##// END OF EJS Templates
Commit before changing the resynchro strategy
paul -
r256:f8034461b403 R3a
parent child
Show More
@@ -1,1214 +1,1246
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 16 ring_node *current_ring_node_f0;
17 17 ring_node *ring_node_to_send_swf_f0;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 20 ring_node *current_ring_node_f1;
21 21 ring_node *ring_node_to_send_swf_f1;
22 22 ring_node *ring_node_to_send_cwf_f1;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 25 ring_node *current_ring_node_f2;
26 26 ring_node *ring_node_to_send_swf_f2;
27 27 ring_node *ring_node_to_send_cwf_f2;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 30 ring_node *current_ring_node_f3;
31 31 ring_node *ring_node_to_send_cwf_f3;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 43 ring_node ring_node_swf1_extracted;
44 44 ring_node ring_node_swf2_extracted;
45 45
46 typedef enum resynchro_state_t
47 {
48 IDLE,
49 MEASURE_K,
50 MEASURE_K_PLUS_1,
51 } resynchro_state;
52
46 53 //*********************
47 54 // Interrupt SubRoutine
48 55
49 56 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
50 57 {
51 58 ring_node *node;
52 59
53 60 node = NULL;
54 61 switch ( frequencyChannel ) {
55 62 case 1:
56 63 node = ring_node_to_send_cwf_f1;
57 64 break;
58 65 case 2:
59 66 node = ring_node_to_send_cwf_f2;
60 67 break;
61 68 case 3:
62 69 node = ring_node_to_send_cwf_f3;
63 70 break;
64 71 default:
65 72 break;
66 73 }
67 74
68 75 return node;
69 76 }
70 77
71 78 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
72 79 {
73 80 ring_node *node;
74 81
75 82 node = NULL;
76 83 switch ( frequencyChannel ) {
77 84 case 0:
78 85 node = ring_node_to_send_swf_f0;
79 86 break;
80 87 case 1:
81 88 node = ring_node_to_send_swf_f1;
82 89 break;
83 90 case 2:
84 91 node = ring_node_to_send_swf_f2;
85 92 break;
86 93 default:
87 94 break;
88 95 }
89 96
90 97 return node;
91 98 }
92 99
93 100 void reset_extractSWF( void )
94 101 {
95 102 extractSWF1 = false;
96 103 extractSWF2 = false;
97 104 swf0_ready_flag_f1 = false;
98 105 swf0_ready_flag_f2 = false;
99 106 swf1_ready = false;
100 107 swf2_ready = false;
101 108 }
102 109
103 110 inline void waveforms_isr_f3( void )
104 111 {
105 112 rtems_status_code spare_status;
106 113
107 114 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
108 115 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
109 116 { // in modes other than STANDBY and BURST, send the CWF_F3 data
110 117 //***
111 118 // F3
112 119 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
113 120 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
114 121 current_ring_node_f3 = current_ring_node_f3->next;
115 122 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
116 123 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
117 124 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
118 125 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
119 126 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
120 127 }
121 128 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
122 129 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
123 130 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
124 131 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
125 132 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
126 133 }
127 134 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
128 135 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
129 136 }
130 137 }
131 138 }
132 139 }
133 140
134 141 inline void waveforms_isr_burst( void )
135 142 {
136 143 unsigned char status;
137 144 rtems_status_code spare_status;
138 145
139 146 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
140 147
141 148
142 149 switch(status)
143 150 {
144 151 case 1:
145 152 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
146 153 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
147 154 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
148 155 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
149 156 current_ring_node_f2 = current_ring_node_f2->next;
150 157 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
151 158 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
152 159 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
153 160 }
154 161 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
155 162 break;
156 163 case 2:
157 164 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
158 165 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
159 166 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
160 167 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
161 168 current_ring_node_f2 = current_ring_node_f2->next;
162 169 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
163 170 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
164 171 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
165 172 }
166 173 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
167 174 break;
168 175 default:
169 176 break;
170 177 }
171 178 }
172 179
173 180 inline void waveform_isr_normal_sbm1_sbm2( void )
174 181 {
175 182 rtems_status_code status;
176 183
177 184 //***
178 185 // F0
179 186 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
180 187 {
181 188 swf0_ready_flag_f1 = true;
182 189 swf0_ready_flag_f2 = true;
