##// END OF EJS Templates
AVGV task added...
paul -
r298:ff57d1825f54 R3_plus draft
parent child
Show More
@@ -0,0 +1,31
1 import time
2
3 proxy.loadSysDriver("SpwPlugin","SpwPlugin0")
4 SpwPlugin0.selectBridge("STAR-Dundee Spw USB Brick")
5
6 proxy.loadSysDriverToParent("dsu3plugin","SpwPlugin0")
7 proxy.loadSysDriverToParent("LFRControlPlugin","SpwPlugin0")
8
9 availableBrickCount = SpwPlugin0.StarDundeeGetAvailableBrickCount()
10 print str(availableBrickCount) + " SpaceWire brick(s) found"
11
12 SpwPlugin0.StarDundeeSelectBrick(1)
13 SpwPlugin0.StarDundeeSetBrickAsARouter(1)
14 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
15 SpwPlugin0.connectBridge()
16
17 #SpwPlugin0.TCPServerSetIP("127.0.0.1")
18 SpwPlugin0.TCPServerConnect()
19
20 # OPEN SPACEWIRE SERVER
21 #LFRControlPlugin0.SetSpwServerIP(129,104,27,164)
22 LFRControlPlugin0.TCPServerConnect()
23
24 # OPEN TM ECHO BRIDGE SERVER
25 LFRControlPlugin0.TMEchoBridgeOpenPort()
26
27 # START SENDING TIMECODES AT 1 Hz
28 SpwPlugin0.StarDundeeStartTimecodes( 1 )
29
30 # it is possible to change the time code frequency
31 #RMAPPlugin0.changeTimecodeFrequency(2)
@@ -0,0 +1,14
1 # LOAD FSW USING LINK 1
2 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
3
4 dsu3plugin0.openFile("/opt/DEV_PLE/FSW-qt/bin/fsw")
5 #dsu3plugin0.openFile("/opt/LFR/LFR-FSW/2.0.2.3/fsw")
6 dsu3plugin0.loadFile()
7
8 dsu3plugin0.run()
9
10 # START SENDING TIMECODES AT 1 Hz
11 #SpwPlugin0.StarDundeeStartTimecodes( 1 )
12
13 # it is possible to change the time code frequency
14 #RMAPPlugin0.changeTimecodeFrequency(2)
@@ -0,0 +1,13
1 # LOAD FSW USING LINK 1
2 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
3
4 dsu3plugin0.openFile("/opt/LFR/LFR-FSW/3.0.0.10/fsw")
5 dsu3plugin0.loadFile()
6
7 dsu3plugin0.run()
8
9 # START SENDING TIMECODES AT 1 Hz
10 SpwPlugin0.StarDundeeStartTimecodes( 1 )
11
12 # it is possible to change the time code frequency
13 #RMAPPlugin0.changeTimecodeFrequency(2)
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 1ffa3d630b9ced4a87a362dafb10d9838e9cc0d9 header/lfr_common_headers
2 94f0f2fccbcb8030d9437ffbb69ee0eefaaea188 header/lfr_common_headers
@@ -1,64 +1,64
1 1 #ifndef FSW_INIT_H_INCLUDED
2 2 #define FSW_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 9 #include "fsw_processing.h"
10 10
11 11 #include "tc_handler.h"
12 12 #include "wf_handler.h"
13 13 #include "fsw_spacewire.h"
14 14
15 15 #include "avf0_prc0.h"
16 16 #include "avf1_prc1.h"
17 17 #include "avf2_prc2.h"
18 18
19 extern rtems_name Task_name[20]; /* array of task names */
20 extern rtems_id Task_id[20]; /* array of task ids */
19 extern rtems_name Task_name[]; /* array of task names */
20 extern rtems_id Task_id[]; /* array of task ids */
21 21 extern rtems_name timecode_timer_name;
22 22 extern rtems_id timecode_timer_id;
23 23 extern unsigned char pa_bia_status_info;
24 24 extern unsigned char cp_rpw_sc_rw_f_flags;
25 25 extern float cp_rpw_sc_rw1_f1;
26 26 extern float cp_rpw_sc_rw1_f2;
27 27 extern float cp_rpw_sc_rw2_f1;
28 28 extern float cp_rpw_sc_rw2_f2;
29 29 extern float cp_rpw_sc_rw3_f1;
30 30 extern float cp_rpw_sc_rw3_f2;
31 31 extern float cp_rpw_sc_rw4_f1;
32 32 extern float cp_rpw_sc_rw4_f2;
33 33 extern filterPar_t filterPar;
34 34
35 35 // RTEMS TASKS
36 36 rtems_task Init( rtems_task_argument argument);
37 37
38 38 // OTHER functions
39 39 void create_names( void );
40 40 int create_all_tasks( void );
41 41 int start_all_tasks( void );
42 42 //
43 43 rtems_status_code create_message_queues( void );
44 44 rtems_status_code create_timecode_timer( void );
45 45 rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
46 46 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
47 47 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
48 48 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
49 49 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
50 50 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max );
51 51 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize );
52 52 //
53 53 int start_recv_send_tasks( void );
54 54 //
55 55 void init_local_mode_parameters( void );
56 56 void reset_local_time( void );
57 57
58 58 extern void rtems_cpu_usage_report( void );
59 59 extern void rtems_cpu_usage_reset( void );
60 60 extern void rtems_stack_checker_report_usage( void );
61 61
62 62 extern int sched_yield( void );
63 63
64 64 #endif // FSW_INIT_H_INCLUDED
@@ -1,84 +1,87
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7 #include <grlib_regs.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "lfr_cpu_usage_report.h"
12 12
13 13
14 14 enum lfr_reset_cause_t{
15 15 UNKNOWN_CAUSE,
16 16 POWER_ON,
17 17 TC_RESET,
18 18 WATCHDOG,
19 19 ERROR_RESET,
20 20 UNEXP_RESET
21 21 };
22 22
23 23 extern gptimer_regs_t *gptimer_regs;
24 24 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
25 25 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
26 26
27 27 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
28 28
29 29 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
30 30 rtems_id HK_id; // id of the HK rate monotonic period
31 rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
32 rtems_id AVGV_id; // id of the AVGV rate monotonic period
31 33
32 34 void timer_configure( unsigned char timer, unsigned int clock_divider,
33 35 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
34 36 void timer_start( unsigned char timer );
35 37 void timer_stop( unsigned char timer );
36 38 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
37 39
38 40 // WATCHDOG
39 41 rtems_isr watchdog_isr( rtems_vector_number vector );
40 42 void watchdog_configure(void);
41 43 void watchdog_stop(void);
42 44 void watchdog_reload(void);
43 45 void watchdog_start(void);
44 46
45 47 // SERIAL LINK
46 48 int send_console_outputs_on_apbuart_port( void );
47 49 int enable_apbuart_transmitter( void );
48 50 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
49 51
50 52 // RTEMS TASKS
51 53 rtems_task load_task( rtems_task_argument argument );
52 54 rtems_task hous_task( rtems_task_argument argument );
55 rtems_task avgv_task( rtems_task_argument argument );
53 56 rtems_task dumb_task( rtems_task_argument unused );
54 57
55 58 void init_housekeeping_parameters( void );
56 59 void increment_seq_counter(unsigned short *packetSequenceControl);
57 60 void getTime( unsigned char *time);
58 61 unsigned long long int getTimeAsUnsignedLongLongInt( );
59 62 void send_dumb_hk( void );
60 63 void get_temperatures( unsigned char *temperatures );
61 64 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
62 65 void get_cpu_load( unsigned char *resource_statistics );
63 66 void set_hk_lfr_sc_potential_flag( bool state );
64 67 void set_sy_lfr_pas_filter_enabled( bool state );
65 68 void set_sy_lfr_watchdog_enabled( bool state );
66 69 void set_hk_lfr_calib_enable( bool state );
67 70 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
68 71 void hk_lfr_le_me_he_update();
69 72 void set_hk_lfr_time_not_synchro();
70 73
71 74 extern int sched_yield( void );
72 75 extern void rtems_cpu_usage_reset();
73 76 extern ring_node *current_ring_node_f3;
74 77 extern ring_node *ring_node_to_send_cwf_f3;
75 78 extern ring_node waveform_ring_f3[];
76 79 extern unsigned short sequenceCounterHK;
77 80
78 81 extern unsigned char hk_lfr_q_sd_fifo_size_max;
79 82 extern unsigned char hk_lfr_q_rv_fifo_size_max;
80 83 extern unsigned char hk_lfr_q_p0_fifo_size_max;
81 84 extern unsigned char hk_lfr_q_p1_fifo_size_max;
82 85 extern unsigned char hk_lfr_q_p2_fifo_size_max;
83 86
84 87 #endif // FSW_MISC_H_INCLUDED
@@ -1,938 +1,955
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 #define CONFIGURE_MAXIMUM_TASKS 20
29 #define CONFIGURE_MAXIMUM_TASKS 21 // number of tasks concurrently active including INIT
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 #define CONFIGURE_MAXIMUM_PERIODS 5
37 #define CONFIGURE_MAXIMUM_PERIODS 5 // [hous] [load] [avgv]
38 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link]
39 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 40 #ifdef PRINT_STACK_REPORT
