##// END OF EJS Templates
counters handling changed...
paul -
r291:e5cf3bb50480 R3_plus draft
parent child
Show More
@@ -1,793 +1,801
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 // WATCHDOG
83 83
84 84 rtems_isr watchdog_isr( rtems_vector_number vector )
85 85 {
86 86 rtems_status_code status_code;
87 87
88 88 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
89 89
90 90 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
91 91
92 92 exit(0);
93 93 }
94 94
95 95 void watchdog_configure(void)
96 96 {
97 97 /** This function configure the watchdog.
98 98 *
99 99 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
100 100 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
101 101 *
102 102 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
103 103 *
104 104 */
105 105
106 106 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
107 107
108 108 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
109 109
110 110 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
111 111 }
112 112
113 113 void watchdog_stop(void)
114 114 {
115 115 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
116 116 timer_stop( TIMER_WATCHDOG );
117 117 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
118 118 }
119 119
120 120 void watchdog_reload(void)
121 121 {
122 122 /** This function reloads the watchdog timer counter with the timer reload value.
123 123 *
124 124 * @param void
125 125 *
126 126 * @return void
127 127 *
128 128 */
129 129
130 130 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
131 131 }
132 132
133 133 void watchdog_start(void)
134 134 {
135 135 /** This function starts the watchdog timer.
136 136 *
137 137 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
138 138 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
139 139 *
140 140 */
141 141
142 142 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
143 143
144 144 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
145 145 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
146 146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
147 147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
148 148
149 149 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
150 150
151 151 }
152 152
153 153 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
154 154 {
155 155 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
156 156
157 157 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
158 158
159 159 return 0;
160 160 }
161 161
162 162 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
163 163 {
164 164 /** This function sets the scaler reload register of the apbuart module
165 165 *
166 166 * @param regs is the address of the apbuart registers in memory
167 167 * @param value is the value that will be stored in the scaler register
168 168 *
169 169 * The value shall be set by the software to get data on the serial interface.
170 170 *
171 171 */
172 172
173 173 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
174 174
175 175 apbuart_regs->scaler = value;
176 176
177 177 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
178 178 }
179 179
180 180 //************
181 181 // RTEMS TASKS
182 182
183 183 rtems_task load_task(rtems_task_argument argument)
184 184 {
185 185 BOOT_PRINTF("in LOAD *** \n")
186 186
187 187 rtems_status_code status;
188 188 unsigned int i;
189 189 unsigned int j;
190 190 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
191 191 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
192 192
193 193 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
194 194
195 195 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
196 196 if( status != RTEMS_SUCCESSFUL ) {
197 197 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
198 198 }
199 199
200 200 i = 0;
201 201 j = 0;
202 202
203 203 watchdog_configure();
204 204
205 205 watchdog_start();
206 206
207 207 set_sy_lfr_watchdog_enabled( true );
208 208
209 209 while(1){
210 210 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
211 211 watchdog_reload();
212 212 i = i + 1;
213 213 if ( i == 10 )
214 214 {
215 215 i = 0;
216 216 j = j + 1;
217 217 PRINTF1("%d\n", j)
218 218 }
219 219 #ifdef DEBUG_WATCHDOG
220 220 if (j == 3 )
221 221 {
222 222 status = rtems_task_delete(RTEMS_SELF);
223 223 }
224 224 #endif
225 225 }
226 226 }
227 227
228 228 rtems_task hous_task(rtems_task_argument argument)
229 229 {
230 230 rtems_status_code status;
231 231 rtems_status_code spare_status;
232 232 rtems_id queue_id;
233 233 rtems_rate_monotonic_period_status period_status;
234 234
235 235 status = get_message_queue_id_send( &queue_id );
236 236 if (status != RTEMS_SUCCESSFUL)
237 237 {
238 238 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
239 239 }
240 240
241 241 BOOT_PRINTF("in HOUS ***\n");
242 242
243 243 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
244 244 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
245 245 if( status != RTEMS_SUCCESSFUL ) {
246 246 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
247 247 }
248 248 }
249 249
250 250 status = rtems_rate_monotonic_cancel(HK_id);
251 251 if( status != RTEMS_SUCCESSFUL ) {
252 252 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
253 253 }
254 254 else {
255 255 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
256 256 }
257 257
258 258 // startup phase
259 259 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