183 190 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
184 191 current_ring_node_f0 = current_ring_node_f0->next;
185 192 if ( (waveform_picker_regs->status & 0x01) == 0x01)
186 193 {
187 194
188 195 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
189 196 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
190 197 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
191 198 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
192 199 }
193 200 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
194 201 {
195 202 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
196 203 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
197 204 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
198 205 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
199 206 }
200 207 }
201 208
202 209 //***
203 210 // F1
204 211 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
205 212 // (1) change the receiving buffer for the waveform picker
206 213 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
207 214 current_ring_node_f1 = current_ring_node_f1->next;
208 215 if ( (waveform_picker_regs->status & 0x04) == 0x04)
209 216 {
210 217 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
211 218 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
212 219 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
213 220 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
214 221 }
215 222 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
216 223 {
217 224 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
218 225 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
219 226 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
220 227 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
221 228 }
222 229 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
223 230 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
224 231 }
225 232
226 233 //***
227 234 // F2
228 235 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
229 236 // (1) change the receiving buffer for the waveform picker
230 237 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
231 238 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
232 239 current_ring_node_f2 = current_ring_node_f2->next;
233 240 if ( (waveform_picker_regs->status & 0x10) == 0x10)
234 241 {
235 242 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
236 243 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
237 244 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
238 245 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
239 246 }
240 247 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
241 248 {
242 249 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
243 250 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
244 251 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
245 252 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
246 253 }
247 254 // (2) send an event for the waveforms transmission
248 255 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
249 256 }
250 257 }
251 258
252 259 rtems_isr waveforms_isr( rtems_vector_number vector )
253 260 {
254 261 /** This is the interrupt sub routine called by the waveform picker core.
255 262 *
256 263 * This ISR launch different actions depending mainly on two pieces of information:
257 264 * 1. the values read in the registers of the waveform picker.
258 265 * 2. the current LFR mode.
259 266 *
260 267 */
261 268
262 269 // STATUS
263 270 // new error error buffer full
264 271 // 15 14 13 12 11 10 9 8
265 272 // f3 f2 f1 f0 f3 f2 f1 f0
266 273 //
267 274 // ready buffer
268 275 // 7 6 5 4 3 2 1 0
269 276 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
270 277
271 278 rtems_status_code spare_status;
272 279
273 280 waveforms_isr_f3();
274 281
275 282 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
276 283 {
277 284 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
278 285 }
279 286
280 287 switch(lfrCurrentMode)
281 288 {
282 289 //********
283 290 // STANDBY
284 291 case LFR_MODE_STANDBY:
285 292 break;
286 293 //**************************
287 294 // LFR NORMAL, SBM1 and SBM2
288 295 case LFR_MODE_NORMAL:
289 296 case LFR_MODE_SBM1:
290 297 case LFR_MODE_SBM2:
291 298 waveform_isr_normal_sbm1_sbm2();
292 299 break;
293 300 //******
294 301 // BURST
295 302 case LFR_MODE_BURST:
296 303 waveforms_isr_burst();
297 304 break;
298 305 //********
299 306 // DEFAULT
300 307 default:
301 308 break;
302 309 }
303 310 }
304 311
305 312 //************
306 313 // RTEMS TASKS
307 314
308 315 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
309 316 {
310 317 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
311 318 *
312 319 * @param unused is the starting argument of the RTEMS task
313 320 *
314 321 * The following data packets are sent by this task:
315 322 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
316 323 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
317 324 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
318 325 *
319 326 */
320 327
321 328 rtems_event_set event_out;
322 329 rtems_id queue_id;
323 330 rtems_status_code status;
324 331 ring_node *ring_node_swf1_extracted_ptr;
325 332 ring_node *ring_node_swf2_extracted_ptr;
326 333
327 334 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
