##// END OF EJS Templates
rev 1.0.0.2...
paul -
r104:e5b7ab03049c VHDLib206
parent child
Show More
@@ -1,1 +1,1
1 src/basic_parameters = https://leroy@hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/SOLO_LFR/LFR_basic-parameters
1 src/basic_parameters = https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/SOLO_LFR/LFR_basic-parameters
@@ -1,253 +1,253
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Fri Feb 21 15:32:25 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Tue Mar 4 09:15:37 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=2 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=2 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../../LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c \
56 56 ../../LFR_basic-parameters/basic_parameters.c
57 57 OBJECTS = obj/wf_handler.o \
58 58 obj/tc_handler.o \
59 59 obj/fsw_processing.o \
60 60 obj/fsw_misc.o \
61 61 obj/fsw_init.o \
62 62 obj/fsw_globals.o \
63 63 obj/fsw_spacewire.o \
64 64 obj/tc_load_dump_parameters.o \
65 65 obj/tm_lfr_tc_exe.o \
66 66 obj/tc_acceptance.o \
67 67 obj/basic_parameters.o
68 68 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
69 69 /usr/lib64/qt4/mkspecs/common/linux.conf \
70 70 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
73 73 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
74 74 /usr/lib64/qt4/mkspecs/qconfig.pri \
75 75 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
76 76 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
77 77 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
78 78 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
79 79 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
80 80 sparc.pri \
81 81 /usr/lib64/qt4/mkspecs/features/release.prf \
82 82 /usr/lib64/qt4/mkspecs/features/default_post.prf \
83 83 /usr/lib64/qt4/mkspecs/features/shared.prf \
84 84 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
85 85 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
86 86 /usr/lib64/qt4/mkspecs/features/resources.prf \
87 87 /usr/lib64/qt4/mkspecs/features/uic.prf \
88 88 /usr/lib64/qt4/mkspecs/features/yacc.prf \
89 89 /usr/lib64/qt4/mkspecs/features/lex.prf \
90 90 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
91 91 fsw-qt.pro
92 92 QMAKE_TARGET = fsw
93 93 DESTDIR = bin/
94 94 TARGET = bin/fsw
95 95
96 96 first: all
97 97 ####### Implicit rules
98 98
99 99 .SUFFIXES: .o .c .cpp .cc .cxx .C
100 100
101 101 .cpp.o:
102 102 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
103 103
104 104 .cc.o:
105 105 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
106 106
107 107 .cxx.o:
108 108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109 109
110 110 .C.o:
111 111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112 112
113 113 .c.o:
114 114 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
115 115
116 116 ####### Build rules
117 117
118 118 all: Makefile $(TARGET)
119 119
120 120 $(TARGET): $(OBJECTS)
121 121 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
122 122 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
123 123
124 124 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
125 125 /usr/lib64/qt4/mkspecs/common/linux.conf \
126 126 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
129 129 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
130 130 /usr/lib64/qt4/mkspecs/qconfig.pri \
131 131 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
132 132 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
133 133 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
134 134 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
135 135 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
136 136 sparc.pri \
137 137 /usr/lib64/qt4/mkspecs/features/release.prf \
138 138 /usr/lib64/qt4/mkspecs/features/default_post.prf \
139 139 /usr/lib64/qt4/mkspecs/features/shared.prf \
140 140 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
141 141 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
142 142 /usr/lib64/qt4/mkspecs/features/resources.prf \
143 143 /usr/lib64/qt4/mkspecs/features/uic.prf \
144 144 /usr/lib64/qt4/mkspecs/features/yacc.prf \
145 145 /usr/lib64/qt4/mkspecs/features/lex.prf \
146 146 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
147 147 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
148 148 /usr/lib64/qt4/mkspecs/common/unix.conf:
149 149 /usr/lib64/qt4/mkspecs/common/linux.conf:
150 150 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
153 153 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
154 154 /usr/lib64/qt4/mkspecs/qconfig.pri:
155 155 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
156 156 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
157 157 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
158 158 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
159 159 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
160 160 sparc.pri:
161 161 /usr/lib64/qt4/mkspecs/features/release.prf:
162 162 /usr/lib64/qt4/mkspecs/features/default_post.prf:
163 163 /usr/lib64/qt4/mkspecs/features/shared.prf:
164 164 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
165 165 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
166 166 /usr/lib64/qt4/mkspecs/features/resources.prf:
167 167 /usr/lib64/qt4/mkspecs/features/uic.prf:
168 168 /usr/lib64/qt4/mkspecs/features/yacc.prf:
169 169 /usr/lib64/qt4/mkspecs/features/lex.prf:
170 170 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
171 171 qmake: FORCE
172 172 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
173 173
174 174 dist:
175 175 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
176 176 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
177 177
178 178
179 179 clean:compiler_clean
180 180 -$(DEL_FILE) $(OBJECTS)
181 181 -$(DEL_FILE) *~ core *.core
182 182
183 183
184 184 ####### Sub-libraries
185 185
186 186 distclean: clean
187 187 -$(DEL_FILE) $(TARGET)
188 188 -$(DEL_FILE) Makefile
189 189
190 190
191 191 grmon:
192 192 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
193 193
194 194 check: first
195 195
196 196 compiler_rcc_make_all:
197 197 compiler_rcc_clean:
198 198 compiler_uic_make_all:
199 199 compiler_uic_clean:
200 200 compiler_image_collection_make_all: qmake_image_collection.cpp
201 201 compiler_image_collection_clean:
202 202 -$(DEL_FILE) qmake_image_collection.cpp
203 203 compiler_yacc_decl_make_all:
204 204 compiler_yacc_decl_clean:
205 205 compiler_yacc_impl_make_all:
206 206 compiler_yacc_impl_clean:
207 207 compiler_lex_make_all:
208 208 compiler_lex_clean:
209 209 compiler_clean:
210 210
211 211 ####### Compile
212 212
213 213 obj/wf_handler.o: ../src/wf_handler.c
214 214 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
215 215
216 216 obj/tc_handler.o: ../src/tc_handler.c
217 217 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
218 218
219 219 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
220 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
221 221
222 222 obj/fsw_misc.o: ../src/fsw_misc.c
223 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
224 224
225 225 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
226 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
227 227
228 228 obj/fsw_globals.o: ../src/fsw_globals.c
229 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
230 230
231 231 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
232 232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
233 233
234 234 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
235 235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
236 236
237 237 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
238 238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
239 239
240 240 obj/tc_acceptance.o: ../src/tc_acceptance.c
241 241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
242 242
243 243 obj/basic_parameters.o: ../../LFR_basic-parameters/basic_parameters.c ../../LFR_basic-parameters/basic_parameters.h
244 244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../../LFR_basic-parameters/basic_parameters.c
245 245
246 246 ####### Install
247 247
248 248 install: FORCE
249 249
250 250 uninstall: FORCE
251 251
252 252 FORCE:
253 253
@@ -1,78 +1,77
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report
4 CONFIG += console verbose
4 CONFIG += console verbose debug_messages
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=2 # internal
15 15
16 16 contains( CONFIG, verbose ) {
17 17 DEFINES += PRINT_MESSAGES_ON_CONSOLE
18 18 }
19 19
20 20 contains( CONFIG, debug_messages ) {
21 21 DEFINES += DEBUG_MESSAGES
22 22 }
23 23
24 24 contains( CONFIG, cpu_usage_report ) {
25 25 DEFINES += PRINT_TASK_STATISTICS
26 26 }
27 27
28 28 contains( CONFIG, stack_report ) {
29 29 DEFINES += PRINT_STACK_REPORT
30 30 }
31 31
32 32 contains( CONFIG, boot_messages ) {
33 33 DEFINES += BOOT_MESSAGES
34 34 }
35 35
36 36 #doxygen.target = doxygen
37 37 #doxygen.commands = doxygen ../doc/Doxyfile
38 38 #QMAKE_EXTRA_TARGETS += doxygen
39 39
40 40 TARGET = fsw
41 41
42 42 INCLUDEPATH += \
43 43 ../src \
44 44 ../header \
45 45 ../../LFR_basic-parameters
46 46
47 47 SOURCES += \
48 48 ../src/wf_handler.c \
49 49 ../src/tc_handler.c \
50 50 ../src/fsw_processing.c \