260 260 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
261 261 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
262 262 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
263 263 {
264 264 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
265 265 {
266 266 break; // break if LFR is synchronized
267 267 }
268 268 else
269 269 {
270 270 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
271 271 // sched_yield();
272 272 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
273 273 }
274 274 }
275 275 status = rtems_rate_monotonic_cancel(HK_id);
276 276 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
277 277
278 278 set_hk_lfr_reset_cause( POWER_ON );
279 279
280 280 while(1){ // launch the rate monotonic task
281 281 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
282 282 if ( status != RTEMS_SUCCESSFUL ) {
283 283 PRINTF1( "in HOUS *** ERR period: %d\n", status);
284 284 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
285 285 }
286 286 else {
287 287 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
288 288 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
289 289 increment_seq_counter( &sequenceCounterHK );
290 290
291 291 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
292 292 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
293 293 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
294 294 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
295 295 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
296 296 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
297 297
298 298 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
299 299
300 300 spacewire_read_statistics();
301 301
302 302 update_hk_with_grspw_stats();
303 303
304 304 set_hk_lfr_time_not_synchro();
305 305
306 306 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
307 307 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
308 308 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
309 309 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
310 310 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
311 311
312 312 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
313 313 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
314 314 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
315 315 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
316 316 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
317 317
318 318 hk_lfr_le_me_he_update();
319 319
320 320 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
321 321
322 322 // SEND PACKET
323 323 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
324 324 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
325 325 if (status != RTEMS_SUCCESSFUL) {
326 326 PRINTF1("in HOUS *** ERR send: %d\n", status)
327 327 }
328 328 }
329 329 }
330 330
331 331 PRINTF("in HOUS *** deleting task\n")
332 332
333 333 status = rtems_task_delete( RTEMS_SELF ); // should not return
334 334
335 335 return;
336 336 }
337 337
338 338 rtems_task dumb_task( rtems_task_argument unused )
339 339 {
340 340 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
341 341 *
342 342 * @param unused is the starting argument of the RTEMS task
343 343 *
344 344 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
345 345 *
346 346 */
347 347
348 348 unsigned int i;
349 349 unsigned int intEventOut;
350 350 unsigned int coarse_time = 0;
351 351 unsigned int fine_time = 0;
352 352 rtems_event_set event_out;
353 353
354 354 char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
355 355 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
356 356 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
357 357 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
358 358 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
359 359 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
360 360 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
361 361 "ready for dump", // RTEMS_EVENT_7
362 362 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
363 363 "tick", // RTEMS_EVENT_9
364 364 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
365 365 "VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
366 366 "WATCHDOG timer", // RTEMS_EVENT_12
367 367 "TIMECODE timer", // RTEMS_EVENT_13
368 368 "TIMECODE ISR" // RTEMS_EVENT_14
369 369 };
370 370
371 371 BOOT_PRINTF("in DUMB *** \n")
372 372
373 373 while(1){
374 374 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
375 375 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
376 376 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
377 377 | RTEMS_EVENT_14,
378 378 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
379 379 intEventOut = (unsigned int) event_out;
380 380 for ( i=0; i<32; i++)
381 381 {
382 382 if ( ((intEventOut >> i) & 0x0001) != 0)
383 383 {
384 384 coarse_time = time_management_regs->coarse_time;
385 385 fine_time = time_management_regs->fine_time;
386 386 if (i==12)
387 387 {
388 388 PRINTF1("%s\n", DumbMessages[12])
389 389 }
390 390 if (i==13)
391 391 {
392 392 PRINTF1("%s\n", DumbMessages[13])
393 393 }
394 394 if (i==14)
395 395 {
396 396 PRINTF1("%s\n", DumbMessages[1])
397 397 }
398 398 }
399 399 }
400 400 }
401 401 }
402 402
403 403 //*****************************
404 404 // init housekeeping parameters
405 405
406 406 void init_housekeeping_parameters( void )
407 407 {
408 408 /** This function initialize the housekeeping_packet global variable with default values.