328 335 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
329 336
330 337 status = get_message_queue_id_send( &queue_id );
331 338 if (status != RTEMS_SUCCESSFUL)
332 339 {
333 340 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
334 341 }
335 342
336 343 BOOT_PRINTF("in WFRM ***\n");
337 344
338 345 while(1){
339 346 // wait for an RTEMS_EVENT
340 347 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL,
341 348 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
342 349
343 350 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
344 351
345 352 if (event_out == RTEMS_EVENT_MODE_NORMAL)
346 353 {
347 354 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
348 355 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
349 356 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
350 357 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
351 358 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
352 359 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
353 360 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
354 361 }
355 362 }
356 363 }
357 364
358 365 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
359 366 {
360 367 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
361 368 *
362 369 * @param unused is the starting argument of the RTEMS task
363 370 *
364 371 * The following data packet is sent by this task:
365 372 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
366 373 *
367 374 */
368 375
369 376 rtems_event_set event_out;
370 377 rtems_id queue_id;
371 378 rtems_status_code status;
372 379 ring_node ring_node_cwf3_light;
373 380 ring_node *ring_node_to_send_cwf;
374 381
375 382 status = get_message_queue_id_send( &queue_id );
376 383 if (status != RTEMS_SUCCESSFUL)
377 384 {
378 385 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
379 386 }
380 387
381 388 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
382 389
383 390 // init the ring_node_cwf3_light structure
384 391 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
385 392 ring_node_cwf3_light.coarseTime = 0x00;
386 393 ring_node_cwf3_light.fineTime = 0x00;
387 394 ring_node_cwf3_light.next = NULL;
388 395 ring_node_cwf3_light.previous = NULL;
389 396 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
390 397 ring_node_cwf3_light.status = 0x00;
391 398
392 399 BOOT_PRINTF("in CWF3 ***\n")
393 400
394 401 while(1){
395 402 // wait for an RTEMS_EVENT
396 403 rtems_event_receive( RTEMS_EVENT_0,
397 404 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
398 405 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
399 406 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
400 407 {
401 408 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
402 409 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
403 410 {
404 411 PRINTF("send CWF_LONG_F3\n")
405 412 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
406 413 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
407 414 }
408 415 else
409 416 {
410 417 PRINTF("send CWF_F3 (light)\n")
411 418 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
412 419 }
413 420
414 421 }
415 422 else
416 423 {
417 424 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
418 425 }
419 426 }
420 427 }
421 428
422 429 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
423 430 {
424 431 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
425 432 *
426 433 * @param unused is the starting argument of the RTEMS task
427 434 *
428 435 * The following data packet is sent by this function:
429 436 * - TM_LFR_SCIENCE_BURST_CWF_F2
430 437 * - TM_LFR_SCIENCE_SBM2_CWF_F2
431 438 *
432 439 */
433 440
434 441 rtems_event_set event_out;
435 442 rtems_id queue_id;
436 443 rtems_status_code status;
437 444 ring_node *ring_node_to_send;
438 445 unsigned long long int acquisitionTimeF0_asLong;
439 446
440 447 acquisitionTimeF0_asLong = 0x00;
441 448
442 449 status = get_message_queue_id_send( &queue_id );
443 450 if (status != RTEMS_SUCCESSFUL)
444 451 {
445 452 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
446 453 }
447 454
448 455 BOOT_PRINTF("in CWF2 ***\n")
449 456
450 457 while(1){
451 458 // wait for an RTEMS_EVENT
452 459 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
453 460 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
454 461 ring_node_to_send = getRingNodeToSendCWF( 2 );
455 462 if (event_out == RTEMS_EVENT_MODE_BURST)
456 463 {
457 464 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
458 465 }
459 466 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
460 467 {
461 468 if ( lfrCurrentMode == LFR_MODE_SBM2 )
462 469 {
463 470 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
464 471 }
465 472 // launch snapshot extraction if needed
466 473 if (extractSWF2 == true)
467 474 {
468 475 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
469 476 // extract the snapshot
470 477 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
471 478 &ring_node_swf2_extracted, swf2_extracted );
472 479 // send the snapshot when built
473 480 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
474 481 extractSWF2 = false;
475 482 swf2_ready = true;
476 483 }
477 484 if (swf0_ready_flag_f2 == true)
478 485 {
479 486 extractSWF2 = true;
480 487 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