41 41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 42 #endif
43 43
44 44 #include <rtems/confdefs.h>
45 45
46 46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 47 #ifdef RTEMS_DRVMGR_STARTUP
48 48 #ifdef LEON3
49 49 /* Add Timer and UART Driver */
50 50
51 51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 53 #endif
54 54
55 55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 57 #endif
58 58
59 59 #endif
60 60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 61
62 62 #include <drvmgr/drvmgr_confdefs.h>
63 63 #endif
64 64
65 65 #include "fsw_init.h"
66 66 #include "fsw_config.c"
67 67 #include "GscMemoryLPP.hpp"
68 68
69 69 void initCache()
70 70 {
71 71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 72 // These should only be read and written using 32-bit LDA/STA instructions.
73 73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 74 // The table below shows the register addresses:
75 75 // 0x00 Cache control register
76 76 // 0x04 Reserved
77 77 // 0x08 Instruction cache configuration register
78 78 // 0x0C Data cache configuration register
79 79
80 80 // Cache Control Register Leon3 / Leon3FT
81 81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 82 // RFT PS TB DS FD FI FT ST IB
83 83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 85
86 86 unsigned int cacheControlRegister;
87 87
88 88 CCR_resetCacheControlRegister();
89 89 ASR16_resetRegisterProtectionControlRegister();
90 90
91 91 cacheControlRegister = CCR_getValue();
92 92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 94
95 95 CCR_enableInstructionCache(); // ICS bits
96 96 CCR_enableDataCache(); // DCS bits
97 97 CCR_enableInstructionBurstFetch(); // IB bit
98 98
99 99 faultTolerantScheme();
100 100
101 101 cacheControlRegister = CCR_getValue();
102 102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 104
105 105 PRINTF("\n");
106 106 }
107 107
108 108 rtems_task Init( rtems_task_argument ignored )
109 109 {
110 110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 111 *
112 112 * @param unused is the starting argument of the RTEMS task
113 113 *
114 114 * The INIT task create and run all other RTEMS tasks.
115 115 *
116 116 */
117 117
118 118 //***********
119 119 // INIT CACHE
120 120
121 121 unsigned char *vhdlVersion;
122 122
123 123 reset_lfr();
124 124
125 125 reset_local_time();
126 126
127 127 rtems_cpu_usage_reset();
128 128
129 129 rtems_status_code status;
130 130 rtems_status_code status_spw;
131 131 rtems_isr_entry old_isr_handler;
132 132
133 133 // UART settings
134 134 enable_apbuart_transmitter();
135 135 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
136 136
137 137 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
138 138
139 139
140 140 PRINTF("\n\n\n\n\n")
141 141
142 142 initCache();
143 143
144 144 PRINTF("*************************\n")
145 145 PRINTF("** LFR Flight Software **\n")
146 PRINTF1("** %d.", SW_VERSION_N1)
147 PRINTF1("%d." , SW_VERSION_N2)
148 PRINTF1("%d." , SW_VERSION_N3)
149 PRINTF1("%d **\n", SW_VERSION_N4)
146 PRINTF1("** %d-", SW_VERSION_N1)
147 PRINTF1("%d-" , SW_VERSION_N2)
148 PRINTF1("%d-" , SW_VERSION_N3)
149 PRINTF1("%d **\n", SW_VERSION_N4)
150 150
151 151 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
152 152 PRINTF("** VHDL **\n")
153 153 PRINTF1("** %d.", vhdlVersion[1])
154 154 PRINTF1("%d." , vhdlVersion[2])
155 155 PRINTF1("%d **\n", vhdlVersion[3])
156 156 PRINTF("*************************\n")
157 157 PRINTF("\n\n")
158 158
159 159 init_parameter_dump();
160 160 init_kcoefficients_dump();
161 161 init_local_mode_parameters();
162 162 init_housekeeping_parameters();
163 163 init_k_coefficients_prc0();
164 164 init_k_coefficients_prc1();
165 165 init_k_coefficients_prc2();
166 166 pa_bia_status_info = 0x00;
167 167 cp_rpw_sc_rw_f_flags = 0x00;
168 168 cp_rpw_sc_rw1_f1 = 0.0;
169 169 cp_rpw_sc_rw1_f2 = 0.0;
170 170 cp_rpw_sc_rw2_f1 = 0.0;
171 171 cp_rpw_sc_rw2_f2 = 0.0;
172 172 cp_rpw_sc_rw3_f1 = 0.0;
173 173 cp_rpw_sc_rw3_f2 = 0.0;
174 174 cp_rpw_sc_rw4_f1 = 0.0;
175 175 cp_rpw_sc_rw4_f2 = 0.0;
176 176 // initialize filtering parameters
177 177 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
178 178 filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
179 179 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
180 180 filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
181 181 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
182 182 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
183 183 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
184 184
185 185 // waveform picker initialization
186 186 WFP_init_rings();
187 187 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
188 188 WFP_reset_current_ring_nodes();
189 189 reset_waveform_picker_regs();
190 190
191 191 // spectral matrices initialization
192 192 SM_init_rings(); // initialize spectral matrices rings
193 193 SM_reset_current_ring_nodes();
194 194 reset_spectral_matrix_regs();
195 195
196 196 // configure calibration
197 197 configureCalibration( false ); // true means interleaved mode, false is for normal mode
198 198
199 199 updateLFRCurrentMode( LFR_MODE_STANDBY );
200 200
201 201 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
202 202
203 203 create_names(); // create all names
204 204
205 205 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
206 206 if (status != RTEMS_SUCCESSFUL)
207 207 {
208 208 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
209 209 }
210 210
211 211 status = create_message_queues(); // create message queues
212 212 if (status != RTEMS_SUCCESSFUL)
213 213 {
214 214 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
215 215 }
216 216
217 217 status = create_all_tasks(); // create all tasks
218 218 if (status != RTEMS_SUCCESSFUL)
219 219 {
220 220 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
221 221 }
222 222
223 223 // **************************
224 224 // <SPACEWIRE INITIALIZATION>
225 225 status_spw = spacewire_open_link(); // (1) open the link
226 226 if ( status_spw != RTEMS_SUCCESSFUL )
227 227 {
228 228 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
229 229 }
230 230
231 231 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
232 232 {
233 233 status_spw = spacewire_configure_link( fdSPW );
234 234 if ( status_spw != RTEMS_SUCCESSFUL )
235 235 {
236 236 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
237 237 }
238 238 }
239 239
240 240 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
241 241 {
242 242 status_spw = spacewire_start_link( fdSPW );
243 243 if ( status_spw != RTEMS_SUCCESSFUL )
244 244 {
245 245 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
246 246 }
247 247 }
248 248 // </SPACEWIRE INITIALIZATION>
249 249 // ***************************
250 250
251 251 status = start_all_tasks(); // start all tasks
252 252 if (status != RTEMS_SUCCESSFUL)
253 253 {
254 254 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
255 255 }
256 256
257 257 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
258 258 status = start_recv_send_tasks();
259 259 if ( status != RTEMS_SUCCESSFUL )
260 260 {
261 261 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
262 262 }
263 263
264 264 // suspend science tasks, they will be restarted later depending on the mode
265 265 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
266 266 if (status != RTEMS_SUCCESSFUL)
267 267 {
268 268 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
269 269 }
270 270
271 271 // configure IRQ handling for the waveform picker unit
272 272 status = rtems_interrupt_catch( waveforms_isr,
273 273 IRQ_SPARC_WAVEFORM_PICKER,
274 274 &old_isr_handler) ;
275 275 // configure IRQ handling for the spectral matrices unit
276 276 status = rtems_interrupt_catch( spectral_matrices_isr,
277 277 IRQ_SPARC_SPECTRAL_MATRIX,
278 278 &old_isr_handler) ;
279 279
280 280 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
281 281 if ( status_spw != RTEMS_SUCCESSFUL )
282 282 {
283 283 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
