##// END OF EJS Templates

Compare Commits r371:88d90c878c97...r374:79e8ac429728

Target:

Source:

Compare was calculated based on this common ancestor commit: 18e20227b986
Time Author Commit Description
r371:88d90c878c97
Added automatic map file production on build.
r372:fc82b08705ba
Added scrubbing Task, to increase scrubbing frequency and avoid entering idle task.
r373:a5fd85da05a7
Now uses FPU in scrubbing task to increase power consumption.
r374:79e8ac429728
Implemented Calibrations Task This task will ensure the calibrations signal frequency sweep by dividing by 2 the sampling frequency between each snapshot.
@@ -1,4 +1,4
1 header/lfr_common_headers = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/SOLO_LFR/lfr_common_headers
1 header/lfr_common_headers = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/USERS/JEANDET/lfr_common_headers
2
2
3 LFR_basic-parameters = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/USERS/CHUST/LFR_basic-parameters
3 LFR_basic-parameters = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/USERS/CHUST/LFR_basic-parameters
4
4
@@ -1,2 +1,2
1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 e904b329ff977514bf36af92617afefd22fd06ab header/lfr_common_headers
2 1b9238c8848953d545d6ff9c9b8b15d19a597fb6 header/lfr_common_headers
@@ -1,169 +1,170
1 #ifndef FSW_MISC_H_INCLUDED
1 #ifndef FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6 #include <grspw.h>
6 #include <grspw.h>
7 #include <grlib_regs.h>
7 #include <grlib_regs.h>
8
8
9 #include "fsw_params.h"
9 #include "fsw_params.h"
10 #include "fsw_spacewire.h"
10 #include "fsw_spacewire.h"
11 #include "lfr_cpu_usage_report.h"
11 #include "lfr_cpu_usage_report.h"
12
12
13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
14 #define WATCHDOG_LOOP_PRINTF 10
14 #define WATCHDOG_LOOP_PRINTF 10
15 #define WATCHDOG_LOOP_DEBUG 3
15 #define WATCHDOG_LOOP_DEBUG 3
16
16
17 #define DUMB_MESSAGE_NB 15
17 #define DUMB_MESSAGE_NB 15
18 #define NB_RTEMS_EVENTS 32
18 #define NB_RTEMS_EVENTS 32
19 #define EVENT_12 12
19 #define EVENT_12 12
20 #define EVENT_13 13
20 #define EVENT_13 13
21 #define EVENT_14 14
21 #define EVENT_14 14
22 #define DUMB_MESSAGE_0 "in DUMB *** default"
22 #define DUMB_MESSAGE_0 "in DUMB *** default"
23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
29 #define DUMB_MESSAGE_7 "ready for dump"
29 #define DUMB_MESSAGE_7 "ready for dump"
30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
31 #define DUMB_MESSAGE_9 "tick"
31 #define DUMB_MESSAGE_9 "tick"
32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
35 #define DUMB_MESSAGE_13 "TIMECODE timer"
35 #define DUMB_MESSAGE_13 "TIMECODE timer"
36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
37
37
38 enum lfr_reset_cause_t{
38 enum lfr_reset_cause_t{
39 UNKNOWN_CAUSE,
39 UNKNOWN_CAUSE,
40 POWER_ON,
40 POWER_ON,
41 TC_RESET,
41 TC_RESET,
42 WATCHDOG,
42 WATCHDOG,
43 ERROR_RESET,
43 ERROR_RESET,
44 UNEXP_RESET
44 UNEXP_RESET
45 };
45 };
46
46
47 typedef struct{
47 typedef struct{
48 unsigned char dpu_spw_parity;
48 unsigned char dpu_spw_parity;
49 unsigned char dpu_spw_disconnect;
49 unsigned char dpu_spw_disconnect;
50 unsigned char dpu_spw_escape;
50 unsigned char dpu_spw_escape;
51 unsigned char dpu_spw_credit;
51 unsigned char dpu_spw_credit;
52 unsigned char dpu_spw_write_sync;
52 unsigned char dpu_spw_write_sync;
53 unsigned char timecode_erroneous;
53 unsigned char timecode_erroneous;
54 unsigned char timecode_missing;
54 unsigned char timecode_missing;
55 unsigned char timecode_invalid;
55 unsigned char timecode_invalid;
56 unsigned char time_timecode_it;
56 unsigned char time_timecode_it;
57 unsigned char time_not_synchro;
57 unsigned char time_not_synchro;
58 unsigned char time_timecode_ctr;
58 unsigned char time_timecode_ctr;
59 unsigned char ahb_correctable;
59 unsigned char ahb_correctable;
60 } hk_lfr_le_t;
60 } hk_lfr_le_t;
61
61
62 typedef struct{
62 typedef struct{
63 unsigned char dpu_spw_early_eop;
63 unsigned char dpu_spw_early_eop;
64 unsigned char dpu_spw_invalid_addr;
64 unsigned char dpu_spw_invalid_addr;
65 unsigned char dpu_spw_eep;
65 unsigned char dpu_spw_eep;
66 unsigned char dpu_spw_rx_too_big;
66 unsigned char dpu_spw_rx_too_big;
67 } hk_lfr_me_t;
67 } hk_lfr_me_t;
68
68
69 #define B00 196
69 #define B00 196
70 #define B01 196
70 #define B01 196
71 #define B02 0
71 #define B02 0
72 #define B10 131
72 #define B10 131
73 #define B11 -244
73 #define B11 -244
74 #define B12 131
74 #define B12 131
75 #define B20 161
75 #define B20 161
76 #define B21 -314
76 #define B21 -314
77 #define B22 161
77 #define B22 161
78
78
79 #define A00 1
79 #define A00 1
80 #define A01 -925
80 #define A01 -925
81 #define A02 0
81 #define A02 0
82 #define A10 1
82 #define A10 1
83 #define A11 -947
83 #define A11 -947
84 #define A12 439
84 #define A12 439
85 #define A20 1
85 #define A20 1
86 #define A21 -993
86 #define A21 -993
87 #define A22 486
87 #define A22 486
88
88
89 #define GAIN_B0 12
89 #define GAIN_B0 12
90 #define GAIN_B1 11
90 #define GAIN_B1 11
91 #define GAIN_B2 10
91 #define GAIN_B2 10
92
92
93 #define GAIN_A0 10
93 #define GAIN_A0 10
94 #define GAIN_A1 9
94 #define GAIN_A1 9
95 #define GAIN_A2 9
95 #define GAIN_A2 9
96
96
97 #define NB_COEFFS 3
97 #define NB_COEFFS 3
98 #define COEFF0 0
98 #define COEFF0 0
99 #define COEFF1 1
99 #define COEFF1 1
100 #define COEFF2 2
100 #define COEFF2 2
101
101
102 typedef struct filter_ctx
102 typedef struct filter_ctx
103 {
103 {
104 int W[NB_COEFFS][NB_COEFFS];
104 int W[NB_COEFFS][NB_COEFFS];
105 }filter_ctx;
105 }filter_ctx;
106
106
107 extern gptimer_regs_t *gptimer_regs;
107 extern gptimer_regs_t *gptimer_regs;
108 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
108 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
109 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
109 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
110
110
111 extern rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
111 extern rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
112 extern rtems_id HK_id;// id of the HK rate monotonic period
112 extern rtems_id HK_id;// id of the HK rate monotonic period
113 extern rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
113 extern rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
114 extern rtems_id AVGV_id;// id of the AVGV rate monotonic period
114 extern rtems_id AVGV_id;// id of the AVGV rate monotonic period
115
115
116 void timer_configure( unsigned char timer, unsigned int clock_divider,
116 void timer_configure( unsigned char timer, unsigned int clock_divider,
117 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
117 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
118 void timer_start( unsigned char timer );
118 void timer_start( unsigned char timer );
119 void timer_stop( unsigned char timer );
119 void timer_stop( unsigned char timer );
120 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
120 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
121
121
122 // WATCHDOG
122 // WATCHDOG
123 rtems_isr watchdog_isr( rtems_vector_number vector );
123 rtems_isr watchdog_isr( rtems_vector_number vector );
124 void watchdog_configure(void);
124 void watchdog_configure(void);
125 void watchdog_stop(void);
125 void watchdog_stop(void);
126 void watchdog_reload(void);
126 void watchdog_reload(void);
127 void watchdog_start(void);
127 void watchdog_start(void);
128
128
129 // SERIAL LINK
129 // SERIAL LINK
130 int send_console_outputs_on_apbuart_port( void );
130 int send_console_outputs_on_apbuart_port( void );
131 int enable_apbuart_transmitter( void );
131 int enable_apbuart_transmitter( void );
132 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
132 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
133
133
134 // RTEMS TASKS
134 // RTEMS TASKS
135 rtems_task load_task( rtems_task_argument argument );
135 rtems_task load_task( rtems_task_argument argument );
136 rtems_task hous_task( rtems_task_argument argument );
136 rtems_task hous_task( rtems_task_argument argument );
137 rtems_task avgv_task( rtems_task_argument argument );
137 rtems_task avgv_task( rtems_task_argument argument );
138 rtems_task dumb_task( rtems_task_argument unused );
138 rtems_task dumb_task( rtems_task_argument unused );
139 rtems_task scrubbing_task( rtems_task_argument unused );
139
140
140 void init_housekeeping_parameters( void );
141 void init_housekeeping_parameters( void );
141 void increment_seq_counter(unsigned short *packetSequenceControl);
142 void increment_seq_counter(unsigned short *packetSequenceControl);
142 void getTime( unsigned char *time);
143 void getTime( unsigned char *time);
143 unsigned long long int getTimeAsUnsignedLongLongInt( );
144 unsigned long long int getTimeAsUnsignedLongLongInt( );
144 void send_dumb_hk( void );
145 void send_dumb_hk( void );
145 void get_temperatures( unsigned char *temperatures );
146 void get_temperatures( unsigned char *temperatures );
146 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
147 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
147 void get_cpu_load( unsigned char *resource_statistics );
148 void get_cpu_load( unsigned char *resource_statistics );
148 void set_hk_lfr_sc_potential_flag( bool state );
149 void set_hk_lfr_sc_potential_flag( bool state );
149 void set_sy_lfr_pas_filter_enabled( bool state );
150 void set_sy_lfr_pas_filter_enabled( bool state );
150 void set_sy_lfr_watchdog_enabled( bool state );
151 void set_sy_lfr_watchdog_enabled( bool state );
151 void set_hk_lfr_calib_enable( bool state );
152 void set_hk_lfr_calib_enable( bool state );
152 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
153 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
153 void hk_lfr_le_me_he_update();
154 void hk_lfr_le_me_he_update();
154 void set_hk_lfr_time_not_synchro();
155 void set_hk_lfr_time_not_synchro();
155
156
156 extern int sched_yield( void );
157 extern int sched_yield( void );
157 extern void rtems_cpu_usage_reset();
158 extern void rtems_cpu_usage_reset();
158 extern ring_node *current_ring_node_f3;
159 extern ring_node *current_ring_node_f3;
159 extern ring_node *ring_node_to_send_cwf_f3;
160 extern ring_node *ring_node_to_send_cwf_f3;
160 extern ring_node waveform_ring_f3[];
161 extern ring_node waveform_ring_f3[];
161 extern unsigned short sequenceCounterHK;
162 extern unsigned short sequenceCounterHK;
162
163
163 extern unsigned char hk_lfr_q_sd_fifo_size_max;
164 extern unsigned char hk_lfr_q_sd_fifo_size_max;
164 extern unsigned char hk_lfr_q_rv_fifo_size_max;
165 extern unsigned char hk_lfr_q_rv_fifo_size_max;
165 extern unsigned char hk_lfr_q_p0_fifo_size_max;
166 extern unsigned char hk_lfr_q_p0_fifo_size_max;
166 extern unsigned char hk_lfr_q_p1_fifo_size_max;
167 extern unsigned char hk_lfr_q_p1_fifo_size_max;
167 extern unsigned char hk_lfr_q_p2_fifo_size_max;
168 extern unsigned char hk_lfr_q_p2_fifo_size_max;
168
169
169 #endif // FSW_MISC_H_INCLUDED
170 #endif // FSW_MISC_H_INCLUDED
@@ -1,115 +1,117
1 #ifndef TC_HANDLER_H_INCLUDED
1 #ifndef TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <leon.h>
5 #include <leon.h>
6
6
7 #include "tc_load_dump_parameters.h"
7 #include "tc_load_dump_parameters.h"
8 #include "tc_acceptance.h"
8 #include "tc_acceptance.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 #include "lfr_cpu_usage_report.h"
13 #include "lfr_cpu_usage_report.h"
14
14
15 #define MAX_DELTA_COARSE_TIME 3
15 #define MAX_DELTA_COARSE_TIME 3
16 #define NB_SCIENCE_TASKS 10
16 #define NB_SCIENCE_TASKS 10
17 #define NB_ASM_TASKS 6
17 #define NB_ASM_TASKS 6
18 #define STATUS_0 0
18 #define STATUS_0 0
19 #define STATUS_1 1
19 #define STATUS_1 1
20 #define STATUS_2 2
20 #define STATUS_2 2
21 #define STATUS_3 3
21 #define STATUS_3 3
22 #define STATUS_4 4
22 #define STATUS_4 4
23 #define STATUS_5 5
23 #define STATUS_5 5
24 #define STATUS_6 6
24 #define STATUS_6 6
25 #define STATUS_7 7
25 #define STATUS_7 7
26 #define STATUS_8 8
26 #define STATUS_8 8
27 #define STATUS_9 9
27 #define STATUS_9 9
28
28
29 #define CAL_F0 625.
29 #define CAL_F0 625.
30 #define CAL_F1 10000.
30 #define CAL_F1 10000.
31 #define CAL_W0 (2. * pi * CAL_F0)
31 #define CAL_W0 (2. * pi * CAL_F0)
32 #define CAL_W1 (2. * pi * CAL_F1)
32 #define CAL_W1 (2. * pi * CAL_F1)
33 #define CAL_A0 1.
33 #define CAL_A0 1.
34 #define CAL_A1 2.
34 #define CAL_A1 2.
35 #define CAL_FS 160256.410
35 #define CAL_FS 160256.410
36 #define CAL_SCALE_FACTOR (0.250 / 0.000654) // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
36 #define CAL_SCALE_FACTOR (0.250 / 0.000654) // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
37 #define CAL_NB_PTS 256
37 #define CAL_NB_PTS 256
38 #define CAL_DATA_MASK 0xfff
38 #define CAL_DATA_MASK 0xfff
39 #define CAL_F_DIVISOR 38 // 25 MHz => 160 256 (39 - 1)
39 #define CAL_F_DIVISOR 38 // 25 MHz => 160 256 (39 - 1)
40 #define CAL_F_DIVISOR_MIN 38
41 #define CAL_F_DIVISOR_MAX (38*2*2*2*2)
40 // INTERLEAVED MODE
42 // INTERLEAVED MODE
41 #define CAL_FS_INTER 240384.615
43 #define CAL_FS_INTER 240384.615
42 #define CAL_NB_PTS_INTER 384
44 #define CAL_NB_PTS_INTER 384
43 #define CAL_DATA_MASK_INTER 0x3f
45 #define CAL_DATA_MASK_INTER 0x3f
44 #define CAL_DATA_SHIFT_INTER 12
46 #define CAL_DATA_SHIFT_INTER 12
45 #define BYTES_FOR_2_SAMPLES 3 // one need 3 bytes = 24 bits to store 3 samples of 12 bits in interleaved mode
47 #define BYTES_FOR_2_SAMPLES 3 // one need 3 bytes = 24 bits to store 3 samples of 12 bits in interleaved mode
46 #define STEPS_FOR_STORAGE_INTER 128
48 #define STEPS_FOR_STORAGE_INTER 128
47 #define CAL_F_DIVISOR_INTER 26 // 25 MHz => 240 384
49 #define CAL_F_DIVISOR_INTER 26 // 25 MHz => 240 384
48
50
49 extern unsigned int lastValidEnterModeTime;
51 extern unsigned int lastValidEnterModeTime;
50 extern unsigned char oneTcLfrUpdateTimeReceived;
52 extern unsigned char oneTcLfrUpdateTimeReceived;
51
53
52 //****
54 //****
53 // ISR
55 // ISR
54 rtems_isr commutation_isr1( rtems_vector_number vector );
56 rtems_isr commutation_isr1( rtems_vector_number vector );
55 rtems_isr commutation_isr2( rtems_vector_number vector );
57 rtems_isr commutation_isr2( rtems_vector_number vector );
56
58
57 //***********
59 //***********
58 // RTEMS TASK
60 // RTEMS TASK
59 rtems_task actn_task( rtems_task_argument unused );
61 rtems_task actn_task( rtems_task_argument unused );
60
62
61 //***********
63 //***********
62 // TC ACTIONS
64 // TC ACTIONS
63 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
65 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
64 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
66 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
65 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
67 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
66 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
68 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
67 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
69 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
68 int action_update_time( ccsdsTelecommandPacket_t *TC);
70 int action_update_time( ccsdsTelecommandPacket_t *TC);
69
71
70 // mode transition
72 // mode transition
71 int check_mode_value( unsigned char requestedMode );
73 int check_mode_value( unsigned char requestedMode );
72 int check_mode_transition( unsigned char requestedMode );
74 int check_mode_transition( unsigned char requestedMode );
73 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
75 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
74 int check_transition_date( unsigned int transitionCoarseTime );
76 int check_transition_date( unsigned int transitionCoarseTime );
75 int stop_spectral_matrices( void );
77 int stop_spectral_matrices( void );
76 int stop_current_mode( void );
78 int stop_current_mode( void );
77 int enter_mode_standby(void );
79 int enter_mode_standby(void );
78 int enter_mode_normal( unsigned int transitionCoarseTime );
80 int enter_mode_normal( unsigned int transitionCoarseTime );
79 int enter_mode_burst( unsigned int transitionCoarseTime );
81 int enter_mode_burst( unsigned int transitionCoarseTime );
80 int enter_mode_sbm1( unsigned int transitionCoarseTime );
82 int enter_mode_sbm1( unsigned int transitionCoarseTime );
81 int enter_mode_sbm2( unsigned int transitionCoarseTime );
83 int enter_mode_sbm2( unsigned int transitionCoarseTime );
82 int restart_science_tasks( unsigned char lfrRequestedMode );
84 int restart_science_tasks( unsigned char lfrRequestedMode );
83 int restart_asm_tasks(unsigned char lfrRequestedMode );
85 int restart_asm_tasks(unsigned char lfrRequestedMode );
84 int suspend_science_tasks(void);
86 int suspend_science_tasks(void);
85 int suspend_asm_tasks( void );
87 int suspend_asm_tasks( void );
86 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
88 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
87 void launch_spectral_matrix( void );
89 void launch_spectral_matrix( void );
88 void set_sm_irq_onNewMatrix( unsigned char value );
90 void set_sm_irq_onNewMatrix( unsigned char value );
89 void set_sm_irq_onError( unsigned char value );
91 void set_sm_irq_onError( unsigned char value );
90
92
91 // other functions
93 // other functions
92 void updateLFRCurrentMode(unsigned char requestedMode);
94 void updateLFRCurrentMode(unsigned char requestedMode);
93 void set_lfr_soft_reset( unsigned char value );
95 void set_lfr_soft_reset( unsigned char value );
94 void reset_lfr( void );
96 void reset_lfr( void );
95 // CALIBRATION
97 // CALIBRATION
96 void setCalibrationPrescaler( unsigned int prescaler );
98 void setCalibrationPrescaler( unsigned int prescaler );
97 void setCalibrationDivisor( unsigned int divisionFactor );
99 void setCalibrationDivisor( unsigned int divisionFactor );
98 void setCalibrationData( void );
100 void setCalibrationData( void );
99 void setCalibrationReload( bool state);
101 void setCalibrationReload( bool state);
100 void setCalibrationEnable( bool state );
102 void setCalibrationEnable( bool state );
101 void setCalibrationInterleaved( bool state );
103 void setCalibrationInterleaved( bool state );
102 void setCalibration( bool state );
104 void setCalibration( bool state );
103 void configureCalibration( bool interleaved );
105 void configureCalibration( bool interleaved );
104 //
106 //
105 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
107 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
106 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
108 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
107 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
109 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
108
110
109 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
111 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
110 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
112 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
111
113
112 #endif // TC_HANDLER_H_INCLUDED
114 #endif // TC_HANDLER_H_INCLUDED
113
115
114
116
115
117
@@ -1,25 +1,25
1 set(rtems_dir /opt/rtems-4.10/)
1 set(rtems_dir /opt/rtems-4.10/)
2
2
3 set(CMAKE_SYSTEM_NAME rtems)
3 set(CMAKE_SYSTEM_NAME rtems)
4 set(CMAKE_C_COMPILER ${rtems_dir}/bin/sparc-rtems-gcc)
4 set(CMAKE_C_COMPILER ${rtems_dir}/bin/sparc-rtems-gcc)
5 set(CMAKE_CXX_COMPILER ${rtems_dir}/bin/sparc-rtems-g++)
5 set(CMAKE_CXX_COMPILER ${rtems_dir}/bin/sparc-rtems-g++)
6 set(CMAKE_LINKER ${rtems_dir}/bin/sparc-rtems-g++)
6 set(CMAKE_LINKER ${rtems_dir}/bin/sparc-rtems-g++)
7 SET(CMAKE_EXE_LINKER_FLAGS "-static")
7 SET(CMAKE_EXE_LINKER_FLAGS "-static")
8 option(fix-b2bst "Activate -mfix-b2bst switch to mitigate \"LEON3FT Stale Cache Entry After Store with Data Tag Parity Error\" errata, GRLIB-TN-0009" ON)
8 option(fix-b2bst "Activate -mfix-b2bst switch to mitigate \"LEON3FT Stale Cache Entry After Store with Data Tag Parity Error\" errata, GRLIB-TN-0009" ON)
9
9
10 if(fix-b2bst)
10 if(fix-b2bst)
11 set(CMAKE_C_FLAGS_RELEASE "-O3 -mfix-b2bst")
11 set(CMAKE_C_FLAGS_RELEASE "-O3 -mfix-b2bst")
12 else()
12 else()
13 set(CMAKE_C_FLAGS_RELEASE "-O3")
13 set(CMAKE_C_FLAGS_RELEASE "-O3")
14 endif()
14 endif()
15
15
16 set(CMAKE_C_LINK_EXECUTABLE "<CMAKE_LINKER> <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
16 set(CMAKE_C_LINK_EXECUTABLE "<CMAKE_LINKER> <FLAGS> -Xlinker -Map=<TARGET>.map <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
17
17
18 include_directories("${rtems_dir}/sparc-rtems/leon3/lib/include")
18 include_directories("${rtems_dir}/sparc-rtems/leon3/lib/include")
19
19
20 function (check_b2bst target bin)
20 function (check_b2bst target bin)
21 add_custom_command(TARGET ${target}
21 add_custom_command(TARGET ${target}
22 POST_BUILD
22 POST_BUILD
23 COMMAND ${rtems_dir}/bin/sparc-rtems-objdump -d ${bin}/${target} | ${CMAKE_SOURCE_DIR}/sparc/leon3ft-b2bst-scan.tcl
23 COMMAND ${rtems_dir}/bin/sparc-rtems-objdump -d ${bin}/${target} | ${CMAKE_SOURCE_DIR}/sparc/leon3ft-b2bst-scan.tcl
24 )
24 )
25 endfunction()
25 endfunction()
@@ -1,974 +1,1007
1 /** This is the RTEMS initialization module.
