid==SID_NORM_CWF_F3) )
289 {
289 {
290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
291 }
291 }
292 else if (sid==SID_NORM_ASM_F0)
292 else if (sid==SID_NORM_ASM_F0)
293 {
293 {
294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
295 }
295 }
296 else if (sid==SID_NORM_ASM_F1)
296 else if (sid==SID_NORM_ASM_F1)
297 {
297 {
298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
299 }
299 }
300 else if (sid==SID_NORM_ASM_F2)
300 else if (sid==SID_NORM_ASM_F2)
301 {
301 {
302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
303 }
303 }
304 else if ( sid==TM_CODE_K_DUMP )
304 else if ( sid==TM_CODE_K_DUMP )
305 {
305 {
306 spw_send_k_dump( incomingRingNodePtr );
306 spw_send_k_dump( incomingRingNodePtr );
307 }
307 }
308 else
308 else
309 {
309 {
310 PRINTF1("unexpected sid = %d\n", sid);
310 PRINTF1("unexpected sid = %d\n", sid);
311 }
311 }
312 }
312 }
313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
314 {
314 {
315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
316 sid = sidAsUnsignedChar;
316 sid = sidAsUnsignedChar;
317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
320 {
320 {
321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
322 }
322 }
323
323
324 status = write( fdSPW, incomingData, size );
324 status = write( fdSPW, incomingData, size );
325 if (status == -1){
325 if (status == -1){
326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
327 }
327 }
328 }
328 }
329 else // the incoming message is a spw_ioctl_pkt_send structure
329 else // the incoming message is a spw_ioctl_pkt_send structure
330 {
330 {
331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
333 if (status == -1){
333 if (status == -1){
334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
335 }
335 }
336 }
336 }
337 }
337 }
338
338
339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
340
340
341 }
341 }
342 }
342 }
343
343
344 rtems_task link_task( rtems_task_argument argument )
344 rtems_task link_task( rtems_task_argument argument )
345 {
345 {
346 rtems_event_set event_out;
346 rtems_event_set event_out;
347 rtems_status_code status;
347 rtems_status_code status;
348 int linkStatus;
348 int linkStatus;
349
349
350 event_out = EVENT_SETS_NONE_PENDING;
350 event_out = EVENT_SETS_NONE_PENDING;
351 linkStatus = 0;
351 linkStatus = 0;
352
352
353 BOOT_PRINTF("in LINK ***\n")
353 BOOT_PRINTF("in LINK ***\n")
354
354
355 while(1)
355 while(1)
356 {
356 {
357 // wait for an RTEMS_EVENT
357 // wait for an RTEMS_EVENT
358 rtems_event_receive( RTEMS_EVENT_0,
358 rtems_event_receive( RTEMS_EVENT_0,
359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
360 PRINTF("in LINK *** wait for the link\n")
360 PRINTF("in LINK *** wait for the link\n")
361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
362 while( linkStatus != SPW_LINK_OK) // wait for the link
362 while( linkStatus != SPW_LINK_OK) // wait for the link
363 {
363 {
364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
366 watchdog_reload();
366 watchdog_reload();
367 }
367 }
368
368
369 spacewire_read_statistics();
369 spacewire_read_statistics();
370 status = spacewire_stop_and_start_link( fdSPW );
370 status = spacewire_stop_and_start_link( fdSPW );
371
371
372 if (status != RTEMS_SUCCESSFUL)
372 if (status != RTEMS_SUCCESSFUL)
373 {
373 {
374 PRINTF1("in LINK *** ERR link not started %d\n", status)
374 PRINTF1("in LINK *** ERR link not started %d\n", status)
375 }
375 }
376 else
376 else
377 {
377 {
378 PRINTF("in LINK *** OK link started\n")
378 PRINTF("in LINK *** OK link started\n")
379 }
379 }
380
380
381 // restart the SPIQ task
381 // restart the SPIQ task
382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
383 if ( status != RTEMS_SUCCESSFUL ) {
383 if ( status != RTEMS_SUCCESSFUL ) {
384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
385 }
385 }
386
386
387 // restart RECV and SEND
387 // restart RECV and SEND
388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
389 if ( status != RTEMS_SUCCESSFUL ) {
389 if ( status != RTEMS_SUCCESSFUL ) {
390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
391 }
391 }
392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
393 if ( status != RTEMS_SUCCESSFUL ) {
393 if ( status != RTEMS_SUCCESSFUL ) {
394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
395 }
395 }
396 }
396 }
397 }
397 }
398
398
399 //****************
399 //****************
400 // OTHER FUNCTIONS
400 // OTHER FUNCTIONS
401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
402 {
402 {
403 /** This function opens the SpaceWire link.
403 /** This function opens the SpaceWire link.
404 *
404 *
405 * @return a valid file descriptor in case of success, -1 in case of a failure
405 * @return a valid file descriptor in case of success, -1 in case of a failure
406 *
406 *
407 */
407 */
408 rtems_status_code status;
408 rtems_status_code status;
409
409
410 status = RTEMS_SUCCESSFUL;
410 status = RTEMS_SUCCESSFUL;
411
411
412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
413 if ( fdSPW < 0 ) {
413 if ( fdSPW < 0 ) {
414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
415 }
415 }
416 else
416 else
417 {
417 {
418 status = RTEMS_SUCCESSFUL;
418 status = RTEMS_SUCCESSFUL;
419 }
419 }
420
420
421 return status;
421 return status;
422 }
422 }
423
423
424 int spacewire_start_link( int fd )
424 int spacewire_start_link( int fd )
425 {
425 {
426 rtems_status_code status;
426 rtems_status_code status;
427
427
428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
429 // -1 default hardcoded driver timeout
429 // -1 default hardcoded driver timeout
430
430
431 return status;
431 return status;
432 }
432 }
433
433
434 int spacewire_stop_and_start_link( int fd )
434 int spacewire_stop_and_start_link( int fd )
435 {
435 {
436 rtems_status_code status;
436 rtems_status_code status;
437
437
438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
440 // -1 default hardcoded driver timeout
440 // -1 default hardcoded driver timeout
441
441
442 return status;
442 return status;
443 }
443 }
444
444
445 int spacewire_configure_link( int fd )
445 int spacewire_configure_link( int fd )
446 {
446 {
447 /** This function configures the SpaceWire link.
447 /** This function configures the SpaceWire link.
448 *
448 *
449 * @return GR-RTEMS-DRIVER directive status codes:
449 * @return GR-RTEMS-DRIVER directive status codes:
450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
455 * - 5 EIO - Error when writing to grswp hardware registers.
455 * - 5 EIO - Error when writing to grswp hardware registers.
456 * - 2 ENOENT - No such file or directory
456 * - 2 ENOENT - No such file or directory
457 */
457 */
458
458
459 rtems_status_code status;
459 rtems_status_code status;
460
460
461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
463 spw_ioctl_packetsize packetsize;
463 spw_ioctl_packetsize packetsize;
464
464
465 packetsize.rxsize = SPW_RXSIZE;
465 packetsize.rxsize = SPW_RXSIZE;
466 packetsize.txdsize = SPW_TXDSIZE;
466 packetsize.txdsize = SPW_TXDSIZE;
467 packetsize.txhsize = SPW_TXHSIZE;
467 packetsize.txhsize = SPW_TXHSIZE;
468
468
469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
470 if (status!=RTEMS_SUCCESSFUL) {
470 if (status!=RTEMS_SUCCESSFUL) {
471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
472 }
472 }
473 //
473 //
474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
475 if (status!=RTEMS_SUCCESSFUL) {
475 if (status!=RTEMS_SUCCESSFUL) {
476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
477 }
477 }
478 //
478 //
479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
480 if (status!=RTEMS_SUCCESSFUL) {
480 if (status!=RTEMS_SUCCESSFUL) {
481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
482 }
482 }
483 //
483 //
484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
485 if (status!=RTEMS_SUCCESSFUL) {
485 if (status!=RTEMS_SUCCESSFUL) {
486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
487 }
487 }
488 //
488 //
489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
490 if (status!=RTEMS_SUCCESSFUL) {
490 if (status!=RTEMS_SUCCESSFUL) {
491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
492 }
492 }
493 //
493 //
494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
495 if (status!=RTEMS_SUCCESSFUL) {
495 if (status!=RTEMS_SUCCESSFUL) {
496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
497 }
497 }
498 //
498 //
499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
500 if (status!=RTEMS_SUCCESSFUL) {
500 if (status!=RTEMS_SUCCESSFUL) {
501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
502 }
502 }
503 //
503 //
504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
505 if (status!=RTEMS_SUCCESSFUL) {
505 if (status!=RTEMS_SUCCESSFUL) {
506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
507 }
507 }
508
508
509 return status;
509 return status;
510 }
510 }
511
511
512 int spacewire_several_connect_attemps( void )
512 int spacewire_several_connect_attemps( void )
513 {
513 {
514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
515 *
515 *
516 * @return RTEMS directive status code:
516 * @return RTEMS directive status code:
517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
519 *
519 *
520 */
520 */
521
521
522 rtems_status_code status_spw;
522 rtems_status_code status_spw;
523 rtems_status_code status;
523 rtems_status_code status;
524 int i;
524 int i;
525
525
526 status_spw = RTEMS_SUCCESSFUL;
526 status_spw = RTEMS_SUCCESSFUL;
527
527
528 i = 0;
528 i = 0;
529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
530 {
530 {
531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
532
532
533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
534
534
535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
536
536
537 status_spw = spacewire_stop_and_start_link( fdSPW );
537 status_spw = spacewire_stop_and_start_link( fdSPW );
538
538
539 if ( status_spw != RTEMS_SUCCESSFUL )
539 if ( status_spw != RTEMS_SUCCESSFUL )
540 {
540 {
541 i = i + 1;
541 i = i + 1;
542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
543 }
543 }
544 else
544 else
545 {
545 {
546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
547 }
547 }
548 }
548 }
549
549
550 return status_spw;
550 return status_spw;
551 }
551 }
552
552
553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
554 {
554 {
555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
556 *
556 *
557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
558 * @param regAddr is the address of the GRSPW control register.
558 * @param regAddr is the address of the GRSPW control register.
559 *
559 *
560 * NP is the bit 20 of the GRSPW control register.
560 * NP is the bit 20 of the GRSPW control register.
561 *
561 *
562 */
562 */
563
563
564 unsigned int *spwptr = (unsigned int*) regAddr;
564 unsigned int *spwptr = (unsigned int*) regAddr;
565
565
566 if (val == 1) {
566 if (val == 1) {
567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
568 }
568 }
569 if (val== 0) {
569 if (val== 0) {
570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
571 }
571 }
572 }
572 }
573
573
574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
575 {
575 {
576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
577 *
577 *
578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
579 * @param regAddr is the address of the GRSPW control register.
579 * @param regAddr is the address of the GRSPW control register.
580 *
580 *
581 * RE is the bit 16 of the GRSPW control register.
581 * RE is the bit 16 of the GRSPW control register.
582 *
582 *
583 */
583 */
584
584
585 unsigned int *spwptr = (unsigned int*) regAddr;
585 unsigned int *spwptr = (unsigned int*) regAddr;
586
586
587 if (val == 1)
587 if (val == 1)
588 {
588 {
589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
590 }
590 }
591 if (val== 0)
591 if (val== 0)
592 {
592 {
593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
594 }
594 }
595 }
595 }
596
596
597 void spacewire_read_statistics( void )
597 void spacewire_read_statistics( void )
598 {
598 {
599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
600 *
600 *
601 * @param void
601 * @param void
602 *
602 *
603 * @return void
603 * @return void
604 *
604 *
605 * Once they are read, the counters are stored in a global variable used during the building of the
605 * Once they are read, the counters are stored in a global variable used during the building of the
606 * HK packets.
606 * HK packets.
607 *
607 *
608 */
608 */
609
609
610 rtems_status_code status;
610 rtems_status_code status;
611 spw_stats current;
611 spw_stats current;
612
612
613 memset(&current, 0, sizeof(spw_stats));
613 memset(&current, 0, sizeof(spw_stats));
614
614
615 spacewire_get_last_error();
615 spacewire_get_last_error();
616
616
617 // read the current statistics
617 // read the current statistics
618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
619
619
620 // clear the counters
620 // clear the counters
621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
622
622
623 // typedef struct {
623 // typedef struct {
624 // unsigned int tx_link_err; // NOT IN HK
624 // unsigned int tx_link_err; // NOT IN HK
625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
627 // unsigned int rx_eep_err;
627 // unsigned int rx_eep_err;
628 // unsigned int rx_truncated;
628 // unsigned int rx_truncated;
629 // unsigned int parity_err;
629 // unsigned int parity_err;
630 // unsigned int escape_err;
630 // unsigned int escape_err;
631 // unsigned int credit_err;
631 // unsigned int credit_err;
632 // unsigned int write_sync_err;
632 // unsigned int write_sync_err;
633 // unsigned int disconnect_err;
633 // unsigned int disconnect_err;
634 // unsigned int early_ep;
634 // unsigned int early_ep;
635 // unsigned int invalid_address;
635 // unsigned int invalid_address;
636 // unsigned int packets_sent;
636 // unsigned int packets_sent;
637 // unsigned int packets_received;
637 // unsigned int packets_received;
638 // } spw_stats;
638 // } spw_stats;
639
639
640 // rx_eep_err
640 // rx_eep_err
641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
642 // rx_truncated
642 // rx_truncated
643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
644 // parity_err
644 // parity_err
645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
646 // escape_err
646 // escape_err
647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
648 // credit_err
648 // credit_err
649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
650 // write_sync_err
650 // write_sync_err
651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
652 // disconnect_err
652 // disconnect_err
653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
654 // early_ep
654 // early_ep
655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
656 // invalid_address
656 // invalid_address
657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
658 // packets_sent
658 // packets_sent
659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
660 // packets_received
660 // packets_received
661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
662
662
663 }
663 }
664
664
665 void spacewire_get_last_error( void )
665 void spacewire_get_last_error( void )
666 {
666 {
667 static spw_stats previous = {0};
667 static spw_stats previous = {0};
668 spw_stats current;
668 spw_stats current;
669 rtems_status_code status;
669 rtems_status_code status;
670
670
671 unsigned int hk_lfr_last_er_rid;
671 unsigned int hk_lfr_last_er_rid;
672 unsigned char hk_lfr_last_er_code;
672 unsigned char hk_lfr_last_er_code;
673 int coarseTime;
673 int coarseTime;
674 int fineTime;
674 int fineTime;
675 unsigned char update_hk_lfr_last_er;
675 unsigned char update_hk_lfr_last_er;
676
676
677 memset(&current, 0, sizeof(spw_stats));
677 memset(&current, 0, sizeof(spw_stats));
678 hk_lfr_last_er_rid = INIT_CHAR;
678 hk_lfr_last_er_rid = INIT_CHAR;
679 hk_lfr_last_er_code = INIT_CHAR;
679 hk_lfr_last_er_code = INIT_CHAR;
680 update_hk_lfr_last_er = INIT_CHAR;
680 update_hk_lfr_last_er = INIT_CHAR;
681
681
682 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
682 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
683
683
684 // get current time
684 // get current time
685 coarseTime = time_management_regs->coarse_time;
685 coarseTime = time_management_regs->coarse_time;
686 fineTime = time_management_regs->fine_time;
686 fineTime = time_management_regs->fine_time;
687
687
688 // typedef struct {
688 // typedef struct {
689 // unsigned int tx_link_err; // NOT IN HK
689 // unsigned int tx_link_err; // NOT IN HK
690 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
690 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
691 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
691 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
692 // unsigned int rx_eep_err;
692 // unsigned int rx_eep_err;
693 // unsigned int rx_truncated;
693 // unsigned int rx_truncated;
694 // unsigned int parity_err;
694 // unsigned int parity_err;
695 // unsigned int escape_err;
695 // unsigned int escape_err;
696 // unsigned int credit_err;
696 // unsigned int credit_err;
697 // unsigned int write_sync_err;
697 // unsigned int write_sync_err;
698 // unsigned int disconnect_err;
698 // unsigned int disconnect_err;
699 // unsigned int early_ep;
699 // unsigned int early_ep;
700 // unsigned int invalid_address;
700 // unsigned int invalid_address;
701 // unsigned int packets_sent;
701 // unsigned int packets_sent;
702 // unsigned int packets_received;
702 // unsigned int packets_received;
703 // } spw_stats;
703 // } spw_stats;
704
704
705 // tx_link_err *** no code associated to this field
705 // tx_link_err *** no code associated to this field
706 // rx_rmap_header_crc_err *** LE *** in HK
706 // rx_rmap_header_crc_err *** LE *** in HK
707 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
707 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
708 {
708 {
709 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
709 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
710 hk_lfr_last_er_code = CODE_HEADER_CRC;
710 hk_lfr_last_er_code = CODE_HEADER_CRC;
711 update_hk_lfr_last_er = 1;
711 update_hk_lfr_last_er = 1;
712 }
712 }
713 // rx_rmap_data_crc_err *** LE *** NOT IN HK
713 // rx_rmap_data_crc_err *** LE *** NOT IN HK
714 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
714 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
715 {
715 {
716 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
716 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
717 hk_lfr_last_er_code = CODE_DATA_CRC;
717 hk_lfr_last_er_code = CODE_DATA_CRC;
718 update_hk_lfr_last_er = 1;
718 update_hk_lfr_last_er = 1;
719 }
719 }
720 // rx_eep_err
720 // rx_eep_err
721 if (previous.rx_eep_err != current.rx_eep_err)
721 if (previous.rx_eep_err != current.rx_eep_err)
722 {
722 {
723 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
723 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
724 hk_lfr_last_er_code = CODE_EEP;
724 hk_lfr_last_er_code = CODE_EEP;
725 update_hk_lfr_last_er = 1;
725 update_hk_lfr_last_er = 1;
726 }
726 }
727 // rx_truncated
727 // rx_truncated
728 if (previous.rx_truncated != current.rx_truncated)
728 if (previous.rx_truncated != current.rx_truncated)
729 {
729 {
730 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
730 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
731 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
731 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
732 update_hk_lfr_last_er = 1;
732 update_hk_lfr_last_er = 1;
733 }
733 }
734 // parity_err
734 // parity_err
735 if (previous.parity_err != current.parity_err)
735 if (previous.parity_err != current.parity_err)
736 {
736 {
737 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
737 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
738 hk_lfr_last_er_code = CODE_PARITY;
738 hk_lfr_last_er_code = CODE_PARITY;
739 update_hk_lfr_last_er = 1;
739 update_hk_lfr_last_er = 1;
740 }
740 }
741 // escape_err
741 // escape_err
742 if (previous.parity_err != current.parity_err)
742 if (previous.parity_err != current.parity_err)
743 {
743 {
744 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
744 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
745 hk_lfr_last_er_code = CODE_ESCAPE;
745 hk_lfr_last_er_code = CODE_ESCAPE;
746 update_hk_lfr_last_er = 1;
746 update_hk_lfr_last_er = 1;
747 }
747 }
748 // credit_err
748 // credit_err
749 if (previous.credit_err != current.credit_err)
749 if (previous.credit_err != current.credit_err)
750 {
750 {
751 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
751 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
752 hk_lfr_last_er_code = CODE_CREDIT;
752 hk_lfr_last_er_code = CODE_CREDIT;
753 update_hk_lfr_last_er = 1;
753 update_hk_lfr_last_er = 1;
754 }
754 }
755 // write_sync_err
755 // write_sync_err
756 if (previous.write_sync_err != current.write_sync_err)
756 if (previous.write_sync_err != current.write_sync_err)
757 {
757 {
758 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
758 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
759 hk_lfr_last_er_code = CODE_WRITE_SYNC;
759 hk_lfr_last_er_code = CODE_WRITE_SYNC;
760 update_hk_lfr_last_er = 1;
760 update_hk_lfr_last_er = 1;
761 }
761 }
762 // disconnect_err
762 // disconnect_err
763 if (previous.disconnect_err != current.disconnect_err)
763 if (previous.disconnect_err != current.disconnect_err)
764 {
764 {
765 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
765 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
766 hk_lfr_last_er_code = CODE_DISCONNECT;
766 hk_lfr_last_er_code = CODE_DISCONNECT;
767 update_hk_lfr_last_er = 1;
767 update_hk_lfr_last_er = 1;
768 }
768 }
769 // early_ep
769 // early_ep
770 if (previous.early_ep != current.early_ep)
770 if (previous.early_ep != current.early_ep)
771 {
771 {
772 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
772 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
773 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
773 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
774 update_hk_lfr_last_er = 1;
774 update_hk_lfr_last_er = 1;
775 }
775 }
776 // invalid_address
776 // invalid_address
777 if (previous.invalid_address != current.invalid_address)
777 if (previous.invalid_address != current.invalid_address)
778 {
778 {
779 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
779 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
780 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
780 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
781 update_hk_lfr_last_er = 1;
781 update_hk_lfr_last_er = 1;
782 }
782 }
783
783
784 // if a field has changed, update the hk_last_er fields
784 // if a field has changed, update the hk_last_er fields
785 if (update_hk_lfr_last_er == 1)
785 if (update_hk_lfr_last_er == 1)
786 {
786 {
787 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
787 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
788 }
788 }
789
789
790 previous = current;
790 previous = current;
791 }
791 }
792
792
793 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
793 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
794 {
794 {
795 unsigned char *coarseTimePtr;
795 unsigned char *coarseTimePtr;
796 unsigned char *fineTimePtr;
796 unsigned char *fineTimePtr;
797
797
798 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
798 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
799 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
799 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
800
800
801 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
801 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
802 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
802 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
803 housekeeping_packet.hk_lfr_last_er_code = code;
803 housekeeping_packet.hk_lfr_last_er_code = code;
804 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
804 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
805 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
805 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
806 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
806 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
807 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
807 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
808 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
808 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
809 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
809 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
810 }
810 }
811
811
812 void update_hk_with_grspw_stats( void )
812 void update_hk_with_grspw_stats( void )
813 {
813 {
814 //****************************
814 //****************************
815 // DPU_SPACEWIRE_IF_STATISTICS
815 // DPU_SPACEWIRE_IF_STATISTICS
816 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
816 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
817 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
817 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
818 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
818 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
819 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
819 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
820
820
821 //******************************************
821 //******************************************
822 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
822 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
823 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
823 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
824 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
824 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
825 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
825 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
826 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
826 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
827 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
827 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
828
828
829 //*********************************************
829 //*********************************************
830 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
830 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
831 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
831 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
832 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
832 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
833 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
833 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
834 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
834 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
835 }
835 }
836
836
837 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
837 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
838 {
838 {
839 unsigned int *statusRegisterPtr;
839 unsigned int *statusRegisterPtr;
840 unsigned char linkState;
840 unsigned char linkState;
841
841
842 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
842 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
843 linkState =
843 linkState =
844 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
844 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
845
845
846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
847
847
848 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
848 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
849 }
849 }
850
850
851 void increase_unsigned_char_counter( unsigned char *counter )
851 void increase_unsigned_char_counter( unsigned char *counter )
852 {
852 {
853 // update the number of valid timecodes that have been received
853 // update the number of valid timecodes that have been received
854 if (*counter == UINT8_MAX)
854 if (*counter == UINT8_MAX)
855 {
855 {
856 *counter = 0;
856 *counter = 0;
857 }
857 }
858 else
858 else
859 {
859 {
860 *counter = *counter + 1;
860 *counter = *counter + 1;
861 }
861 }
862 }
862 }
863
863
864 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
864 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
865 {
865 {
866 /** This function checks the coherency between the incoming timecode and the last valid timecode.
866 /** This function checks the coherency between the incoming timecode and the last valid timecode.