284 284 if ( status != RTEMS_SUCCESSFUL ) {
285 285 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
286 286 }
287 287 }
288 288
289 289 BOOT_PRINTF("delete INIT\n")
290 290
291 291 set_hk_lfr_sc_potential_flag( true );
292 292
293 293 // start the timer to detect a missing spacewire timecode
294 294 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
295 295 // if a tickout is generated, the timer is restarted
296 296 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
297 297
298 298 grspw_timecode_callback = &timecode_irq_handler;
299 299
300 300 status = rtems_task_delete(RTEMS_SELF);
301 301
302 302 }
303 303
304 304 void init_local_mode_parameters( void )
305 305 {
306 306 /** This function initialize the param_local global variable with default values.
307 307 *
308 308 */
309 309
310 310 unsigned int i;
311 311
312 312 // LOCAL PARAMETERS
313 313
314 314 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
315 315 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
316 316 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
317 317
318 318 // init sequence counters
319 319
320 320 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
321 321 {
322 322 sequenceCounters_TC_EXE[i] = 0x00;
323 323 sequenceCounters_TM_DUMP[i] = 0x00;
324 324 }
325 325 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
326 326 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
327 327 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
328 328 }
329 329
330 330 void reset_local_time( void )
331 331 {
332 332 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
333 333 }
334 334
335 335 void create_names( void ) // create all names for tasks and queues
336 336 {
337 337 /** This function creates all RTEMS names used in the software for tasks and queues.
338 338 *
339 339 * @return RTEMS directive status codes:
340 340 * - RTEMS_SUCCESSFUL - successful completion
341 341 *
342 342 */
343 343
344 344 // task names
345 Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' );
345 346 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
346 347 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
347 348 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
348 349 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
349 350 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
350 351 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
351 352 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
352 353 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
353 354 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
354 355 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
355 356 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
356 357 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
357 358 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
358 359 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
359 360 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
360 361 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
361 362 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
362 363 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
363 364 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
364 365
365 366 // rate monotonic period names
366 367 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
368 name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' );
367 369
368 370 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
369 371 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
370 372 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
371 373 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
372 374 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
373 375
374 376 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
375 377 }
376 378
377 379 int create_all_tasks( void ) // create all tasks which run in the software
378 380 {
379 381 /** This function creates all RTEMS tasks used in the software.
380 382 *
381 383 * @return RTEMS directive status codes:
382 384 * - RTEMS_SUCCESSFUL - task created successfully
383 385 * - RTEMS_INVALID_ADDRESS - id is NULL
384 386 * - RTEMS_INVALID_NAME - invalid task name
385 387 * - RTEMS_INVALID_PRIORITY - invalid task priority
386 388 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
387 389 * - RTEMS_TOO_MANY - too many tasks created
388 390 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
389 391 * - RTEMS_TOO_MANY - too many global objects
390 392 *
391 393 */
392 394
393 395 rtems_status_code status;
394 396
395 397 //**********
396 398 // SPACEWIRE
397 399 // RECV
398 400 status = rtems_task_create(
399 401 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
400 402 RTEMS_DEFAULT_MODES,
401 403 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
402 404 );
403 405 if (status == RTEMS_SUCCESSFUL) // SEND
404 406 {
405 407 status = rtems_task_create(
406 408 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
407 409 RTEMS_DEFAULT_MODES,
408 410 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
409 411 );
410 412 }
411 413 if (status == RTEMS_SUCCESSFUL) // LINK
412 414 {
413 415 status = rtems_task_create(
414 416 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
415 417 RTEMS_DEFAULT_MODES,
416 418 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
417 419 );
418 420 }
419 421 if (status == RTEMS_SUCCESSFUL) // ACTN
420 422 {
421 423 status = rtems_task_create(
422 424 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
423 425 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
424 426 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
425 427 );
426 428 }
427 429 if (status == RTEMS_SUCCESSFUL) // SPIQ
428 430 {
429 431 status = rtems_task_create(
430 432 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
431 433 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
432 434 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
433 435 );
434 436 }
435 437
436 438 //******************
437 439 // SPECTRAL MATRICES
438 440 if (status == RTEMS_SUCCESSFUL) // AVF0
439 441 {
440 442 status = rtems_task_create(
441 443 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
442 444 RTEMS_DEFAULT_MODES,
443 445 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
444 446 );
445 447 }
446 448 if (status == RTEMS_SUCCESSFUL) // PRC0
447 449 {
448 450 status = rtems_task_create(
449 451 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
450 452 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
451 453 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
452 454 );
453 455 }
454 456 if (status == RTEMS_SUCCESSFUL) // AVF1
455 457 {
456 458 status = rtems_task_create(
457 459 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
458 460 RTEMS_DEFAULT_MODES,
459 461 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
460 462 );
461 463 }
462 464 if (status == RTEMS_SUCCESSFUL) // PRC1
463 465 {
464 466 status = rtems_task_create(
465 467 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
466 468 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
467 469 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
468 470 );
469 471 }
470 472 if (status == RTEMS_SUCCESSFUL) // AVF2
471 473 {
472 474 status = rtems_task_create(
473 475 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
474 476 RTEMS_DEFAULT_MODES,
475 477 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
476 478 );
477 479 }
478 480 if (status == RTEMS_SUCCESSFUL) // PRC2
479 481 {
480 482 status = rtems_task_create(
481 483 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
482 484 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
483 485 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
484 486 );
485 487 }
486 488
487 489 //****************
488 490 // WAVEFORM PICKER
489 491 if (status == RTEMS_SUCCESSFUL) // WFRM
490 492 {
491 493 status = rtems_task_create(
492 494 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
493 495 RTEMS_DEFAULT_MODES,
494 496 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
495 497 );
496 498 }
497 499 if (status == RTEMS_SUCCESSFUL) // CWF3
498 500 {