1 /** This is the RTEMS initialization module.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * This module contains two very different information:
6 * This module contains two very different information:
7 * - specific instructions to configure the compilation of the RTEMS executive
7 * - specific instructions to configure the compilation of the RTEMS executive
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 *
9 *
10 */
10 */
11
11
12 //*************************
12 //*************************
13 // GPL reminder to be added
13 // GPL reminder to be added
14 //*************************
14 //*************************
15
15
16 #include <rtems.h>
16 #include <rtems.h>
17
17
18
18 /* configuration information */
19 /* configuration information */
19
20
20 #define CONFIGURE_INIT
21 #define CONFIGURE_INIT
21
22
22 #include <bsp.h> /* for device driver prototypes */
23 #include <bsp.h> /* for device driver prototypes */
23
24
24 /* configuration information */
25 /* configuration information */
25
26
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28
29
29 #define CONFIGURE_MAXIMUM_TASKS 21 // number of tasks concurrently active including INIT
30 #define CONFIGURE_MAXIMUM_TASKS 23 // number of tasks concurrently active including INIT
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 #define CONFIGURE_MAXIMUM_PERIODS 6 // [hous] [load] [avgv]
38 #define CONFIGURE_MAXIMUM_PERIODS 6 // [hous] [load] [avgv]
38 #define CONFIGURE_MAXIMUM_TIMERS 6 // [spiq] [link] [spacewire_reset_link]
39 #define CONFIGURE_MAXIMUM_TIMERS 6 // [spiq] [link] [spacewire_reset_link]
39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 #ifdef PRINT_STACK_REPORT
41 #ifdef PRINT_STACK_REPORT
41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 #define CONFIGURE_STACK_CHECKER_ENABLED
42 #endif
43 #endif
43
44
44 #include <rtems/confdefs.h>
45 #include <rtems/confdefs.h>
45
46
46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 #ifdef RTEMS_DRVMGR_STARTUP
48 #ifdef RTEMS_DRVMGR_STARTUP
48 #ifdef LEON3
49 #ifdef LEON3
49 /* Add Timer and UART Driver */
50 /* Add Timer and UART Driver */
50
51
51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 #endif
54 #endif
54
55
55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 #endif
58 #endif
58
59
59 #endif
60 #endif
60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61
62
62 #include <drvmgr/drvmgr_confdefs.h>
63 #include <drvmgr/drvmgr_confdefs.h>
63 #endif
64 #endif
64
65
65 #include "fsw_init.h"
66 #include "fsw_init.h"
66 #include "fsw_config.c"
67 #include "fsw_config.c"
67 #include "GscMemoryLPP.hpp"
68 #include "GscMemoryLPP.hpp"
68
69
69 void initCache()
70 void initCache()
70 {
71 {
71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 // These should only be read and written using 32-bit LDA/STA instructions.
73 // These should only be read and written using 32-bit LDA/STA instructions.
73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 // The table below shows the register addresses:
75 // The table below shows the register addresses:
75 // 0x00 Cache control register
76 // 0x00 Cache control register
76 // 0x04 Reserved
77 // 0x04 Reserved
77 // 0x08 Instruction cache configuration register
78 // 0x08 Instruction cache configuration register
78 // 0x0C Data cache configuration register
79 // 0x0C Data cache configuration register
79
80
80 // Cache Control Register Leon3 / Leon3FT
81 // Cache Control Register Leon3 / Leon3FT
81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 // RFT PS TB DS FD FI FT ST IB
83 // RFT PS TB DS FD FI FT ST IB
83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85
86
86 unsigned int cacheControlRegister;
87 unsigned int cacheControlRegister;
87
88
88 CCR_resetCacheControlRegister();
89 CCR_resetCacheControlRegister();
89 ASR16_resetRegisterProtectionControlRegister();
90 ASR16_resetRegisterProtectionControlRegister();
90
91
91 cacheControlRegister = CCR_getValue();
92 cacheControlRegister = CCR_getValue();
92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94
95
95 CCR_enableInstructionCache(); // ICS bits
96 CCR_enableInstructionCache(); // ICS bits
96 CCR_enableDataCache(); // DCS bits
97 CCR_enableDataCache(); // DCS bits
97 CCR_enableInstructionBurstFetch(); // IB bit
98 CCR_enableInstructionBurstFetch(); // IB bit
98
99
99 faultTolerantScheme();
100 faultTolerantScheme();
100
101
101 cacheControlRegister = CCR_getValue();
102 cacheControlRegister = CCR_getValue();
102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104
105
105 PRINTF("\n");
106 PRINTF("\n");
106 }
107 }
107
108
108 rtems_task Init( rtems_task_argument ignored )
109 rtems_task Init( rtems_task_argument ignored )
109 {
110 {
110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 *
112 *
112 * @param unused is the starting argument of the RTEMS task
113 * @param unused is the starting argument of the RTEMS task
113 *
114 *
114 * The INIT task create and run all other RTEMS tasks.
115 * The INIT task create and run all other RTEMS tasks.
115 *
116 *
116 */
117 */
117
118
118 //***********
119 //***********
119 // INIT CACHE
120 // INIT CACHE
120
121
121 unsigned char *vhdlVersion;
122 unsigned char *vhdlVersion;
122
123
123 reset_lfr();
124 reset_lfr();
124
125
125 reset_local_time();
126 reset_local_time();
126
127
127 rtems_cpu_usage_reset();
128 rtems_cpu_usage_reset();
128
129
129 rtems_status_code status;
130 rtems_status_code status;
130 rtems_status_code status_spw;
131 rtems_status_code status_spw;
131 rtems_isr_entry old_isr_handler;
132 rtems_isr_entry old_isr_handler;
132
133
133 old_isr_handler = NULL;
134 old_isr_handler = NULL;
134
135
135 // UART settings
136 // UART settings
136 enable_apbuart_transmitter();
137 enable_apbuart_transmitter();
137 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
138 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
138
139
139 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
140 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
140
141
141
142
142 PRINTF("\n\n\n\n\n")
143 PRINTF("\n\n\n\n\n")
143
144
144 initCache();
145 initCache();
145
146
146 PRINTF("*************************\n")
147 PRINTF("*************************\n")
147 PRINTF("** LFR Flight Software **\n")
148 PRINTF("** LFR Flight Software **\n")
148
149
149 PRINTF1("** %d-", SW_VERSION_N1)
150 PRINTF1("** %d-", SW_VERSION_N1)
150 PRINTF1("%d-" , SW_VERSION_N2)
151 PRINTF1("%d-" , SW_VERSION_N2)
151 PRINTF1("%d-" , SW_VERSION_N3)
152 PRINTF1("%d-" , SW_VERSION_N3)
152 PRINTF1("%d **\n", SW_VERSION_N4)
153 PRINTF1("%d **\n", SW_VERSION_N4)
153
154
154 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
155 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
155 PRINTF("** VHDL **\n")
156 PRINTF("** VHDL **\n")
156 PRINTF1("** %d-", vhdlVersion[1])
157 PRINTF1("** %d-", vhdlVersion[1])
157 PRINTF1("%d-" , vhdlVersion[2])
158 PRINTF1("%d-" , vhdlVersion[2])
158 PRINTF1("%d **\n", vhdlVersion[3])
159 PRINTF1("%d **\n", vhdlVersion[3])
159 PRINTF("*************************\n")
160 PRINTF("*************************\n")
160 PRINTF("\n\n")
161 PRINTF("\n\n")
161
162
162 init_parameter_dump();
163 init_parameter_dump();
163 init_kcoefficients_dump();
164 init_kcoefficients_dump();
164 init_local_mode_parameters();
165 init_local_mode_parameters();
165 init_housekeeping_parameters();
166 init_housekeeping_parameters();
166 init_k_coefficients_prc0();
167 init_k_coefficients_prc0();
167 init_k_coefficients_prc1();
168 init_k_coefficients_prc1();
168 init_k_coefficients_prc2();
169 init_k_coefficients_prc2();
169 pa_bia_status_info = INIT_CHAR;
170 pa_bia_status_info = INIT_CHAR;
170
171
171 // initialize all reaction wheels frequencies to NaN
172 // initialize all reaction wheels frequencies to NaN
172 rw_f.cp_rpw_sc_rw1_f1 = NAN;
173 rw_f.cp_rpw_sc_rw1_f1 = NAN;
173 rw_f.cp_rpw_sc_rw1_f2 = NAN;
174 rw_f.cp_rpw_sc_rw1_f2 = NAN;
174 rw_f.cp_rpw_sc_rw1_f3 = NAN;
175 rw_f.cp_rpw_sc_rw1_f3 = NAN;
175 rw_f.cp_rpw_sc_rw1_f4 = NAN;
176 rw_f.cp_rpw_sc_rw1_f4 = NAN;
176 rw_f.cp_rpw_sc_rw2_f1 = NAN;
177 rw_f.cp_rpw_sc_rw2_f1 = NAN;
177 rw_f.cp_rpw_sc_rw2_f2 = NAN;
178 rw_f.cp_rpw_sc_rw2_f2 = NAN;
178 rw_f.cp_rpw_sc_rw2_f3 = NAN;
179 rw_f.cp_rpw_sc_rw2_f3 = NAN;
179 rw_f.cp_rpw_sc_rw2_f4 = NAN;
180 rw_f.cp_rpw_sc_rw2_f4 = NAN;
180 rw_f.cp_rpw_sc_rw3_f1 = NAN;
181 rw_f.cp_rpw_sc_rw3_f1 = NAN;
181 rw_f.cp_rpw_sc_rw3_f2 = NAN;
182 rw_f.cp_rpw_sc_rw3_f2 = NAN;
182 rw_f.cp_rpw_sc_rw3_f3 = NAN;
183 rw_f.cp_rpw_sc_rw3_f3 = NAN;
183 rw_f.cp_rpw_sc_rw3_f4 = NAN;
184 rw_f.cp_rpw_sc_rw3_f4 = NAN;
184 rw_f.cp_rpw_sc_rw4_f1 = NAN;
185 rw_f.cp_rpw_sc_rw4_f1 = NAN;
185 rw_f.cp_rpw_sc_rw4_f2 = NAN;
186 rw_f.cp_rpw_sc_rw4_f2 = NAN;
186 rw_f.cp_rpw_sc_rw4_f3 = NAN;
187 rw_f.cp_rpw_sc_rw4_f3 = NAN;
187 rw_f.cp_rpw_sc_rw4_f4 = NAN;
188 rw_f.cp_rpw_sc_rw4_f4 = NAN;
188
189
189 // initialize filtering parameters
190 // initialize filtering parameters
190 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
191 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
191 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
192 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
192 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
193 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
193 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
194 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
194 filterPar.modulus_in_finetime = DEFAULT_MODULUS;
195 filterPar.modulus_in_finetime = DEFAULT_MODULUS;
195 filterPar.tbad_in_finetime = DEFAULT_TBAD;
196 filterPar.tbad_in_finetime = DEFAULT_TBAD;
196 filterPar.offset_in_finetime = DEFAULT_OFFSET;
197 filterPar.offset_in_finetime = DEFAULT_OFFSET;
197 filterPar.shift_in_finetime = DEFAULT_SHIFT;
198 filterPar.shift_in_finetime = DEFAULT_SHIFT;
198 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
199 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
199
200
200 // waveform picker initialization
201 // waveform picker initialization
201 WFP_init_rings();
202 WFP_init_rings();
202 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
203 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
203 WFP_reset_current_ring_nodes();
204 WFP_reset_current_ring_nodes();
204 reset_waveform_picker_regs();
205 reset_waveform_picker_regs();
205
206
206 // spectral matrices initialization
207 // spectral matrices initialization
207 SM_init_rings(); // initialize spectral matrices rings
208 SM_init_rings(); // initialize spectral matrices rings
208 SM_reset_current_ring_nodes();
209 SM_reset_current_ring_nodes();
209 reset_spectral_matrix_regs();
210 reset_spectral_matrix_regs();
210
211
211 // configure calibration
212 // configure calibration
212 configureCalibration( false ); // true means interleaved mode, false is for normal mode
213 configureCalibration( false ); // true means interleaved mode, false is for normal mode
213
214
214 updateLFRCurrentMode( LFR_MODE_STANDBY );
215 updateLFRCurrentMode( LFR_MODE_STANDBY );
215
216
216 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
217 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
217
218
218 create_names(); // create all names
219 create_names(); // create all names
219
220
220 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
221 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
221 if (status != RTEMS_SUCCESSFUL)
222 if (status != RTEMS_SUCCESSFUL)
222 {
223 {
223 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
224 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
224 }
225 }
225
226
226 status = create_message_queues(); // create message queues
227 status = create_message_queues(); // create message queues
227 if (status != RTEMS_SUCCESSFUL)
228 if (status != RTEMS_SUCCESSFUL)
228 {
229 {
229 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
230 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
230 }
231 }
231
232
232 status = create_all_tasks(); // create all tasks
233 status = create_all_tasks(); // create all tasks
233 if (status != RTEMS_SUCCESSFUL)
234 if (status != RTEMS_SUCCESSFUL)
234 {
235 {
235 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
236 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
236 }
237 }
237
238
238 // **************************
239 // **************************
239 // <SPACEWIRE INITIALIZATION>
240 // <SPACEWIRE INITIALIZATION>
240 status_spw = spacewire_open_link(); // (1) open the link
241 status_spw = spacewire_open_link(); // (1) open the link
241 if ( status_spw != RTEMS_SUCCESSFUL )
242 if ( status_spw != RTEMS_SUCCESSFUL )
242 {
243 {
243 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
244 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
244 }
245 }
245
246
246 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
247 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
247 {
248 {
248 status_spw = spacewire_configure_link( fdSPW );
249 status_spw = spacewire_configure_link( fdSPW );
249 if ( status_spw != RTEMS_SUCCESSFUL )
250 if ( status_spw != RTEMS_SUCCESSFUL )
250 {
251 {
251 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
252 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
252 }
253 }
253 }
254 }
254
255
255 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
256 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
256 {
257 {
257 status_spw = spacewire_start_link( fdSPW );
258 status_spw = spacewire_start_link( fdSPW );
258 if ( status_spw != RTEMS_SUCCESSFUL )
259 if ( status_spw != RTEMS_SUCCESSFUL )
259 {
260 {
260 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
261 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
261 }
262 }
262 }
263 }
263 // </SPACEWIRE INITIALIZATION>
264 // </SPACEWIRE INITIALIZATION>
264 // ***************************
265 // ***************************
265
266
266 status = start_all_tasks(); // start all tasks
267 status = start_all_tasks(); // start all tasks
267 if (status != RTEMS_SUCCESSFUL)
268 if (status != RTEMS_SUCCESSFUL)
268 {
269 {
269 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
270 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
270 }
271 }
271
272
272 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
273 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
273 status = start_recv_send_tasks();
274 status = start_recv_send_tasks();
274 if ( status != RTEMS_SUCCESSFUL )
275 if ( status != RTEMS_SUCCESSFUL )
275 {
276 {
276 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
277 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
277 }
278 }
278
279
279 // suspend science tasks, they will be restarted later depending on the mode
280 // suspend science tasks, they will be restarted later depending on the mode
280 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
281 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
281 if (status != RTEMS_SUCCESSFUL)
282 if (status != RTEMS_SUCCESSFUL)
282 {
283 {
283 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
284 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
284 }
285 }
285
286
286 // configure IRQ handling for the waveform picker unit
287 // configure IRQ handling for the waveform picker unit
287 status = rtems_interrupt_catch( waveforms_isr,
288 status = rtems_interrupt_catch( waveforms_isr,
288 IRQ_SPARC_WAVEFORM_PICKER,
289 IRQ_SPARC_WAVEFORM_PICKER,
289 &old_isr_handler) ;
290 &old_isr_handler) ;
290 // configure IRQ handling for the spectral matrices unit
291 // configure IRQ handling for the spectral matrices unit
291 status = rtems_interrupt_catch( spectral_matrices_isr,
292 status = rtems_interrupt_catch( spectral_matrices_isr,
292 IRQ_SPARC_SPECTRAL_MATRIX,
293 IRQ_SPARC_SPECTRAL_MATRIX,
293 &old_isr_handler) ;
294 &old_isr_handler) ;
294
295
295 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
296 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
296 if ( status_spw != RTEMS_SUCCESSFUL )
297 if ( status_spw != RTEMS_SUCCESSFUL )
297 {
298 {
298 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
299 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
299 if ( status != RTEMS_SUCCESSFUL ) {
300 if ( status != RTEMS_SUCCESSFUL ) {
300 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
301 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
301 }
302 }
302 }
303 }
303
304
304 BOOT_PRINTF("delete INIT\n")
305 BOOT_PRINTF("delete INIT\n")
305
306
306 set_hk_lfr_sc_potential_flag( true );
307 set_hk_lfr_sc_potential_flag( true );
307
308
308 // start the timer to detect a missing spacewire timecode
309 // start the timer to detect a missing spacewire timecode
309 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
310 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
310 // if a tickout is generated, the timer is restarted
311 // if a tickout is generated, the timer is restarted
311 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
312 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
312
313
313 grspw_timecode_callback = &timecode_irq_handler;
314 grspw_timecode_callback = &timecode_irq_handler;
314
315
315 status = rtems_task_delete(RTEMS_SELF);
316 status = rtems_task_delete(RTEMS_SELF);
316
317
317 }
318 }
318
319
319 void init_local_mode_parameters( void )
320 void init_local_mode_parameters( void )
320 {
321 {
321 /** This function initialize the param_local global variable with default values.
322 /** This function initialize the param_local global variable with default values.
322 *
323 *
323 */
324 */
324
325
325 unsigned int i;
326 unsigned int i;
326
327
327 // LOCAL PARAMETERS
328 // LOCAL PARAMETERS
328
329
329 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
330 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
330 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
331 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
331
332
332 // init sequence counters
333 // init sequence counters
333
334
334 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
335 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
335 {
336 {
336 sequenceCounters_TC_EXE[i] = INIT_CHAR;
337 sequenceCounters_TC_EXE[i] = INIT_CHAR;
337 sequenceCounters_TM_DUMP[i] = INIT_CHAR;
338 sequenceCounters_TM_DUMP[i] = INIT_CHAR;
338 }
339 }
339 sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR;
340 sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR;
340 sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR;
341 sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR;
341 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT;
342 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT;
342 }
343 }
343
344
344 void reset_local_time( void )
345 void reset_local_time( void )
345 {
346 {
346 time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000
347 time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000
347 }
348 }
348
349
349 void create_names( void ) // create all names for tasks and queues
350 void create_names( void ) // create all names for tasks and queues
350 {
351 {
351 /** This function creates all RTEMS names used in the software for tasks and queues.