51 51 ../src/fsw_misc.c \
52 52 ../src/fsw_init.c \
53 53 ../src/fsw_globals.c \
54 54 ../src/fsw_spacewire.c \
55 55 ../src/tc_load_dump_parameters.c \
56 56 ../src/tm_lfr_tc_exe.c \
57 57 ../src/tc_acceptance.c \
58 58 ../../LFR_basic-parameters/basic_parameters.c
59 59
60 60
61 61 HEADERS += \
62 62 ../header/wf_handler.h \
63 63 ../header/tc_handler.h \
64 64 ../header/grlib_regs.h \
65 65 ../header/fsw_processing.h \
66 66 ../header/fsw_params.h \
67 67 ../header/fsw_misc.h \
68 68 ../header/fsw_init.h \
69 69 ../header/ccsds_types.h \
70 70 ../header/fsw_params_processing.h \
71 71 ../header/fsw_spacewire.h \
72 ../header/tm_byte_positions.h \
73 72 ../header/tc_load_dump_parameters.h \
74 73 ../header/tm_lfr_tc_exe.h \
75 74 ../header/tc_acceptance.h \
76 75 ../header/fsw_params_nb_bytes.h \
77 76 ../../LFR_basic-parameters/basic_parameters.h
78 77
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.0, 2014-03-03T07:03:32. -->
3 <!-- Written by QtCreator 3.0.0, 2014-03-04T07:03:18. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,609 +1,609
1 1 #ifndef CCSDS_TYPES_H_INCLUDED
2 2 #define CCSDS_TYPES_H_INCLUDED
3 3
4 4 #include "fsw_params_processing.h"
5 5
6 6 #define CCSDS_PROTOCOLE_EXTRA_BYTES 4
7 7 #define CCSDS_TELEMETRY_HEADER_LENGTH 16+4
8 8 #define CCSDS_TM_PKT_MAX_SIZE 4412
9 9 #define CCSDS_TELECOMMAND_HEADER_LENGTH 10+4
10 10 #define CCSDS_TC_PKT_MAX_SIZE 256
11 11 #define CCSDS_TC_PKT_MIN_SIZE 16
12 12 #define CCSDS_TC_TM_PACKET_OFFSET 7
13 13 #define CCSDS_PROCESS_ID 76
14 14 #define CCSDS_PACKET_CATEGORY 12
15 15 #define CCSDS_NODE_ADDRESS 0xfe
16 16 #define CCSDS_USER_APP 0x00
17 17
18 18 #define DEFAULT_SPARE1_PUSVERSION_SPARE2 0x10
19 19 #define DEFAULT_RESERVED 0x00
20 20 #define DEFAULT_HKBIA 0x1e // 0001 1110
21 21
22 22 // PACKET ID
23 23 #define TM_PACKET_ID_TC_EXE 0x0cc1 // PID 76 CAT 1
24 24 #define TM_PACKET_ID_HK 0x0cc4 // PID 76 CAT 4
25 25 #define TM_PACKET_ID_PARAMETER_DUMP 0x0cc9 // PID 76 CAT 9
26 26 #define TM_PACKET_ID_SCIENCE_NORMAL_BURST 0x0ccc // PID 76 CAT 12
27 27 #define TM_PACKET_ID_SCIENCE_SBM1_SBM2 0x0cfc // PID 79 CAT 12
28 28 #define TM_PACKET_PID_DEFAULT 76
29 29 #define TM_PACKET_PID_BURST_SBM1_SBM2 79
30 30 #define TM_PACKET_CAT_TC_EXE 1
31 31 #define TM_PACKET_CAT_HK 4
32 32 #define TM_PACKET_CAT_PARAMETER_DUMP 9
33 33 #define TM_PACKET_CAT_SCIENCE 12
34 34
35 35 // PACKET SEQUENCE CONTROL
36 36 #define TM_PACKET_SEQ_CTRL_CONTINUATION 0x00 // [0000 0000]
37 37 #define TM_PACKET_SEQ_CTRL_FIRST 0x40 // [0100 0000]
38 38 #define TM_PACKET_SEQ_CTRL_LAST 0x80 // [1000 0000]
39 39 #define TM_PACKET_SEQ_CTRL_STANDALONE 0xc0 // [1100 0000]
40 40 #define TM_PACKET_SEQ_CNT_DEFAULT 0x00 // [0000 0000]
41 41
42 42 // DESTINATION ID
43 43 #define TM_DESTINATION_ID_GROUND 0
44 44 #define TM_DESTINATION_ID_MISSION_TIMELINE 110
45 45 #define TM_DESTINATION_ID_TC_SEQUENCES 111
46 46 #define TM_DESTINATION_ID_RECOVERY_ACTION_COMMAND 112
47 47 #define TM_DESTINATION_ID_BACKUP_MISSION_TIMELINE 113
48 48 #define TM_DESTINATION_ID_DIRECT_CMD 120
49 49 #define TM_DESTINATION_ID_SPARE_GRD_SRC1 121
50 50 #define TM_DESTINATION_ID_SPARE_GRD_SRC2 122
51 51 #define TM_DESTINATION_ID_OBCP 15
52 52 #define TM_DESTINATION_ID_SYSTEM_CONTROL 14
53 53 #define TM_DESTINATION_ID_AOCS 11
54 54
55 55 #define CCSDS_DESTINATION_ID 0x01
56 56 #define CCSDS_PROTOCOLE_ID 0x02
57 57 #define CCSDS_RESERVED 0x00
58 58 #define CCSDS_USER_APP 0x00
59 59
60 60 #define SIZE_TM_LFR_TC_EXE_NOT_IMPLEMENTED 24
61 61 #define SIZE_TM_LFR_TC_EXE_CORRUPTED 32
62 62 #define SIZE_HK_PARAMETERS 112
63 63
64 64 // TC TYPES
65 65 #define TC_TYPE_GEN 181
66 66 #define TC_TYPE_TIME 9
67 67
68 68 // TC SUBTYPES
69 69 #define TC_SUBTYPE_RESET 1
70 70 #define TC_SUBTYPE_LOAD_COMM 11
71 71 #define TC_SUBTYPE_LOAD_NORM 13
72 72 #define TC_SUBTYPE_LOAD_BURST 19
73 73 #define TC_SUBTYPE_LOAD_SBM1 25
74 74 #define TC_SUBTYPE_LOAD_SBM2 27
75 75 #define TC_SUBTYPE_DUMP 31
76 76 #define TC_SUBTYPE_ENTER 41
77 77 #define TC_SUBTYPE_UPDT_INFO 51
78 78 #define TC_SUBTYPE_EN_CAL 61
79 79 #define TC_SUBTYPE_DIS_CAL 63
80 80 #define TC_SUBTYPE_UPDT_TIME 129
81 81
82 82 // TC LEN
83 83 #define TC_LEN_RESET 12
84 84 #define TC_LEN_LOAD_COMM 14
85 85 #define TC_LEN_LOAD_NORM 22
86 86 #define TC_LEN_LOAD_BURST 14
87 87 #define TC_LEN_LOAD_SBM1 14
88 88 #define TC_LEN_LOAD_SBM2 14
89 89 #define TC_LEN_DUMP 12
90 90 #define TC_LEN_ENTER 20
91 91 #define TC_LEN_UPDT_INFO 46
92 92 #define TC_LEN_EN_CAL 12
93 93 #define TC_LEN_DIS_CAL 12
94 94 #define TC_LEN_UPDT_TIME 18
95 95
96 96 // TM TYPES
97 97 #define TM_TYPE_TC_EXE 1
98 98 #define TM_TYPE_HK 3
99 99 #define TM_TYPE_PARAMETER_DUMP 3
100 100 #define TM_TYPE_LFR_SCIENCE 21
101 101
102 102 // TM SUBTYPES
103 103 #define TM_SUBTYPE_EXE_OK 7
104 104 #define TM_SUBTYPE_EXE_NOK 8
105 105 #define TM_SUBTYPE_HK 25
106 106 #define TM_SUBTYPE_PARAMETER_DUMP 25
107 107 #define TM_SUBTYPE_SCIENCE 3
108 108 #define TM_SUBTYPE_LFR_SCIENCE 3
109 109
110 110 // FAILURE CODES
111 111 #define ILLEGAL_APID 0
112 112 #define WRONG_LEN_PKT 1
113 113 #define INCOR_CHECKSUM 2
114 114 #define ILL_TYPE 3
115 115 #define ILL_SUBTYPE 4
116 116 #define WRONG_APP_DATA 5 // 0x00 0x05
117 117 #define TC_NOT_EXE 42000 // 0xa4 0x10
118 118 #define WRONG_SRC_ID 42001 // 0xa4 0x11
119 119 #define FUNCT_NOT_IMPL 42002 // 0xa4 0x12
120 120 #define FAIL_DETECTED 42003 // 0xa4 0x13
121 121 #define NOT_ALLOWED 42004 // 0xa4 0x14
122 122 #define CORRUPTED 42005 // 0xa4 0x15
123 123 #define CCSDS_TM_VALID 7
124 124
125 125 // TC SID
126 #define SID_TC_GROUND 0
126 #define SID_TC_GROUND 0
127 127 #define SID_TC_MISSION_TIMELINE 110
128 128 #define SID_TC_TC_SEQUENCES 111
129 129 #define SID_TC_RECOVERY_ACTION_CMD 112
130 130 #define SID_TC_BACKUP_MISSION_TIMELINE 113
131 131 #define SID_TC_DIRECT_CMD 120
132 132 #define SID_TC_SPARE_GRD_SRC1 121
133 133 #define SID_TC_SPARE_GRD_SRC2 122
134 134 #define SID_TC_OBCP 15
135 135 #define SID_TC_SYSTEM_CONTROL 14
136 136 #define SID_TC_AOCS 11
137 137 #define SID_TC_RPW_INTERNAL 254
138 138
139 139 enum apid_destid{
140 140 GROUND,
141 141 MISSION_TIMELINE,
142 142 TC_SEQUENCES,
143 143 RECOVERY_ACTION_CMD,
144 144 BACKUP_MISSION_TIMELINE,
145 145 DIRECT_CMD,
146 146 SPARE_GRD_SRC1,
147 147 SPARE_GRD_SRC2,
148 148 OBCP,
149 149 SYSTEM_CONTROL,
150 150 AOCS,
151 151 RPW_INTERNAL
152 152 };
153 153 // SEQUENCE COUNTERS
154 154 #define SEQ_CNT_MAX 16383
155 155 #define SEQ_CNT_NB_DEST_ID 12
156 156
157 157 // TM SID
158 158 #define SID_HK 1
159 159 #define SID_PARAMETER_DUMP 10
160 160
161 161 #define SID_NORM_SWF_F0 3
162 162 #define SID_NORM_SWF_F1 4
163 163 #define SID_NORM_SWF_F2 5
164 164 #define SID_NORM_CWF_F3 1
165 165 #define SID_BURST_CWF_F2 2
166 166 #define SID_SBM1_CWF_F1 24
167 167 #define SID_SBM2_CWF_F2 25
168 168 #define SID_NORM_ASM_F0 11
169 169 #define SID_NORM_ASM_F1 12
170 170 #define SID_NORM_ASM_F2 13
171 171 #define SID_NORM_BP1_F0 14
172 172 #define SID_NORM_BP1_F1 15
173 173 #define SID_NORM_BP1_F2 16
174 174 #define SID_NORM_BP2_F0 19
175 175 #define SID_NORM_BP2_F1 20
176 176 #define SID_NORM_BP2_F2 21
177 177 #define SID_BURST_BP1_F0 17
178 178 #define SID_BURST_BP2_F0 22
179 179 #define SID_BURST_BP1_F1 18
180 180 #define SID_BURST_BP2_F1 23
181 181 #define SID_SBM1_BP1_F0 28
182 182 #define SID_SBM1_BP2_F0 31
183 183 #define SID_SBM2_BP1_F0 29
184 184 #define SID_SBM2_BP2_F0 32
185 185 #define SID_SBM2_BP1_F1 30
186 186 #define SID_SBM2_BP2_F1 33
187 187 #define SID_NORM_CWF_LONG_F3 34
188 188
189 189 // LENGTH (BYTES)
190 190 #define LENGTH_TM_LFR_TC_EXE_MAX 32
191 191 #define LENGTH_TM_LFR_HK 126
192 192
193 193 // HEADER_LENGTH
194 194 #define TM_HEADER_LEN 16
195 195 #define HEADER_LENGTH_TM_LFR_SCIENCE_ASM 28
196 196 // PACKET_LENGTH
197 197 #define PACKET_LENGTH_TC_EXE_SUCCESS (20 - CCSDS_TC_TM_PACKET_OFFSET)
198 198 #define PACKET_LENGTH_TC_EXE_INCONSISTENT (26 - CCSDS_TC_TM_PACKET_OFFSET)
199 199 #define PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE (26 - CCSDS_TC_TM_PACKET_OFFSET)
200 200 #define PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED (24 - CCSDS_TC_TM_PACKET_OFFSET)
201 201 #define PACKET_LENGTH_TC_EXE_ERROR (24 - CCSDS_TC_TM_PACKET_OFFSET)
202 202 #define PACKET_LENGTH_TC_EXE_CORRUPTED (32 - CCSDS_TC_TM_PACKET_OFFSET)
203 203 #define PACKET_LENGTH_HK (124 - CCSDS_TC_TM_PACKET_OFFSET)
204 204 #define PACKET_LENGTH_PARAMETER_DUMP (36 - CCSDS_TC_TM_PACKET_OFFSET)
205 205 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0 2221 // 44 * 25 * 2 + 28 - 7
206 206 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1 2621 // 52 * 25 * 2 + 28 - 7
207 207 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2 2421 // 48 * 25 * 2 + 28 - 7
208 208
209 209 #define SPARE1_PUSVERSION_SPARE2 0x10
210 210
211 211 // R1
212 212 #define TM_LEN_SCI_SWF_340 4101 // 340 * 12 + 10 + 12 - 1
213 213 #define TM_LEN_SCI_SWF_8 117 // 8 * 12 + 10 + 12 - 1
214 214 #define TM_LEN_SCI_CWF_340 4099 // 340 * 12 + 10 + 10 - 1
215 215 #define TM_LEN_SCI_CWF_8 115 // 8 * 12 + 10 + 10 - 1
216 216 #define TM_LEN_SCI_CWF3_LIGHT_340 2059 // 340 * 6 + 10 + 10 - 1
217 217 #define TM_LEN_SCI_CWF3_LIGHT_8 67 // 8 * 6 + 10 + 10 - 1
218 218 // R2
219 219 #define TM_LEN_SCI_SWF_304 3669 // 304 * 12 + 10 + 12 - 1