481 488 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
482 489 swf0_ready_flag_f2 = false;
483 490 }
484 491 }
485 492 }
486 493 }
487 494
488 495 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
489 496 {
490 497 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
491 498 *
492 499 * @param unused is the starting argument of the RTEMS task
493 500 *
494 501 * The following data packet is sent by this function:
495 502 * - TM_LFR_SCIENCE_SBM1_CWF_F1
496 503 *
497 504 */
498 505
499 506 rtems_event_set event_out;
500 507 rtems_id queue_id;
501 508 rtems_status_code status;
502 509
503 510 ring_node *ring_node_to_send_cwf;
504 511
505 512 status = get_message_queue_id_send( &queue_id );
506 513 if (status != RTEMS_SUCCESSFUL)
507 514 {
508 515 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
509 516 }
510 517
511 518 BOOT_PRINTF("in CWF1 ***\n");
512 519
513 520 while(1){
514 521 // wait for an RTEMS_EVENT
515 522 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
516 523 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
517 524 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
518 525 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
519 526 if (lfrCurrentMode == LFR_MODE_SBM1)
520 527 {
521 528 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
522 529 if (status != 0)
523 530 {
524 531 PRINTF("cwf sending failed\n")
525 532 }
526 533 }
527 534 // launch snapshot extraction if needed
528 535 if (extractSWF1 == true)
529 536 {
530 537 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
531 538 // launch the snapshot extraction
532 539 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
533 540 extractSWF1 = false;
534 541 }
535 542 if (swf0_ready_flag_f1 == true)
536 543 {
537 544 extractSWF1 = true;
538 545 swf0_ready_flag_f1 = false; // this step shall be executed only one time
539 546 }
540 547 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
541 548 {
542 549 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
543 550 swf1_ready = false;
544 551 swf2_ready = false;
545 552 }
546 553 }
547 554 }
548 555
549 556 rtems_task swbd_task(rtems_task_argument argument)
550 557 {
551 558 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
552 559 *
553 560 * @param unused is the starting argument of the RTEMS task
554 561 *
555 562 */
556 563
557 564 rtems_event_set event_out;
558 565 unsigned long long int acquisitionTimeF0_asLong;
559 566
560 567 acquisitionTimeF0_asLong = 0x00;
561 568
562 569 BOOT_PRINTF("in SWBD ***\n")
563 570
564 571 while(1){
565 572 // wait for an RTEMS_EVENT
566 573 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
567 574 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
568 575 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
569 576 {
570 577 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
571 578 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
572 579 &ring_node_swf1_extracted, swf1_extracted );
573 580 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
574 581 }
575 582 else
576 583 {
577 584 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
578 585 }
579 586 }
580 587 }
581 588
582 589 //******************
583 590 // general functions
584 591
585 592 void WFP_init_rings( void )
586 593 {
587 594 // F0 RING
588 595 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
589 596 // F1 RING
590 597 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
591 598 // F2 RING
592 599 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
593 600 // F3 RING
594 601 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
595 602
596 603 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
597 604 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
598 605
599 606 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
600 607 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
601 608 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
602 609 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
603 610 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
604 611 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
605 612 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
606 613 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
607 614
608 615 }
609 616
610 617 void WFP_reset_current_ring_nodes( void )
611 618 {
612 619 current_ring_node_f0 = waveform_ring_f0[0].next;
613 620 current_ring_node_f1 = waveform_ring_f1[0].next;
614 621 current_ring_node_f2 = waveform_ring_f2[0].next;
615 622 current_ring_node_f3 = waveform_ring_f3[0].next;
616 623
617 624 ring_node_to_send_swf_f0 = waveform_ring_f0;
618 625 ring_node_to_send_swf_f1 = waveform_ring_f1;
619 626 ring_node_to_send_swf_f2 = waveform_ring_f2;
620 627
621 628 ring_node_to_send_cwf_f1 = waveform_ring_f1;
622 629 ring_node_to_send_cwf_f2 = waveform_ring_f2;
623 630 ring_node_to_send_cwf_f3 = waveform_ring_f3;
624 631 }
625 632
626 633 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
627 634 {
628 635 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
629 636 *
630 637 * @param waveform points to the buffer containing the data that will be send.
631 638 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
632 639 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
633 640 * contain information to setup the transmission of the data packets.
