##// END OF EJS Templates

Compare Commits r371:88d90c878c97...r374:79e8ac429728

Target:

Source:

Compare was calculated based on this common ancestor commit: 18e20227b986
Time Author Commit Description
r371:88d90c878c97
Added automatic map file production on build.
r372:fc82b08705ba
Added scrubbing Task, to increase scrubbing frequency and avoid entering idle task.
r373:a5fd85da05a7
Now uses FPU in scrubbing task to increase power consumption.
r374:79e8ac429728
Implemented Calibrations Task This task will ensure the calibrations signal frequency sweep by dividing by 2 the sampling frequency between each snapshot.
@@ -1,4 +1,4
1 header/lfr_common_headers = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/SOLO_LFR/lfr_common_headers
1 header/lfr_common_headers = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/USERS/JEANDET/lfr_common_headers
2 2
3 3 LFR_basic-parameters = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/USERS/CHUST/LFR_basic-parameters
4 4
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 e904b329ff977514bf36af92617afefd22fd06ab header/lfr_common_headers
2 1b9238c8848953d545d6ff9c9b8b15d19a597fb6 header/lfr_common_headers
@@ -1,169 +1,170
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7 #include <grlib_regs.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "lfr_cpu_usage_report.h"
12 12
13 13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
14 14 #define WATCHDOG_LOOP_PRINTF 10
15 15 #define WATCHDOG_LOOP_DEBUG 3
16 16
17 17 #define DUMB_MESSAGE_NB 15
18 18 #define NB_RTEMS_EVENTS 32
19 19 #define EVENT_12 12
20 20 #define EVENT_13 13
21 21 #define EVENT_14 14
22 22 #define DUMB_MESSAGE_0 "in DUMB *** default"
23 23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
24 24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
25 25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
26 26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
27 27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
28 28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
29 29 #define DUMB_MESSAGE_7 "ready for dump"
30 30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
31 31 #define DUMB_MESSAGE_9 "tick"
32 32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
33 33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
34 34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
35 35 #define DUMB_MESSAGE_13 "TIMECODE timer"
36 36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
37 37
38 38 enum lfr_reset_cause_t{
39 39 UNKNOWN_CAUSE,
40 40 POWER_ON,
41 41 TC_RESET,
42 42 WATCHDOG,
43 43 ERROR_RESET,
44 44 UNEXP_RESET
45 45 };
46 46
47 47 typedef struct{
48 48 unsigned char dpu_spw_parity;
49 49 unsigned char dpu_spw_disconnect;
50 50 unsigned char dpu_spw_escape;
51 51 unsigned char dpu_spw_credit;
52 52 unsigned char dpu_spw_write_sync;
53 53 unsigned char timecode_erroneous;
54 54 unsigned char timecode_missing;
55 55 unsigned char timecode_invalid;
56 56 unsigned char time_timecode_it;
57 57 unsigned char time_not_synchro;
58 58 unsigned char time_timecode_ctr;
59 59 unsigned char ahb_correctable;
60 60 } hk_lfr_le_t;
61 61
62 62 typedef struct{
63 63 unsigned char dpu_spw_early_eop;
64 64 unsigned char dpu_spw_invalid_addr;
65 65 unsigned char dpu_spw_eep;
66 66 unsigned char dpu_spw_rx_too_big;
67 67 } hk_lfr_me_t;
68 68
69 69 #define B00 196
70 70 #define B01 196
71 71 #define B02 0
72 72 #define B10 131
73 73 #define B11 -244
74 74 #define B12 131
75 75 #define B20 161
76 76 #define B21 -314
77 77 #define B22 161
78 78
79 79 #define A00 1
80 80 #define A01 -925
81 81 #define A02 0
82 82 #define A10 1
83 83 #define A11 -947
84 84 #define A12 439
85 85 #define A20 1
86 86 #define A21 -993
87 87 #define A22 486
88 88
89 89 #define GAIN_B0 12
90 90 #define GAIN_B1 11
91 91 #define GAIN_B2 10
92 92
93 93 #define GAIN_A0 10
94 94 #define GAIN_A1 9
95 95 #define GAIN_A2 9
96 96
97 97 #define NB_COEFFS 3
98 98 #define COEFF0 0
99 99 #define COEFF1 1
100 100 #define COEFF2 2
101 101
102 102 typedef struct filter_ctx
103 103 {
104 104 int W[NB_COEFFS][NB_COEFFS];
105 105 }filter_ctx;
106 106
107 107 extern gptimer_regs_t *gptimer_regs;
108 108 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
109 109 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
110 110
111 111 extern rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
112 112 extern rtems_id HK_id;// id of the HK rate monotonic period
113 113 extern rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
114 114 extern rtems_id AVGV_id;// id of the AVGV rate monotonic period
115 115
116 116 void timer_configure( unsigned char timer, unsigned int clock_divider,
117 117 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
118 118 void timer_start( unsigned char timer );
119 119 void timer_stop( unsigned char timer );
120 120 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
121 121
122 122 // WATCHDOG
123 123 rtems_isr watchdog_isr( rtems_vector_number vector );
124 124 void watchdog_configure(void);
125 125 void watchdog_stop(void);
126 126 void watchdog_reload(void);
127 127 void watchdog_start(void);
128 128
129 129 // SERIAL LINK
130 130 int send_console_outputs_on_apbuart_port( void );
131 131 int enable_apbuart_transmitter( void );
132 132 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
133 133
134 134 // RTEMS TASKS
135 135 rtems_task load_task( rtems_task_argument argument );
136 136 rtems_task hous_task( rtems_task_argument argument );
137 137 rtems_task avgv_task( rtems_task_argument argument );
138 138 rtems_task dumb_task( rtems_task_argument unused );
139 rtems_task scrubbing_task( rtems_task_argument unused );
139 140
140 141 void init_housekeeping_parameters( void );
141 142 void increment_seq_counter(unsigned short *packetSequenceControl);
142 143 void getTime( unsigned char *time);
143 144 unsigned long long int getTimeAsUnsignedLongLongInt( );
144 145 void send_dumb_hk( void );
145 146 void get_temperatures( unsigned char *temperatures );
146 147 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
147 148 void get_cpu_load( unsigned char *resource_statistics );
148 149 void set_hk_lfr_sc_potential_flag( bool state );
149 150 void set_sy_lfr_pas_filter_enabled( bool state );
150 151 void set_sy_lfr_watchdog_enabled( bool state );
151 152 void set_hk_lfr_calib_enable( bool state );
152 153 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
153 154 void hk_lfr_le_me_he_update();
154 155 void set_hk_lfr_time_not_synchro();
155 156
156 157 extern int sched_yield( void );
157 158 extern void rtems_cpu_usage_reset();
158 159 extern ring_node *current_ring_node_f3;
159 160 extern ring_node *ring_node_to_send_cwf_f3;
160 161 extern ring_node waveform_ring_f3[];
161 162 extern unsigned short sequenceCounterHK;
162 163
163 164 extern unsigned char hk_lfr_q_sd_fifo_size_max;
164 165 extern unsigned char hk_lfr_q_rv_fifo_size_max;
165 166 extern unsigned char hk_lfr_q_p0_fifo_size_max;
166 167 extern unsigned char hk_lfr_q_p1_fifo_size_max;
167 168 extern unsigned char hk_lfr_q_p2_fifo_size_max;
168 169
169 170 #endif // FSW_MISC_H_INCLUDED
@@ -1,115 +1,117
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 13 #include "lfr_cpu_usage_report.h"
14 14
15 15 #define MAX_DELTA_COARSE_TIME 3
16 16 #define NB_SCIENCE_TASKS 10
17 17 #define NB_ASM_TASKS 6
18 18 #define STATUS_0 0
19 19 #define STATUS_1 1
20 20 #define STATUS_2 2
21 21 #define STATUS_3 3
22 22 #define STATUS_4 4
23 23 #define STATUS_5 5
24 24 #define STATUS_6 6
25 25 #define STATUS_7 7
26 26 #define STATUS_8 8
27 27 #define STATUS_9 9
28 28
29 29 #define CAL_F0 625.
30 30 #define CAL_F1 10000.
31 31 #define CAL_W0 (2. * pi * CAL_F0)
32 32 #define CAL_W1 (2. * pi * CAL_F1)
33 33 #define CAL_A0 1.
34 34 #define CAL_A1 2.
35 35 #define CAL_FS 160256.410
36 36 #define CAL_SCALE_FACTOR (0.250 / 0.000654) // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
37 37 #define CAL_NB_PTS 256
38 38 #define CAL_DATA_MASK 0xfff
39 39 #define CAL_F_DIVISOR 38 // 25 MHz => 160 256 (39 - 1)
40 #define CAL_F_DIVISOR_MIN 38
41 #define CAL_F_DIVISOR_MAX (38*2*2*2*2)
40 42 // INTERLEAVED MODE
41 43 #define CAL_FS_INTER 240384.615
42 44 #define CAL_NB_PTS_INTER 384
43 45 #define CAL_DATA_MASK_INTER 0x3f
44 46 #define CAL_DATA_SHIFT_INTER 12
45 47 #define BYTES_FOR_2_SAMPLES 3 // one need 3 bytes = 24 bits to store 3 samples of 12 bits in interleaved mode
46 48 #define STEPS_FOR_STORAGE_INTER 128
47 49 #define CAL_F_DIVISOR_INTER 26 // 25 MHz => 240 384
48 50
49 51 extern unsigned int lastValidEnterModeTime;
50 52 extern unsigned char oneTcLfrUpdateTimeReceived;
51 53
52 54 //****
53 55 // ISR
54 56 rtems_isr commutation_isr1( rtems_vector_number vector );
55 57 rtems_isr commutation_isr2( rtems_vector_number vector );
56 58
57 59 //***********
58 60 // RTEMS TASK
59 61 rtems_task actn_task( rtems_task_argument unused );
60 62
61 63 //***********
62 64 // TC ACTIONS
63 65 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
64 66 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
65 67 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
66 68 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
67 69 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
68 70 int action_update_time( ccsdsTelecommandPacket_t *TC);
69 71
70 72 // mode transition
71 73 int check_mode_value( unsigned char requestedMode );
72 74 int check_mode_transition( unsigned char requestedMode );
73 75 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
74 76 int check_transition_date( unsigned int transitionCoarseTime );
75 77 int stop_spectral_matrices( void );
76 78 int stop_current_mode( void );
77 79 int enter_mode_standby(void );
78 80 int enter_mode_normal( unsigned int transitionCoarseTime );
79 81 int enter_mode_burst( unsigned int transitionCoarseTime );
80 82 int enter_mode_sbm1( unsigned int transitionCoarseTime );
81 83 int enter_mode_sbm2( unsigned int transitionCoarseTime );
82 84 int restart_science_tasks( unsigned char lfrRequestedMode );
83 85 int restart_asm_tasks(unsigned char lfrRequestedMode );
84 86 int suspend_science_tasks(void);
85 87 int suspend_asm_tasks( void );
86 88 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
87 89 void launch_spectral_matrix( void );
88 90 void set_sm_irq_onNewMatrix( unsigned char value );
89 91 void set_sm_irq_onError( unsigned char value );
90 92
91 93 // other functions
92 94 void updateLFRCurrentMode(unsigned char requestedMode);
93 95 void set_lfr_soft_reset( unsigned char value );
94 96 void reset_lfr( void );
95 97 // CALIBRATION
96 98 void setCalibrationPrescaler( unsigned int prescaler );
97 99 void setCalibrationDivisor( unsigned int divisionFactor );
98 100 void setCalibrationData( void );
99 101 void setCalibrationReload( bool state);
100 102 void setCalibrationEnable( bool state );
101 103 void setCalibrationInterleaved( bool state );
102 104 void setCalibration( bool state );
103 105 void configureCalibration( bool interleaved );
104 106 //
105 107 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
106 108 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
107 109 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
108 110
109 111 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
110 112 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
111 113
112 114 #endif // TC_HANDLER_H_INCLUDED
113 115
114 116
115 117
@@ -1,25 +1,25
1 1 set(rtems_dir /opt/rtems-4.10/)
2 2
3 3 set(CMAKE_SYSTEM_NAME rtems)
4 4 set(CMAKE_C_COMPILER ${rtems_dir}/bin/sparc-rtems-gcc)
5 5 set(CMAKE_CXX_COMPILER ${rtems_dir}/bin/sparc-rtems-g++)
6 6 set(CMAKE_LINKER ${rtems_dir}/bin/sparc-rtems-g++)
7 7 SET(CMAKE_EXE_LINKER_FLAGS "-static")
8 8 option(fix-b2bst "Activate -mfix-b2bst switch to mitigate \"LEON3FT Stale Cache Entry After Store with Data Tag Parity Error\" errata, GRLIB-TN-0009" ON)
9 9
10 10 if(fix-b2bst)
11 11 set(CMAKE_C_FLAGS_RELEASE "-O3 -mfix-b2bst")
12 12 else()
13 13 set(CMAKE_C_FLAGS_RELEASE "-O3")
14 14 endif()
15 15
16 set(CMAKE_C_LINK_EXECUTABLE "<CMAKE_LINKER> <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
16 set(CMAKE_C_LINK_EXECUTABLE "<CMAKE_LINKER> <FLAGS> -Xlinker -Map=<TARGET>.map <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
17 17
18 18 include_directories("${rtems_dir}/sparc-rtems/leon3/lib/include")
19 19
20 20 function (check_b2bst target bin)
21 21 add_custom_command(TARGET ${target}
22 22 POST_BUILD
23 23 COMMAND ${rtems_dir}/bin/sparc-rtems-objdump -d ${bin}/${target} | ${CMAKE_SOURCE_DIR}/sparc/leon3ft-b2bst-scan.tcl
24 24 )
25 25 endfunction()
@@ -1,974 +1,1007
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18
18 19 /* configuration information */
19 20
20 21 #define CONFIGURE_INIT
21 22
22 23 #include <bsp.h> /* for device driver prototypes */
23 24
24 25 /* configuration information */
25 26
26 27 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 28 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 29
29 #define CONFIGURE_MAXIMUM_TASKS 21 // number of tasks concurrently active including INIT
30 #define CONFIGURE_MAXIMUM_TASKS 23 // number of tasks concurrently active including INIT
30 31 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 32 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 33 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 34 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 35 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 36 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 37 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 38 #define CONFIGURE_MAXIMUM_PERIODS 6 // [hous] [load] [avgv]
38 39 #define CONFIGURE_MAXIMUM_TIMERS 6 // [spiq] [link] [spacewire_reset_link]
39 40 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 41 #ifdef PRINT_STACK_REPORT
41 42 #define CONFIGURE_STACK_CHECKER_ENABLED
42 43 #endif
43 44
44 45 #include <rtems/confdefs.h>
45 46
46 47 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 48 #ifdef RTEMS_DRVMGR_STARTUP
48 49 #ifdef LEON3
49 50 /* Add Timer and UART Driver */
50 51
51 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 54 #endif
54 55
55 56 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 58 #endif
58 59
59 60 #endif
60 61 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 62
62 63 #include <drvmgr/drvmgr_confdefs.h>
63 64 #endif
64 65
65 66 #include "fsw_init.h"
66 67 #include "fsw_config.c"
67 68 #include "GscMemoryLPP.hpp"
68 69
69 70 void initCache()
70 71 {
71 72 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 73 // These should only be read and written using 32-bit LDA/STA instructions.