867 *
867 *
868 * @param currentTimecodeCtr is the incoming timecode
868 * @param currentTimecodeCtr is the incoming timecode
869 *
869 *
870 * @return returned codes::
870 * @return returned codes::
871 * - LFR_DEFAULT
871 * - LFR_DEFAULT
872 * - LFR_SUCCESSFUL
872 * - LFR_SUCCESSFUL
873 *
873 *
874 */
874 */
875
875
876 static unsigned char firstTickout = 1;
876 static unsigned char firstTickout = 1;
877 unsigned char ret;
877 unsigned char ret;
878
878
879 ret = LFR_DEFAULT;
879 ret = LFR_DEFAULT;
880
880
881 if (firstTickout == 0)
881 if (firstTickout == 0)
882 {
882 {
883 if (currentTimecodeCtr == 0)
883 if (currentTimecodeCtr == 0)
884 {
884 {
885 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
885 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
886 {
886 {
887 ret = LFR_SUCCESSFUL;
887 ret = LFR_SUCCESSFUL;
888 }
888 }
889 else
889 else
890 {
890 {
891 ret = LFR_DEFAULT;
891 ret = LFR_DEFAULT;
892 }
892 }
893 }
893 }
894 else
894 else
895 {
895 {
896 if (currentTimecodeCtr == (previousTimecodeCtr +1))
896 if (currentTimecodeCtr == (previousTimecodeCtr +1))
897 {
897 {
898 ret = LFR_SUCCESSFUL;
898 ret = LFR_SUCCESSFUL;
899 }
899 }
900 else
900 else
901 {
901 {
902 ret = LFR_DEFAULT;
902 ret = LFR_DEFAULT;
903 }
903 }
904 }
904 }
905 }
905 }
906 else
906 else
907 {
907 {
908 firstTickout = 0;
908 firstTickout = 0;
909 ret = LFR_SUCCESSFUL;
909 ret = LFR_SUCCESSFUL;
910 }
910 }
911
911
912 return ret;
912 return ret;
913 }
913 }
914
914
915 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
915 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
916 {
916 {
917 unsigned int ret;
917 unsigned int ret;
918
918
919 ret = LFR_DEFAULT;
919 ret = LFR_DEFAULT;
920
920
921 if (timecode == internalTime)
921 if (timecode == internalTime)
922 {
922 {
923 ret = LFR_SUCCESSFUL;
923 ret = LFR_SUCCESSFUL;
924 }
924 }
925 else
925 else
926 {
926 {
927 ret = LFR_DEFAULT;
927 ret = LFR_DEFAULT;
928 }
928 }
929
929
930 return ret;
930 return ret;
931 }
931 }
932
932
933 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
933 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
934 {
934 {
935 // a tickout has been emitted, perform actions on the incoming timecode
935 // a tickout has been emitted, perform actions on the incoming timecode
936
936
937 unsigned char incomingTimecode;
937 unsigned char incomingTimecode;
938 unsigned char updateTime;
938 unsigned char updateTime;
939 unsigned char internalTime;
939 unsigned char internalTime;
940 rtems_status_code status;
940 rtems_status_code status;
941
941
942 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
942 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
943 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
943 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
944 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
944 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
945
945
946 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
946 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
947
947
948 // update the number of tickout that have been generated
948 // update the number of tickout that have been generated
949 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
949 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
950
950
951 //**************************
951 //**************************
952 // HK_LFR_TIMECODE_ERRONEOUS
952 // HK_LFR_TIMECODE_ERRONEOUS
953 // MISSING and INVALID are handled by the timecode_timer_routine service routine
953 // MISSING and INVALID are handled by the timecode_timer_routine service routine
954 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
954 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
955 {
955 {
956 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
956 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
957 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
957 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
958 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
958 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
959 }
959 }
960
960
961 //************************
961 //************************
962 // HK_LFR_TIME_TIMECODE_IT
962 // HK_LFR_TIME_TIMECODE_IT
963 // check the coherency between the SpaceWire timecode and the Internal Time
963 // check the coherency between the SpaceWire timecode and the Internal Time
964 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
964 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
965 {
965 {
966 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
966 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
967 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
967 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
968 }
968 }
969
969
970 //********************
970 //********************
971 // HK_LFR_TIMECODE_CTR
971 // HK_LFR_TIMECODE_CTR
972 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
972 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
973 if (oneTcLfrUpdateTimeReceived == 1)
973 if (oneTcLfrUpdateTimeReceived == 1)
974 {
974 {
975 if ( incomingTimecode != updateTime )
975 if ( incomingTimecode != updateTime )
976 {
976 {
977 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
977 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
978 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
978 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
979 }
979 }
980 }
980 }
981
981
982 // launch the timecode timer to detect missing or invalid timecodes
982 // launch the timecode timer to detect missing or invalid timecodes
983 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
983 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
984 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
984 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
985 if (status != RTEMS_SUCCESSFUL)
985 if (status != RTEMS_SUCCESSFUL)
986 {
986 {
987 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
987 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
988 }
988 }
989 }
989 }
990
990
991 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
991 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
992 {
992 {
993 static unsigned char initStep = 1;
993 static unsigned char initStep = 1;
994
994
995 unsigned char currentTimecodeCtr;
995 unsigned char currentTimecodeCtr;
996
996
997 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
997 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
998
998
999 if (initStep == 1)
999 if (initStep == 1)
1000 {
1000 {
1001 if (currentTimecodeCtr == previousTimecodeCtr)
1001 if (currentTimecodeCtr == previousTimecodeCtr)
1002 {
1002 {
1003 //************************
1003 //************************
1004 // HK_LFR_TIMECODE_MISSING
1004 // HK_LFR_TIMECODE_MISSING
1005 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1005 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1006 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1006 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1007 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1007 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1008 }
1008 }
1009 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1009 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1010 {
1010 {
1011 // the timecode value has changed and the value is valid, this is unexpected because
1011 // the timecode value has changed and the value is valid, this is unexpected because
1012 // the timer should not have fired, the timecode_irq_handler should have been raised
1012 // the timer should not have fired, the timecode_irq_handler should have been raised
1013 }
1013 }
1014 else
1014 else
1015 {
1015 {
1016 //************************
1016 //************************
1017 // HK_LFR_TIMECODE_INVALID
1017 // HK_LFR_TIMECODE_INVALID
1018 // the timecode value has changed and the value is not valid, no tickout has been generated
1018 // the timecode value has changed and the value is not valid, no tickout has been generated
1019 // this is why the timer has fired
1019 // this is why the timer has fired
1020 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1020 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1021 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1021 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1022 }
1022 }
1023 }
1023 }
1024 else
1024 else
1025 {
1025 {
1026 initStep = 1;
1026 initStep = 1;
1027 //************************
1027 //************************
1028 // HK_LFR_TIMECODE_MISSING
1028 // HK_LFR_TIMECODE_MISSING
1029 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1029 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1030 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1030 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1031 }
1031 }
1032
1032
1033 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1033 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1034 }
1034 }
1035
1035
1036 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1036 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1037 {
1037 {
1038 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1038 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1039 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1039 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1040 header->reserved = DEFAULT_RESERVED;
1040 header->reserved = DEFAULT_RESERVED;
1041 header->userApplication = CCSDS_USER_APP;
1041 header->userApplication = CCSDS_USER_APP;
1042 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1042 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1043 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1043 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1044 header->packetLength[0] = INIT_CHAR;
1044 header->packetLength[0] = INIT_CHAR;
1045 header->packetLength[1] = INIT_CHAR;
1045 header->packetLength[1] = INIT_CHAR;
1046 // DATA FIELD HEADER
1046 // DATA FIELD HEADER
1047 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1047 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1048 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1048 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1049 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1049 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1050 header->destinationID = TM_DESTINATION_ID_GROUND;
1050 header->destinationID = TM_DESTINATION_ID_GROUND;
1051 header->time[BYTE_0] = INIT_CHAR;
1051 header->time[BYTE_0] = INIT_CHAR;
1052 header->time[BYTE_1] = INIT_CHAR;
1052 header->time[BYTE_1] = INIT_CHAR;
1053 header->time[BYTE_2] = INIT_CHAR;
1053 header->time[BYTE_2] = INIT_CHAR;
1054 header->time[BYTE_3] = INIT_CHAR;
1054 header->time[BYTE_3] = INIT_CHAR;
1055 header->time[BYTE_4] = INIT_CHAR;
1055 header->time[BYTE_4] = INIT_CHAR;
1056 header->time[BYTE_5] = INIT_CHAR;
1056 header->time[BYTE_5] = INIT_CHAR;
1057 // AUXILIARY DATA HEADER
1057 // AUXILIARY DATA HEADER
1058 header->sid = INIT_CHAR;
1058 header->sid = INIT_CHAR;
1059 header->pa_bia_status_info = DEFAULT_HKBIA;
1059 header->pa_bia_status_info = DEFAULT_HKBIA;
1060 header->blkNr[0] = INIT_CHAR;
1060 header->blkNr[0] = INIT_CHAR;
1061 header->blkNr[1] = INIT_CHAR;
1061 header->blkNr[1] = INIT_CHAR;
1062 }
1062 }
1063
1063
1064 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1064 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1065 {
1065 {
1066 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1066 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1067 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1067 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1068 header->reserved = DEFAULT_RESERVED;
1068 header->reserved = DEFAULT_RESERVED;
1069 header->userApplication = CCSDS_USER_APP;
1069 header->userApplication = CCSDS_USER_APP;
1070 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1070 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1071 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1071 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1072 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1072 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1073 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1073 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1074 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1074 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1075 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1075 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1076 // DATA FIELD HEADER
1076 // DATA FIELD HEADER
1077 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1077 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1078 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1078 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1079 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1079 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1080 header->destinationID = TM_DESTINATION_ID_GROUND;
1080 header->destinationID = TM_DESTINATION_ID_GROUND;
1081 header->time[BYTE_0] = INIT_CHAR;
1081 header->time[BYTE_0] = INIT_CHAR;
1082 header->time[BYTE_1] = INIT_CHAR;
1082 header->time[BYTE_1] = INIT_CHAR;
1083 header->time[BYTE_2] = INIT_CHAR;
1083 header->time[BYTE_2] = INIT_CHAR;
1084 header->time[BYTE_3] = INIT_CHAR;
1084 header->time[BYTE_3] = INIT_CHAR;
1085 header->time[BYTE_4] = INIT_CHAR;
1085 header->time[BYTE_4] = INIT_CHAR;
1086 header->time[BYTE_5] = INIT_CHAR;
1086 header->time[BYTE_5] = INIT_CHAR;
1087 // AUXILIARY DATA HEADER
1087 // AUXILIARY DATA HEADER
1088 header->sid = INIT_CHAR;
1088 header->sid = INIT_CHAR;
1089 header->pa_bia_status_info = DEFAULT_HKBIA;
1089 header->pa_bia_status_info = DEFAULT_HKBIA;
1090 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1090 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1091 header->pktNr = INIT_CHAR;
1091 header->pktNr = INIT_CHAR;
1092 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1092 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1093 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1093 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1094 }
1094 }
1095
1095
1096 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1096 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1097 {
1097 {
1098 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1098 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1099 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1099 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1100 header->reserved = DEFAULT_RESERVED;
1100 header->reserved = DEFAULT_RESERVED;
1101 header->userApplication = CCSDS_USER_APP;
1101 header->userApplication = CCSDS_USER_APP;
1102 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1102 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1103 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1103 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1104 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1104 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1105 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1105 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1106 header->packetLength[0] = INIT_CHAR;
1106 header->packetLength[0] = INIT_CHAR;
1107 header->packetLength[1] = INIT_CHAR;
1107 header->packetLength[1] = INIT_CHAR;
1108 // DATA FIELD HEADER
1108 // DATA FIELD HEADER
1109 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1109 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1110 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1110 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1111 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1111 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1112 header->destinationID = TM_DESTINATION_ID_GROUND;
1112 header->destinationID = TM_DESTINATION_ID_GROUND;
1113 header->time[BYTE_0] = INIT_CHAR;
1113 header->time[BYTE_0] = INIT_CHAR;
1114 header->time[BYTE_1] = INIT_CHAR;
1114 header->time[BYTE_1] = INIT_CHAR;
1115 header->time[BYTE_2] = INIT_CHAR;
1115 header->time[BYTE_2] = INIT_CHAR;
1116 header->time[BYTE_3] = INIT_CHAR;
1116 header->time[BYTE_3] = INIT_CHAR;
1117 header->time[BYTE_4] = INIT_CHAR;
1117 header->time[BYTE_4] = INIT_CHAR;
1118 header->time[BYTE_5] = INIT_CHAR;
1118 header->time[BYTE_5] = INIT_CHAR;
1119 // AUXILIARY DATA HEADER
1119 // AUXILIARY DATA HEADER
1120 header->sid = INIT_CHAR;
1120 header->sid = INIT_CHAR;
1121 header->pa_bia_status_info = INIT_CHAR;
1121 header->pa_bia_status_info = INIT_CHAR;
1122 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1122 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1123 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1123 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1124 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1124 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1125 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1125 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1126 }
1126 }
1127
1127
1128 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1128 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1129 Header_TM_LFR_SCIENCE_CWF_t *header )
1129 Header_TM_LFR_SCIENCE_CWF_t *header )
1130 {
1130 {
1131 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1131 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1132 *
1132 *
1133 * @param waveform points to the buffer containing the data that will be send.
1133 * @param waveform points to the buffer containing the data that will be send.
1134 * @param sid is the source identifier of the data that will be sent.
1134 * @param sid is the source identifier of the data that will be sent.
1135 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1135 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1136 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1136 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1137 * contain information to setup the transmission of the data packets.
1137 * contain information to setup the transmission of the data packets.
1138 *
1138 *
1139 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1139 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1140 *
1140 *
1141 */
1141 */
1142
1142
1143 unsigned int i;
1143 unsigned int i;
1144 int ret;
1144 int ret;
1145 unsigned int coarseTime;
1145 unsigned int coarseTime;
1146 unsigned int fineTime;
1146 unsigned int fineTime;
1147 rtems_status_code status;
1147 rtems_status_code status;
1148 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1148 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1149 int *dataPtr;
1149 int *dataPtr;
1150 unsigned char sid;
1150 unsigned char sid;
1151
1151
1152 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1152 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1153 spw_ioctl_send_CWF.options = 0;
1153 spw_ioctl_send_CWF.options = 0;
1154
1154
1155 ret = LFR_DEFAULT;
1155 ret = LFR_DEFAULT;
1156 sid = (unsigned char) ring_node_to_send->sid;
1156 sid = (unsigned char) ring_node_to_send->sid;
1157
1157
1158 coarseTime = ring_node_to_send->coarseTime;
1158 coarseTime = ring_node_to_send->coarseTime;
1159 fineTime = ring_node_to_send->fineTime;
1159 fineTime = ring_node_to_send->fineTime;
1160 dataPtr = (int*) ring_node_to_send->buffer_address;
1160 dataPtr = (int*) ring_node_to_send->buffer_address;
1161
1161
1162 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1162 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1163 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1163 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1164 header->pa_bia_status_info = pa_bia_status_info;
1164 header->pa_bia_status_info = pa_bia_status_info;
1165 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1165 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1166 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1166 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1167 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1167 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1168
1168
1169 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1169 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1170 {
1170 {
1171 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1171 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1172 spw_ioctl_send_CWF.hdr = (char*) header;
1172 spw_ioctl_send_CWF.hdr = (char*) header;
1173 // BUILD THE DATA
1173 // BUILD THE DATA
1174 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1174 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1175
1175
1176 // SET PACKET SEQUENCE CONTROL
1176 // SET PACKET SEQUENCE CONTROL
1177 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1177 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1178
1178
1179 // SET SID
1179 // SET SID
1180 header->sid = sid;
1180 header->sid = sid;
1181
1181
1182 // SET PACKET TIME
1182 // SET PACKET TIME
1183 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1183 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1184 //
1184 //
1185 header->time[0] = header->acquisitionTime[0];
1185 header->time[0] = header->acquisitionTime[0];
1186 header->time[1] = header->acquisitionTime[1];
1186 header->time[1] = header->acquisitionTime[1];
1187 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1187 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1188 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1188 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1189 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1189 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1190 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1190 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1191
1191
1192 // SET PACKET ID
1192 // SET PACKET ID
1193 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1193 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1194 {
1194 {
1195 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1195 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1196 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1196 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1197 }
1197 }
1198 else
1198 else
1199 {
1199 {
1200 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1200 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1201 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1201 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1202 }
1202 }
1203
1203
1204 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1204 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1205 if (status != RTEMS_SUCCESSFUL) {
1205 if (status != RTEMS_SUCCESSFUL) {
1206 ret = LFR_DEFAULT;
1206 ret = LFR_DEFAULT;
1207 }
1207 }
1208 }
1208 }
1209
1209
1210 return ret;
1210 return ret;
1211 }
1211 }
1212
1212
1213 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1213 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1214 Header_TM_LFR_SCIENCE_SWF_t *header )
1214 Header_TM_LFR_SCIENCE_SWF_t *header )
1215 {
1215 {
1216 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1216 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1217 *
1217 *
1218 * @param waveform points to the buffer containing the data that will be send.
1218 * @param waveform points to the buffer containing the data that will be send.
1219 * @param sid is the source identifier of the data that will be sent.
1219 * @param sid is the source identifier of the data that will be sent.
1220 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1220 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1221 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1221 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1222 * contain information to setup the transmission of the data packets.
1222 * contain information to setup the transmission of the data packets.
1223 *
1223 *
1224 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1224 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1225 *
1225 *
1226 */
1226 */
1227
1227
1228 unsigned int i;
1228 unsigned int i;
1229 int ret;
1229 int ret;
1230 unsigned int coarseTime;
1230 unsigned int coarseTime;
1231 unsigned int fineTime;
1231 unsigned int fineTime;
1232 rtems_status_code status;
1232 rtems_status_code status;
1233 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1233 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1234 int *dataPtr;
1234 int *dataPtr;
1235 unsigned char sid;
1235 unsigned char sid;
1236
1236
1237 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1237 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1238 spw_ioctl_send_SWF.options = 0;
1238 spw_ioctl_send_SWF.options = 0;
1239
1239
1240 ret = LFR_DEFAULT;
1240 ret = LFR_DEFAULT;
1241
1241
1242 coarseTime = ring_node_to_send->coarseTime;
1242 coarseTime = ring_node_to_send->coarseTime;
1243 fineTime = ring_node_to_send->fineTime;
1243 fineTime = ring_node_to_send->fineTime;
1244 dataPtr = (int*) ring_node_to_send->buffer_address;
1244 dataPtr = (int*) ring_node_to_send->buffer_address;
1245 sid = ring_node_to_send->sid;
1245 sid = ring_node_to_send->sid;
1246
1246
1247 header->pa_bia_status_info = pa_bia_status_info;
1247 header->pa_bia_status_info = pa_bia_status_info;
1248 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1248 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1249
1249
1250 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1250 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1251 {
1251 {
1252 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1252 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1253 spw_ioctl_send_SWF.hdr = (char*) header;
1253 spw_ioctl_send_SWF.hdr = (char*) header;
1254
1254
1255 // SET PACKET SEQUENCE CONTROL
1255 // SET PACKET SEQUENCE CONTROL
1256 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1256 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1257
1257
1258 // SET PACKET LENGTH AND BLKNR
1258 // SET PACKET LENGTH AND BLKNR
1259 if (i == (PKTCNT_SWF-1))
1259 if (i == (PKTCNT_SWF-1))
1260 {
1260 {
1261 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1261 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1262 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1262 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1263 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1263 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1264 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1264 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1265 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1265 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1266 }
1266 }
1267 else
1267 else
1268 {
1268 {
1269 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1269 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1270 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1270 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1271 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1271 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1272 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1272 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1273 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1273 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1274 }
1274 }
1275
1275
1276 // SET PACKET TIME
1276 // SET PACKET TIME
1277 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1277 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1278 //
1278 //
1279 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1279 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1280 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1280 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1281 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1281 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1282 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1282 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1283 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1283 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1284 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1284 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1285
1285
1286 // SET SID
1286 // SET SID
1287 header->sid = sid;
1287 header->sid = sid;
1288
1288
1289 // SET PKTNR
1289 // SET PKTNR
1290 header->pktNr = i+1; // PKT_NR
1290 header->pktNr = i+1; // PKT_NR
1291
1291
1292 // SEND PACKET
1292 // SEND PACKET
1293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1294 if (status != RTEMS_SUCCESSFUL) {
1294 if (status != RTEMS_SUCCESSFUL) {
1295 ret = LFR_DEFAULT;
1295 ret = LFR_DEFAULT;
1296 }
1296 }
1297 }
1297 }
1298
1298
1299 return ret;
1299 return ret;
1300 }
1300 }
1301
1301
1302 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1302 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1303 Header_TM_LFR_SCIENCE_CWF_t *header )
1303 Header_TM_LFR_SCIENCE_CWF_t *header )
1304 {
1304 {
1305 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1305 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1306 *
1306 *
1307 * @param waveform points to the buffer containing the data that will be send.
1307 * @param waveform points to the buffer containing the data that will be send.
1308 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1308 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1309 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1309 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1310 * contain information to setup the transmission of the data packets.
1310 * contain information to setup the transmission of the data packets.
1311 *
1311 *
1312 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1312 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1313 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1313 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1314 *
1314 *
1315 */
1315 */
1316
1316
1317 unsigned int i;
1317 unsigned int i;
1318 int ret;
1318 int ret;
1319 unsigned int coarseTime;
1319 unsigned int coarseTime;
1320 unsigned int fineTime;
1320 unsigned int fineTime;
1321 rtems_status_code status;
1321 rtems_status_code status;
1322 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1322 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1323 char *dataPtr;
1323 char *dataPtr;
1324 unsigned char sid;
1324 unsigned char sid;
1325
1325
1326 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1326 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1327 spw_ioctl_send_CWF.options = 0;
1327 spw_ioctl_send_CWF.options = 0;
1328
1328
1329 ret = LFR_DEFAULT;
1329 ret = LFR_DEFAULT;
1330 sid = ring_node_to_send->sid;
1330 sid = ring_node_to_send->sid;
1331
1331
1332 coarseTime = ring_node_to_send->coarseTime;
1332 coarseTime = ring_node_to_send->coarseTime;
1333 fineTime = ring_node_to_send->fineTime;
1333 fineTime = ring_node_to_send->fineTime;
1334 dataPtr = (char*) ring_node_to_send->buffer_address;
1334 dataPtr = (char*) ring_node_to_send->buffer_address;
1335
1335
1336 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1336 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1337 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1337 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1338 header->pa_bia_status_info = pa_bia_status_info;
1338 header->pa_bia_status_info = pa_bia_status_info;
1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1340 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1340 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1341 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1341 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1342
1342
1343 //*********************
1343 //*********************
1344 // SEND CWF3_light DATA
1344 // SEND CWF3_light DATA
1345 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1345 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1346 {
1346 {
1347 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1347 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1348 spw_ioctl_send_CWF.hdr = (char*) header;
1348 spw_ioctl_send_CWF.hdr = (char*) header;
1349 // BUILD THE DATA
1349 // BUILD THE DATA
1350 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1350 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1351
1351
1352 // SET PACKET SEQUENCE COUNTER
1352 // SET PACKET SEQUENCE COUNTER
1353 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1353 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1354
1354
1355 // SET SID
1355 // SET SID
1356 header->sid = sid;
1356 header->sid = sid;
1357
1357
1358 // SET PACKET TIME
1358 // SET PACKET TIME
1359 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1359 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1360 //
1360 //
1361 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1361 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1362 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1362 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1363 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1363 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1364 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1364 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1365 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1365 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1366 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1366 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1367
1367
1368 // SET PACKET ID
1368 // SET PACKET ID
1369 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1369 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1370 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1370 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1371
1371
1372 // SEND PACKET
1372 // SEND PACKET
1373 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1373 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1374 if (status != RTEMS_SUCCESSFUL) {
1374 if (status != RTEMS_SUCCESSFUL) {
1375 ret = LFR_DEFAULT;
1375 ret = LFR_DEFAULT;
1376 }
1376 }
1377 }
1377 }
1378
1378
1379 return ret;
1379 return ret;
1380 }
1380 }
1381
1381
1382 void spw_send_asm_f0( ring_node *ring_node_to_send,
1382 void spw_send_asm_f0( ring_node *ring_node_to_send,
1383 Header_TM_LFR_SCIENCE_ASM_t *header )
1383 Header_TM_LFR_SCIENCE_ASM_t *header )
1384 {
1384 {
1385 unsigned int i;
1385 unsigned int i;
1386 unsigned int length = 0;
1386 unsigned int length = 0;
1387 rtems_status_code status;
1387 rtems_status_code status;
1388 unsigned int sid;
1388 unsigned int sid;
1389 float *spectral_matrix;
1389 float *spectral_matrix;
1390 int coarseTime;
1390 int coarseTime;
1391 int fineTime;
1391 int fineTime;
1392 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1392 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1393
1393
1394 sid = ring_node_to_send->sid;
1394 sid = ring_node_to_send->sid;
1395 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1395 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1396 coarseTime = ring_node_to_send->coarseTime;
1396 coarseTime = ring_node_to_send->coarseTime;
1397 fineTime = ring_node_to_send->fineTime;
1397 fineTime = ring_node_to_send->fineTime;
1398
1398
1399 header->pa_bia_status_info = pa_bia_status_info;
1399 header->pa_bia_status_info = pa_bia_status_info;
1400 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1400 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1401
1401
1402 for (i=0; i<PKTCNT_ASM; i++)
1402 for (i=0; i<PKTCNT_ASM; i++)
1403 {
1403 {
1404 if ((i==0) || (i==1))
1404 if ((i==0) || (i==1))
1405 {
1405 {
1406 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1406 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1407 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1407 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1408 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1408 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1409 ];
1409 ];
1410 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1410 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1411 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1411 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1412 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1412 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1413 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1413 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1414 }
1414 }
1415 else
1415 else
1416 {
1416 {
1417 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1417 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1418 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1418 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1419 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1419 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1420 ];
1420 ];
1421 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1421 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1422 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1422 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1423 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1423 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1424 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1424 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1425 }
1425 }
1426
1426
1427 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1427 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1428 spw_ioctl_send_ASM.hdr = (char *) header;
1428 spw_ioctl_send_ASM.hdr = (char *) header;
1429 spw_ioctl_send_ASM.options = 0;
1429 spw_ioctl_send_ASM.options = 0;
1430
1430
1431 // (2) BUILD THE HEADER
1431 // (2) BUILD THE HEADER
1432 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1432 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1433 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1433 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1434 header->packetLength[1] = (unsigned char) (length);
1434 header->packetLength[1] = (unsigned char) (length);
1435 header->sid = (unsigned char) sid; // SID
1435 header->sid = (unsigned char) sid; // SID
1436 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1436 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1437 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1437 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1438
1438
1439 // (3) SET PACKET TIME
1439 // (3) SET PACKET TIME
1440 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1440 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1441 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1441 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1442 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1442 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1443 header->time[BYTE_3] = (unsigned char) (coarseTime);
1443 header->time[BYTE_3] = (unsigned char) (coarseTime);
1444 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1444 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1445 header->time[BYTE_5] = (unsigned char) (fineTime);
1445 header->time[BYTE_5] = (unsigned char) (fineTime);
1446 //
1446 //
1447 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1447 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1448 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1448 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1449 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1449 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1450 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1450 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1451 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1451 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1452 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1452 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1453
1453
1454 // (4) SEND PACKET
1454 // (4) SEND PACKET
1455 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1455 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1456 if (status != RTEMS_SUCCESSFUL) {
1456 if (status != RTEMS_SUCCESSFUL) {
1457 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1457 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1458 }
1458 }
1459 }
1459 }
1460 }
1460 }
1461
1461
1462 void spw_send_asm_f1( ring_node *ring_node_to_send,
1462 void spw_send_asm_f1( ring_node *ring_node_to_send,
1463 Header_TM_LFR_SCIENCE_ASM_t *header )
1463 Header_TM_LFR_SCIENCE_ASM_t *header )
1464 {
1464 {
1465 unsigned int i;
1465 unsigned int i;
1466 unsigned int length = 0;
1466 unsigned int length = 0;
1467 rtems_status_code status;
1467 rtems_status_code status;
1468 unsigned int sid;
1468 unsigned int sid;
1469 float *spectral_matrix;
1469 float *spectral_matrix;
1470 int coarseTime;
1470 int coarseTime;
1471 int fineTime;
1471 int fineTime;
1472 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1472 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1473
1473
1474 sid = ring_node_to_send->sid;
1474 sid = ring_node_to_send->sid;
1475 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1475 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1476 coarseTime = ring_node_to_send->coarseTime;
1476 coarseTime = ring_node_to_send->coarseTime;
1477 fineTime = ring_node_to_send->fineTime;
1477 fineTime = ring_node_to_send->fineTime;
1478
1478
1479 header->pa_bia_status_info = pa_bia_status_info;
1479 header->pa_bia_status_info = pa_bia_status_info;
1480 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1480 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1481