409 409 *
410 410 */
411 411
412 412 unsigned int i = 0;
413 413 unsigned char *parameters;
414 414 unsigned char sizeOfHK;
415 415
416 416 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
417 417
418 418 parameters = (unsigned char*) &housekeeping_packet;
419 419
420 420 for(i = 0; i< sizeOfHK; i++)
421 421 {
422 422 parameters[i] = 0x00;
423 423 }
424 424
425 425 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
426 426 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
427 427 housekeeping_packet.reserved = DEFAULT_RESERVED;
428 428 housekeeping_packet.userApplication = CCSDS_USER_APP;
429 429 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
430 430 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
431 431 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
432 432 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
433 433 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
434 434 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
435 435 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
436 436 housekeeping_packet.serviceType = TM_TYPE_HK;
437 437 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
438 438 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
439 439 housekeeping_packet.sid = SID_HK;
440 440
441 441 // init status word
442 442 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
443 443 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
444 444 // init software version
445 445 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
446 446 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
447 447 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
448 448 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
449 449 // init fpga version
450 450 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
451 451 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
452 452 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
453 453 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
454 454
455 455 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
456 456 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
457 457 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
458 458 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
459 459 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
460 460 }
461 461
462 462 void increment_seq_counter( unsigned short *packetSequenceControl )
463 463 {
464 464 /** This function increment the sequence counter passes in argument.
465 465 *
466 466 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
467 467 *
468 468 */
469 469
470 470 unsigned short segmentation_grouping_flag;
471 471 unsigned short sequence_cnt;
472 472
473 473 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
474 474 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
475 475
476 476 if ( sequence_cnt < SEQ_CNT_MAX)
477 477 {
478 478 sequence_cnt = sequence_cnt + 1;
479 479 }
480 480 else
481 481 {
482 482 sequence_cnt = 0;
483 483 }
484 484
485 485 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
486 486 }
487 487
488 488 void getTime( unsigned char *time)
489 489 {
490 490 /** This function write the current local time in the time buffer passed in argument.
491 491 *
492 492 */
493 493
494 494 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
495 495 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
496 496 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
497 497 time[3] = (unsigned char) (time_management_regs->coarse_time);
498 498 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
499 499 time[5] = (unsigned char) (time_management_regs->fine_time);
500 500 }
501 501
502 502 unsigned long long int getTimeAsUnsignedLongLongInt( )
503 503 {
504 504 /** This function write the current local time in the time buffer passed in argument.
505 505 *
506 506 */
507 507 unsigned long long int time;
508 508
509 509 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
510 510 + time_management_regs->fine_time;
511 511
512 512 return time;
513 513 }
514 514
515 515 void send_dumb_hk( void )
516 516 {
517 517 Packet_TM_LFR_HK_t dummy_hk_packet;
518 518 unsigned char *parameters;
519 519 unsigned int i;
520 520 rtems_id queue_id;
521 521
522 522 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
523 523 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
524 524 dummy_hk_packet.reserved = DEFAULT_RESERVED;
525 525 dummy_hk_packet.userApplication = CCSDS_USER_APP;
526 526 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
527 527 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
528 528 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
529 529 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
530 530 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
531 531 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