73 74 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 75 // The table below shows the register addresses:
75 76 // 0x00 Cache control register
76 77 // 0x04 Reserved
77 78 // 0x08 Instruction cache configuration register
78 79 // 0x0C Data cache configuration register
79 80
80 81 // Cache Control Register Leon3 / Leon3FT
81 82 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 83 // RFT PS TB DS FD FI FT ST IB
83 84 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 85 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 86
86 87 unsigned int cacheControlRegister;
87 88
88 89 CCR_resetCacheControlRegister();
89 90 ASR16_resetRegisterProtectionControlRegister();
90 91
91 92 cacheControlRegister = CCR_getValue();
92 93 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 94 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 95
95 96 CCR_enableInstructionCache(); // ICS bits
96 97 CCR_enableDataCache(); // DCS bits
97 98 CCR_enableInstructionBurstFetch(); // IB bit
98 99
99 100 faultTolerantScheme();
100 101
101 102 cacheControlRegister = CCR_getValue();
102 103 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 104 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 105
105 106 PRINTF("\n");
106 107 }
107 108
108 109 rtems_task Init( rtems_task_argument ignored )
109 110 {
110 111 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 112 *
112 113 * @param unused is the starting argument of the RTEMS task
113 114 *
114 115 * The INIT task create and run all other RTEMS tasks.
115 116 *
116 117 */
117 118
118 119 //***********
119 120 // INIT CACHE
120 121
121 122 unsigned char *vhdlVersion;
122 123
123 124 reset_lfr();
124 125
125 126 reset_local_time();
126 127
127 128 rtems_cpu_usage_reset();
128 129
129 130 rtems_status_code status;
130 131 rtems_status_code status_spw;
131 132 rtems_isr_entry old_isr_handler;
132 133
133 134 old_isr_handler = NULL;
134 135
135 136 // UART settings
136 137 enable_apbuart_transmitter();
137 138 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
138 139
139 140 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
140 141
141 142
142 143 PRINTF("\n\n\n\n\n")
143 144
144 145 initCache();
145 146
146 147 PRINTF("*************************\n")
147 148 PRINTF("** LFR Flight Software **\n")
148 149
149 150 PRINTF1("** %d-", SW_VERSION_N1)
150 151 PRINTF1("%d-" , SW_VERSION_N2)
151 152 PRINTF1("%d-" , SW_VERSION_N3)
152 153 PRINTF1("%d **\n", SW_VERSION_N4)
153 154
154 155 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
155 156 PRINTF("** VHDL **\n")
156 157 PRINTF1("** %d-", vhdlVersion[1])
157 158 PRINTF1("%d-" , vhdlVersion[2])
158 159 PRINTF1("%d **\n", vhdlVersion[3])
159 160 PRINTF("*************************\n")
160 161 PRINTF("\n\n")
161 162
162 163 init_parameter_dump();
163 164 init_kcoefficients_dump();
164 165 init_local_mode_parameters();
165 166 init_housekeeping_parameters();
166 167 init_k_coefficients_prc0();
167 168 init_k_coefficients_prc1();
168 169 init_k_coefficients_prc2();
169 170 pa_bia_status_info = INIT_CHAR;
170 171
171 172 // initialize all reaction wheels frequencies to NaN
172 173 rw_f.cp_rpw_sc_rw1_f1 = NAN;
173 174 rw_f.cp_rpw_sc_rw1_f2 = NAN;
174 175 rw_f.cp_rpw_sc_rw1_f3 = NAN;
175 176 rw_f.cp_rpw_sc_rw1_f4 = NAN;
176 177 rw_f.cp_rpw_sc_rw2_f1 = NAN;
177 178 rw_f.cp_rpw_sc_rw2_f2 = NAN;
178 179 rw_f.cp_rpw_sc_rw2_f3 = NAN;
179 180 rw_f.cp_rpw_sc_rw2_f4 = NAN;
180 181 rw_f.cp_rpw_sc_rw3_f1 = NAN;
181 182 rw_f.cp_rpw_sc_rw3_f2 = NAN;
182 183 rw_f.cp_rpw_sc_rw3_f3 = NAN;
183 184 rw_f.cp_rpw_sc_rw3_f4 = NAN;
184 185 rw_f.cp_rpw_sc_rw4_f1 = NAN;
185 186 rw_f.cp_rpw_sc_rw4_f2 = NAN;
186 187 rw_f.cp_rpw_sc_rw4_f3 = NAN;
187 188 rw_f.cp_rpw_sc_rw4_f4 = NAN;
188 189
189 190 // initialize filtering parameters
190 191 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
191 192 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
192 193 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
193 194 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
194 195 filterPar.modulus_in_finetime = DEFAULT_MODULUS;
195 196 filterPar.tbad_in_finetime = DEFAULT_TBAD;
196 197 filterPar.offset_in_finetime = DEFAULT_OFFSET;
197 198 filterPar.shift_in_finetime = DEFAULT_SHIFT;
198 199 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
199 200
200 201 // waveform picker initialization
201 202 WFP_init_rings();
202 203 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
203 204 WFP_reset_current_ring_nodes();
204 205 reset_waveform_picker_regs();
205 206
206 207 // spectral matrices initialization
207 208 SM_init_rings(); // initialize spectral matrices rings
208 209 SM_reset_current_ring_nodes();
209 210 reset_spectral_matrix_regs();
210 211
211 212 // configure calibration
212 213 configureCalibration( false ); // true means interleaved mode, false is for normal mode
213 214
214 215 updateLFRCurrentMode( LFR_MODE_STANDBY );
215 216
216 217 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
217 218
218 219 create_names(); // create all names
219 220
220 221 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
221 222 if (status != RTEMS_SUCCESSFUL)
222 223 {
223 224 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
224 225 }
225 226
226 227 status = create_message_queues(); // create message queues
227 228 if (status != RTEMS_SUCCESSFUL)
228 229 {
229 230 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
230 231 }
231 232
232 233 status = create_all_tasks(); // create all tasks
233 234 if (status != RTEMS_SUCCESSFUL)
234 235 {
235 236 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
236 237 }
237 238
238 239 // **************************
239 240 // <SPACEWIRE INITIALIZATION>
240 241 status_spw = spacewire_open_link(); // (1) open the link
241 242 if ( status_spw != RTEMS_SUCCESSFUL )
242 243 {
243 244 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
244 245 }
245 246
246 247 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
247 248 {
248 249 status_spw = spacewire_configure_link( fdSPW );
249 250 if ( status_spw != RTEMS_SUCCESSFUL )
250 251 {
251 252 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
252 253 }
253 254 }
254 255
255 256 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
256 257 {
257 258 status_spw = spacewire_start_link( fdSPW );
258 259 if ( status_spw != RTEMS_SUCCESSFUL )
259 260 {
260 261 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
261 262 }
262 263 }
263 264 // </SPACEWIRE INITIALIZATION>
264 265 // ***************************
265 266
266 267 status = start_all_tasks(); // start all tasks
267 268 if (status != RTEMS_SUCCESSFUL)
268 269 {
269 270 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
270 271 }
271 272
272 273 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
273 274 status = start_recv_send_tasks();
274 275 if ( status != RTEMS_SUCCESSFUL )
275 276 {
276 277 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
277 278 }
278 279
279 280 // suspend science tasks, they will be restarted later depending on the mode
280 281 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
281 282 if (status != RTEMS_SUCCESSFUL)
282 283 {
283 284 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
284 285 }
285 286
286 287 // configure IRQ handling for the waveform picker unit
287 288 status = rtems_interrupt_catch( waveforms_isr,
288 289 IRQ_SPARC_WAVEFORM_PICKER,
289 290 &old_isr_handler) ;
290 291 // configure IRQ handling for the spectral matrices unit
291 292 status = rtems_interrupt_catch( spectral_matrices_isr,
292 293 IRQ_SPARC_SPECTRAL_MATRIX,
293 294 &old_isr_handler) ;
294 295
295 296 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
296 297 if ( status_spw != RTEMS_SUCCESSFUL )
297 298 {
298 299 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
299 300 if ( status != RTEMS_SUCCESSFUL ) {
300 301 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
301 302 }
302 303 }
303 304
304 305 BOOT_PRINTF("delete INIT\n")
305 306
306 307 set_hk_lfr_sc_potential_flag( true );
307 308
308 309 // start the timer to detect a missing spacewire timecode
309 310 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
310 311 // if a tickout is generated, the timer is restarted
311 312 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
312 313
313 314 grspw_timecode_callback = &timecode_irq_handler;
314 315
315 316 status = rtems_task_delete(RTEMS_SELF);
316 317
317 318 }
318 319
319 320 void init_local_mode_parameters( void )
320 321 {
321 322 /** This function initialize the param_local global variable with default values.
322 323 *
323 324 */
324 325
325 326 unsigned int i;
326 327
327 328 // LOCAL PARAMETERS
328 329
329 330 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
330 331 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
331 332
332 333 // init sequence counters
333 334
334 335 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
335 336 {
336 337 sequenceCounters_TC_EXE[i] = INIT_CHAR;
337 338 sequenceCounters_TM_DUMP[i] = INIT_CHAR;
338 339 }
339 340 sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR;
340 341 sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR;
341 342 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT;
342 343 }
343 344
344 345 void reset_local_time( void )
345 346 {
346 347 time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000
347 348 }
348 349
349 350 void create_names( void ) // create all names for tasks and queues
350 351 {
351 352 /** This function creates all RTEMS names used in the software for tasks and queues.
352 353 *
353 354 * @return RTEMS directive status codes:
354 355 * - RTEMS_SUCCESSFUL - successful completion
355 356 *
356 357 */
357 358
358 359 // task names
359 360 Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' );
360 361 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
361 362 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
362 363 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
363 364 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
364 365 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
365 366 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
366 367 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
367 368 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
368 369 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
369 370 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
370 371 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
371 372 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
372 373 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
373 374 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
374 375 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
375 376 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
376 377 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
377 378 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
378 379 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
380 Task_name[TASKID_SCRB] = rtems_build_name( 'S', 'C', 'R', 'B' );
381 Task_name[TASKID_CALI] = rtems_build_name( 'C', 'A', 'L', 'I' );
379 382
380 383 // rate monotonic period names
381 384 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
382 385 name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' );
383 386
384 387 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
385 388 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
386 389 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
387 390 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
388 391 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
389 392
390 393 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
391 394 }
392 395
393 396 int create_all_tasks( void ) // create all tasks which run in the software
394 397 {
395 398 /** This function creates all RTEMS tasks used in the software.