1481
1482 for (i=0; i<PKTCNT_ASM; i++)
1482 for (i=0; i<PKTCNT_ASM; i++)
1483 {
1483 {
1484 if ((i==0) || (i==1))
1484 if ((i==0) || (i==1))
1485 {
1485 {
1486 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1486 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1487 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1487 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1488 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1488 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1489 ];
1489 ];
1490 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1490 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1491 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1491 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1492 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1492 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1493 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1493 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1494 }
1494 }
1495 else
1495 else
1496 {
1496 {
1497 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1497 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1498 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1498 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1499 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1499 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1500 ];
1500 ];
1501 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1501 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1502 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1502 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1503 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1503 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1504 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1504 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1505 }
1505 }
1506
1506
1507 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1507 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1508 spw_ioctl_send_ASM.hdr = (char *) header;
1508 spw_ioctl_send_ASM.hdr = (char *) header;
1509 spw_ioctl_send_ASM.options = 0;
1509 spw_ioctl_send_ASM.options = 0;
1510
1510
1511 // (2) BUILD THE HEADER
1511 // (2) BUILD THE HEADER
1512 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1512 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1513 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1513 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1514 header->packetLength[1] = (unsigned char) (length);
1514 header->packetLength[1] = (unsigned char) (length);
1515 header->sid = (unsigned char) sid; // SID
1515 header->sid = (unsigned char) sid; // SID
1516 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1516 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1517 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1517 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1518
1518
1519 // (3) SET PACKET TIME
1519 // (3) SET PACKET TIME
1520 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1520 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1521 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1521 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1522 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1522 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1523 header->time[BYTE_3] = (unsigned char) (coarseTime);
1523 header->time[BYTE_3] = (unsigned char) (coarseTime);
1524 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1524 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1525 header->time[BYTE_5] = (unsigned char) (fineTime);
1525 header->time[BYTE_5] = (unsigned char) (fineTime);
1526 //
1526 //
1527 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1527 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1528 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1528 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1529 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1529 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1530 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1530 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1531 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1531 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1532 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1532 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1533
1533
1534 // (4) SEND PACKET
1534 // (4) SEND PACKET
1535 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1535 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1536 if (status != RTEMS_SUCCESSFUL) {
1536 if (status != RTEMS_SUCCESSFUL) {
1537 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1537 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1538 }
1538 }
1539 }
1539 }
1540 }
1540 }
1541
1541
1542 void spw_send_asm_f2( ring_node *ring_node_to_send,
1542 void spw_send_asm_f2( ring_node *ring_node_to_send,
1543 Header_TM_LFR_SCIENCE_ASM_t *header )
1543 Header_TM_LFR_SCIENCE_ASM_t *header )
1544 {
1544 {
1545 unsigned int i;
1545 unsigned int i;
1546 unsigned int length = 0;
1546 unsigned int length = 0;
1547 rtems_status_code status;
1547 rtems_status_code status;
1548 unsigned int sid;
1548 unsigned int sid;
1549 float *spectral_matrix;
1549 float *spectral_matrix;
1550 int coarseTime;
1550 int coarseTime;
1551 int fineTime;
1551 int fineTime;
1552 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1552 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1553
1553
1554 sid = ring_node_to_send->sid;
1554 sid = ring_node_to_send->sid;
1555 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1555 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1556 coarseTime = ring_node_to_send->coarseTime;
1556 coarseTime = ring_node_to_send->coarseTime;
1557 fineTime = ring_node_to_send->fineTime;
1557 fineTime = ring_node_to_send->fineTime;
1558
1558
1559 header->pa_bia_status_info = pa_bia_status_info;
1559 header->pa_bia_status_info = pa_bia_status_info;
1560 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1560 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1561
1561
1562 for (i=0; i<PKTCNT_ASM; i++)
1562 for (i=0; i<PKTCNT_ASM; i++)
1563 {
1563 {
1564
1564
1565 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1565 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1566 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1566 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1567 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1567 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1568 ];
1568 ];
1569 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1569 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1570 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1570 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1571 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1571 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1572 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1572 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1573
1573
1574 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1574 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1575 spw_ioctl_send_ASM.hdr = (char *) header;
1575 spw_ioctl_send_ASM.hdr = (char *) header;
1576 spw_ioctl_send_ASM.options = 0;
1576 spw_ioctl_send_ASM.options = 0;
1577
1577
1578 // (2) BUILD THE HEADER
1578 // (2) BUILD THE HEADER
1579 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1579 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1580 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1580 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1581 header->packetLength[1] = (unsigned char) (length);
1581 header->packetLength[1] = (unsigned char) (length);
1582 header->sid = (unsigned char) sid; // SID
1582 header->sid = (unsigned char) sid; // SID
1583 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1583 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1584 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1584 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1585
1585
1586 // (3) SET PACKET TIME
1586 // (3) SET PACKET TIME
1587 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1587 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1588 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1588 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1589 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1589 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1590 header->time[BYTE_3] = (unsigned char) (coarseTime);
1590 header->time[BYTE_3] = (unsigned char) (coarseTime);
1591 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1591 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1592 header->time[BYTE_5] = (unsigned char) (fineTime);
1592 header->time[BYTE_5] = (unsigned char) (fineTime);
1593 //
1593 //
1594 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1594 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1595 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1595 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1596 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1596 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1597 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1597 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1598 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1598 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1599 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1599 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1600
1600
1601 // (4) SEND PACKET
1601 // (4) SEND PACKET
1602 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1602 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1603 if (status != RTEMS_SUCCESSFUL) {
1603 if (status != RTEMS_SUCCESSFUL) {
1604 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1604 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1605 }
1605 }
1606 }
1606 }
1607 }
1607 }
1608
1608
1609 void spw_send_k_dump( ring_node *ring_node_to_send )
1609 void spw_send_k_dump( ring_node *ring_node_to_send )
1610 {
1610 {
1611 rtems_status_code status;
1611 rtems_status_code status;
1612 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1612 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1613 unsigned int packetLength;
1613 unsigned int packetLength;
1614 unsigned int size;
1614 unsigned int size;
1615
1615
1616 PRINTF("spw_send_k_dump\n")
1616 PRINTF("spw_send_k_dump\n")
1617
1617
1618 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1618 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1619
1619
1620 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1620 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1621
1621
1622 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1622 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1623
1623
1624 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1624 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1625
1625
1626 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1626 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1627
1627
1628 if (status == -1){
1628 if (status == -1){
1629 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1629 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1630 }
1630 }
1631
1631
1632 ring_node_to_send->status = INIT_CHAR;
1632 ring_node_to_send->status = INIT_CHAR;
1633 }
1633 }
@@ -1,423 +1,423
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf0_prc0.h"
10 #include "avf0_prc0.h"
11
11
12 nb_sm_before_bp_asm_f0 nb_sm_before_f0 = {0};
12 nb_sm_before_bp_asm_f0 nb_sm_before_f0 = {0};
13
13
14 //***
14 //***
15 // F0
15 // F0
16 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ] = {0};
16 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ] = {0};
17 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ] = {0};
17 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ] = {0};
18
18
19 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ] = {0};
19 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ] = {0};
20 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ] = {0};
20 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ] = {0};
21
21
22 float asm_f0_patched_norm [ TOTAL_SIZE_SM ] = {0};
22 float asm_f0_patched_norm [ TOTAL_SIZE_SM ] = {0};
23 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
23 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
24 float asm_f0_reorganized [ TOTAL_SIZE_SM ] = {0};
24 float asm_f0_reorganized [ TOTAL_SIZE_SM ] = {0};
25
25
26 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0] = {0};
26 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0] = {0};
27 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ] = {0};
27 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ] = {0};
28
28
29 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 11 * 32 = 352
29 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 11 * 32 = 352
30 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 22 * 32 = 704
30 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 22 * 32 = 704
31
31
32 //************
32 //************
33 // RTEMS TASKS
33 // RTEMS TASKS
34
34
35 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
35 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
36 {
36 {
37 int i;
37 int i;
38
38
39 rtems_event_set event_out;
39 rtems_event_set event_out;
40 rtems_status_code status;
40 rtems_status_code status;
41 rtems_id queue_id_prc0;
41 rtems_id queue_id_prc0;
42 asm_msg msgForPRC;
42 asm_msg msgForPRC;
43 ring_node *nodeForAveraging;
43 ring_node *nodeForAveraging;
44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
45 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
45 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
46 ring_node_asm *current_ring_node_asm_norm_f0;
46 ring_node_asm *current_ring_node_asm_norm_f0;
47
47
48 unsigned int nb_norm_bp1;
48 unsigned int nb_norm_bp1;
49 unsigned int nb_norm_bp2;
49 unsigned int nb_norm_bp2;
50 unsigned int nb_norm_asm;
50 unsigned int nb_norm_asm;
51 unsigned int nb_sbm_bp1;
51 unsigned int nb_sbm_bp1;
52 unsigned int nb_sbm_bp2;
52 unsigned int nb_sbm_bp2;
53
53
54 nb_norm_bp1 = 0;
54 nb_norm_bp1 = 0;
55 nb_norm_bp2 = 0;
55 nb_norm_bp2 = 0;
56 nb_norm_asm = 0;
56 nb_norm_asm = 0;
57 nb_sbm_bp1 = 0;
57 nb_sbm_bp1 = 0;
58 nb_sbm_bp2 = 0;
58 nb_sbm_bp2 = 0;
59 event_out = EVENT_SETS_NONE_PENDING;
59 event_out = EVENT_SETS_NONE_PENDING;
60 queue_id_prc0 = RTEMS_ID_NONE;
60 queue_id_prc0 = RTEMS_ID_NONE;
61
61
62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
67
67
68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode);
68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode);
69
69
70 status = get_message_queue_id_prc0( &queue_id_prc0 );
70 status = get_message_queue_id_prc0( &queue_id_prc0 );
71 if (status != RTEMS_SUCCESSFUL)
71 if (status != RTEMS_SUCCESSFUL)
72 {
72 {
73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
74 }
74 }
75
75
76 while(1){
76 while(1){
77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78
78
79 //****************************************
79 //****************************************
80 // initialize the mesage for the MATR task
80 // initialize the mesage for the MATR task
81 msgForPRC.norm = current_ring_node_asm_norm_f0;
81 msgForPRC.norm = current_ring_node_asm_norm_f0;
82 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
82 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
83 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC0 task
83 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC0 task
84 //
84 //
85 //****************************************
85 //****************************************
86
86
87 nodeForAveraging = getRingNodeForAveraging( 0 );
87 nodeForAveraging = getRingNodeForAveraging( 0 );
88
88
89 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
89 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
90 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
90 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
91 {
91 {
92 nodeForAveraging = nodeForAveraging->previous;
92 nodeForAveraging = nodeForAveraging->previous;
93 ring_node_tab[NB_SM_BEFORE_AVF0_F1 - i - 1] = nodeForAveraging;
93 ring_node_tab[NB_SM_BEFORE_AVF0_F1 - i - 1] = nodeForAveraging;
94 }
94 }
95
95
96 // compute the average and store it in the averaged_sm_f1 buffer
96 // compute the average and store it in the averaged_sm_f1 buffer
97 SM_average( current_ring_node_asm_norm_f0->matrix,
97 SM_average( current_ring_node_asm_norm_f0->matrix,
98 current_ring_node_asm_burst_sbm_f0->matrix,
98 current_ring_node_asm_burst_sbm_f0->matrix,
99 ring_node_tab,
99 ring_node_tab,
100 nb_norm_bp1, nb_sbm_bp1,
100 nb_norm_bp1, nb_sbm_bp1,
101 &msgForPRC, 0 ); // 0 => frequency channel 0
101 &msgForPRC, 0 ); // 0 => frequency channel 0
102
102
103 // update nb_average
103 // update nb_average
104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
109
109
110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
111 {
111 {
112 nb_sbm_bp1 = 0;
112 nb_sbm_bp1 = 0;
113 // set another ring for the ASM storage
113 // set another ring for the ASM storage
114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
115 if ( lfrCurrentMode == LFR_MODE_BURST )
115 if ( lfrCurrentMode == LFR_MODE_BURST )
116 {
116 {
117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
118 }
118 }
119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
120 {
120 {
121 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
121 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
122 }
122 }
123 }
123 }
124
124
125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
126 {
126 {
127 nb_sbm_bp2 = 0;
127 nb_sbm_bp2 = 0;
128 if ( lfrCurrentMode == LFR_MODE_BURST )
128 if ( lfrCurrentMode == LFR_MODE_BURST )
129 {
129 {
130 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
130 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
131 }
131 }
132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
133 {
133 {
134 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
134 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
135 }
135 }
136 }
136 }
137
137
138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
139 {
139 {
140 nb_norm_bp1 = 0;
140 nb_norm_bp1 = 0;
141 // set another ring for the ASM storage
141 // set another ring for the ASM storage
142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 {
145 {
146 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
146 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
147 }
147 }
148 }
148 }
149
149
150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
151 {
151 {
152 nb_norm_bp2 = 0;
152 nb_norm_bp2 = 0;
153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 {
155 {
156 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
156 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
157 }
157 }
158 }
158 }
159
159
160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
161 {
161 {
162 nb_norm_asm = 0;
162 nb_norm_asm = 0;
163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 {
165 {
166 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
166 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
167 }
167 }
168 }
168 }
169
169
170 //*************************
170 //*************************
171 // send the message to PRC
171 // send the message to PRC
172 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
172 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
173 {
173 {
174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
175 }
175 }
176
176
177 if (status != RTEMS_SUCCESSFUL) {
177 if (status != RTEMS_SUCCESSFUL) {
178 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
178 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
179 }
179 }
180 }
180 }
181 }
181 }
182
182
183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
184 {
184 {
185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 size_t size; // size of the incoming TC packet
186 size_t size; // size of the incoming TC packet
187 asm_msg *incomingMsg;
187 asm_msg *incomingMsg;
188 //
188 //
189 unsigned char sid;
189 unsigned char sid;
190 rtems_status_code status;
190 rtems_status_code status;
191 rtems_id queue_id;
191 rtems_id queue_id;
192 rtems_id queue_id_q_p0;
192 rtems_id queue_id_q_p0;
193 bp_packet_with_spare packet_norm_bp1;
193 bp_packet_with_spare __attribute__((aligned(4))) packet_norm_bp1;
194 bp_packet packet_norm_bp2;
194 bp_packet __attribute__((aligned(4))) packet_norm_bp2;
195 bp_packet packet_sbm_bp1;
195 bp_packet __attribute__((aligned(4))) packet_sbm_bp1;
196 bp_packet packet_sbm_bp2;
196 bp_packet __attribute__((aligned(4))) packet_sbm_bp2;
197 ring_node *current_ring_node_to_send_asm_f0;
197 ring_node *current_ring_node_to_send_asm_f0;
198 float nbSMInASMNORM;
198 float nbSMInASMNORM;
199 float nbSMInASMSBM;
199 float nbSMInASMSBM;
200
200
201 size = 0;
201 size = 0;
202 queue_id = RTEMS_ID_NONE;
202 queue_id = RTEMS_ID_NONE;
203 queue_id_q_p0 = RTEMS_ID_NONE;
203 queue_id_q_p0 = RTEMS_ID_NONE;
204 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
204 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
205 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
205 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
206 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
206 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
208
208
209 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
209 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
210 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
210 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
211 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
211 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
212
212
213 //*************
213 //*************
214 // NORM headers
214 // NORM headers
215 BP_init_header_with_spare( &packet_norm_bp1,
215 BP_init_header_with_spare( &packet_norm_bp1,
216 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
216 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
217 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
217 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
218 BP_init_header( &packet_norm_bp2,
218 BP_init_header( &packet_norm_bp2,
219 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
219 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
220 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
220 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
221
221
222 //****************************
222 //****************************
223 // BURST SBM1 and SBM2 headers
223 // BURST SBM1 and SBM2 headers
224 if ( lfrRequestedMode == LFR_MODE_BURST )
224 if ( lfrRequestedMode == LFR_MODE_BURST )
225 {
225 {
226 BP_init_header( &packet_sbm_bp1,
226 BP_init_header( &packet_sbm_bp1,
227 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
227 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
228 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
228 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
229 BP_init_header( &packet_sbm_bp2,
229 BP_init_header( &packet_sbm_bp2,
230 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
230 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
231 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
231 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
232 }
232 }
233 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
233 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
234 {
234 {
235 BP_init_header( &packet_sbm_bp1,
235 BP_init_header( &packet_sbm_bp1,
236 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
236 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
237 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
237 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
238 BP_init_header( &packet_sbm_bp2,
238 BP_init_header( &packet_sbm_bp2,
239 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
239 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
240 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
240 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
241 }
241 }
242 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
242 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
243 {
243 {
244 BP_init_header( &packet_sbm_bp1,
244 BP_init_header( &packet_sbm_bp1,
245 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
245 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
246 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
246 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
247 BP_init_header( &packet_sbm_bp2,
247 BP_init_header( &packet_sbm_bp2,
248 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
248 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
249 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
249 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
250 }
250 }
251 else
251 else
252 {
252 {
253 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
253 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
254 }
254 }
255
255
256 status = get_message_queue_id_send( &queue_id );
256 status = get_message_queue_id_send( &queue_id );
257 if (status != RTEMS_SUCCESSFUL)
257 if (status != RTEMS_SUCCESSFUL)
258 {
258 {
259 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
259 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
260 }
260 }
261 status = get_message_queue_id_prc0( &queue_id_q_p0);
261 status = get_message_queue_id_prc0( &queue_id_q_p0);
262 if (status != RTEMS_SUCCESSFUL)
262 if (status != RTEMS_SUCCESSFUL)
263 {
263 {
264 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
264 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
265 }
265 }
266
266
267 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
267 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
268
268
269 while(1){
269 while(1){
270 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
270 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
271 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
271 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
272
272
273 incomingMsg = (asm_msg*) incomingData;
273 incomingMsg = (asm_msg*) incomingData;
274
274
275 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
275 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
276 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
276 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
277
277
278 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
278 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
279 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
279 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
280
280
281 //****************
281 //****************
282 //****************
282 //****************
283 // BURST SBM1 SBM2
283 // BURST SBM1 SBM2
284 //****************
284 //****************
285 //****************
285 //****************
286 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
286 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
287 {
287 {
288 sid = getSID( incomingMsg->event );
288 sid = getSID( incomingMsg->event );
289 // 1) compress the matrix for Basic Parameters calculation
289 // 1) compress the matrix for Basic Parameters calculation
290 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
290 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
291 nbSMInASMSBM,
291 nbSMInASMSBM,
292 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
292 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
293 ASM_F0_INDICE_START, CHANNELF0);
293 ASM_F0_INDICE_START, CHANNELF0);
294 // 2) compute the BP1 set
294 // 2) compute the BP1 set
295 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
295 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
296 // 3) send the BP1 set
296 // 3) send the BP1 set
297 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
297 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
298 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
298 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
299 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
299 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
300 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
300 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
301 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
301 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
302 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
302 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
303 sid);
303 sid);
304 // 4) compute the BP2 set if needed
304 // 4) compute the BP2 set if needed
305 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
305 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
306 {
306 {
307 // 1) compute the BP2 set
307 // 1) compute the BP2 set
308 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
308 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
309 // 2) send the BP2 set
309 // 2) send the BP2 set
310 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
310 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
311 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
311 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
312 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
312 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
313 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
313 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
314 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
314 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
315 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
315 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
316 sid);
316 sid);
317 }
317 }
318 }
318 }
319
319
320 //*****
320 //*****
321 //*****
321 //*****
322 // NORM
322 // NORM
323 //*****
323 //*****
324 //*****
324 //*****
325 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
325 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
326 {
326 {
327 // 1) compress the matrix for Basic Parameters calculation
327 // 1) compress the matrix for Basic Parameters calculation
328 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
328 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
329 nbSMInASMNORM,
329 nbSMInASMNORM,
330 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
330 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
331 ASM_F0_INDICE_START, CHANNELF0 );
331 ASM_F0_INDICE_START, CHANNELF0 );
332 // 2) compute the BP1 set
332 // 2) compute the BP1 set
333 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
333 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
334 // 3) send the BP1 set
334 // 3) send the BP1 set
335 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
335 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
336 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
336 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
337 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
337 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
338 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
338 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
339 BP_send( (char *) &packet_norm_bp1, queue_id,
339 BP_send( (char *) &packet_norm_bp1, queue_id,
340 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
340 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
341 SID_NORM_BP1_F0 );
341 SID_NORM_BP1_F0 );
342 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
342 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
343 {
343 {
344 // 1) compute the BP2 set using the same ASM as the one used for BP1
344 // 1) compute the BP2 set using the same ASM as the one used for BP1
345 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
345 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
346 // 2) send the BP2 set
346 // 2) send the BP2 set
347 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
347 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
348 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
348 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
349 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
349 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
350 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
350 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
351 BP_send( (char *) &packet_norm_bp2, queue_id,
351 BP_send( (char *) &packet_norm_bp2, queue_id,
352 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
352 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
353 SID_NORM_BP2_F0);
353 SID_NORM_BP2_F0);
354 }
354 }
355 }
355 }
356
356
357 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
357 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
358 {
358 {
359 // 1) reorganize the ASM and divide
359 // 1) reorganize the ASM and divide
360 ASM_reorganize_and_divide( asm_f0_patched_norm,
360 ASM_reorganize_and_divide( asm_f0_patched_norm,
361 (float*) current_ring_node_to_send_asm_f0->buffer_address,
361 (float*) current_ring_node_to_send_asm_f0->buffer_address,
362 nbSMInASMNORM );
362 nbSMInASMNORM );
363 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
363 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
364 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
364 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
365 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
365 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
366
366
367 // 3) send the spectral matrix packets
367 // 3) send the spectral matrix packets
368 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
368 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
369
369
370 // change asm ring node
370 // change asm ring node
371 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
371 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
372 }
372 }
373
373
374 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
374 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
375
375
376 }
376 }
377 }
377 }
378
378
379 //**********
379 //**********
380 // FUNCTIONS
380 // FUNCTIONS
381
381
382 void reset_nb_sm_f0( unsigned char lfrMode )
382 void reset_nb_sm_f0( unsigned char lfrMode )
383 {
383 {
384 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F0;
384 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F0;
385 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F0;
385 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F0;
386 nb_sm_before_f0.norm_asm =
386 nb_sm_before_f0.norm_asm =
387 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F0;
387 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F0;
388 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * NB_SM_PER_S1_BP_P0; // 0.25 s per digit
388 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * NB_SM_PER_S1_BP_P0; // 0.25 s per digit
389 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * NB_SM_PER_S_F0;
389 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * NB_SM_PER_S_F0;
390 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F0;
390 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F0;
391 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F0;
391 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F0;
392 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F0;
392 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F0;
393 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F0;
393 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F0;
394
394
395 if (lfrMode == LFR_MODE_SBM1)
395 if (lfrMode == LFR_MODE_SBM1)
396 {
396 {
397 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
397 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
398 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
398 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
399 }
399 }
400 else if (lfrMode == LFR_MODE_SBM2)
400 else if (lfrMode == LFR_MODE_SBM2)
401 {
401 {
402 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
402 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
403 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
403 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
404 }
404 }
405 else if (lfrMode == LFR_MODE_BURST)
405 else if (lfrMode == LFR_MODE_BURST)
406 {
406 {
407 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
407 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
408 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
408 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
409 }
409 }
410 else
410 else
411 {
411 {
412 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
412 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
413 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
413 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
414 }
414 }
415 }
415 }
416
416
417 void init_k_coefficients_prc0( void )
417 void init_k_coefficients_prc0( void )
418 {
418 {
419 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
419 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
420
420
421 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
421 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
422 }
422 }
423
423
@@ -1,407 +1,407
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf1_prc1.h"
10 #include "avf1_prc1.h"
11
11
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1 = {0};
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1 = {0};
13
13
14 //***
14 //***
15 // F1
15 // F1
16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ] = {0};
16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ] = {0};
17 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ] = {0};
17 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ] = {0};
18
18
19 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ] = {0};
19 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ] = {0};
20 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ] = {0};
20 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ] = {0};
21
21
22 float asm_f1_patched_norm [ TOTAL_SIZE_SM ] = {0};
22 float asm_f1_patched_norm [ TOTAL_SIZE_SM ] = {0};
23 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
23 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
24 float asm_f1_reorganized [ TOTAL_SIZE_SM ] = {0};
24 float asm_f1_reorganized [ TOTAL_SIZE_SM ] = {0};
25
25
26 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1] = {0};
26 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1] = {0};
27 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ] = {0};
27 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ] = {0};
28
28
29 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 13 * 32 = 416
29 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 13 * 32 = 416
30 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 26 * 32 = 832
30 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 26 * 32 = 832
31
31
32 //************
32 //************
33 // RTEMS TASKS
33 // RTEMS TASKS
34
34
35 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
35 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
36 {
36 {
37 int i;
37 int i;
38
38
39 rtems_event_set event_out;
39 rtems_event_set event_out;
40 rtems_status_code status;
40 rtems_status_code status;
41 rtems_id queue_id_prc1;
41 rtems_id queue_id_prc1;
42 asm_msg msgForPRC;
42 asm_msg msgForPRC;
43 ring_node *nodeForAveraging;
43 ring_node *nodeForAveraging;
44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
45 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
45 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
46 ring_node_asm *current_ring_node_asm_norm_f1;
46 ring_node_asm *current_ring_node_asm_norm_f1;
47
47
48 unsigned int nb_norm_bp1;
48 unsigned int nb_norm_bp1;
49 unsigned int nb_norm_bp2;
49 unsigned int nb_norm_bp2;
50 unsigned int nb_norm_asm;
50 unsigned int nb_norm_asm;
51 unsigned int nb_sbm_bp1;
51 unsigned int nb_sbm_bp1;
52 unsigned int nb_sbm_bp2;
52 unsigned int nb_sbm_bp2;
53
53
54 event_out = EVENT_SETS_NONE_PENDING;
54 event_out = EVENT_SETS_NONE_PENDING;
55 queue_id_prc1 = RTEMS_ID_NONE;
55 queue_id_prc1 = RTEMS_ID_NONE;
56
56
57 nb_norm_bp1 = 0;
57 nb_norm_bp1 = 0;
58 nb_norm_bp2 = 0;
58 nb_norm_bp2 = 0;
59 nb_norm_asm = 0;
59 nb_norm_asm = 0;
60 nb_sbm_bp1 = 0;
60 nb_sbm_bp1 = 0;
61 nb_sbm_bp2 = 0;
61 nb_sbm_bp2 = 0;
62
62
63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
68
68
69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
70
70
71 status = get_message_queue_id_prc1( &queue_id_prc1 );
71 status = get_message_queue_id_prc1( &queue_id_prc1 );
72 if (status != RTEMS_SUCCESSFUL)
72 if (status != RTEMS_SUCCESSFUL)
73 {
73 {
74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
75 }
75 }
76
76
77 while(1){
77 while(1){
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
79
79
80 //****************************************
80 //****************************************
81 // initialize the mesage for the MATR task
81 // initialize the mesage for the MATR task
82 msgForPRC.norm = current_ring_node_asm_norm_f1;
82 msgForPRC.norm = current_ring_node_asm_norm_f1;
83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
84 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC1 task
84 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC1 task
85 //
85 //
86 //****************************************
86 //****************************************
87
87
88 nodeForAveraging = getRingNodeForAveraging( 1 );
88 nodeForAveraging = getRingNodeForAveraging( 1 );
89