634 641 *
635 642 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
636 643 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
637 644 *
638 645 */
639 646
640 647 unsigned int i;
641 648 int ret;
642 649 rtems_status_code status;
643 650
644 651 char *sample;
645 652 int *dataPtr;
646 653
647 654 ret = LFR_DEFAULT;
648 655
649 656 dataPtr = (int*) ring_node_to_send->buffer_address;
650 657
651 658 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
652 659 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
653 660
654 661 //**********************
655 662 // BUILD CWF3_light DATA
656 663 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
657 664 {
658 665 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
659 666 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
660 667 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
661 668 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
662 669 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
663 670 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
664 671 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
665 672 }
666 673
667 674 // SEND PACKET
668 675 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
669 676 if (status != RTEMS_SUCCESSFUL) {
670 677 ret = LFR_DEFAULT;
671 678 }
672 679
673 680 return ret;
674 681 }
675 682
676 683 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
677 684 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
678 685 {
679 686 unsigned long long int acquisitionTimeAsLong;
680 687 unsigned char localAcquisitionTime[6];
681 688 double deltaT;
682 689
683 690 deltaT = 0.;
684 691
685 692 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
686 693 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
687 694 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
688 695 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
689 696 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
690 697 localAcquisitionTime[5] = (unsigned char) ( fineTime );
691 698
692 699 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
693 700 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
694 701 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
695 702 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
696 703 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
697 704 + ( (unsigned long long int) localAcquisitionTime[5] );
698 705
699 706 switch( sid )
700 707 {
701 708 case SID_NORM_SWF_F0:
702 709 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
703 710 break;
704 711
705 712 case SID_NORM_SWF_F1:
706 713 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
707 714 break;
708 715
709 716 case SID_NORM_SWF_F2:
710 717 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
711 718 break;
712 719
713 720 case SID_SBM1_CWF_F1:
714 721 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
715 722 break;
716 723
717 724 case SID_SBM2_CWF_F2:
718 725 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
719 726 break;
720 727
721 728 case SID_BURST_CWF_F2:
722 729 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
723 730 break;
724 731
725 732 case SID_NORM_CWF_F3:
726 733 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
727 734 break;
728 735
729 736 case SID_NORM_CWF_LONG_F3:
730 737 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
731 738 break;
732 739
733 740 default:
734 741 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
735 742 deltaT = 0.;
736 743 break;
737 744 }
738 745
739 746 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
740 747 //
741 748 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
742 749 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
743 750 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
744 751 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
745 752 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
746 753 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
747 754
748 755 }
749 756
750 757 void build_snapshot_from_ring( ring_node *ring_node_to_send,
751 758 unsigned char frequencyChannel,
752 759 unsigned long long int acquisitionTimeF0_asLong,
753 760 ring_node *ring_node_swf_extracted,
754 761 int *swf_extracted)
755 762 {
756 763 unsigned int i;
757 764 unsigned long long int centerTime_asLong;
758 765 unsigned long long int acquisitionTime_asLong;
759 766 unsigned long long int bufferAcquisitionTime_asLong;
760 767 unsigned char *ptr1;
761 768 unsigned char *ptr2;
762 769 unsigned char *timeCharPtr;
763 770 unsigned char nb_ring_nodes;
764 771 unsigned long long int frequency_asLong;
765 772 unsigned long long int nbTicksPerSample_asLong;
766 773 unsigned long long int nbSamplesPart1_asLong;
767 774 unsigned long long int sampleOffset_asLong;
768 775
769 776 unsigned int deltaT_F0;
770 777 unsigned int deltaT_F1;
771 778 unsigned long long int deltaT_F2;
772 779
773 780 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
774 781 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
775 782 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
776 783 sampleOffset_asLong = 0x00;
777 784
778 785 // (1) get the f0 acquisition time => the value is passed in argument
779 786
780 787 // (2) compute the central reference time
781 788 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
782 789
783 790 // (3) compute the acquisition time of the current snapshot
784 791 switch(frequencyChannel)
785 792 {
786 793 case 1: // 1 is for F1 = 4096 Hz
787 794 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
788 795 nb_ring_nodes = NB_RING_NODES_F1;
789 796 frequency_asLong = 4096;
790 797 nbTicksPerSample_asLong = 16; // 65536 / 4096;
791 798 break;
792 799 case 2: // 2 is for F2 = 256 Hz
793 800 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
794 801 nb_ring_nodes = NB_RING_NODES_F2;
795 802 frequency_asLong = 256;