220 220 #define TM_LEN_SCI_SWF_224 2709 // 224 * 12 + 10 + 12 - 1
221 221 #define TM_LEN_SCI_CWF_336 4051 // 336 * 12 + 10 + 10 - 1
222 222 #define TM_LEN_SCI_CWF_672 4051 // 672 * 6 + 10 + 10 - 1
223 223 //
224 224 #define DEFAULT_PKTCNT 0x07
225 225 #define BLK_NR_304 0x0130
226 226 #define BLK_NR_224 0x00e0
227 227 #define BLK_NR_CWF 0x0150 // 336
228 228 #define BLK_NR_CWF_SHORT_F3 0x02a0 // 672
229 229
230 230 enum TM_TYPE{
231 231 TM_LFR_TC_EXE_OK,
232 232 TM_LFR_TC_EXE_ERR,
233 233 TM_LFR_HK,
234 234 TM_LFR_SCI,
235 235 TM_LFR_SCI_SBM,
236 236 TM_LFR_PAR_DUMP
237 237 };
238 238
239 239 typedef struct {
240 240 unsigned char targetLogicalAddress;
241 241 unsigned char protocolIdentifier;
242 242 unsigned char reserved;
243 243 unsigned char userApplication;
244 244 // PACKET HEADER
245 245 unsigned char packetID[2];
246 246 unsigned char packetSequenceControl[2];
247 247 unsigned char packetLength[2];
248 248 // DATA FIELD HEADER
249 249 unsigned char spare1_pusVersion_spare2;
250 250 unsigned char serviceType;
251 251 unsigned char serviceSubType;
252 252 unsigned char destinationID;
253 253 unsigned char time[6];
254 254 //
255 255 unsigned char telecommand_pkt_id[2];
256 256 unsigned char pkt_seq_control[2];
257 257 } Packet_TM_LFR_TC_EXE_SUCCESS_t;
258 258
259 259 typedef struct {
260 260 unsigned char targetLogicalAddress;
261 261 unsigned char protocolIdentifier;
262 262 unsigned char reserved;
263 263 unsigned char userApplication;
264 264 // PACKET HEADER
265 265 unsigned char packetID[2];
266 266 unsigned char packetSequenceControl[2];
267 267 unsigned char packetLength[2];
268 268 // DATA FIELD HEADER
269 269 unsigned char spare1_pusVersion_spare2;
270 270 unsigned char serviceType;
271 271 unsigned char serviceSubType;
272 272 unsigned char destinationID;
273 273 unsigned char time[6];
274 274 //
275 275 unsigned char tc_failure_code[2];
276 276 unsigned char telecommand_pkt_id[2];
277 277 unsigned char pkt_seq_control[2];
278 278 unsigned char tc_service;
279 279 unsigned char tc_subtype;
280 280 unsigned char byte_position;
281 281 unsigned char rcv_value;
282 282 } Packet_TM_LFR_TC_EXE_INCONSISTENT_t;
283 283
284 284 typedef struct {
285 285 unsigned char targetLogicalAddress;
286 286 unsigned char protocolIdentifier;
287 287 unsigned char reserved;
288 288 unsigned char userApplication;
289 289 // PACKET HEADER
290 290 unsigned char packetID[2];
291 291 unsigned char packetSequenceControl[2];
292 292 unsigned char packetLength[2];
293 293 // DATA FIELD HEADER
294 294 unsigned char spare1_pusVersion_spare2;
295 295 unsigned char serviceType;
296 296 unsigned char serviceSubType;
297 297 unsigned char destinationID;
298 298 unsigned char time[6];
299 299 //
300 300 unsigned char tc_failure_code[2];
301 301 unsigned char telecommand_pkt_id[2];
302 302 unsigned char pkt_seq_control[2];
303 303 unsigned char tc_service;
304 304 unsigned char tc_subtype;
305 305 unsigned char lfr_status_word[2];
306 306 } Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t;
307 307
308 308 typedef struct {
309 309 unsigned char targetLogicalAddress;
310 310 unsigned char protocolIdentifier;
311 311 unsigned char reserved;
312 312 unsigned char userApplication;
313 313 // PACKET HEADER
314 314 unsigned char packetID[2];
315 315 unsigned char packetSequenceControl[2];
316 316 unsigned char packetLength[2];
317 317 // DATA FIELD HEADER
318 318 unsigned char spare1_pusVersion_spare2;
319 319 unsigned char serviceType;
320 320 unsigned char serviceSubType;
321 321 unsigned char destinationID;
322 322 unsigned char time[6];
323 323 //
324 324 unsigned char tc_failure_code[2];
325 325 unsigned char telecommand_pkt_id[2];
326 326 unsigned char pkt_seq_control[2];
327 327 unsigned char tc_service;
328 328 unsigned char tc_subtype;
329 329 } Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t;
330 330
331 331 typedef struct {
332 332 unsigned char targetLogicalAddress;
333 333 unsigned char protocolIdentifier;
334 334 unsigned char reserved;
335 335 unsigned char userApplication;
336 336 // PACKET HEADER
337 337 unsigned char packetID[2];
338 338 unsigned char packetSequenceControl[2];
339 339 unsigned char packetLength[2];
340 340 // DATA FIELD HEADER
341 341 unsigned char spare1_pusVersion_spare2;
342 342 unsigned char serviceType;
343 343 unsigned char serviceSubType;
344 344 unsigned char destinationID;
345 345 unsigned char time[6];
346 346 //
347 347 unsigned char tc_failure_code[2];
348 348 unsigned char telecommand_pkt_id[2];
349 349 unsigned char pkt_seq_control[2];
350 350 unsigned char tc_service;
351 351 unsigned char tc_subtype;
352 352 } Packet_TM_LFR_TC_EXE_ERROR_t;
353 353
354 354 typedef struct {
355 355 unsigned char targetLogicalAddress;
356 356 unsigned char protocolIdentifier;
357 357 unsigned char reserved;
358 358 unsigned char userApplication;
359 359 // PACKET HEADER
360 360 unsigned char packetID[2];
361 361 unsigned char packetSequenceControl[2];
362 362 unsigned char packetLength[2];
363 363 // DATA FIELD HEADER
364 364 unsigned char spare1_pusVersion_spare2;
365 365 unsigned char serviceType;
366 366 unsigned char serviceSubType;
367 367 unsigned char destinationID;
368 368 unsigned char time[6];
369 369 //
370 370 unsigned char tc_failure_code[2];
371 371 unsigned char telecommand_pkt_id[2];
372 372 unsigned char pkt_seq_control[2];
373 373 unsigned char tc_service;
374 374 unsigned char tc_subtype;
375 375 unsigned char pkt_len_rcv_value[2];
376 376 unsigned char pkt_datafieldsize_cnt[2];
377 377 unsigned char rcv_crc[2];
378 378 unsigned char computed_crc[2];
379 379 } Packet_TM_LFR_TC_EXE_CORRUPTED_t;
380 380
381 381 typedef struct {
382 382 unsigned char targetLogicalAddress;
383 383 unsigned char protocolIdentifier;
384 384 unsigned char reserved;
385 385 unsigned char userApplication;
386 386 unsigned char packetID[2];
387 387 unsigned char packetSequenceControl[2];
388 388 unsigned char packetLength[2];
389 389 // DATA FIELD HEADER
390 390 unsigned char spare1_pusVersion_spare2;
391 391 unsigned char serviceType;
392 392 unsigned char serviceSubType;
393 393 unsigned char destinationID;
394 394 unsigned char time[6];
395 395 // AUXILIARY HEADER
396 396 unsigned char sid;
397 397 unsigned char hkBIA;
398 398 unsigned char pktCnt;
399 399 unsigned char pktNr;
400 400 unsigned char acquisitionTime[6];
401 401 unsigned char blkNr[2];
402 402 } Header_TM_LFR_SCIENCE_SWF_t;
403 403
404 404 typedef struct {
405 405 unsigned char targetLogicalAddress;
406 406 unsigned char protocolIdentifier;
407 407 unsigned char reserved;
408 408 unsigned char userApplication;
409 409 unsigned char packetID[2];
410 410 unsigned char packetSequenceControl[2];
411 411 unsigned char packetLength[2];
412 412 // DATA FIELD HEADER
413 413 unsigned char spare1_pusVersion_spare2;
414 414 unsigned char serviceType;
415 415 unsigned char serviceSubType;
416 416 unsigned char destinationID;
417 417 unsigned char time[6];
418 418 // AUXILIARY DATA HEADER
419 419 unsigned char sid;
420 420 unsigned char hkBIA;
421 421 unsigned char acquisitionTime[6];
422 422 unsigned char blkNr[2];
423 423 } Header_TM_LFR_SCIENCE_CWF_t;
424 424
425 425 typedef struct {
426 426 unsigned char targetLogicalAddress;
427 427 unsigned char protocolIdentifier;
428 428 unsigned char reserved;
429 429 unsigned char userApplication;
430 430 unsigned char packetID[2];
431 431 unsigned char packetSequenceControl[2];
432 432 unsigned char packetLength[2];
433 433 // DATA FIELD HEADER
434 434 unsigned char spare1_pusVersion_spare2;
435 435 unsigned char serviceType;
436 436 unsigned char serviceSubType;
437 437 unsigned char destinationID;
438 438 unsigned char time[6];
439 439 // AUXILIARY HEADER
440 440 unsigned char sid;
441 441 unsigned char biaStatusInfo;
442 442 unsigned char pa_lfr_pkt_cnt_asm;
443 443 unsigned char pa_lfr_pkt_nr_asm;
444 444 unsigned char acquisitionTime[6];
445 445 unsigned char pa_lfr_asm_blk_nr[2];
446 446 } Header_TM_LFR_SCIENCE_ASM_t;
447 447
448 448 typedef struct {
449 449 //targetLogicalAddress is removed by the grspw module
450 450 unsigned char protocolIdentifier;
451 451 unsigned char reserved;
452 452 unsigned char userApplication;
453 453 unsigned char packetID[2];
454 454 unsigned char packetSequenceControl[2];
455 455 unsigned char packetLength[2];
456 456 // DATA FIELD HEADER
457 457 unsigned char headerFlag_pusVersion_Ack;
458 458 unsigned char serviceType;
459 459 unsigned char serviceSubType;
460 460 unsigned char sourceID;
461 461 unsigned char dataAndCRC[CCSDS_TC_PKT_MAX_SIZE-10];
462 462 } ccsdsTelecommandPacket_t;
463 463
464 464 typedef struct {
465 465 unsigned char targetLogicalAddress;
466 466 unsigned char protocolIdentifier;
467 467 unsigned char reserved;
468 468 unsigned char userApplication;
469 469 unsigned char packetID[2];
470 470 unsigned char packetSequenceControl[2];
471 471 unsigned char packetLength[2];
472 472 unsigned char spare1_pusVersion_spare2;
473 473 unsigned char serviceType;
474 474 unsigned char serviceSubType;
475 475 unsigned char destinationID;
476 476 unsigned char time[6];
477 477 unsigned char sid;
478 478
479 479 //**************
480 480 // HK PARAMETERS
481 481 unsigned char lfr_status_word[2];
482 482 unsigned char lfr_sw_version[4];