89
90 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
90 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
91 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
91 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
92 {
92 {
93 nodeForAveraging = nodeForAveraging->previous;
93 nodeForAveraging = nodeForAveraging->previous;
94 ring_node_tab[NB_SM_BEFORE_AVF0_F1 - i - 1] = nodeForAveraging;
94 ring_node_tab[NB_SM_BEFORE_AVF0_F1 - i - 1] = nodeForAveraging;
95 }
95 }
96
96
97 // compute the average and store it in the averaged_sm_f1 buffer
97 // compute the average and store it in the averaged_sm_f1 buffer
98 SM_average( current_ring_node_asm_norm_f1->matrix,
98 SM_average( current_ring_node_asm_norm_f1->matrix,
99 current_ring_node_asm_burst_sbm_f1->matrix,
99 current_ring_node_asm_burst_sbm_f1->matrix,
100 ring_node_tab,
100 ring_node_tab,
101 nb_norm_bp1, nb_sbm_bp1,
101 nb_norm_bp1, nb_sbm_bp1,
102 &msgForPRC, 1 ); // 1 => frequency channel 1
102 &msgForPRC, 1 ); // 1 => frequency channel 1
103
103
104 // update nb_average
104 // update nb_average
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
110
110
111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
112 {
112 {
113 nb_sbm_bp1 = 0;
113 nb_sbm_bp1 = 0;
114 // set another ring for the ASM storage
114 // set another ring for the ASM storage
115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
116 if ( lfrCurrentMode == LFR_MODE_BURST )
116 if ( lfrCurrentMode == LFR_MODE_BURST )
117 {
117 {
118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
119 }
119 }
120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
121 {
121 {
122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
123 }
123 }
124 }
124 }
125
125
126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
127 {
127 {
128 nb_sbm_bp2 = 0;
128 nb_sbm_bp2 = 0;
129 if ( lfrCurrentMode == LFR_MODE_BURST )
129 if ( lfrCurrentMode == LFR_MODE_BURST )
130 {
130 {
131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
132 }
132 }
133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
134 {
134 {
135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
136 }
136 }
137 }
137 }
138
138
139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
140 {
140 {
141 nb_norm_bp1 = 0;
141 nb_norm_bp1 = 0;
142 // set another ring for the ASM storage
142 // set another ring for the ASM storage
143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 {
146 {
147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
148 }
148 }
149 }
149 }
150
150
151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
152 {
152 {
153 nb_norm_bp2 = 0;
153 nb_norm_bp2 = 0;
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
156 {
156 {
157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
158 }
158 }
159 }
159 }
160
160
161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
162 {
162 {
163 nb_norm_asm = 0;
163 nb_norm_asm = 0;
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
166 {
166 {
167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
168 }
168 }
169 }
169 }
170
170
171 //*************************
171 //*************************
172 // send the message to PRC
172 // send the message to PRC
173 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
173 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
174 {
174 {
175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
176 }
176 }
177
177
178 if (status != RTEMS_SUCCESSFUL) {
178 if (status != RTEMS_SUCCESSFUL) {
179 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
179 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
180 }
180 }
181 }
181 }
182 }
182 }
183
183
184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
185 {
185 {
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
187 size_t size; // size of the incoming TC packet
187 size_t size; // size of the incoming TC packet
188 asm_msg *incomingMsg;
188 asm_msg *incomingMsg;
189 //
189 //
190 unsigned char sid;
190 unsigned char sid;
191 rtems_status_code status;
191 rtems_status_code status;
192 rtems_id queue_id_send;
192 rtems_id queue_id_send;
193 rtems_id queue_id_q_p1;
193 rtems_id queue_id_q_p1;
194 bp_packet_with_spare packet_norm_bp1;
194 bp_packet_with_spare __attribute__((aligned(4))) packet_norm_bp1;
195 bp_packet packet_norm_bp2;
195 bp_packet __attribute__((aligned(4))) packet_norm_bp2;
196 bp_packet packet_sbm_bp1;
196 bp_packet __attribute__((aligned(4))) packet_sbm_bp1;
197 bp_packet packet_sbm_bp2;
197 bp_packet __attribute__((aligned(4))) packet_sbm_bp2;
198 ring_node *current_ring_node_to_send_asm_f1;
198 ring_node *current_ring_node_to_send_asm_f1;
199 float nbSMInASMNORM;
199 float nbSMInASMNORM;
200 float nbSMInASMSBM;
200 float nbSMInASMSBM;
201
201
202 size = 0;
202 size = 0;
203 queue_id_send = RTEMS_ID_NONE;
203 queue_id_send = RTEMS_ID_NONE;
204 queue_id_q_p1 = RTEMS_ID_NONE;
204 queue_id_q_p1 = RTEMS_ID_NONE;
205 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
205 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
206 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
206 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
208 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
208 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
209
209
210 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
210 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
211 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
211 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
212 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
212 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
213
213
214 //*************
214 //*************
215 // NORM headers
215 // NORM headers
216 BP_init_header_with_spare( &packet_norm_bp1,
216 BP_init_header_with_spare( &packet_norm_bp1,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
218 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
218 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
219 BP_init_header( &packet_norm_bp2,
219 BP_init_header( &packet_norm_bp2,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
221 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
221 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
222
222
223 //***********************
223 //***********************
224 // BURST and SBM2 headers
224 // BURST and SBM2 headers
225 if ( lfrRequestedMode == LFR_MODE_BURST )
225 if ( lfrRequestedMode == LFR_MODE_BURST )
226 {
226 {
227 BP_init_header( &packet_sbm_bp1,
227 BP_init_header( &packet_sbm_bp1,
228 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
228 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
230 BP_init_header( &packet_sbm_bp2,
230 BP_init_header( &packet_sbm_bp2,
231 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
231 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
233 }
233 }
234 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
234 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
235 {
235 {
236 BP_init_header( &packet_sbm_bp1,
236 BP_init_header( &packet_sbm_bp1,
237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
239 BP_init_header( &packet_sbm_bp2,
239 BP_init_header( &packet_sbm_bp2,
240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
242 }
242 }
243 else
243 else
244 {
244 {
245 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
245 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
246 }
246 }
247
247
248 status = get_message_queue_id_send( &queue_id_send );
248 status = get_message_queue_id_send( &queue_id_send );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253 status = get_message_queue_id_prc1( &queue_id_q_p1);
253 status = get_message_queue_id_prc1( &queue_id_q_p1);
254 if (status != RTEMS_SUCCESSFUL)
254 if (status != RTEMS_SUCCESSFUL)
255 {
255 {
256 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
256 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
257 }
257 }
258
258
259 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
259 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
260
260
261 while(1){
261 while(1){
262 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
262 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
263 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
263 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
264
264
265 incomingMsg = (asm_msg*) incomingData;
265 incomingMsg = (asm_msg*) incomingData;
266
266
267 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
267 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
268 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
268 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
269
269
270 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
270 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
271 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
271 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
272
272
273 //***********
273 //***********
274 //***********
274 //***********
275 // BURST SBM2
275 // BURST SBM2
276 //***********
276 //***********
277 //***********
277 //***********
278 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
278 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
279 {
279 {
280 sid = getSID( incomingMsg->event );
280 sid = getSID( incomingMsg->event );
281 // 1) compress the matrix for Basic Parameters calculation
281 // 1) compress the matrix for Basic Parameters calculation
282 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
282 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
283 nbSMInASMSBM,
283 nbSMInASMSBM,
284 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
284 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
285 ASM_F1_INDICE_START, CHANNELF1);
285 ASM_F1_INDICE_START, CHANNELF1);
286 // 2) compute the BP1 set
286 // 2) compute the BP1 set
287 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
287 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
288 // 3) send the BP1 set
288 // 3) send the BP1 set
289 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
289 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
290 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
290 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
291 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
291 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
292 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
292 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
293 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
293 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
295 sid );
295 sid );
296 // 4) compute the BP2 set if needed
296 // 4) compute the BP2 set if needed
297 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
297 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
298 {
298 {
299 // 1) compute the BP2 set
299 // 1) compute the BP2 set
300 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
300 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
301 // 2) send the BP2 set
301 // 2) send the BP2 set
302 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
302 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
303 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
303 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
304 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
304 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
305 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
305 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
306 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
306 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
307 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
307 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
308 sid );
308 sid );
309 }
309 }
310 }
310 }
311
311
312 //*****
312 //*****
313 //*****
313 //*****
314 // NORM
314 // NORM
315 //*****
315 //*****
316 //*****
316 //*****
317 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
317 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
318 {
318 {
319 // 1) compress the matrix for Basic Parameters calculation
319 // 1) compress the matrix for Basic Parameters calculation
320 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
320 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
321 nbSMInASMNORM,
321 nbSMInASMNORM,
322 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
322 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
323 ASM_F1_INDICE_START, CHANNELF1 );
323 ASM_F1_INDICE_START, CHANNELF1 );
324 // 2) compute the BP1 set
324 // 2) compute the BP1 set
325 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
325 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
326 // 3) send the BP1 set
326 // 3) send the BP1 set
327 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
327 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
329 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
329 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
330 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
330 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
331 BP_send( (char *) &packet_norm_bp1, queue_id_send,
331 BP_send( (char *) &packet_norm_bp1, queue_id_send,
332 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
332 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
333 SID_NORM_BP1_F1 );
333 SID_NORM_BP1_F1 );
334 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
334 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
335 {
335 {
336 // 1) compute the BP2 set
336 // 1) compute the BP2 set
337 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
337 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
338 // 2) send the BP2 set
338 // 2) send the BP2 set
339 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
339 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
340 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
340 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
341 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
341 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
342 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
342 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
343 BP_send( (char *) &packet_norm_bp2, queue_id_send,
343 BP_send( (char *) &packet_norm_bp2, queue_id_send,
344 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
344 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
345 SID_NORM_BP2_F1 );
345 SID_NORM_BP2_F1 );
346 }
346 }
347 }
347 }
348
348
349 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
349 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
350 {
350 {
351 // 1) reorganize the ASM and divide
351 // 1) reorganize the ASM and divide
352 ASM_reorganize_and_divide( asm_f1_patched_norm,
352 ASM_reorganize_and_divide( asm_f1_patched_norm,
353 (float*) current_ring_node_to_send_asm_f1->buffer_address,
353 (float*) current_ring_node_to_send_asm_f1->buffer_address,
354 nbSMInASMNORM );
354 nbSMInASMNORM );
355 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
355 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
356 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
356 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
357 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
357 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
358
358
359 // 3) send the spectral matrix packets
359 // 3) send the spectral matrix packets
360 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
360 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
361
361
362 // change asm ring node
362 // change asm ring node
363 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
363 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
364 }
364 }
365
365
366 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
366 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
367
367
368 }
368 }
369 }
369 }
370
370
371 //**********
371 //**********
372 // FUNCTIONS
372 // FUNCTIONS
373
373
374 void reset_nb_sm_f1( unsigned char lfrMode )
374 void reset_nb_sm_f1( unsigned char lfrMode )
375 {
375 {
376 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F1;
376 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F1;
377 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F1;
377 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F1;
378 nb_sm_before_f1.norm_asm =
378 nb_sm_before_f1.norm_asm =
379 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F1;
379 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F1;
380 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F1;
380 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F1;
381 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F1;
381 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F1;
382 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F1;
382 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F1;
383 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F1;
383 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F1;
384
384
385 if (lfrMode == LFR_MODE_SBM2)
385 if (lfrMode == LFR_MODE_SBM2)
386 {
386 {
387 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
387 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
388 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
388 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
389 }
389 }
390 else if (lfrMode == LFR_MODE_BURST)
390 else if (lfrMode == LFR_MODE_BURST)
391 {
391 {
392 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
392 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
393 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
393 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
394 }
394 }
395 else
395 else
396 {
396 {
397 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
397 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
398 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
398 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
399 }
399 }
400 }
400 }
401
401
402 void init_k_coefficients_prc1( void )
402 void init_k_coefficients_prc1( void )
403 {
403 {
404 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
404 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
405
405
406 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
406 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
407 }
407 }
@@ -1,332 +1,332
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf2_prc2.h"
10 #include "avf2_prc2.h"
11
11
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2 = {0};
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2 = {0};
13
13
14 //***
14 //***
15 // F2
15 // F2
16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ] = {0};
16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ] = {0};
17
17
18 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ] = {0};
18 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ] = {0};
19 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ] = {0};
19 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ] = {0};
20
20
21 float asm_f2_patched_norm [ TOTAL_SIZE_SM ] = {0};
21 float asm_f2_patched_norm [ TOTAL_SIZE_SM ] = {0};
22 float asm_f2_reorganized [ TOTAL_SIZE_SM ] = {0};
22 float asm_f2_reorganized [ TOTAL_SIZE_SM ] = {0};
23
23
24 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2] = {0};
24 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2] = {0};
25
25
26 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ] = {0}; // 12 * 32 = 384
26 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ] = {0}; // 12 * 32 = 384
27
27
28 //************
28 //************
29 // RTEMS TASKS
29 // RTEMS TASKS
30
30
31 //***
31 //***
32 // F2
32 // F2
33 rtems_task avf2_task( rtems_task_argument argument )
33 rtems_task avf2_task( rtems_task_argument argument )
34 {
34 {
35 rtems_event_set event_out;
35 rtems_event_set event_out;
36 rtems_status_code status;
36 rtems_status_code status;
37 rtems_id queue_id_prc2;
37 rtems_id queue_id_prc2;
38 asm_msg msgForPRC;
38 asm_msg msgForPRC;
39 ring_node *nodeForAveraging;
39 ring_node *nodeForAveraging;
40 ring_node_asm *current_ring_node_asm_norm_f2;
40 ring_node_asm *current_ring_node_asm_norm_f2;
41
41
42 unsigned int nb_norm_bp1;
42 unsigned int nb_norm_bp1;
43 unsigned int nb_norm_bp2;
43 unsigned int nb_norm_bp2;
44 unsigned int nb_norm_asm;
44 unsigned int nb_norm_asm;
45
45
46 event_out = EVENT_SETS_NONE_PENDING;
46 event_out = EVENT_SETS_NONE_PENDING;
47 queue_id_prc2 = RTEMS_ID_NONE;
47 queue_id_prc2 = RTEMS_ID_NONE;
48 nb_norm_bp1 = 0;
48 nb_norm_bp1 = 0;
49 nb_norm_bp2 = 0;
49 nb_norm_bp2 = 0;
50 nb_norm_asm = 0;
50 nb_norm_asm = 0;
51
51
52 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
52 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
53 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
53 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
54 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
54 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
55
55
56 BOOT_PRINTF("in AVF2 ***\n")
56 BOOT_PRINTF("in AVF2 ***\n")
57
57
58 status = get_message_queue_id_prc2( &queue_id_prc2 );
58 status = get_message_queue_id_prc2( &queue_id_prc2 );
59 if (status != RTEMS_SUCCESSFUL)
59 if (status != RTEMS_SUCCESSFUL)
60 {
60 {
61 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
61 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
62 }
62 }
63
63
64 while(1){
64 while(1){
65 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
65 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
66
66
67 //****************************************
67 //****************************************
68 // initialize the mesage for the MATR task
68 // initialize the mesage for the MATR task
69 msgForPRC.norm = current_ring_node_asm_norm_f2;
69 msgForPRC.norm = current_ring_node_asm_norm_f2;
70 msgForPRC.burst_sbm = NULL;
70 msgForPRC.burst_sbm = NULL;
71 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC2 task
71 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC2 task
72 //
72 //
73 //****************************************
73 //****************************************
74
74
75 nodeForAveraging = getRingNodeForAveraging( CHANNELF2 );
75 nodeForAveraging = getRingNodeForAveraging( CHANNELF2 );
76
76
77 // compute the average and store it in the averaged_sm_f2 buffer
77 // compute the average and store it in the averaged_sm_f2 buffer
78 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
78 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
79 nodeForAveraging,
79 nodeForAveraging,
80 nb_norm_bp1,
80 nb_norm_bp1,
81 &msgForPRC );
81 &msgForPRC );
82
82
83 // update nb_average
83 // update nb_average
84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
87
87
88 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
88 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
89 {
89 {
90 nb_norm_bp1 = 0;
90 nb_norm_bp1 = 0;
91 // set another ring for the ASM storage
91 // set another ring for the ASM storage
92 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
92 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
93 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
93 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
94 || (lfrCurrentMode == LFR_MODE_SBM2) )
94 || (lfrCurrentMode == LFR_MODE_SBM2) )
95 {
95 {
96 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
96 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
97 }
97 }
98 }
98 }
99
99
100 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
100 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
101 {
101 {
102 nb_norm_bp2 = 0;
102 nb_norm_bp2 = 0;
103 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
103 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
104 || (lfrCurrentMode == LFR_MODE_SBM2) )
104 || (lfrCurrentMode == LFR_MODE_SBM2) )
105 {
105 {
106 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
106 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
107 }
107 }
108 }
108 }
109
109
110 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
110 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
111 {
111 {
112 nb_norm_asm = 0;
112 nb_norm_asm = 0;
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
114 || (lfrCurrentMode == LFR_MODE_SBM2) )
114 || (lfrCurrentMode == LFR_MODE_SBM2) )
115 {
115 {
116 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
116 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
117 }
117 }
118 }
118 }
119
119
120 //*************************
120 //*************************
121 // send the message to PRC2
121 // send the message to PRC2
122 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
122 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
123 {
123 {
124 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
124 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
125 }
125 }
126
126
127 if (status != RTEMS_SUCCESSFUL) {
127 if (status != RTEMS_SUCCESSFUL) {
128 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
128 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
129 }
129 }
130 }
130 }
131 }
131 }
132
132
133 rtems_task prc2_task( rtems_task_argument argument )
133 rtems_task prc2_task( rtems_task_argument argument )
134 {
134 {
135 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
135 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
136 size_t size; // size of the incoming TC packet
136 size_t size; // size of the incoming TC packet
137 asm_msg *incomingMsg;
137 asm_msg *incomingMsg;
138 //
138 //
139 rtems_status_code status;
139 rtems_status_code status;
140 rtems_id queue_id_send;
140 rtems_id queue_id_send;
141 rtems_id queue_id_q_p2;
141 rtems_id queue_id_q_p2;
142 bp_packet packet_norm_bp1;
142 bp_packet __attribute__((aligned(4))) packet_norm_bp1;
143 bp_packet packet_norm_bp2;
143 bp_packet __attribute__((aligned(4))) packet_norm_bp2;
144 ring_node *current_ring_node_to_send_asm_f2;
144 ring_node *current_ring_node_to_send_asm_f2;
145 float nbSMInASMNORM;
145 float nbSMInASMNORM;
146
146
147 unsigned long long int localTime;
147 unsigned long long int localTime;
148
148
149 size = 0;
149 size = 0;
150 queue_id_send = RTEMS_ID_NONE;
150 queue_id_send = RTEMS_ID_NONE;
151 queue_id_q_p2 = RTEMS_ID_NONE;
151 queue_id_q_p2 = RTEMS_ID_NONE;
152 memset( &packet_norm_bp1, 0, sizeof(bp_packet) );
152 memset( &packet_norm_bp1, 0, sizeof(bp_packet) );
153 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
153 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
154
154
155 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
155 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
156 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
156 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
157 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
157 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
158
158
159 //*************
159 //*************
160 // NORM headers
160 // NORM headers
161 BP_init_header( &packet_norm_bp1,
161 BP_init_header( &packet_norm_bp1,
162 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
162 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
163 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
163 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
164 BP_init_header( &packet_norm_bp2,
164 BP_init_header( &packet_norm_bp2,
165 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
165 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
166 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
166 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
167
167
168 status = get_message_queue_id_send( &queue_id_send );
168 status = get_message_queue_id_send( &queue_id_send );
169 if (status != RTEMS_SUCCESSFUL)
169 if (status != RTEMS_SUCCESSFUL)
170 {
170 {
171 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
171 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
172 }
172 }
173 status = get_message_queue_id_prc2( &queue_id_q_p2);
173 status = get_message_queue_id_prc2( &queue_id_q_p2);
174 if (status != RTEMS_SUCCESSFUL)
174 if (status != RTEMS_SUCCESSFUL)
175 {
175 {
176 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
176 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
177 }
177 }
178
178
179 BOOT_PRINTF("in PRC2 ***\n")
179 BOOT_PRINTF("in PRC2 ***\n")
180
180
181 while(1){
181 while(1){
182 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
182 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
183 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
183 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
184
184
185 incomingMsg = (asm_msg*) incomingData;
185 incomingMsg = (asm_msg*) incomingData;
186
186
187 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
187 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
188
188
189 localTime = getTimeAsUnsignedLongLongInt( );
189 localTime = getTimeAsUnsignedLongLongInt( );
190
190
191 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
191 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
192
192
193 //*****
193 //*****
194 //*****
194 //*****
195 // NORM
195 // NORM
196 //*****
196 //*****
197 //*****
197 //*****
198 // 1) compress the matrix for Basic Parameters calculation
198 // 1) compress the matrix for Basic Parameters calculation
199 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
199 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
200 nbSMInASMNORM,
200 nbSMInASMNORM,
201 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
201 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
202 ASM_F2_INDICE_START, CHANNELF2 );
202 ASM_F2_INDICE_START, CHANNELF2 );
203 // BP1_F2
203 // BP1_F2
204 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
204 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
205 {
205 {
206 // 1) compute the BP1 set
206 // 1) compute the BP1 set
207 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
207 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
208 // 2) send the BP1 set
208 // 2) send the BP1 set
209 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
209 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
210 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
210 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
211 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
211 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
212 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
212 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
213 BP_send( (char *) &packet_norm_bp1, queue_id_send,
213 BP_send( (char *) &packet_norm_bp1, queue_id_send,
214 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
214 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
215 SID_NORM_BP1_F2 );
215 SID_NORM_BP1_F2 );
216 }
216 }
217 // BP2_F2
217 // BP2_F2
218 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
218 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
219 {
219 {
220 // 1) compute the BP2 set
220 // 1) compute the BP2 set
221 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
221 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
222 // 2) send the BP2 set
222 // 2) send the BP2 set
223 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
223 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
224 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
224 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
225 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
225 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
226 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
226 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
227 BP_send( (char *) &packet_norm_bp2, queue_id_send,
227 BP_send( (char *) &packet_norm_bp2, queue_id_send,
228 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
228 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
229 SID_NORM_BP2_F2 );
229 SID_NORM_BP2_F2 );
230 }
230 }
231
231
232 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
232 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
233 {
233 {
234 // 1) reorganize the ASM and divide
234 // 1) reorganize the ASM and divide
235 ASM_reorganize_and_divide( asm_f2_patched_norm,
235 ASM_reorganize_and_divide( asm_f2_patched_norm,
236 (float*) current_ring_node_to_send_asm_f2->buffer_address,
236 (float*) current_ring_node_to_send_asm_f2->buffer_address,
237 nb_sm_before_f2.norm_bp1 );
237 nb_sm_before_f2.norm_bp1 );
238 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
238 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
239 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
239 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
240 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
240 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
241
241
242 // 3) send the spectral matrix packets
242 // 3) send the spectral matrix packets
243 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
243 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
244
244
245 // change asm ring node
245 // change asm ring node
246 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
246 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
247 }
247 }
248
248
249 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
249 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
250
250
251 }
251 }
252 }
252 }
253
253
254 //**********
254 //**********
255 // FUNCTIONS
255 // FUNCTIONS
256
256
257 void reset_nb_sm_f2( void )
257 void reset_nb_sm_f2( void )
258 {
258 {
259 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
259 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
260 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
260 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
261 nb_sm_before_f2.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_asm_p[1];
261 nb_sm_before_f2.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_asm_p[1];
262 }
262 }
263
263
264 void SM_average_f2( float *averaged_spec_mat_f2,
264 void SM_average_f2( float *averaged_spec_mat_f2,
265 ring_node *ring_node,
265 ring_node *ring_node,
266 unsigned int nbAverageNormF2,
266 unsigned int nbAverageNormF2,
267 asm_msg *msgForMATR )
267 asm_msg *msgForMATR )
268 {
268 {
269 float sum;
269 float sum;
270 unsigned int i;
270 unsigned int i;
271 unsigned char keepMatrix;
271 unsigned char keepMatrix;
272
272
273 // test acquisitionTime validity
273 // test acquisitionTime validity
274 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, CHANNELF2 );
274 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, CHANNELF2 );
275
275
276 for(i=0; i<TOTAL_SIZE_SM; i++)
276 for(i=0; i<TOTAL_SIZE_SM; i++)
277 {
277 {
278 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
278 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
279 if ( (nbAverageNormF2 == 0) ) // average initialization
279 if ( (nbAverageNormF2 == 0) ) // average initialization
280 {
280 {
281 if (keepMatrix == 1) // keep the matrix and add it to the average
281 if (keepMatrix == 1) // keep the matrix and add it to the average
282 {
282 {
283 averaged_spec_mat_f2[ i ] = sum;
283 averaged_spec_mat_f2[ i ] = sum;
284 }
284 }
285 else // drop the matrix and initialize the average
285 else // drop the matrix and initialize the average
286 {
286 {
287 averaged_spec_mat_f2[ i ] = INIT_FLOAT;
287 averaged_spec_mat_f2[ i ] = INIT_FLOAT;
288 }
288 }
289 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
289 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
290 msgForMATR->fineTimeNORM = ring_node->fineTime;
290 msgForMATR->fineTimeNORM = ring_node->fineTime;
291 }
291 }
292 else
292 else
293 {
293 {
294 if (keepMatrix == 1) // keep the matrix and add it to the average
294 if (keepMatrix == 1) // keep the matrix and add it to the average
295 {
295 {
296 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
296 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
297 }
297 }
298 else
298 else
299 {
299 {
300 // nothing to do, the matrix is not valid
300 // nothing to do, the matrix is not valid
301 }
301 }
302 }
302 }
303 }
303 }
304
304
305 if (keepMatrix == 1)
305 if (keepMatrix == 1)
306 {
306 {
307 if ( (nbAverageNormF2 == 0) )
307 if ( (nbAverageNormF2 == 0) )
308 {
308 {
309 msgForMATR->numberOfSMInASMNORM = 1;
309 msgForMATR->numberOfSMInASMNORM = 1;
310 }
310 }
311 else
311 else
312 {
312 {
313 msgForMATR->numberOfSMInASMNORM++;
313 msgForMATR->numberOfSMInASMNORM++;
314 }
314 }
315 }
315 }
316 else
316 else
317 {
317 {
318 if ( (nbAverageNormF2 == 0) )
318 if ( (nbAverageNormF2 == 0) )
319 {
319 {
320 msgForMATR->numberOfSMInASMNORM = 0;
320 msgForMATR->numberOfSMInASMNORM = 0;
321 }
321 }
322 else
322 else
323 {
323 {
324 // nothing to do
324 // nothing to do
325 }
325 }
326 }
326 }
327 }
327 }
328
328
329 void init_k_coefficients_prc2( void )
329 void init_k_coefficients_prc2( void )
330 {
330 {
331 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
331 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
332 }
332 }
@@ -1,1663 +1,1660
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[BYTES_PER_TIME];
35 unsigned char time[BYTES_PER_TIME];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
40 size = 0;
40 size = 0;
41 queue_rcv_id = RTEMS_ID_NONE;
41 queue_rcv_id = RTEMS_ID_NONE;
42 queue_snd_id = RTEMS_ID_NONE;
42 queue_snd_id = RTEMS_ID_NONE;
43
43
44 status = get_message_queue_id_recv( &queue_rcv_id );
44 status = get_message_queue_id_recv( &queue_rcv_id );
45 if (status != RTEMS_SUCCESSFUL)
45 if (status != RTEMS_SUCCESSFUL)
46 {
46 {
47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
48 }
48 }
49
49
50 status = get_message_queue_id_send( &queue_snd_id );
50 status = get_message_queue_id_send( &queue_snd_id );
51 if (status != RTEMS_SUCCESSFUL)
51 if (status != RTEMS_SUCCESSFUL)
52 {
52 {
53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
54 }
54 }
55
55
56 result = LFR_SUCCESSFUL;
56 result = LFR_SUCCESSFUL;
57 subtype = 0; // subtype of the current TC packet
57 subtype = 0; // subtype of the current TC packet
58
58
59 BOOT_PRINTF("in ACTN *** \n");
59 BOOT_PRINTF("in ACTN *** \n");
60
60
61 while(1)
61 while(1)
62 {
62 {
63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
65 getTime( time ); // set time to the current time
65 getTime( time ); // set time to the current time
66 if (status!=RTEMS_SUCCESSFUL)
66 if (status!=RTEMS_SUCCESSFUL)
67 {
67 {
68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
69 }
69 }
70 else
70 else
71 {
71 {
72 subtype = TC.serviceSubType;
72 subtype = TC.serviceSubType;
73 switch(subtype)
73 switch(subtype)
74 {
74 {
75 case TC_SUBTYPE_RESET:
75 case TC_SUBTYPE_RESET:
76 result = action_reset( &TC, queue_snd_id, time );
76 result = action_reset( &TC, queue_snd_id, time );
77 close_action( &TC, result, queue_snd_id );
77 close_action( &TC, result, queue_snd_id );
78 break;
78 break;
79 case TC_SUBTYPE_LOAD_COMM:
79 case TC_SUBTYPE_LOAD_COMM:
80 result = action_load_common_par( &TC );
80 result = action_load_common_par( &TC );
81 close_action( &TC, result, queue_snd_id );
81 close_action( &TC, result, queue_snd_id );
82 break;
82 break;
83 case TC_SUBTYPE_LOAD_NORM:
83 case TC_SUBTYPE_LOAD_NORM:
84 result = action_load_normal_par( &TC, queue_snd_id, time );
84 result = action_load_normal_par( &TC, queue_snd_id, time );
85 close_action( &TC, result, queue_snd_id );
85 close_action( &TC, result, queue_snd_id );
86 break;
86 break;
87 case TC_SUBTYPE_LOAD_BURST:
87 case TC_SUBTYPE_LOAD_BURST:
88 result = action_load_burst_par( &TC, queue_snd_id, time );
88 result = action_load_burst_par( &TC, queue_snd_id, time );
89 close_action( &TC, result, queue_snd_id );
89 close_action( &TC, result, queue_snd_id );
90 break;
90 break;
91 case TC_SUBTYPE_LOAD_SBM1:
91 case TC_SUBTYPE_LOAD_SBM1:
92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
93 close_action( &TC, result, queue_snd_id );
93 close_action( &TC, result, queue_snd_id );
94 break;
94 break;
95 case TC_SUBTYPE_LOAD_SBM2:
95 case TC_SUBTYPE_LOAD_SBM2:
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
97 close_action( &TC, result, queue_snd_id );
97 close_action( &TC, result, queue_snd_id );
98 break;
98 break;
99 case TC_SUBTYPE_DUMP:
99 case TC_SUBTYPE_DUMP:
100 result = action_dump_par( &TC, queue_snd_id );
100 result = action_dump_par( &TC, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
102 break;
103 case TC_SUBTYPE_ENTER:
103 case TC_SUBTYPE_ENTER:
104 result = action_enter_mode( &TC, queue_snd_id );
104 result = action_enter_mode( &TC, queue_snd_id );
105 close_action( &TC, result, queue_snd_id );
105 close_action( &TC, result, queue_snd_id );
106 break;
106 break;
107 case TC_SUBTYPE_UPDT_INFO:
107 case TC_SUBTYPE_UPDT_INFO:
108 result = action_update_info( &TC, queue_snd_id );
108 result = action_update_info( &TC, queue_snd_id );
109 close_action( &TC, result, queue_snd_id );
109 close_action( &TC, result, queue_snd_id );
110 break;
110 break;
111 case TC_SUBTYPE_EN_CAL:
111 case TC_SUBTYPE_EN_CAL:
112 result = action_enable_calibration( &TC, queue_snd_id, time );
112 result = action_enable_calibration( &TC, queue_snd_id, time );
113 close_action( &TC, result, queue_snd_id );
113 close_action( &TC, result, queue_snd_id );
114 break;
114 break;
115 case TC_SUBTYPE_DIS_CAL:
115 case TC_SUBTYPE_DIS_CAL:
116 result = action_disable_calibration( &TC, queue_snd_id, time );
116 result = action_disable_calibration( &TC, queue_snd_id, time );
117 close_action( &TC, result, queue_snd_id );
117 close_action( &TC, result, queue_snd_id );
118 break;
118 break;