352 /** This function creates all RTEMS names used in the software for tasks and queues.
352 *
353 *
353 * @return RTEMS directive status codes:
354 * @return RTEMS directive status codes:
354 * - RTEMS_SUCCESSFUL - successful completion
355 * - RTEMS_SUCCESSFUL - successful completion
355 *
356 *
356 */
357 */
357
358
358 // task names
359 // task names
359 Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' );
360 Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' );
360 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
361 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
361 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
362 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
362 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
363 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
363 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
364 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
364 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
365 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
365 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
366 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
366 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
367 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
367 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
368 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
368 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
369 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
369 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
370 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
370 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
371 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
371 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
372 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
372 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
373 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
373 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
374 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
374 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
375 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
375 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
376 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
376 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
377 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
377 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
378 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
378 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
379 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
380 Task_name[TASKID_SCRB] = rtems_build_name( 'S', 'C', 'R', 'B' );
381 Task_name[TASKID_CALI] = rtems_build_name( 'C', 'A', 'L', 'I' );
379
382
380 // rate monotonic period names
383 // rate monotonic period names
381 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
384 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
382 name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' );
385 name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' );
383
386
384 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
387 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
385 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
388 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
386 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
389 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
387 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
390 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
388 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
391 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
389
392
390 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
393 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
391 }
394 }
392
395
393 int create_all_tasks( void ) // create all tasks which run in the software
396 int create_all_tasks( void ) // create all tasks which run in the software
394 {
397 {
395 /** This function creates all RTEMS tasks used in the software.
398 /** This function creates all RTEMS tasks used in the software.
396 *
399 *
397 * @return RTEMS directive status codes:
400 * @return RTEMS directive status codes:
398 * - RTEMS_SUCCESSFUL - task created successfully
401 * - RTEMS_SUCCESSFUL - task created successfully
399 * - RTEMS_INVALID_ADDRESS - id is NULL
402 * - RTEMS_INVALID_ADDRESS - id is NULL
400 * - RTEMS_INVALID_NAME - invalid task name
403 * - RTEMS_INVALID_NAME - invalid task name
401 * - RTEMS_INVALID_PRIORITY - invalid task priority
404 * - RTEMS_INVALID_PRIORITY - invalid task priority
402 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
405 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
403 * - RTEMS_TOO_MANY - too many tasks created
406 * - RTEMS_TOO_MANY - too many tasks created
404 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
407 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
405 * - RTEMS_TOO_MANY - too many global objects
408 * - RTEMS_TOO_MANY - too many global objects
406 *
409 *
407 */
410 */
408
411
409 rtems_status_code status;
412 rtems_status_code status;
410
413
411 //**********
414 //**********
412 // SPACEWIRE
415 // SPACEWIRE
413 // RECV
416 // RECV
414 status = rtems_task_create(
417 status = rtems_task_create(
415 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
418 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
416 RTEMS_DEFAULT_MODES,
419 RTEMS_DEFAULT_MODES,
417 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
420 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
418 );
421 );
419 if (status == RTEMS_SUCCESSFUL) // SEND
422 if (status == RTEMS_SUCCESSFUL) // SEND
420 {
423 {
421 status = rtems_task_create(
424 status = rtems_task_create(
422 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
425 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
423 RTEMS_DEFAULT_MODES,
426 RTEMS_DEFAULT_MODES,
424 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
427 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
425 );
428 );
426 }
429 }
427 if (status == RTEMS_SUCCESSFUL) // LINK
430 if (status == RTEMS_SUCCESSFUL) // LINK
428 {
431 {
429 status = rtems_task_create(
432 status = rtems_task_create(
430 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
433 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
431 RTEMS_DEFAULT_MODES,
434 RTEMS_DEFAULT_MODES,
432 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
435 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
433 );
436 );
434 }
437 }
435 if (status == RTEMS_SUCCESSFUL) // ACTN
438 if (status == RTEMS_SUCCESSFUL) // ACTN
436 {
439 {
437 status = rtems_task_create(
440 status = rtems_task_create(
438 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
441 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
439 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
442 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
440 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
443 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
441 );
444 );
442 }
445 }
443 if (status == RTEMS_SUCCESSFUL) // SPIQ
446 if (status == RTEMS_SUCCESSFUL) // SPIQ
444 {
447 {
445 status = rtems_task_create(
448 status = rtems_task_create(
446 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
449 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
447 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
450 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
448 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
451 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
449 );
452 );
450 }
453 }
451
454
452 //******************
455 //******************
453 // SPECTRAL MATRICES
456 // SPECTRAL MATRICES
454 if (status == RTEMS_SUCCESSFUL) // AVF0
457 if (status == RTEMS_SUCCESSFUL) // AVF0
455 {
458 {
456 status = rtems_task_create(
459 status = rtems_task_create(
457 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
460 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
458 RTEMS_DEFAULT_MODES,
461 RTEMS_DEFAULT_MODES,
459 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
462 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
460 );
463 );
461 }
464 }
462 if (status == RTEMS_SUCCESSFUL) // PRC0
465 if (status == RTEMS_SUCCESSFUL) // PRC0
463 {
466 {
464 status = rtems_task_create(
467 status = rtems_task_create(
465 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
468 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
466 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
469 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
467 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
470 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
468 );
471 );
469 }
472 }
470 if (status == RTEMS_SUCCESSFUL) // AVF1
473 if (status == RTEMS_SUCCESSFUL) // AVF1
471 {
474 {
472 status = rtems_task_create(
475 status = rtems_task_create(
473 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
476 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
474 RTEMS_DEFAULT_MODES,
477 RTEMS_DEFAULT_MODES,
475 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
478 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
476 );
479 );
477 }
480 }
478 if (status == RTEMS_SUCCESSFUL) // PRC1
481 if (status == RTEMS_SUCCESSFUL) // PRC1
479 {
482 {
480 status = rtems_task_create(
483 status = rtems_task_create(
481 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
484 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
482 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
485 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
483 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
486 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
484 );
487 );
485 }
488 }
486 if (status == RTEMS_SUCCESSFUL) // AVF2
489 if (status == RTEMS_SUCCESSFUL) // AVF2
487 {
490 {
488 status = rtems_task_create(
491 status = rtems_task_create(
489 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
492 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
490 RTEMS_DEFAULT_MODES,
493 RTEMS_DEFAULT_MODES,
491 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
494 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
492 );
495 );
493 }
496 }
494 if (status == RTEMS_SUCCESSFUL) // PRC2
497 if (status == RTEMS_SUCCESSFUL) // PRC2
495 {
498 {
496 status = rtems_task_create(
499 status = rtems_task_create(
497 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
500 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
498 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
501 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
499 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
502 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
500 );
503 );
501 }
504 }
502
505
503 //****************
506 //****************
504 // WAVEFORM PICKER
507 // WAVEFORM PICKER
505 if (status == RTEMS_SUCCESSFUL) // WFRM
508 if (status == RTEMS_SUCCESSFUL) // WFRM
506 {
509 {
507 status = rtems_task_create(
510 status = rtems_task_create(
508 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
511 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
509 RTEMS_DEFAULT_MODES,
512 RTEMS_DEFAULT_MODES,
510 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
513 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
511 );
514 );
512 }
515 }
513 if (status == RTEMS_SUCCESSFUL) // CWF3
516 if (status == RTEMS_SUCCESSFUL) // CWF3
514 {
517 {
515 status = rtems_task_create(
518 status = rtems_task_create(
516 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
519 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
517 RTEMS_DEFAULT_MODES,
520 RTEMS_DEFAULT_MODES,
518 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
521 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
519 );
522 );
520 }
523 }
521 if (status == RTEMS_SUCCESSFUL) // CWF2
524 if (status == RTEMS_SUCCESSFUL) // CWF2
522 {
525 {
523 status = rtems_task_create(
526 status = rtems_task_create(
524 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
527 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
525 RTEMS_DEFAULT_MODES,
528 RTEMS_DEFAULT_MODES,
526 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
529 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
527 );
530 );
528 }
531 }
529 if (status == RTEMS_SUCCESSFUL) // CWF1
532 if (status == RTEMS_SUCCESSFUL) // CWF1
530 {
533 {
531 status = rtems_task_create(
534 status = rtems_task_create(
532 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
535 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
533 RTEMS_DEFAULT_MODES,
536 RTEMS_DEFAULT_MODES,
534 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
537 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
535 );
538 );
536 }
539 }
537 if (status == RTEMS_SUCCESSFUL) // SWBD
540 if (status == RTEMS_SUCCESSFUL) // SWBD
538 {
541 {
539 status = rtems_task_create(
542 status = rtems_task_create(
540 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
543 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
541 RTEMS_DEFAULT_MODES,
544 RTEMS_DEFAULT_MODES,
542 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
545 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
543 );
546 );
544 }
547 }
545
548
546 //*****
549 //*****
547 // MISC
550 // MISC
548 if (status == RTEMS_SUCCESSFUL) // LOAD
551 if (status == RTEMS_SUCCESSFUL) // LOAD
549 {
552 {
550 status = rtems_task_create(
553 status = rtems_task_create(
551 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
554 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
552 RTEMS_DEFAULT_MODES,
555 RTEMS_DEFAULT_MODES,
553 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
556 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
554 );
557 );
555 }
558 }
556 if (status == RTEMS_SUCCESSFUL) // DUMB
559 if (status == RTEMS_SUCCESSFUL) // DUMB
557 {
560 {
558 status = rtems_task_create(
561 status = rtems_task_create(
559 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
562 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
560 RTEMS_DEFAULT_MODES,
563 RTEMS_DEFAULT_MODES,
561 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
564 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
562 );
565 );
563 }
566 }
567 if (status == RTEMS_SUCCESSFUL) // SCRUBBING TASK
568 {
569 status = rtems_task_create(
570 Task_name[TASKID_SCRB], TASK_PRIORITY_SCRB, RTEMS_MINIMUM_STACK_SIZE,
571 RTEMS_DEFAULT_MODES,
572 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SCRB]
573 );
574 }
564 if (status == RTEMS_SUCCESSFUL) // HOUS
575 if (status == RTEMS_SUCCESSFUL) // HOUS
565 {
576 {
566 status = rtems_task_create(
577 status = rtems_task_create(
567 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
578 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
568 RTEMS_DEFAULT_MODES,
579 RTEMS_DEFAULT_MODES,
569 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
580 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
570 );
581 );
571 }
582 }
572 if (status == RTEMS_SUCCESSFUL) // AVGV
583 if (status == RTEMS_SUCCESSFUL) // AVGV
573 {
584 {
574 status = rtems_task_create(
585 status = rtems_task_create(
575 Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE,
586 Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE,
576 RTEMS_DEFAULT_MODES,
587 RTEMS_DEFAULT_MODES,
577 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV]
588 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV]
578 );
589 );
579 }
590 }
591 if (status == RTEMS_SUCCESSFUL) // CALI
592 {
593 status = rtems_task_create(
594 Task_name[TASKID_CALI], TASK_PRIORITY_CALI, RTEMS_MINIMUM_STACK_SIZE,
595 RTEMS_DEFAULT_MODES,
596 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CALI]
597 );
598 }
580
599
581 return status;
600 return status;
582 }
601 }
583
602
584 int start_recv_send_tasks( void )
603 int start_recv_send_tasks( void )
585 {
604 {
586 rtems_status_code status;
605 rtems_status_code status;
587
606
588 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
607 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
589 if (status!=RTEMS_SUCCESSFUL) {
608 if (status!=RTEMS_SUCCESSFUL) {
590 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
609 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
591 }
610 }
592
611
593 if (status == RTEMS_SUCCESSFUL) // SEND
612 if (status == RTEMS_SUCCESSFUL) // SEND
594 {
613 {
595 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
614 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
596 if (status!=RTEMS_SUCCESSFUL) {
615 if (status!=RTEMS_SUCCESSFUL) {
597 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
616 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
598 }
617 }
599 }
618 }
600
619
601 return status;
620 return status;
602 }
621 }
603
622
604 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
623 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
605 {
624 {
606 /** This function starts all RTEMS tasks used in the software.
625 /** This function starts all RTEMS tasks used in the software.
607 *
626 *
608 * @return RTEMS directive status codes:
627 * @return RTEMS directive status codes:
609 * - RTEMS_SUCCESSFUL - ask started successfully
628 * - RTEMS_SUCCESSFUL - ask started successfully
610 * - RTEMS_INVALID_ADDRESS - invalid task entry point
629 * - RTEMS_INVALID_ADDRESS - invalid task entry point
611 * - RTEMS_INVALID_ID - invalid task id
630 * - RTEMS_INVALID_ID - invalid task id
612 * - RTEMS_INCORRECT_STATE - task not in the dormant state
631 * - RTEMS_INCORRECT_STATE - task not in the dormant state
613 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
632 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
614 *
633 *
615 */
634 */
616 // starts all the tasks fot eh flight software
635 // starts all the tasks fot eh flight software
617
636
618 rtems_status_code status;
637 rtems_status_code status;
619
638
620 //**********
639 //**********
621 // SPACEWIRE
640 // SPACEWIRE
622 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
641 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
623 if (status!=RTEMS_SUCCESSFUL) {
642 if (status!=RTEMS_SUCCESSFUL) {
624 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
643 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
625 }
644 }
626
645
627 if (status == RTEMS_SUCCESSFUL) // LINK
646 if (status == RTEMS_SUCCESSFUL) // LINK
628 {
647 {
629 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
648 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
630 if (status!=RTEMS_SUCCESSFUL) {
649 if (status!=RTEMS_SUCCESSFUL) {
631 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
650 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
632 }
651 }
633 }
652 }
634
653
635 if (status == RTEMS_SUCCESSFUL) // ACTN
654 if (status == RTEMS_SUCCESSFUL) // ACTN
636 {
655 {
637 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
656 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
638 if (status!=RTEMS_SUCCESSFUL) {
657 if (status!=RTEMS_SUCCESSFUL) {
639 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
658 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
640 }
659 }
641 }
660 }
642
661
643 //******************
662 //******************
644 // SPECTRAL MATRICES
663 // SPECTRAL MATRICES
645 if (status == RTEMS_SUCCESSFUL) // AVF0
664 if (status == RTEMS_SUCCESSFUL) // AVF0
646 {
665 {
647 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
666 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
648 if (status!=RTEMS_SUCCESSFUL) {
667 if (status!=RTEMS_SUCCESSFUL) {
649 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
668 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
650 }
669 }
651 }
670 }
652 if (status == RTEMS_SUCCESSFUL) // PRC0
671 if (status == RTEMS_SUCCESSFUL) // PRC0
653 {
672 {
654 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
673 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
655 if (status!=RTEMS_SUCCESSFUL) {
674 if (status!=RTEMS_SUCCESSFUL) {
656 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
675 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
657 }
676 }
658 }
677 }
659 if (status == RTEMS_SUCCESSFUL) // AVF1
678 if (status == RTEMS_SUCCESSFUL) // AVF1
660 {
679 {
661 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
680 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
662 if (status!=RTEMS_SUCCESSFUL) {
681 if (status!=RTEMS_SUCCESSFUL) {
663 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
682 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
664 }
683 }
665 }
684 }
666 if (status == RTEMS_SUCCESSFUL) // PRC1
685 if (status == RTEMS_SUCCESSFUL) // PRC1
667 {
686 {
668 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
687 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
669 if (status!=RTEMS_SUCCESSFUL) {
688 if (status!=RTEMS_SUCCESSFUL) {
670 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
689 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
671 }
690 }
672 }
691 }
673 if (status == RTEMS_SUCCESSFUL) // AVF2
692 if (status == RTEMS_SUCCESSFUL) // AVF2
674 {
693 {
675 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
694 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
676 if (status!=RTEMS_SUCCESSFUL) {
695 if (status!=RTEMS_SUCCESSFUL) {
677 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
696 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
678 }
697 }
679 }
698 }
680 if (status == RTEMS_SUCCESSFUL) // PRC2
699 if (status == RTEMS_SUCCESSFUL) // PRC2
681 {
700 {
682 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
701 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
683 if (status!=RTEMS_SUCCESSFUL) {
702 if (status!=RTEMS_SUCCESSFUL) {
684 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
703 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
685 }
704 }
686 }
705 }
687
706
688 //****************
707 //****************
689 // WAVEFORM PICKER
708 // WAVEFORM PICKER
690 if (status == RTEMS_SUCCESSFUL) // WFRM
709 if (status == RTEMS_SUCCESSFUL) // WFRM
691 {
710 {
692 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
711 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
693 if (status!=RTEMS_SUCCESSFUL) {
712 if (status!=RTEMS_SUCCESSFUL) {
694 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
713 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
695 }
714 }
696 }
715 }
697 if (status == RTEMS_SUCCESSFUL) // CWF3
716 if (status == RTEMS_SUCCESSFUL) // CWF3
698 {
717 {
699 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
718 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
700 if (status!=RTEMS_SUCCESSFUL) {
719 if (status!=RTEMS_SUCCESSFUL) {
701 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
720 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
702 }
721 }
703 }
722 }
704 if (status == RTEMS_SUCCESSFUL) // CWF2
723 if (status == RTEMS_SUCCESSFUL) // CWF2
705 {
724 {
706 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
725 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
707 if (status!=RTEMS_SUCCESSFUL) {
726 if (status!=RTEMS_SUCCESSFUL) {
708 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
727 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
709 }
728 }
710 }
729 }
711 if (status == RTEMS_SUCCESSFUL) // CWF1
730 if (status == RTEMS_SUCCESSFUL) // CWF1
712 {
731 {
713 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
732 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
714 if (status!=RTEMS_SUCCESSFUL) {
733 if (status!=RTEMS_SUCCESSFUL) {
715 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
734 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
716 }
735 }
717 }
736 }
718 if (status == RTEMS_SUCCESSFUL) // SWBD
737 if (status == RTEMS_SUCCESSFUL) // SWBD
719 {
738 {
720 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
739 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
721 if (status!=RTEMS_SUCCESSFUL) {
740 if (status!=RTEMS_SUCCESSFUL) {
722 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
741 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
723 }
742 }
724 }
743 }
725
744
726 //*****
745 //*****
727 // MISC
746 // MISC
728 if (status == RTEMS_SUCCESSFUL) // HOUS
747 if (status == RTEMS_SUCCESSFUL) // HOUS
729 {
748 {
730 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
749 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
731 if (status!=RTEMS_SUCCESSFUL) {
750 if (status!=RTEMS_SUCCESSFUL) {
732 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
751 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
733 }
752 }
734 }
753 }
735 if (status == RTEMS_SUCCESSFUL) // AVGV
754 if (status == RTEMS_SUCCESSFUL) // AVGV
736 {
755 {
737 status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 );
756 status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 );
738 if (status!=RTEMS_SUCCESSFUL) {
757 if (status!=RTEMS_SUCCESSFUL) {
739 BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n")
758 BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n")
740 }
759 }
741 }
760 }
742 if (status == RTEMS_SUCCESSFUL) // DUMB
761 if (status == RTEMS_SUCCESSFUL) // DUMB
743 {
762 {
744 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
763 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
745 if (status!=RTEMS_SUCCESSFUL) {
764 if (status!=RTEMS_SUCCESSFUL) {
746 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
765 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
747 }
766 }
748 }
767 }
768 if (status == RTEMS_SUCCESSFUL) // SCRUBBING
769 {
770 status = rtems_task_start( Task_id[TASKID_SCRB], scrubbing_task, 1 );
771 if (status!=RTEMS_SUCCESSFUL) {
772 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
773 }
774 }
749 if (status == RTEMS_SUCCESSFUL) // LOAD
775 if (status == RTEMS_SUCCESSFUL) // LOAD
750 {
776 {
751 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
777 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
752 if (status!=RTEMS_SUCCESSFUL) {
778 if (status!=RTEMS_SUCCESSFUL) {
753 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
779 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
754 }
780 }
755 }
781 }
782 if (status == RTEMS_SUCCESSFUL) // CALI
783 {
784 status = rtems_task_start( Task_id[TASKID_CALI], load_task, 1 );
785 if (status!=RTEMS_SUCCESSFUL) {
786 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
787 }
788 }
756
789
757 return status;
790 return status;
758 }
791 }
759
792
760 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
793 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
761 {
794 {
762 rtems_status_code status_recv;
795 rtems_status_code status_recv;
763 rtems_status_code status_send;
796 rtems_status_code status_send;
764 rtems_status_code status_q_p0;
797 rtems_status_code status_q_p0;
765 rtems_status_code status_q_p1;
798 rtems_status_code status_q_p1;
766 rtems_status_code status_q_p2;
799 rtems_status_code status_q_p2;
767 rtems_status_code ret;
800 rtems_status_code ret;
768 rtems_id queue_id;
801 rtems_id queue_id;
769
802
770 ret = RTEMS_SUCCESSFUL;
803 ret = RTEMS_SUCCESSFUL;
771 queue_id = RTEMS_ID_NONE;
804 queue_id = RTEMS_ID_NONE;
772
805
773 //****************************************
806 //****************************************
774 // create the queue for handling valid TCs
807 // create the queue for handling valid TCs
775 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
808 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
776 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
809 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
777 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
810 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
778 if ( status_recv != RTEMS_SUCCESSFUL ) {
811 if ( status_recv != RTEMS_SUCCESSFUL ) {
779 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
812 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
780 }
813 }
781
814
782 //************************************************
815 //************************************************