532 532 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
533 533 dummy_hk_packet.serviceType = TM_TYPE_HK;
534 534 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
535 535 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
536 536 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
537 537 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
538 538 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
539 539 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
540 540 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
541 541 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
542 542 dummy_hk_packet.sid = SID_HK;
543 543
544 544 // init status word
545 545 dummy_hk_packet.lfr_status_word[0] = 0xff;
546 546 dummy_hk_packet.lfr_status_word[1] = 0xff;
547 547 // init software version
548 548 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
549 549 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
550 550 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
551 551 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
552 552 // init fpga version
553 553 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
554 554 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
555 555 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
556 556 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
557 557
558 558 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
559 559
560 560 for (i=0; i<100; i++)
561 561 {
562 562 parameters[i] = 0xff;
563 563 }
564 564
565 565 get_message_queue_id_send( &queue_id );
566 566
567 567 rtems_message_queue_send( queue_id, &dummy_hk_packet,
568 568 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
569 569 }
570 570
571 571 void get_temperatures( unsigned char *temperatures )
572 572 {
573 573 unsigned char* temp_scm_ptr;
574 574 unsigned char* temp_pcb_ptr;
575 575 unsigned char* temp_fpga_ptr;
576 576
577 577 // SEL1 SEL0
578 578 // 0 0 => PCB
579 579 // 0 1 => FPGA
580 580 // 1 0 => SCM
581 581
582 582 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
583 583 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
584 584 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
585 585
586 586 temperatures[0] = temp_scm_ptr[2];
587 587 temperatures[1] = temp_scm_ptr[3];
588 588 temperatures[2] = temp_pcb_ptr[2];
589 589 temperatures[3] = temp_pcb_ptr[3];
590 590 temperatures[4] = temp_fpga_ptr[2];
591 591 temperatures[5] = temp_fpga_ptr[3];
592 592 }
593 593
594 594 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
595 595 {
596 596 unsigned char* v_ptr;
597 597 unsigned char* e1_ptr;
598 598 unsigned char* e2_ptr;
599 599
600 600 v_ptr = (unsigned char *) &waveform_picker_regs->v;
601 601 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
602 602 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
603 603
604 604 spacecraft_potential[0] = v_ptr[2];
605 605 spacecraft_potential[1] = v_ptr[3];
606 606 spacecraft_potential[2] = e1_ptr[2];
607 607 spacecraft_potential[3] = e1_ptr[3];
608 608 spacecraft_potential[4] = e2_ptr[2];
609 609 spacecraft_potential[5] = e2_ptr[3];
610 610 }
611 611
612 612 void get_cpu_load( unsigned char *resource_statistics )
613 613 {
614 614 unsigned char cpu_load;
615 615
616 616 cpu_load = lfr_rtems_cpu_usage_report();
617 617
618 618 // HK_LFR_CPU_LOAD
619 619 resource_statistics[0] = cpu_load;
620 620
621 621 // HK_LFR_CPU_LOAD_MAX
622 622 if (cpu_load > resource_statistics[1])
623 623 {
624 624 resource_statistics[1] = cpu_load;
625 625 }
626 626
627 627 // CPU_LOAD_AVE
628 628 resource_statistics[2] = 0;
629 629
630 630 #ifndef PRINT_TASK_STATISTICS
631 631 rtems_cpu_usage_reset();
632 632 #endif
633 633
634 634 }
635 635
636 636 void set_hk_lfr_sc_potential_flag( bool state )
637 637 {
638 638 if (state == true)
639 639 {
640 640 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
641 641 }
642 642 else
643 643 {
644 644 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
645 645 }
646 646 }
647 647
648 648 void set_sy_lfr_watchdog_enabled( bool state )
649 649 {
650 650 if (state == true)
651 651 {
652 652 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x10; // [0001 0000]
653 653 }
654 654 else
655 655 {
656 656 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xef; // [1110 1111]
657 657 }
658 658 }
659 659
660 660 void set_hk_lfr_calib_enable( bool state )
661 661 {
662 662 if (state == true)
663 663 {
664 664 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
665 665 }
666 666 else
667 667 {
668 668 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
669 669 }
670 670 }
671 671
672 672 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
673 673 {
674 674 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf8; // [1111 1000]
675 675
676 676 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