119 case TC_SUBTYPE_LOAD_K:
119 case TC_SUBTYPE_LOAD_K:
120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
121 close_action( &TC, result, queue_snd_id );
122 break;
122 break;
123 case TC_SUBTYPE_DUMP_K:
123 case TC_SUBTYPE_DUMP_K:
124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
125 close_action( &TC, result, queue_snd_id );
125 close_action( &TC, result, queue_snd_id );
126 break;
126 break;
127 case TC_SUBTYPE_LOAD_FBINS:
127 case TC_SUBTYPE_LOAD_FBINS:
128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
129 close_action( &TC, result, queue_snd_id );
129 close_action( &TC, result, queue_snd_id );
130 break;
130 break;
131 case TC_SUBTYPE_LOAD_FILTER_PAR:
131 case TC_SUBTYPE_LOAD_FILTER_PAR:
132 result = action_load_filter_par( &TC, queue_snd_id, time );
132 result = action_load_filter_par( &TC, queue_snd_id, time );
133 close_action( &TC, result, queue_snd_id );
133 close_action( &TC, result, queue_snd_id );
134 break;
134 break;
135 case TC_SUBTYPE_UPDT_TIME:
135 case TC_SUBTYPE_UPDT_TIME:
136 result = action_update_time( &TC );
136 result = action_update_time( &TC );
137 close_action( &TC, result, queue_snd_id );
137 close_action( &TC, result, queue_snd_id );
138 break;
138 break;
139 default:
139 default:
140 break;
140 break;
141 }
141 }
142 }
142 }
143 }
143 }
144 }
144 }
145
145
146 //***********
146 //***********
147 // TC ACTIONS
147 // TC ACTIONS
148
148
149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
150 {
150 {
151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
152 *
152 *
153 * @param TC points to the TeleCommand packet that is being processed
153 * @param TC points to the TeleCommand packet that is being processed
154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
155 *
155 *
156 */
156 */
157
157
158 PRINTF("this is the end!!!\n");
158 PRINTF("this is the end!!!\n");
159 exit(0);
159 exit(0);
160
160
161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
162
162
163 return LFR_DEFAULT;
163 return LFR_DEFAULT;
164 }
164 }
165
165
166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
167 {
167 {
168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
169 *
169 *
170 * @param TC points to the TeleCommand packet that is being processed
170 * @param TC points to the TeleCommand packet that is being processed
171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
172 *
172 *
173 */
173 */
174
174
175 rtems_status_code status;
175 rtems_status_code status;
176 unsigned char requestedMode;
176 unsigned char requestedMode;
177 unsigned int *transitionCoarseTime_ptr;
178 unsigned int transitionCoarseTime;
177 unsigned int transitionCoarseTime;
179 unsigned char * bytePosPtr;
178 unsigned char * bytePosPtr;
180
179
181 bytePosPtr = (unsigned char *) &TC->packetID;
180 bytePosPtr = (unsigned char *) &TC->packetID;
182
183 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
181 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
184 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
182 copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
185 transitionCoarseTime = (*transitionCoarseTime_ptr) & COARSE_TIME_MASK;
183 transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK;
186
187 status = check_mode_value( requestedMode );
184 status = check_mode_value( requestedMode );
188
185
189 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
186 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
190 {
187 {
191 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
188 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
192 }
189 }
193
190
194 else // the mode value is valid, check the transition
191 else // the mode value is valid, check the transition
195 {
192 {
196 status = check_mode_transition(requestedMode);
193 status = check_mode_transition(requestedMode);
197 if (status != LFR_SUCCESSFUL)
194 if (status != LFR_SUCCESSFUL)
198 {
195 {
199 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
196 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
200 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
197 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
201 }
198 }
202 }
199 }
203
200
204 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
201 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
205 {
202 {
206 status = check_transition_date( transitionCoarseTime );
203 status = check_transition_date( transitionCoarseTime );
207 if (status != LFR_SUCCESSFUL)
204 if (status != LFR_SUCCESSFUL)
208 {
205 {
209 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
206 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
210 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
207 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
211 }
208 }
212 }
209 }
213
210
214 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
211 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
215 {
212 {
216 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
213 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
217
214
218 switch(requestedMode)
215 switch(requestedMode)
219 {
216 {
220 case LFR_MODE_STANDBY:
217 case LFR_MODE_STANDBY:
221 status = enter_mode_standby();
218 status = enter_mode_standby();
222 break;
219 break;
223 case LFR_MODE_NORMAL:
220 case LFR_MODE_NORMAL:
224 status = enter_mode_normal( transitionCoarseTime );
221 status = enter_mode_normal( transitionCoarseTime );
225 break;
222 break;
226 case LFR_MODE_BURST:
223 case LFR_MODE_BURST:
227 status = enter_mode_burst( transitionCoarseTime );
224 status = enter_mode_burst( transitionCoarseTime );
228 break;
225 break;
229 case LFR_MODE_SBM1:
226 case LFR_MODE_SBM1:
230 status = enter_mode_sbm1( transitionCoarseTime );
227 status = enter_mode_sbm1( transitionCoarseTime );
231 break;
228 break;
232 case LFR_MODE_SBM2:
229 case LFR_MODE_SBM2:
233 status = enter_mode_sbm2( transitionCoarseTime );
230 status = enter_mode_sbm2( transitionCoarseTime );
234 break;
231 break;
235 default:
232 default:
236 break;
233 break;
237 }
234 }
238
235
239 if (status != RTEMS_SUCCESSFUL)
236 if (status != RTEMS_SUCCESSFUL)
240 {
237 {
241 status = LFR_EXE_ERROR;
238 status = LFR_EXE_ERROR;
242 }
239 }
243 }
240 }
244
241
245 return status;
242 return status;
246 }
243 }
247
244
248 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
245 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
249 {
246 {
250 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
247 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
251 *
248 *
252 * @param TC points to the TeleCommand packet that is being processed
249 * @param TC points to the TeleCommand packet that is being processed
253 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
250 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
254 *
251 *
255 * @return LFR directive status code:
252 * @return LFR directive status code:
256 * - LFR_DEFAULT
253 * - LFR_DEFAULT
257 * - LFR_SUCCESSFUL
254 * - LFR_SUCCESSFUL
258 *
255 *
259 */
256 */
260
257
261 unsigned int val;
258 unsigned int val;
262 int result;
259 int result;
263 unsigned int status;
260 unsigned int status;
264 unsigned char mode;
261 unsigned char mode;
265 unsigned char * bytePosPtr;
262 unsigned char * bytePosPtr;
266
263
267 bytePosPtr = (unsigned char *) &TC->packetID;
264 bytePosPtr = (unsigned char *) &TC->packetID;
268
265
269 // check LFR mode
266 // check LFR mode
270 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
267 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
271 status = check_update_info_hk_lfr_mode( mode );
268 status = check_update_info_hk_lfr_mode( mode );
272 if (status == LFR_SUCCESSFUL) // check TDS mode
269 if (status == LFR_SUCCESSFUL) // check TDS mode
273 {
270 {
274 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
271 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
275 status = check_update_info_hk_tds_mode( mode );
272 status = check_update_info_hk_tds_mode( mode );
276 }
273 }
277 if (status == LFR_SUCCESSFUL) // check THR mode
274 if (status == LFR_SUCCESSFUL) // check THR mode
278 {
275 {
279 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
276 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
280 status = check_update_info_hk_thr_mode( mode );
277 status = check_update_info_hk_thr_mode( mode );
281 }
278 }
282 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
279 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
283 {
280 {
284 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
281 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
285 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
282 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
286 val++;
283 val++;
287 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
284 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
288 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
285 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
289 }
286 }
290
287
291 // pa_bia_status_info
288 // pa_bia_status_info
292 // => pa_bia_mode_mux_set 3 bits
289 // => pa_bia_mode_mux_set 3 bits
293 // => pa_bia_mode_hv_enabled 1 bit
290 // => pa_bia_mode_hv_enabled 1 bit
294 // => pa_bia_mode_bias1_enabled 1 bit
291 // => pa_bia_mode_bias1_enabled 1 bit
295 // => pa_bia_mode_bias2_enabled 1 bit
292 // => pa_bia_mode_bias2_enabled 1 bit
296 // => pa_bia_mode_bias3_enabled 1 bit
293 // => pa_bia_mode_bias3_enabled 1 bit
297 // => pa_bia_on_off (cp_dpu_bias_on_off)
294 // => pa_bia_on_off (cp_dpu_bias_on_off)
298 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
295 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
299 pa_bia_status_info = pa_bia_status_info
296 pa_bia_status_info = pa_bia_status_info
300 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
297 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
301
298
302 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
299 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
303
300
304 cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
301 cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
305 getReactionWheelsFrequencies( TC );
302 getReactionWheelsFrequencies( TC );
306 build_sy_lfr_rw_masks();
303 build_sy_lfr_rw_masks();
307
304
308 // once the masks are built, they have to be merged with the fbins_mask
305 // once the masks are built, they have to be merged with the fbins_mask
309 merge_fbins_masks();
306 merge_fbins_masks();
310
307
311 result = status;
308 result = status;
312
309
313 return result;
310 return result;
314 }
311 }
315
312
316 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
313 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
317 {
314 {
318 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
315 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
319 *
316 *
320 * @param TC points to the TeleCommand packet that is being processed
317 * @param TC points to the TeleCommand packet that is being processed
321 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
318 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
322 *
319 *
323 */
320 */
324
321
325 int result;
322 int result;
326
323
327 result = LFR_DEFAULT;
324 result = LFR_DEFAULT;
328
325
329 setCalibration( true );
326 setCalibration( true );
330
327
331 result = LFR_SUCCESSFUL;
328 result = LFR_SUCCESSFUL;
332
329
333 return result;
330 return result;
334 }
331 }
335
332
336 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
333 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
337 {
334 {
338 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
335 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
339 *
336 *
340 * @param TC points to the TeleCommand packet that is being processed
337 * @param TC points to the TeleCommand packet that is being processed
341 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
338 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
342 *
339 *
343 */
340 */
344
341
345 int result;
342 int result;
346
343
347 result = LFR_DEFAULT;
344 result = LFR_DEFAULT;
348
345
349 setCalibration( false );
346 setCalibration( false );
350
347
351 result = LFR_SUCCESSFUL;
348 result = LFR_SUCCESSFUL;
352
349
353 return result;
350 return result;
354 }
351 }
355
352
356 int action_update_time(ccsdsTelecommandPacket_t *TC)
353 int action_update_time(ccsdsTelecommandPacket_t *TC)
357 {
354 {
358 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
355 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
359 *
356 *
360 * @param TC points to the TeleCommand packet that is being processed
357 * @param TC points to the TeleCommand packet that is being processed
361 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
358 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
362 *
359 *
363 * @return LFR_SUCCESSFUL
360 * @return LFR_SUCCESSFUL
364 *
361 *
365 */
362 */
366
363
367 unsigned int val;
364 unsigned int val;
368
365
369 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
366 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
370 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
367 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
371 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
368 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
372 + TC->dataAndCRC[BYTE_3];
369 + TC->dataAndCRC[BYTE_3];
373
370
374 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
371 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
375 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
372 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
376 val++;
373 val++;
377 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
374 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
378 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
375 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
379
376
380 oneTcLfrUpdateTimeReceived = 1;
377 oneTcLfrUpdateTimeReceived = 1;
381
378
382 return LFR_SUCCESSFUL;
379 return LFR_SUCCESSFUL;
383 }
380 }
384
381
385 //*******************
382 //*******************
386 // ENTERING THE MODES
383 // ENTERING THE MODES
387 int check_mode_value( unsigned char requestedMode )
384 int check_mode_value( unsigned char requestedMode )
388 {
385 {
389 int status;
386 int status;
390
387
391 status = LFR_DEFAULT;
388 status = LFR_DEFAULT;
392
389
393 if ( (requestedMode != LFR_MODE_STANDBY)
390 if ( (requestedMode != LFR_MODE_STANDBY)
394 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
391 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
395 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
392 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
396 {
393 {
397 status = LFR_DEFAULT;
394 status = LFR_DEFAULT;
398 }
395 }
399 else
396 else
400 {
397 {
401 status = LFR_SUCCESSFUL;
398 status = LFR_SUCCESSFUL;
402 }
399 }
403
400
404 return status;
401 return status;
405 }
402 }
406
403
407 int check_mode_transition( unsigned char requestedMode )
404 int check_mode_transition( unsigned char requestedMode )
408 {
405 {
409 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
406 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
410 *
407 *
411 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
408 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
412 *
409 *
413 * @return LFR directive status codes:
410 * @return LFR directive status codes:
414 * - LFR_SUCCESSFUL - the transition is authorized
411 * - LFR_SUCCESSFUL - the transition is authorized
415 * - LFR_DEFAULT - the transition is not authorized
412 * - LFR_DEFAULT - the transition is not authorized
416 *
413 *
417 */
414 */
418
415
419 int status;
416 int status;
420
417
421 switch (requestedMode)
418 switch (requestedMode)
422 {
419 {
423 case LFR_MODE_STANDBY:
420 case LFR_MODE_STANDBY:
424 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
421 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
425 status = LFR_DEFAULT;
422 status = LFR_DEFAULT;
426 }
423 }
427 else
424 else
428 {
425 {
429 status = LFR_SUCCESSFUL;
426 status = LFR_SUCCESSFUL;
430 }
427 }
431 break;
428 break;
432 case LFR_MODE_NORMAL:
429 case LFR_MODE_NORMAL:
433 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
430 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
434 status = LFR_DEFAULT;
431 status = LFR_DEFAULT;
435 }
432 }
436 else {
433 else {
437 status = LFR_SUCCESSFUL;
434 status = LFR_SUCCESSFUL;
438 }
435 }
439 break;
436 break;
440 case LFR_MODE_BURST:
437 case LFR_MODE_BURST:
441 if ( lfrCurrentMode == LFR_MODE_BURST ) {
438 if ( lfrCurrentMode == LFR_MODE_BURST ) {
442 status = LFR_DEFAULT;
439 status = LFR_DEFAULT;
443 }
440 }
444 else {
441 else {
445 status = LFR_SUCCESSFUL;
442 status = LFR_SUCCESSFUL;
446 }
443 }
447 break;
444 break;
448 case LFR_MODE_SBM1:
445 case LFR_MODE_SBM1:
449 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
446 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
450 status = LFR_DEFAULT;
447 status = LFR_DEFAULT;
451 }
448 }
452 else {
449 else {
453 status = LFR_SUCCESSFUL;
450 status = LFR_SUCCESSFUL;
454 }
451 }
455 break;
452 break;
456 case LFR_MODE_SBM2:
453 case LFR_MODE_SBM2:
457 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
454 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
458 status = LFR_DEFAULT;
455 status = LFR_DEFAULT;
459 }
456 }
460 else {
457 else {
461 status = LFR_SUCCESSFUL;
458 status = LFR_SUCCESSFUL;
462 }
459 }
463 break;
460 break;
464 default:
461 default:
465 status = LFR_DEFAULT;
462 status = LFR_DEFAULT;
466 break;
463 break;
467 }
464 }
468
465
469 return status;
466 return status;
470 }
467 }
471
468
472 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
469 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
473 {
470 {
474 if (transitionCoarseTime == 0)
471 if (transitionCoarseTime == 0)
475 {
472 {
476 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
473 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
477 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
474 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
478 }
475 }
479 else
476 else
480 {
477 {
481 lastValidEnterModeTime = transitionCoarseTime;
478 lastValidEnterModeTime = transitionCoarseTime;
482 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
479 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
483 }
480 }
484 }
481 }
485
482
486 int check_transition_date( unsigned int transitionCoarseTime )
483 int check_transition_date( unsigned int transitionCoarseTime )
487 {
484 {
488 int status;
485 int status;
489 unsigned int localCoarseTime;
486 unsigned int localCoarseTime;
490 unsigned int deltaCoarseTime;
487 unsigned int deltaCoarseTime;
491
488
492 status = LFR_SUCCESSFUL;
489 status = LFR_SUCCESSFUL;
493
490
494 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
491 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
495 {
492 {
496 status = LFR_SUCCESSFUL;
493 status = LFR_SUCCESSFUL;
497 }
494 }
498 else
495 else
499 {
496 {
500 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
497 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
501
498
502 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
499 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
503
500
504 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
501 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
505 {
502 {
506 status = LFR_DEFAULT;
503 status = LFR_DEFAULT;
507 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
504 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
508 }
505 }
509
506
510 if (status == LFR_SUCCESSFUL)
507 if (status == LFR_SUCCESSFUL)
511 {
508 {
512 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
509 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
513 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
510 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
514 {
511 {
515 status = LFR_DEFAULT;
512 status = LFR_DEFAULT;
516 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
513 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
517 }
514 }
518 }
515 }
519 }
516 }
520
517
521 return status;
518 return status;
522 }
519 }
523
520
524 int restart_asm_activities( unsigned char lfrRequestedMode )
521 int restart_asm_activities( unsigned char lfrRequestedMode )
525 {
522 {
526 rtems_status_code status;
523 rtems_status_code status;
527
524
528 status = stop_spectral_matrices();
525 status = stop_spectral_matrices();
529
526
530 thisIsAnASMRestart = 1;
527 thisIsAnASMRestart = 1;
531
528
532 status = restart_asm_tasks( lfrRequestedMode );
529 status = restart_asm_tasks( lfrRequestedMode );
533
530
534 launch_spectral_matrix();
531 launch_spectral_matrix();
535
532
536 return status;
533 return status;
537 }
534 }
538
535
539 int stop_spectral_matrices( void )
536 int stop_spectral_matrices( void )
540 {
537 {
541 /** This function stops and restarts the current mode average spectral matrices activities.
538 /** This function stops and restarts the current mode average spectral matrices activities.
542 *
539 *
543 * @return RTEMS directive status codes:
540 * @return RTEMS directive status codes:
544 * - RTEMS_SUCCESSFUL - task restarted successfully
541 * - RTEMS_SUCCESSFUL - task restarted successfully
545 * - RTEMS_INVALID_ID - task id invalid
542 * - RTEMS_INVALID_ID - task id invalid
546 * - RTEMS_ALREADY_SUSPENDED - task already suspended
543 * - RTEMS_ALREADY_SUSPENDED - task already suspended
547 *
544 *
548 */
545 */
549
546
550 rtems_status_code status;
547 rtems_status_code status;
551
548
552 status = RTEMS_SUCCESSFUL;
549 status = RTEMS_SUCCESSFUL;
553
550
554 // (1) mask interruptions
551 // (1) mask interruptions
555 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
552 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
556
553
557 // (2) reset spectral matrices registers
554 // (2) reset spectral matrices registers
558 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
555 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
559 reset_sm_status();
556 reset_sm_status();
560
557
561 // (3) clear interruptions
558 // (3) clear interruptions
562 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
559 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
563
560
564 // suspend several tasks
561 // suspend several tasks
565 if (lfrCurrentMode != LFR_MODE_STANDBY) {
562 if (lfrCurrentMode != LFR_MODE_STANDBY) {
566 status = suspend_asm_tasks();
563 status = suspend_asm_tasks();
567 }
564 }
568
565
569 if (status != RTEMS_SUCCESSFUL)
566 if (status != RTEMS_SUCCESSFUL)
570 {
567 {
571 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
568 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
572 }
569 }
573
570
574 return status;
571 return status;
575 }
572 }
576
573
577 int stop_current_mode( void )
574 int stop_current_mode( void )
578 {
575 {
579 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
576 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
580 *
577 *
581 * @return RTEMS directive status codes:
578 * @return RTEMS directive status codes:
582 * - RTEMS_SUCCESSFUL - task restarted successfully
579 * - RTEMS_SUCCESSFUL - task restarted successfully
583 * - RTEMS_INVALID_ID - task id invalid
580 * - RTEMS_INVALID_ID - task id invalid
584 * - RTEMS_ALREADY_SUSPENDED - task already suspended
581 * - RTEMS_ALREADY_SUSPENDED - task already suspended
585 *
582 *
586 */
583 */
587
584
588 rtems_status_code status;
585 rtems_status_code status;
589
586
590 status = RTEMS_SUCCESSFUL;
587 status = RTEMS_SUCCESSFUL;
591
588
592 // (1) mask interruptions
589 // (1) mask interruptions
593 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
590 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
594 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
591 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
595
592
596 // (2) reset waveform picker registers
593 // (2) reset waveform picker registers
597 reset_wfp_burst_enable(); // reset burst and enable bits
594 reset_wfp_burst_enable(); // reset burst and enable bits
598 reset_wfp_status(); // reset all the status bits
595 reset_wfp_status(); // reset all the status bits
599
596
600 // (3) reset spectral matrices registers
597 // (3) reset spectral matrices registers
601 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
598 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
602 reset_sm_status();
599 reset_sm_status();
603
600
604 // reset lfr VHDL module
601 // reset lfr VHDL module
605 reset_lfr();
602 reset_lfr();
606
603
607 reset_extractSWF(); // reset the extractSWF flag to false
604 reset_extractSWF(); // reset the extractSWF flag to false
608
605
609 // (4) clear interruptions
606 // (4) clear interruptions
610 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
607 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
611 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
608 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
612
609
613 // suspend several tasks
610 // suspend several tasks
614 if (lfrCurrentMode != LFR_MODE_STANDBY) {
611 if (lfrCurrentMode != LFR_MODE_STANDBY) {
615 status = suspend_science_tasks();
612 status = suspend_science_tasks();
616 }
613 }
617
614
618 if (status != RTEMS_SUCCESSFUL)
615 if (status != RTEMS_SUCCESSFUL)
619 {
616 {
620 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
617 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
621 }
618 }
622
619
623 return status;
620 return status;
624 }
621 }
625
622
626 int enter_mode_standby( void )
623 int enter_mode_standby( void )
627 {
624 {
628 /** This function is used to put LFR in the STANDBY mode.
625 /** This function is used to put LFR in the STANDBY mode.
629 *
626 *
630 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
627 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
631 *
628 *
632 * @return RTEMS directive status codes:
629 * @return RTEMS directive status codes:
633 * - RTEMS_SUCCESSFUL - task restarted successfully
630 * - RTEMS_SUCCESSFUL - task restarted successfully
634 * - RTEMS_INVALID_ID - task id invalid
631 * - RTEMS_INVALID_ID - task id invalid
635 * - RTEMS_INCORRECT_STATE - task never started
632 * - RTEMS_INCORRECT_STATE - task never started
636 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
633 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
637 *
634 *
638 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
635 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
639 * is immediate.
636 * is immediate.
640 *
637 *
641 */
638 */
642
639
643 int status;
640 int status;
644
641
645 status = stop_current_mode(); // STOP THE CURRENT MODE
642 status = stop_current_mode(); // STOP THE CURRENT MODE
646
643
647 #ifdef PRINT_TASK_STATISTICS
644 #ifdef PRINT_TASK_STATISTICS
648 rtems_cpu_usage_report();
645 rtems_cpu_usage_report();
649 #endif
646 #endif
650
647
651 #ifdef PRINT_STACK_REPORT
648 #ifdef PRINT_STACK_REPORT
652 PRINTF("stack report selected\n")
649 PRINTF("stack report selected\n")
653 rtems_stack_checker_report_usage();
650 rtems_stack_checker_report_usage();
654 #endif
651 #endif
655
652
656 return status;
653 return status;
657 }
654 }
658
655
659 int enter_mode_normal( unsigned int transitionCoarseTime )
656 int enter_mode_normal( unsigned int transitionCoarseTime )
660 {
657 {
661 /** This function is used to start the NORMAL mode.
658 /** This function is used to start the NORMAL mode.
662 *
659 *
663 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
660 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
664 *
661 *
665 * @return RTEMS directive status codes:
662 * @return RTEMS directive status codes:
666 * - RTEMS_SUCCESSFUL - task restarted successfully
663 * - RTEMS_SUCCESSFUL - task restarted successfully
667 * - RTEMS_INVALID_ID - task id invalid
664 * - RTEMS_INVALID_ID - task id invalid
668 * - RTEMS_INCORRECT_STATE - task never started
665 * - RTEMS_INCORRECT_STATE - task never started
669 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
666 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
670 *
667 *
671 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
668 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
672 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
669 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
673 *
670 *
674 */
671 */
675
672
676 int status;
673 int status;
677
674
678 #ifdef PRINT_TASK_STATISTICS
675 #ifdef PRINT_TASK_STATISTICS
679 rtems_cpu_usage_reset();
676 rtems_cpu_usage_reset();
680 #endif
677 #endif
681
678
682 status = RTEMS_UNSATISFIED;
679 status = RTEMS_UNSATISFIED;
683
680
684 switch( lfrCurrentMode )
681 switch( lfrCurrentMode )
685 {
682 {
686 case LFR_MODE_STANDBY:
683 case LFR_MODE_STANDBY:
687 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
684 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
688 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
685 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
689 {
686 {
690 launch_spectral_matrix( );
687 launch_spectral_matrix( );
691 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
688 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
692 }
689 }
693 break;
690 break;
694 case LFR_MODE_BURST:
691 case LFR_MODE_BURST:
695 status = stop_current_mode(); // stop the current mode
692 status = stop_current_mode(); // stop the current mode
696 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
693 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
697 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
694 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
698 {
695 {
699 launch_spectral_matrix( );
696 launch_spectral_matrix( );
700 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
697 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
701 }
698 }
702 break;
699 break;
703 case LFR_MODE_SBM1:
700 case LFR_MODE_SBM1:
704 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
701 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
705 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
702 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
706 update_last_valid_transition_date( transitionCoarseTime );
703 update_last_valid_transition_date( transitionCoarseTime );
707 break;
704 break;
708 case LFR_MODE_SBM2:
705 case LFR_MODE_SBM2:
709 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
706 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
710 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
707 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
711 update_last_valid_transition_date( transitionCoarseTime );
708 update_last_valid_transition_date( transitionCoarseTime );
712 break;
709 break;
713 default:
710 default:
714 break;
711 break;
715 }
712 }
716
713
717 if (status != RTEMS_SUCCESSFUL)
714 if (status != RTEMS_SUCCESSFUL)
718 {
715 {
719 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
716 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
720 status = RTEMS_UNSATISFIED;
717 status = RTEMS_UNSATISFIED;
721 }
718 }
722
719
723 return status;
720 return status;
724 }
721 }
725
722
726 int enter_mode_burst( unsigned int transitionCoarseTime )
723 int enter_mode_burst( unsigned int transitionCoarseTime )
727 {
724 {
728 /** This function is used to start the BURST mode.
725 /** This function is used to start the BURST mode.
729 *
726 *
730 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
727 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
731 *
728 *
732 * @return RTEMS directive status codes:
729 * @return RTEMS directive status codes:
733 * - RTEMS_SUCCESSFUL - task restarted successfully
730 * - RTEMS_SUCCESSFUL - task restarted successfully
734 * - RTEMS_INVALID_ID - task id invalid
731 * - RTEMS_INVALID_ID - task id invalid
735 * - RTEMS_INCORRECT_STATE - task never started
732 * - RTEMS_INCORRECT_STATE - task never started
736 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
733 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
737 *
734 *
738 * The way the BURST mode is started does not depend on the LFR current mode.
735 * The way the BURST mode is started does not depend on the LFR current mode.
739 *
736 *
740 */
737 */
741
738
742
739
743 int status;
740 int status;
744
741
745 #ifdef PRINT_TASK_STATISTICS
742 #ifdef PRINT_TASK_STATISTICS
746 rtems_cpu_usage_reset();
743 rtems_cpu_usage_reset();
747 #endif
744 #endif
748
745
749 status = stop_current_mode(); // stop the current mode
746 status = stop_current_mode(); // stop the current mode
750 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
747 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
751 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
748 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
752 {
749 {
753 launch_spectral_matrix( );
750 launch_spectral_matrix( );
754 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
751 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
755 }
752 }
756
753
757 if (status != RTEMS_SUCCESSFUL)
754 if (status != RTEMS_SUCCESSFUL)
758 {
755 {
759 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
756 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
760 status = RTEMS_UNSATISFIED;
757 status = RTEMS_UNSATISFIED;
761 }
758 }
762
759
763 return status;
760 return status;
764 }
761 }
765
762
766 int enter_mode_sbm1( unsigned int transitionCoarseTime )
763 int enter_mode_sbm1( unsigned int transitionCoarseTime )
767 {
764 {
768 /** This function is used to start the SBM1 mode.
765 /** This function is used to start the SBM1 mode.
769 *
766 *
770 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
767 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
771 *
768 *
772 * @return RTEMS directive status codes:
769 * @return RTEMS directive status codes:
773 * - RTEMS_SUCCESSFUL - task restarted successfully
770 * - RTEMS_SUCCESSFUL - task restarted successfully
774 * - RTEMS_INVALID_ID - task id invalid
771 * - RTEMS_INVALID_ID - task id invalid
775 * - RTEMS_INCORRECT_STATE - task never started
772 * - RTEMS_INCORRECT_STATE - task never started
776 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
773 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
777 *
774 *
778 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
775 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
779 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
776 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
780 * cases, the acquisition is completely restarted.
777 * cases, the acquisition is completely restarted.
781 *
778 *
782 */
779 */
783
780
784 int status;
781 int status;
785
782
786 #ifdef PRINT_TASK_STATISTICS
783 #ifdef PRINT_TASK_STATISTICS
787 rtems_cpu_usage_reset();
784 rtems_cpu_usage_reset();
788 #endif
785 #endif
789
786
790 status = RTEMS_UNSATISFIED;
787 status = RTEMS_UNSATISFIED;
791
788
792 switch( lfrCurrentMode )
789 switch( lfrCurrentMode )
793 {
790 {
794 case LFR_MODE_STANDBY:
791 case LFR_MODE_STANDBY:
795 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
792 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
796 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
793 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
797 {
794 {
798 launch_spectral_matrix( );
795 launch_spectral_matrix( );
799 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
796 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
800 }
797 }
801 break;
798 break;
802 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
799 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
803 status = restart_asm_activities( LFR_MODE_SBM1 );
800 status = restart_asm_activities( LFR_MODE_SBM1 );
804 status = LFR_SUCCESSFUL;
801 status = LFR_SUCCESSFUL;
805 update_last_valid_transition_date( transitionCoarseTime );
802 update_last_valid_transition_date( transitionCoarseTime );
806 break;
803 break;
807 case LFR_MODE_BURST:
804 case LFR_MODE_BURST:
808 status = stop_current_mode(); // stop the current mode
805 status = stop_current_mode(); // stop the current mode
809 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
806 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
810 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
807 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
811 {
808 {
812 launch_spectral_matrix( );
809 launch_spectral_matrix( );
813 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
810 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
814 }
811 }
815 break;
812 break;
816 case LFR_MODE_SBM2:
813 case LFR_MODE_SBM2:
817 status = restart_asm_activities( LFR_MODE_SBM1 );
814 status = restart_asm_activities( LFR_MODE_SBM1 );
818 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
815 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
819 update_last_valid_transition_date( transitionCoarseTime );
816 update_last_valid_transition_date( transitionCoarseTime );
820 break;
817 break;
821 default:
818 default:
822 break;
819 break;
823 }
820 }
824
821
825 if (status != RTEMS_SUCCESSFUL)
822 if (status != RTEMS_SUCCESSFUL)
826 {
823 {
827 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
824 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
828 status = RTEMS_UNSATISFIED;
825 status = RTEMS_UNSATISFIED;
829 }
826 }
830
827
831 return status;
828 return status;
832 }
829 }
833
830
834 int enter_mode_sbm2( unsigned int transitionCoarseTime )
831 int enter_mode_sbm2( unsigned int transitionCoarseTime )
835 {
832 {
836 /** This function is used to start the SBM2 mode.
833 /** This function is used to start the SBM2 mode.
837 *
834 *
838 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
835 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
839 *
836 *
840 * @return RTEMS directive status codes:
837 * @return RTEMS directive status codes:
841 * - RTEMS_SUCCESSFUL - task restarted successfully
838 * - RTEMS_SUCCESSFUL - task restarted successfully
842 * - RTEMS_INVALID_ID - task id invalid
839 * - RTEMS_INVALID_ID - task id invalid
843 * - RTEMS_INCORRECT_STATE - task never started
840 * - RTEMS_INCORRECT_STATE - task never started
844 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
841 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
845 *
842 *
846 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
843 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
847 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
844 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
848 * cases, the acquisition is completely restarted.
845 * cases, the acquisition is completely restarted.
849 *
846 *
850 */
847 */
851
848
852 int status;
849 int status;
853
850
854 #ifdef PRINT_TASK_STATISTICS
851 #ifdef PRINT_TASK_STATISTICS
855 rtems_cpu_usage_reset();
852 rtems_cpu_usage_reset();
856 #endif
853 #endif
857
854
858 status = RTEMS_UNSATISFIED;
855 status = RTEMS_UNSATISFIED;
859
856
860 switch( lfrCurrentMode )
857 switch( lfrCurrentMode )
861 {
858 {
862 case LFR_MODE_STANDBY:
859 case LFR_MODE_STANDBY:
863 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
860 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
864 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
861 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
865 {
862 {
866 launch_spectral_matrix( );
863 launch_spectral_matrix( );
867 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
864 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
868 }
865 }
869 break;
866 break;
870 case LFR_MODE_NORMAL:
867 case LFR_MODE_NORMAL:
871 status = restart_asm_activities( LFR_MODE_SBM2 );
868 status = restart_asm_activities( LFR_MODE_SBM2 );
872 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
869 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
873 update_last_valid_transition_date( transitionCoarseTime );
870 update_last_valid_transition_date( transitionCoarseTime );
874 break;
871 break;
875 case LFR_MODE_BURST:
872 case LFR_MODE_BURST:
876 status = stop_current_mode(); // stop the current mode
873 status = stop_current_mode(); // stop the current mode
877 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
874 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
878 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
875 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
879 {
876 {
880 launch_spectral_matrix( );
877 launch_spectral_matrix( );
881 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
878 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
882 }
879 }
883 break;
880 break;
884 case LFR_MODE_SBM1:
881 case LFR_MODE_SBM1:
885 status = restart_asm_activities( LFR_MODE_SBM2 );
882 status = restart_asm_activities( LFR_MODE_SBM2 );
886 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
883 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
887 update_last_valid_transition_date( transitionCoarseTime );
884 update_last_valid_transition_date( transitionCoarseTime );
888 break;
885 break;
889 default:
886 default:
890 break;
887 break;
891 }
888 }
892
889
893 if (status != RTEMS_SUCCESSFUL)
890 if (status != RTEMS_SUCCESSFUL)
894 {
891 {
895 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
892 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
896 status = RTEMS_UNSATISFIED;
893 status = RTEMS_UNSATISFIED;
897 }
894 }
898
895
899 return status;
896 return status;
900 }
897 }
901
898
902 int restart_science_tasks( unsigned char lfrRequestedMode )
899 int restart_science_tasks( unsigned char lfrRequestedMode )
903 {
900 {
904 /** This function is used to restart all science tasks.