783 // create the queue for handling TM packet sending
816 // create the queue for handling TM packet sending
784 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
817 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
785 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
818 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
786 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
819 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
787 if ( status_send != RTEMS_SUCCESSFUL ) {
820 if ( status_send != RTEMS_SUCCESSFUL ) {
788 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
821 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
789 }
822 }
790
823
791 //*****************************************************************************
824 //*****************************************************************************
792 // create the queue for handling averaged spectral matrices for processing @ f0
825 // create the queue for handling averaged spectral matrices for processing @ f0
793 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
826 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
794 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
827 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
795 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
828 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
796 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
829 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
797 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
830 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
798 }
831 }
799
832
800 //*****************************************************************************
833 //*****************************************************************************
801 // create the queue for handling averaged spectral matrices for processing @ f1
834 // create the queue for handling averaged spectral matrices for processing @ f1
802 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
835 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
803 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
836 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
804 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
837 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
805 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
838 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
806 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
839 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
807 }
840 }
808
841
809 //*****************************************************************************
842 //*****************************************************************************
810 // create the queue for handling averaged spectral matrices for processing @ f2
843 // create the queue for handling averaged spectral matrices for processing @ f2
811 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
844 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
812 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
845 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
813 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
846 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
814 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
847 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
815 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
848 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
816 }
849 }
817
850
818 if ( status_recv != RTEMS_SUCCESSFUL )
851 if ( status_recv != RTEMS_SUCCESSFUL )
819 {
852 {
820 ret = status_recv;
853 ret = status_recv;
821 }
854 }
822 else if( status_send != RTEMS_SUCCESSFUL )
855 else if( status_send != RTEMS_SUCCESSFUL )
823 {
856 {
824 ret = status_send;
857 ret = status_send;
825 }
858 }
826 else if( status_q_p0 != RTEMS_SUCCESSFUL )
859 else if( status_q_p0 != RTEMS_SUCCESSFUL )
827 {
860 {
828 ret = status_q_p0;
861 ret = status_q_p0;
829 }
862 }
830 else if( status_q_p1 != RTEMS_SUCCESSFUL )
863 else if( status_q_p1 != RTEMS_SUCCESSFUL )
831 {
864 {
832 ret = status_q_p1;
865 ret = status_q_p1;
833 }
866 }
834 else
867 else
835 {
868 {
836 ret = status_q_p2;
869 ret = status_q_p2;
837 }
870 }
838
871
839 return ret;
872 return ret;
840 }
873 }
841
874
842 rtems_status_code create_timecode_timer( void )
875 rtems_status_code create_timecode_timer( void )
843 {
876 {
844 rtems_status_code status;
877 rtems_status_code status;
845
878
846 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
879 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
847
880
848 if ( status != RTEMS_SUCCESSFUL )
881 if ( status != RTEMS_SUCCESSFUL )
849 {
882 {
850 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
883 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
851 }
884 }
852 else
885 else
853 {
886 {
854 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
887 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
855 }
888 }
856
889
857 return status;
890 return status;
858 }
891 }
859
892
860 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
893 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
861 {
894 {
862 rtems_status_code status;
895 rtems_status_code status;
863 rtems_name queue_name;
896 rtems_name queue_name;
864
897
865 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
898 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
866
899
867 status = rtems_message_queue_ident( queue_name, 0, queue_id );
900 status = rtems_message_queue_ident( queue_name, 0, queue_id );
868
901
869 return status;
902 return status;
870 }
903 }
871
904
872 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
905 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
873 {
906 {
874 rtems_status_code status;
907 rtems_status_code status;
875 rtems_name queue_name;
908 rtems_name queue_name;
876
909
877 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
910 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
878
911
879 status = rtems_message_queue_ident( queue_name, 0, queue_id );
912 status = rtems_message_queue_ident( queue_name, 0, queue_id );
880
913
881 return status;
914 return status;
882 }
915 }
883
916
884 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
917 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
885 {
918 {
886 rtems_status_code status;
919 rtems_status_code status;
887 rtems_name queue_name;
920 rtems_name queue_name;
888
921
889 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
922 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
890
923
891 status = rtems_message_queue_ident( queue_name, 0, queue_id );
924 status = rtems_message_queue_ident( queue_name, 0, queue_id );
892
925
893 return status;
926 return status;
894 }
927 }
895
928
896 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
929 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
897 {
930 {
898 rtems_status_code status;
931 rtems_status_code status;
899 rtems_name queue_name;
932 rtems_name queue_name;
900
933
901 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
934 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
902
935
903 status = rtems_message_queue_ident( queue_name, 0, queue_id );
936 status = rtems_message_queue_ident( queue_name, 0, queue_id );
904
937
905 return status;
938 return status;
906 }
939 }
907
940
908 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
941 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
909 {
942 {
910 rtems_status_code status;
943 rtems_status_code status;
911 rtems_name queue_name;
944 rtems_name queue_name;
912
945
913 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
946 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
914
947
915 status = rtems_message_queue_ident( queue_name, 0, queue_id );
948 status = rtems_message_queue_ident( queue_name, 0, queue_id );
916
949
917 return status;
950 return status;
918 }
951 }
919
952
920 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
953 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
921 {
954 {
922 u_int32_t count;
955 u_int32_t count;
923 rtems_status_code status;
956 rtems_status_code status;
924
957
925 count = 0;
958 count = 0;
926
959
927 status = rtems_message_queue_get_number_pending( queue_id, &count );
960 status = rtems_message_queue_get_number_pending( queue_id, &count );
928
961
929 count = count + 1;
962 count = count + 1;
930
963
931 if (status != RTEMS_SUCCESSFUL)
964 if (status != RTEMS_SUCCESSFUL)
932 {
965 {
933 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
966 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
934 }
967 }
935 else
968 else
936 {
969 {
937 if (count > *fifo_size_max)
970 if (count > *fifo_size_max)
938 {
971 {
939 *fifo_size_max = count;
972 *fifo_size_max = count;
940 }
973 }
941 }
974 }
942 }
975 }
943
976
944 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
977 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
945 {
978 {
946 unsigned char i;
979 unsigned char i;
947
980
948 //***************
981 //***************
949 // BUFFER ADDRESS
982 // BUFFER ADDRESS
950 for(i=0; i<nbNodes; i++)
983 for(i=0; i<nbNodes; i++)
951 {
984 {
952 ring[i].coarseTime = INT32_ALL_F;
985 ring[i].coarseTime = INT32_ALL_F;
953 ring[i].fineTime = INT32_ALL_F;
986 ring[i].fineTime = INT32_ALL_F;
954 ring[i].sid = INIT_CHAR;
987 ring[i].sid = INIT_CHAR;
955 ring[i].status = INIT_CHAR;
988 ring[i].status = INIT_CHAR;
956 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
989 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
957 }
990 }
958
991
959 //*****
992 //*****
960 // NEXT
993 // NEXT
961 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
994 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
962 for(i=0; i<nbNodes-1; i++)
995 for(i=0; i<nbNodes-1; i++)
963 {
996 {
964 ring[i].next = (ring_node*) &ring[ i + 1 ];
997 ring[i].next = (ring_node*) &ring[ i + 1 ];
965 }
998 }
966
999
967 //*********
1000 //*********
968 // PREVIOUS
1001 // PREVIOUS
969 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
1002 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
970 for(i=1; i<nbNodes; i++)
1003 for(i=1; i<nbNodes; i++)
971 {
1004 {
972 ring[i].previous = (ring_node*) &ring[ i - 1 ];
1005 ring[i].previous = (ring_node*) &ring[ i - 1 ];
973 }
1006 }
974 }
1007 }
@@ -1,1036 +1,1095
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13
13
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 {
16 {
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 *
18 *
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 * @param interrupt_level is the interrupt level that the timer drives.
22 * @param interrupt_level is the interrupt level that the timer drives.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 *
24 *
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 *
26 *
27 */
27 */
28
28
29 rtems_status_code status;
29 rtems_status_code status;
30 rtems_isr_entry old_isr_handler;
30 rtems_isr_entry old_isr_handler;
31
31
32 old_isr_handler = NULL;
32 old_isr_handler = NULL;
33
33
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35
35
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 if (status!=RTEMS_SUCCESSFUL)
37 if (status!=RTEMS_SUCCESSFUL)
38 {
38 {
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 }
40 }
41
41
42 timer_set_clock_divider( timer, clock_divider);
42 timer_set_clock_divider( timer, clock_divider);
43 }
43 }
44
44
45 void timer_start(unsigned char timer)
45 void timer_start(unsigned char timer)
46 {
46 {
47 /** This function starts a GPTIMER timer.
47 /** This function starts a GPTIMER timer.
48 *
48 *
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 *
51 *
52 */
52 */
53
53
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 }
59 }
60
60
61 void timer_stop(unsigned char timer)
61 void timer_stop(unsigned char timer)
62 {
62 {
63 /** This function stops a GPTIMER timer.
63 /** This function stops a GPTIMER timer.
64 *
64 *
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 *
67 *
68 */
68 */
69
69
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 }
73 }
74
74
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 {
76 {
77 /** This function sets the clock divider of a GPTIMER timer.
77 /** This function sets the clock divider of a GPTIMER timer.
78 *
78 *
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 *
82 *
83 */
83 */
84
84
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 }
86 }
87
87
88 // WATCHDOG
88 // WATCHDOG
89
89
90 rtems_isr watchdog_isr( rtems_vector_number vector )
90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 {
91 {
92 rtems_status_code status_code;
92 rtems_status_code status_code;
93
93
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95
95
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97
97
98 exit(0);
98 exit(0);
99 }
99 }
100
100
101 void watchdog_configure(void)
101 void watchdog_configure(void)
102 {
102 {
103 /** This function configure the watchdog.
103 /** This function configure the watchdog.
104 *
104 *
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 *
107 *
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 *
109 *
110 */
110 */
111
111
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113
113
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115
115
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 }
117 }
118
118
119 void watchdog_stop(void)
119 void watchdog_stop(void)
120 {
120 {
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 timer_stop( TIMER_WATCHDOG );
122 timer_stop( TIMER_WATCHDOG );
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 }
124 }
125
125
126 void watchdog_reload(void)
126 void watchdog_reload(void)
127 {
127 {
128 /** This function reloads the watchdog timer counter with the timer reload value.
128 /** This function reloads the watchdog timer counter with the timer reload value.
129 *
129 *
130 * @param void
130 * @param void
131 *
131 *
132 * @return void
132 * @return void
133 *
133 *
134 */
134 */
135
135
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 }
137 }
138
138
139 void watchdog_start(void)
139 void watchdog_start(void)
140 {
140 {
141 /** This function starts the watchdog timer.
141 /** This function starts the watchdog timer.
142 *
142 *
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 *
145 *
146 */
146 */
147
147
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149
149
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154
154
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156
156
157 }
157 }
158
158
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 {
160 {
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162
162
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164
164
165 return 0;
165 return 0;
166 }
166 }
167
167
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 {
169 {
170 /** This function sets the scaler reload register of the apbuart module
170 /** This function sets the scaler reload register of the apbuart module
171 *
171 *
172 * @param regs is the address of the apbuart registers in memory
172 * @param regs is the address of the apbuart registers in memory
173 * @param value is the value that will be stored in the scaler register
173 * @param value is the value that will be stored in the scaler register
174 *
174 *
175 * The value shall be set by the software to get data on the serial interface.
175 * The value shall be set by the software to get data on the serial interface.
176 *
176 *
177 */
177 */
178
178
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180
180
181 apbuart_regs->scaler = value;
181 apbuart_regs->scaler = value;
182
182
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 }
184 }
185
185
186 //************
186 //************
187 // RTEMS TASKS
187 // RTEMS TASKS
188
188
189 rtems_task load_task(rtems_task_argument argument)
189 rtems_task load_task(rtems_task_argument argument)
190 {
190 {
191 BOOT_PRINTF("in LOAD *** \n")
191 BOOT_PRINTF("in LOAD *** \n")
192
192
193 rtems_status_code status;
193 rtems_status_code status;
194 unsigned int i;
194 unsigned int i;
195 unsigned int j;
195 unsigned int j;
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198
198
199 watchdog_period_id = RTEMS_ID_NONE;
199 watchdog_period_id = RTEMS_ID_NONE;
200
200
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202
202
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 if( status != RTEMS_SUCCESSFUL ) {
204 if( status != RTEMS_SUCCESSFUL ) {
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 }
206 }
207
207
208 i = 0;
208 i = 0;
209 j = 0;
209 j = 0;
210
210
211 watchdog_configure();
211 watchdog_configure();
212
212
213 watchdog_start();
213 watchdog_start();
214
214
215 set_sy_lfr_watchdog_enabled( true );
215 set_sy_lfr_watchdog_enabled( true );
216
216
217 while(1){
217 while(1){
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 watchdog_reload();
219 watchdog_reload();
220 i = i + 1;
220 i = i + 1;
221 if ( i == WATCHDOG_LOOP_PRINTF )
221 if ( i == WATCHDOG_LOOP_PRINTF )
222 {
222 {
223 i = 0;
223 i = 0;
224 j = j + 1;
224 j = j + 1;
225 PRINTF1("%d\n", j)
225 PRINTF1("%d\n", j)
226 }
226 }
227 #ifdef DEBUG_WATCHDOG
227 #ifdef DEBUG_WATCHDOG
228 if (j == WATCHDOG_LOOP_DEBUG )
228 if (j == WATCHDOG_LOOP_DEBUG )
229 {
229 {
230 status = rtems_task_delete(RTEMS_SELF);
230 status = rtems_task_delete(RTEMS_SELF);
231 }
231 }
232 #endif
232 #endif
233 }
233 }
234 }
234 }
235
235
236 rtems_task hous_task(rtems_task_argument argument)
236 rtems_task hous_task(rtems_task_argument argument)
237 {
237 {
238 rtems_status_code status;
238 rtems_status_code status;
239 rtems_status_code spare_status;
239 rtems_status_code spare_status;
240 rtems_id queue_id;
240 rtems_id queue_id;
241 rtems_rate_monotonic_period_status period_status;
241 rtems_rate_monotonic_period_status period_status;
242 bool isSynchronized;
242 bool isSynchronized;
243
243
244 queue_id = RTEMS_ID_NONE;
244 queue_id = RTEMS_ID_NONE;
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 isSynchronized = false;
246 isSynchronized = false;
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253
253
254 BOOT_PRINTF("in HOUS ***\n");
254 BOOT_PRINTF("in HOUS ***\n");
255
255
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 if( status != RTEMS_SUCCESSFUL ) {
258 if( status != RTEMS_SUCCESSFUL ) {
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 }
260 }
261 }
261 }
262
262
263 status = rtems_rate_monotonic_cancel(HK_id);
263 status = rtems_rate_monotonic_cancel(HK_id);
264 if( status != RTEMS_SUCCESSFUL ) {
264 if( status != RTEMS_SUCCESSFUL ) {
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 }
266 }
267 else {
267 else {
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 }
269 }
270
270
271 // startup phase
271 // startup phase
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 {
277 {
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 {
279 {
280 isSynchronized = true;
280 isSynchronized = true;
281 }
281 }
282 else
282 else
283 {
283 {
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285
285
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 }
287 }
288 }
288 }
289 status = rtems_rate_monotonic_cancel(HK_id);
289 status = rtems_rate_monotonic_cancel(HK_id);
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291
291
292 set_hk_lfr_reset_cause( POWER_ON );
292 set_hk_lfr_reset_cause( POWER_ON );
293
293
294 while(1){ // launch the rate monotonic task
294 while(1){ // launch the rate monotonic task
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 if ( status != RTEMS_SUCCESSFUL ) {
296 if ( status != RTEMS_SUCCESSFUL ) {
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 }
299 }
300 else {
300 else {
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
304
304
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311
311
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313
313
314 spacewire_read_statistics();
314 spacewire_read_statistics();
315
315
316 update_hk_with_grspw_stats();
316 update_hk_with_grspw_stats();
317
317
318 set_hk_lfr_time_not_synchro();
318 set_hk_lfr_time_not_synchro();
319
319
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325
325
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331
331
332 hk_lfr_le_me_he_update();
332 hk_lfr_le_me_he_update();
333
333
334 // SEND PACKET
334 // SEND PACKET
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
337 if (status != RTEMS_SUCCESSFUL) {
337 if (status != RTEMS_SUCCESSFUL) {
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
339 }
339 }
340 }
340 }
341 }
341 }
342
342
343 PRINTF("in HOUS *** deleting task\n")
343 PRINTF("in HOUS *** deleting task\n")
344
344
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
346
346
347 return;
347 return;
348 }
348 }
349
349
350 int filter( int x, filter_ctx* ctx )
350 int filter( int x, filter_ctx* ctx )
351 {
351 {
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
356
356
357 int_fast32_t W;
357 int_fast32_t W;
358 int i;
358 int i;
359
359
360 W = INIT_INT;
360 W = INIT_INT;
361 i = INIT_INT;
361 i = INIT_INT;
362
362
363 //Direct-Form-II
363 //Direct-Form-II
364 for ( i = 0; i < NB_COEFFS; i++ )
364 for ( i = 0; i < NB_COEFFS; i++ )
365 {
365 {
366 x = x << a_gain[i];
366 x = x << a_gain[i];
367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
369 x = ( b[i][COEFF0] * W )
369 x = ( b[i][COEFF0] * W )
370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
372 x = x >> b_gain[i];
372 x = x >> b_gain[i];
373 ctx->W[i][1] = ctx->W[i][0];
373 ctx->W[i][1] = ctx->W[i][0];
374 ctx->W[i][0] = W;
374 ctx->W[i][0] = W;
375 }
375 }
376 return x;
376 return x;
377 }
377 }
378
378
379 rtems_task avgv_task(rtems_task_argument argument)
379 rtems_task avgv_task(rtems_task_argument argument)
380 {
380 {
381 #define MOVING_AVERAGE 16
381 #define MOVING_AVERAGE 16
382 rtems_status_code status;
382 rtems_status_code status;
383 static int32_t v[MOVING_AVERAGE] = {0};
383 static int32_t v[MOVING_AVERAGE] = {0};
384 static int32_t e1[MOVING_AVERAGE] = {0};
384 static int32_t e1[MOVING_AVERAGE] = {0};
385 static int32_t e2[MOVING_AVERAGE] = {0};
385 static int32_t e2[MOVING_AVERAGE] = {0};
386 static int old_v = 0;
386 static int old_v = 0;
387 static int old_e1 = 0;
387 static int old_e1 = 0;
388 static int old_e2 = 0;
388 static int old_e2 = 0;
389 int32_t current_v;
389 int32_t current_v;
390 int32_t current_e1;
390 int32_t current_e1;
391 int32_t current_e2;
391 int32_t current_e2;
392 int32_t average_v;
392 int32_t average_v;
393 int32_t average_e1;
393 int32_t average_e1;
394 int32_t average_e2;
394 int32_t average_e2;
395 int32_t newValue_v;
395 int32_t newValue_v;
396 int32_t newValue_e1;
396 int32_t newValue_e1;
397 int32_t newValue_e2;
397 int32_t newValue_e2;
398 unsigned char k;
398 unsigned char k;
399 unsigned char indexOfOldValue;
399 unsigned char indexOfOldValue;
400
400
401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
404
404
405 BOOT_PRINTF("in AVGV ***\n");
405 BOOT_PRINTF("in AVGV ***\n");
406
406
407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
409 if( status != RTEMS_SUCCESSFUL ) {
409 if( status != RTEMS_SUCCESSFUL ) {
410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
411 }
411 }
412 }
412 }
413
413
414 status = rtems_rate_monotonic_cancel(AVGV_id);
414 status = rtems_rate_monotonic_cancel(AVGV_id);
415 if( status != RTEMS_SUCCESSFUL ) {
415 if( status != RTEMS_SUCCESSFUL ) {
416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
417 }
417 }
418 else {
418 else {
419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
420 }
420 }
421
421
422 // initialize values
422 // initialize values
423 indexOfOldValue = MOVING_AVERAGE - 1;
423 indexOfOldValue = MOVING_AVERAGE - 1;
424 current_v = 0;
424 current_v = 0;
425 current_e1 = 0;
425 current_e1 = 0;
426 current_e2 = 0;
426 current_e2 = 0;
427 average_v = 0;
427 average_v = 0;
428 average_e1 = 0;
428 average_e1 = 0;
429 average_e2 = 0;
429 average_e2 = 0;
430 newValue_v = 0;
430 newValue_v = 0;
431 newValue_e1 = 0;
431 newValue_e1 = 0;
432 newValue_e2 = 0;
432 newValue_e2 = 0;
433
433
434 k = INIT_CHAR;
434 k = INIT_CHAR;
435
435
436 while(1)
436 while(1)
437 { // launch the rate monotonic task
437 { // launch the rate monotonic task
438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
439 if ( status != RTEMS_SUCCESSFUL )
439 if ( status != RTEMS_SUCCESSFUL )
440 {
440 {
441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
442 }
442 }
443 else
443 else
444 {
444 {
445 current_v = waveform_picker_regs->v;
445 current_v = waveform_picker_regs->v;
446 current_e1 = waveform_picker_regs->e1;
446 current_e1 = waveform_picker_regs->e1;
447 current_e2 = waveform_picker_regs->e2;
447 current_e2 = waveform_picker_regs->e2;
448 if ( (current_v != old_v)
448 if ( (current_v != old_v)
449 || (current_e1 != old_e1)
449 || (current_e1 != old_e1)
450 || (current_e2 != old_e2))
450 || (current_e2 != old_e2))
451 {
451 {
452 average_v = filter( current_v, &ctx_v );
452 average_v = filter( current_v, &ctx_v );
453 average_e1 = filter( current_e1, &ctx_e1 );
453 average_e1 = filter( current_e1, &ctx_e1 );
454 average_e2 = filter( current_e2, &ctx_e2 );
454 average_e2 = filter( current_e2, &ctx_e2 );
455
455
456 //update int16 values
456 //update int16 values
457 hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
457 hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
460 }
460 }
461 old_v = current_v;
461 old_v = current_v;
462 old_e1 = current_e1;
462 old_e1 = current_e1;
463 old_e2 = current_e2;
463 old_e2 = current_e2;
464 }
464 }
465 }
465 }
466
466
467 PRINTF("in AVGV *** deleting task\n");
467 PRINTF("in AVGV *** deleting task\n");
468
468
469 status = rtems_task_delete( RTEMS_SELF ); // should not return
469 status = rtems_task_delete( RTEMS_SELF ); // should not return
470
470
471 return;
471 return;
472 }
472 }
473
473
474 rtems_task dumb_task( rtems_task_argument unused )
474 rtems_task dumb_task( rtems_task_argument unused )
475 {
475 {
476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
477 *
477 *
478 * @param unused is the starting argument of the RTEMS task
478 * @param unused is the starting argument of the RTEMS task
479 *
479 *
480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
481 *
481 *
482 */
482 */
483
483
484 unsigned int i;
484 unsigned int i;
485 unsigned int intEventOut;
485 unsigned int intEventOut;
486 unsigned int coarse_time = 0;
486 unsigned int coarse_time = 0;
487 unsigned int fine_time = 0;
487 unsigned int fine_time = 0;
488 rtems_event_set event_out;
488 rtems_event_set event_out;
489
489
490 event_out = EVENT_SETS_NONE_PENDING;
490 event_out = EVENT_SETS_NONE_PENDING;
491
491
492 BOOT_PRINTF("in DUMB *** \n")
492 BOOT_PRINTF("in DUMB *** \n")
493
493
494 while(1){
494 while(1){
495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
498 | RTEMS_EVENT_14,
498 | RTEMS_EVENT_14,
499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
500 intEventOut = (unsigned int) event_out;
500 intEventOut = (unsigned int) event_out;
501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
502 {
502 {
503 if ( ((intEventOut >> i) & 1) != 0)
503 if ( ((intEventOut >> i) & 1) != 0)
504 {
504 {
505 coarse_time = time_management_regs->coarse_time;
505 coarse_time = time_management_regs->coarse_time;
506 fine_time = time_management_regs->fine_time;
506 fine_time = time_management_regs->fine_time;
507 if (i==EVENT_12)
507 if (i==EVENT_12)
508 {
508 {
509 PRINTF1("%s\n", DUMB_MESSAGE_12)
509 PRINTF1("%s\n", DUMB_MESSAGE_12)
510 }
510 }
511 if (i==EVENT_13)
511 if (i==EVENT_13)
512 {
512 {
513 PRINTF1("%s\n", DUMB_MESSAGE_13)
513 PRINTF1("%s\n", DUMB_MESSAGE_13)
514 }
514 }
515 if (i==EVENT_14)
515 if (i==EVENT_14)
516 {
516 {
517 PRINTF1("%s\n", DUMB_MESSAGE_1)
517 PRINTF1("%s\n", DUMB_MESSAGE_1)
518 }
518 }
519 }
519 }
520 }
520 }
521 }
521 }
522 }
522 }
523
523
524 rtems_task scrubbing_task( rtems_task_argument unused )
525 {
526 /** This RTEMS taks is used to avoid entering IDLE task and also scrub memory to increase scubbing frequency.