796 803 nbTicksPerSample_asLong = 256; // 65536 / 256;
797 804 break;
798 805 default:
799 806 acquisitionTime_asLong = centerTime_asLong;
800 807 frequency_asLong = 256;
801 808 nbTicksPerSample_asLong = 256;
802 809 break;
803 810 }
804 811
805 812 //****************************************************************************
806 813 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
807 814 for (i=0; i<nb_ring_nodes; i++)
808 815 {
809 816 //PRINTF1("%d ... ", i);
810 817 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
811 818 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
812 819 {
813 820 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
814 821 break;
815 822 }
816 823 ring_node_to_send = ring_node_to_send->previous;
817 824 }
818 825
819 826 // (5) compute the number of samples to take in the current buffer
820 827 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
821 828 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
822 829 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
823 830
824 831 // (6) compute the final acquisition time
825 832 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
826 833 sampleOffset_asLong * nbTicksPerSample_asLong;
827 834
828 835 // (7) copy the acquisition time at the beginning of the extrated snapshot
829 836 ptr1 = (unsigned char*) &acquisitionTime_asLong;
830 837 // fine time
831 838 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
832 839 ptr2[2] = ptr1[ 4 + 2 ];
833 840 ptr2[3] = ptr1[ 5 + 2 ];
834 841 // coarse time
835 842 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
836 843 ptr2[0] = ptr1[ 0 + 2 ];
837 844 ptr2[1] = ptr1[ 1 + 2 ];
838 845 ptr2[2] = ptr1[ 2 + 2 ];
839 846 ptr2[3] = ptr1[ 3 + 2 ];
840 847
841 848 // re set the synchronization bit
842 849 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
843 850 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
844 851
845 852 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
846 853 {
847 854 nbSamplesPart1_asLong = 0;
848 855 }
849 856 // copy the part 1 of the snapshot in the extracted buffer
850 857 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
851 858 {
852 859 swf_extracted[i] =
853 860 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
854 861 }
855 862 // copy the part 2 of the snapshot in the extracted buffer
856 863 ring_node_to_send = ring_node_to_send->next;
857 864 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
858 865 {
859 866 swf_extracted[i] =
860 867 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
861 868 }
862 869 }
863 870
864 871 void snapshot_resynchronization( unsigned char *timePtr )
865 872 {
866 873 unsigned long long int acquisitionTime;
867 874 unsigned long long int centerTime;
868 875 unsigned long long int previousTick;
869 876 unsigned long long int nextTick;
870 877 unsigned long long int deltaPreviousTick;
871 878 unsigned long long int deltaNextTick;
872 879 int deltaTickInF2;
873 880 double deltaPrevious_ms;
874 881 double deltaNext_ms;
875 882 double correctionInF2;
883 double center_k = 0.;
884 double cnter_k_plus_1 = 0.;
885 static resynchro_state state = IDLE;
876 886 static unsigned char resynchroEngaged = 0;
877 887
878 888 if (resynchroEngaged == 0)
879 889 {
880 890 resynchroEngaged = 1;
881 891 // get acquisition time in fine time ticks
882 892 acquisitionTime = get_acquisition_time( timePtr );
883 893
884 894 // compute center time
885 895 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
886 896 previousTick = centerTime - (centerTime & 0xffff);
887 897 nextTick = previousTick + 65536;
888 898
889 899 deltaPreviousTick = centerTime - previousTick;
890 900 deltaNextTick = nextTick - centerTime;
891 901
892 902 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
893 903 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
894 904
895 905 PRINTF2("delta previous = %f ms, delta next = %f ms\n", deltaPrevious_ms, deltaNext_ms);
896 906 PRINTF2("delta previous = %llu fine time ticks, delta next = %llu fine time ticks\n", deltaPreviousTick, deltaNextTick);
897 907
898 908 // which tick is the closest?
899 909 if (deltaPreviousTick > deltaNextTick)
900 910 {
901 911 // the snapshot center is just before the second => increase delta_snapshot
902 912 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
903 913 }
904 914 else
905 915 {
906 916 // the snapshot center is just after the second => decrease delta_snapshot
907 917 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
908 918 }
909 919
910 920 if (correctionInF2 >=0 )
911 921 {
912 deltaTickInF2 = floor( correctionInF2 );
922 deltaTickInF2 = ceil( correctionInF2 );
913 923 }
914 924 else
915 925 {
916 deltaTickInF2 = ceil( correctionInF2 );
926 deltaTickInF2 = floor( correctionInF2 );
917 927 }
918 928 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + deltaTickInF2;
929 set_wfp_delta_f0_f0_2(); // this is necessary to reset the value of delta_f0 as delta_snapshot has been changed
919 930 PRINTF2("Correction of = %d, delta_snapshot = %d\n\n", deltaTickInF2, waveform_picker_regs->delta_snapshot);
920 931 }
921 932 else
922 933 {
923 934 PRINTF1("No resynchro, delta_snapshot = %d\n\n", waveform_picker_regs->delta_snapshot);
924 935 resynchroEngaged = 0;
925 936 }
926 937 }
927 938
928 939 //**************
929 940 // wfp registers
930 941 void reset_wfp_burst_enable( void )
931 942 {
932 943 /** This function resets the waveform picker burst_enable register.
933 944 *
934 945 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
935 946 *
936 947 */
937 948
938 949 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
939 950 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
940 951 }
941 952
942 953 void reset_wfp_status( void )
943 954 {
944 955 /** This function resets the waveform picker status register.
945 956 *
946 957 * All status bits are set to 0 [new_err full_err full].