499 501 status = rtems_task_create(
500 502 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
501 503 RTEMS_DEFAULT_MODES,
502 504 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
503 505 );
504 506 }
505 507 if (status == RTEMS_SUCCESSFUL) // CWF2
506 508 {
507 509 status = rtems_task_create(
508 510 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
509 511 RTEMS_DEFAULT_MODES,
510 512 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
511 513 );
512 514 }
513 515 if (status == RTEMS_SUCCESSFUL) // CWF1
514 516 {
515 517 status = rtems_task_create(
516 518 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
517 519 RTEMS_DEFAULT_MODES,
518 520 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
519 521 );
520 522 }
521 523 if (status == RTEMS_SUCCESSFUL) // SWBD
522 524 {
523 525 status = rtems_task_create(
524 526 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
525 527 RTEMS_DEFAULT_MODES,
526 528 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
527 529 );
528 530 }
529 531
530 532 //*****
531 533 // MISC
532 534 if (status == RTEMS_SUCCESSFUL) // LOAD
533 535 {
534 536 status = rtems_task_create(
535 537 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
536 538 RTEMS_DEFAULT_MODES,
537 539 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
538 540 );
539 541 }
540 542 if (status == RTEMS_SUCCESSFUL) // DUMB
541 543 {
542 544 status = rtems_task_create(
543 545 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
544 546 RTEMS_DEFAULT_MODES,
545 547 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
546 548 );
547 549 }
548 550 if (status == RTEMS_SUCCESSFUL) // HOUS
549 551 {
550 552 status = rtems_task_create(
551 553 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
552 554 RTEMS_DEFAULT_MODES,
553 555 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
554 556 );
555 557 }
558 if (status == RTEMS_SUCCESSFUL) // AVGV
559 {
560 status = rtems_task_create(
561 Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE,
562 RTEMS_DEFAULT_MODES,
563 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV]
564 );
565 }
556 566
557 567 return status;
558 568 }
559 569
560 570 int start_recv_send_tasks( void )
561 571 {
562 572 rtems_status_code status;
563 573
564 574 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
565 575 if (status!=RTEMS_SUCCESSFUL) {
566 576 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
567 577 }
568 578
569 579 if (status == RTEMS_SUCCESSFUL) // SEND
570 580 {
571 581 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
572 582 if (status!=RTEMS_SUCCESSFUL) {
573 583 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
574 584 }
575 585 }
576 586
577 587 return status;
578 588 }
579 589
580 590 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
581 591 {
582 592 /** This function starts all RTEMS tasks used in the software.
583 593 *
584 594 * @return RTEMS directive status codes:
585 595 * - RTEMS_SUCCESSFUL - ask started successfully
586 596 * - RTEMS_INVALID_ADDRESS - invalid task entry point
587 597 * - RTEMS_INVALID_ID - invalid task id
588 598 * - RTEMS_INCORRECT_STATE - task not in the dormant state
589 599 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
590 600 *
591 601 */
592 602 // starts all the tasks fot eh flight software
593 603
594 604 rtems_status_code status;
595 605
596 606 //**********
597 607 // SPACEWIRE
598 608 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
599 609 if (status!=RTEMS_SUCCESSFUL) {
600 610 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
601 611 }
602 612
603 613 if (status == RTEMS_SUCCESSFUL) // LINK
604 614 {
605 615 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
606 616 if (status!=RTEMS_SUCCESSFUL) {
607 617 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
608 618 }
609 619 }
610 620
611 621 if (status == RTEMS_SUCCESSFUL) // ACTN
612 622 {
613 623 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
614 624 if (status!=RTEMS_SUCCESSFUL) {
615 625 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
616 626 }
617 627 }
618 628
619 629 //******************
620 630 // SPECTRAL MATRICES
621 631 if (status == RTEMS_SUCCESSFUL) // AVF0
622 632 {
623 633 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
624 634 if (status!=RTEMS_SUCCESSFUL) {
625 635 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
626 636 }
627 637 }
628 638 if (status == RTEMS_SUCCESSFUL) // PRC0
629 639 {
630 640 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
631 641 if (status!=RTEMS_SUCCESSFUL) {
632 642 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
633 643 }
634 644 }
635 645 if (status == RTEMS_SUCCESSFUL) // AVF1
636 646 {
637 647 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
638 648 if (status!=RTEMS_SUCCESSFUL) {
639 649 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
640 650 }
641 651 }
642 652 if (status == RTEMS_SUCCESSFUL) // PRC1
643 653 {
644 654 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
645 655 if (status!=RTEMS_SUCCESSFUL) {
646 656 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
647 657 }
648 658 }
649 659 if (status == RTEMS_SUCCESSFUL) // AVF2
650 660 {
651 661 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
652 662 if (status!=RTEMS_SUCCESSFUL) {
653 663 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
654 664 }
655 665 }
656 666 if (status == RTEMS_SUCCESSFUL) // PRC2
657 667 {
658 668 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
659 669 if (status!=RTEMS_SUCCESSFUL) {
660 670 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
661 671 }
662 672 }
663 673
664 674 //****************
665 675 // WAVEFORM PICKER
666 676 if (status == RTEMS_SUCCESSFUL) // WFRM
667 677 {
668 678 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
669 679 if (status!=RTEMS_SUCCESSFUL) {
670 680 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
671 681 }
672 682 }
673 683 if (status == RTEMS_SUCCESSFUL) // CWF3
674 684 {
675 685 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
676 686 if (status!=RTEMS_SUCCESSFUL) {
677 687 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
678 688 }
679 689 }
680 690 if (status == RTEMS_SUCCESSFUL) // CWF2
681 691 {
682 692 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
683 693 if (status!=RTEMS_SUCCESSFUL) {
684 694 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
685 695 }
686 696 }
687 697 if (status == RTEMS_SUCCESSFUL) // CWF1
688 698 {
689 699 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
690 700 if (status!=RTEMS_SUCCESSFUL) {
691 701 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
692 702 }
693 703 }
694 704 if (status == RTEMS_SUCCESSFUL) // SWBD
695 705 {
696 706 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
697 707 if (status!=RTEMS_SUCCESSFUL) {
698 708 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
699 709 }
700 710 }
701 711
702 712 //*****
703 713 // MISC
704 714 if (status == RTEMS_SUCCESSFUL) // HOUS
705 715 {
706 716 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
707 717 if (status!=RTEMS_SUCCESSFUL) {
708 718 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
709 719 }
710 720 }
721 if (status == RTEMS_SUCCESSFUL) // AVGV
722 {
723 status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 );
724 if (status!=RTEMS_SUCCESSFUL) {
725 BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n")
726 }
727 }
711 728 if (status == RTEMS_SUCCESSFUL) // DUMB
712 729 {
713 730 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
714 731 if (status!=RTEMS_SUCCESSFUL) {
715 732 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
716 733 }
717 734 }
718 735 if (status == RTEMS_SUCCESSFUL) // LOAD
719 736 {
720 737 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
721 738 if (status!=RTEMS_SUCCESSFUL) {
722 739 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
723 740 }
724 741 }
725 742
726 743 return status;
727 744 }
728 745
729 746 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
730 747 {
731 748 rtems_status_code status_recv;
732 749 rtems_status_code status_send;