483 483 unsigned char lfr_fpga_version[3];
484 484 // ressource statistics
485 485 unsigned char hk_lfr_cpu_load;
486 486 unsigned char hk_lfr_load_max;
487 487 unsigned char hk_lfr_load_aver;
488 488 // tc statistics
489 489 unsigned char hk_lfr_update_info_tc_cnt[2];
490 490 unsigned char hk_lfr_update_time_tc_cnt[2];
491 491 unsigned char hk_lfr_exe_tc_cnt[2];
492 492 unsigned char hk_lfr_rej_tc_cnt[2];
493 493 unsigned char hk_lfr_last_exe_tc_id[2];
494 494 unsigned char hk_lfr_last_exe_tc_type[2];
495 495 unsigned char hk_lfr_last_exe_tc_subtype[2];
496 496 unsigned char hk_lfr_last_exe_tc_time[6];
497 497 unsigned char hk_lfr_last_rej_tc_id[2];
498 498 unsigned char hk_lfr_last_rej_tc_type[2];
499 499 unsigned char hk_lfr_last_rej_tc_subtype[2];
500 500 unsigned char hk_lfr_last_rej_tc_time[6];
501 501 // anomaly statistics
502 502 unsigned char hk_lfr_le_cnt[2];
503 503 unsigned char hk_lfr_me_cnt[2];
504 504 unsigned char hk_lfr_he_cnt[2];
505 505 unsigned char hk_lfr_last_er_rid[2];
506 506 unsigned char hk_lfr_last_er_code;
507 507 unsigned char hk_lfr_last_er_time[6];
508 508 // vhdl_blk_status
509 509 unsigned char hk_lfr_vhdl_aa_sm;
510 510 unsigned char hk_lfr_vhdl_fft_sr;
511 511 unsigned char hk_lfr_vhdl_cic_hk;
512 512 unsigned char hk_lfr_vhdl_iir_cal;
513 513 // spacewire_if_statistics
514 514 unsigned char hk_lfr_dpu_spw_pkt_rcv_cnt[2];
515 515 unsigned char hk_lfr_dpu_spw_pkt_sent_cnt[2];
516 516 unsigned char hk_lfr_dpu_spw_tick_out_cnt;
517 517 unsigned char hk_lfr_dpu_spw_last_timc;
518 518 // ahb error statistics
519 519 unsigned int hk_lfr_last_fail_addr;
520 520 // temperatures
521 521 unsigned char hk_lfr_temp_scm[2];
522 522 unsigned char hk_lfr_temp_pcb[2];
523 523 unsigned char hk_lfr_temp_fpga[2];
524 524 // spacecraft potential
525 525 unsigned char hk_lfr_sc_v_f3[2];
526 526 unsigned char hk_lfr_sc_e1_f3[2];
527 527 unsigned char hk_lfr_sc_e2_f3[2];
528 528 // error counters
529 529 unsigned char hk_lfr_dpu_spw_parity;
530 530 unsigned char hk_lfr_dpu_spw_disconnect;
531 531 unsigned char hk_lfr_dpu_spw_escape;
532 532 unsigned char hk_lfr_dpu_spw_credit;
533 533 unsigned char hk_lfr_dpu_spw_write_sync;
534 534 unsigned char hk_lfr_dpu_spw_rx_ahb;
535 535 unsigned char hk_lfr_dpu_spw_tx_ahb;
536 536 unsigned char hk_lfr_dpu_spw_early_eop;
537 537 unsigned char hk_lfr_dpu_spw_invalid_addr;
538 538 unsigned char hk_lfr_dpu_spw_eep;
539 539 unsigned char hk_lfr_dpu_spw_rx_too_big;
540 540 // timecode
541 541 unsigned char hk_lfr_timecode_erroneous;
542 542 unsigned char hk_lfr_timecode_missing;
543 543 unsigned char hk_lfr_timecode_invalid;
544 544 // time
545 545 unsigned char hk_lfr_time_timecode_it;
546 546 unsigned char hk_lfr_time_not_synchro;
547 547 unsigned char hk_lfr_time_timecode_ctr;
548 548 // hk_lfr_buffer_dpu_
549 549 unsigned char hk_lfr_buffer_dpu_tc_fifo;
550 550 unsigned char hk_lfr_buffer_dpu_tm_fifo;
551 551 // hk_lfr_ahb_
552 552 unsigned char hk_lfr_ahb_correctable;
553 553 unsigned char hk_lfr_ahb_uncorrectable;
554 554 // spare
555 555 unsigned char parameters_spare;
556 556 } Packet_TM_LFR_HK_t;
557 557
558 558 typedef struct {
559 559 unsigned char targetLogicalAddress;
560 560 unsigned char protocolIdentifier;
561 561 unsigned char reserved;
562 562 unsigned char userApplication;
563 563 unsigned char packetID[2];
564 564 unsigned char packetSequenceControl[2];
565 565 unsigned char packetLength[2];
566 566 // DATA FIELD HEADER
567 567 unsigned char spare1_pusVersion_spare2;
568 568 unsigned char serviceType;
569 569 unsigned char serviceSubType;
570 570 unsigned char destinationID;
571 571 unsigned char time[6];
572 572 unsigned char sid;
573 573
574 574 //******************
575 575 // COMMON PARAMETERS
576 576 unsigned char unused0;
577 577 unsigned char bw_sp0_sp1_r0_r1;
578 578
579 579 //******************
580 580 // NORMAL PARAMETERS
581 581 unsigned char sy_lfr_n_swf_l[2];
582 582 unsigned char sy_lfr_n_swf_p[2];
583 583 unsigned char sy_lfr_n_asm_p[2];
584 584 unsigned char sy_lfr_n_bp_p0;
585 585 unsigned char sy_lfr_n_bp_p1;
586 586 unsigned char sy_lfr_n_cwf_long_f3;
587 587 unsigned char lfr_normal_parameters_spare;
588 588
589 589 //*****************
590 590 // BURST PARAMETERS
591 591 unsigned char sy_lfr_b_bp_p0;
592 592 unsigned char sy_lfr_b_bp_p1;
593 593
594 594 //****************
595 595 // SBM1 PARAMETERS
596 596 unsigned char sy_lfr_s1_bp_p0;
597 597 unsigned char sy_lfr_s1_bp_p1;
598 598
599 599 //****************
600 600 // SBM2 PARAMETERS
601 601 unsigned char sy_lfr_s2_bp_p0;
602 602 unsigned char sy_lfr_s2_bp_p1;
603 603
604 604 // SPARE
605 605 unsigned char source_data_spare;
606 606 } Packet_TM_LFR_PARAMETER_DUMP_t;
607 607
608 608
609 609 #endif // CCSDS_TYPES_H_INCLUDED
@@ -1,40 +1,41
1 1 #ifndef FSW_INIT_H_INCLUDED
2 2 #define FSW_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 9 #include "fsw_processing.h"
10 10 #include "tc_handler.h"
11 11 #include "wf_handler.h"
12 12
13 13 #include "fsw_spacewire.h"
14 14
15 15 extern rtems_name Task_name[20]; /* array of task names */
16 16 extern rtems_id Task_id[20]; /* array of task ids */
17 17
18 18 // RTEMS TASKS
19 19 rtems_task Init( rtems_task_argument argument);
20 20
21 21 // OTHER functions
22 22 void create_names( void );
23 23 int create_all_tasks( void );
24 24 int start_all_tasks( void );
25 25 //
26 26 rtems_status_code create_message_queues( void );
27 27 rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
28 28 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
29 29 //
30 30 int start_recv_send_tasks( void );
31 31 //
32 32 void init_local_mode_parameters( void );
33 void reset_local_time( void );
33 34
34 35 extern int rtems_cpu_usage_report( void );
35 36 extern int rtems_cpu_usage_reset( void );
36 37 extern void rtems_stack_checker_report_usage( void );
37 38
38 39 extern int sched_yield( void );
39 40
40 41 #endif // FSW_INIT_H_INCLUDED
@@ -1,212 +1,225
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 #include "fsw_params_nb_bytes.h"
6 7 #include "tm_byte_positions.h"
7 8 #include "ccsds_types.h"
8 9
9 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
10 11 #define UART_DEVICE_NAME "/dev/console"
11 12
12 13 typedef struct ring_node
13 14 {
14 15 struct ring_node *previous;
15 16 int buffer_address;
16 17 struct ring_node *next;
17 18 unsigned int status;
18 19 } ring_node;
19 20
20 21 //************************
21 22 // flight software version
22 23 // this parameters is handled by the Qt project options
23 24
24 25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
25 26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
26 27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
27 28 #define TIME_OFFSET 2
28 29 #define TIME_OFFSET_IN_BYTES 8
29 30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
30 31 #define NB_BYTES_SWF_BLK (2 * 6)
31 32 #define NB_WORDS_SWF_BLK 3
32 33 #define NB_BYTES_CWF3_LIGHT_BLK 6
33 34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
34 35 #define NB_RING_NODES_F0 3 // AT LEAST 3
35 36 #define NB_RING_NODES_F1 5 // AT LEAST 3
36 37 #define NB_RING_NODES_F2 5 // AT LEAST 3
37 38 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
38 39 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
39 40 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
40 41
41 42 //**********
42 43 // LFR MODES
43 #define LFR_MODE_STANDBY 0
44 #define LFR_MODE_NORMAL 1
45 #define LFR_MODE_BURST 2
46 #define LFR_MODE_SBM1 3
47 #define LFR_MODE_SBM2 4
48 #define LFR_MODE_NORMAL_CWF_F3 5
44 #define LFR_MODE_STANDBY 0
45 #define LFR_MODE_NORMAL 1
46 #define LFR_MODE_BURST 2
47 #define LFR_MODE_SBM1 3
48 #define LFR_MODE_SBM2 4
49
50 #define TDS_MODE_LFM 5
51 #define TDS_MODE_STANDBY 0
52 #define TDS_MODE_NORMAL 1
53 #define TDS_MODE_BURST 2
54 #define TDS_MODE_SBM1 3
55 #define TDS_MODE_SBM2 4
56
57 #define THR_MODE_STANDBY 0
58 #define THR_MODE_NORMAL 1
59 #define THR_MODE_BURST 2
49 60
50 61 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
51 62 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
52 63 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
53 64 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
54 65 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
55 66 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
56 67 #define RTEMS_EVENT_MODE_NORMAL_SWF_F0 RTEMS_EVENT_6
57 68 #define RTEMS_EVENT_MODE_NORMAL_SWF_F1 RTEMS_EVENT_7
58 69 #define RTEMS_EVENT_MODE_NORMAL_SWF_F2 RTEMS_EVENT_8
59 70
60 71 //****************************
61 72 // LFR DEFAULT MODE PARAMETERS
62 73 // COMMON
63 74 #define DEFAULT_SY_LFR_COMMON0 0x00
64 75 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
65 76 // NORM
66 77 #define SY_LFR_N_SWF_L 2048 // nb sample
67 78 #define SY_LFR_N_SWF_P 300 // sec
68 79 #define SY_LFR_N_ASM_P 3600 // sec
69 80 #define SY_LFR_N_BP_P0 4 // sec
70 81 #define SY_LFR_N_BP_P1 20 // sec
71 82 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
72 83 #define MIN_DELTA_SNAPSHOT 16 // sec
73 84 // BURST
74 85 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
75 86 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
76 87 // SBM1
77 88 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
78 89 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