947 958 *
948 959 */
949 960
950 961 waveform_picker_regs->status = 0xffff;
951 962 }
952 963
953 964 void reset_wfp_buffer_addresses( void )
954 965 {
955 966 // F0
956 967 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
957 968 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
958 969 // F1
959 970 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
960 971 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
961 972 // F2
962 973 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
963 974 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
964 975 // F3
965 976 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
966 977 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
967 978 }
968 979
969 980 void reset_waveform_picker_regs( void )
970 981 {
971 982 /** This function resets the waveform picker module registers.
972 983 *
973 984 * The registers affected by this function are located at the following offset addresses:
974 985 * - 0x00 data_shaping
975 986 * - 0x04 run_burst_enable
976 987 * - 0x08 addr_data_f0
977 988 * - 0x0C addr_data_f1
978 989 * - 0x10 addr_data_f2
979 990 * - 0x14 addr_data_f3
980 991 * - 0x18 status
981 992 * - 0x1C delta_snapshot
982 993 * - 0x20 delta_f0
983 994 * - 0x24 delta_f0_2
984 * - 0x28 delta_f1
995 * - 0x28 delta_f1 (obsolet parameter)
985 996 * - 0x2c delta_f2
986 997 * - 0x30 nb_data_by_buffer
987 998 * - 0x34 nb_snapshot_param
988 999 * - 0x38 start_date
989 1000 * - 0x3c nb_word_in_buffer
990 1001 *
991 1002 */
992 1003
993 1004 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
994 1005
995 1006 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
996 1007
997 1008 reset_wfp_buffer_addresses();
998 1009
999 1010 reset_wfp_status(); // 0x18
1000 1011
1001 1012 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1002 1013
1003 1014 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1004 1015
1005 set_wfp_delta_f1(); // 0x28
1016 //the parameter delta_f1 [0x28] is not used anymore
1006 1017
1007 1018 set_wfp_delta_f2(); // 0x2c
1008 1019
1009 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1010 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1011 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1012 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1013 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1014 // 2688 = 8 * 336
1015 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1020 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1021 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1022 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1023 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1024 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1025 // 2688 = 8 * 336
1026 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1016 1027 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1017 1028 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1018 1029 //
1019 1030 // coarse time and fine time registers are not initialized, they are volatile
1020 1031 //
1021 1032 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1022 1033 }
1023 1034
1024 1035 void set_wfp_data_shaping( void )
1025 1036 {
1026 1037 /** This function sets the data_shaping register of the waveform picker module.
1027 1038 *
1028 1039 * The value is read from one field of the parameter_dump_packet structure:\n
1029 1040 * bw_sp0_sp1_r0_r1
1030 1041 *
1031 1042 */
1032 1043
1033 1044 unsigned char data_shaping;
1034 1045
1035 1046 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1036 1047 // waveform picker : [R1 R0 SP1 SP0 BW]
1037 1048
1038 1049 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1039 1050
1040 1051 waveform_picker_regs->data_shaping =
1041 1052 ( (data_shaping & 0x20) >> 5 ) // BW
1042 1053 + ( (data_shaping & 0x10) >> 3 ) // SP0
1043 1054 + ( (data_shaping & 0x08) >> 1 ) // SP1
1044 1055 + ( (data_shaping & 0x04) << 1 ) // R0
1045 1056 + ( (data_shaping & 0x02) << 3 ) // R1
1046 1057 + ( (data_shaping & 0x01) << 5 ); // R2
1047 1058 }
1048 1059
1049 1060 void set_wfp_burst_enable_register( unsigned char mode )
1050 1061 {
1051 1062 /** This function sets the waveform picker burst_enable register depending on the mode.
1052 1063 *
1053 1064 * @param mode is the LFR mode to launch.
1054 1065 *
1055 1066 * The burst bits shall be before the enable bits.
1056 1067 *
1057 1068 */
1058 1069
1059 1070 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1060 1071 // the burst bits shall be set first, before the enable bits
1061 1072 switch(mode) {
1062 1073 case LFR_MODE_NORMAL:
1063 1074 case LFR_MODE_SBM1:
1064 1075 case LFR_MODE_SBM2:
1065 1076 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1066 1077 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1067 1078 break;
1068 1079 case LFR_MODE_BURST:
1069 1080 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1070 1081 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1071 1082 break;
1072 1083 default:
1073 1084 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1074 1085 break;
1075 1086 }
1076 1087 }
1077 1088
1078 1089 void set_wfp_delta_snapshot( void )
1079 1090 {
1080 1091 /** This function sets the delta_snapshot register of the waveform picker module.