527 *
528 * @param unused is the starting argument of the RTEMS task
529 *
530 * The scrubbing reads continuously memory when no other tasks are ready.
531 *
532 */
533
534 BOOT_PRINTF("in SCRUBBING *** \n");
535 volatile int i=0;
536 volatile float valuef = 1.;
537 volatile uint32_t* RAM=(uint32_t*)0x40000000;
538 volatile uint32_t value;
539 while(1){
540 i=(i+1)%(1024*1024);
541 valuef += 10.f*(float)RAM[i];
542 }
543 }
544
545 rtems_task calibration_sweep_task( rtems_task_argument unused )
546 {
547 /** This RTEMS taks is used to change calibration signal smapling frequency between snapshots.
548 *
549 * @param unused is the starting argument of the RTEMS task
550 *
551 * If calibration is enabled, this task will divide by two the calibration signal smapling frequency between snapshots.
552 * When minimum sampling frequency is reach it will jump to maximum sampling frequency to loop indefinitely.
553 *
554 */
555 rtems_event_set event_out;
556 BOOT_PRINTF("in calibration sweep *** \n");
557 rtems_interval ticks_per_seconds = rtems_clock_get_ticks_per_second();
558 while(1){
559 // Waiting for next F0 snapshot
560 rtems_event_receive(RTEMS_EVENT_CAL_SWEEP_WAKE, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
561 if(time_management_regs->calDACCtrl & BIT_CAL_ENABLE)
562 {
563 unsigned int delta_snapshot;
564 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
565 + parameter_dump_packet.sy_lfr_n_swf_p[1];
566 // We are woken almost in the center of a snapshot -> let's wait for sy_lfr_n_swf_p / 2
567 rtems_task_wake_after( ticks_per_seconds * delta_snapshot / 2);
568 if(time_management_regs->calDivisor >= CAL_F_DIVISOR_MAX){
569 time_management_regs->calDivisor = CAL_F_DIVISOR_MIN;
570 }
571 else{
572 time_management_regs->calDivisor *= 2;
573 }
574 }
575
576
577
578 }
579
580 }
581
582
524 //*****************************
583 //*****************************
525 // init housekeeping parameters
584 // init housekeeping parameters
526
585
527 void init_housekeeping_parameters( void )
586 void init_housekeeping_parameters( void )
528 {
587 {
529 /** This function initialize the housekeeping_packet global variable with default values.
588 /** This function initialize the housekeeping_packet global variable with default values.
530 *
589 *
531 */
590 */
532
591
533 unsigned int i = 0;
592 unsigned int i = 0;
534 unsigned char *parameters;
593 unsigned char *parameters;
535 unsigned char sizeOfHK;
594 unsigned char sizeOfHK;
536
595
537 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
596 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
538
597
539 parameters = (unsigned char*) &housekeeping_packet;
598 parameters = (unsigned char*) &housekeeping_packet;
540
599
541 for(i = 0; i< sizeOfHK; i++)
600 for(i = 0; i< sizeOfHK; i++)
542 {
601 {
543 parameters[i] = INIT_CHAR;
602 parameters[i] = INIT_CHAR;
544 }
603 }
545
604
546 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
605 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
547 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
606 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
548 housekeeping_packet.reserved = DEFAULT_RESERVED;
607 housekeeping_packet.reserved = DEFAULT_RESERVED;
549 housekeeping_packet.userApplication = CCSDS_USER_APP;
608 housekeeping_packet.userApplication = CCSDS_USER_APP;
550 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
609 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
551 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
610 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
552 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
611 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
553 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
612 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
554 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
613 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
555 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
614 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
556 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
615 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
557 housekeeping_packet.serviceType = TM_TYPE_HK;
616 housekeeping_packet.serviceType = TM_TYPE_HK;
558 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
617 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
559 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
618 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
560 housekeeping_packet.sid = SID_HK;
619 housekeeping_packet.sid = SID_HK;
561
620
562 // init status word
621 // init status word
563 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
622 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
564 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
623 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
565 // init software version
624 // init software version
566 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
625 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
567 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
626 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
568 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
627 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
569 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
628 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
570 // init fpga version
629 // init fpga version
571 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
630 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
572 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
631 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
573 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
632 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
574 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
633 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
575
634
576 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
635 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
577 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
636 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
578 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
637 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
579 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
638 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
580 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
639 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
581 }
640 }
582
641
583 void increment_seq_counter( unsigned short *packetSequenceControl )
642 void increment_seq_counter( unsigned short *packetSequenceControl )
584 {
643 {
585 /** This function increment the sequence counter passes in argument.
644 /** This function increment the sequence counter passes in argument.
586 *
645 *
587 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
646 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
588 *
647 *
589 */
648 */
590
649
591 unsigned short segmentation_grouping_flag;
650 unsigned short segmentation_grouping_flag;
592 unsigned short sequence_cnt;
651 unsigned short sequence_cnt;
593
652
594 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
653 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
595 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
654 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
596
655
597 if ( sequence_cnt < SEQ_CNT_MAX)
656 if ( sequence_cnt < SEQ_CNT_MAX)
598 {
657 {
599 sequence_cnt = sequence_cnt + 1;
658 sequence_cnt = sequence_cnt + 1;
600 }
659 }
601 else
660 else
602 {
661 {
603 sequence_cnt = 0;
662 sequence_cnt = 0;
604 }
663 }
605
664
606 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
665 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
607 }
666 }
608
667
609 void getTime( unsigned char *time)
668 void getTime( unsigned char *time)
610 {
669 {
611 /** This function write the current local time in the time buffer passed in argument.
670 /** This function write the current local time in the time buffer passed in argument.
612 *
671 *
613 */
672 */
614
673
615 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
674 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
616 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
675 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
617 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
676 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
618 time[3] = (unsigned char) (time_management_regs->coarse_time);
677 time[3] = (unsigned char) (time_management_regs->coarse_time);
619 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
678 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
620 time[5] = (unsigned char) (time_management_regs->fine_time);
679 time[5] = (unsigned char) (time_management_regs->fine_time);
621 }
680 }
622
681
623 unsigned long long int getTimeAsUnsignedLongLongInt( )
682 unsigned long long int getTimeAsUnsignedLongLongInt( )
624 {
683 {
625 /** This function write the current local time in the time buffer passed in argument.
684 /** This function write the current local time in the time buffer passed in argument.
626 *
685 *
627 */
686 */
628 unsigned long long int time;
687 unsigned long long int time;
629
688
630 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
689 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
631 + time_management_regs->fine_time;
690 + time_management_regs->fine_time;
632
691
633 return time;
692 return time;
634 }
693 }
635
694
636 void send_dumb_hk( void )
695 void send_dumb_hk( void )
637 {
696 {
638 Packet_TM_LFR_HK_t dummy_hk_packet;
697 Packet_TM_LFR_HK_t dummy_hk_packet;
639 unsigned char *parameters;
698 unsigned char *parameters;
640 unsigned int i;
699 unsigned int i;
641 rtems_id queue_id;
700 rtems_id queue_id;
642
701
643 queue_id = RTEMS_ID_NONE;
702 queue_id = RTEMS_ID_NONE;
644
703
645 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
704 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
646 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
705 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
647 dummy_hk_packet.reserved = DEFAULT_RESERVED;
706 dummy_hk_packet.reserved = DEFAULT_RESERVED;
648 dummy_hk_packet.userApplication = CCSDS_USER_APP;
707 dummy_hk_packet.userApplication = CCSDS_USER_APP;
649 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
708 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
650 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
709 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
651 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
710 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
652 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
711 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
653 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
712 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
654 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
713 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
655 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
714 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
656 dummy_hk_packet.serviceType = TM_TYPE_HK;
715 dummy_hk_packet.serviceType = TM_TYPE_HK;
657 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
716 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
658 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
717 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
659 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
718 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
660 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
719 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
661 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
720 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
662 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
721 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
663 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
722 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
664 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
723 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
665 dummy_hk_packet.sid = SID_HK;
724 dummy_hk_packet.sid = SID_HK;
666
725
667 // init status word
726 // init status word
668 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
727 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
669 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
728 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
670 // init software version
729 // init software version
671 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
730 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
672 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
731 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
673 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
732 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
674 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
733 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
675 // init fpga version
734 // init fpga version
676 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
735 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
677 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
736 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
678 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
737 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
679 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
738 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
680
739
681 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
740 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
682
741
683 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
742 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
684 {
743 {
685 parameters[i] = INT8_ALL_F;
744 parameters[i] = INT8_ALL_F;
686 }
745 }
687
746
688 get_message_queue_id_send( &queue_id );
747 get_message_queue_id_send( &queue_id );
689
748
690 rtems_message_queue_send( queue_id, &dummy_hk_packet,
749 rtems_message_queue_send( queue_id, &dummy_hk_packet,
691 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
750 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
692 }
751 }
693
752
694 void get_temperatures( unsigned char *temperatures )
753 void get_temperatures( unsigned char *temperatures )
695 {
754 {
696 unsigned char* temp_scm_ptr;
755 unsigned char* temp_scm_ptr;
697 unsigned char* temp_pcb_ptr;
756 unsigned char* temp_pcb_ptr;
698 unsigned char* temp_fpga_ptr;
757 unsigned char* temp_fpga_ptr;
699
758
700 // SEL1 SEL0
759 // SEL1 SEL0
701 // 0 0 => PCB
760 // 0 0 => PCB
702 // 0 1 => FPGA
761 // 0 1 => FPGA
703 // 1 0 => SCM
762 // 1 0 => SCM
704
763
705 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
764 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
706 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
765 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
707 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
766 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
708
767
709 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
768 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
710 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
769 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
711 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
770 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
712 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
771 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
713 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
772 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
714 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
773 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
715 }
774 }
716
775
717 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
776 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
718 {
777 {
719 unsigned char* v_ptr;
778 unsigned char* v_ptr;
720 unsigned char* e1_ptr;
779 unsigned char* e1_ptr;
721 unsigned char* e2_ptr;
780 unsigned char* e2_ptr;
722
781
723 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
782 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
724 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
783 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
725 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
784 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
726
785
727 spacecraft_potential[BYTE_0] = v_ptr[0];
786 spacecraft_potential[BYTE_0] = v_ptr[0];
728 spacecraft_potential[BYTE_1] = v_ptr[1];
787 spacecraft_potential[BYTE_1] = v_ptr[1];
729 spacecraft_potential[BYTE_2] = e1_ptr[0];
788 spacecraft_potential[BYTE_2] = e1_ptr[0];
730 spacecraft_potential[BYTE_3] = e1_ptr[1];
789 spacecraft_potential[BYTE_3] = e1_ptr[1];
731 spacecraft_potential[BYTE_4] = e2_ptr[0];
790 spacecraft_potential[BYTE_4] = e2_ptr[0];
732 spacecraft_potential[BYTE_5] = e2_ptr[1];
791 spacecraft_potential[BYTE_5] = e2_ptr[1];
733 }
792 }
734
793
735 void get_cpu_load( unsigned char *resource_statistics )
794 void get_cpu_load( unsigned char *resource_statistics )
736 {
795 {
737 unsigned char cpu_load;
796 unsigned char cpu_load;
738
797
739 cpu_load = lfr_rtems_cpu_usage_report();
798 cpu_load = lfr_rtems_cpu_usage_report();
740
799
741 // HK_LFR_CPU_LOAD
800 // HK_LFR_CPU_LOAD
742 resource_statistics[0] = cpu_load;
801 resource_statistics[0] = cpu_load;
743
802
744 // HK_LFR_CPU_LOAD_MAX
803 // HK_LFR_CPU_LOAD_MAX
745 if (cpu_load > resource_statistics[1])
804 if (cpu_load > resource_statistics[1])
746 {
805 {
747 resource_statistics[1] = cpu_load;
806 resource_statistics[1] = cpu_load;
748 }
807 }
749
808
750 // CPU_LOAD_AVE
809 // CPU_LOAD_AVE
751 resource_statistics[BYTE_2] = 0;
810 resource_statistics[BYTE_2] = 0;
752
811
753 #ifndef PRINT_TASK_STATISTICS
812 #ifndef PRINT_TASK_STATISTICS
754 rtems_cpu_usage_reset();
813 rtems_cpu_usage_reset();
755 #endif
814 #endif
756
815
757 }
816 }
758
817
759 void set_hk_lfr_sc_potential_flag( bool state )
818 void set_hk_lfr_sc_potential_flag( bool state )
760 {
819 {
761 if (state == true)
820 if (state == true)
762 {
821 {
763 housekeeping_packet.lfr_status_word[1] =
822 housekeeping_packet.lfr_status_word[1] =
764 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
823 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
765 }
824 }
766 else
825 else
767 {
826 {
768 housekeeping_packet.lfr_status_word[1] =
827 housekeeping_packet.lfr_status_word[1] =
769 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
828 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
770 }
829 }
771 }
830 }
772
831
773 void set_sy_lfr_pas_filter_enabled( bool state )
832 void set_sy_lfr_pas_filter_enabled( bool state )
774 {
833 {
775 if (state == true)
834 if (state == true)
776 {
835 {
777 housekeeping_packet.lfr_status_word[1] =
836 housekeeping_packet.lfr_status_word[1] =
778 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
837 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
779 }
838 }
780 else
839 else
781 {
840 {
782 housekeeping_packet.lfr_status_word[1] =
841 housekeeping_packet.lfr_status_word[1] =
783 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
842 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
784 }
843 }
785 }
844 }
786
845
787 void set_sy_lfr_watchdog_enabled( bool state )
846 void set_sy_lfr_watchdog_enabled( bool state )
788 {
847 {
789 if (state == true)
848 if (state == true)
790 {
849 {
791 housekeeping_packet.lfr_status_word[1] =
850 housekeeping_packet.lfr_status_word[1] =
792 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
851 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
793 }
852 }
794 else
853 else
795 {
854 {
796 housekeeping_packet.lfr_status_word[1] =
855 housekeeping_packet.lfr_status_word[1] =
797 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
856 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
798 }
857 }
799 }
858 }
800
859
801 void set_hk_lfr_calib_enable( bool state )
860 void set_hk_lfr_calib_enable( bool state )
802 {
861 {
803 if (state == true)
862 if (state == true)
804 {
863 {
805 housekeeping_packet.lfr_status_word[1] =
864 housekeeping_packet.lfr_status_word[1] =
806 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
865 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
807 }
866 }
808 else
867 else
809 {
868 {
810 housekeeping_packet.lfr_status_word[1] =
869 housekeeping_packet.lfr_status_word[1] =
811 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
870 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
812 }
871 }
813 }
872 }
814
873
815 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
874 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
816 {
875 {
817 housekeeping_packet.lfr_status_word[1] =
876 housekeeping_packet.lfr_status_word[1] =
818 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
877 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
819
878
820 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
879 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
821 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
880 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
822
881
823 }
882 }
824
883
825 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
884 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
826 {
885 {
827 int delta;
886 int delta;
828
887
829 delta = 0;
888 delta = 0;
830
889
831 if (newValue >= oldValue)
890 if (newValue >= oldValue)
832 {
891 {
833 delta = newValue - oldValue;
892 delta = newValue - oldValue;
834 }
893 }
835 else
894 else
836 {
895 {
837 delta = (CONST_256 - oldValue) + newValue;
896 delta = (CONST_256 - oldValue) + newValue;
838 }
897 }
839
898
840 *counter = *counter + delta;
899 *counter = *counter + delta;
841 }
900 }
842
901
843 void hk_lfr_le_update( void )
902 void hk_lfr_le_update( void )
844 {
903 {
845 static hk_lfr_le_t old_hk_lfr_le = {0};
904 static hk_lfr_le_t old_hk_lfr_le = {0};
846 hk_lfr_le_t new_hk_lfr_le;
905 hk_lfr_le_t new_hk_lfr_le;
847 unsigned int counter;
906 unsigned int counter;
848
907
849 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
908 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
850
909
851 // DPU
910 // DPU
852 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
911 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
853 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
912 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
854 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
913 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
855 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
914 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
856 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
915 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
857 // TIMECODE
916 // TIMECODE
858 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
917 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
859 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
918 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
860 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
919 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
861 // TIME
920 // TIME
862 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
921 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
863 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
922 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
864 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
923 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
865 //AHB
924 //AHB
866 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
925 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
867 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
926 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
868 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
927 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
869
928
870 // update the le counter
929 // update the le counter
871 // DPU
930 // DPU
872 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
931 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
873 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
932 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
874 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
933 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
875 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
934 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
876 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
935 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
877 // TIMECODE
936 // TIMECODE
878 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
937 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
879 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
938 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
880 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
939 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
881 // TIME
940 // TIME
882 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
941 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
883 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
942 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
884 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
943 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
885 // AHB
944 // AHB
886 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
945 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
887
946
888 // DPU
947 // DPU
889 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
948 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
890 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
949 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
891 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
950 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
892 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
951 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
893 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
952 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
894 // TIMECODE
953 // TIMECODE
895 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
954 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
896 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
955 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
897 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
956 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
898 // TIME
957 // TIME
899 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
958 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
900 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
959 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
901 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
960 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
902 //AHB
961 //AHB
903 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
962 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
904 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
963 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
905 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
964 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
906
965
907 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
966 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
908 // LE
967 // LE
909 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
968 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
910 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
969 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
911 }
970 }
912
971
913 void hk_lfr_me_update( void )
972 void hk_lfr_me_update( void )
914 {
973 {
915 static hk_lfr_me_t old_hk_lfr_me = {0};
974 static hk_lfr_me_t old_hk_lfr_me = {0};
916 hk_lfr_me_t new_hk_lfr_me;
975 hk_lfr_me_t new_hk_lfr_me;
917 unsigned int counter;
976 unsigned int counter;
918
977
919 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
978 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
920
979
921 // get the current values
980 // get the current values
922 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
981 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
923 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
982 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
924 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
983 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
925 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
984 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
926
985
927 // update the me counter
986 // update the me counter
928 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
987 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
929 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
988 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
930 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
989 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
931 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
990 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
932
991
933 // store the counters for the next time
992 // store the counters for the next time
934 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
993 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
935 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
994 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
936 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
995 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
937 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
996 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
938
997
939 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
998 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
940 // ME
999 // ME
941 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
1000 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
942 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
1001 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
943 }
1002 }
944
1003
945 void hk_lfr_le_me_he_update()
1004 void hk_lfr_le_me_he_update()
946 {
1005 {
947
1006
948 unsigned int hk_lfr_he_cnt;
1007 unsigned int hk_lfr_he_cnt;
949
1008
950 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
1009 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
951
1010
952 //update the low severity error counter
1011 //update the low severity error counter
953 hk_lfr_le_update( );
1012 hk_lfr_le_update( );
954
1013
955 //update the medium severity error counter
1014 //update the medium severity error counter
956 hk_lfr_me_update();
1015 hk_lfr_me_update();
957
1016
958 //update the high severity error counter
1017 //update the high severity error counter
959 hk_lfr_he_cnt = 0;
1018 hk_lfr_he_cnt = 0;
960
1019
961 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
1020 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
962 // HE
1021 // HE
963 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
1022 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
964 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
1023 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
965
1024
966 }
1025 }
967
1026
968 void set_hk_lfr_time_not_synchro()
1027 void set_hk_lfr_time_not_synchro()
969 {
1028 {
970 static unsigned char synchroLost = 1;
1029 static unsigned char synchroLost = 1;
971 int synchronizationBit;
1030 int synchronizationBit;
972
1031
973 // get the synchronization bit
1032 // get the synchronization bit
974 synchronizationBit =
1033 synchronizationBit =
975 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
1034 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
976
1035
977 switch (synchronizationBit)
1036 switch (synchronizationBit)
978 {
1037 {
979 case 0:
1038 case 0:
980 if (synchroLost == 1)
1039 if (synchroLost == 1)
981 {
1040 {
982 synchroLost = 0;
1041 synchroLost = 0;
983 }
1042 }
984 break;
1043 break;
985 case 1:
1044 case 1:
986 if (synchroLost == 0 )
1045 if (synchroLost == 0 )
987 {
1046 {
988 synchroLost = 1;
1047 synchroLost = 1;
989 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
1048 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
990 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
1049 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
991 }
1050 }
992 break;
1051 break;
993 default:
1052 default:
994 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
1053 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
995 break;
1054 break;
996 }
1055 }
997
1056
998 }
1057 }
999
1058
1000 void set_hk_lfr_ahb_correctable() // CRITICITY L
1059 void set_hk_lfr_ahb_correctable() // CRITICITY L
1001 {
1060 {
1002 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1061 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1003 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1062 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1004 * detected errors in the cache, in the integer unit and in the floating point unit.