79 90 // SBM2
80 91 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
81 92 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
82 93 // ADDITIONAL PARAMETERS
83 94 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
84 95 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
85 96 // STATUS WORD
86 97 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
87 98 #define DEFAULT_STATUS_WORD_BYTE1 0x00
88 99 //
89 100 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
90 101 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
91 102 //****************************
92 103
93 104 //*****************************
94 105 // APB REGISTERS BASE ADDRESSES
95 106 #define REGS_ADDR_APBUART 0x80000100
96 107 #define REGS_ADDR_GPTIMER 0x80000300
97 108 #define REGS_ADDR_GRSPW 0x80000500
98 109 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
99 110 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
100 111 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
101 112
102 113 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
103 114 #define APBUART_CTRL_REG_MASK_TE 0x00000002
104 115 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
105 116
106 117 //**********
107 118 // IRQ LINES
108 119 #define IRQ_SM_SIMULATOR 9
109 120 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
110 121 #define IRQ_WAVEFORM_PICKER 14
111 122 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
112 123 #define IRQ_SPECTRAL_MATRIX 6
113 124 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
114 125
115 126 //*****
116 127 // TIME
117 128 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
118 129 #define TIMER_SM_SIMULATOR 1
119 #define HK_PERIOD 100 // 100 * 10ms => 1sec
130 #define HK_PERIOD 100 // 100 * 10ms => 1s
131 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
132 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
120 133
121 134 //**********
122 135 // LPP CODES
123 136 #define LFR_SUCCESSFUL 0
124 137 #define LFR_DEFAULT 1
125 138
126 139 //******
127 140 // RTEMS
128 141 #define TASKID_RECV 1
129 142 #define TASKID_ACTN 2
130 143 #define TASKID_SPIQ 3
131 144 #define TASKID_SMIQ 4
132 145 #define TASKID_STAT 5
133 146 #define TASKID_AVF0 6
134 147 //#define TASKID_BPF0 7
135 148 #define TASKID_WFRM 8
136 149 #define TASKID_DUMB 9
137 150 #define TASKID_HOUS 10
138 151 #define TASKID_MATR 11
139 152 #define TASKID_CWF3 12
140 153 #define TASKID_CWF2 13
141 154 #define TASKID_CWF1 14
142 155 #define TASKID_SEND 15
143 156 #define TASKID_WTDG 16
144 157
145 158 #define TASK_PRIORITY_SPIQ 5
146 159 #define TASK_PRIORITY_SMIQ 10
147 160 #define TASK_PRIORITY_WTDG 20
148 161 #define TASK_PRIORITY_HOUS 30
149 162 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
150 163 #define TASK_PRIORITY_CWF2 35 //
151 164 #define TASK_PRIORITY_WFRM 40
152 165 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
153 166 #define TASK_PRIORITY_SEND 45
154 167 #define TASK_PRIORITY_RECV 50
155 168 #define TASK_PRIORITY_ACTN 50
156 169 #define TASK_PRIORITY_AVF0 60
157 170 #define TASK_PRIORITY_BPF0 60
158 171 #define TASK_PRIORITY_MATR 100
159 172 #define TASK_PRIORITY_STAT 200
160 173 #define TASK_PRIORITY_DUMB 200
161 174
162 175 #define ACTION_MSG_QUEUE_COUNT 10
163 176 #define ACTION_MSG_PKTS_COUNT 50
164 177 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
165 178 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
166 179
167 180 #define QUEUE_RECV 0
168 181 #define QUEUE_SEND 1
169 182
170 183 //*******
171 184 // MACROS
172 185 #ifdef PRINT_MESSAGES_ON_CONSOLE
173 186 #define PRINTF(x) printf(x);
174 187 #define PRINTF1(x,y) printf(x,y);
175 188 #define PRINTF2(x,y,z) printf(x,y,z);
176 189 #else
177 190 #define PRINTF(x) ;
178 191 #define PRINTF1(x,y) ;
179 192 #define PRINTF2(x,y,z) ;
180 193 #endif
181 194
182 195 #ifdef BOOT_MESSAGES
183 196 #define BOOT_PRINTF(x) printf(x);
184 197 #define BOOT_PRINTF1(x,y) printf(x,y);
185 198 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
186 199 #else
187 200 #define BOOT_PRINTF(x) ;
188 201 #define BOOT_PRINTF1(x,y) ;
189 202 #define BOOT_PRINTF2(x,y,z) ;
190 203 #endif
191 204
192 205 #ifdef DEBUG_MESSAGES
193 206 #define DEBUG_PRINTF(x) printf(x);
194 207 #define DEBUG_PRINTF1(x,y) printf(x,y);
195 208 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
196 209 #else
197 210 #define DEBUG_PRINTF(x) ;
198 211 #define DEBUG_PRINTF1(x,y) ;
199 212 #define DEBUG_PRINTF2(x,y,z) ;
200 213 #endif
201 214
202 215 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
203 216
204 217 struct param_local_str{
205 218 unsigned int local_sbm1_nb_cwf_sent;
206 219 unsigned int local_sbm1_nb_cwf_max;
207 220 unsigned int local_sbm2_nb_cwf_sent;
208 221 unsigned int local_sbm2_nb_cwf_max;
209 222 unsigned int local_nb_interrupt_f0_MAX;
210 223 };
211 224
212 225 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,22 +1,26
1 1 #ifndef TM_BYTE_POSITIONS_H
2 2 #define TM_BYTE_POSITIONS_H
3 3
4 4 #define BYTE_POS_CP_LFR_MODE 11
5 5
6 6 // TC_LFR_LOAD_COMMON_PAR
7 7
8 8 // TC_LFR_LOAD_NORMAL_PAR
9 9 #define BYTE_POS_SY_LFR_N_SWF_L 0
10 10 #define BYTE_POS_SY_LFR_N_SWF_P 2
11 11 #define BYTE_POS_SY_LFR_N_ASM_P 4
12 12 #define BYTE_POS_SY_LFR_N_BP_P0 6
13 13 #define BYTE_POS_SY_LFR_N_BP_P1 7
14 #define BYTE_POS_SY_LFR_N_CWF_LONG_F3 8
14 15
15 16 // TC_LFR_LOAD_BURST_PAR
16 17
17 18 // TC_LFR_LOAD_SBM1_PAR
18 19
19 20 // TC_LFR_LOAD_SBM2_PAR
20 21
22 // TC_LFR_UPDATE_INFO
23 #define BYTE_POS_HK_UPDATE_INFO_PAR_SET5 24 // 34 - 10
24 #define BYTE_POS_HK_UPDATE_INFO_PAR_SET6 25 // 35 - 10
21 25
22 26 #endif // TM_BYTE_POSITIONS_H
@@ -1,25 +1,25
1 1 #ifndef TC_ACCEPTANCE_H_INCLUDED
2 2 #define TC_ACCEPTANCE_H_INCLUDED
3 3
4 4 //#include "tm_lfr_tc_exe.h"
5 5 #include "fsw_params.h"
6 6
7 7 //**********************
8 8 // GENERAL USE FUNCTIONS
9 9 unsigned int Crc_opt( unsigned char D, unsigned int Chk);
10 10 void initLookUpTableForCRC( void );
11 11 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData);
12 12
13 13 //*********************
14 14 // ACCEPTANCE FUNCTIONS
15 15 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int TC_LEN_RCV, unsigned char *computed_CRC);
16 16 int tc_check_type( unsigned char packetType );
17 int tc_check_subtype( unsigned char packetType );
17 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType );
18 18 int tc_check_sid( unsigned char sid );
19 19 int tc_check_length( unsigned char packetType, unsigned int length );
20 20 int tc_check_crc(ccsdsTelecommandPacket_t * TCPacket, unsigned int length , unsigned char *computed_CRC);
21 21
22 22 #endif // TC_ACCEPTANCE_H_INCLUDED
23 23
24 24
25 25
@@ -1,58 +1,58
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 13 // MODE PARAMETERS
14 14 extern unsigned int maxCount;
15 15
16 16 //****
17 17 // ISR
18 18 rtems_isr commutation_isr1( rtems_vector_number vector );
19 19 rtems_isr commutation_isr2( rtems_vector_number vector );
20 20
21 21 //***********
22 22 // RTEMS TASK
23 23 rtems_task actn_task( rtems_task_argument unused );
24 24
25 25 //***********
26 26 // TC ACTIONS
27 27 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
28 28 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 29 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
30 30 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 31 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
32 32 int action_update_time(ccsdsTelecommandPacket_t *TC);
33 33
34 34 // mode transition
35 35 int transition_validation(unsigned char requestedMode);
36 36 int stop_current_mode( void );
37 37 int enter_mode(unsigned char mode);
38 38 int restart_science_tasks();
39 39 int suspend_science_tasks();
40 40 void launch_waveform_picker( unsigned char mode );
41 41 void launch_spectral_matrix( unsigned char mode );
42 42 void enable_irq_on_new_ready_matrix( void );
43 43 void disable_irq_on_new_ready_matrix( void );
44 44 void launch_spectral_matrix_simu( unsigned char mode );
45 45
46 46 // other functions
47 47 void updateLFRCurrentMode();
48 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC, unsigned char *time);
49 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char *time);
50 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id, unsigned char *time);
48 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC );
49 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC );
50 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
51 51
52 52 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
53 53 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
54 54
55 55 #endif // TC_HANDLER_H_INCLUDED
56 56
57 57
58 58
@@ -1,28 +1,33
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11
12 12 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
13 13 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
14 14 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
15 15 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
16 16 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
17 17 int action_dump_par(rtems_id queue_id );
18 18
19 19 int set_sy_lfr_n_swf_l(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
20 20 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
21 21 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