396 399 *
397 400 * @return RTEMS directive status codes:
398 401 * - RTEMS_SUCCESSFUL - task created successfully
399 402 * - RTEMS_INVALID_ADDRESS - id is NULL
400 403 * - RTEMS_INVALID_NAME - invalid task name
401 404 * - RTEMS_INVALID_PRIORITY - invalid task priority
402 405 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
403 406 * - RTEMS_TOO_MANY - too many tasks created
404 407 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
405 408 * - RTEMS_TOO_MANY - too many global objects
406 409 *
407 410 */
408 411
409 412 rtems_status_code status;
410 413
411 414 //**********
412 415 // SPACEWIRE
413 416 // RECV
414 417 status = rtems_task_create(
415 418 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
416 419 RTEMS_DEFAULT_MODES,
417 420 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
418 421 );
419 422 if (status == RTEMS_SUCCESSFUL) // SEND
420 423 {
421 424 status = rtems_task_create(
422 425 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
423 426 RTEMS_DEFAULT_MODES,
424 427 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
425 428 );
426 429 }
427 430 if (status == RTEMS_SUCCESSFUL) // LINK
428 431 {
429 432 status = rtems_task_create(
430 433 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
431 434 RTEMS_DEFAULT_MODES,
432 435 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
433 436 );
434 437 }
435 438 if (status == RTEMS_SUCCESSFUL) // ACTN
436 439 {
437 440 status = rtems_task_create(
438 441 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
439 442 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
440 443 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
441 444 );
442 445 }
443 446 if (status == RTEMS_SUCCESSFUL) // SPIQ
444 447 {
445 448 status = rtems_task_create(
446 449 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
447 450 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
448 451 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
449 452 );
450 453 }
451 454
452 455 //******************
453 456 // SPECTRAL MATRICES
454 457 if (status == RTEMS_SUCCESSFUL) // AVF0
455 458 {
456 459 status = rtems_task_create(
457 460 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
458 461 RTEMS_DEFAULT_MODES,
459 462 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
460 463 );
461 464 }
462 465 if (status == RTEMS_SUCCESSFUL) // PRC0
463 466 {
464 467 status = rtems_task_create(
465 468 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
466 469 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
467 470 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
468 471 );
469 472 }
470 473 if (status == RTEMS_SUCCESSFUL) // AVF1
471 474 {
472 475 status = rtems_task_create(
473 476 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
474 477 RTEMS_DEFAULT_MODES,
475 478 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
476 479 );
477 480 }
478 481 if (status == RTEMS_SUCCESSFUL) // PRC1
479 482 {
480 483 status = rtems_task_create(
481 484 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
482 485 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
483 486 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
484 487 );
485 488 }
486 489 if (status == RTEMS_SUCCESSFUL) // AVF2
487 490 {
488 491 status = rtems_task_create(
489 492 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
490 493 RTEMS_DEFAULT_MODES,
491 494 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
492 495 );
493 496 }
494 497 if (status == RTEMS_SUCCESSFUL) // PRC2
495 498 {
496 499 status = rtems_task_create(
497 500 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
498 501 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
499 502 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
500 503 );
501 504 }
502 505
503 506 //****************
504 507 // WAVEFORM PICKER
505 508 if (status == RTEMS_SUCCESSFUL) // WFRM
506 509 {
507 510 status = rtems_task_create(
508 511 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
509 512 RTEMS_DEFAULT_MODES,
510 513 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
511 514 );
512 515 }
513 516 if (status == RTEMS_SUCCESSFUL) // CWF3
514 517 {
515 518 status = rtems_task_create(
516 519 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
517 520 RTEMS_DEFAULT_MODES,
518 521 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
519 522 );
520 523 }
521 524 if (status == RTEMS_SUCCESSFUL) // CWF2
522 525 {
523 526 status = rtems_task_create(
524 527 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
525 528 RTEMS_DEFAULT_MODES,
526 529 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
527 530 );
528 531 }
529 532 if (status == RTEMS_SUCCESSFUL) // CWF1
530 533 {
531 534 status = rtems_task_create(
532 535 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
533 536 RTEMS_DEFAULT_MODES,
534 537 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
535 538 );
536 539 }
537 540 if (status == RTEMS_SUCCESSFUL) // SWBD
538 541 {
539 542 status = rtems_task_create(
540 543 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
541 544 RTEMS_DEFAULT_MODES,
542 545 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
543 546 );
544 547 }
545 548
546 549 //*****
547 550 // MISC
548 551 if (status == RTEMS_SUCCESSFUL) // LOAD
549 552 {
550 553 status = rtems_task_create(
551 554 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
552 555 RTEMS_DEFAULT_MODES,
553 556 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
554 557 );
555 558 }
556 559 if (status == RTEMS_SUCCESSFUL) // DUMB
557 560 {
558 561 status = rtems_task_create(
559 562 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
560 563 RTEMS_DEFAULT_MODES,
561 564 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
562 565 );
563 566 }
567 if (status == RTEMS_SUCCESSFUL) // SCRUBBING TASK
568 {
569 status = rtems_task_create(
570 Task_name[TASKID_SCRB], TASK_PRIORITY_SCRB, RTEMS_MINIMUM_STACK_SIZE,
571 RTEMS_DEFAULT_MODES,
572 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SCRB]
573 );
574 }
564 575 if (status == RTEMS_SUCCESSFUL) // HOUS
565 576 {
566 577 status = rtems_task_create(
567 578 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
568 579 RTEMS_DEFAULT_MODES,
569 580 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
570 581 );
571 582 }
572 583 if (status == RTEMS_SUCCESSFUL) // AVGV
573 584 {
574 585 status = rtems_task_create(
575 586 Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE,
576 587 RTEMS_DEFAULT_MODES,
577 588 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV]
578 589 );
579 590 }
591 if (status == RTEMS_SUCCESSFUL) // CALI
592 {
593 status = rtems_task_create(
594 Task_name[TASKID_CALI], TASK_PRIORITY_CALI, RTEMS_MINIMUM_STACK_SIZE,
595 RTEMS_DEFAULT_MODES,
596 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CALI]
597 );
598 }
580 599
581 600 return status;
582 601 }
583 602
584 603 int start_recv_send_tasks( void )
585 604 {
586 605 rtems_status_code status;
587 606
588 607 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
589 608 if (status!=RTEMS_SUCCESSFUL) {
590 609 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
591 610 }
592 611
593 612 if (status == RTEMS_SUCCESSFUL) // SEND
594 613 {
595 614 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
596 615 if (status!=RTEMS_SUCCESSFUL) {
597 616 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
598 617 }
599 618 }
600 619
601 620 return status;
602 621 }
603 622
604 623 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
605 624 {
606 625 /** This function starts all RTEMS tasks used in the software.
607 626 *
608 627 * @return RTEMS directive status codes:
609 628 * - RTEMS_SUCCESSFUL - ask started successfully
610 629 * - RTEMS_INVALID_ADDRESS - invalid task entry point
611 630 * - RTEMS_INVALID_ID - invalid task id
612 631 * - RTEMS_INCORRECT_STATE - task not in the dormant state
613 632 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
614 633 *
615 634 */
616 635 // starts all the tasks fot eh flight software
617 636
618 637 rtems_status_code status;
619 638
620 639 //**********
621 640 // SPACEWIRE
622 641 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
623 642 if (status!=RTEMS_SUCCESSFUL) {
624 643 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
625 644 }
626 645
627 646 if (status == RTEMS_SUCCESSFUL) // LINK
628 647 {
629 648 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
630 649 if (status!=RTEMS_SUCCESSFUL) {
631 650 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
632 651 }
633 652 }
634 653
635 654 if (status == RTEMS_SUCCESSFUL) // ACTN
636 655 {
637 656 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
638 657 if (status!=RTEMS_SUCCESSFUL) {
639 658 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
640 659 }
641 660 }
642 661
643 662 //******************
644 663 // SPECTRAL MATRICES
645 664 if (status == RTEMS_SUCCESSFUL) // AVF0
646 665 {
647 666 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
648 667 if (status!=RTEMS_SUCCESSFUL) {
649 668 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
650 669 }
651 670 }
652 671 if (status == RTEMS_SUCCESSFUL) // PRC0
653 672 {
654 673 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
655 674 if (status!=RTEMS_SUCCESSFUL) {
656 675 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
657 676 }
658 677 }
659 678 if (status == RTEMS_SUCCESSFUL) // AVF1
660 679 {
661 680 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
662 681 if (status!=RTEMS_SUCCESSFUL) {
663 682 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
664 683 }
665 684 }
666 685 if (status == RTEMS_SUCCESSFUL) // PRC1
667 686 {
668 687 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
669 688 if (status!=RTEMS_SUCCESSFUL) {
670 689 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
671 690 }
672 691 }
673 692 if (status == RTEMS_SUCCESSFUL) // AVF2
674 693 {
675 694 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
676 695 if (status!=RTEMS_SUCCESSFUL) {
677 696 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
678 697 }
679 698 }
680 699 if (status == RTEMS_SUCCESSFUL) // PRC2
681 700 {
682 701 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
683 702 if (status!=RTEMS_SUCCESSFUL) {
684 703 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
685 704 }
686 705 }
687 706
688 707 //****************
689 708 // WAVEFORM PICKER
690 709 if (status == RTEMS_SUCCESSFUL) // WFRM
691 710 {
692 711 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
693 712 if (status!=RTEMS_SUCCESSFUL) {
694 713 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
695 714 }
696 715 }
697 716 if (status == RTEMS_SUCCESSFUL) // CWF3
698 717 {
699 718 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
700 719 if (status!=RTEMS_SUCCESSFUL) {
701 720 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
702 721 }
703 722 }
704 723 if (status == RTEMS_SUCCESSFUL) // CWF2
705 724 {
706 725 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
707 726 if (status!=RTEMS_SUCCESSFUL) {
708 727 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
709 728 }
710 729 }
711 730 if (status == RTEMS_SUCCESSFUL) // CWF1
712 731 {
713 732 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
714 733 if (status!=RTEMS_SUCCESSFUL) {
715 734 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
716 735 }
717 736 }
718 737 if (status == RTEMS_SUCCESSFUL) // SWBD
719 738 {
720 739 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
721 740 if (status!=RTEMS_SUCCESSFUL) {
722 741 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
723 742 }
724 743 }
725 744
726 745 //*****
727 746 // MISC
728 747 if (status == RTEMS_SUCCESSFUL) // HOUS
729 748 {
730 749 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
731 750 if (status!=RTEMS_SUCCESSFUL) {
732 751 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
733 752 }
734 753 }
735 754 if (status == RTEMS_SUCCESSFUL) // AVGV
736 755 {
737 756 status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 );
738 757 if (status!=RTEMS_SUCCESSFUL) {
739 758 BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n")
740 759 }
741 760 }
742 761 if (status == RTEMS_SUCCESSFUL) // DUMB
743 762 {
744 763 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
745 764 if (status!=RTEMS_SUCCESSFUL) {
746 765 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
747 766 }
748 767 }
768 if (status == RTEMS_SUCCESSFUL) // SCRUBBING
769 {
770 status = rtems_task_start( Task_id[TASKID_SCRB], scrubbing_task, 1 );
771 if (status!=RTEMS_SUCCESSFUL) {
772 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
773 }
774 }
749 775 if (status == RTEMS_SUCCESSFUL) // LOAD
750 776 {
751 777 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
752 778 if (status!=RTEMS_SUCCESSFUL) {
753 779 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
754 780 }
755 781 }
782 if (status == RTEMS_SUCCESSFUL) // CALI
783 {
784 status = rtems_task_start( Task_id[TASKID_CALI], load_task, 1 );
785 if (status!=RTEMS_SUCCESSFUL) {
786 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
787 }
788 }
756 789
757 790 return status;
758 791 }
759 792
760 793 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
761 794 {
762 795 rtems_status_code status_recv;
763 796 rtems_status_code status_send;
764 797 rtems_status_code status_q_p0;
765 798 rtems_status_code status_q_p1;
766 799 rtems_status_code status_q_p2;
767 800 rtems_status_code ret;
768 801 rtems_id queue_id;
769 802
770 803 ret = RTEMS_SUCCESSFUL;
771 804 queue_id = RTEMS_ID_NONE;
772 805
773 806 //****************************************
774 807 // create the queue for handling valid TCs
775 808 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
776 809 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
777 810 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
778 811 if ( status_recv != RTEMS_SUCCESSFUL ) {
779 812 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
780 813 }
781 814
782 815 //************************************************
783 816 // create the queue for handling TM packet sending
784 817 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
785 818 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
786 819 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
787 820 if ( status_send != RTEMS_SUCCESSFUL ) {
788 821 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
789 822 }
790 823
791 824 //*****************************************************************************
792 825 // create the queue for handling averaged spectral matrices for processing @ f0
793 826 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
794 827 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
795 828 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
796 829 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
797 830 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
798 831 }
799 832
800 833 //*****************************************************************************
801 834 // create the queue for handling averaged spectral matrices for processing @ f1
802 835 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
803 836 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
804 837 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
805 838 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
806 839 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
807 840 }
808 841
809 842 //*****************************************************************************
810 843 // create the queue for handling averaged spectral matrices for processing @ f2
811 844 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
812 845 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
813 846 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
814 847 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
815 848 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
816 849 }
817 850
818 851 if ( status_recv != RTEMS_SUCCESSFUL )
819 852 {
820 853 ret = status_recv;
821 854 }
822 855 else if( status_send != RTEMS_SUCCESSFUL )
823 856 {
824 857 ret = status_send;
825 858 }
826 859 else if( status_q_p0 != RTEMS_SUCCESSFUL )
827 860 {
828 861 ret = status_q_p0;
829 862 }
830 863 else if( status_q_p1 != RTEMS_SUCCESSFUL )
831 864 {
832 865 ret = status_q_p1;
833 866 }
834 867 else
835 868 {
836 869 ret = status_q_p2;
837 870 }
838 871
839 872 return ret;
840 873 }
841 874
842 875 rtems_status_code create_timecode_timer( void )
843 876 {
844 877 rtems_status_code status;
845 878
846 879 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
847 880
848 881 if ( status != RTEMS_SUCCESSFUL )
849 882 {
850 883 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
851 884 }
852 885 else
853 886 {
854 887 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
855 888 }
856 889
857 890 return status;
858 891 }