733 750 rtems_status_code status_q_p0;
734 751 rtems_status_code status_q_p1;
735 752 rtems_status_code status_q_p2;
736 753 rtems_status_code ret;
737 754 rtems_id queue_id;
738 755
739 756 //****************************************
740 757 // create the queue for handling valid TCs
741 758 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
742 759 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
743 760 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
744 761 if ( status_recv != RTEMS_SUCCESSFUL ) {
745 762 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
746 763 }
747 764
748 765 //************************************************
749 766 // create the queue for handling TM packet sending
750 767 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
751 768 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
752 769 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
753 770 if ( status_send != RTEMS_SUCCESSFUL ) {
754 771 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
755 772 }
756 773
757 774 //*****************************************************************************
758 775 // create the queue for handling averaged spectral matrices for processing @ f0
759 776 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
760 777 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
761 778 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
762 779 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
763 780 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
764 781 }
765 782
766 783 //*****************************************************************************
767 784 // create the queue for handling averaged spectral matrices for processing @ f1
768 785 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
769 786 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
770 787 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
771 788 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
772 789 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
773 790 }
774 791
775 792 //*****************************************************************************
776 793 // create the queue for handling averaged spectral matrices for processing @ f2
777 794 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
778 795 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
779 796 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
780 797 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
781 798 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
782 799 }
783 800
784 801 if ( status_recv != RTEMS_SUCCESSFUL )
785 802 {
786 803 ret = status_recv;
787 804 }
788 805 else if( status_send != RTEMS_SUCCESSFUL )
789 806 {
790 807 ret = status_send;
791 808 }
792 809 else if( status_q_p0 != RTEMS_SUCCESSFUL )
793 810 {
794 811 ret = status_q_p0;
795 812 }
796 813 else if( status_q_p1 != RTEMS_SUCCESSFUL )
797 814 {
798 815 ret = status_q_p1;
799 816 }
800 817 else
801 818 {
802 819 ret = status_q_p2;
803 820 }
804 821
805 822 return ret;
806 823 }
807 824
808 825 rtems_status_code create_timecode_timer( void )
809 826 {
810 827 rtems_status_code status;
811 828
812 829 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
813 830
814 831 if ( status != RTEMS_SUCCESSFUL )
815 832 {
816 833 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
817 834 }
818 835 else
819 836 {
820 837 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
821 838 }
822 839
823 840 return status;
824 841 }
825 842
826 843 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
827 844 {
828 845 rtems_status_code status;
829 846 rtems_name queue_name;
830 847
831 848 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
832 849
833 850 status = rtems_message_queue_ident( queue_name, 0, queue_id );
834 851
835 852 return status;
836 853 }
837 854
838 855 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
839 856 {
840 857 rtems_status_code status;
841 858 rtems_name queue_name;
842 859
843 860 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
844 861
845 862 status = rtems_message_queue_ident( queue_name, 0, queue_id );
846 863
847 864 return status;
848 865 }
849 866
850 867 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
851 868 {
852 869 rtems_status_code status;
853 870 rtems_name queue_name;
854 871
855 872 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
856 873
857 874 status = rtems_message_queue_ident( queue_name, 0, queue_id );
858 875
859 876 return status;
860 877 }
861 878
862 879 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
863 880 {
864 881 rtems_status_code status;
865 882 rtems_name queue_name;
866 883
867 884 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
868 885
869 886 status = rtems_message_queue_ident( queue_name, 0, queue_id );
870 887
871 888 return status;
872 889 }
873 890
874 891 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
875 892 {
876 893 rtems_status_code status;
877 894 rtems_name queue_name;
878 895
879 896 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
880 897
881 898 status = rtems_message_queue_ident( queue_name, 0, queue_id );
882 899
883 900 return status;
884 901 }
885 902
886 903 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
887 904 {
888 905 u_int32_t count;
889 906 rtems_status_code status;
890 907
891 908 status = rtems_message_queue_get_number_pending( queue_id, &count );
892 909
893 910 count = count + 1;
894 911
895 912 if (status != RTEMS_SUCCESSFUL)
896 913 {
897 914 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
898 915 }
899 916 else
900 917 {
901 918 if (count > *fifo_size_max)
902 919 {
903 920 *fifo_size_max = count;
904 921 }
905 922 }
906 923 }
907 924
908 925 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
909 926 {
910 927 unsigned char i;
911 928
912 929 //***************
913 930 // BUFFER ADDRESS
914 931 for(i=0; i<nbNodes; i++)
915 932 {
916 933 ring[i].coarseTime = 0xffffffff;
917 934 ring[i].fineTime = 0xffffffff;
918 935 ring[i].sid = 0x00;
919 936 ring[i].status = 0x00;
920 937 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
921 938 }
922 939
923 940 //*****
924 941 // NEXT
925 942 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
926 943 for(i=0; i<nbNodes-1; i++)
927 944 {
928 945 ring[i].next = (ring_node*) &ring[ i + 1 ];
929 946 }
930 947
931 948 //*********
932 949 // PREVIOUS
933 950 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
934 951 for(i=1; i<nbNodes; i++)
935 952 {
936 953 ring[i].previous = (ring_node*) &ring[ i - 1 ];
937 954 }
938 955 }
@@ -1,813 +1,898
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 // WATCHDOG
83 83
84 84 rtems_isr watchdog_isr( rtems_vector_number vector )
85 85 {
86 86 rtems_status_code status_code;
87 87
88 88 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
89 89
90 90 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
91 91
92 92 exit(0);
93 93 }
94 94
95 95 void watchdog_configure(void)
96 96 {
97 97 /** This function configure the watchdog.
98 98 *
99 99 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
100 100 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
101 101 *
102 102 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
103 103 *
104 104 */
105 105
106 106 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
107 107
108 108 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
109 109
110 110 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
111 111 }
112 112
113 113 void watchdog_stop(void)
114 114 {
115 115 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
116 116 timer_stop( TIMER_WATCHDOG );
117 117 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
118 118 }
119 119
120 120 void watchdog_reload(void)
121 121 {
122 122 /** This function reloads the watchdog timer counter with the timer reload value.
123 123 *
124 124 * @param void
125 125 *
126 126 * @return void
127 127 *
128 128 */
129 129
130 130 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
131 131 }
132 132
133 133 void watchdog_start(void)
134 134 {
135 135 /** This function starts the watchdog timer.