1063 * detected errors in the cache, in the integer unit and in the floating point unit.
1005 *
1064 *
1006 * @param void
1065 * @param void
1007 *
1066 *
1008 * @return void
1067 * @return void
1009 *
1068 *
1010 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1069 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1011 *
1070 *
1012 */
1071 */
1013
1072
1014 unsigned int ahb_correctable;
1073 unsigned int ahb_correctable;
1015 unsigned int instructionErrorCounter;
1074 unsigned int instructionErrorCounter;
1016 unsigned int dataErrorCounter;
1075 unsigned int dataErrorCounter;
1017 unsigned int fprfErrorCounter;
1076 unsigned int fprfErrorCounter;
1018 unsigned int iurfErrorCounter;
1077 unsigned int iurfErrorCounter;
1019
1078
1020 instructionErrorCounter = 0;
1079 instructionErrorCounter = 0;
1021 dataErrorCounter = 0;
1080 dataErrorCounter = 0;
1022 fprfErrorCounter = 0;
1081 fprfErrorCounter = 0;
1023 iurfErrorCounter = 0;
1082 iurfErrorCounter = 0;
1024
1083
1025 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1084 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1026 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1085 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1027
1086
1028 ahb_correctable = instructionErrorCounter
1087 ahb_correctable = instructionErrorCounter
1029 + dataErrorCounter
1088 + dataErrorCounter
1030 + fprfErrorCounter
1089 + fprfErrorCounter
1031 + iurfErrorCounter
1090 + iurfErrorCounter
1032 + housekeeping_packet.hk_lfr_ahb_correctable;
1091 + housekeeping_packet.hk_lfr_ahb_correctable;
1033
1092
1034 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1093 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1035
1094
1036 }
1095 }
@@ -1,1343 +1,1344
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //***************
12 //***************
13 // waveform rings
13 // waveform rings
14 // F0
14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
15 ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
16 ring_node *current_ring_node_f0 = NULL;
16 ring_node *current_ring_node_f0 = NULL;
17 ring_node *ring_node_to_send_swf_f0 = NULL;
17 ring_node *ring_node_to_send_swf_f0 = NULL;
18 // F1
18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
19 ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
20 ring_node *current_ring_node_f1 = NULL;
20 ring_node *current_ring_node_f1 = NULL;
21 ring_node *ring_node_to_send_swf_f1 = NULL;
21 ring_node *ring_node_to_send_swf_f1 = NULL;
22 ring_node *ring_node_to_send_cwf_f1 = NULL;
22 ring_node *ring_node_to_send_cwf_f1 = NULL;
23 // F2
23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
24 ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
25 ring_node *current_ring_node_f2 = NULL;
25 ring_node *current_ring_node_f2 = NULL;
26 ring_node *ring_node_to_send_swf_f2 = NULL;
26 ring_node *ring_node_to_send_swf_f2 = NULL;
27 ring_node *ring_node_to_send_cwf_f2 = NULL;
27 ring_node *ring_node_to_send_cwf_f2 = NULL;
28 // F3
28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
29 ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
30 ring_node *current_ring_node_f3 = NULL;
30 ring_node *current_ring_node_f3 = NULL;
31 ring_node *ring_node_to_send_cwf_f3 = NULL;
31 ring_node *ring_node_to_send_cwf_f3 = NULL;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
33
33
34 bool extractSWF1 = false;
34 bool extractSWF1 = false;
35 bool extractSWF2 = false;
35 bool extractSWF2 = false;
36 bool swf0_ready_flag_f1 = false;
36 bool swf0_ready_flag_f1 = false;
37 bool swf0_ready_flag_f2 = false;
37 bool swf0_ready_flag_f2 = false;
38 bool swf1_ready = false;
38 bool swf1_ready = false;
39 bool swf2_ready = false;
39 bool swf2_ready = false;
40
40
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
43 ring_node ring_node_swf1_extracted = {0};
43 ring_node ring_node_swf1_extracted = {0};
44 ring_node ring_node_swf2_extracted = {0};
44 ring_node ring_node_swf2_extracted = {0};
45
45
46 typedef enum resynchro_state_t
46 typedef enum resynchro_state_t
47 {
47 {
48 MEASURE,
48 MEASURE,
49 CORRECTION
49 CORRECTION
50 } resynchro_state;
50 } resynchro_state;
51
51
52 //*********************
52 //*********************
53 // Interrupt SubRoutine
53 // Interrupt SubRoutine
54
54
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 {
56 {
57 ring_node *node;
57 ring_node *node;
58
58
59 node = NULL;
59 node = NULL;
60 switch ( frequencyChannel ) {
60 switch ( frequencyChannel ) {
61 case CHANNELF1:
61 case CHANNELF1:
62 node = ring_node_to_send_cwf_f1;
62 node = ring_node_to_send_cwf_f1;
63 break;
63 break;
64 case CHANNELF2:
64 case CHANNELF2:
65 node = ring_node_to_send_cwf_f2;
65 node = ring_node_to_send_cwf_f2;
66 break;
66 break;
67 case CHANNELF3:
67 case CHANNELF3:
68 node = ring_node_to_send_cwf_f3;
68 node = ring_node_to_send_cwf_f3;
69 break;
69 break;
70 default:
70 default:
71 break;
71 break;
72 }
72 }
73
73
74 return node;
74 return node;
75 }
75 }
76
76
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 {
78 {
79 ring_node *node;
79 ring_node *node;
80
80
81 node = NULL;
81 node = NULL;
82 switch ( frequencyChannel ) {
82 switch ( frequencyChannel ) {
83 case CHANNELF0:
83 case CHANNELF0:
84 node = ring_node_to_send_swf_f0;
84 node = ring_node_to_send_swf_f0;
85 break;
85 break;
86 case CHANNELF1:
86 case CHANNELF1:
87 node = ring_node_to_send_swf_f1;
87 node = ring_node_to_send_swf_f1;
88 break;
88 break;
89 case CHANNELF2:
89 case CHANNELF2:
90 node = ring_node_to_send_swf_f2;
90 node = ring_node_to_send_swf_f2;
91 break;
91 break;
92 default:
92 default:
93 break;
93 break;
94 }
94 }
95
95
96 return node;
96 return node;
97 }
97 }
98
98
99 void reset_extractSWF( void )
99 void reset_extractSWF( void )
100 {
100 {
101 extractSWF1 = false;
101 extractSWF1 = false;
102 extractSWF2 = false;
102 extractSWF2 = false;
103 swf0_ready_flag_f1 = false;
103 swf0_ready_flag_f1 = false;
104 swf0_ready_flag_f2 = false;
104 swf0_ready_flag_f2 = false;
105 swf1_ready = false;
105 swf1_ready = false;
106 swf2_ready = false;
106 swf2_ready = false;
107 }
107 }
108
108
109 inline void waveforms_isr_f3( void )
109 inline void waveforms_isr_f3( void )
110 {
110 {
111 rtems_status_code spare_status;
111 rtems_status_code spare_status;
112
112
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 //***
116 //***
117 // F3
117 // F3
118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 current_ring_node_f3 = current_ring_node_f3->next;
120 current_ring_node_f3 = current_ring_node_f3->next;
121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
126 }
126 }
127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
132 }
132 }
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 }
135 }
136 }
136 }
137 }
137 }
138 }
138 }
139
139
140 inline void waveforms_isr_burst( void )
140 inline void waveforms_isr_burst( void )
141 {
141 {
142 unsigned char status;
142 unsigned char status;
143 rtems_status_code spare_status;
143 rtems_status_code spare_status;
144
144
145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
146
146
147 switch(status)
147 switch(status)
148 {
148 {
149 case BIT_WFP_BUFFER_0:
149 case BIT_WFP_BUFFER_0:
150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 current_ring_node_f2 = current_ring_node_f2->next;
154 current_ring_node_f2 = current_ring_node_f2->next;
155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 }
158 }
159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
160 break;
160 break;
161 case BIT_WFP_BUFFER_1:
161 case BIT_WFP_BUFFER_1:
162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 current_ring_node_f2 = current_ring_node_f2->next;
166 current_ring_node_f2 = current_ring_node_f2->next;
167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 }
170 }
171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
172 break;
172 break;
173 default:
173 default:
174 break;
174 break;
175 }
175 }
176 }
176 }
177
177
178 inline void waveform_isr_normal_sbm1_sbm2( void )
178 inline void waveform_isr_normal_sbm1_sbm2( void )
179 {
179 {
180 rtems_status_code status;
180 rtems_status_code status;
181
181
182 //***
182 //***
183 // F0
183 // F0
184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
185 {
185 {
186 swf0_ready_flag_f1 = true;
186 swf0_ready_flag_f1 = true;
187 swf0_ready_flag_f2 = true;
187 swf0_ready_flag_f2 = true;
188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 current_ring_node_f0 = current_ring_node_f0->next;
189 current_ring_node_f0 = current_ring_node_f0->next;
190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
191 {
191 {
192
192
193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
197 }
197 }
198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
199 {
199 {
200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
204 }
204 }
205 // send an event to the WFRM task for resynchro activities
205 // send an event to the WFRM task for resynchro activities
206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 status = rtems_event_send( Task_id[TASKID_CALI], RTEMS_EVENT_CAL_SWEEP_WAKE );
207 }
208 }
208
209
209 //***
210 //***
210 // F1
211 // F1
211 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F1) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
212 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F1) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
212 // (1) change the receiving buffer for the waveform picker
213 // (1) change the receiving buffer for the waveform picker
213 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 current_ring_node_f1 = current_ring_node_f1->next;
215 current_ring_node_f1 = current_ring_node_f1->next;
215 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
216 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
216 {
217 {
217 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
221 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
221 }
222 }
222 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
223 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
223 {
224 {
224 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
228 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
228 }
229 }
229 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 }
232 }
232
233
233 //***
234 //***
234 // F2
235 // F2
235 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
236 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
236 // (1) change the receiving buffer for the waveform picker
237 // (1) change the receiving buffer for the waveform picker
237 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 current_ring_node_f2 = current_ring_node_f2->next;
240 current_ring_node_f2 = current_ring_node_f2->next;
240 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
241 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
241 {
242 {
242 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
246 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
246 }
247 }
247 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
248 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
248 {
249 {
249 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
253 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
253 }
254 }
254 // (2) send an event for the waveforms transmission
255 // (2) send an event for the waveforms transmission
255 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 }
257 }
257 }
258 }
258
259
259 rtems_isr waveforms_isr( rtems_vector_number vector )
260 rtems_isr waveforms_isr( rtems_vector_number vector )
260 {
261 {
261 /** This is the interrupt sub routine called by the waveform picker core.
262 /** This is the interrupt sub routine called by the waveform picker core.
262 *
263 *
263 * This ISR launch different actions depending mainly on two pieces of information:
264 * This ISR launch different actions depending mainly on two pieces of information:
264 * 1. the values read in the registers of the waveform picker.
265 * 1. the values read in the registers of the waveform picker.
265 * 2. the current LFR mode.
266 * 2. the current LFR mode.