859 892
860 893 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
861 894 {
862 895 rtems_status_code status;
863 896 rtems_name queue_name;
864 897
865 898 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
866 899
867 900 status = rtems_message_queue_ident( queue_name, 0, queue_id );
868 901
869 902 return status;
870 903 }
871 904
872 905 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
873 906 {
874 907 rtems_status_code status;
875 908 rtems_name queue_name;
876 909
877 910 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
878 911
879 912 status = rtems_message_queue_ident( queue_name, 0, queue_id );
880 913
881 914 return status;
882 915 }
883 916
884 917 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
885 918 {
886 919 rtems_status_code status;
887 920 rtems_name queue_name;
888 921
889 922 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
890 923
891 924 status = rtems_message_queue_ident( queue_name, 0, queue_id );
892 925
893 926 return status;
894 927 }
895 928
896 929 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
897 930 {
898 931 rtems_status_code status;
899 932 rtems_name queue_name;
900 933
901 934 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
902 935
903 936 status = rtems_message_queue_ident( queue_name, 0, queue_id );
904 937
905 938 return status;
906 939 }
907 940
908 941 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
909 942 {
910 943 rtems_status_code status;
911 944 rtems_name queue_name;
912 945
913 946 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
914 947
915 948 status = rtems_message_queue_ident( queue_name, 0, queue_id );
916 949
917 950 return status;
918 951 }
919 952
920 953 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
921 954 {
922 955 u_int32_t count;
923 956 rtems_status_code status;
924 957
925 958 count = 0;
926 959
927 960 status = rtems_message_queue_get_number_pending( queue_id, &count );
928 961
929 962 count = count + 1;
930 963
931 964 if (status != RTEMS_SUCCESSFUL)
932 965 {
933 966 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
934 967 }
935 968 else
936 969 {
937 970 if (count > *fifo_size_max)
938 971 {
939 972 *fifo_size_max = count;
940 973 }
941 974 }
942 975 }
943 976
944 977 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
945 978 {
946 979 unsigned char i;
947 980
948 981 //***************
949 982 // BUFFER ADDRESS
950 983 for(i=0; i<nbNodes; i++)
951 984 {
952 985 ring[i].coarseTime = INT32_ALL_F;
953 986 ring[i].fineTime = INT32_ALL_F;
954 987 ring[i].sid = INIT_CHAR;
955 988 ring[i].status = INIT_CHAR;
956 989 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
957 990 }
958 991
959 992 //*****
960 993 // NEXT
961 994 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
962 995 for(i=0; i<nbNodes-1; i++)
963 996 {
964 997 ring[i].next = (ring_node*) &ring[ i + 1 ];
965 998 }
966 999
967 1000 //*********
968 1001 // PREVIOUS
969 1002 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
970 1003 for(i=1; i<nbNodes; i++)
971 1004 {
972 1005 ring[i].previous = (ring_node*) &ring[ i - 1 ];
973 1006 }
974 1007 }
@@ -1,1036 +1,1095
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13 13
14 14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 16 {
17 17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 18 *
19 19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 22 * @param interrupt_level is the interrupt level that the timer drives.
23 23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 24 *
25 25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 26 *
27 27 */
28 28
29 29 rtems_status_code status;
30 30 rtems_isr_entry old_isr_handler;
31 31
32 32 old_isr_handler = NULL;
33 33
34 34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35 35
36 36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 37 if (status!=RTEMS_SUCCESSFUL)
38 38 {
39 39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 40 }
41 41
42 42 timer_set_clock_divider( timer, clock_divider);
43 43 }
44 44
45 45 void timer_start(unsigned char timer)
46 46 {
47 47 /** This function starts a GPTIMER timer.
48 48 *
49 49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 51 *
52 52 */
53 53
54 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 59 }
60 60
61 61 void timer_stop(unsigned char timer)
62 62 {
63 63 /** This function stops a GPTIMER timer.
64 64 *
65 65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 67 *
68 68 */
69 69
70 70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 73 }
74 74
75 75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 76 {
77 77 /** This function sets the clock divider of a GPTIMER timer.
78 78 *
79 79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 82 *
83 83 */
84 84
85 85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 86 }
87 87
88 88 // WATCHDOG
89 89
90 90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 91 {
92 92 rtems_status_code status_code;
93 93
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95 95
96 96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97 97
98 98 exit(0);
99 99 }
100 100
101 101 void watchdog_configure(void)
102 102 {
103 103 /** This function configure the watchdog.
104 104 *
105 105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 107 *
108 108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 109 *
110 110 */
111 111
112 112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113 113
114 114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115 115
116 116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 117 }
118 118
119 119 void watchdog_stop(void)
120 120 {
121 121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 122 timer_stop( TIMER_WATCHDOG );
123 123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 124 }
125 125
126 126 void watchdog_reload(void)
127 127 {
128 128 /** This function reloads the watchdog timer counter with the timer reload value.
129 129 *
130 130 * @param void
131 131 *
132 132 * @return void
133 133 *
134 134 */
135 135
136 136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 137 }
138 138
139 139 void watchdog_start(void)
140 140 {
141 141 /** This function starts the watchdog timer.
142 142 *
143 143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 145 *
146 146 */
147 147
148 148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149 149
150 150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154 154
155 155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156 156
157 157 }
158 158
159 159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 160 {
161 161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162 162
163 163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164 164
165 165 return 0;
166 166 }
167 167
168 168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 169 {
170 170 /** This function sets the scaler reload register of the apbuart module
171 171 *
172 172 * @param regs is the address of the apbuart registers in memory
173 173 * @param value is the value that will be stored in the scaler register
174 174 *
175 175 * The value shall be set by the software to get data on the serial interface.
176 176 *
177 177 */
178 178
179 179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180 180
181 181 apbuart_regs->scaler = value;
182 182
183 183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 184 }
185 185
186 186 //************
187 187 // RTEMS TASKS
188 188
189 189 rtems_task load_task(rtems_task_argument argument)
190 190 {
191 191 BOOT_PRINTF("in LOAD *** \n")
192 192
193 193 rtems_status_code status;
194 194 unsigned int i;
195 195 unsigned int j;
196 196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198 198
199 199 watchdog_period_id = RTEMS_ID_NONE;
200 200
201 201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202 202
203 203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 204 if( status != RTEMS_SUCCESSFUL ) {
205 205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 206 }
207 207
208 208 i = 0;
209 209 j = 0;
210 210
211 211 watchdog_configure();
212 212
213 213 watchdog_start();
214 214
215 215 set_sy_lfr_watchdog_enabled( true );
216 216
217 217 while(1){
218 218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 219 watchdog_reload();
220 220 i = i + 1;
221 221 if ( i == WATCHDOG_LOOP_PRINTF )
222 222 {
223 223 i = 0;
224 224 j = j + 1;
225 225 PRINTF1("%d\n", j)
226 226 }
227 227 #ifdef DEBUG_WATCHDOG
228 228 if (j == WATCHDOG_LOOP_DEBUG )
229 229 {
230 230 status = rtems_task_delete(RTEMS_SELF);
231 231 }
232 232 #endif
233 233 }
234 234 }
235 235
236 236 rtems_task hous_task(rtems_task_argument argument)
237 237 {
238 238 rtems_status_code status;
239 239 rtems_status_code spare_status;
240 240 rtems_id queue_id;
241 241 rtems_rate_monotonic_period_status period_status;
242 242 bool isSynchronized;
243 243
244 244 queue_id = RTEMS_ID_NONE;
245 245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 246 isSynchronized = false;
247 247
248 248 status = get_message_queue_id_send( &queue_id );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 252 }
253 253
254 254 BOOT_PRINTF("in HOUS ***\n");
255 255
256 256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 258 if( status != RTEMS_SUCCESSFUL ) {
259 259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 260 }
261 261 }
262 262
263 263 status = rtems_rate_monotonic_cancel(HK_id);
264 264 if( status != RTEMS_SUCCESSFUL ) {
265 265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 266 }
267 267 else {
268 268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 269 }
270 270
271 271 // startup phase
272 272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 277 {
278 278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 279 {
280 280 isSynchronized = true;
281 281 }
282 282 else
283 283 {
284 284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285 285
286 286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 287 }
288 288 }
289 289 status = rtems_rate_monotonic_cancel(HK_id);
290 290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291 291
292 292 set_hk_lfr_reset_cause( POWER_ON );
293 293
294 294 while(1){ // launch the rate monotonic task
295 295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 296 if ( status != RTEMS_SUCCESSFUL ) {
297 297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 299 }
300 300 else {
301 301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 303 increment_seq_counter( &sequenceCounterHK );
304 304
305 305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311 311
312 312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313 313
314 314 spacewire_read_statistics();
315 315
316 316 update_hk_with_grspw_stats();
317 317
318 318 set_hk_lfr_time_not_synchro();
319 319
320 320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325 325
326 326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331 331
332 332 hk_lfr_le_me_he_update();
333 333
334 334 // SEND PACKET
335 335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
336 336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
337 337 if (status != RTEMS_SUCCESSFUL) {
338 338 PRINTF1("in HOUS *** ERR send: %d\n", status)
339 339 }
340 340 }
341 341 }
342 342
343 343 PRINTF("in HOUS *** deleting task\n")
344 344
345 345 status = rtems_task_delete( RTEMS_SELF ); // should not return
346 346
347 347 return;
348 348 }
349 349
350 350 int filter( int x, filter_ctx* ctx )
351 351 {
352 352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
353 353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
354 354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
355 355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
356 356
357 357 int_fast32_t W;
358 358 int i;
359 359
360 360 W = INIT_INT;
361 361 i = INIT_INT;
362 362
363 363 //Direct-Form-II
364 364 for ( i = 0; i < NB_COEFFS; i++ )
365 365 {
366 366 x = x << a_gain[i];
367 367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
368 368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
369 369 x = ( b[i][COEFF0] * W )
370 370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
371 371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
372 372 x = x >> b_gain[i];
373 373 ctx->W[i][1] = ctx->W[i][0];
374 374 ctx->W[i][0] = W;
375 375 }
376 376 return x;
377 377 }
378 378
379 379 rtems_task avgv_task(rtems_task_argument argument)
380 380 {
381 381 #define MOVING_AVERAGE 16
382 382 rtems_status_code status;
383 383 static int32_t v[MOVING_AVERAGE] = {0};
384 384 static int32_t e1[MOVING_AVERAGE] = {0};
385 385 static int32_t e2[MOVING_AVERAGE] = {0};
386 386 static int old_v = 0;
387 387 static int old_e1 = 0;
388 388 static int old_e2 = 0;
389 389 int32_t current_v;
390 390 int32_t current_e1;
391 391 int32_t current_e2;
392 392 int32_t average_v;
393 393 int32_t average_e1;
394 394 int32_t average_e2;
395 395 int32_t newValue_v;
396 396 int32_t newValue_e1;
397 397 int32_t newValue_e2;
398 398 unsigned char k;
399 399 unsigned char indexOfOldValue;
400 400
401 401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
404 404
405 405 BOOT_PRINTF("in AVGV ***\n");
406 406
407 407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
408 408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
409 409 if( status != RTEMS_SUCCESSFUL ) {
410 410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
411 411 }
412 412 }
413 413
414 414 status = rtems_rate_monotonic_cancel(AVGV_id);
415 415 if( status != RTEMS_SUCCESSFUL ) {
416 416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
417 417 }
418 418 else {
419 419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
420 420 }
421 421
422 422 // initialize values
423 423 indexOfOldValue = MOVING_AVERAGE - 1;
424 424 current_v = 0;
425 425 current_e1 = 0;
426 426 current_e2 = 0;
427 427 average_v = 0;
428 428 average_e1 = 0;
429 429 average_e2 = 0;
430 430 newValue_v = 0;
431 431 newValue_e1 = 0;
432 432 newValue_e2 = 0;
433 433
434 434 k = INIT_CHAR;
435 435
436 436 while(1)
437 437 { // launch the rate monotonic task
438 438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
439 439 if ( status != RTEMS_SUCCESSFUL )
440 440 {
441 441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
442 442 }
443 443 else
444 444 {
445 445 current_v = waveform_picker_regs->v;
446 446 current_e1 = waveform_picker_regs->e1;
447 447 current_e2 = waveform_picker_regs->e2;
448 448 if ( (current_v != old_v)
449 449 || (current_e1 != old_e1)
450 450 || (current_e2 != old_e2))
451 451 {
452 452 average_v = filter( current_v, &ctx_v );
453 453 average_e1 = filter( current_e1, &ctx_e1 );
454 454 average_e2 = filter( current_e2, &ctx_e2 );
455 455
456 456 //update int16 values
457 457 hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
458 458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
459 459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
460 460 }
461 461 old_v = current_v;
462 462 old_e1 = current_e1;
463 463 old_e2 = current_e2;
464 464 }
465 465 }
466 466
467 467 PRINTF("in AVGV *** deleting task\n");
468 468
469 469 status = rtems_task_delete( RTEMS_SELF ); // should not return
470 470
471 471 return;
472 472 }
473 473
474 474 rtems_task dumb_task( rtems_task_argument unused )
475 475 {
476 476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
477 477 *
478 478 * @param unused is the starting argument of the RTEMS task
479 479 *
480 480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
481 481 *
482 482 */
483 483
484 484 unsigned int i;
485 485 unsigned int intEventOut;
486 486 unsigned int coarse_time = 0;
487 487 unsigned int fine_time = 0;
488 488 rtems_event_set event_out;
489 489
490 490 event_out = EVENT_SETS_NONE_PENDING;
491 491
492 492 BOOT_PRINTF("in DUMB *** \n")
493 493
494 494 while(1){
495 495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
496 496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
497 497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
498 498 | RTEMS_EVENT_14,
499 499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
500 500 intEventOut = (unsigned int) event_out;
501 501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
502 502 {
503 503 if ( ((intEventOut >> i) & 1) != 0)
504 504 {
505 505 coarse_time = time_management_regs->coarse_time;
506 506 fine_time = time_management_regs->fine_time;
507 507 if (i==EVENT_12)
508 508 {
509 509 PRINTF1("%s\n", DUMB_MESSAGE_12)
510 510 }
511 511 if (i==EVENT_13)
512 512 {
513 513 PRINTF1("%s\n", DUMB_MESSAGE_13)
514 514 }
515 515 if (i==EVENT_14)
516 516 {
517 517 PRINTF1("%s\n", DUMB_MESSAGE_1)
518 518 }
519 519 }
520 520 }
521 521 }
522 522 }
523 523
524 rtems_task scrubbing_task( rtems_task_argument unused )
525 {
526 /** This RTEMS taks is used to avoid entering IDLE task and also scrub memory to increase scubbing frequency.