22 22 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
23 23 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
24 24 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
25 25
26 // TC_LFR_UPDATE_INFO
27 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
28 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
29 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
30
26 31 void init_parameter_dump( void );
27 32
28 33 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,26 +1,26
1 1 #ifndef TM_LFR_TC_EXE_H_INCLUDED
2 2 #define TM_LFR_TC_EXE_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_spacewire.h"
9 9
10 10 extern unsigned short sequenceCounters_TC_EXE[];
11 11
12 int send_tm_lfr_tc_exe_success(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
13 int send_tm_lfr_tc_exe_inconsistent(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
14 unsigned char byte_position, unsigned char rcv_value, unsigned char *time);
15 int send_tm_lfr_tc_exe_not_executable(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
16 int send_tm_lfr_tc_exe_not_implemented(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
17 int send_tm_lfr_tc_exe_error(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
18 int send_tm_lfr_tc_exe_corrupted(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
19 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV, unsigned char destinationID, unsigned char *time);
12 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
13 int send_tm_lfr_tc_exe_inconsistent( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
14 unsigned char byte_position, unsigned char rcv_value );
15 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
16 int send_tm_lfr_tc_exe_not_implemented( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
17 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
18 int send_tm_lfr_tc_exe_corrupted( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
19 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV, unsigned char destinationID );
20 20
21 21 void increment_seq_counter_destination_id( unsigned char *packet_sequence_control, unsigned char destination_id );
22 22
23 23 #endif // TM_LFR_TC_EXE_H_INCLUDED
24 24
25 25
26 26
@@ -1,598 +1,604
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 reset_local_time();
73 74
74 75 rtems_status_code status;
75 76 rtems_status_code status_spw;
76 77 rtems_isr_entry old_isr_handler;
77 78
78 79 // UART settings
79 80 send_console_outputs_on_apbuart_port();
80 81 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
81 82 enable_apbuart_transmitter();
82 83 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
83 84
84 85 PRINTF("\n\n\n\n\n")
85 86 PRINTF("*************************\n")
86 87 PRINTF("** LFR Flight Software **\n")
87 88 PRINTF1("** %d.", SW_VERSION_N1)
88 89 PRINTF1("%d.", SW_VERSION_N2)
89 90 PRINTF1("%d.", SW_VERSION_N3)
90 91 PRINTF1("%d **\n", SW_VERSION_N4)
91 92 PRINTF("*************************\n")
92 93 PRINTF("\n\n")
93 94
94 95 reset_wfp_burst_enable(); // stop the waveform picker if it was running
95 96 init_waveform_rings(); // initialize the waveform rings
96 97 init_sm_rings();
97 98
98 99 init_parameter_dump();
99 100 init_local_mode_parameters();
100 101 init_housekeeping_parameters();
101 102
102 103 updateLFRCurrentMode();
103 104
104 105 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
105 106
106 107 create_names(); // create all names
107 108
108 109 status = create_message_queues(); // create message queues
109 110 if (status != RTEMS_SUCCESSFUL)
110 111 {
111 112 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
112 113 }
113 114
114 115 status = create_all_tasks(); // create all tasks
115 116 if (status != RTEMS_SUCCESSFUL)
116 117 {
117 118 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
118 119 }
119 120
120 121 // **************************
121 122 // <SPACEWIRE INITIALIZATION>
122 123 grspw_timecode_callback = &timecode_irq_handler;
123 124
124 125 status_spw = spacewire_open_link(); // (1) open the link
125 126 if ( status_spw != RTEMS_SUCCESSFUL )
126 127 {
127 128 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
128 129 }
129 130
130 131 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
131 132 {
132 133 status_spw = spacewire_configure_link( fdSPW );
133 134 if ( status_spw != RTEMS_SUCCESSFUL )
134 135 {
135 136 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
136 137 }
137 138 }
138 139
139 140 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
140 141 {
141 142 status_spw = spacewire_start_link( fdSPW );
142 143 if ( status_spw != RTEMS_SUCCESSFUL )
143 144 {
144 145 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
145 146 }
146 147 }
147 148 // </SPACEWIRE INITIALIZATION>
148 149 // ***************************
149 150
150 151 status = start_all_tasks(); // start all tasks
151 152 if (status != RTEMS_SUCCESSFUL)
152 153 {
153 154 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
154 155 }
155 156
156 157 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
157 158 status = start_recv_send_tasks();
158 159 if ( status != RTEMS_SUCCESSFUL )
159 160 {
160 161 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
161 162 }
162 163
163 164 // suspend science tasks. they will be restarted later depending on the mode
164 165 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
165 166 if (status != RTEMS_SUCCESSFUL)
166 167 {
167 168 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
168 169 }
169 170
170 171 //******************************
171 172 // <SPECTRAL MATRICES SIMULATOR>
172 173 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
173 174 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
174 175 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
175 176 // </SPECTRAL MATRICES SIMULATOR>
176 177 //*******************************
177 178
178 179 // configure IRQ handling for the waveform picker unit
179 180 status = rtems_interrupt_catch( waveforms_isr,
180 181 IRQ_SPARC_WAVEFORM_PICKER,
181 182 &old_isr_handler) ;
182 183 // configure IRQ handling for the spectral matrices unit
183 184 status = rtems_interrupt_catch( spectral_matrices_isr,
184 185 IRQ_SPARC_SPECTRAL_MATRIX,
185 186 &old_isr_handler) ;
186 187
187 188 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
188 189 if ( status_spw != RTEMS_SUCCESSFUL )
189 190 {
190 191 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
191 192 if ( status != RTEMS_SUCCESSFUL ) {
192 193 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
193 194 }
194 195 }
195 196
196 197 BOOT_PRINTF("delete INIT\n")
197 198
198 199 status = rtems_task_delete(RTEMS_SELF);
199 200
200 201 }
201 202
202 203 void init_local_mode_parameters( void )
203 204 {
204 205 /** This function initialize the param_local global variable with default values.
205 206 *
206 207 */
207 208
208 209 unsigned int i;
209 210
210 211 // LOCAL PARAMETERS
211 212 set_local_nb_interrupt_f0_MAX();
212 213
213 214 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
214 215 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
215 216 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
216 217
217 218 // init sequence counters
218 219
219 220 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
220 221 {
221 222 sequenceCounters_TC_EXE[i] = 0x00;
222 223 }
223 224 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
224 225 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
225 226 }
226 227
228 void reset_local_time( void )
229 {
230
231 }
232
227 233 void create_names( void ) // create all names for tasks and queues
228 234 {
229 235 /** This function creates all RTEMS names used in the software for tasks and queues.
230 236 *
231 237 * @return RTEMS directive status codes:
232 238 * - RTEMS_SUCCESSFUL - successful completion
233 239 *
234 240 */
235 241
236 242 // task names
237 243 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
238 244 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
239 245 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
240 246 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
241 247 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
242 248 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
243 249 // Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
244 250 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
245 251 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
246 252 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
247 253 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
248 254 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
249 255 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
250 256 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
251 257 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
252 258 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
253 259
254 260 // rate monotonic period names
255 261 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
256 262
257 263 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
258 264 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
259 265 }
260 266
261 267 int create_all_tasks( void ) // create all tasks which run in the software
262 268 {
263 269 /** This function creates all RTEMS tasks used in the software.