136 136 *
137 137 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
138 138 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
139 139 *
140 140 */
141 141
142 142 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
143 143
144 144 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
145 145 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
146 146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
147 147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
148 148
149 149 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
150 150
151 151 }
152 152
153 153 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
154 154 {
155 155 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
156 156
157 157 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
158 158
159 159 return 0;
160 160 }
161 161
162 162 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
163 163 {
164 164 /** This function sets the scaler reload register of the apbuart module
165 165 *
166 166 * @param regs is the address of the apbuart registers in memory
167 167 * @param value is the value that will be stored in the scaler register
168 168 *
169 169 * The value shall be set by the software to get data on the serial interface.
170 170 *
171 171 */
172 172
173 173 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
174 174
175 175 apbuart_regs->scaler = value;
176 176
177 177 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
178 178 }
179 179
180 180 //************
181 181 // RTEMS TASKS
182 182
183 183 rtems_task load_task(rtems_task_argument argument)
184 184 {
185 185 BOOT_PRINTF("in LOAD *** \n")
186 186
187 187 rtems_status_code status;
188 188 unsigned int i;
189 189 unsigned int j;
190 190 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
191 191 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
192 192
193 193 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
194 194
195 195 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
196 196 if( status != RTEMS_SUCCESSFUL ) {
197 197 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
198 198 }
199 199
200 200 i = 0;
201 201 j = 0;
202 202
203 203 watchdog_configure();
204 204
205 205 watchdog_start();
206 206
207 207 set_sy_lfr_watchdog_enabled( true );
208 208
209 209 while(1){
210 210 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
211 211 watchdog_reload();
212 212 i = i + 1;
213 213 if ( i == 10 )
214 214 {
215 215 i = 0;
216 216 j = j + 1;
217 217 PRINTF1("%d\n", j)
218 218 }
219 219 #ifdef DEBUG_WATCHDOG
220 220 if (j == 3 )
221 221 {
222 222 status = rtems_task_delete(RTEMS_SELF);
223 223 }
224 224 #endif
225 225 }
226 226 }
227 227
228 228 rtems_task hous_task(rtems_task_argument argument)
229 229 {
230 230 rtems_status_code status;
231 231 rtems_status_code spare_status;
232 232 rtems_id queue_id;
233 233 rtems_rate_monotonic_period_status period_status;
234 234
235 235 status = get_message_queue_id_send( &queue_id );
236 236 if (status != RTEMS_SUCCESSFUL)
237 237 {
238 238 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
239 239 }
240 240
241 241 BOOT_PRINTF("in HOUS ***\n");
242 242
243 243 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
244 244 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
245 245 if( status != RTEMS_SUCCESSFUL ) {
246 246 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
247 247 }
248 248 }
249 249
250 250 status = rtems_rate_monotonic_cancel(HK_id);
251 251 if( status != RTEMS_SUCCESSFUL ) {
252 252 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
253 253 }
254 254 else {
255 255 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
256 256 }
257 257
258 258 // startup phase
259 259 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
260 260 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
261 261 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
262 262 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
263 263 {
264 264 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
265 265 {
266 266 break; // break if LFR is synchronized
267 267 }
268 268 else
269 269 {
270 270 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
271 271 // sched_yield();
272 272 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
273 273 }
274 274 }
275 275 status = rtems_rate_monotonic_cancel(HK_id);
276 276 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
277 277
278 278 set_hk_lfr_reset_cause( POWER_ON );
279 279
280 280 while(1){ // launch the rate monotonic task
281 281 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
282 282 if ( status != RTEMS_SUCCESSFUL ) {
283 283 PRINTF1( "in HOUS *** ERR period: %d\n", status);
284 284 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
285 285 }
286 286 else {
287 287 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
288 288 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
289 289 increment_seq_counter( &sequenceCounterHK );
290 290
291 291 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
292 292 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
293 293 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
294 294 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
295 295 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
296 296 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
297 297
298 298 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
299 299
300 300 spacewire_read_statistics();
301 301
302 302 update_hk_with_grspw_stats();
303 303
304 304 set_hk_lfr_time_not_synchro();
305 305
306 306 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
307 307 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
308 308 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
309 309 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
310 310 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
311 311
312 312 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
313 313 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
314 314 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
315 315 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
316 316 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
317 317
318 318 hk_lfr_le_me_he_update();
319 319
320 320 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
321 321
322 322 // SEND PACKET
323 323 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
324 324 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
325 325 if (status != RTEMS_SUCCESSFUL) {
326 326 PRINTF1("in HOUS *** ERR send: %d\n", status)
327 327 }
328 328 }
329 329 }
330 330
331 331 PRINTF("in HOUS *** deleting task\n")
332 332
333 333 status = rtems_task_delete( RTEMS_SELF ); // should not return
334 334
335 335 return;
336 336 }
337 337
338 rtems_task avgv_task(rtems_task_argument argument)
339 {
340 #define MOVING_AVERAGE 16
341 rtems_status_code status;
342 unsigned int v[MOVING_AVERAGE];
343 unsigned int e1[MOVING_AVERAGE];
344 unsigned int e2[MOVING_AVERAGE];
345 float average_v;
346 float average_e1;
347 float average_e2;
348 unsigned char k;
349 unsigned char indexOfOldValue;
350
351 BOOT_PRINTF("in AVGV ***\n");
352
353 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
354 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
355 if( status != RTEMS_SUCCESSFUL ) {
356 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
357 }
358 }
359
360 status = rtems_rate_monotonic_cancel(AVGV_id);
361 if( status != RTEMS_SUCCESSFUL ) {
362 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
363 }
364 else {
365 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
366 }
367
368 // initialize values
369 k = 0;
370 indexOfOldValue = MOVING_AVERAGE - 1;
371 for (k = 0; k < MOVING_AVERAGE; k++)
372 {
373 v[k] = 0;
374 e1[k] = 0;
375 e2[k] = 0;
376 average_v = 0.;
377 average_e1 = 0.;
378 average_e2 = 0.;
379 }
380
381 k = 0;
382
383 while(1){ // launch the rate monotonic task
384 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
385 if ( status != RTEMS_SUCCESSFUL ) {
386 PRINTF1( "in AVGV *** ERR period: %d\n", status);
387 }
388 else {
389 // store new value in buffer
390 v[k] = waveform_picker_regs->v;
391 e1[k] = waveform_picker_regs->e1;
392 e2[k] = waveform_picker_regs->e2;
393 if (k == (MOVING_AVERAGE - 1))
394 {
395 indexOfOldValue = 0;
396 }
397 else
398 {
399 indexOfOldValue = k + 1;
400 }
401 average_v = average_v + v[k] - v[indexOfOldValue];
402 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
403 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
404 }
405 if (k == (MOVING_AVERAGE-1))
406 {
407 k = 0;
408 printf("tick\n");
409 }
410 else
411 {
412 k++;
413 }
414 }
415
416 PRINTF("in AVGV *** deleting task\n")
417
418 status = rtems_task_delete( RTEMS_SELF ); // should not return
419
420 return;
421 }
422
338 423 rtems_task dumb_task( rtems_task_argument unused )
339 424 {
340 425 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
341 426 *
342 427 * @param unused is the starting argument of the RTEMS task
343 428 *
344 429 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
345 430 *
346 431 */
347 432
348 433 unsigned int i;
349 434 unsigned int intEventOut;
350 435 unsigned int coarse_time = 0;
351 436 unsigned int fine_time = 0;
352 437 rtems_event_set event_out;
353 438
354 439 char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
355 440 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
356 441 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
357 442 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
358 443 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
359 444 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
360 445 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
361 446 "ready for dump", // RTEMS_EVENT_7
362 447 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
363 448 "tick", // RTEMS_EVENT_9
364 449 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
365 450 "VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
366 451 "WATCHDOG timer", // RTEMS_EVENT_12
367 452 "TIMECODE timer", // RTEMS_EVENT_13
368 453 "TIMECODE ISR" // RTEMS_EVENT_14
369 454 };
370 455
371 456 BOOT_PRINTF("in DUMB *** \n")
372 457
373 458 while(1){
374 459 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
375 460 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
376 461 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
377 462 | RTEMS_EVENT_14,
378 463 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
379 464 intEventOut = (unsigned int) event_out;
380 465 for ( i=0; i<32; i++)
381 466 {
382 467 if ( ((intEventOut >> i) & 0x0001) != 0)
383 468 {
384 469 coarse_time = time_management_regs->coarse_time;
385 470 fine_time = time_management_regs->fine_time;
386 471 if (i==12)
387 472 {
388 473 PRINTF1("%s\n", DumbMessages[12])
389 474 }
390 475 if (i==13)
391 476 {
392 477 PRINTF1("%s\n", DumbMessages[13])
393 478 }
394 479 if (i==14)
395 480 {
396 481 PRINTF1("%s\n", DumbMessages[1])
397 482 }
398 483 }
399 484 }
400 485 }
401 486 }
402 487
403 488 //*****************************
404 489 // init housekeeping parameters
405 490
406 491 void init_housekeeping_parameters( void )
407 492 {
408 493 /** This function initialize the housekeeping_packet global variable with default values.