527 *
528 * @param unused is the starting argument of the RTEMS task
529 *
530 * The scrubbing reads continuously memory when no other tasks are ready.
531 *
532 */
533
534 BOOT_PRINTF("in SCRUBBING *** \n");
535 volatile int i=0;
536 volatile float valuef = 1.;
537 volatile uint32_t* RAM=(uint32_t*)0x40000000;
538 volatile uint32_t value;
539 while(1){
540 i=(i+1)%(1024*1024);
541 valuef += 10.f*(float)RAM[i];
542 }
543 }
544
545 rtems_task calibration_sweep_task( rtems_task_argument unused )
546 {
547 /** This RTEMS taks is used to change calibration signal smapling frequency between snapshots.
548 *
549 * @param unused is the starting argument of the RTEMS task
550 *
551 * If calibration is enabled, this task will divide by two the calibration signal smapling frequency between snapshots.
552 * When minimum sampling frequency is reach it will jump to maximum sampling frequency to loop indefinitely.
553 *
554 */
555 rtems_event_set event_out;
556 BOOT_PRINTF("in calibration sweep *** \n");
557 rtems_interval ticks_per_seconds = rtems_clock_get_ticks_per_second();
558 while(1){
559 // Waiting for next F0 snapshot
560 rtems_event_receive(RTEMS_EVENT_CAL_SWEEP_WAKE, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
561 if(time_management_regs->calDACCtrl & BIT_CAL_ENABLE)
562 {
563 unsigned int delta_snapshot;
564 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
565 + parameter_dump_packet.sy_lfr_n_swf_p[1];
566 // We are woken almost in the center of a snapshot -> let's wait for sy_lfr_n_swf_p / 2
567 rtems_task_wake_after( ticks_per_seconds * delta_snapshot / 2);
568 if(time_management_regs->calDivisor >= CAL_F_DIVISOR_MAX){
569 time_management_regs->calDivisor = CAL_F_DIVISOR_MIN;
570 }
571 else{
572 time_management_regs->calDivisor *= 2;
573 }
574 }
575
576
577
578 }
579
580 }
581
582
524 583 //*****************************
525 584 // init housekeeping parameters
526 585
527 586 void init_housekeeping_parameters( void )
528 587 {
529 588 /** This function initialize the housekeeping_packet global variable with default values.
530 589 *
531 590 */
532 591
533 592 unsigned int i = 0;
534 593 unsigned char *parameters;
535 594 unsigned char sizeOfHK;
536 595
537 596 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
538 597
539 598 parameters = (unsigned char*) &housekeeping_packet;
540 599
541 600 for(i = 0; i< sizeOfHK; i++)
542 601 {
543 602 parameters[i] = INIT_CHAR;
544 603 }
545 604
546 605 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
547 606 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
548 607 housekeeping_packet.reserved = DEFAULT_RESERVED;
549 608 housekeeping_packet.userApplication = CCSDS_USER_APP;
550 609 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
551 610 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
552 611 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
553 612 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
554 613 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
555 614 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
556 615 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
557 616 housekeeping_packet.serviceType = TM_TYPE_HK;
558 617 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
559 618 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
560 619 housekeeping_packet.sid = SID_HK;
561 620
562 621 // init status word
563 622 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
564 623 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
565 624 // init software version
566 625 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
567 626 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
568 627 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
569 628 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
570 629 // init fpga version
571 630 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
572 631 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
573 632 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
574 633 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
575 634
576 635 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
577 636 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
578 637 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
579 638 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
580 639 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
581 640 }
582 641
583 642 void increment_seq_counter( unsigned short *packetSequenceControl )
584 643 {
585 644 /** This function increment the sequence counter passes in argument.
586 645 *
587 646 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
588 647 *
589 648 */
590 649
591 650 unsigned short segmentation_grouping_flag;
592 651 unsigned short sequence_cnt;
593 652
594 653 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
595 654 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
596 655
597 656 if ( sequence_cnt < SEQ_CNT_MAX)
598 657 {
599 658 sequence_cnt = sequence_cnt + 1;
600 659 }
601 660 else
602 661 {
603 662 sequence_cnt = 0;
604 663 }
605 664
606 665 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
607 666 }
608 667
609 668 void getTime( unsigned char *time)
610 669 {
611 670 /** This function write the current local time in the time buffer passed in argument.
612 671 *
613 672 */
614 673
615 674 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
616 675 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
617 676 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
618 677 time[3] = (unsigned char) (time_management_regs->coarse_time);
619 678 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
620 679 time[5] = (unsigned char) (time_management_regs->fine_time);
621 680 }
622 681
623 682 unsigned long long int getTimeAsUnsignedLongLongInt( )
624 683 {
625 684 /** This function write the current local time in the time buffer passed in argument.
626 685 *
627 686 */
628 687 unsigned long long int time;
629 688
630 689 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
631 690 + time_management_regs->fine_time;
632 691
633 692 return time;
634 693 }
635 694
636 695 void send_dumb_hk( void )
637 696 {
638 697 Packet_TM_LFR_HK_t dummy_hk_packet;
639 698 unsigned char *parameters;
640 699 unsigned int i;
641 700 rtems_id queue_id;
642 701
643 702 queue_id = RTEMS_ID_NONE;
644 703
645 704 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
646 705 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
647 706 dummy_hk_packet.reserved = DEFAULT_RESERVED;
648 707 dummy_hk_packet.userApplication = CCSDS_USER_APP;
649 708 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
650 709 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
651 710 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
652 711 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
653 712 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
654 713 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
655 714 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
656 715 dummy_hk_packet.serviceType = TM_TYPE_HK;
657 716 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
658 717 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
659 718 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
660 719 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
661 720 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
662 721 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
663 722 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
664 723 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
665 724 dummy_hk_packet.sid = SID_HK;
666 725
667 726 // init status word
668 727 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
669 728 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
670 729 // init software version
671 730 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
672 731 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
673 732 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
674 733 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
675 734 // init fpga version
676 735 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
677 736 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
678 737 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
679 738 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
680 739
681 740 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
682 741
683 742 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
684 743 {
685 744 parameters[i] = INT8_ALL_F;
686 745 }
687 746
688 747 get_message_queue_id_send( &queue_id );
689 748
690 749 rtems_message_queue_send( queue_id, &dummy_hk_packet,
691 750 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
692 751 }
693 752
694 753 void get_temperatures( unsigned char *temperatures )
695 754 {
696 755 unsigned char* temp_scm_ptr;
697 756 unsigned char* temp_pcb_ptr;
698 757 unsigned char* temp_fpga_ptr;
699 758
700 759 // SEL1 SEL0
701 760 // 0 0 => PCB
702 761 // 0 1 => FPGA
703 762 // 1 0 => SCM
704 763
705 764 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
706 765 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
707 766 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
708 767
709 768 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
710 769 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
711 770 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
712 771 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
713 772 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
714 773 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
715 774 }
716 775
717 776 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
718 777 {
719 778 unsigned char* v_ptr;
720 779 unsigned char* e1_ptr;
721 780 unsigned char* e2_ptr;
722 781
723 782 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
724 783 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
725 784 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
726 785
727 786 spacecraft_potential[BYTE_0] = v_ptr[0];
728 787 spacecraft_potential[BYTE_1] = v_ptr[1];
729 788 spacecraft_potential[BYTE_2] = e1_ptr[0];
730 789 spacecraft_potential[BYTE_3] = e1_ptr[1];
731 790 spacecraft_potential[BYTE_4] = e2_ptr[0];
732 791 spacecraft_potential[BYTE_5] = e2_ptr[1];
733 792 }
734 793
735 794 void get_cpu_load( unsigned char *resource_statistics )
736 795 {
737 796 unsigned char cpu_load;
738 797
739 798 cpu_load = lfr_rtems_cpu_usage_report();
740 799
741 800 // HK_LFR_CPU_LOAD
742 801 resource_statistics[0] = cpu_load;
743 802
744 803 // HK_LFR_CPU_LOAD_MAX
745 804 if (cpu_load > resource_statistics[1])
746 805 {
747 806 resource_statistics[1] = cpu_load;
748 807 }
749 808
750 809 // CPU_LOAD_AVE
751 810 resource_statistics[BYTE_2] = 0;
752 811
753 812 #ifndef PRINT_TASK_STATISTICS
754 813 rtems_cpu_usage_reset();
755 814 #endif
756 815
757 816 }
758 817
759 818 void set_hk_lfr_sc_potential_flag( bool state )
760 819 {
761 820 if (state == true)
762 821 {
763 822 housekeeping_packet.lfr_status_word[1] =
764 823 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
765 824 }
766 825 else
767 826 {
768 827 housekeeping_packet.lfr_status_word[1] =
769 828 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
770 829 }
771 830 }
772 831
773 832 void set_sy_lfr_pas_filter_enabled( bool state )
774 833 {
775 834 if (state == true)
776 835 {
777 836 housekeeping_packet.lfr_status_word[1] =
778 837 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
779 838 }
780 839 else
781 840 {
782 841 housekeeping_packet.lfr_status_word[1] =
783 842 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
784 843 }
785 844 }
786 845
787 846 void set_sy_lfr_watchdog_enabled( bool state )
788 847 {
789 848 if (state == true)
790 849 {
791 850 housekeeping_packet.lfr_status_word[1] =
792 851 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
793 852 }
794 853 else
795 854 {
796 855 housekeeping_packet.lfr_status_word[1] =
797 856 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
798 857 }
799 858 }
800 859
801 860 void set_hk_lfr_calib_enable( bool state )
802 861 {
803 862 if (state == true)
804 863 {
805 864 housekeeping_packet.lfr_status_word[1] =
806 865 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
807 866 }
808 867 else
809 868 {
810 869 housekeeping_packet.lfr_status_word[1] =
811 870 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
812 871 }
813 872 }
814 873
815 874 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
816 875 {
817 876 housekeeping_packet.lfr_status_word[1] =
818 877 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
819 878
820 879 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
821 880 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
822 881
823 882 }
824 883
825 884 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
826 885 {
827 886 int delta;
828 887
829 888 delta = 0;
830 889
831 890 if (newValue >= oldValue)
832 891 {
833 892 delta = newValue - oldValue;
834 893 }
835 894 else
836 895 {
837 896 delta = (CONST_256 - oldValue) + newValue;
838 897 }
839 898
840 899 *counter = *counter + delta;
841 900 }
842 901
843 902 void hk_lfr_le_update( void )
844 903 {
845 904 static hk_lfr_le_t old_hk_lfr_le = {0};
846 905 hk_lfr_le_t new_hk_lfr_le;
847 906 unsigned int counter;
848 907
849 908 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
850 909
851 910 // DPU
852 911 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
853 912 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
854 913 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
855 914 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
856 915 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
857 916 // TIMECODE
858 917 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
859 918 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
860 919 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
861 920 // TIME
862 921 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
863 922 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
864 923 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
865 924 //AHB
866 925 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
867 926 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
868 927 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
869 928
870 929 // update the le counter
871 930 // DPU
872 931 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
873 932 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
874 933 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
875 934 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
876 935 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
877 936 // TIMECODE
878 937 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
879 938 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
880 939 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
881 940 // TIME
882 941 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
883 942 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
884 943 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
885 944 // AHB
886 945 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
887 946
888 947 // DPU
889 948 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
890 949 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
891 950 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
892 951 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
893 952 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
894 953 // TIMECODE
895 954 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
896 955 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
897 956 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
898 957 // TIME
899 958 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
900 959 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
901 960 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
902 961 //AHB
903 962 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
904 963 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
905 964 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
906 965
907 966 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
908 967 // LE