264 270 *
265 271 * @return RTEMS directive status codes:
266 272 * - RTEMS_SUCCESSFUL - task created successfully
267 273 * - RTEMS_INVALID_ADDRESS - id is NULL
268 274 * - RTEMS_INVALID_NAME - invalid task name
269 275 * - RTEMS_INVALID_PRIORITY - invalid task priority
270 276 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
271 277 * - RTEMS_TOO_MANY - too many tasks created
272 278 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
273 279 * - RTEMS_TOO_MANY - too many global objects
274 280 *
275 281 */
276 282
277 283 rtems_status_code status;
278 284
279 285 // RECV
280 286 status = rtems_task_create(
281 287 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
282 288 RTEMS_DEFAULT_MODES,
283 289 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
284 290 );
285 291
286 292 if (status == RTEMS_SUCCESSFUL) // ACTN
287 293 {
288 294 status = rtems_task_create(
289 295 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
290 296 RTEMS_DEFAULT_MODES,
291 297 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
292 298 );
293 299 }
294 300 if (status == RTEMS_SUCCESSFUL) // SPIQ
295 301 {
296 302 status = rtems_task_create(
297 303 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
298 304 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
299 305 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
300 306 );
301 307 }
302 308 if (status == RTEMS_SUCCESSFUL) // SMIQ
303 309 {
304 310 status = rtems_task_create(
305 311 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
306 312 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
307 313 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
308 314 );
309 315 }
310 316 if (status == RTEMS_SUCCESSFUL) // STAT
311 317 {
312 318 status = rtems_task_create(
313 319 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
314 320 RTEMS_DEFAULT_MODES,
315 321 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
316 322 );
317 323 }
318 324 if (status == RTEMS_SUCCESSFUL) // AVF0
319 325 {
320 326 status = rtems_task_create(
321 327 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
322 328 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
323 329 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
324 330 );
325 331 }
326 332 if (status == RTEMS_SUCCESSFUL) // WFRM
327 333 {
328 334 status = rtems_task_create(
329 335 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
330 336 RTEMS_DEFAULT_MODES,
331 337 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
332 338 );
333 339 }
334 340 if (status == RTEMS_SUCCESSFUL) // DUMB
335 341 {
336 342 status = rtems_task_create(
337 343 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
338 344 RTEMS_DEFAULT_MODES,
339 345 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
340 346 );
341 347 }
342 348 if (status == RTEMS_SUCCESSFUL) // HOUS
343 349 {
344 350 status = rtems_task_create(
345 351 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
346 352 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
347 353 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
348 354 );
349 355 }
350 356 if (status == RTEMS_SUCCESSFUL) // MATR
351 357 {
352 358 status = rtems_task_create(
353 359 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
354 360 RTEMS_DEFAULT_MODES,
355 361 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
356 362 );
357 363 }
358 364 if (status == RTEMS_SUCCESSFUL) // CWF3
359 365 {
360 366 status = rtems_task_create(
361 367 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
362 368 RTEMS_DEFAULT_MODES,
363 369 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
364 370 );
365 371 }
366 372 if (status == RTEMS_SUCCESSFUL) // CWF2
367 373 {
368 374 status = rtems_task_create(
369 375 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
370 376 RTEMS_DEFAULT_MODES,
371 377 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
372 378 );
373 379 }
374 380 if (status == RTEMS_SUCCESSFUL) // CWF1
375 381 {
376 382 status = rtems_task_create(
377 383 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
378 384 RTEMS_DEFAULT_MODES,
379 385 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
380 386 );
381 387 }
382 388 if (status == RTEMS_SUCCESSFUL) // SEND
383 389 {
384 390 status = rtems_task_create(
385 391 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
386 392 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
387 393 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
388 394 );
389 395 }
390 396 if (status == RTEMS_SUCCESSFUL) // WTDG
391 397 {
392 398 status = rtems_task_create(
393 399 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
394 400 RTEMS_DEFAULT_MODES,
395 401 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
396 402 );
397 403 }
398 404
399 405 return status;
400 406 }
401 407
402 408 int start_recv_send_tasks( void )
403 409 {
404 410 rtems_status_code status;
405 411
406 412 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
407 413 if (status!=RTEMS_SUCCESSFUL) {
408 414 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
409 415 }
410 416
411 417 if (status == RTEMS_SUCCESSFUL) // SEND
412 418 {
413 419 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
414 420 if (status!=RTEMS_SUCCESSFUL) {
415 421 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
416 422 }
417 423 }
418 424
419 425 return status;
420 426 }
421 427
422 428 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
423 429 {
424 430 /** This function starts all RTEMS tasks used in the software.
425 431 *
426 432 * @return RTEMS directive status codes:
427 433 * - RTEMS_SUCCESSFUL - ask started successfully
428 434 * - RTEMS_INVALID_ADDRESS - invalid task entry point
429 435 * - RTEMS_INVALID_ID - invalid task id
430 436 * - RTEMS_INCORRECT_STATE - task not in the dormant state
431 437 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
432 438 *
433 439 */
434 440 // starts all the tasks fot eh flight software
435 441
436 442 rtems_status_code status;
437 443
438 444 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
439 445 if (status!=RTEMS_SUCCESSFUL) {
440 446 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
441 447 }
442 448
443 449 if (status == RTEMS_SUCCESSFUL) // WTDG
444 450 {
445 451 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
446 452 if (status!=RTEMS_SUCCESSFUL) {
447 453 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
448 454 }
449 455 }
450 456
451 457 if (status == RTEMS_SUCCESSFUL) // SMIQ
452 458 {
453 459 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
454 460 if (status!=RTEMS_SUCCESSFUL) {
455 461 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
456 462 }
457 463 }
458 464
459 465 if (status == RTEMS_SUCCESSFUL) // ACTN
460 466 {
461 467 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
462 468 if (status!=RTEMS_SUCCESSFUL) {
463 469 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
464 470 }
465 471 }
466 472
467 473 if (status == RTEMS_SUCCESSFUL) // STAT
468 474 {
469 475 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
470 476 if (status!=RTEMS_SUCCESSFUL) {
471 477 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
472 478 }
473 479 }
474 480
475 481 if (status == RTEMS_SUCCESSFUL) // AVF0
476 482 {
477 483 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
478 484 if (status!=RTEMS_SUCCESSFUL) {
479 485 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
480 486 }
481 487 }
482 488
483 489 if (status == RTEMS_SUCCESSFUL) // WFRM
484 490 {
485 491 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
486 492 if (status!=RTEMS_SUCCESSFUL) {
487 493 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
488 494 }
489 495 }
490 496
491 497 if (status == RTEMS_SUCCESSFUL) // DUMB
492 498 {
493 499 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
494 500 if (status!=RTEMS_SUCCESSFUL) {
495 501 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
496 502 }
497 503 }
498 504
499 505 if (status == RTEMS_SUCCESSFUL) // HOUS
500 506 {
501 507 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
502 508 if (status!=RTEMS_SUCCESSFUL) {
503 509 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
504 510 }
505 511 }
506 512
507 513 if (status == RTEMS_SUCCESSFUL) // MATR
508 514 {
509 515 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
510 516 if (status!=RTEMS_SUCCESSFUL) {
511 517 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
512 518 }
513 519 }
514 520
515 521 if (status == RTEMS_SUCCESSFUL) // CWF3
516 522 {
517 523 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
518 524 if (status!=RTEMS_SUCCESSFUL) {
519 525 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
520 526 }
521 527 }
522 528
523 529 if (status == RTEMS_SUCCESSFUL) // CWF2
524 530 {
525 531 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
526 532 if (status!=RTEMS_SUCCESSFUL) {
527 533 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
528 534 }
529 535 }
530 536
531 537 if (status == RTEMS_SUCCESSFUL) // CWF1
532 538 {
533 539 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
534 540 if (status!=RTEMS_SUCCESSFUL) {
535 541 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
536 542 }
537 543 }
538 544 return status;
539 545 }
540 546
541 547 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
542 548 {
543 549 rtems_status_code status_recv;
544 550 rtems_status_code status_send;
545 551 rtems_status_code ret;
546 552 rtems_id queue_id;
547 553
548 554 // create the queue for handling valid TCs
549 555 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
550 556 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
551 557 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
552 558 if ( status_recv != RTEMS_SUCCESSFUL ) {
553 559 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
554 560 }
555 561
556 562 // create the queue for handling TM packet sending
557 563 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
558 564 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
559 565 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
560 566 if ( status_send != RTEMS_SUCCESSFUL ) {
561 567 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
562 568 }
563 569
564 570 if ( status_recv != RTEMS_SUCCESSFUL )
565 571 {
566 572 ret = status_recv;
567 573 }
568 574 else
569 575 {
570 576 ret = status_send;
571 577 }
572 578
573 579 return ret;
574 580 }
575 581
576 582 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
577 583 {
578 584 rtems_status_code status;
579 585 rtems_name queue_name;
580 586
581 587 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
582 588
583 589 status = rtems_message_queue_ident( queue_name, 0, queue_id );
584 590
585 591 return status;
586 592 }
587 593
588 594 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
589 595 {
590 596 rtems_status_code status;
591 597 rtems_name queue_name;
592 598
593 599 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
594 600
595 601 status = rtems_message_queue_ident( queue_name, 0, queue_id );
596 602
597 603 return status;
598 604 }
@@ -1,344 +1,364
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 83 {
84 84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85 85
86 86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87 87
88 88 return 0;
89 89 }
90 90
91 91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 92 {
93 93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94 94
95 95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96 96
97 97 return 0;
98 98 }
99 99
100 100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 101 {
102 102 /** This function sets the scaler reload register of the apbuart module
103 103 *
104 104 * @param regs is the address of the apbuart registers in memory
105 105 * @param value is the value that will be stored in the scaler register
106 106 *
107 107 * The value shall be set by the software to get data on the serial interface.