677 677 | (lfr_reset_cause & 0x07 ); // [0000 0111]
678 678
679 679 }
680 680
681 681 void hk_lfr_le_me_he_update()
682 682 {
683 683 unsigned int hk_lfr_le_cnt;
684 684 unsigned int hk_lfr_me_cnt;
685 685 unsigned int hk_lfr_he_cnt;
686 unsigned int current_hk_lfr_le_cnt;
687 unsigned int current_hk_lfr_me_cnt;
688 unsigned int current_hk_lfr_he_cnt;
686 689
687 690 hk_lfr_le_cnt = 0;
688 691 hk_lfr_me_cnt = 0;
689 692 hk_lfr_he_cnt = 0;
693 current_hk_lfr_le_cnt = ((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256 + housekeeping_packet.hk_lfr_le_cnt[1];
694 current_hk_lfr_me_cnt = ((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256 + housekeeping_packet.hk_lfr_me_cnt[1];
695 current_hk_lfr_he_cnt = ((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256 + housekeeping_packet.hk_lfr_he_cnt[1];
690 696
691 697 //update the low severity error counter
692 698 hk_lfr_le_cnt =
693 housekeeping_packet.hk_lfr_dpu_spw_parity
699 current_hk_lfr_le_cnt
700 + housekeeping_packet.hk_lfr_dpu_spw_parity
694 701 + housekeeping_packet.hk_lfr_dpu_spw_disconnect
695 702 + housekeeping_packet.hk_lfr_dpu_spw_escape
696 703 + housekeeping_packet.hk_lfr_dpu_spw_credit
697 704 + housekeeping_packet.hk_lfr_dpu_spw_write_sync
698 705 + housekeeping_packet.hk_lfr_timecode_erroneous
699 706 + housekeeping_packet.hk_lfr_timecode_missing
700 707 + housekeeping_packet.hk_lfr_timecode_invalid
701 708 + housekeeping_packet.hk_lfr_time_timecode_it
702 709 + housekeeping_packet.hk_lfr_time_not_synchro
703 710 + housekeeping_packet.hk_lfr_time_timecode_ctr
704 711 + housekeeping_packet.hk_lfr_ahb_correctable;
705 712 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
706 713 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
707 714
708 715 //update the medium severity error counter
709 716 hk_lfr_me_cnt =
710 housekeeping_packet.hk_lfr_dpu_spw_early_eop
717 current_hk_lfr_me_cnt
718 + housekeeping_packet.hk_lfr_dpu_spw_early_eop
711 719 + housekeeping_packet.hk_lfr_dpu_spw_invalid_addr
712 720 + housekeeping_packet.hk_lfr_dpu_spw_eep
713 721 + housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
714 722
715 723 //update the high severity error counter
716 724 hk_lfr_he_cnt = 0;
717 725
718 726 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
719 727 // LE
720 728 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((hk_lfr_le_cnt & 0xff00) >> 8);
721 729 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (hk_lfr_le_cnt & 0x00ff);
722 730 // ME
723 731 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((hk_lfr_me_cnt & 0xff00) >> 8);
724 732 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (hk_lfr_me_cnt & 0x00ff);
725 733 // HE
726 734 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & 0xff00) >> 8);
727 735 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & 0x00ff);
728 736
729 737 }
730 738
731 739 void set_hk_lfr_time_not_synchro()
732 740 {
733 741 static unsigned char synchroLost = 1;
734 742 int synchronizationBit;
735 743
736 744 // get the synchronization bit
737 745 synchronizationBit = (time_management_regs->coarse_time & 0x80000000) >> 31; // 1000 0000 0000 0000
738 746
739 747 switch (synchronizationBit)
740 748 {
741 749 case 0:
742 750 if (synchroLost == 1)
743 751 {
744 752 synchroLost = 0;
745 753 }
746 754 break;
747 755 case 1:
748 756 if (synchroLost == 0 )
749 757 {
750 758 synchroLost = 1;
751 759 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
752 760 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
753 761 }
754 762 break;
755 763 default:
756 764 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
757 765 break;
758 766 }
759 767
760 768 }
761 769
762 770 void set_hk_lfr_ahb_correctable() // CRITICITY L
763 771 {
764 772 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
765 773 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
766 774 * detected errors in the cache, in the integer unit and in the floating point unit.
767 775 *
768 776 * @param void
769 777 *
770 778 * @return void
771 779 *
772 780 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
773 781 *
774 782 */
775 783
776 784 unsigned int ahb_correctable;
777 785 unsigned int instructionErrorCounter;
778 786 unsigned int dataErrorCounter;
779 787 unsigned int fprfErrorCounter;
780 788 unsigned int iurfErrorCounter;
781 789
782 790 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
783 791 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
784 792
785 793 ahb_correctable = instructionErrorCounter
786 794 + dataErrorCounter
787 795 + fprfErrorCounter
788 796 + iurfErrorCounter
789 797 + housekeeping_packet.hk_lfr_ahb_correctable;
790 798
791 799 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & 0xff); // [1111 1111]
792 800
793 801 }
General Comments 0
You need to be logged in to leave comments. Login now