909 968 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
910 969 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
911 970 }
912 971
913 972 void hk_lfr_me_update( void )
914 973 {
915 974 static hk_lfr_me_t old_hk_lfr_me = {0};
916 975 hk_lfr_me_t new_hk_lfr_me;
917 976 unsigned int counter;
918 977
919 978 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
920 979
921 980 // get the current values
922 981 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
923 982 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
924 983 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
925 984 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
926 985
927 986 // update the me counter
928 987 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
929 988 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
930 989 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
931 990 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
932 991
933 992 // store the counters for the next time
934 993 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
935 994 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
936 995 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
937 996 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
938 997
939 998 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
940 999 // ME
941 1000 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
942 1001 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
943 1002 }
944 1003
945 1004 void hk_lfr_le_me_he_update()
946 1005 {
947 1006
948 1007 unsigned int hk_lfr_he_cnt;
949 1008
950 1009 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
951 1010
952 1011 //update the low severity error counter
953 1012 hk_lfr_le_update( );
954 1013
955 1014 //update the medium severity error counter
956 1015 hk_lfr_me_update();
957 1016
958 1017 //update the high severity error counter
959 1018 hk_lfr_he_cnt = 0;
960 1019
961 1020 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
962 1021 // HE
963 1022 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
964 1023 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
965 1024
966 1025 }
967 1026
968 1027 void set_hk_lfr_time_not_synchro()
969 1028 {
970 1029 static unsigned char synchroLost = 1;
971 1030 int synchronizationBit;
972 1031
973 1032 // get the synchronization bit
974 1033 synchronizationBit =
975 1034 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
976 1035
977 1036 switch (synchronizationBit)
978 1037 {
979 1038 case 0:
980 1039 if (synchroLost == 1)
981 1040 {
982 1041 synchroLost = 0;
983 1042 }
984 1043 break;
985 1044 case 1:
986 1045 if (synchroLost == 0 )
987 1046 {
988 1047 synchroLost = 1;
989 1048 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
990 1049 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
991 1050 }
992 1051 break;
993 1052 default:
994 1053 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
995 1054 break;
996 1055 }
997 1056
998 1057 }
999 1058
1000 1059 void set_hk_lfr_ahb_correctable() // CRITICITY L
1001 1060 {
1002 1061 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1003 1062 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1004 1063 * detected errors in the cache, in the integer unit and in the floating point unit.
1005 1064 *
1006 1065 * @param void
1007 1066 *
1008 1067 * @return void
1009 1068 *
1010 1069 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1011 1070 *
1012 1071 */
1013 1072
1014 1073 unsigned int ahb_correctable;
1015 1074 unsigned int instructionErrorCounter;
1016 1075 unsigned int dataErrorCounter;
1017 1076 unsigned int fprfErrorCounter;
1018 1077 unsigned int iurfErrorCounter;
1019 1078
1020 1079 instructionErrorCounter = 0;
1021 1080 dataErrorCounter = 0;
1022 1081 fprfErrorCounter = 0;
1023 1082 iurfErrorCounter = 0;
1024 1083
1025 1084 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1026 1085 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1027 1086
1028 1087 ahb_correctable = instructionErrorCounter
1029 1088 + dataErrorCounter
1030 1089 + fprfErrorCounter
1031 1090 + iurfErrorCounter
1032 1091 + housekeeping_packet.hk_lfr_ahb_correctable;
1033 1092
1034 1093 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1035 1094
1036 1095 }
@@ -1,1343 +1,1344
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
16 16 ring_node *current_ring_node_f0 = NULL;
17 17 ring_node *ring_node_to_send_swf_f0 = NULL;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
20 20 ring_node *current_ring_node_f1 = NULL;
21 21 ring_node *ring_node_to_send_swf_f1 = NULL;
22 22 ring_node *ring_node_to_send_cwf_f1 = NULL;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
25 25 ring_node *current_ring_node_f2 = NULL;
26 26 ring_node *ring_node_to_send_swf_f2 = NULL;
27 27 ring_node *ring_node_to_send_cwf_f2 = NULL;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
30 30 ring_node *current_ring_node_f3 = NULL;
31 31 ring_node *ring_node_to_send_cwf_f3 = NULL;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
43 43 ring_node ring_node_swf1_extracted = {0};
44 44 ring_node ring_node_swf2_extracted = {0};
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case CHANNELF1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case CHANNELF2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case CHANNELF3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case CHANNELF0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case CHANNELF1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case CHANNELF2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
146 146
147 147 switch(status)
148 148 {
149 149 case BIT_WFP_BUFFER_0:
150 150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 154 current_ring_node_f2 = current_ring_node_f2->next;
155 155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 158 }
159 159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
160 160 break;
161 161 case BIT_WFP_BUFFER_1:
162 162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 166 current_ring_node_f2 = current_ring_node_f2->next;
167 167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 170 }
171 171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
172 172 break;
173 173 default:
174 174 break;
175 175 }
176 176 }
177 177
178 178 inline void waveform_isr_normal_sbm1_sbm2( void )
179 179 {
180 180 rtems_status_code status;
181 181
182 182 //***
183 183 // F0
184 184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
185 185 {
186 186 swf0_ready_flag_f1 = true;
187 187 swf0_ready_flag_f2 = true;
188 188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 189 current_ring_node_f0 = current_ring_node_f0->next;
190 190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
191 191 {
192 192
193 193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
197 197 }
198 198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
199 199 {
200 200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
204 204 }
205 205 // send an event to the WFRM task for resynchro activities
206 206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 status = rtems_event_send( Task_id[TASKID_CALI], RTEMS_EVENT_CAL_SWEEP_WAKE );
207 208 }
208 209
209 210 //***
210 211 // F1
211 212 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F1) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
212 213 // (1) change the receiving buffer for the waveform picker
213 214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 215 current_ring_node_f1 = current_ring_node_f1->next;
215 216 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
216 217 {
217 218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 221 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
221 222 }
222 223 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
223 224 {
224 225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 228 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
228 229 }
229 230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 232 }
232 233
233 234 //***
234 235 // F2
235 236 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
236 237 // (1) change the receiving buffer for the waveform picker
237 238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 240 current_ring_node_f2 = current_ring_node_f2->next;
240 241 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
241 242 {
242 243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 246 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
246 247 }
247 248 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
248 249 {
249 250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 253 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
253 254 }
254 255 // (2) send an event for the waveforms transmission
255 256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 257 }
257 258 }
258 259
259 260 rtems_isr waveforms_isr( rtems_vector_number vector )
260 261 {
261 262 /** This is the interrupt sub routine called by the waveform picker core.
262 263 *
263 264 * This ISR launch different actions depending mainly on two pieces of information:
264 265 * 1. the values read in the registers of the waveform picker.
265 266 * 2. the current LFR mode.
266 267 *
267 268 */
268 269
269 270 // STATUS
270 271 // new error error buffer full
271 272 // 15 14 13 12 11 10 9 8
272 273 // f3 f2 f1 f0 f3 f2 f1 f0
273 274 //
274 275 // ready buffer
275 276 // 7 6 5 4 3 2 1 0
276 277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 278
278 279 rtems_status_code spare_status;
279 280
280 281 waveforms_isr_f3();
281 282
282 283 //*************************************************
283 284 // copy the status bits in the housekeeping packets
284 285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 286 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
286 287
287 288 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
288 289 {
289 290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 291 }
291 292
292 293 switch(lfrCurrentMode)
293 294 {
294 295 //********
295 296 // STANDBY
296 297 case LFR_MODE_STANDBY:
297 298 break;
298 299 //**************************
299 300 // LFR NORMAL, SBM1 and SBM2
300 301 case LFR_MODE_NORMAL:
301 302 case LFR_MODE_SBM1:
302 303 case LFR_MODE_SBM2:
303 304 waveform_isr_normal_sbm1_sbm2();
304 305 break;
305 306 //******
306 307 // BURST
307 308 case LFR_MODE_BURST:
308 309 waveforms_isr_burst();
309 310 break;
310 311 //********
311 312 // DEFAULT
312 313 default:
313 314 break;
314 315 }
315 316 }
316 317
317 318 //************
318 319 // RTEMS TASKS
319 320
320 321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 322 {
322 323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 324 *
324 325 * @param unused is the starting argument of the RTEMS task
325 326 *
326 327 * The following data packets are sent by this task:
327 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 331 *
331 332 */
332 333
333 334 rtems_event_set event_out;
334 335 rtems_id queue_id;
335 336 rtems_status_code status;
336 337 ring_node *ring_node_swf1_extracted_ptr;
337 338 ring_node *ring_node_swf2_extracted_ptr;
338 339
339 340 event_out = EVENT_SETS_NONE_PENDING;
340 341 queue_id = RTEMS_ID_NONE;
341 342
342 343 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
343 344 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
344 345
345 346 status = get_message_queue_id_send( &queue_id );
346 347 if (status != RTEMS_SUCCESSFUL)
347 348 {
348 349 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
349 350 }
350 351
351 352 BOOT_PRINTF("in WFRM ***\n");
352 353
353 354 while(1){
354 355 // wait for an RTEMS_EVENT
355 356 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
356 357 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
357 358
358 359 if (event_out == RTEMS_EVENT_MODE_NORMAL)
359 360 {
360 361 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
361 362 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
362 363 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
363 364 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
364 365 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
365 366 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
366 367 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
367 368 }
368 369 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
369 370 {
370 371 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
371 372 }
372 373 }
373 374 }
374 375
375 376 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
376 377 {
377 378 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
378 379 *
379 380 * @param unused is the starting argument of the RTEMS task
380 381 *
381 382 * The following data packet is sent by this task:
382 383 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
383 384 *
384 385 */
385 386
386 387 rtems_event_set event_out;
387 388 rtems_id queue_id;
388 389 rtems_status_code status;
389 390 ring_node ring_node_cwf3_light;
390 391 ring_node *ring_node_to_send_cwf;
391 392
392 393 event_out = EVENT_SETS_NONE_PENDING;
393 394 queue_id = RTEMS_ID_NONE;
394 395
395 396 status = get_message_queue_id_send( &queue_id );
396 397 if (status != RTEMS_SUCCESSFUL)
397 398 {
398 399 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
399 400 }
400 401
401 402 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
402 403
403 404 // init the ring_node_cwf3_light structure
404 405 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
405 406 ring_node_cwf3_light.coarseTime = INIT_CHAR;
406 407 ring_node_cwf3_light.fineTime = INIT_CHAR;
407 408 ring_node_cwf3_light.next = NULL;
408 409 ring_node_cwf3_light.previous = NULL;
409 410 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
410 411 ring_node_cwf3_light.status = INIT_CHAR;
411 412
412 413 BOOT_PRINTF("in CWF3 ***\n");
413 414
414 415 while(1){
415 416 // wait for an RTEMS_EVENT
416 417 rtems_event_receive( RTEMS_EVENT_0,
417 418 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
418 419 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
419 420 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
420 421 {
421 422 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
422 423 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
423 424 {
424 425 PRINTF("send CWF_LONG_F3\n");
425 426 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
426 427 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
427 428 }
428 429 else
429 430 {
430 431 PRINTF("send CWF_F3 (light)\n");
431 432 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
432 433 }
433 434
434 435 }
435 436 else
436 437 {
437 438 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
438 439 }
439 440 }
440 441 }
441 442
442 443 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
443 444 {
444 445 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
445 446 *
446 447 * @param unused is the starting argument of the RTEMS task
447 448 *
448 449 * The following data packet is sent by this function:
449 450 * - TM_LFR_SCIENCE_BURST_CWF_F2
450 451 * - TM_LFR_SCIENCE_SBM2_CWF_F2
451 452 *
452 453 */
453 454
454 455 rtems_event_set event_out;
455 456 rtems_id queue_id;
456 457 rtems_status_code status;
457 458 ring_node *ring_node_to_send;
458 459 unsigned long long int acquisitionTimeF0_asLong;
459 460
460 461 event_out = EVENT_SETS_NONE_PENDING;
461 462 queue_id = RTEMS_ID_NONE;
462 463
463 464 acquisitionTimeF0_asLong = INIT_CHAR;
464 465
465 466 status = get_message_queue_id_send( &queue_id );
466 467 if (status != RTEMS_SUCCESSFUL)
467 468 {
468 469 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
469 470 }
470 471
471 472 BOOT_PRINTF("in CWF2 ***\n");
472 473
473 474 while(1){
474 475 // wait for an RTEMS_EVENT// send the snapshot when built
475 476 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
476 477 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
477 478 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
478 479 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
479 480 if (event_out == RTEMS_EVENT_MODE_BURST)
480 481 { // data are sent whatever the transition time
481 482 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 483 }
483 484 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
484 485 {