266 *
267 *
267 */
268 */
268
269
269 // STATUS
270 // STATUS
270 // new error error buffer full
271 // new error error buffer full
271 // 15 14 13 12 11 10 9 8
272 // 15 14 13 12 11 10 9 8
272 // f3 f2 f1 f0 f3 f2 f1 f0
273 // f3 f2 f1 f0 f3 f2 f1 f0
273 //
274 //
274 // ready buffer
275 // ready buffer
275 // 7 6 5 4 3 2 1 0
276 // 7 6 5 4 3 2 1 0
276 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277
278
278 rtems_status_code spare_status;
279 rtems_status_code spare_status;
279
280
280 waveforms_isr_f3();
281 waveforms_isr_f3();
281
282
282 //*************************************************
283 //*************************************************
283 // copy the status bits in the housekeeping packets
284 // copy the status bits in the housekeeping packets
284 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
286 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
286
287
287 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
288 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
288 {
289 {
289 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 }
291 }
291
292
292 switch(lfrCurrentMode)
293 switch(lfrCurrentMode)
293 {
294 {
294 //********
295 //********
295 // STANDBY
296 // STANDBY
296 case LFR_MODE_STANDBY:
297 case LFR_MODE_STANDBY:
297 break;
298 break;
298 //**************************
299 //**************************
299 // LFR NORMAL, SBM1 and SBM2
300 // LFR NORMAL, SBM1 and SBM2
300 case LFR_MODE_NORMAL:
301 case LFR_MODE_NORMAL:
301 case LFR_MODE_SBM1:
302 case LFR_MODE_SBM1:
302 case LFR_MODE_SBM2:
303 case LFR_MODE_SBM2:
303 waveform_isr_normal_sbm1_sbm2();
304 waveform_isr_normal_sbm1_sbm2();
304 break;
305 break;
305 //******
306 //******
306 // BURST
307 // BURST
307 case LFR_MODE_BURST:
308 case LFR_MODE_BURST:
308 waveforms_isr_burst();
309 waveforms_isr_burst();
309 break;
310 break;
310 //********
311 //********
311 // DEFAULT
312 // DEFAULT
312 default:
313 default:
313 break;
314 break;
314 }
315 }
315 }
316 }
316
317
317 //************
318 //************
318 // RTEMS TASKS
319 // RTEMS TASKS
319
320
320 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 {
322 {
322 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 *
324 *
324 * @param unused is the starting argument of the RTEMS task
325 * @param unused is the starting argument of the RTEMS task
325 *
326 *
326 * The following data packets are sent by this task:
327 * The following data packets are sent by this task:
327 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 *
331 *
331 */
332 */
332
333
333 rtems_event_set event_out;
334 rtems_event_set event_out;
334 rtems_id queue_id;
335 rtems_id queue_id;
335 rtems_status_code status;
336 rtems_status_code status;
336 ring_node *ring_node_swf1_extracted_ptr;
337 ring_node *ring_node_swf1_extracted_ptr;
337 ring_node *ring_node_swf2_extracted_ptr;
338 ring_node *ring_node_swf2_extracted_ptr;
338
339
339 event_out = EVENT_SETS_NONE_PENDING;
340 event_out = EVENT_SETS_NONE_PENDING;
340 queue_id = RTEMS_ID_NONE;
341 queue_id = RTEMS_ID_NONE;
341
342
342 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
343 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
343 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
344 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
344
345
345 status = get_message_queue_id_send( &queue_id );
346 status = get_message_queue_id_send( &queue_id );
346 if (status != RTEMS_SUCCESSFUL)
347 if (status != RTEMS_SUCCESSFUL)
347 {
348 {
348 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
349 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
349 }
350 }
350
351
351 BOOT_PRINTF("in WFRM ***\n");
352 BOOT_PRINTF("in WFRM ***\n");
352
353
353 while(1){
354 while(1){
354 // wait for an RTEMS_EVENT
355 // wait for an RTEMS_EVENT
355 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
356 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
356 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
357 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
357
358
358 if (event_out == RTEMS_EVENT_MODE_NORMAL)
359 if (event_out == RTEMS_EVENT_MODE_NORMAL)
359 {
360 {
360 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
361 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
361 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
362 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
362 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
363 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
363 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
364 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
364 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
365 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
365 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
366 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
366 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
367 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
367 }
368 }
368 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
369 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
369 {
370 {
370 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
371 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
371 }
372 }
372 }
373 }
373 }
374 }
374
375
375 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
376 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
376 {
377 {
377 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
378 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
378 *
379 *
379 * @param unused is the starting argument of the RTEMS task
380 * @param unused is the starting argument of the RTEMS task
380 *
381 *
381 * The following data packet is sent by this task:
382 * The following data packet is sent by this task:
382 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
383 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
383 *
384 *
384 */
385 */
385
386
386 rtems_event_set event_out;
387 rtems_event_set event_out;
387 rtems_id queue_id;
388 rtems_id queue_id;
388 rtems_status_code status;
389 rtems_status_code status;
389 ring_node ring_node_cwf3_light;
390 ring_node ring_node_cwf3_light;
390 ring_node *ring_node_to_send_cwf;
391 ring_node *ring_node_to_send_cwf;
391
392
392 event_out = EVENT_SETS_NONE_PENDING;
393 event_out = EVENT_SETS_NONE_PENDING;
393 queue_id = RTEMS_ID_NONE;
394 queue_id = RTEMS_ID_NONE;
394
395
395 status = get_message_queue_id_send( &queue_id );
396 status = get_message_queue_id_send( &queue_id );
396 if (status != RTEMS_SUCCESSFUL)
397 if (status != RTEMS_SUCCESSFUL)
397 {
398 {
398 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
399 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
399 }
400 }
400
401
401 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
402 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
402
403
403 // init the ring_node_cwf3_light structure
404 // init the ring_node_cwf3_light structure
404 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
405 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
405 ring_node_cwf3_light.coarseTime = INIT_CHAR;
406 ring_node_cwf3_light.coarseTime = INIT_CHAR;
406 ring_node_cwf3_light.fineTime = INIT_CHAR;
407 ring_node_cwf3_light.fineTime = INIT_CHAR;
407 ring_node_cwf3_light.next = NULL;
408 ring_node_cwf3_light.next = NULL;
408 ring_node_cwf3_light.previous = NULL;
409 ring_node_cwf3_light.previous = NULL;
409 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
410 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
410 ring_node_cwf3_light.status = INIT_CHAR;
411 ring_node_cwf3_light.status = INIT_CHAR;
411
412
412 BOOT_PRINTF("in CWF3 ***\n");
413 BOOT_PRINTF("in CWF3 ***\n");
413
414
414 while(1){
415 while(1){
415 // wait for an RTEMS_EVENT
416 // wait for an RTEMS_EVENT
416 rtems_event_receive( RTEMS_EVENT_0,
417 rtems_event_receive( RTEMS_EVENT_0,
417 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
418 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
418 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
419 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
419 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
420 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
420 {
421 {
421 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
422 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
422 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
423 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
423 {
424 {
424 PRINTF("send CWF_LONG_F3\n");
425 PRINTF("send CWF_LONG_F3\n");
425 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
426 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
426 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
427 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
427 }
428 }
428 else
429 else
429 {
430 {
430 PRINTF("send CWF_F3 (light)\n");
431 PRINTF("send CWF_F3 (light)\n");
431 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
432 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
432 }
433 }
433
434
434 }
435 }
435 else
436 else
436 {
437 {
437 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
438 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
438 }
439 }
439 }
440 }
440 }
441 }
441
442
442 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
443 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
443 {
444 {
444 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
445 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
445 *
446 *
446 * @param unused is the starting argument of the RTEMS task
447 * @param unused is the starting argument of the RTEMS task
447 *
448 *
448 * The following data packet is sent by this function:
449 * The following data packet is sent by this function:
449 * - TM_LFR_SCIENCE_BURST_CWF_F2
450 * - TM_LFR_SCIENCE_BURST_CWF_F2
450 * - TM_LFR_SCIENCE_SBM2_CWF_F2
451 * - TM_LFR_SCIENCE_SBM2_CWF_F2
451 *
452 *
452 */
453 */
453
454
454 rtems_event_set event_out;
455 rtems_event_set event_out;
455 rtems_id queue_id;
456 rtems_id queue_id;
456 rtems_status_code status;
457 rtems_status_code status;
457 ring_node *ring_node_to_send;
458 ring_node *ring_node_to_send;
458 unsigned long long int acquisitionTimeF0_asLong;
459 unsigned long long int acquisitionTimeF0_asLong;
459
460
460 event_out = EVENT_SETS_NONE_PENDING;
461 event_out = EVENT_SETS_NONE_PENDING;
461 queue_id = RTEMS_ID_NONE;
462 queue_id = RTEMS_ID_NONE;
462
463
463 acquisitionTimeF0_asLong = INIT_CHAR;
464 acquisitionTimeF0_asLong = INIT_CHAR;
464
465
465 status = get_message_queue_id_send( &queue_id );
466 status = get_message_queue_id_send( &queue_id );
466 if (status != RTEMS_SUCCESSFUL)
467 if (status != RTEMS_SUCCESSFUL)
467 {
468 {
468 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
469 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
469 }
470 }
470
471
471 BOOT_PRINTF("in CWF2 ***\n");
472 BOOT_PRINTF("in CWF2 ***\n");
472
473
473 while(1){
474 while(1){
474 // wait for an RTEMS_EVENT// send the snapshot when built
475 // wait for an RTEMS_EVENT// send the snapshot when built
475 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
476 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
476 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
477 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
477 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
478 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
478 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
479 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
479 if (event_out == RTEMS_EVENT_MODE_BURST)
480 if (event_out == RTEMS_EVENT_MODE_BURST)
480 { // data are sent whatever the transition time
481 { // data are sent whatever the transition time
481 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 }
483 }
483 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
484 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
484 {
485 {
485 if ( lfrCurrentMode == LFR_MODE_SBM2 )
486 if ( lfrCurrentMode == LFR_MODE_SBM2 )
486 {
487 {
487 // data are sent depending on the transition time
488 // data are sent depending on the transition time
488 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
489 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
489 {
490 {
490 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
491 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
491 }
492 }
492 }
493 }
493 // launch snapshot extraction if needed
494 // launch snapshot extraction if needed
494 if (extractSWF2 == true)
495 if (extractSWF2 == true)
495 {
496 {
496 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
497 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
497 // extract the snapshot
498 // extract the snapshot
498 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
499 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
499 &ring_node_swf2_extracted, swf2_extracted );
500 &ring_node_swf2_extracted, swf2_extracted );
500 extractSWF2 = false;
501 extractSWF2 = false;
501 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
502 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
502 }
503 }
503 if (swf0_ready_flag_f2 == true)
504 if (swf0_ready_flag_f2 == true)
504 {
505 {
505 extractSWF2 = true;
506 extractSWF2 = true;
506 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
507 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
507 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
508 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
508 swf0_ready_flag_f2 = false;
509 swf0_ready_flag_f2 = false;
509 }
510 }
510 }
511 }
511 }
512 }
512 }
513 }
513
514
514 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
515 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
515 {
516 {
516 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
517 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
517 *
518 *
518 * @param unused is the starting argument of the RTEMS task
519 * @param unused is the starting argument of the RTEMS task
519 *
520 *
520 * The following data packet is sent by this function:
521 * The following data packet is sent by this function:
521 * - TM_LFR_SCIENCE_SBM1_CWF_F1
522 * - TM_LFR_SCIENCE_SBM1_CWF_F1
522 *
523 *
523 */
524 */
524
525
525 rtems_event_set event_out;
526 rtems_event_set event_out;
526 rtems_id queue_id;
527 rtems_id queue_id;
527 rtems_status_code status;
528 rtems_status_code status;
528
529
529 ring_node *ring_node_to_send_cwf;
530 ring_node *ring_node_to_send_cwf;
530
531
531 event_out = EVENT_SETS_NONE_PENDING;
532 event_out = EVENT_SETS_NONE_PENDING;
532 queue_id = RTEMS_ID_NONE;
533 queue_id = RTEMS_ID_NONE;
533
534
534 status = get_message_queue_id_send( &queue_id );
535 status = get_message_queue_id_send( &queue_id );
535 if (status != RTEMS_SUCCESSFUL)
536 if (status != RTEMS_SUCCESSFUL)
536 {
537 {
537 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
538 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
538 }
539 }
539
540
540 BOOT_PRINTF("in CWF1 ***\n");
541 BOOT_PRINTF("in CWF1 ***\n");
541
542
542 while(1){
543 while(1){
543 // wait for an RTEMS_EVENT
544 // wait for an RTEMS_EVENT
544 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
545 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
545 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
546 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
546 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
547 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
547 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
548 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
548 if (lfrCurrentMode == LFR_MODE_SBM1)
549 if (lfrCurrentMode == LFR_MODE_SBM1)
549 {
550 {
550 // data are sent depending on the transition time
551 // data are sent depending on the transition time
551 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
552 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
552 {
553 {
553 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
554 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
554 }
555 }
555 }
556 }
556 // launch snapshot extraction if needed
557 // launch snapshot extraction if needed
557 if (extractSWF1 == true)
558 if (extractSWF1 == true)
558 {
559 {
559 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
560 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
560 // launch the snapshot extraction
561 // launch the snapshot extraction
561 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
562 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
562 extractSWF1 = false;
563 extractSWF1 = false;
563 }
564 }
564 if (swf0_ready_flag_f1 == true)
565 if (swf0_ready_flag_f1 == true)
565 {
566 {
566 extractSWF1 = true;
567 extractSWF1 = true;
567 swf0_ready_flag_f1 = false; // this step shall be executed only one time
568 swf0_ready_flag_f1 = false; // this step shall be executed only one time
568 }
569 }
569 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
570 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
570 {
571 {
571 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
572 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
572 swf1_ready = false;
573 swf1_ready = false;
573 swf2_ready = false;
574 swf2_ready = false;
574 }
575 }
575 }
576 }
576 }
577 }
577
578
578 rtems_task swbd_task(rtems_task_argument argument)
579 rtems_task swbd_task(rtems_task_argument argument)
579 {
580 {
580 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
581 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
581 *
582 *
582 * @param unused is the starting argument of the RTEMS task
583 * @param unused is the starting argument of the RTEMS task
583 *
584 *
584 */
585 */
585
586
586 rtems_event_set event_out;
587 rtems_event_set event_out;
587 unsigned long long int acquisitionTimeF0_asLong;
588 unsigned long long int acquisitionTimeF0_asLong;
588
589
589 event_out = EVENT_SETS_NONE_PENDING;
590 event_out = EVENT_SETS_NONE_PENDING;
590 acquisitionTimeF0_asLong = INIT_CHAR;
591 acquisitionTimeF0_asLong = INIT_CHAR;
591
592
592 BOOT_PRINTF("in SWBD ***\n")
593 BOOT_PRINTF("in SWBD ***\n")
593
594
594 while(1){
595 while(1){
595 // wait for an RTEMS_EVENT
596 // wait for an RTEMS_EVENT
596 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
597 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
597 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
598 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
598 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
599 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
599 {
600 {
600 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
601 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
601 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
602 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
602 &ring_node_swf1_extracted, swf1_extracted );
603 &ring_node_swf1_extracted, swf1_extracted );
603 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
604 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
604 }
605 }
605 else
606 else
606 {
607 {
607 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
608 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
608 }
609 }
609 }
610 }
610 }
611 }
611
612
612 //******************
613 //******************
613 // general functions
614 // general functions
614
615
615 void WFP_init_rings( void )
616 void WFP_init_rings( void )
616 {
617 {
617 // F0 RING
618 // F0 RING
618 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
619 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
619 // F1 RING
620 // F1 RING
620 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
621 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
621 // F2 RING
622 // F2 RING
622 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
623 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
623 // F3 RING
624 // F3 RING
624 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
625 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
625
626
626 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
627 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
627 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
628 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
628
629
629 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
630 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
630 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
631 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
631 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
632 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
632 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
633 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
633 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
634 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
634 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
635 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
635 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
636 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
636 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
637 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
637
638
638 }
639 }
639
640
640 void WFP_reset_current_ring_nodes( void )
641 void WFP_reset_current_ring_nodes( void )
641 {
642 {
642 current_ring_node_f0 = waveform_ring_f0[0].next;
643 current_ring_node_f0 = waveform_ring_f0[0].next;
643 current_ring_node_f1 = waveform_ring_f1[0].next;
644 current_ring_node_f1 = waveform_ring_f1[0].next;
644 current_ring_node_f2 = waveform_ring_f2[0].next;
645 current_ring_node_f2 = waveform_ring_f2[0].next;
645 current_ring_node_f3 = waveform_ring_f3[0].next;
646 current_ring_node_f3 = waveform_ring_f3[0].next;
646
647
647 ring_node_to_send_swf_f0 = waveform_ring_f0;
648 ring_node_to_send_swf_f0 = waveform_ring_f0;
648 ring_node_to_send_swf_f1 = waveform_ring_f1;
649 ring_node_to_send_swf_f1 = waveform_ring_f1;
649 ring_node_to_send_swf_f2 = waveform_ring_f2;
650 ring_node_to_send_swf_f2 = waveform_ring_f2;
650
651
651 ring_node_to_send_cwf_f1 = waveform_ring_f1;
652 ring_node_to_send_cwf_f1 = waveform_ring_f1;
652 ring_node_to_send_cwf_f2 = waveform_ring_f2;
653 ring_node_to_send_cwf_f2 = waveform_ring_f2;
653 ring_node_to_send_cwf_f3 = waveform_ring_f3;
654 ring_node_to_send_cwf_f3 = waveform_ring_f3;
654 }
655 }
655
656
656 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
657 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
657 {
658 {
658 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
659 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
659 *
660 *
660 * @param waveform points to the buffer containing the data that will be send.
661 * @param waveform points to the buffer containing the data that will be send.
661 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
662 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
662 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
663 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
663 * contain information to setup the transmission of the data packets.
664 * contain information to setup the transmission of the data packets.
664 *
665 *
665 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
666 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
666 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
667 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
667 *
668 *
668 */
669 */
669
670
670 unsigned int i;
671 unsigned int i;
671 unsigned int j;
672 unsigned int j;
672 int ret;
673 int ret;
673 rtems_status_code status;
674 rtems_status_code status;
674
675
675 char *sample;
676 char *sample;
676 int *dataPtr;
677 int *dataPtr;
677
678
678 ret = LFR_DEFAULT;
679 ret = LFR_DEFAULT;
679
680
680 dataPtr = (int*) ring_node_to_send->buffer_address;
681 dataPtr = (int*) ring_node_to_send->buffer_address;
681
682
682 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
683 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
683 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
684 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
684
685
685 //**********************
686 //**********************
686 // BUILD CWF3_light DATA
687 // BUILD CWF3_light DATA
687 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
688 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
688 {
689 {
689 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
690 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
690 for (j=0; j < CWF_BLK_SIZE; j++)
691 for (j=0; j < CWF_BLK_SIZE; j++)
691 {
692 {
692 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
693 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
693 }
694 }
694 }
695 }
695
696
696 // SEND PACKET
697 // SEND PACKET
697 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
698 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
698 if (status != RTEMS_SUCCESSFUL) {
699 if (status != RTEMS_SUCCESSFUL) {
699 ret = LFR_DEFAULT;
700 ret = LFR_DEFAULT;
700 }
701 }
701
702
702 return ret;
703 return ret;
703 }
704 }
704
705
705 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
706 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
706 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
707 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
707 {
708 {
708 unsigned long long int acquisitionTimeAsLong;
709 unsigned long long int acquisitionTimeAsLong;
709 unsigned char localAcquisitionTime[BYTES_PER_TIME];
710 unsigned char localAcquisitionTime[BYTES_PER_TIME];
710 double deltaT;
711 double deltaT;
711
712
712 deltaT = INIT_FLOAT;
713 deltaT = INIT_FLOAT;
713
714
714 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
715 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
715 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
716 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
716 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
717 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
717 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
718 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
718 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
719 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
719 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
720 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
720
721
721 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
722 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
722 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
723 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
723 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
724 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
724 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
725 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
725 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
726 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
726 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
727 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
727
728
728 switch( sid )
729 switch( sid )
729 {
730 {
730 case SID_NORM_SWF_F0:
731 case SID_NORM_SWF_F0:
731 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
732 break;
733 break;
733
734
734 case SID_NORM_SWF_F1:
735 case SID_NORM_SWF_F1:
735 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
736 break;
737 break;
737
738
738 case SID_NORM_SWF_F2:
739 case SID_NORM_SWF_F2:
739 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
740 break;
741 break;
741
742
742 case SID_SBM1_CWF_F1:
743 case SID_SBM1_CWF_F1:
743 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
744 break;
745 break;
745
746
746 case SID_SBM2_CWF_F2:
747 case SID_SBM2_CWF_F2:
747 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
748 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
748 break;
749 break;
749
750
750 case SID_BURST_CWF_F2:
751 case SID_BURST_CWF_F2:
751 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
752 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
752 break;
753 break;
753
754
754 case SID_NORM_CWF_F3:
755 case SID_NORM_CWF_F3:
755 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
756 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
756 break;
757 break;
757
758
758 case SID_NORM_CWF_LONG_F3:
759 case SID_NORM_CWF_LONG_F3:
759 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
760 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
760 break;
761 break;
761
762
762 default:
763 default:
763 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
764 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
764 deltaT = 0.;
765 deltaT = 0.;
765 break;
766 break;
766 }
767 }
767
768
768 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
769 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
769 //
770 //
770 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
771 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
771 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
772 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
772 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
773 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
773 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
774 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
774 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
775 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
775 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
776 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
776
777
777 }
778 }
778
779
779 void build_snapshot_from_ring( ring_node *ring_node_to_send,
780 void build_snapshot_from_ring( ring_node *ring_node_to_send,
780 unsigned char frequencyChannel,
781 unsigned char frequencyChannel,
781 unsigned long long int acquisitionTimeF0_asLong,
782 unsigned long long int acquisitionTimeF0_asLong,
782 ring_node *ring_node_swf_extracted,
783 ring_node *ring_node_swf_extracted,
783 int *swf_extracted)
784 int *swf_extracted)
784 {
785 {
785 unsigned int i;
786 unsigned int i;
786 unsigned int node;
787 unsigned int node;
787 unsigned long long int centerTime_asLong;
788 unsigned long long int centerTime_asLong;
788 unsigned long long int acquisitionTime_asLong;
789 unsigned long long int acquisitionTime_asLong;
789 unsigned long long int bufferAcquisitionTime_asLong;
790 unsigned long long int bufferAcquisitionTime_asLong;
790 unsigned char *ptr1;
791 unsigned char *ptr1;
791 unsigned char *ptr2;
792 unsigned char *ptr2;
792 unsigned char *timeCharPtr;
793 unsigned char *timeCharPtr;
793 unsigned char nb_ring_nodes;
794 unsigned char nb_ring_nodes;
794 unsigned long long int frequency_asLong;
795 unsigned long long int frequency_asLong;
795 unsigned long long int nbTicksPerSample_asLong;
796 unsigned long long int nbTicksPerSample_asLong;
796 unsigned long long int nbSamplesPart1_asLong;
797 unsigned long long int nbSamplesPart1_asLong;
797 unsigned long long int sampleOffset_asLong;
798 unsigned long long int sampleOffset_asLong;
798
799
799 unsigned int deltaT_F0;
800 unsigned int deltaT_F0;
800 unsigned int deltaT_F1;
801 unsigned int deltaT_F1;
801 unsigned long long int deltaT_F2;
802 unsigned long long int deltaT_F2;
802
803
803 deltaT_F0 = DELTAT_F0;
804 deltaT_F0 = DELTAT_F0;
804 deltaT_F1 = DELTAT_F1;
805 deltaT_F1 = DELTAT_F1;
805 deltaT_F2 = DELTAT_F2;
806 deltaT_F2 = DELTAT_F2;
806 sampleOffset_asLong = INIT_CHAR;
807 sampleOffset_asLong = INIT_CHAR;
807
808
808 // (1) get the f0 acquisition time => the value is passed in argument
809 // (1) get the f0 acquisition time => the value is passed in argument
809
810
810 // (2) compute the central reference time
811 // (2) compute the central reference time
811 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
812 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
812 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
815 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
815
816
816 // (3) compute the acquisition time of the current snapshot
817 // (3) compute the acquisition time of the current snapshot
817 switch(frequencyChannel)
818 switch(frequencyChannel)
818 {
819 {
819 case CHANNELF1: // 1 is for F1 = 4096 Hz
820 case CHANNELF1: // 1 is for F1 = 4096 Hz
820 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
821 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
821 nb_ring_nodes = NB_RING_NODES_F1;
822 nb_ring_nodes = NB_RING_NODES_F1;
822 frequency_asLong = FREQ_F1;
823 frequency_asLong = FREQ_F1;
823 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
824 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
824 break;
825 break;
825 case CHANNELF2: // 2 is for F2 = 256 Hz
826 case CHANNELF2: // 2 is for F2 = 256 Hz
826 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
827 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
827 nb_ring_nodes = NB_RING_NODES_F2;
828 nb_ring_nodes = NB_RING_NODES_F2;
828 frequency_asLong = FREQ_F2;
829 frequency_asLong = FREQ_F2;
829 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
830 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
830 break;
831 break;
831 default:
832 default:
832 acquisitionTime_asLong = centerTime_asLong;
833 acquisitionTime_asLong = centerTime_asLong;
833 nb_ring_nodes = 0;
834 nb_ring_nodes = 0;
834 frequency_asLong = FREQ_F2;
835 frequency_asLong = FREQ_F2;
835 nbTicksPerSample_asLong = TICKS_PER_T2;
836 nbTicksPerSample_asLong = TICKS_PER_T2;
836 break;
837 break;
837 }
838 }
838
839
839 //*****************************************************************************
840 //*****************************************************************************
840 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
841 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
841 node = 0;
842 node = 0;
842 while ( node < nb_ring_nodes)
843 while ( node < nb_ring_nodes)
843 {
844 {
844 //PRINTF1("%d ... ", node);
845 //PRINTF1("%d ... ", node);
845 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
846 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
846 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
847 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
847 {
848 {
848 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
849 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
849 node = nb_ring_nodes;
850 node = nb_ring_nodes;
850 }
851 }
851 else
852 else
852 {
853 {
853 node = node + 1;
854 node = node + 1;
854 ring_node_to_send = ring_node_to_send->previous;
855 ring_node_to_send = ring_node_to_send->previous;
855 }
856 }
856 }
857 }
857
858
858 // (5) compute the number of samples to take in the current buffer
859 // (5) compute the number of samples to take in the current buffer
859 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
860 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
860 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
861 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
861 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
862 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
862
863
863 // (6) compute the final acquisition time
864 // (6) compute the final acquisition time
864 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
865 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
865 (sampleOffset_asLong * nbTicksPerSample_asLong);
866 (sampleOffset_asLong * nbTicksPerSample_asLong);
866
867
867 // (7) copy the acquisition time at the beginning of the extrated snapshot
868 // (7) copy the acquisition time at the beginning of the extrated snapshot
868 ptr1 = (unsigned char*) &acquisitionTime_asLong;
869 ptr1 = (unsigned char*) &acquisitionTime_asLong;
869 // fine time
870 // fine time
870 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
871 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
871 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
872 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
872 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
873 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
873 // coarse time
874 // coarse time
874 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
875 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
875 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
876 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
876 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
877 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
877 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
878 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
878 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
879 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
879
880
880 // re set the synchronization bit
881 // re set the synchronization bit
881 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
882 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
882 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
883 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
883
884
884 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
885 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
885 {
886 {
886 nbSamplesPart1_asLong = 0;
887 nbSamplesPart1_asLong = 0;
887 }
888 }
888 // copy the part 1 of the snapshot in the extracted buffer
889 // copy the part 1 of the snapshot in the extracted buffer
889 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
890 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
890 {
891 {
891 swf_extracted[i] =
892 swf_extracted[i] =
892 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
893 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
893 }
894 }
894 // copy the part 2 of the snapshot in the extracted buffer
895 // copy the part 2 of the snapshot in the extracted buffer
895 ring_node_to_send = ring_node_to_send->next;
896 ring_node_to_send = ring_node_to_send->next;
896 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
897 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
897 {
898 {
898 swf_extracted[i] =
899 swf_extracted[i] =
899 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
900 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
900 }
901 }
901 }
902 }
902
903
903 double computeCorrection( unsigned char *timePtr )
904 double computeCorrection( unsigned char *timePtr )
904 {
905 {
905 unsigned long long int acquisitionTime;
906 unsigned long long int acquisitionTime;
906 unsigned long long int centerTime;
907 unsigned long long int centerTime;
907 unsigned long long int previousTick;
908 unsigned long long int previousTick;
908 unsigned long long int nextTick;
909 unsigned long long int nextTick;
909 unsigned long long int deltaPreviousTick;
910 unsigned long long int deltaPreviousTick;
910 unsigned long long int deltaNextTick;
911 unsigned long long int deltaNextTick;
911 double deltaPrevious_ms;
912 double deltaPrevious_ms;
912 double deltaNext_ms;
913 double deltaNext_ms;
913 double correctionInF2;
914 double correctionInF2;
914
915
915 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
916 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
916
917
917 // get acquisition time in fine time ticks
918 // get acquisition time in fine time ticks
918 acquisitionTime = get_acquisition_time( timePtr );
919 acquisitionTime = get_acquisition_time( timePtr );
919
920
920 // compute center time
921 // compute center time
921 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
922 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
922 previousTick = centerTime - (centerTime & INT16_ALL_F);
923 previousTick = centerTime - (centerTime & INT16_ALL_F);
923 nextTick = previousTick + TICKS_PER_S;
924 nextTick = previousTick + TICKS_PER_S;
924
925
925 deltaPreviousTick = centerTime - previousTick;
926 deltaPreviousTick = centerTime - previousTick;
926 deltaNextTick = nextTick - centerTime;
927 deltaNextTick = nextTick - centerTime;
927
928
928 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
929 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
929 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
930 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
930
931
931 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
932 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
932
933
933 // which tick is the closest?