901 /** This function is used to restart all science tasks.
905 *
902 *
906 * @return RTEMS directive status codes:
903 * @return RTEMS directive status codes:
907 * - RTEMS_SUCCESSFUL - task restarted successfully
904 * - RTEMS_SUCCESSFUL - task restarted successfully
908 * - RTEMS_INVALID_ID - task id invalid
905 * - RTEMS_INVALID_ID - task id invalid
909 * - RTEMS_INCORRECT_STATE - task never started
906 * - RTEMS_INCORRECT_STATE - task never started
910 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
907 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
911 *
908 *
912 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
909 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
913 *
910 *
914 */
911 */
915
912
916 rtems_status_code status[NB_SCIENCE_TASKS];
913 rtems_status_code status[NB_SCIENCE_TASKS];
917 rtems_status_code ret;
914 rtems_status_code ret;
918
915
919 ret = RTEMS_SUCCESSFUL;
916 ret = RTEMS_SUCCESSFUL;
920
917
921 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
918 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
922 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
919 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
923 {
920 {
924 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
921 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
925 }
922 }
926
923
927 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
924 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
928 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
925 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
929 {
926 {
930 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
927 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
931 }
928 }
932
929
933 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
930 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
934 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
931 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
935 {
932 {
936 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
933 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
937 }
934 }
938
935
939 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
936 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
940 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
937 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
941 {
938 {
942 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
939 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
943 }
940 }
944
941
945 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
942 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
946 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
943 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
947 {
944 {
948 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
945 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
949 }
946 }
950
947
951 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
948 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
952 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
949 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
953 {
950 {
954 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
951 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
955 }
952 }
956
953
957 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
954 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
958 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
955 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
959 {
956 {
960 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
957 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
961 }
958 }
962
959
963 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
960 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
964 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
961 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
965 {
962 {
966 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
963 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
967 }
964 }
968
965
969 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
966 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
970 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
967 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
971 {
968 {
972 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
969 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
973 }
970 }
974
971
975 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
972 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
976 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
973 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
977 {
974 {
978 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
975 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
979 }
976 }
980
977
981 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
978 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
982 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
979 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
983 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
980 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
984 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
981 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
985 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
982 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
986 {
983 {
987 ret = RTEMS_UNSATISFIED;
984 ret = RTEMS_UNSATISFIED;
988 }
985 }
989
986
990 return ret;
987 return ret;
991 }
988 }
992
989
993 int restart_asm_tasks( unsigned char lfrRequestedMode )
990 int restart_asm_tasks( unsigned char lfrRequestedMode )
994 {
991 {
995 /** This function is used to restart average spectral matrices tasks.
992 /** This function is used to restart average spectral matrices tasks.
996 *
993 *
997 * @return RTEMS directive status codes:
994 * @return RTEMS directive status codes:
998 * - RTEMS_SUCCESSFUL - task restarted successfully
995 * - RTEMS_SUCCESSFUL - task restarted successfully
999 * - RTEMS_INVALID_ID - task id invalid
996 * - RTEMS_INVALID_ID - task id invalid
1000 * - RTEMS_INCORRECT_STATE - task never started
997 * - RTEMS_INCORRECT_STATE - task never started
1001 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
998 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
1002 *
999 *
1003 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
1000 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
1004 *
1001 *
1005 */
1002 */
1006
1003
1007 rtems_status_code status[NB_ASM_TASKS];
1004 rtems_status_code status[NB_ASM_TASKS];
1008 rtems_status_code ret;
1005 rtems_status_code ret;
1009
1006
1010 ret = RTEMS_SUCCESSFUL;
1007 ret = RTEMS_SUCCESSFUL;
1011
1008
1012 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1009 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1013 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1010 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1014 {
1011 {
1015 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1012 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1016 }
1013 }
1017
1014
1018 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1015 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1019 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1016 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1020 {
1017 {
1021 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1018 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1022 }
1019 }
1023
1020
1024 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1021 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1025 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1022 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1026 {
1023 {
1027 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1024 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1028 }
1025 }
1029
1026
1030 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1027 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1031 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1028 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1032 {
1029 {
1033 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1030 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1034 }
1031 }
1035
1032
1036 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1033 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1037 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1034 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1038 {
1035 {
1039 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1036 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1040 }
1037 }
1041
1038
1042 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1039 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1043 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1040 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1044 {
1041 {
1045 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1042 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1046 }
1043 }
1047
1044
1048 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1045 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1049 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1046 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1050 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1047 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1051 {
1048 {
1052 ret = RTEMS_UNSATISFIED;
1049 ret = RTEMS_UNSATISFIED;
1053 }
1050 }
1054
1051
1055 return ret;
1052 return ret;
1056 }
1053 }
1057
1054
1058 int suspend_science_tasks( void )
1055 int suspend_science_tasks( void )
1059 {
1056 {
1060 /** This function suspends the science tasks.
1057 /** This function suspends the science tasks.
1061 *
1058 *
1062 * @return RTEMS directive status codes:
1059 * @return RTEMS directive status codes:
1063 * - RTEMS_SUCCESSFUL - task restarted successfully
1060 * - RTEMS_SUCCESSFUL - task restarted successfully
1064 * - RTEMS_INVALID_ID - task id invalid
1061 * - RTEMS_INVALID_ID - task id invalid
1065 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1062 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1066 *
1063 *
1067 */
1064 */
1068
1065
1069 rtems_status_code status;
1066 rtems_status_code status;
1070
1067
1071 PRINTF("in suspend_science_tasks\n")
1068 PRINTF("in suspend_science_tasks\n")
1072
1069
1073 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1070 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1074 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1071 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1075 {
1072 {
1076 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1073 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1077 }
1074 }
1078 else
1075 else
1079 {
1076 {
1080 status = RTEMS_SUCCESSFUL;
1077 status = RTEMS_SUCCESSFUL;
1081 }
1078 }
1082 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1079 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1083 {
1080 {
1084 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1081 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1085 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1082 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1086 {
1083 {
1087 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1084 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1088 }
1085 }
1089 else
1086 else
1090 {
1087 {
1091 status = RTEMS_SUCCESSFUL;
1088 status = RTEMS_SUCCESSFUL;
1092 }
1089 }
1093 }
1090 }
1094 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1091 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1095 {
1092 {
1096 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1093 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1097 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1094 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1098 {
1095 {
1099 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1096 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1100 }
1097 }
1101 else
1098 else
1102 {
1099 {
1103 status = RTEMS_SUCCESSFUL;
1100 status = RTEMS_SUCCESSFUL;
1104 }
1101 }
1105 }
1102 }
1106 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1103 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1107 {
1104 {
1108 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1105 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1109 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1106 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1110 {
1107 {
1111 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1108 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1112 }
1109 }
1113 else
1110 else
1114 {
1111 {
1115 status = RTEMS_SUCCESSFUL;
1112 status = RTEMS_SUCCESSFUL;
1116 }
1113 }
1117 }
1114 }
1118 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1115 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1119 {
1116 {
1120 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1117 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1121 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1118 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1122 {
1119 {
1123 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1120 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1124 }
1121 }
1125 else
1122 else
1126 {
1123 {
1127 status = RTEMS_SUCCESSFUL;
1124 status = RTEMS_SUCCESSFUL;
1128 }
1125 }
1129 }
1126 }
1130 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1127 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1131 {
1128 {
1132 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1129 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1133 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1130 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1134 {
1131 {
1135 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1132 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1136 }
1133 }
1137 else
1134 else
1138 {
1135 {
1139 status = RTEMS_SUCCESSFUL;
1136 status = RTEMS_SUCCESSFUL;
1140 }
1137 }
1141 }
1138 }
1142 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1139 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1143 {
1140 {
1144 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1141 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1145 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1142 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1146 {
1143 {
1147 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1144 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1148 }
1145 }
1149 else
1146 else
1150 {
1147 {
1151 status = RTEMS_SUCCESSFUL;
1148 status = RTEMS_SUCCESSFUL;
1152 }
1149 }
1153 }
1150 }
1154 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1151 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1155 {
1152 {
1156 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1153 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1157 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1154 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1158 {
1155 {
1159 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1156 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1160 }
1157 }
1161 else
1158 else
1162 {
1159 {
1163 status = RTEMS_SUCCESSFUL;
1160 status = RTEMS_SUCCESSFUL;
1164 }
1161 }
1165 }
1162 }
1166 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1163 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1167 {
1164 {
1168 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1165 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1169 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1166 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1170 {
1167 {
1171 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1168 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1172 }
1169 }
1173 else
1170 else
1174 {
1171 {
1175 status = RTEMS_SUCCESSFUL;
1172 status = RTEMS_SUCCESSFUL;
1176 }
1173 }
1177 }
1174 }
1178 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1175 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1179 {
1176 {
1180 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1177 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1181 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1178 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1182 {
1179 {
1183 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1180 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1184 }
1181 }
1185 else
1182 else
1186 {
1183 {
1187 status = RTEMS_SUCCESSFUL;
1184 status = RTEMS_SUCCESSFUL;
1188 }
1185 }
1189 }
1186 }
1190
1187
1191 return status;
1188 return status;
1192 }
1189 }
1193
1190
1194 int suspend_asm_tasks( void )
1191 int suspend_asm_tasks( void )
1195 {
1192 {
1196 /** This function suspends the science tasks.
1193 /** This function suspends the science tasks.
1197 *
1194 *
1198 * @return RTEMS directive status codes:
1195 * @return RTEMS directive status codes:
1199 * - RTEMS_SUCCESSFUL - task restarted successfully
1196 * - RTEMS_SUCCESSFUL - task restarted successfully
1200 * - RTEMS_INVALID_ID - task id invalid
1197 * - RTEMS_INVALID_ID - task id invalid
1201 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1198 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1202 *
1199 *
1203 */
1200 */
1204
1201
1205 rtems_status_code status;
1202 rtems_status_code status;
1206
1203
1207 PRINTF("in suspend_science_tasks\n")
1204 PRINTF("in suspend_science_tasks\n")
1208
1205
1209 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1206 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1210 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1207 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1211 {
1208 {
1212 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1209 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1213 }
1210 }
1214 else
1211 else
1215 {
1212 {
1216 status = RTEMS_SUCCESSFUL;
1213 status = RTEMS_SUCCESSFUL;
1217 }
1214 }
1218
1215
1219 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1216 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1220 {
1217 {
1221 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1218 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1222 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1219 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1223 {
1220 {
1224 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1221 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1225 }
1222 }
1226 else
1223 else
1227 {
1224 {
1228 status = RTEMS_SUCCESSFUL;
1225 status = RTEMS_SUCCESSFUL;
1229 }
1226 }
1230 }
1227 }
1231
1228
1232 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1229 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1233 {
1230 {
1234 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1231 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1235 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1232 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1236 {
1233 {
1237 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1234 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1238 }
1235 }
1239 else
1236 else
1240 {
1237 {
1241 status = RTEMS_SUCCESSFUL;
1238 status = RTEMS_SUCCESSFUL;
1242 }
1239 }
1243 }
1240 }
1244
1241
1245 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1242 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1246 {
1243 {
1247 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1244 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1248 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1245 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1249 {
1246 {
1250 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1247 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1251 }
1248 }
1252 else
1249 else
1253 {
1250 {
1254 status = RTEMS_SUCCESSFUL;
1251 status = RTEMS_SUCCESSFUL;
1255 }
1252 }
1256 }
1253 }
1257
1254
1258 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1255 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1259 {
1256 {
1260 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1257 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1261 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1258 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1262 {
1259 {
1263 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1260 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1264 }
1261 }
1265 else
1262 else
1266 {
1263 {
1267 status = RTEMS_SUCCESSFUL;
1264 status = RTEMS_SUCCESSFUL;
1268 }
1265 }
1269 }
1266 }
1270
1267
1271 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1268 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1272 {
1269 {
1273 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1270 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1274 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1271 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1275 {
1272 {
1276 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1273 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1277 }
1274 }
1278 else
1275 else
1279 {
1276 {
1280 status = RTEMS_SUCCESSFUL;
1277 status = RTEMS_SUCCESSFUL;
1281 }
1278 }
1282 }
1279 }
1283
1280
1284 return status;
1281 return status;
1285 }
1282 }
1286
1283
1287 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1284 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1288 {
1285 {
1289
1286
1290 WFP_reset_current_ring_nodes();
1287 WFP_reset_current_ring_nodes();
1291
1288
1292 reset_waveform_picker_regs();
1289 reset_waveform_picker_regs();
1293
1290
1294 set_wfp_burst_enable_register( mode );
1291 set_wfp_burst_enable_register( mode );
1295
1292
1296 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1293 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1297 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1294 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1298
1295
1299 if (transitionCoarseTime == 0)
1296 if (transitionCoarseTime == 0)
1300 {
1297 {
1301 // instant transition means transition on the next valid date
1298 // instant transition means transition on the next valid date
1302 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1299 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1303 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1300 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1304 }
1301 }
1305 else
1302 else
1306 {
1303 {
1307 waveform_picker_regs->start_date = transitionCoarseTime;
1304 waveform_picker_regs->start_date = transitionCoarseTime;
1308 }
1305 }
1309
1306
1310 update_last_valid_transition_date(waveform_picker_regs->start_date);
1307 update_last_valid_transition_date(waveform_picker_regs->start_date);
1311
1308
1312 }
1309 }
1313
1310
1314 void launch_spectral_matrix( void )
1311 void launch_spectral_matrix( void )
1315 {
1312 {
1316 SM_reset_current_ring_nodes();
1313 SM_reset_current_ring_nodes();
1317
1314
1318 reset_spectral_matrix_regs();
1315 reset_spectral_matrix_regs();
1319
1316
1320 reset_nb_sm();
1317 reset_nb_sm();
1321
1318
1322 set_sm_irq_onNewMatrix( 1 );
1319 set_sm_irq_onNewMatrix( 1 );
1323
1320
1324 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1321 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1325 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1322 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1326
1323
1327 }
1324 }
1328
1325
1329 void set_sm_irq_onNewMatrix( unsigned char value )
1326 void set_sm_irq_onNewMatrix( unsigned char value )
1330 {
1327 {
1331 if (value == 1)
1328 if (value == 1)
1332 {
1329 {
1333 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1330 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1334 }
1331 }
1335 else
1332 else
1336 {
1333 {
1337 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1334 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1338 }
1335 }
1339 }
1336 }
1340
1337
1341 void set_sm_irq_onError( unsigned char value )
1338 void set_sm_irq_onError( unsigned char value )
1342 {
1339 {
1343 if (value == 1)
1340 if (value == 1)
1344 {
1341 {
1345 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1342 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1346 }
1343 }
1347 else
1344 else
1348 {
1345 {
1349 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1346 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1350 }
1347 }
1351 }
1348 }
1352
1349
1353 //*****************************
1350 //*****************************
1354 // CONFIGURE CALIBRATION SIGNAL
1351 // CONFIGURE CALIBRATION SIGNAL
1355 void setCalibrationPrescaler( unsigned int prescaler )
1352 void setCalibrationPrescaler( unsigned int prescaler )
1356 {
1353 {
1357 // prescaling of the master clock (25 MHz)
1354 // prescaling of the master clock (25 MHz)
1358 // master clock is divided by 2^prescaler
1355 // master clock is divided by 2^prescaler
1359 time_management_regs->calPrescaler = prescaler;
1356 time_management_regs->calPrescaler = prescaler;
1360 }
1357 }
1361
1358
1362 void setCalibrationDivisor( unsigned int divisionFactor )
1359 void setCalibrationDivisor( unsigned int divisionFactor )
1363 {
1360 {
1364 // division of the prescaled clock by the division factor
1361 // division of the prescaled clock by the division factor
1365 time_management_regs->calDivisor = divisionFactor;
1362 time_management_regs->calDivisor = divisionFactor;
1366 }
1363 }
1367
1364
1368 void setCalibrationData( void )
1365 void setCalibrationData( void )
1369 {
1366 {
1370 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1367 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1371 *
1368 *
1372 * @param void
1369 * @param void
1373 *
1370 *
1374 * @return void
1371 * @return void
1375 *
1372 *
1376 */
1373 */
1377
1374
1378 unsigned int k;
1375 unsigned int k;
1379 unsigned short data;
1376 unsigned short data;
1380 float val;
1377 float val;
1381 float Ts;
1378 float Ts;
1382
1379
1383 time_management_regs->calDataPtr = INIT_CHAR;
1380 time_management_regs->calDataPtr = INIT_CHAR;
1384
1381
1385 Ts = 1 / CAL_FS;
1382 Ts = 1 / CAL_FS;
1386
1383
1387 // build the signal for the SCM calibration
1384 // build the signal for the SCM calibration
1388 for (k = 0; k < CAL_NB_PTS; k++)
1385 for (k = 0; k < CAL_NB_PTS; k++)
1389 {
1386 {
1390 val = sin( 2 * pi * CAL_F0 * k * Ts )
1387 val = CAL_A0 * sin( CAL_W0 * k * Ts )
1391 + sin( 2 * pi * CAL_F1 * k * Ts );
1388 + CAL_A1 * sin( CAL_W1 * k * Ts );
1392 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1389 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1393 time_management_regs->calData = data & CAL_DATA_MASK;
1390 time_management_regs->calData = data & CAL_DATA_MASK;
1394 }
1391 }
1395 }
1392 }
1396
1393
1397 void setCalibrationDataInterleaved( void )
1394 void setCalibrationDataInterleaved( void )
1398 {
1395 {
1399 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1396 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1400 *
1397 *
1401 * @param void
1398 * @param void
1402 *
1399 *
1403 * @return void
1400 * @return void
1404 *
1401 *
1405 * In interleaved mode, one can store more values than in normal mode.
1402 * In interleaved mode, one can store more values than in normal mode.
1406 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1403 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1407 * T store 3 values, one need two write operations.
1404 * T store 3 values, one need two write operations.
1408 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1405 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1409 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1406 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1410 *
1407 *
1411 */
1408 */
1412
1409
1413 unsigned int k;
1410 unsigned int k;
1414 float val;
1411 float val;
1415 float Ts;
1412 float Ts;
1416 unsigned short data[CAL_NB_PTS_INTER];
1413 unsigned short data[CAL_NB_PTS_INTER];
1417 unsigned char *dataPtr;
1414 unsigned char *dataPtr;
1418
1415
1419 Ts = 1 / CAL_FS_INTER;
1416 Ts = 1 / CAL_FS_INTER;
1420
1417
1421 time_management_regs->calDataPtr = INIT_CHAR;
1418 time_management_regs->calDataPtr = INIT_CHAR;
1422
1419
1423 // build the signal for the SCM calibration
1420 // build the signal for the SCM calibration
1424 for (k=0; k<CAL_NB_PTS_INTER; k++)
1421 for (k=0; k<CAL_NB_PTS_INTER; k++)
1425 {
1422 {
1426 val = sin( 2 * pi * CAL_F0 * k * Ts )
1423 val = sin( 2 * pi * CAL_F0 * k * Ts )
1427 + sin( 2 * pi * CAL_F1 * k * Ts );
1424 + sin( 2 * pi * CAL_F1 * k * Ts );
1428 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1425 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1429 }
1426 }
1430
1427
1431 // write the signal in interleaved mode
1428 // write the signal in interleaved mode
1432 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1429 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1433 {
1430 {
1434 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1431 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1435 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1432 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1436 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1433 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1437 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1434 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1438 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1435 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1439 }
1436 }
1440 }
1437 }
1441
1438
1442 void setCalibrationReload( bool state)
1439 void setCalibrationReload( bool state)
1443 {
1440 {
1444 if (state == true)
1441 if (state == true)
1445 {
1442 {
1446 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1443 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1447 }
1444 }
1448 else
1445 else
1449 {
1446 {
1450 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1447 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1451 }
1448 }
1452 }
1449 }
1453
1450
1454 void setCalibrationEnable( bool state )
1451 void setCalibrationEnable( bool state )
1455 {
1452 {
1456 // this bit drives the multiplexer
1453 // this bit drives the multiplexer
1457 if (state == true)
1454 if (state == true)
1458 {
1455 {
1459 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1456 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1460 }
1457 }
1461 else
1458 else
1462 {
1459 {
1463 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1460 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1464 }
1461 }
1465 }
1462 }
1466
1463
1467 void setCalibrationInterleaved( bool state )
1464 void setCalibrationInterleaved( bool state )
1468 {
1465 {
1469 // this bit drives the multiplexer
1466 // this bit drives the multiplexer
1470 if (state == true)
1467 if (state == true)
1471 {
1468 {
1472 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1469 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1473 }
1470 }
1474 else
1471 else
1475 {
1472 {
1476 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1473 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1477 }
1474 }
1478 }
1475 }
1479
1476
1480 void setCalibration( bool state )
1477 void setCalibration( bool state )
1481 {
1478 {
1482 if (state == true)
1479 if (state == true)
1483 {
1480 {
1484 setCalibrationEnable( true );
1481 setCalibrationEnable( true );
1485 setCalibrationReload( false );
1482 setCalibrationReload( false );
1486 set_hk_lfr_calib_enable( true );
1483 set_hk_lfr_calib_enable( true );
1487 }
1484 }
1488 else
1485 else
1489 {
1486 {
1490 setCalibrationEnable( false );
1487 setCalibrationEnable( false );
1491 setCalibrationReload( true );
1488 setCalibrationReload( true );
1492 set_hk_lfr_calib_enable( false );
1489 set_hk_lfr_calib_enable( false );
1493 }
1490 }
1494 }
1491 }
1495
1492
1496 void configureCalibration( bool interleaved )
1493 void configureCalibration( bool interleaved )
1497 {
1494 {
1498 setCalibration( false );
1495 setCalibration( false );
1499 if ( interleaved == true )
1496 if ( interleaved == true )
1500 {
1497 {
1501 setCalibrationInterleaved( true );
1498 setCalibrationInterleaved( true );
1502 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1499 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1503 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1500 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1504 setCalibrationDataInterleaved();
1501 setCalibrationDataInterleaved();
1505 }
1502 }
1506 else
1503 else
1507 {
1504 {
1508 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1505 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1509 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1506 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1510 setCalibrationData();
1507 setCalibrationData();
1511 }
1508 }
1512 }
1509 }
1513
1510
1514 //****************
1511 //****************
1515 // CLOSING ACTIONS
1512 // CLOSING ACTIONS
1516 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1513 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1517 {
1514 {
1518 /** This function is used to update the HK packets statistics after a successful TC execution.
1515 /** This function is used to update the HK packets statistics after a successful TC execution.
1519 *
1516 *
1520 * @param TC points to the TC being processed
1517 * @param TC points to the TC being processed
1521 * @param time is the time used to date the TC execution
1518 * @param time is the time used to date the TC execution
1522 *
1519 *
1523 */
1520 */
1524
1521
1525 unsigned int val;
1522 unsigned int val;
1526
1523
1527 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1524 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1528 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1525 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1529 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1526 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1530 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1527 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1531 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1528 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1532 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1529 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1533 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1530 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1534 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1531 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1535 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1532 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1536 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1533 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1537 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1534 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1538 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1535 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1539
1536
1540 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1537 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1541 val++;
1538 val++;
1542 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1539 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1543 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1540 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1544 }
1541 }
1545
1542
1546 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1543 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1547 {
1544 {
1548 /** This function is used to update the HK packets statistics after a TC rejection.
1545 /** This function is used to update the HK packets statistics after a TC rejection.
1549 *
1546 *
1550 * @param TC points to the TC being processed
1547 * @param TC points to the TC being processed
1551 * @param time is the time used to date the TC rejection
1548 * @param time is the time used to date the TC rejection
1552 *
1549 *
1553 */
1550 */
1554
1551
1555 unsigned int val;
1552 unsigned int val;
1556
1553
1557 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1554 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1558 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1555 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1559 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1556 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1560 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1557 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1561 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1558 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1562 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1559 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1563 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1560 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1564 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1561 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1565 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1562 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1566 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1563 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1567 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1564 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1568 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1565 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1569
1566
1570 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1567 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1571 val++;
1568 val++;
1572 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1569 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1573 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1570 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1574 }
1571 }
1575
1572
1576 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1573 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1577 {
1574 {
1578 /** This function is the last step of the TC execution workflow.
1575 /** This function is the last step of the TC execution workflow.
1579 *
1576 *
1580 * @param TC points to the TC being processed
1577 * @param TC points to the TC being processed
1581 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1578 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1582 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1579 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1583 * @param time is the time used to date the TC execution
1580 * @param time is the time used to date the TC execution
1584 *
1581 *
1585 */
1582 */
1586
1583
1587 unsigned char requestedMode;
1584 unsigned char requestedMode;
1588
1585
1589 if (result == LFR_SUCCESSFUL)
1586 if (result == LFR_SUCCESSFUL)
1590 {
1587 {
1591 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1588 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1592 &
1589 &
1593 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1590 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1594 )
1591 )
1595 {
1592 {
1596 send_tm_lfr_tc_exe_success( TC, queue_id );
1593 send_tm_lfr_tc_exe_success( TC, queue_id );
1597 }
1594 }
1598 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1595 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1599 {
1596 {
1600 //**********************************
1597 //**********************************
1601 // UPDATE THE LFRMODE LOCAL VARIABLE
1598 // UPDATE THE LFRMODE LOCAL VARIABLE
1602 requestedMode = TC->dataAndCRC[1];
1599 requestedMode = TC->dataAndCRC[1];
1603 updateLFRCurrentMode( requestedMode );
1600 updateLFRCurrentMode( requestedMode );
1604 }
1601 }
1605 }
1602 }
1606 else if (result == LFR_EXE_ERROR)
1603 else if (result == LFR_EXE_ERROR)
1607 {
1604 {
1608 send_tm_lfr_tc_exe_error( TC, queue_id );
1605 send_tm_lfr_tc_exe_error( TC, queue_id );
1609 }
1606 }
1610 }
1607 }
1611
1608
1612 //***************************
1609 //***************************
1613 // Interrupt Service Routines
1610 // Interrupt Service Routines
1614 rtems_isr commutation_isr1( rtems_vector_number vector )
1611 rtems_isr commutation_isr1( rtems_vector_number vector )
1615 {
1612 {
1616 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1613 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1617 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1614 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1618 }
1615 }
1619 }
1616 }
1620
1617
1621 rtems_isr commutation_isr2( rtems_vector_number vector )
1618 rtems_isr commutation_isr2( rtems_vector_number vector )
1622 {
1619 {
1623 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1620 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1624 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1621 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1625 }
1622 }
1626 }
1623 }
1627
1624
1628 //****************
1625 //****************
1629 // OTHER FUNCTIONS
1626 // OTHER FUNCTIONS
1630 void updateLFRCurrentMode( unsigned char requestedMode )
1627 void updateLFRCurrentMode( unsigned char requestedMode )
1631 {
1628 {
1632 /** This function updates the value of the global variable lfrCurrentMode.
1629 /** This function updates the value of the global variable lfrCurrentMode.