485 486 if ( lfrCurrentMode == LFR_MODE_SBM2 )
486 487 {
487 488 // data are sent depending on the transition time
488 489 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
489 490 {
490 491 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
491 492 }
492 493 }
493 494 // launch snapshot extraction if needed
494 495 if (extractSWF2 == true)
495 496 {
496 497 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
497 498 // extract the snapshot
498 499 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
499 500 &ring_node_swf2_extracted, swf2_extracted );
500 501 extractSWF2 = false;
501 502 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
502 503 }
503 504 if (swf0_ready_flag_f2 == true)
504 505 {
505 506 extractSWF2 = true;
506 507 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
507 508 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
508 509 swf0_ready_flag_f2 = false;
509 510 }
510 511 }
511 512 }
512 513 }
513 514
514 515 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
515 516 {
516 517 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
517 518 *
518 519 * @param unused is the starting argument of the RTEMS task
519 520 *
520 521 * The following data packet is sent by this function:
521 522 * - TM_LFR_SCIENCE_SBM1_CWF_F1
522 523 *
523 524 */
524 525
525 526 rtems_event_set event_out;
526 527 rtems_id queue_id;
527 528 rtems_status_code status;
528 529
529 530 ring_node *ring_node_to_send_cwf;
530 531
531 532 event_out = EVENT_SETS_NONE_PENDING;
532 533 queue_id = RTEMS_ID_NONE;
533 534
534 535 status = get_message_queue_id_send( &queue_id );
535 536 if (status != RTEMS_SUCCESSFUL)
536 537 {
537 538 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
538 539 }
539 540
540 541 BOOT_PRINTF("in CWF1 ***\n");
541 542
542 543 while(1){
543 544 // wait for an RTEMS_EVENT
544 545 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
545 546 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
546 547 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
547 548 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
548 549 if (lfrCurrentMode == LFR_MODE_SBM1)
549 550 {
550 551 // data are sent depending on the transition time
551 552 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
552 553 {
553 554 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
554 555 }
555 556 }
556 557 // launch snapshot extraction if needed
557 558 if (extractSWF1 == true)
558 559 {
559 560 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
560 561 // launch the snapshot extraction
561 562 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
562 563 extractSWF1 = false;
563 564 }
564 565 if (swf0_ready_flag_f1 == true)
565 566 {
566 567 extractSWF1 = true;
567 568 swf0_ready_flag_f1 = false; // this step shall be executed only one time
568 569 }
569 570 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
570 571 {
571 572 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
572 573 swf1_ready = false;
573 574 swf2_ready = false;
574 575 }
575 576 }
576 577 }
577 578
578 579 rtems_task swbd_task(rtems_task_argument argument)
579 580 {
580 581 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
581 582 *
582 583 * @param unused is the starting argument of the RTEMS task
583 584 *
584 585 */
585 586
586 587 rtems_event_set event_out;
587 588 unsigned long long int acquisitionTimeF0_asLong;
588 589
589 590 event_out = EVENT_SETS_NONE_PENDING;
590 591 acquisitionTimeF0_asLong = INIT_CHAR;
591 592
592 593 BOOT_PRINTF("in SWBD ***\n")
593 594
594 595 while(1){
595 596 // wait for an RTEMS_EVENT
596 597 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
597 598 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
598 599 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
599 600 {
600 601 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
601 602 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
602 603 &ring_node_swf1_extracted, swf1_extracted );
603 604 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
604 605 }
605 606 else
606 607 {
607 608 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
608 609 }
609 610 }
610 611 }
611 612
612 613 //******************
613 614 // general functions
614 615
615 616 void WFP_init_rings( void )
616 617 {
617 618 // F0 RING
618 619 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
619 620 // F1 RING
620 621 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
621 622 // F2 RING
622 623 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
623 624 // F3 RING
624 625 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
625 626
626 627 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
627 628 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
628 629
629 630 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
630 631 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
631 632 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
632 633 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
633 634 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
634 635 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
635 636 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
636 637 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
637 638
638 639 }
639 640
640 641 void WFP_reset_current_ring_nodes( void )
641 642 {
642 643 current_ring_node_f0 = waveform_ring_f0[0].next;
643 644 current_ring_node_f1 = waveform_ring_f1[0].next;
644 645 current_ring_node_f2 = waveform_ring_f2[0].next;
645 646 current_ring_node_f3 = waveform_ring_f3[0].next;
646 647
647 648 ring_node_to_send_swf_f0 = waveform_ring_f0;
648 649 ring_node_to_send_swf_f1 = waveform_ring_f1;
649 650 ring_node_to_send_swf_f2 = waveform_ring_f2;
650 651
651 652 ring_node_to_send_cwf_f1 = waveform_ring_f1;
652 653 ring_node_to_send_cwf_f2 = waveform_ring_f2;
653 654 ring_node_to_send_cwf_f3 = waveform_ring_f3;
654 655 }
655 656
656 657 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
657 658 {
658 659 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
659 660 *
660 661 * @param waveform points to the buffer containing the data that will be send.
661 662 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
662 663 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
663 664 * contain information to setup the transmission of the data packets.
664 665 *
665 666 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
666 667 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
667 668 *
668 669 */
669 670
670 671 unsigned int i;
671 672 unsigned int j;
672 673 int ret;
673 674 rtems_status_code status;
674 675
675 676 char *sample;
676 677 int *dataPtr;
677 678
678 679 ret = LFR_DEFAULT;
679 680
680 681 dataPtr = (int*) ring_node_to_send->buffer_address;
681 682
682 683 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
683 684 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
684 685
685 686 //**********************
686 687 // BUILD CWF3_light DATA
687 688 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
688 689 {
689 690 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
690 691 for (j=0; j < CWF_BLK_SIZE; j++)
691 692 {
692 693 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
693 694 }
694 695 }
695 696
696 697 // SEND PACKET
697 698 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
698 699 if (status != RTEMS_SUCCESSFUL) {
699 700 ret = LFR_DEFAULT;
700 701 }
701 702
702 703 return ret;
703 704 }
704 705
705 706 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
706 707 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
707 708 {
708 709 unsigned long long int acquisitionTimeAsLong;
709 710 unsigned char localAcquisitionTime[BYTES_PER_TIME];
710 711 double deltaT;
711 712
712 713 deltaT = INIT_FLOAT;
713 714
714 715 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
715 716 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
716 717 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
717 718 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
718 719 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
719 720 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
720 721
721 722 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
722 723 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
723 724 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
724 725 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
725 726 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
726 727 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
727 728
728 729 switch( sid )
729 730 {
730 731 case SID_NORM_SWF_F0:
731 732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
732 733 break;
733 734
734 735 case SID_NORM_SWF_F1:
735 736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
736 737 break;
737 738
738 739 case SID_NORM_SWF_F2:
739 740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
740 741 break;
741 742
742 743 case SID_SBM1_CWF_F1:
743 744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
744 745 break;
745 746
746 747 case SID_SBM2_CWF_F2:
747 748 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
748 749 break;
749 750
750 751 case SID_BURST_CWF_F2:
751 752 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
752 753 break;
753 754
754 755 case SID_NORM_CWF_F3:
755 756 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
756 757 break;
757 758
758 759 case SID_NORM_CWF_LONG_F3:
759 760 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
760 761 break;
761 762
762 763 default:
763 764 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
764 765 deltaT = 0.;
765 766 break;
766 767 }
767 768
768 769 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
769 770 //
770 771 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
771 772 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
772 773 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
773 774 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
774 775 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
775 776 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
776 777
777 778 }
778 779
779 780 void build_snapshot_from_ring( ring_node *ring_node_to_send,
780 781 unsigned char frequencyChannel,
781 782 unsigned long long int acquisitionTimeF0_asLong,
782 783 ring_node *ring_node_swf_extracted,
783 784 int *swf_extracted)
784 785 {
785 786 unsigned int i;
786 787 unsigned int node;
787 788 unsigned long long int centerTime_asLong;
788 789 unsigned long long int acquisitionTime_asLong;
789 790 unsigned long long int bufferAcquisitionTime_asLong;
790 791 unsigned char *ptr1;
791 792 unsigned char *ptr2;
792 793 unsigned char *timeCharPtr;
793 794 unsigned char nb_ring_nodes;
794 795 unsigned long long int frequency_asLong;
795 796 unsigned long long int nbTicksPerSample_asLong;
796 797 unsigned long long int nbSamplesPart1_asLong;
797 798 unsigned long long int sampleOffset_asLong;
798 799
799 800 unsigned int deltaT_F0;
800 801 unsigned int deltaT_F1;
801 802 unsigned long long int deltaT_F2;
802 803
803 804 deltaT_F0 = DELTAT_F0;
804 805 deltaT_F1 = DELTAT_F1;
805 806 deltaT_F2 = DELTAT_F2;
806 807 sampleOffset_asLong = INIT_CHAR;
807 808
808 809 // (1) get the f0 acquisition time => the value is passed in argument
809 810
810 811 // (2) compute the central reference time
811 812 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
812 813 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 814 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 815 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
815 816
816 817 // (3) compute the acquisition time of the current snapshot
817 818 switch(frequencyChannel)
818 819 {
819 820 case CHANNELF1: // 1 is for F1 = 4096 Hz
820 821 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
821 822 nb_ring_nodes = NB_RING_NODES_F1;
822 823 frequency_asLong = FREQ_F1;
823 824 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
824 825 break;
825 826 case CHANNELF2: // 2 is for F2 = 256 Hz
826 827 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
827 828 nb_ring_nodes = NB_RING_NODES_F2;
828 829 frequency_asLong = FREQ_F2;
829 830 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
830 831 break;
831 832 default:
832 833 acquisitionTime_asLong = centerTime_asLong;
833 834 nb_ring_nodes = 0;
834 835 frequency_asLong = FREQ_F2;
835 836 nbTicksPerSample_asLong = TICKS_PER_T2;
836 837 break;
837 838 }
838 839
839 840 //*****************************************************************************
840 841 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
841 842 node = 0;
842 843 while ( node < nb_ring_nodes)
843 844 {
844 845 //PRINTF1("%d ... ", node);
845 846 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
846 847 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
847 848 {
848 849 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
849 850 node = nb_ring_nodes;
850 851 }
851 852 else
852 853 {
853 854 node = node + 1;
854 855 ring_node_to_send = ring_node_to_send->previous;
855 856 }
856 857 }
857 858
858 859 // (5) compute the number of samples to take in the current buffer
859 860 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
860 861 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
861 862 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
862 863
863 864 // (6) compute the final acquisition time
864 865 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
865 866 (sampleOffset_asLong * nbTicksPerSample_asLong);
866 867
867 868 // (7) copy the acquisition time at the beginning of the extrated snapshot
868 869 ptr1 = (unsigned char*) &acquisitionTime_asLong;
869 870 // fine time
870 871 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
871 872 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
872 873 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
873 874 // coarse time
874 875 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
875 876 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
876 877 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
877 878 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
878 879 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
879 880
880 881 // re set the synchronization bit
881 882 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
882 883 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
883 884
884 885 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
885 886 {
886 887 nbSamplesPart1_asLong = 0;
887 888 }
888 889 // copy the part 1 of the snapshot in the extracted buffer
889 890 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
890 891 {
891 892 swf_extracted[i] =
892 893 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
893 894 }
894 895 // copy the part 2 of the snapshot in the extracted buffer
895 896 ring_node_to_send = ring_node_to_send->next;
896 897 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
897 898 {
898 899 swf_extracted[i] =
899 900 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
900 901 }
901 902 }
902 903
903 904 double computeCorrection( unsigned char *timePtr )
904 905 {
905 906 unsigned long long int acquisitionTime;
906 907 unsigned long long int centerTime;
907 908 unsigned long long int previousTick;
908 909 unsigned long long int nextTick;
909 910 unsigned long long int deltaPreviousTick;
910 911 unsigned long long int deltaNextTick;
911 912 double deltaPrevious_ms;
912 913 double deltaNext_ms;
913 914 double correctionInF2;
914 915
915 916 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
916 917
917 918 // get acquisition time in fine time ticks
918 919 acquisitionTime = get_acquisition_time( timePtr );
919 920
920 921 // compute center time
921 922 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
922 923 previousTick = centerTime - (centerTime & INT16_ALL_F);
923 924 nextTick = previousTick + TICKS_PER_S;
924 925
925 926 deltaPreviousTick = centerTime - previousTick;
926 927 deltaNextTick = nextTick - centerTime;
927 928
928 929 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
929 930 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
930 931
931 932 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
932 933
933 934 // which tick is the closest?