934 // which tick is the closest?
934 if (deltaPreviousTick > deltaNextTick)
935 if (deltaPreviousTick > deltaNextTick)
935 {
936 {
936 // the snapshot center is just before the second => increase delta_snapshot
937 // the snapshot center is just before the second => increase delta_snapshot
937 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
938 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
938 }
939 }
939 else
940 else
940 {
941 {
941 // the snapshot center is just after the second => decrease delta_snapshot
942 // the snapshot center is just after the second => decrease delta_snapshot
942 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
943 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
943 }
944 }
944
945
945 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
946 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
946
947
947 return correctionInF2;
948 return correctionInF2;
948 }
949 }
949
950
950 void applyCorrection( double correction )
951 void applyCorrection( double correction )
951 {
952 {
952 int correctionInt;
953 int correctionInt;
953
954
954 correctionInt = 0;
955 correctionInt = 0;
955
956
956 if (correction >= 0.)
957 if (correction >= 0.)
957 {
958 {
958 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
959 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
959 {
960 {
960 correctionInt = ONE_TICK_CORR;
961 correctionInt = ONE_TICK_CORR;
961 }
962 }
962 else
963 else
963 {
964 {
964 correctionInt = CORR_MULT * floor(correction);
965 correctionInt = CORR_MULT * floor(correction);
965 }
966 }
966 }
967 }
967 else
968 else
968 {
969 {
969 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
970 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
970 {
971 {
971 correctionInt = -ONE_TICK_CORR;
972 correctionInt = -ONE_TICK_CORR;
972 }
973 }
973 else
974 else
974 {
975 {
975 correctionInt = CORR_MULT * ceil(correction);
976 correctionInt = CORR_MULT * ceil(correction);
976 }
977 }
977 }
978 }
978 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
979 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
979 }
980 }
980
981
981 void snapshot_resynchronization( unsigned char *timePtr )
982 void snapshot_resynchronization( unsigned char *timePtr )
982 {
983 {
983 /** This function compute a correction to apply on delta_snapshot.
984 /** This function compute a correction to apply on delta_snapshot.
984 *
985 *
985 *
986 *
986 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
987 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
987 *
988 *
988 * @return void
989 * @return void
989 *
990 *
990 */
991 */
991
992
992 static double correction = INIT_FLOAT;
993 static double correction = INIT_FLOAT;
993 static resynchro_state state = MEASURE;
994 static resynchro_state state = MEASURE;
994 static unsigned int nbSnapshots = 0;
995 static unsigned int nbSnapshots = 0;
995
996
996 int correctionInt;
997 int correctionInt;
997
998
998 correctionInt = 0;
999 correctionInt = 0;
999
1000
1000 switch (state)
1001 switch (state)
1001 {
1002 {
1002
1003
1003 case MEASURE:
1004 case MEASURE:
1004 // ********
1005 // ********
1005 PRINTF1("MEASURE === %d\n", nbSnapshots);
1006 PRINTF1("MEASURE === %d\n", nbSnapshots);
1006 state = CORRECTION;
1007 state = CORRECTION;
1007 correction = computeCorrection( timePtr );
1008 correction = computeCorrection( timePtr );
1008 PRINTF1("MEASURE === correction = %.2f\n", correction );
1009 PRINTF1("MEASURE === correction = %.2f\n", correction );
1009 applyCorrection( correction );
1010 applyCorrection( correction );
1010 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1011 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1011 //****
1012 //****
1012 break;
1013 break;
1013
1014
1014 case CORRECTION:
1015 case CORRECTION:
1015 //************
1016 //************
1016 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1017 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1017 state = MEASURE;
1018 state = MEASURE;
1018 computeCorrection( timePtr );
1019 computeCorrection( timePtr );
1019 set_wfp_delta_snapshot();
1020 set_wfp_delta_snapshot();
1020 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1021 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1021 //****
1022 //****
1022 break;
1023 break;
1023
1024
1024 default:
1025 default:
1025 break;
1026 break;
1026
1027
1027 }
1028 }
1028
1029
1029 nbSnapshots++;
1030 nbSnapshots++;
1030 }
1031 }
1031
1032
1032 //**************
1033 //**************
1033 // wfp registers
1034 // wfp registers
1034 void reset_wfp_burst_enable( void )
1035 void reset_wfp_burst_enable( void )
1035 {
1036 {
1036 /** This function resets the waveform picker burst_enable register.
1037 /** This function resets the waveform picker burst_enable register.
1037 *
1038 *
1038 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1039 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1039 *
1040 *
1040 */
1041 */
1041
1042
1042 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1043 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1043 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1044 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1044 }
1045 }
1045
1046
1046 void reset_wfp_status( void )
1047 void reset_wfp_status( void )
1047 {
1048 {
1048 /** This function resets the waveform picker status register.
1049 /** This function resets the waveform picker status register.
1049 *
1050 *
1050 * All status bits are set to 0 [new_err full_err full].
1051 * All status bits are set to 0 [new_err full_err full].
1051 *
1052 *
1052 */
1053 */
1053
1054
1054 waveform_picker_regs->status = INT16_ALL_F;
1055 waveform_picker_regs->status = INT16_ALL_F;
1055 }
1056 }
1056
1057
1057 void reset_wfp_buffer_addresses( void )
1058 void reset_wfp_buffer_addresses( void )
1058 {
1059 {
1059 // F0
1060 // F0
1060 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1061 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1061 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1062 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1062 // F1
1063 // F1
1063 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1064 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1064 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1065 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1065 // F2
1066 // F2
1066 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1067 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1067 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1068 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1068 // F3
1069 // F3
1069 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1070 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1070 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1071 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1071 }
1072 }
1072
1073
1073 void reset_waveform_picker_regs( void )
1074 void reset_waveform_picker_regs( void )
1074 {
1075 {
1075 /** This function resets the waveform picker module registers.
1076 /** This function resets the waveform picker module registers.
1076 *
1077 *
1077 * The registers affected by this function are located at the following offset addresses:
1078 * The registers affected by this function are located at the following offset addresses:
1078 * - 0x00 data_shaping
1079 * - 0x00 data_shaping
1079 * - 0x04 run_burst_enable
1080 * - 0x04 run_burst_enable
1080 * - 0x08 addr_data_f0
1081 * - 0x08 addr_data_f0
1081 * - 0x0C addr_data_f1
1082 * - 0x0C addr_data_f1
1082 * - 0x10 addr_data_f2
1083 * - 0x10 addr_data_f2
1083 * - 0x14 addr_data_f3
1084 * - 0x14 addr_data_f3
1084 * - 0x18 status
1085 * - 0x18 status
1085 * - 0x1C delta_snapshot
1086 * - 0x1C delta_snapshot
1086 * - 0x20 delta_f0
1087 * - 0x20 delta_f0
1087 * - 0x24 delta_f0_2
1088 * - 0x24 delta_f0_2
1088 * - 0x28 delta_f1 (obsolet parameter)
1089 * - 0x28 delta_f1 (obsolet parameter)
1089 * - 0x2c delta_f2
1090 * - 0x2c delta_f2
1090 * - 0x30 nb_data_by_buffer
1091 * - 0x30 nb_data_by_buffer
1091 * - 0x34 nb_snapshot_param
1092 * - 0x34 nb_snapshot_param
1092 * - 0x38 start_date
1093 * - 0x38 start_date
1093 * - 0x3c nb_word_in_buffer
1094 * - 0x3c nb_word_in_buffer
1094 *
1095 *
1095 */
1096 */
1096
1097
1097 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1098 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1098
1099
1099 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1100 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1100
1101
1101 reset_wfp_buffer_addresses();
1102 reset_wfp_buffer_addresses();
1102
1103
1103 reset_wfp_status(); // 0x18
1104 reset_wfp_status(); // 0x18
1104
1105
1105 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1106 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1106
1107
1107 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1108 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1108
1109
1109 //the parameter delta_f1 [0x28] is not used anymore
1110 //the parameter delta_f1 [0x28] is not used anymore
1110
1111
1111 set_wfp_delta_f2(); // 0x2c
1112 set_wfp_delta_f2(); // 0x2c
1112
1113
1113 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1114 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1114 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1115 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1115 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1116 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1116 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1117 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1117 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1118 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1118 // 2688 = 8 * 336
1119 // 2688 = 8 * 336
1119 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1120 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1120 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1121 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1121 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1122 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1122 //
1123 //
1123 // coarse time and fine time registers are not initialized, they are volatile
1124 // coarse time and fine time registers are not initialized, they are volatile
1124 //
1125 //
1125 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1126 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1126 }
1127 }
1127
1128
1128 void set_wfp_data_shaping( void )
1129 void set_wfp_data_shaping( void )
1129 {
1130 {
1130 /** This function sets the data_shaping register of the waveform picker module.
1131 /** This function sets the data_shaping register of the waveform picker module.
1131 *
1132 *
1132 * The value is read from one field of the parameter_dump_packet structure:\n
1133 * The value is read from one field of the parameter_dump_packet structure:\n
1133 * bw_sp0_sp1_r0_r1
1134 * bw_sp0_sp1_r0_r1
1134 *
1135 *
1135 */
1136 */
1136
1137
1137 unsigned char data_shaping;
1138 unsigned char data_shaping;
1138
1139
1139 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1140 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1140 // waveform picker : [R1 R0 SP1 SP0 BW]
1141 // waveform picker : [R1 R0 SP1 SP0 BW]
1141
1142
1142 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1143 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1143
1144
1144 waveform_picker_regs->data_shaping =
1145 waveform_picker_regs->data_shaping =
1145 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1146 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1146 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1147 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1147 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1148 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1148 + ( (data_shaping & BIT_2) << 1 ) // R0
1149 + ( (data_shaping & BIT_2) << 1 ) // R0
1149 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1150 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1150 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1151 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1151 }
1152 }
1152
1153
1153 void set_wfp_burst_enable_register( unsigned char mode )
1154 void set_wfp_burst_enable_register( unsigned char mode )
1154 {
1155 {
1155 /** This function sets the waveform picker burst_enable register depending on the mode.
1156 /** This function sets the waveform picker burst_enable register depending on the mode.
1156 *
1157 *
1157 * @param mode is the LFR mode to launch.
1158 * @param mode is the LFR mode to launch.
1158 *
1159 *
1159 * The burst bits shall be before the enable bits.
1160 * The burst bits shall be before the enable bits.
1160 *
1161 *
1161 */
1162 */
1162
1163
1163 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1164 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1164 // the burst bits shall be set first, before the enable bits
1165 // the burst bits shall be set first, before the enable bits
1165 switch(mode) {
1166 switch(mode) {
1166 case LFR_MODE_NORMAL:
1167 case LFR_MODE_NORMAL:
1167 case LFR_MODE_SBM1:
1168 case LFR_MODE_SBM1:
1168 case LFR_MODE_SBM2:
1169 case LFR_MODE_SBM2:
1169 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1170 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1170 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_ALL; // [1111] enable f3 f2 f1 f0
1171 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_ALL; // [1111] enable f3 f2 f1 f0
1171 break;
1172 break;
1172 case LFR_MODE_BURST:
1173 case LFR_MODE_BURST:
1173 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1174 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_BURST; // [1100] enable f3 and f2
1175 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_BURST; // [1100] enable f3 and f2
1175 break;
1176 break;
1176 default:
1177 default:
1177 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1178 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1178 break;
1179 break;
1179 }
1180 }
1180 }
1181 }
1181
1182
1182 void set_wfp_delta_snapshot( void )
1183 void set_wfp_delta_snapshot( void )
1183 {
1184 {
1184 /** This function sets the delta_snapshot register of the waveform picker module.
1185 /** This function sets the delta_snapshot register of the waveform picker module.
1185 *
1186 *
1186 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1187 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1187 * - sy_lfr_n_swf_p[0]
1188 * - sy_lfr_n_swf_p[0]
1188 * - sy_lfr_n_swf_p[1]
1189 * - sy_lfr_n_swf_p[1]
1189 *
1190 *
1190 */
1191 */
1191
1192
1192 unsigned int delta_snapshot;
1193 unsigned int delta_snapshot;
1193 unsigned int delta_snapshot_in_T2;
1194 unsigned int delta_snapshot_in_T2;
1194
1195
1195 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1196 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1196 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1197 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1197
1198
1198 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1199 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1199 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1200 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1200 }
1201 }
1201
1202
1202 void set_wfp_delta_f0_f0_2( void )
1203 void set_wfp_delta_f0_f0_2( void )
1203 {
1204 {
1204 unsigned int delta_snapshot;
1205 unsigned int delta_snapshot;
1205 unsigned int nb_samples_per_snapshot;
1206 unsigned int nb_samples_per_snapshot;
1206 float delta_f0_in_float;
1207 float delta_f0_in_float;
1207
1208
1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1211 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1211
1212
1212 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1213 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1213 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2;
1214 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2;
1214 }
1215 }
1215
1216
1216 void set_wfp_delta_f1( void )
1217 void set_wfp_delta_f1( void )
1217 {
1218 {
1218 /** Sets the value of the delta_f1 parameter
1219 /** Sets the value of the delta_f1 parameter
1219 *
1220 *
1220 * @param void
1221 * @param void
1221 *
1222 *
1222 * @return void
1223 * @return void
1223 *
1224 *
1224 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1225 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1225 *
1226 *
1226 */
1227 */
1227
1228
1228 unsigned int delta_snapshot;
1229 unsigned int delta_snapshot;
1229 unsigned int nb_samples_per_snapshot;
1230 unsigned int nb_samples_per_snapshot;
1230 float delta_f1_in_float;
1231 float delta_f1_in_float;
1231
1232
1232 delta_snapshot = waveform_picker_regs->delta_snapshot;
1233 delta_snapshot = waveform_picker_regs->delta_snapshot;
1233 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1234 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1234 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1235 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1235
1236
1236 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1237 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1237 }
1238 }
1238
1239
1239 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1240 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1240 {
1241 {
1241 /** Sets the value of the delta_f2 parameter
1242 /** Sets the value of the delta_f2 parameter
1242 *
1243 *
1243 * @param void
1244 * @param void
1244 *
1245 *
1245 * @return void
1246 * @return void
1246 *
1247 *
1247 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1248 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1248 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1249 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1249 *
1250 *
1250 */
1251 */
1251
1252
1252 unsigned int delta_snapshot;
1253 unsigned int delta_snapshot;
1253 unsigned int nb_samples_per_snapshot;
1254 unsigned int nb_samples_per_snapshot;
1254
1255
1255 delta_snapshot = waveform_picker_regs->delta_snapshot;
1256 delta_snapshot = waveform_picker_regs->delta_snapshot;
1256 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1257 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1257
1258
1258 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1259 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1259 }
1260 }
1260
1261
1261 //*****************
1262 //*****************
1262 // local parameters
1263 // local parameters
1263
1264
1264 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1265 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1265 {
1266 {
1266 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1267 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1267 *
1268 *
1268 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1269 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1269 * @param sid is the source identifier of the packet being updated.
1270 * @param sid is the source identifier of the packet being updated.
1270 *
1271 *
1271 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1272 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1272 * The sequence counters shall wrap around from 2^14 to zero.
1273 * The sequence counters shall wrap around from 2^14 to zero.
1273 * The sequence counter shall start at zero at startup.
1274 * The sequence counter shall start at zero at startup.
1274 *
1275 *
1275 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1276 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1276 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1277 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1277 *
1278 *
1278 */
1279 */
1279
1280
1280 unsigned short *sequence_cnt;
1281 unsigned short *sequence_cnt;
1281 unsigned short segmentation_grouping_flag;
1282 unsigned short segmentation_grouping_flag;
1282 unsigned short new_packet_sequence_control;
1283 unsigned short new_packet_sequence_control;
1283 rtems_mode initial_mode_set;
1284 rtems_mode initial_mode_set;
1284 rtems_mode current_mode_set;
1285 rtems_mode current_mode_set;
1285 rtems_status_code status;
1286 rtems_status_code status;
1286
1287
1287 initial_mode_set = RTEMS_DEFAULT_MODES;
1288 initial_mode_set = RTEMS_DEFAULT_MODES;
1288 current_mode_set = RTEMS_DEFAULT_MODES;
1289 current_mode_set = RTEMS_DEFAULT_MODES;
1289 sequence_cnt = NULL;
1290 sequence_cnt = NULL;
1290
1291
1291 //******************************************
1292 //******************************************
1292 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1293 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1293 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1294 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1294
1295
1295 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1296 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1296 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1297 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1297 || (sid == SID_BURST_CWF_F2)
1298 || (sid == SID_BURST_CWF_F2)
1298 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1299 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1299 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1300 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1300 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1301 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1301 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1302 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1302 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1303 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1303 {
1304 {
1304 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1305 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1305 }
1306 }
1306 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1307 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1307 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1308 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1308 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1309 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1309 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1310 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1310 {
1311 {
1311 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1312 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1312 }
1313 }
1313 else
1314 else
1314 {
1315 {
1315 sequence_cnt = (unsigned short *) NULL;
1316 sequence_cnt = (unsigned short *) NULL;
1316 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1317 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1317 }
1318 }
1318
1319
1319 if (sequence_cnt != NULL)
1320 if (sequence_cnt != NULL)
1320 {
1321 {
1321 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1322 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1322 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1323 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1323
1324
1324 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1325 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1325
1326
1326 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1327 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1327 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1328 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1328
1329
1329 // increment the sequence counter
1330 // increment the sequence counter
1330 if ( *sequence_cnt < SEQ_CNT_MAX)
1331 if ( *sequence_cnt < SEQ_CNT_MAX)
1331 {
1332 {
1332 *sequence_cnt = *sequence_cnt + 1;
1333 *sequence_cnt = *sequence_cnt + 1;
1333 }
1334 }
1334 else
1335 else
1335 {
1336 {
1336 *sequence_cnt = 0;
1337 *sequence_cnt = 0;
1337 }
1338 }
1338 }
1339 }
1339
1340
1340 //*************************************
1341 //*************************************
1341 // RESTORE THE MODE OF THE CALLING TASK
1342 // RESTORE THE MODE OF THE CALLING TASK
1342 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1343 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1343 }
1344 }