1633 *
1630 *
1634 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1631 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1635 *
1632 *
1636 */
1633 */
1637
1634
1638 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1635 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1639 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1636 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1640 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1637 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1641 lfrCurrentMode = requestedMode;
1638 lfrCurrentMode = requestedMode;
1642 }
1639 }
1643
1640
1644 void set_lfr_soft_reset( unsigned char value )
1641 void set_lfr_soft_reset( unsigned char value )
1645 {
1642 {
1646 if (value == 1)
1643 if (value == 1)
1647 {
1644 {
1648 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1645 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1649 }
1646 }
1650 else
1647 else
1651 {
1648 {
1652 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1649 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1653 }
1650 }
1654 }
1651 }
1655
1652
1656 void reset_lfr( void )
1653 void reset_lfr( void )
1657 {
1654 {
1658 set_lfr_soft_reset( 1 );
1655 set_lfr_soft_reset( 1 );
1659
1656
1660 set_lfr_soft_reset( 0 );
1657 set_lfr_soft_reset( 0 );
1661
1658
1662 set_hk_lfr_sc_potential_flag( true );
1659 set_hk_lfr_sc_potential_flag( true );
1663 }
1660 }
@@ -1,1657 +1,1693
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 ring_node kcoefficient_node_1 = {0};
19 ring_node kcoefficient_node_1 = {0};
20 ring_node kcoefficient_node_2 = {0};
20 ring_node kcoefficient_node_2 = {0};
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_normal_par_consistency( TC, queue_id );
61 flag = check_normal_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET THE PARAMETERS
135 // SET THE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 if (aux > FLOAT_EQUAL_ZERO)
194 if (aux > FLOAT_EQUAL_ZERO)
195 {
195 {
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 flag = LFR_DEFAULT;
197 flag = LFR_DEFAULT;
198 }
198 }
199 }
199 }
200
200
201 // SET THE PARAMETERS
201 // SET THE PARAMETERS
202 if (flag == LFR_SUCCESSFUL)
202 if (flag == LFR_SUCCESSFUL)
203 {
203 {
204 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p0( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
206 }
206 }
207
207
208 return flag;
208 return flag;
209 }
209 }
210
210
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 {
212 {
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 *
214 *
215 * @param TC points to the TeleCommand packet that is being processed
215 * @param TC points to the TeleCommand packet that is being processed
216 * @param queue_id is the id of the queue which handles TM related to this execution step
216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 *
217 *
218 */
218 */
219
219
220 int flag;
220 int flag;
221 rtems_status_code status;
221 rtems_status_code status;
222 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p0;
223 unsigned char sy_lfr_s2_bp_p1;
223 unsigned char sy_lfr_s2_bp_p1;
224 float aux;
224 float aux;
225
225
226 flag = LFR_SUCCESSFUL;
226 flag = LFR_SUCCESSFUL;
227
227
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 flag = LFR_DEFAULT;
230 flag = LFR_DEFAULT;
231 }
231 }
232
232
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235
235
236 // sy_lfr_s2_bp_p0
236 // sy_lfr_s2_bp_p0
237 if (flag == LFR_SUCCESSFUL)
237 if (flag == LFR_SUCCESSFUL)
238 {
238 {
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 {
240 {
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 flag = WRONG_APP_DATA;
242 flag = WRONG_APP_DATA;
243 }
243 }
244 }
244 }
245 // sy_lfr_s2_bp_p1
245 // sy_lfr_s2_bp_p1
246 if (flag == LFR_SUCCESSFUL)
246 if (flag == LFR_SUCCESSFUL)
247 {
247 {
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 {
249 {
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 flag = WRONG_APP_DATA;
251 flag = WRONG_APP_DATA;
252 }
252 }
253 }
253 }
254 //******************************************************************
254 //******************************************************************
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 if (flag == LFR_SUCCESSFUL)
256 if (flag == LFR_SUCCESSFUL)
257 {
257 {
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 if (aux > FLOAT_EQUAL_ZERO)
261 if (aux > FLOAT_EQUAL_ZERO)
262 {
262 {
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 flag = LFR_DEFAULT;
264 flag = LFR_DEFAULT;
265 }
265 }
266 }
266 }
267
267
268 // SET THE PARAMETERS
268 // SET THE PARAMETERS
269 if (flag == LFR_SUCCESSFUL)
269 if (flag == LFR_SUCCESSFUL)
270 {
270 {
271 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p0( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
273 }
273 }
274
274
275 return flag;
275 return flag;
276 }
276 }
277
277
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 {
279 {
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 *
281 *
282 * @param TC points to the TeleCommand packet that is being processed
282 * @param TC points to the TeleCommand packet that is being processed
283 * @param queue_id is the id of the queue which handles TM related to this execution step
283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 *
284 *
285 */
285 */
286
286
287 int flag;
287 int flag;
288
288
289 flag = LFR_DEFAULT;
289 flag = LFR_DEFAULT;
290
290
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292
292
293 return flag;
293 return flag;
294 }
294 }
295
295
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 {
297 {
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 *
299 *
300 * @param TC points to the TeleCommand packet that is being processed
300 * @param TC points to the TeleCommand packet that is being processed
301 * @param queue_id is the id of the queue which handles TM related to this execution step
301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 *
302 *
303 */
303 */
304
304
305 int flag;
305 int flag;
306
306
307 flag = LFR_DEFAULT;
307 flag = LFR_DEFAULT;
308
308
309 flag = set_sy_lfr_fbins( TC );
309 flag = set_sy_lfr_fbins( TC );
310
310
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 merge_fbins_masks();
312 merge_fbins_masks();
313
313
314 return flag;
314 return flag;
315 }
315 }
316
316
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 {
318 {
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 *
320 *
321 * @param TC points to the TeleCommand packet that is being processed
321 * @param TC points to the TeleCommand packet that is being processed
322 * @param queue_id is the id of the queue which handles TM related to this execution step
322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 *
323 *
324 */
324 */
325
325
326 int flag;
326 int flag;
327
327
328 flag = LFR_DEFAULT;
328 flag = LFR_DEFAULT;
329
329
330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
331
331
332 if (flag == LFR_SUCCESSFUL)
332 if (flag == LFR_SUCCESSFUL)
333 {
333 {
334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
349
349
350 //****************************
350 //****************************
351 // store PAS filter parameters
351 // store PAS filter parameters
352 // sy_lfr_pas_filter_enabled
352 // sy_lfr_pas_filter_enabled
353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
355 // sy_lfr_pas_filter_modulus
355 // sy_lfr_pas_filter_modulus
356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
357 // sy_lfr_pas_filter_tbad
357 // sy_lfr_pas_filter_tbad
358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
360 // sy_lfr_pas_filter_offset
360 // sy_lfr_pas_filter_offset
361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
362 // sy_lfr_pas_filter_shift
362 // sy_lfr_pas_filter_shift
363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
364 parameter_dump_packet.sy_lfr_pas_filter_shift );
364 parameter_dump_packet.sy_lfr_pas_filter_shift );
365
365
366 //****************************************************
366 //****************************************************
367 // store the parameter sy_lfr_sc_rw_delta_f as a float
367 // store the parameter sy_lfr_sc_rw_delta_f as a float
368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
370 }
370 }
371
371
372 return flag;
372 return flag;
373 }
373 }
374
374
375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
376 {
376 {
377 /** This function updates the LFR registers with the incoming sbm2 parameters.
377 /** This function updates the LFR registers with the incoming sbm2 parameters.
378 *
378 *
379 * @param TC points to the TeleCommand packet that is being processed
379 * @param TC points to the TeleCommand packet that is being processed
380 * @param queue_id is the id of the queue which handles TM related to this execution step
380 * @param queue_id is the id of the queue which handles TM related to this execution step
381 *
381 *
382 */
382 */
383
383
384 unsigned int address;
384 unsigned int address;
385 rtems_status_code status;
385 rtems_status_code status;
386 unsigned int freq;
386 unsigned int freq;
387 unsigned int bin;
387 unsigned int bin;
388 unsigned int coeff;
388 unsigned int coeff;
389 unsigned char *kCoeffPtr;
389 unsigned char *kCoeffPtr;
390 unsigned char *kCoeffDumpPtr;
390 unsigned char *kCoeffDumpPtr;
391
391
392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
393 // F0 => 11 bins
393 // F0 => 11 bins
394 // F1 => 13 bins
394 // F1 => 13 bins
395 // F2 => 12 bins
395 // F2 => 12 bins
396 // 36 bins to dump in two packets (30 bins max per packet)
396 // 36 bins to dump in two packets (30 bins max per packet)
397
397
398 //*********
398 //*********
399 // PACKET 1
399 // PACKET 1
400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
401 kcoefficients_dump_1.destinationID = TC->sourceID;
401 kcoefficients_dump_1.destinationID = TC->sourceID;
402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
403 for( freq = 0;
403 for( freq = 0;
404 freq < NB_BINS_COMPRESSED_SM_F0;
404 freq < NB_BINS_COMPRESSED_SM_F0;
405 freq++ )
405 freq++ )
406 {
406 {
407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
408 bin = freq;
408 bin = freq;
409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
411 {
411 {
412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
414 ]; // 2 for the kcoeff_frequency
414 ]; // 2 for the kcoeff_frequency
415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
417 }
417 }
418 }
418 }
419 for( freq = NB_BINS_COMPRESSED_SM_F0;
419 for( freq = NB_BINS_COMPRESSED_SM_F0;
420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
421 freq++ )
421 freq++ )
422 {
422 {
423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
427 {
427 {
428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
430 ]; // 2 for the kcoeff_frequency
430 ]; // 2 for the kcoeff_frequency
431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
433 }
433 }
434 }
434 }
435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
436 freq < KCOEFF_BLK_NR_PKT1 ;
436 freq < KCOEFF_BLK_NR_PKT1 ;
437 freq++ )
437 freq++ )
438 {
438 {
439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
443 {
443 {
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 ]; // 2 for the kcoeff_frequency
446 ]; // 2 for the kcoeff_frequency
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 }
449 }
450 }
450 }
451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
457 // SEND DATA
457 // SEND DATA
458 kcoefficient_node_1.status = 1;
458 kcoefficient_node_1.status = 1;
459 address = (unsigned int) &kcoefficient_node_1;
459 address = (unsigned int) &kcoefficient_node_1;
460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
461 if (status != RTEMS_SUCCESSFUL) {
461 if (status != RTEMS_SUCCESSFUL) {
462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
463 }
463 }
464
464
465 //********
465 //********
466 // PACKET 2
466 // PACKET 2
467 // 6 F2 bins
467 // 6 F2 bins
468 kcoefficients_dump_2.destinationID = TC->sourceID;
468 kcoefficients_dump_2.destinationID = TC->sourceID;
469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
470 for( freq = 0;
470 for( freq = 0;
471 freq < KCOEFF_BLK_NR_PKT2;
471 freq < KCOEFF_BLK_NR_PKT2;
472 freq++ )
472 freq++ )
473 {
473 {
474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
475 bin = freq + KCOEFF_BLK_NR_PKT2;
475 bin = freq + KCOEFF_BLK_NR_PKT2;
476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
478 {
478 {
479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
483 }
483 }
484 }
484 }
485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
491 // SEND DATA
491 // SEND DATA
492 kcoefficient_node_2.status = 1;
492 kcoefficient_node_2.status = 1;
493 address = (unsigned int) &kcoefficient_node_2;
493 address = (unsigned int) &kcoefficient_node_2;
494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
495 if (status != RTEMS_SUCCESSFUL) {
495 if (status != RTEMS_SUCCESSFUL) {
496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
497 }
497 }
498
498
499 return status;
499 return status;
500 }
500 }
501
501
502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
503 {
503 {
504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
505 *
505 *
506 * @param queue_id is the id of the queue which handles TM related to this execution step.
506 * @param queue_id is the id of the queue which handles TM related to this execution step.
507 *
507 *
508 * @return RTEMS directive status codes:
508 * @return RTEMS directive status codes:
509 * - RTEMS_SUCCESSFUL - message sent successfully
509 * - RTEMS_SUCCESSFUL - message sent successfully
510 * - RTEMS_INVALID_ID - invalid queue id
510 * - RTEMS_INVALID_ID - invalid queue id
511 * - RTEMS_INVALID_SIZE - invalid message size
511 * - RTEMS_INVALID_SIZE - invalid message size
512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
513 * - RTEMS_UNSATISFIED - out of message buffers
513 * - RTEMS_UNSATISFIED - out of message buffers
514 * - RTEMS_TOO_MANY - queue s limit has been reached
514 * - RTEMS_TOO_MANY - queue s limit has been reached
515 *
515 *
516 */
516 */
517
517
518 int status;
518 int status;
519
519
520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
521 parameter_dump_packet.destinationID = TC->sourceID;
521 parameter_dump_packet.destinationID = TC->sourceID;
522
522
523 // UPDATE TIME
523 // UPDATE TIME
524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 // SEND DATA
530 // SEND DATA
531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
533 if (status != RTEMS_SUCCESSFUL) {
533 if (status != RTEMS_SUCCESSFUL) {
534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
535 }
535 }
536
536
537 return status;
537 return status;
538 }
538 }
539
539
540 //***********************
540 //***********************
541 // NORMAL MODE PARAMETERS
541 // NORMAL MODE PARAMETERS
542
542
543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
544 {
544 {
545 unsigned char msb;
545 unsigned char msb;
546 unsigned char lsb;
546 unsigned char lsb;
547 int flag;
547 int flag;
548 float aux;
548 float aux;
549 rtems_status_code status;
549 rtems_status_code status;
550
550
551 unsigned int sy_lfr_n_swf_l;
551 unsigned int sy_lfr_n_swf_l;
552 unsigned int sy_lfr_n_swf_p;
552 unsigned int sy_lfr_n_swf_p;
553 unsigned int sy_lfr_n_asm_p;
553 unsigned int sy_lfr_n_asm_p;
554 unsigned char sy_lfr_n_bp_p0;
554 unsigned char sy_lfr_n_bp_p0;
555 unsigned char sy_lfr_n_bp_p1;
555 unsigned char sy_lfr_n_bp_p1;
556 unsigned char sy_lfr_n_cwf_long_f3;
556 unsigned char sy_lfr_n_cwf_long_f3;
557
557
558 flag = LFR_SUCCESSFUL;
558 flag = LFR_SUCCESSFUL;
559
559
560 //***************
560 //***************
561 // get parameters
561 // get parameters
562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
565
565
566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
569
569
570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
573
573
574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
575
575
576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
577
577
578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
579
579
580 //******************
580 //******************
581 // check consistency
581 // check consistency
582 // sy_lfr_n_swf_l
582 // sy_lfr_n_swf_l
583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
584 {
584 {
585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
586 flag = WRONG_APP_DATA;
586 flag = WRONG_APP_DATA;
587 }
587 }
588 // sy_lfr_n_swf_p
588 // sy_lfr_n_swf_p
589 if (flag == LFR_SUCCESSFUL)
589 if (flag == LFR_SUCCESSFUL)
590 {
590 {
591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
592 {
592 {
593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
594 flag = WRONG_APP_DATA;
594 flag = WRONG_APP_DATA;
595 }
595 }
596 }
596 }
597 // sy_lfr_n_bp_p0
597 // sy_lfr_n_bp_p0
598 if (flag == LFR_SUCCESSFUL)
598 if (flag == LFR_SUCCESSFUL)
599 {
599 {
600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
601 {
601 {
602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
603 flag = WRONG_APP_DATA;
603 flag = WRONG_APP_DATA;
604 }
604 }
605 }
605 }
606 // sy_lfr_n_asm_p
606 // sy_lfr_n_asm_p
607 if (flag == LFR_SUCCESSFUL)
607 if (flag == LFR_SUCCESSFUL)
608 {
608 {
609 if (sy_lfr_n_asm_p == 0)
609 if (sy_lfr_n_asm_p == 0)
610 {
610 {
611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
612 flag = WRONG_APP_DATA;
612 flag = WRONG_APP_DATA;
613 }
613 }
614 }
614 }
615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
616 if (flag == LFR_SUCCESSFUL)
616 if (flag == LFR_SUCCESSFUL)
617 {
617 {
618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
619 if (aux > FLOAT_EQUAL_ZERO)
619 if (aux > FLOAT_EQUAL_ZERO)
620 {
620 {
621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
622 flag = WRONG_APP_DATA;
622 flag = WRONG_APP_DATA;
623 }
623 }
624 }
624 }
625 // sy_lfr_n_bp_p1
625 // sy_lfr_n_bp_p1
626 if (flag == LFR_SUCCESSFUL)
626 if (flag == LFR_SUCCESSFUL)
627 {
627 {
628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
629 {
629 {
630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
631 flag = WRONG_APP_DATA;
631 flag = WRONG_APP_DATA;
632 }
632 }
633 }
633 }
634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
635 if (flag == LFR_SUCCESSFUL)
635 if (flag == LFR_SUCCESSFUL)
636 {
636 {
637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
638 if (aux > FLOAT_EQUAL_ZERO)
638 if (aux > FLOAT_EQUAL_ZERO)
639 {
639 {
640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
641 flag = LFR_DEFAULT;
641 flag = LFR_DEFAULT;
642 }
642 }
643 }
643 }
644 // sy_lfr_n_cwf_long_f3
644 // sy_lfr_n_cwf_long_f3
645
645
646 return flag;
646 return flag;
647 }
647 }
648
648
649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
650 {
650 {
651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
652 *
652 *
653 * @param TC points to the TeleCommand packet that is being processed
653 * @param TC points to the TeleCommand packet that is being processed
654 * @param queue_id is the id of the queue which handles TM related to this execution step
654 * @param queue_id is the id of the queue which handles TM related to this execution step
655 *
655 *
656 */
656 */
657
657
658 int result;
658 int result;
659
659
660 result = LFR_SUCCESSFUL;
660 result = LFR_SUCCESSFUL;
661
661
662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
664
664
665 return result;
665 return result;
666 }
666 }
667
667
668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
669 {
669 {
670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
671 *
671 *
672 * @param TC points to the TeleCommand packet that is being processed
672 * @param TC points to the TeleCommand packet that is being processed
673 * @param queue_id is the id of the queue which handles TM related to this execution step
673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 *
674 *
675 */
675 */
676
676
677 int result;
677 int result;
678
678
679 result = LFR_SUCCESSFUL;
679 result = LFR_SUCCESSFUL;
680
680
681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
683
683
684 return result;
684 return result;
685 }
685 }
686
686
687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
688 {
688 {
689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
690 *
690 *
691 * @param TC points to the TeleCommand packet that is being processed
691 * @param TC points to the TeleCommand packet that is being processed
692 * @param queue_id is the id of the queue which handles TM related to this execution step
692 * @param queue_id is the id of the queue which handles TM related to this execution step
693 *
693 *
694 */
694 */
695
695
696 int result;
696 int result;
697
697
698 result = LFR_SUCCESSFUL;
698 result = LFR_SUCCESSFUL;
699
699
700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
702
702
703 return result;
703 return result;
704 }
704 }
705
705
706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
707 {
707 {
708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
709 *
709 *
710 * @param TC points to the TeleCommand packet that is being processed
710 * @param TC points to the TeleCommand packet that is being processed
711 * @param queue_id is the id of the queue which handles TM related to this execution step
711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 *
712 *
713 */
713 */
714
714
715 int status;
715 int status;
716
716
717 status = LFR_SUCCESSFUL;
717 status = LFR_SUCCESSFUL;
718
718
719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
720
720
721 return status;
721 return status;
722 }
722 }
723
723
724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
725 {
725 {
726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
727 *
727 *
728 * @param TC points to the TeleCommand packet that is being processed
728 * @param TC points to the TeleCommand packet that is being processed
729 * @param queue_id is the id of the queue which handles TM related to this execution step
729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 *
730 *
731 */
731 */
732
732
733 int status;
733 int status;
734
734
735 status = LFR_SUCCESSFUL;
735 status = LFR_SUCCESSFUL;
736
736
737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
738
738
739 return status;
739 return status;
740 }
740 }
741
741
742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
743 {
743 {
744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
745 *
745 *
746 * @param TC points to the TeleCommand packet that is being processed
746 * @param TC points to the TeleCommand packet that is being processed
747 * @param queue_id is the id of the queue which handles TM related to this execution step
747 * @param queue_id is the id of the queue which handles TM related to this execution step
748 *
748 *
749 */
749 */
750
750
751 int status;
751 int status;
752
752
753 status = LFR_SUCCESSFUL;
753 status = LFR_SUCCESSFUL;
754
754
755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
756
756
757 return status;
757 return status;
758 }
758 }
759
759
760 //**********************
760 //**********************
761 // BURST MODE PARAMETERS
761 // BURST MODE PARAMETERS
762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
763 {
763 {
764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
765 *
765 *
766 * @param TC points to the TeleCommand packet that is being processed
766 * @param TC points to the TeleCommand packet that is being processed
767 * @param queue_id is the id of the queue which handles TM related to this execution step
767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 *
768 *
769 */
769 */
770
770
771 int status;
771 int status;
772
772
773 status = LFR_SUCCESSFUL;
773 status = LFR_SUCCESSFUL;
774
774
775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
776
776
777 return status;
777 return status;
778 }
778 }
779
779
780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
781 {
781 {
782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
783 *
783 *
784 * @param TC points to the TeleCommand packet that is being processed
784 * @param TC points to the TeleCommand packet that is being processed
785 * @param queue_id is the id of the queue which handles TM related to this execution step
785 * @param queue_id is the id of the queue which handles TM related to this execution step
786 *
786 *
787 */
787 */
788
788
789 int status;
789 int status;
790
790
791 status = LFR_SUCCESSFUL;
791 status = LFR_SUCCESSFUL;
792
792
793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
794
794
795 return status;
795 return status;
796 }
796 }
797
797
798 //*********************
798 //*********************
799 // SBM1 MODE PARAMETERS
799 // SBM1 MODE PARAMETERS
800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
801 {
801 {
802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
803 *
803 *
804 * @param TC points to the TeleCommand packet that is being processed
804 * @param TC points to the TeleCommand packet that is being processed
805 * @param queue_id is the id of the queue which handles TM related to this execution step
805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 *
806 *
807 */
807 */
808
808
809 int status;
809 int status;
810
810
811 status = LFR_SUCCESSFUL;
811 status = LFR_SUCCESSFUL;
812
812
813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
814
814
815 return status;
815 return status;
816 }
816 }
817
817
818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
819 {
819 {
820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
821 *
821 *
822 * @param TC points to the TeleCommand packet that is being processed
822 * @param TC points to the TeleCommand packet that is being processed
823 * @param queue_id is the id of the queue which handles TM related to this execution step
823 * @param queue_id is the id of the queue which handles TM related to this execution step
824 *
824 *
825 */
825 */
826
826
827 int status;
827 int status;
828
828
829 status = LFR_SUCCESSFUL;
829 status = LFR_SUCCESSFUL;
830
830
831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
832
832
833 return status;
833 return status;
834 }
834 }
835
835
836 //*********************
836 //*********************
837 // SBM2 MODE PARAMETERS
837 // SBM2 MODE PARAMETERS
838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
839 {
839 {
840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
841 *
841 *
842 * @param TC points to the TeleCommand packet that is being processed
842 * @param TC points to the TeleCommand packet that is being processed
843 * @param queue_id is the id of the queue which handles TM related to this execution step
843 * @param queue_id is the id of the queue which handles TM related to this execution step
844 *
844 *
845 */
845 */
846
846
847 int status;
847 int status;
848
848
849 status = LFR_SUCCESSFUL;
849 status = LFR_SUCCESSFUL;
850
850
851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
852
852
853 return status;
853 return status;
854 }
854 }
855
855
856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
857 {
857 {
858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
859 *
859 *
860 * @param TC points to the TeleCommand packet that is being processed
860 * @param TC points to the TeleCommand packet that is being processed
861 * @param queue_id is the id of the queue which handles TM related to this execution step
861 * @param queue_id is the id of the queue which handles TM related to this execution step
862 *
862 *
863 */
863 */
864
864
865 int status;
865 int status;
866
866
867 status = LFR_SUCCESSFUL;
867 status = LFR_SUCCESSFUL;
868
868
869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
870
870
871 return status;
871 return status;
872 }
872 }
873
873
874 //*******************
874 //*******************
875 // TC_LFR_UPDATE_INFO
875 // TC_LFR_UPDATE_INFO
876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
877 {
877 {
878 unsigned int status;
878 unsigned int status;
879
879
880 status = LFR_DEFAULT;
880 status = LFR_DEFAULT;
881
881
882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
883 || (mode == LFR_MODE_BURST)
883 || (mode == LFR_MODE_BURST)
884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
885 {
885 {
886 status = LFR_SUCCESSFUL;
886 status = LFR_SUCCESSFUL;
887 }
887 }
888 else
888 else
889 {
889 {
890 status = LFR_DEFAULT;
890 status = LFR_DEFAULT;
891 }
891 }
892
892
893 return status;
893 return status;
894 }
894 }
895
895
896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
897 {
897 {
898 unsigned int status;
898 unsigned int status;
899
899
900 status = LFR_DEFAULT;
900 status = LFR_DEFAULT;
901
901
902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
903 || (mode == TDS_MODE_BURST)
903 || (mode == TDS_MODE_BURST)
904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
905 || (mode == TDS_MODE_LFM))
905 || (mode == TDS_MODE_LFM))
906 {
906 {
907 status = LFR_SUCCESSFUL;
907 status = LFR_SUCCESSFUL;
908 }
908 }
909 else
909 else
910 {
910 {
911 status = LFR_DEFAULT;
911 status = LFR_DEFAULT;
912 }
912 }
913
913
914 return status;
914 return status;
915 }
915 }
916
916
917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
918 {
918 {
919 unsigned int status;
919 unsigned int status;
920
920
921 status = LFR_DEFAULT;
921 status = LFR_DEFAULT;
922
922
923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
924 || (mode == THR_MODE_BURST))
924 || (mode == THR_MODE_BURST))
925 {
925 {
926 status = LFR_SUCCESSFUL;
926 status = LFR_SUCCESSFUL;
927 }
927 }
928 else
928 else
929 {
929 {
930 status = LFR_DEFAULT;
930 status = LFR_DEFAULT;
931 }
931 }
932
932
933 return status;
933 return status;
934 }
934 }
935
935
936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
937 {
937 {
938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
939 *
939 *
940 * @param TC points to the TeleCommand packet that is being processed
940 * @param TC points to the TeleCommand packet that is being processed
941 *
941 *
942 */
942 */
943
943
944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
945
945
946 bytePosPtr = (unsigned char *) &TC->packetID;
946 bytePosPtr = (unsigned char *) &TC->packetID;
947
947
948 // cp_rpw_sc_rw1_f1
948 // cp_rpw_sc_rw1_f1
949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
951
951
952 // cp_rpw_sc_rw1_f2
952 // cp_rpw_sc_rw1_f2
953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
955
955
956 // cp_rpw_sc_rw2_f1
956 // cp_rpw_sc_rw2_f1
957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
959
959
960 // cp_rpw_sc_rw2_f2
960 // cp_rpw_sc_rw2_f2
961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
963
963
964 // cp_rpw_sc_rw3_f1
964 // cp_rpw_sc_rw3_f1
965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
967
967
968 // cp_rpw_sc_rw3_f2
968 // cp_rpw_sc_rw3_f2
969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
971
971
972 // cp_rpw_sc_rw4_f1
972 // cp_rpw_sc_rw4_f1
973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
975
975
976 // cp_rpw_sc_rw4_f2
976 // cp_rpw_sc_rw4_f2
977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
979 }
979 }
980
980
981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag, float sy_lfr_rw_k )
982 {
982 {
983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
984 *
984 *
985 * @param fbins_mask
985 * @param fbins_mask
986 * @param rw_f is the reaction wheel frequency to filter
986 * @param rw_f is the reaction wheel frequency to filter
987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
988 * @param flag [true] filtering enabled [false] filtering disabled
988 * @param flag [true] filtering enabled [false] filtering disabled
989 *
989 *
990 * @return void
990 * @return void
991 *
991 *
992 */
992 */
993
993
994 float f_RW_min;
994 float f_RW_min;
995 float f_RW_MAX;
995 float f_RW_MAX;
996 float fi_min;
996 float fi_min;
997 float fi_MAX;
997 float fi_MAX;
998 float fi;
998 float fi;
999 float deltaBelow;
999 float deltaBelow;
1000 float deltaAbove;
1000 float deltaAbove;
1001 float freqToFilterOut;
1001 int binBelow;
1002 int binBelow;
1002 int binAbove;
1003 int binAbove;
1003 int closestBin;
1004 int closestBin;
1004 unsigned int whichByte;
1005 unsigned int whichByte;
1005 int selectedByte;
1006 int selectedByte;
1006 int bin;
1007 int bin;
1007 int binToRemove[NB_BINS_TO_REMOVE];
1008 int binToRemove[NB_BINS_TO_REMOVE];
1008 int k;
1009 int k;
1010 bool filteringSet;
1009
1011
1010 closestBin = 0;
1012 closestBin = 0;
1011 whichByte = 0;
1013 whichByte = 0;
1012 bin = 0;
1014 bin = 0;
1015 filteringSet = false;
1013
1016
1014 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1017 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1015 {
1018 {
1016 binToRemove[k] = -1;
1019 binToRemove[k] = -1;
1017 }
1020 }
1018
1021
1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1022 // compute the frequency range to filter [ rw_f - delta_f; rw_f + delta_f ]
1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1023 f_RW_min = rw_f - ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1024 f_RW_MAX = rw_f + ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1022
1025
1023 // compute the index of the frequency bin immediately below rw_f
1026 freqToFilterOut = f_RW_min;
1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1027 while ( filteringSet == false )
1025 deltaBelow = rw_f - binBelow * deltaFreq;
1028 {
1029 // compute the index of the frequency bin immediately below rw_f
1030 binBelow = (int) ( floor( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1031 deltaBelow = freqToFilterOut - binBelow * deltaFreq;
1026
1032
1027 // compute the index of the frequency bin immediately above rw_f
1033 // compute the index of the frequency bin immediately above rw_f
1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1034 binAbove = (int) ( ceil( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1029 deltaAbove = binAbove * deltaFreq - rw_f;
1035 deltaAbove = binAbove * deltaFreq - freqToFilterOut;
1030
1036
1031 // search the closest bin
1037 // search the closest bin
1032 if (deltaAbove > deltaBelow)
1038 if (deltaAbove > deltaBelow)
1033 {
1039 {
1034 closestBin = binBelow;
1040 closestBin = binBelow;
1035 }
1041 }
1036 else
1042 else
1037 {
1043 {
1038 closestBin = binAbove;
1044 closestBin = binAbove;
1039 }
1045 }
1040
1046
1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1047 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1042 fi = closestBin * deltaFreq;
1048 fi = closestBin * deltaFreq;
1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1049 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1050 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1051
1052 //**************************************************************************************
1053 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1054 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1055 //**************************************************************************************
1045
1056
1046 //**************************************************************************************
1057 // 1. IF freqToFilterOut is included in [ fi_min; fi_MAX ]
1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1058 // => remove f_(i), f_(i-1) and f_(i+1)
1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1059 if ( ( freqToFilterOut > fi_min ) && ( freqToFilterOut < fi_MAX ) )
1049 //**************************************************************************************
1060 {
1061 binToRemove[0] = (closestBin - 1) - 1;
1062 binToRemove[1] = (closestBin) - 1;
1063 binToRemove[2] = (closestBin + 1) - 1;
1064 }
1065 // 2. ELSE
1066 // => remove the two f_(i) which are around f_RW
1067 else
1068 {
1069 binToRemove[0] = (binBelow) - 1;
1070 binToRemove[1] = (binAbove) - 1;
1071 binToRemove[2] = (-1);
1072 }
1050
1073
1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1074 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1052 // => remove f_(i), f_(i-1) and f_(i+1)
1075 {
1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1076 bin = binToRemove[k];
1054 {
1077 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1055 binToRemove[0] = (closestBin - 1) - 1;
1078 {
1056 binToRemove[1] = (closestBin) - 1;
1079 if (flag == 1)
1057 binToRemove[2] = (closestBin + 1) - 1;
1080 {
1058 }
1081 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1059 // 2. ELSE
1082 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1060 // => remove the two f_(i) which are around f_RW
1083 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1061 else
1084 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1062 {
1085 }
1063 binToRemove[0] = (binBelow) - 1;
1086 }
1064 binToRemove[1] = (binAbove) - 1;
1087 }
1065 binToRemove[2] = (-1);
1066 }
1067