934 935 if (deltaPreviousTick > deltaNextTick)
935 936 {
936 937 // the snapshot center is just before the second => increase delta_snapshot
937 938 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
938 939 }
939 940 else
940 941 {
941 942 // the snapshot center is just after the second => decrease delta_snapshot
942 943 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
943 944 }
944 945
945 946 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
946 947
947 948 return correctionInF2;
948 949 }
949 950
950 951 void applyCorrection( double correction )
951 952 {
952 953 int correctionInt;
953 954
954 955 correctionInt = 0;
955 956
956 957 if (correction >= 0.)
957 958 {
958 959 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
959 960 {
960 961 correctionInt = ONE_TICK_CORR;
961 962 }
962 963 else
963 964 {
964 965 correctionInt = CORR_MULT * floor(correction);
965 966 }
966 967 }
967 968 else
968 969 {
969 970 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
970 971 {
971 972 correctionInt = -ONE_TICK_CORR;
972 973 }
973 974 else
974 975 {
975 976 correctionInt = CORR_MULT * ceil(correction);
976 977 }
977 978 }
978 979 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
979 980 }
980 981
981 982 void snapshot_resynchronization( unsigned char *timePtr )
982 983 {
983 984 /** This function compute a correction to apply on delta_snapshot.
984 985 *
985 986 *
986 987 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
987 988 *
988 989 * @return void
989 990 *
990 991 */
991 992
992 993 static double correction = INIT_FLOAT;
993 994 static resynchro_state state = MEASURE;
994 995 static unsigned int nbSnapshots = 0;
995 996
996 997 int correctionInt;
997 998
998 999 correctionInt = 0;
999 1000
1000 1001 switch (state)
1001 1002 {
1002 1003
1003 1004 case MEASURE:
1004 1005 // ********
1005 1006 PRINTF1("MEASURE === %d\n", nbSnapshots);
1006 1007 state = CORRECTION;
1007 1008 correction = computeCorrection( timePtr );
1008 1009 PRINTF1("MEASURE === correction = %.2f\n", correction );
1009 1010 applyCorrection( correction );
1010 1011 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1011 1012 //****
1012 1013 break;
1013 1014
1014 1015 case CORRECTION:
1015 1016 //************
1016 1017 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1017 1018 state = MEASURE;
1018 1019 computeCorrection( timePtr );
1019 1020 set_wfp_delta_snapshot();
1020 1021 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1021 1022 //****
1022 1023 break;
1023 1024
1024 1025 default:
1025 1026 break;
1026 1027
1027 1028 }
1028 1029
1029 1030 nbSnapshots++;
1030 1031 }
1031 1032
1032 1033 //**************
1033 1034 // wfp registers
1034 1035 void reset_wfp_burst_enable( void )
1035 1036 {
1036 1037 /** This function resets the waveform picker burst_enable register.
1037 1038 *
1038 1039 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1039 1040 *
1040 1041 */
1041 1042
1042 1043 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1043 1044 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1044 1045 }
1045 1046
1046 1047 void reset_wfp_status( void )
1047 1048 {
1048 1049 /** This function resets the waveform picker status register.
1049 1050 *
1050 1051 * All status bits are set to 0 [new_err full_err full].
1051 1052 *
1052 1053 */
1053 1054
1054 1055 waveform_picker_regs->status = INT16_ALL_F;
1055 1056 }
1056 1057
1057 1058 void reset_wfp_buffer_addresses( void )
1058 1059 {
1059 1060 // F0
1060 1061 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1061 1062 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1062 1063 // F1
1063 1064 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1064 1065 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1065 1066 // F2
1066 1067 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1067 1068 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1068 1069 // F3
1069 1070 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1070 1071 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1071 1072 }
1072 1073
1073 1074 void reset_waveform_picker_regs( void )
1074 1075 {
1075 1076 /** This function resets the waveform picker module registers.
1076 1077 *
1077 1078 * The registers affected by this function are located at the following offset addresses:
1078 1079 * - 0x00 data_shaping
1079 1080 * - 0x04 run_burst_enable
1080 1081 * - 0x08 addr_data_f0
1081 1082 * - 0x0C addr_data_f1
1082 1083 * - 0x10 addr_data_f2
1083 1084 * - 0x14 addr_data_f3
1084 1085 * - 0x18 status
1085 1086 * - 0x1C delta_snapshot
1086 1087 * - 0x20 delta_f0
1087 1088 * - 0x24 delta_f0_2
1088 1089 * - 0x28 delta_f1 (obsolet parameter)
1089 1090 * - 0x2c delta_f2
1090 1091 * - 0x30 nb_data_by_buffer
1091 1092 * - 0x34 nb_snapshot_param
1092 1093 * - 0x38 start_date
1093 1094 * - 0x3c nb_word_in_buffer
1094 1095 *
1095 1096 */
1096 1097
1097 1098 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1098 1099
1099 1100 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1100 1101
1101 1102 reset_wfp_buffer_addresses();
1102 1103
1103 1104 reset_wfp_status(); // 0x18
1104 1105
1105 1106 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1106 1107
1107 1108 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1108 1109
1109 1110 //the parameter delta_f1 [0x28] is not used anymore
1110 1111
1111 1112 set_wfp_delta_f2(); // 0x2c
1112 1113
1113 1114 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1114 1115 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1115 1116 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1116 1117 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1117 1118 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1118 1119 // 2688 = 8 * 336
1119 1120 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1120 1121 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1121 1122 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1122 1123 //
1123 1124 // coarse time and fine time registers are not initialized, they are volatile
1124 1125 //
1125 1126 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1126 1127 }
1127 1128
1128 1129 void set_wfp_data_shaping( void )
1129 1130 {
1130 1131 /** This function sets the data_shaping register of the waveform picker module.
1131 1132 *
1132 1133 * The value is read from one field of the parameter_dump_packet structure:\n
1133 1134 * bw_sp0_sp1_r0_r1
1134 1135 *
1135 1136 */
1136 1137
1137 1138 unsigned char data_shaping;
1138 1139
1139 1140 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1140 1141 // waveform picker : [R1 R0 SP1 SP0 BW]
1141 1142
1142 1143 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1143 1144
1144 1145 waveform_picker_regs->data_shaping =
1145 1146 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1146 1147 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1147 1148 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1148 1149 + ( (data_shaping & BIT_2) << 1 ) // R0
1149 1150 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1150 1151 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1151 1152 }
1152 1153
1153 1154 void set_wfp_burst_enable_register( unsigned char mode )
1154 1155 {
1155 1156 /** This function sets the waveform picker burst_enable register depending on the mode.
1156 1157 *
1157 1158 * @param mode is the LFR mode to launch.
1158 1159 *
1159 1160 * The burst bits shall be before the enable bits.
1160 1161 *
1161 1162 */
1162 1163
1163 1164 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1164 1165 // the burst bits shall be set first, before the enable bits
1165 1166 switch(mode) {
1166 1167 case LFR_MODE_NORMAL:
1167 1168 case LFR_MODE_SBM1:
1168 1169 case LFR_MODE_SBM2:
1169 1170 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1170 1171 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_ALL; // [1111] enable f3 f2 f1 f0
1171 1172 break;
1172 1173 case LFR_MODE_BURST:
1173 1174 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1174 1175 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_BURST; // [1100] enable f3 and f2
1175 1176 break;
1176 1177 default:
1177 1178 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1178 1179 break;
1179 1180 }
1180 1181 }
1181 1182
1182 1183 void set_wfp_delta_snapshot( void )
1183 1184 {
1184 1185 /** This function sets the delta_snapshot register of the waveform picker module.
1185 1186 *
1186 1187 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1187 1188 * - sy_lfr_n_swf_p[0]
1188 1189 * - sy_lfr_n_swf_p[1]
1189 1190 *
1190 1191 */
1191 1192
1192 1193 unsigned int delta_snapshot;
1193 1194 unsigned int delta_snapshot_in_T2;
1194 1195
1195 1196 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1196 1197 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1197 1198
1198 1199 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1199 1200 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1200 1201 }
1201 1202
1202 1203 void set_wfp_delta_f0_f0_2( void )
1203 1204 {
1204 1205 unsigned int delta_snapshot;
1205 1206 unsigned int nb_samples_per_snapshot;
1206 1207 float delta_f0_in_float;
1207 1208
1208 1209 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 1210 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 1211 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1211 1212
1212 1213 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1213 1214 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2;
1214 1215 }
1215 1216
1216 1217 void set_wfp_delta_f1( void )
1217 1218 {
1218 1219 /** Sets the value of the delta_f1 parameter
1219 1220 *
1220 1221 * @param void
1221 1222 *
1222 1223 * @return void
1223 1224 *
1224 1225 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1225 1226 *
1226 1227 */
1227 1228
1228 1229 unsigned int delta_snapshot;
1229 1230 unsigned int nb_samples_per_snapshot;
1230 1231 float delta_f1_in_float;
1231 1232
1232 1233 delta_snapshot = waveform_picker_regs->delta_snapshot;
1233 1234 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1234 1235 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1235 1236
1236 1237 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1237 1238 }
1238 1239
1239 1240 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1240 1241 {
1241 1242 /** Sets the value of the delta_f2 parameter
1242 1243 *
1243 1244 * @param void
1244 1245 *
1245 1246 * @return void
1246 1247 *
1247 1248 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1248 1249 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1249 1250 *
1250 1251 */
1251 1252
1252 1253 unsigned int delta_snapshot;
1253 1254 unsigned int nb_samples_per_snapshot;
1254 1255
1255 1256 delta_snapshot = waveform_picker_regs->delta_snapshot;
1256 1257 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1257 1258
1258 1259 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1259 1260 }
1260 1261
1261 1262 //*****************
1262 1263 // local parameters
1263 1264
1264 1265 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1265 1266 {
1266 1267 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1267 1268 *
1268 1269 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1269 1270 * @param sid is the source identifier of the packet being updated.
1270 1271 *
1271 1272 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1272 1273 * The sequence counters shall wrap around from 2^14 to zero.
1273 1274 * The sequence counter shall start at zero at startup.
1274 1275 *
1275 1276 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1276 1277 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1277 1278 *
1278 1279 */
1279 1280
1280 1281 unsigned short *sequence_cnt;
1281 1282 unsigned short segmentation_grouping_flag;
1282 1283 unsigned short new_packet_sequence_control;
1283 1284 rtems_mode initial_mode_set;
1284 1285 rtems_mode current_mode_set;
1285 1286 rtems_status_code status;
1286 1287
1287 1288 initial_mode_set = RTEMS_DEFAULT_MODES;
1288 1289 current_mode_set = RTEMS_DEFAULT_MODES;
1289 1290 sequence_cnt = NULL;
1290 1291
1291 1292 //******************************************
1292 1293 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1293 1294 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1294 1295
1295 1296 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1296 1297 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1297 1298 || (sid == SID_BURST_CWF_F2)
1298 1299 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1299 1300 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1300 1301 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1301 1302 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1302 1303 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1303 1304 {
1304 1305 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1305 1306 }
1306 1307 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1307 1308 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1308 1309 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1309 1310 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1310 1311 {
1311 1312 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1312 1313 }
1313 1314 else
1314 1315 {
1315 1316 sequence_cnt = (unsigned short *) NULL;
1316 1317 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1317 1318 }
1318 1319
1319 1320 if (sequence_cnt != NULL)
1320 1321 {
1321 1322 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1322 1323 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1323 1324
1324 1325 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1325 1326
1326 1327 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1327 1328 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1328 1329
1329 1330 // increment the sequence counter
1330 1331 if ( *sequence_cnt < SEQ_CNT_MAX)
1331 1332 {
1332 1333 *sequence_cnt = *sequence_cnt + 1;
1333 1334 }
1334 1335 else
1335 1336 {
1336 1337 *sequence_cnt = 0;
1337 1338 }
1338 1339 }
1339 1340
1340 1341 //*************************************
1341 1342 // RESTORE THE MODE OF THE CALLING TASK
1342 1343 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1343 1344 }