409 494 *
410 495 */
411 496
412 497 unsigned int i = 0;
413 498 unsigned char *parameters;
414 499 unsigned char sizeOfHK;
415 500
416 501 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
417 502
418 503 parameters = (unsigned char*) &housekeeping_packet;
419 504
420 505 for(i = 0; i< sizeOfHK; i++)
421 506 {
422 507 parameters[i] = 0x00;
423 508 }
424 509
425 510 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
426 511 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
427 512 housekeeping_packet.reserved = DEFAULT_RESERVED;
428 513 housekeeping_packet.userApplication = CCSDS_USER_APP;
429 514 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
430 515 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
431 516 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
432 517 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
433 518 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
434 519 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
435 520 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
436 521 housekeeping_packet.serviceType = TM_TYPE_HK;
437 522 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
438 523 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
439 524 housekeeping_packet.sid = SID_HK;
440 525
441 526 // init status word
442 527 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
443 528 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
444 529 // init software version
445 530 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
446 531 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
447 532 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
448 533 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
449 534 // init fpga version
450 535 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
451 536 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
452 537 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
453 538 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
454 539
455 540 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
456 541 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
457 542 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
458 543 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
459 544 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
460 545 }
461 546
462 547 void increment_seq_counter( unsigned short *packetSequenceControl )
463 548 {
464 549 /** This function increment the sequence counter passes in argument.
465 550 *
466 551 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
467 552 *
468 553 */
469 554
470 555 unsigned short segmentation_grouping_flag;
471 556 unsigned short sequence_cnt;
472 557
473 558 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
474 559 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
475 560
476 561 if ( sequence_cnt < SEQ_CNT_MAX)
477 562 {
478 563 sequence_cnt = sequence_cnt + 1;
479 564 }
480 565 else
481 566 {
482 567 sequence_cnt = 0;
483 568 }
484 569
485 570 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
486 571 }
487 572
488 573 void getTime( unsigned char *time)
489 574 {
490 575 /** This function write the current local time in the time buffer passed in argument.
491 576 *
492 577 */
493 578
494 579 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
495 580 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
496 581 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
497 582 time[3] = (unsigned char) (time_management_regs->coarse_time);
498 583 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
499 584 time[5] = (unsigned char) (time_management_regs->fine_time);
500 585 }
501 586
502 587 unsigned long long int getTimeAsUnsignedLongLongInt( )
503 588 {
504 589 /** This function write the current local time in the time buffer passed in argument.
505 590 *
506 591 */
507 592 unsigned long long int time;
508 593
509 594 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
510 595 + time_management_regs->fine_time;
511 596
512 597 return time;
513 598 }
514 599
515 600 void send_dumb_hk( void )
516 601 {
517 602 Packet_TM_LFR_HK_t dummy_hk_packet;
518 603 unsigned char *parameters;
519 604 unsigned int i;
520 605 rtems_id queue_id;
521 606
522 607 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
523 608 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
524 609 dummy_hk_packet.reserved = DEFAULT_RESERVED;
525 610 dummy_hk_packet.userApplication = CCSDS_USER_APP;
526 611 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
527 612 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
528 613 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
529 614 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
530 615 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
531 616 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
532 617 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
533 618 dummy_hk_packet.serviceType = TM_TYPE_HK;
534 619 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
535 620 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
536 621 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
537 622 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
538 623 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
539 624 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
540 625 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
541 626 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
542 627 dummy_hk_packet.sid = SID_HK;
543 628
544 629 // init status word
545 630 dummy_hk_packet.lfr_status_word[0] = 0xff;
546 631 dummy_hk_packet.lfr_status_word[1] = 0xff;
547 632 // init software version
548 633 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
549 634 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
550 635 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
551 636 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
552 637 // init fpga version
553 638 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
554 639 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
555 640 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
556 641 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
557 642
558 643 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
559 644
560 645 for (i=0; i<100; i++)
561 646 {
562 647 parameters[i] = 0xff;
563 648 }
564 649
565 650 get_message_queue_id_send( &queue_id );
566 651
567 652 rtems_message_queue_send( queue_id, &dummy_hk_packet,
568 653 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
569 654 }
570 655
571 656 void get_temperatures( unsigned char *temperatures )
572 657 {
573 658 unsigned char* temp_scm_ptr;
574 659 unsigned char* temp_pcb_ptr;
575 660 unsigned char* temp_fpga_ptr;
576 661
577 662 // SEL1 SEL0
578 663 // 0 0 => PCB
579 664 // 0 1 => FPGA
580 665 // 1 0 => SCM
581 666
582 667 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
583 668 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
584 669 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
585 670
586 671 temperatures[0] = temp_scm_ptr[2];
587 672 temperatures[1] = temp_scm_ptr[3];
588 673 temperatures[2] = temp_pcb_ptr[2];
589 674 temperatures[3] = temp_pcb_ptr[3];
590 675 temperatures[4] = temp_fpga_ptr[2];
591 676 temperatures[5] = temp_fpga_ptr[3];
592 677 }
593 678
594 679 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
595 680 {