1088
1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1089 // update freqToFilterOut
1069 {
1090 if ( freqToFilterOut == f_RW_MAX )
1070 bin = binToRemove[k];
1091 {
1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1092 filteringSet = true; // end of the loop
1093 }
1094 else
1072 {
1095 {
1073 if (flag == 1)
1096 freqToFilterOut = freqToFilterOut + deltaFreq;
1074 {
1097 }
1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1098
1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1099 if ( freqToFilterOut > f_RW_MAX)
1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1100 {
1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1101 freqToFilterOut = f_RW_MAX;
1079 }
1080 }
1102 }
1081 }
1103 }
1082 }
1104 }
1083
1105
1084 void build_sy_lfr_rw_mask( unsigned int channel )
1106 void build_sy_lfr_rw_mask( unsigned int channel )
1085 {
1107 {
1086 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1108 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1087 unsigned char *maskPtr;
1109 unsigned char *maskPtr;
1088 double deltaF;
1110 double deltaF;
1089 unsigned k;
1111 unsigned k;
1090
1112
1091 k = 0;
1113 k = 0;
1092
1114
1093 maskPtr = NULL;
1115 maskPtr = NULL;
1094 deltaF = DELTAF_F2;
1116 deltaF = DELTAF_F2;
1095
1117
1096 switch (channel)
1118 switch (channel)
1097 {
1119 {
1098 case CHANNELF0:
1120 case CHANNELF0:
1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1121 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1100 deltaF = DELTAF_F0;
1122 deltaF = DELTAF_F0;
1101 break;
1123 break;
1102 case CHANNELF1:
1124 case CHANNELF1:
1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1125 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1104 deltaF = DELTAF_F1;
1126 deltaF = DELTAF_F1;
1105 break;
1127 break;
1106 case CHANNELF2:
1128 case CHANNELF2:
1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1129 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1108 deltaF = DELTAF_F2;
1130 deltaF = DELTAF_F2;
1109 break;
1131 break;
1110 default:
1132 default:
1111 break;
1133 break;
1112 }
1134 }
1113
1135
1114 for (k = 0; k < BYTES_PER_MASK; k++)
1136 for (k = 0; k < BYTES_PER_MASK; k++)
1115 {
1137 {
1116 local_rw_fbins_mask[k] = INT8_ALL_F;
1138 local_rw_fbins_mask[k] = INT8_ALL_F;
1117 }
1139 }
1118
1140
1119 // RW1 F1
1141 // RW1 F1
1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1142 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS, 1. ); // [1000 0000]
1121
1143
1122 // RW1 F2
1144 // RW1 F2
1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1145 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS, 1. ); // [0100 0000]
1124
1146
1125 // RW2 F1
1147 // RW2 F1
1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1148 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS, 1. ); // [0010 0000]
1127
1149
1128 // RW2 F2
1150 // RW2 F2
1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1151 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS, 1. ); // [0001 0000]
1130
1152
1131 // RW3 F1
1153 // RW3 F1
1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1154 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS, 1. ); // [0000 1000]
1133
1155
1134 // RW3 F2
1156 // RW3 F2
1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1157 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS, 1. ); // [0000 0100]
1136
1158
1137 // RW4 F1
1159 // RW4 F1
1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1160 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 , 1. ); // [0000 0010]
1139
1161
1140 // RW4 F2
1162 // RW4 F2
1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1163 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) , 1.); // [0000 0001]
1142
1164
1143 // update the value of the fbins related to reaction wheels frequency filtering
1165 // update the value of the fbins related to reaction wheels frequency filtering
1144 if (maskPtr != NULL)
1166 if (maskPtr != NULL)
1145 {
1167 {
1146 for (k = 0; k < BYTES_PER_MASK; k++)
1168 for (k = 0; k < BYTES_PER_MASK; k++)
1147 {
1169 {
1148 maskPtr[k] = local_rw_fbins_mask[k];
1170 maskPtr[k] = local_rw_fbins_mask[k];
1149 }
1171 }
1150 }
1172 }
1151 }
1173 }
1152
1174
1153 void build_sy_lfr_rw_masks( void )
1175 void build_sy_lfr_rw_masks( void )
1154 {
1176 {
1155 build_sy_lfr_rw_mask( CHANNELF0 );
1177 build_sy_lfr_rw_mask( CHANNELF0 );
1156 build_sy_lfr_rw_mask( CHANNELF1 );
1178 build_sy_lfr_rw_mask( CHANNELF1 );
1157 build_sy_lfr_rw_mask( CHANNELF2 );
1179 build_sy_lfr_rw_mask( CHANNELF2 );
1158 }
1180 }
1159
1181
1160 void merge_fbins_masks( void )
1182 void merge_fbins_masks( void )
1161 {
1183 {
1162 unsigned char k;
1184 unsigned char k;
1163
1185
1164 unsigned char *fbins_f0;
1186 unsigned char *fbins_f0;
1165 unsigned char *fbins_f1;
1187 unsigned char *fbins_f1;
1166 unsigned char *fbins_f2;
1188 unsigned char *fbins_f2;
1167 unsigned char *rw_mask_f0;
1189 unsigned char *rw_mask_f0;
1168 unsigned char *rw_mask_f1;
1190 unsigned char *rw_mask_f1;
1169 unsigned char *rw_mask_f2;
1191 unsigned char *rw_mask_f2;
1170
1192
1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1193 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1194 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1195 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1196 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1197 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1198 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1177
1199
1178 for( k=0; k < BYTES_PER_MASK; k++ )
1200 for( k=0; k < BYTES_PER_MASK; k++ )
1179 {
1201 {
1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1202 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1203 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1204 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1183 }
1205 }
1184 }
1206 }
1185
1207
1186 //***********
1208 //***********
1187 // FBINS MASK
1209 // FBINS MASK
1188
1210
1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1211 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1190 {
1212 {
1191 int status;
1213 int status;
1192 unsigned int k;
1214 unsigned int k;
1193 unsigned char *fbins_mask_dump;
1215 unsigned char *fbins_mask_dump;
1194 unsigned char *fbins_mask_TC;
1216 unsigned char *fbins_mask_TC;
1195
1217
1196 status = LFR_SUCCESSFUL;
1218 status = LFR_SUCCESSFUL;
1197
1219
1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1220 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1199 fbins_mask_TC = TC->dataAndCRC;
1221 fbins_mask_TC = TC->dataAndCRC;
1200
1222
1201 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1223 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1202 {
1224 {
1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1225 fbins_mask_dump[k] = fbins_mask_TC[k];
1204 }
1226 }
1205
1227
1206 return status;
1228 return status;
1207 }
1229 }
1208
1230
1209 //***************************
1231 //***************************
1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1232 // TC_LFR_LOAD_PAS_FILTER_PAR
1211
1233
1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1234 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1213 {
1235 {
1214 int flag;
1236 int flag;
1215 rtems_status_code status;
1237 rtems_status_code status;
1216
1238
1217 unsigned char sy_lfr_pas_filter_enabled;
1239 unsigned char sy_lfr_pas_filter_enabled;
1218 unsigned char sy_lfr_pas_filter_modulus;
1240 unsigned char sy_lfr_pas_filter_modulus;
1219 float sy_lfr_pas_filter_tbad;
1241 float sy_lfr_pas_filter_tbad;
1220 unsigned char sy_lfr_pas_filter_offset;
1242 unsigned char sy_lfr_pas_filter_offset;
1221 float sy_lfr_pas_filter_shift;
1243 float sy_lfr_pas_filter_shift;
1222 float sy_lfr_sc_rw_delta_f;
1244 float sy_lfr_sc_rw_delta_f;
1223 char *parPtr;
1245 char *parPtr;
1224
1246
1225 flag = LFR_SUCCESSFUL;
1247 flag = LFR_SUCCESSFUL;
1226 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1248 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1227 sy_lfr_pas_filter_shift = INIT_FLOAT;
1249 sy_lfr_pas_filter_shift = INIT_FLOAT;
1228 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1250 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1229 parPtr = NULL;
1251 parPtr = NULL;
1230
1252
1231 //***************
1253 //***************
1232 // get parameters
1254 // get parameters
1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1255 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1256 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1235 copyFloatByChar(
1257 copyFloatByChar(
1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1258 (unsigned char*) &sy_lfr_pas_filter_tbad,
1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1259 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1238 );
1260 );
1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1261 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1240 copyFloatByChar(
1262 copyFloatByChar(
1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1263 (unsigned char*) &sy_lfr_pas_filter_shift,
1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1264 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1243 );
1265 );
1244 copyFloatByChar(
1266 copyFloatByChar(
1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1267 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1268 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1247 );
1269 );
1248
1270
1249 //******************
1271 //******************
1250 // CHECK CONSISTENCY
1272 // CHECK CONSISTENCY
1251
1273
1252 //**************************
1274 //**************************
1253 // sy_lfr_pas_filter_enabled
1275 // sy_lfr_pas_filter_enabled
1254 // nothing to check, value is 0 or 1
1276 // nothing to check, value is 0 or 1
1255
1277
1256 //**************************
1278 //**************************
1257 // sy_lfr_pas_filter_modulus
1279 // sy_lfr_pas_filter_modulus
1258 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1280 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1259 {
1281 {
1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1282 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1261 flag = WRONG_APP_DATA;
1283 flag = WRONG_APP_DATA;
1262 }
1284 }
1263
1285
1264 //***********************
1286 //***********************
1265 // sy_lfr_pas_filter_tbad
1287 // sy_lfr_pas_filter_tbad
1266 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1288 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1267 {
1289 {
1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1290 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1270 flag = WRONG_APP_DATA;
1292 flag = WRONG_APP_DATA;
1271 }
1293 }
1272
1294
1273 //*************************
1295 //*************************
1274 // sy_lfr_pas_filter_offset
1296 // sy_lfr_pas_filter_offset
1275 if (flag == LFR_SUCCESSFUL)
1297 if (flag == LFR_SUCCESSFUL)
1276 {
1298 {
1277 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1299 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1278 {
1300 {
1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1301 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1280 flag = WRONG_APP_DATA;
1302 flag = WRONG_APP_DATA;
1281 }
1303 }
1282 }
1304 }
1283
1305
1284 //************************
1306 //************************
1285 // sy_lfr_pas_filter_shift
1307 // sy_lfr_pas_filter_shift
1286 if (flag == LFR_SUCCESSFUL)
1308 if (flag == LFR_SUCCESSFUL)
1287 {
1309 {
1288 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1310 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1289 {
1311 {
1290 parPtr = (char*) &sy_lfr_pas_filter_shift;
1312 parPtr = (char*) &sy_lfr_pas_filter_shift;
1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1313 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1292 flag = WRONG_APP_DATA;
1314 flag = WRONG_APP_DATA;
1293 }
1315 }
1294 }
1316 }
1295
1317
1296 //*************************************
1318 //*************************************
1297 // check global coherency of the values
1319 // check global coherency of the values
1298 if (flag == LFR_SUCCESSFUL)
1320 if (flag == LFR_SUCCESSFUL)
1299 {
1321 {
1300 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1322 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1301 {
1323 {
1302 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1324 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1303 flag = WRONG_APP_DATA;
1325 flag = WRONG_APP_DATA;
1304 }
1326 }
1305 }
1327 }
1306
1328
1307 //*********************
1329 //*********************
1308 // sy_lfr_sc_rw_delta_f
1330 // sy_lfr_sc_rw_delta_f
1309 // nothing to check, no default value in the ICD
1331 // nothing to check, no default value in the ICD
1310
1332
1311 return flag;
1333 return flag;
1312 }
1334 }
1313
1335
1314 //**************
1336 //**************
1315 // KCOEFFICIENTS
1337 // KCOEFFICIENTS
1316 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1338 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1317 {
1339 {
1318 unsigned int kcoeff;
1340 unsigned int kcoeff;
1319 unsigned short sy_lfr_kcoeff_frequency;
1341 unsigned short sy_lfr_kcoeff_frequency;
1320 unsigned short bin;
1342 unsigned short bin;
1321 unsigned short *freqPtr;
1322 float *kcoeffPtr_norm;
1343 float *kcoeffPtr_norm;
1323 float *kcoeffPtr_sbm;
1344 float *kcoeffPtr_sbm;
1324 int status;
1345 int status;
1325 unsigned char *kcoeffLoadPtr;
1346 unsigned char *kcoeffLoadPtr;
1326 unsigned char *kcoeffNormPtr;
1347 unsigned char *kcoeffNormPtr;
1327 unsigned char *kcoeffSbmPtr_a;
1348 unsigned char *kcoeffSbmPtr_a;
1328 unsigned char *kcoeffSbmPtr_b;
1349 unsigned char *kcoeffSbmPtr_b;
1329
1350
1330 status = LFR_SUCCESSFUL;
1351 sy_lfr_kcoeff_frequency = 0;
1331
1352 bin = 0;
1332 kcoeffPtr_norm = NULL;
1353 kcoeffPtr_norm = NULL;
1333 kcoeffPtr_sbm = NULL;
1354 kcoeffPtr_sbm = NULL;
1334 bin = 0;
1355 status = LFR_SUCCESSFUL;
1335
1356
1336 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1357 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1337 sy_lfr_kcoeff_frequency = *freqPtr;
1358 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1338
1359
1339 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1360 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1340 {
1361 {
1341 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1362 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1342 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1363 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1343 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1364 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1344 status = LFR_DEFAULT;
1365 status = LFR_DEFAULT;
1345 }
1366 }
1346 else
1367 else
1347 {
1368 {
1348 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1369 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1349 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1370 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1350 {
1371 {
1351 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1372 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1352 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1373 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1353 bin = sy_lfr_kcoeff_frequency;
1374 bin = sy_lfr_kcoeff_frequency;
1354 }
1375 }
1355 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1376 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1356 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1377 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1357 {
1378 {
1358 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1379 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1359 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1380 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1360 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1381 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1361 }
1382 }
1362 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1383 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1363 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1384 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1364 {
1385 {
1365 kcoeffPtr_norm = k_coeff_intercalib_f2;
1386 kcoeffPtr_norm = k_coeff_intercalib_f2;
1366 kcoeffPtr_sbm = NULL;
1387 kcoeffPtr_sbm = NULL;
1367 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1388 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1368 }
1389 }
1369 }
1390 }
1370
1391
1371 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1392 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1372 {
1393 {
1373 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1394 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1374 {
1395 {
1375 // destination
1396 // destination
1376 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1397 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1377 // source
1398 // source
1378 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1399 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1379 // copy source to destination
1400 // copy source to destination
1380 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1401 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1381 }
1402 }
1382 }
1403 }
1383
1404
1384 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1405 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1385 {
1406 {
1386 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1407 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1387 {
1408 {
1388 // destination
1409 // destination
1389 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1410 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1390 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1411 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1391 // source
1412 // source
1392 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1413 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1393 // copy source to destination
1414 // copy source to destination
1394 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1415 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1395 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1416 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1396 }
1417 }
1397 }
1418 }
1398
1419
1399 // print_k_coeff();
1420 //print_k_coeff();
1400
1421
1401 return status;
1422 return status;
1402 }
1423 }
1403
1424
1404 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1425 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1405 {
1426 {
1406 destination[BYTE_0] = source[BYTE_0];
1427 destination[BYTE_0] = source[BYTE_0];
1407 destination[BYTE_1] = source[BYTE_1];
1428 destination[BYTE_1] = source[BYTE_1];
1408 destination[BYTE_2] = source[BYTE_2];
1429 destination[BYTE_2] = source[BYTE_2];
1409 destination[BYTE_3] = source[BYTE_3];
1430 destination[BYTE_3] = source[BYTE_3];
1410 }
1431 }
1411
1432
1433 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1434 {
1435 destination[BYTE_0] = source[BYTE_0];
1436 destination[BYTE_1] = source[BYTE_1];
1437 destination[BYTE_2] = source[BYTE_2];
1438 destination[BYTE_3] = source[BYTE_3];
1439 }
1440
1441 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1442 {
1443 destination[BYTE_0] = source[BYTE_0];
1444 destination[BYTE_1] = source[BYTE_1];
1445 }
1446
1412 void floatToChar( float value, unsigned char* ptr)
1447 void floatToChar( float value, unsigned char* ptr)
1413 {
1448 {
1414 unsigned char* valuePtr;
1449 unsigned char* valuePtr;
1415
1450
1416 valuePtr = (unsigned char*) &value;
1451 valuePtr = (unsigned char*) &value;
1452
1417 ptr[BYTE_0] = valuePtr[BYTE_0];
1453 ptr[BYTE_0] = valuePtr[BYTE_0];
1418 ptr[BYTE_1] = valuePtr[BYTE_1];
1454 ptr[BYTE_1] = valuePtr[BYTE_1];
1419 ptr[BYTE_2] = valuePtr[BYTE_2];
1455 ptr[BYTE_2] = valuePtr[BYTE_2];
1420 ptr[BYTE_3] = valuePtr[BYTE_3];
1456 ptr[BYTE_3] = valuePtr[BYTE_3];
1421 }
1457 }
1422
1458
1423 //**********
1459 //**********
1424 // init dump
1460 // init dump
1425
1461
1426 void init_parameter_dump( void )
1462 void init_parameter_dump( void )
1427 {
1463 {
1428 /** This function initialize the parameter_dump_packet global variable with default values.
1464 /** This function initialize the parameter_dump_packet global variable with default values.
1429 *
1465 *
1430 */
1466 */
1431
1467
1432 unsigned int k;
1468 unsigned int k;
1433
1469
1434 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1470 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1435 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1471 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1436 parameter_dump_packet.reserved = CCSDS_RESERVED;
1472 parameter_dump_packet.reserved = CCSDS_RESERVED;
1437 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1473 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1438 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1474 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1439 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1475 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1440 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1476 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1441 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1477 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1442 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1478 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1443 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1479 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1444 // DATA FIELD HEADER
1480 // DATA FIELD HEADER
1445 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1481 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1446 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1482 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1447 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1483 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1448 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1484 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1449 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1485 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1450 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1486 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1451 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1487 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1452 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1488 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1453 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1489 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1454 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1490 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1455 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1491 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1456
1492
1457 //******************
1493 //******************
1458 // COMMON PARAMETERS
1494 // COMMON PARAMETERS
1459 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1495 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1460 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1496 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1461
1497
1462 //******************
1498 //******************
1463 // NORMAL PARAMETERS
1499 // NORMAL PARAMETERS
1464 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1500 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1465 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1501 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1466 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1502 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1467 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1503 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1468 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1504 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1469 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1505 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1470 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1506 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1471 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1507 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1472 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1508 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1473
1509
1474 //*****************
1510 //*****************
1475 // BURST PARAMETERS
1511 // BURST PARAMETERS
1476 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1512 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1477 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1513 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1478
1514
1479 //****************
1515 //****************
1480 // SBM1 PARAMETERS
1516 // SBM1 PARAMETERS
1481 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1517 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1482 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1518 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1483
1519
1484 //****************
1520 //****************
1485 // SBM2 PARAMETERS
1521 // SBM2 PARAMETERS
1486 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1522 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1487 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1523 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1488
1524
1489 //************
1525 //************
1490 // FBINS MASKS
1526 // FBINS MASKS
1491 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1527 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1492 {
1528 {
1493 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1529 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1494 }
1530 }
1495
1531
1496 // PAS FILTER PARAMETERS
1532 // PAS FILTER PARAMETERS
1497 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1533 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1498 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1534 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1499 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1535 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1500 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1536 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1501 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1537 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1502 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1538 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1503 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1539 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1504
1540
1505 // LFR_RW_MASK
1541 // LFR_RW_MASK
1506 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1542 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1507 {
1543 {
1508 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1544 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1509 }
1545 }
1510
1546
1511 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1547 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1512 merge_fbins_masks();
1548 merge_fbins_masks();
1513 }
1549 }
1514
1550
1515 void init_kcoefficients_dump( void )
1551 void init_kcoefficients_dump( void )
1516 {
1552 {
1517 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1553 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1518 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1554 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1519
1555
1520 kcoefficient_node_1.previous = NULL;
1556 kcoefficient_node_1.previous = NULL;
1521 kcoefficient_node_1.next = NULL;
1557 kcoefficient_node_1.next = NULL;
1522 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1558 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1523 kcoefficient_node_1.coarseTime = INIT_CHAR;
1559 kcoefficient_node_1.coarseTime = INIT_CHAR;
1524 kcoefficient_node_1.fineTime = INIT_CHAR;
1560 kcoefficient_node_1.fineTime = INIT_CHAR;
1525 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1561 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1526 kcoefficient_node_1.status = INIT_CHAR;
1562 kcoefficient_node_1.status = INIT_CHAR;
1527
1563
1528 kcoefficient_node_2.previous = NULL;
1564 kcoefficient_node_2.previous = NULL;
1529 kcoefficient_node_2.next = NULL;
1565 kcoefficient_node_2.next = NULL;
1530 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1566 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1531 kcoefficient_node_2.coarseTime = INIT_CHAR;
1567 kcoefficient_node_2.coarseTime = INIT_CHAR;
1532 kcoefficient_node_2.fineTime = INIT_CHAR;
1568 kcoefficient_node_2.fineTime = INIT_CHAR;
1533 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1569 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1534 kcoefficient_node_2.status = INIT_CHAR;
1570 kcoefficient_node_2.status = INIT_CHAR;
1535 }
1571 }
1536
1572
1537 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1573 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1538 {
1574 {
1539 unsigned int k;
1575 unsigned int k;
1540 unsigned int packetLength;
1576 unsigned int packetLength;
1541
1577
1542 packetLength =
1578 packetLength =
1543 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1579 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1544
1580
1545 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1581 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1546 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1582 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1547 kcoefficients_dump->reserved = CCSDS_RESERVED;
1583 kcoefficients_dump->reserved = CCSDS_RESERVED;
1548 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1584 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1549 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1585 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1550 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1586 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1551 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1587 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1552 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1588 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1553 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1589 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1554 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1590 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1555 // DATA FIELD HEADER
1591 // DATA FIELD HEADER
1556 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1592 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1557 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1593 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1558 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1594 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1559 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1595 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1560 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1596 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1561 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1597 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1562 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1598 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1563 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1599 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1564 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1600 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1565 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1601 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1566 kcoefficients_dump->sid = SID_K_DUMP;
1602 kcoefficients_dump->sid = SID_K_DUMP;
1567
1603
1568 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1604 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1569 kcoefficients_dump->pkt_nr = PKTNR_1;
1605 kcoefficients_dump->pkt_nr = PKTNR_1;
1570 kcoefficients_dump->blk_nr = blk_nr;
1606 kcoefficients_dump->blk_nr = blk_nr;
1571
1607
1572 //******************
1608 //******************
1573 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1609 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1574 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1610 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1575 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1611 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1576 {
1612 {
1577 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1613 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1578 }
1614 }
1579 }
1615 }
1580
1616
1581 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1617 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1582 {
1618 {
1583 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1619 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1584 *
1620 *
1585 * @param packet_sequence_control points to the packet sequence control which will be incremented
1621 * @param packet_sequence_control points to the packet sequence control which will be incremented
1586 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1622 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1587 *
1623 *
1588 * If the destination ID is not known, a dedicated counter is incremented.
1624 * If the destination ID is not known, a dedicated counter is incremented.
1589 *
1625 *
1590 */
1626 */
1591
1627
1592 unsigned short sequence_cnt;
1628 unsigned short sequence_cnt;
1593 unsigned short segmentation_grouping_flag;
1629 unsigned short segmentation_grouping_flag;
1594 unsigned short new_packet_sequence_control;
1630 unsigned short new_packet_sequence_control;
1595 unsigned char i;
1631 unsigned char i;
1596
1632
1597 switch (destination_id)
1633 switch (destination_id)
1598 {
1634 {
1599 case SID_TC_GROUND:
1635 case SID_TC_GROUND:
1600 i = GROUND;
1636 i = GROUND;
1601 break;
1637 break;
1602 case SID_TC_MISSION_TIMELINE:
1638 case SID_TC_MISSION_TIMELINE:
1603 i = MISSION_TIMELINE;
1639 i = MISSION_TIMELINE;
1604 break;
1640 break;
1605 case SID_TC_TC_SEQUENCES:
1641 case SID_TC_TC_SEQUENCES:
1606 i = TC_SEQUENCES;
1642 i = TC_SEQUENCES;
1607 break;
1643 break;
1608 case SID_TC_RECOVERY_ACTION_CMD:
1644 case SID_TC_RECOVERY_ACTION_CMD:
1609 i = RECOVERY_ACTION_CMD;
1645 i = RECOVERY_ACTION_CMD;
1610 break;
1646 break;
1611 case SID_TC_BACKUP_MISSION_TIMELINE:
1647 case SID_TC_BACKUP_MISSION_TIMELINE:
1612 i = BACKUP_MISSION_TIMELINE;
1648 i = BACKUP_MISSION_TIMELINE;
1613 break;
1649 break;
1614 case SID_TC_DIRECT_CMD:
1650 case SID_TC_DIRECT_CMD:
1615 i = DIRECT_CMD;
1651 i = DIRECT_CMD;
1616 break;
1652 break;
1617 case SID_TC_SPARE_GRD_SRC1:
1653 case SID_TC_SPARE_GRD_SRC1:
1618 i = SPARE_GRD_SRC1;
1654 i = SPARE_GRD_SRC1;
1619 break;
1655 break;
1620 case SID_TC_SPARE_GRD_SRC2:
1656 case SID_TC_SPARE_GRD_SRC2:
1621 i = SPARE_GRD_SRC2;
1657 i = SPARE_GRD_SRC2;
1622 break;
1658 break;
1623 case SID_TC_OBCP:
1659 case SID_TC_OBCP:
1624 i = OBCP;
1660 i = OBCP;
1625 break;
1661 break;
1626 case SID_TC_SYSTEM_CONTROL:
1662 case SID_TC_SYSTEM_CONTROL:
1627 i = SYSTEM_CONTROL;
1663 i = SYSTEM_CONTROL;
1628 break;
1664 break;
1629 case SID_TC_AOCS:
1665 case SID_TC_AOCS:
1630 i = AOCS;
1666 i = AOCS;
1631 break;
1667 break;
1632 case SID_TC_RPW_INTERNAL:
1668 case SID_TC_RPW_INTERNAL:
1633 i = RPW_INTERNAL;
1669 i = RPW_INTERNAL;
1634 break;
1670 break;
1635 default:
1671 default:
1636 i = GROUND;
1672 i = GROUND;
1637 break;
1673 break;
1638 }
1674 }
1639
1675
1640 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1676 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1641 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1677 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1642
1678
1643 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1679 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1644
1680
1645 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1681 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1646 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1682 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1647
1683
1648 // increment the sequence counter
1684 // increment the sequence counter
1649 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1685 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1650 {
1686 {
1651 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1687 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1652 }
1688 }
1653 else
1689 else
1654 {
1690 {
1655 sequenceCounters_TM_DUMP[ i ] = 0;
1691 sequenceCounters_TM_DUMP[ i ] = 0;
1656 }
1692 }
1657 }
1693 }