1081 1092 *
1082 1093 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1083 1094 * - sy_lfr_n_swf_p[0]
1084 1095 * - sy_lfr_n_swf_p[1]
1085 1096 *
1086 1097 */
1087 1098
1088 1099 unsigned int delta_snapshot;
1089 1100 unsigned int delta_snapshot_in_T2;
1090 1101
1091 1102 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1092 1103 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1093 1104
1094 1105 delta_snapshot_in_T2 = delta_snapshot * 256;
1095 1106 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1096 1107 }
1097 1108
1098 1109 void set_wfp_delta_f0_f0_2( void )
1099 1110 {
1100 1111 unsigned int delta_snapshot;
1101 1112 unsigned int nb_samples_per_snapshot;
1102 1113 float delta_f0_in_float;
1103 1114
1104 1115 delta_snapshot = waveform_picker_regs->delta_snapshot;
1105 1116 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1106 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1117 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1107 1118
1108 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1119 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1109 1120 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1110 1121 }
1111 1122
1112 1123 void set_wfp_delta_f1( void )
1113 1124 {
1125 /** Sets the value of the delta_f1 parameter
1126 *
1127 * @param void
1128 *
1129 * @return void
1130 *
1131 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1132 *
1133 */
1134
1114 1135 unsigned int delta_snapshot;
1115 1136 unsigned int nb_samples_per_snapshot;
1116 1137 float delta_f1_in_float;
1117 1138
1118 1139 delta_snapshot = waveform_picker_regs->delta_snapshot;
1119 1140 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1120 1141 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1121 1142
1122 1143 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1123 1144 }
1124 1145
1125 void set_wfp_delta_f2()
1146 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1126 1147 {
1148 /** Sets the value of the delta_f2 parameter
1149 *
1150 * @param void
1151 *
1152 * @return void
1153 *
1154 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1155 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1156 *
1157 */
1158
1127 1159 unsigned int delta_snapshot;
1128 1160 unsigned int nb_samples_per_snapshot;
1129 1161
1130 1162 delta_snapshot = waveform_picker_regs->delta_snapshot;
1131 1163 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1132 1164
1133 1165 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1134 1166 }
1135 1167
1136 1168 //*****************
1137 1169 // local parameters
1138 1170
1139 1171 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1140 1172 {
1141 1173 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1142 1174 *
1143 1175 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1144 1176 * @param sid is the source identifier of the packet being updated.
1145 1177 *
1146 1178 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1147 1179 * The sequence counters shall wrap around from 2^14 to zero.
1148 1180 * The sequence counter shall start at zero at startup.
1149 1181 *
1150 1182 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1151 1183 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1152 1184 *
1153 1185 */
1154 1186
1155 1187 unsigned short *sequence_cnt;
1156 1188 unsigned short segmentation_grouping_flag;
1157 1189 unsigned short new_packet_sequence_control;
1158 1190 rtems_mode initial_mode_set;
1159 1191 rtems_mode current_mode_set;
1160 1192 rtems_status_code status;
1161 1193
1162 1194 //******************************************
1163 1195 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1164 1196 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1165 1197
1166 1198 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1167 1199 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1168 1200 || (sid == SID_BURST_CWF_F2)
1169 1201 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1170 1202 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1171 1203 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1172 1204 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1173 1205 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1174 1206 {
1175 1207 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1176 1208 }
1177 1209 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1178 1210 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1179 1211 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1180 1212 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1181 1213 {
1182 1214 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1183 1215 }
1184 1216 else
1185 1217 {
1186 1218 sequence_cnt = (unsigned short *) NULL;
1187 1219 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1188 1220 }
1189 1221
1190 1222 if (sequence_cnt != NULL)
1191 1223 {
1192 1224 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1193 1225 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1194 1226
1195 1227 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1196 1228
1197 1229 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1198 1230 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1199 1231
1200 1232 // increment the sequence counter
1201 1233 if ( *sequence_cnt < SEQ_CNT_MAX)
1202 1234 {
1203 1235 *sequence_cnt = *sequence_cnt + 1;
1204 1236 }
1205 1237 else
1206 1238 {
1207 1239 *sequence_cnt = 0;
1208 1240 }
1209 1241 }
1210 1242
1211 1243 //*************************************
1212 1244 // RESTORE THE MODE OF THE CALLING TASK
1213 1245 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1214 1246 }
General Comments 0
You need to be logged in to leave comments. Login now