596 681 unsigned char* v_ptr;
597 682 unsigned char* e1_ptr;
598 683 unsigned char* e2_ptr;
599 684
600 685 v_ptr = (unsigned char *) &waveform_picker_regs->v;
601 686 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
602 687 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
603 688
604 689 spacecraft_potential[0] = v_ptr[2];
605 690 spacecraft_potential[1] = v_ptr[3];
606 691 spacecraft_potential[2] = e1_ptr[2];
607 692 spacecraft_potential[3] = e1_ptr[3];
608 693 spacecraft_potential[4] = e2_ptr[2];
609 694 spacecraft_potential[5] = e2_ptr[3];
610 695 }
611 696
612 697 void get_cpu_load( unsigned char *resource_statistics )
613 698 {
614 699 unsigned char cpu_load;
615 700
616 701 cpu_load = lfr_rtems_cpu_usage_report();
617 702
618 703 // HK_LFR_CPU_LOAD
619 704 resource_statistics[0] = cpu_load;
620 705
621 706 // HK_LFR_CPU_LOAD_MAX
622 707 if (cpu_load > resource_statistics[1])
623 708 {
624 709 resource_statistics[1] = cpu_load;
625 710 }
626 711
627 712 // CPU_LOAD_AVE
628 713 resource_statistics[2] = 0;
629 714
630 715 #ifndef PRINT_TASK_STATISTICS
631 716 rtems_cpu_usage_reset();
632 717 #endif
633 718
634 719 }
635 720
636 721 void set_hk_lfr_sc_potential_flag( bool state )
637 722 {
638 723 if (state == true)
639 724 {
640 725 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
641 726 }
642 727 else
643 728 {
644 729 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
645 730 }
646 731 }
647 732
648 733 void set_sy_lfr_pas_filter_enabled( bool state )
649 734 {
650 735 if (state == true)
651 736 {
652 737 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x20; // [0010 0000]
653 738 }
654 739 else
655 740 {
656 741 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xdf; // [1101 1111]
657 742 }
658 743 }
659 744
660 745 void set_sy_lfr_watchdog_enabled( bool state )
661 746 {
662 747 if (state == true)
663 748 {
664 749 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x10; // [0001 0000]
665 750 }
666 751 else
667 752 {
668 753 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xef; // [1110 1111]
669 754 }
670 755 }
671 756
672 757 void set_hk_lfr_calib_enable( bool state )
673 758 {
674 759 if (state == true)
675 760 {
676 761 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
677 762 }
678 763 else
679 764 {
680 765 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
681 766 }
682 767 }
683 768
684 769 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
685 770 {
686 771 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf8; // [1111 1000]
687 772
688 773 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
689 774 | (lfr_reset_cause & 0x07 ); // [0000 0111]
690 775
691 776 }
692 777
693 778 void hk_lfr_le_me_he_update()
694 779 {
695 780 unsigned int hk_lfr_le_cnt;
696 781 unsigned int hk_lfr_me_cnt;
697 782 unsigned int hk_lfr_he_cnt;
698 783 unsigned int current_hk_lfr_le_cnt;
699 784 unsigned int current_hk_lfr_me_cnt;
700 785 unsigned int current_hk_lfr_he_cnt;
701 786
702 787 hk_lfr_le_cnt = 0;
703 788 hk_lfr_me_cnt = 0;
704 789 hk_lfr_he_cnt = 0;
705 790 current_hk_lfr_le_cnt = ((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256 + housekeeping_packet.hk_lfr_le_cnt[1];
706 791 current_hk_lfr_me_cnt = ((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256 + housekeeping_packet.hk_lfr_me_cnt[1];
707 792 current_hk_lfr_he_cnt = ((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256 + housekeeping_packet.hk_lfr_he_cnt[1];
708 793
709 794 //update the low severity error counter
710 795 hk_lfr_le_cnt =
711 796 current_hk_lfr_le_cnt
712 797 + housekeeping_packet.hk_lfr_dpu_spw_parity
713 798 + housekeeping_packet.hk_lfr_dpu_spw_disconnect
714 799 + housekeeping_packet.hk_lfr_dpu_spw_escape
715 800 + housekeeping_packet.hk_lfr_dpu_spw_credit
716 801 + housekeeping_packet.hk_lfr_dpu_spw_write_sync
717 802 + housekeeping_packet.hk_lfr_timecode_erroneous
718 803 + housekeeping_packet.hk_lfr_timecode_missing
719 804 + housekeeping_packet.hk_lfr_timecode_invalid
720 805 + housekeeping_packet.hk_lfr_time_timecode_it
721 806 + housekeeping_packet.hk_lfr_time_not_synchro
722 807 + housekeeping_packet.hk_lfr_time_timecode_ctr
723 808 + housekeeping_packet.hk_lfr_ahb_correctable;
724 809 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
725 810 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
726 811
727 812 //update the medium severity error counter
728 813 hk_lfr_me_cnt =
729 814 current_hk_lfr_me_cnt
730 815 + housekeeping_packet.hk_lfr_dpu_spw_early_eop
731 816 + housekeeping_packet.hk_lfr_dpu_spw_invalid_addr
732 817 + housekeeping_packet.hk_lfr_dpu_spw_eep
733 818 + housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
734 819
735 820 //update the high severity error counter
736 821 hk_lfr_he_cnt = 0;
737 822
738 823 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
739 824 // LE
740 825 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((hk_lfr_le_cnt & 0xff00) >> 8);
741 826 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (hk_lfr_le_cnt & 0x00ff);
742 827 // ME
743 828 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((hk_lfr_me_cnt & 0xff00) >> 8);
744 829 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (hk_lfr_me_cnt & 0x00ff);
745 830 // HE
746 831 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & 0xff00) >> 8);
747 832 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & 0x00ff);
748 833
749 834 }
750 835
751 836 void set_hk_lfr_time_not_synchro()
752 837 {
753 838 static unsigned char synchroLost = 1;
754 839 int synchronizationBit;
755 840
756 841 // get the synchronization bit
757 842 synchronizationBit = (time_management_regs->coarse_time & 0x80000000) >> 31; // 1000 0000 0000 0000
758 843
759 844 switch (synchronizationBit)
760 845 {
761 846 case 0:
762 847 if (synchroLost == 1)
763 848 {
764 849 synchroLost = 0;
765 850 }
766 851 break;
767 852 case 1:
768 853 if (synchroLost == 0 )
769 854 {
770 855 synchroLost = 1;
771 856 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
772 857 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
773 858 }
774 859 break;
775 860 default:
776 861 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
777 862 break;
778 863 }
779 864
780 865 }
781 866
782 867 void set_hk_lfr_ahb_correctable() // CRITICITY L
783 868 {
784 869 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
785 870 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
786 871 * detected errors in the cache, in the integer unit and in the floating point unit.
787 872 *
788 873 * @param void
789 874 *
790 875 * @return void
791 876 *
792 877 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
793 878 *
794 879 */
795 880
796 881 unsigned int ahb_correctable;
797 882 unsigned int instructionErrorCounter;
798 883 unsigned int dataErrorCounter;
799 884 unsigned int fprfErrorCounter;
800 885 unsigned int iurfErrorCounter;
801 886
802 887 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
803 888 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
804 889
805 890 ahb_correctable = instructionErrorCounter
806 891 + dataErrorCounter
807 892 + fprfErrorCounter
808 893 + iurfErrorCounter
809 894 + housekeeping_packet.hk_lfr_ahb_correctable;
810 895
811 896 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & 0xff); // [1111 1111]
812 897
813 898 }
General Comments 0
You need to be logged in to leave comments. Login now