108 108 *
109 109 */
110 110
111 111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112 112
113 113 apbuart_regs->scaler = value;
114 114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 115 }
116 116
117 117 //************
118 118 // RTEMS TASKS
119 119
120 120 rtems_task stat_task(rtems_task_argument argument)
121 121 {
122 122 int i;
123 123 int j;
124 124 i = 0;
125 125 j = 0;
126 126 BOOT_PRINTF("in STAT *** \n")
127 127 while(1){
128 128 rtems_task_wake_after(1000);
129 129 PRINTF1("%d\n", j)
130 130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 131 // #ifdef PRINT_TASK_STATISTICS
132 132 // rtems_cpu_usage_report();
133 133 // rtems_cpu_usage_reset();
134 134 // #endif
135 135 i = 0;
136 136 }
137 137 else i++;
138 138 j++;
139 139 }
140 140 }
141 141
142 142 rtems_task hous_task(rtems_task_argument argument)
143 143 {
144 144 rtems_status_code status;
145 145 rtems_id queue_id;
146 rtems_rate_monotonic_period_status period_status;
146 147
147 148 status = get_message_queue_id_send( &queue_id );
148 149 if (status != RTEMS_SUCCESSFUL)
149 150 {
150 151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
151 152 }
152 153
153 154 BOOT_PRINTF("in HOUS ***\n")
154 155
155 156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
156 157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
157 158 if( status != RTEMS_SUCCESSFUL ) {
158 159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
159 160 }
160 161 }
161 162
162 163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
163 164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
164 165 housekeeping_packet.reserved = DEFAULT_RESERVED;
165 166 housekeeping_packet.userApplication = CCSDS_USER_APP;
166 167 housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
167 168 housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
168 169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
169 170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
170 171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
171 172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
172 173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
173 174 housekeeping_packet.serviceType = TM_TYPE_HK;
174 175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
175 176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
176 177 housekeeping_packet.sid = SID_HK;
177 178
178 179 status = rtems_rate_monotonic_cancel(HK_id);
179 180 if( status != RTEMS_SUCCESSFUL ) {
180 181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
181 182 }
182 183 else {
183 184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
184 185 }
185 186
187 // startup phase
188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 {
193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 {
195 break; // break if LFR is synchronized
196 }
197 else
198 {
199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 sched_yield();
201 }
202 }
203 status = rtems_rate_monotonic_cancel(HK_id);
204 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
205
186 206 while(1){ // launch the rate monotonic task
187 207 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
188 208 if ( status != RTEMS_SUCCESSFUL ) {
189 209 PRINTF1( "in HOUS *** ERR period: %d\n", status);
190 210 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
191 211 }
192 212 else {
193 213 increment_seq_counter( housekeeping_packet.packetSequenceControl );
194 214 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
195 215 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
196 216 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
197 217 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
198 218 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
199 219 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
200 220
201 221 spacewire_update_statistics();
202 222
203 223 // SEND PACKET
204 224 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
205 225 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
206 226 if (status != RTEMS_SUCCESSFUL) {
207 227 PRINTF1("in HOUS *** ERR send: %d\n", status)
208 228 }
209 229 }
210 230 }
211 231
212 232 PRINTF("in HOUS *** deleting task\n")
213 233
214 234 status = rtems_task_delete( RTEMS_SELF ); // should not return
215 235 printf( "rtems_task_delete returned with status of %d.\n", status );
216 236 return;
217 237 }
218 238
219 239 rtems_task dumb_task( rtems_task_argument unused )
220 240 {
221 241 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
222 242 *
223 243 * @param unused is the starting argument of the RTEMS task
224 244 *
225 245 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
226 246 *
227 247 */
228 248
229 249 unsigned int i;
230 250 unsigned int intEventOut;
231 251 unsigned int coarse_time = 0;
232 252 unsigned int fine_time = 0;
233 253 rtems_event_set event_out;
234 254
235 255 char *DumbMessages[9] = {"in DUMB *** default", // RTEMS_EVENT_0
236 256 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
237 257 "in DUMB *** waveforms_isr", // RTEMS_EVENT_2
238 258 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
239 259 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
240 260 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
241 261 "ERR HK", // RTEMS_EVENT_6
242 262 "ready for dump", // RTEMS_EVENT_7
243 263 "in DUMB *** spectral_matrices_isr" // RTEMS_EVENT_8
244 264 };
245 265
246 266 BOOT_PRINTF("in DUMB *** \n")
247 267
248 268 while(1){
249 269 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
250 270 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
251 271 | RTEMS_EVENT_8,
252 272 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
253 273 intEventOut = (unsigned int) event_out;
254 274 for ( i=0; i<32; i++)
255 275 {
256 276 if ( ((intEventOut >> i) & 0x0001) != 0)
257 277 {
258 278 coarse_time = time_management_regs->coarse_time;
259 279 fine_time = time_management_regs->fine_time;
260 280 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
261 281 }
262 282 }
263 283 }
264 284 }
265 285
266 286 //*****************************
267 287 // init housekeeping parameters
268 288
269 289 void init_housekeeping_parameters( void )
270 290 {
271 291 /** This function initialize the housekeeping_packet global variable with default values.
272 292 *
273 293 */
274 294
275 295 unsigned int i = 0;
276 296 unsigned char *parameters;
277 297
278 298 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
279 299 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
280 300 {
281 301 parameters[i] = 0x00;
282 302 }
283 303 // init status word
284 304 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
285 305 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
286 306 // init software version
287 307 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
288 308 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
289 309 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
290 310 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
291 311 // init fpga version
292 312 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xd0);
293 313 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
294 314 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
295 315 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
296 316 }
297 317
298 318 void increment_seq_counter( unsigned char *packet_sequence_control)
299 319 {
300 320 /** This function increment the sequence counter psased in argument.
301 321 *
302 322 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
303 323 *
304 324 */
305 325
306 326 unsigned short sequence_cnt;
307 327 unsigned short segmentation_grouping_flag;
308 328 unsigned short new_packet_sequence_control;
309 329
310 330 segmentation_grouping_flag = (unsigned short) ( (packet_sequence_control[0] & 0xc0) << 8 ); // keep bits 7 downto 6
311 331 sequence_cnt = (unsigned short) (
312 332 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
313 333 + packet_sequence_control[1]
314 334 );
315 335
316 336 if ( sequence_cnt < SEQ_CNT_MAX)
317 337 {
318 338 sequence_cnt = sequence_cnt + 1;
319 339 }
320 340 else
321 341 {
322 342 sequence_cnt = 0;
323 343 }
324 344
325 345 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
326 346
327 347 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
328 348 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
329 349 }
330 350
331 351 void getTime( unsigned char *time)
332 352 {
333 353 /** This function write the current local time in the time buffer passed in argument.
334 354 *
335 355 */
336 356
337 357 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
338 358 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
339 359 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
340 360 time[3] = (unsigned char) (time_management_regs->coarse_time);
341 361 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
342 362 time[5] = (unsigned char) (time_management_regs->fine_time);
343 363 }
344 364
@@ -1,736 +1,739
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 11
12 12 #include "fsw_processing_globals.c"
13 13
14 14 //************************
15 15 // spectral matrices rings
16 16 ring_node sm_ring_f0[NB_RING_NODES_ASM_F0];
17 17 ring_node sm_ring_f1[NB_RING_NODES_ASM_F1];
18 18 ring_node sm_ring_f2[NB_RING_NODES_ASM_F2];
19 19 ring_node *current_ring_node_sm_f0;
20 20 ring_node *ring_node_for_averaging_sm_f0;
21 21 ring_node *current_ring_node_sm_f1;
22 22 ring_node *current_ring_node_sm_f2;
23 23
24 24 BP1_t data_BP1[ NB_BINS_COMPRESSED_SM_F0 ];
25 25 float averaged_sm_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ];
26 26 float averaged_sm_f0_reorganized[ TIME_OFFSET + TOTAL_SIZE_SM ];
27 27 char averaged_sm_f0_char [ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_SM * 2 ];
28 28 float compressed_sm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_F0 ];
29 29
30 30 unsigned int nb_sm_f0;
31 31
32 32 void init_sm_rings( void )
33 33 {
34 34 unsigned char i;
35 35
36 36 // F0 RING
37 37 sm_ring_f0[0].next = (ring_node*) &sm_ring_f0[1];
38 38 sm_ring_f0[0].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
39 39 sm_ring_f0[0].buffer_address = (int) &sm_f0[0][0];
40 40
41 41 sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node*) &sm_ring_f0[0];
42 42 sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
43 43 sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address = (int) &sm_f0[NB_RING_NODES_ASM_F0-1][0];
44 44
45 45 for(i=1; i<NB_RING_NODES_ASM_F0-1; i++)
46 46 {
47 47 sm_ring_f0[i].next = (ring_node*) &sm_ring_f0[i+1];
48 48 sm_ring_f0[i].previous = (ring_node*) &sm_ring_f0[i-1];
49 49 sm_ring_f0[i].buffer_address = (int) &sm_f0[i][0];
50 50 }
51 51
52 52 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
53 53
54 54 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
55 55 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
56 56 }
57 57
58 58 void reset_current_sm_ring_nodes( void )
59 59 {
60 60 current_ring_node_sm_f0 = sm_ring_f0;
61 61 ring_node_for_averaging_sm_f0 = sm_ring_f0;
62 62 }
63 63
64 64 //***********************************************************
65 65 // Interrupt Service Routine for spectral matrices processing
66 66 void reset_nb_sm_f0( void )
67 67 {
68 68 nb_sm_f0 = 0;
69 69 }
70 70
71 71 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
72 72 {
73 73 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
74 74
75 75 if ( (spectral_matrix_regs->status & 0x1) == 0x01)
76 76 {
77 77 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
78 78 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
79 79 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
80 80 nb_sm_f0 = nb_sm_f0 + 1;
81 81 }
82 82 else if ( (spectral_matrix_regs->status & 0x2) == 0x02)
83 83 {
84 84 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
85 85 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
86 86 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
87 87 nb_sm_f0 = nb_sm_f0 + 1;
88 88 }
89 89
90 90 if ( (spectral_matrix_regs->status & 0x30) != 0x00)
91 91 {
92 92 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
93 93 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
94 94 }
95 95
96 96 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011
97 97
98 98 if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
99 99 {
100 100 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
101 101 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
102 102 {
103 103 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
104 104 }
105 105 nb_sm_f0 = 0;
106 106 }
107 107 else
108 108 {
109 109 nb_sm_f0 = nb_sm_f0 + 1;
110 110 }
111 111 }
112 112
113 113 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
114 114 {
115 115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
116 116
117 117 if ( (spectral_matrix_regs->status & 0x1) == 0x01)
118 118 {
119 119 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
120 120 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
121 121 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
122 122 nb_sm_f0 = nb_sm_f0 + 1;
123 123 }
124 124 else if ( (spectral_matrix_regs->status & 0x2) == 0x02)
125 125 {
126 126 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
127 127 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
128 128 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
129 129 nb_sm_f0 = nb_sm_f0 + 1;
130 130 }
131 131
132 132 if ( (spectral_matrix_regs->status & 0x30) != 0x00)
133 133 {
134 134 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
135 135 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
136 136 }
137 137
138 138 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011
139 139
140 140 if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
141 141 {
142 142 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
143 143 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
144 144 {
145 145 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
146 146 }
147 147 nb_sm_f0 = 0;
148 148 }
149 149 else
150 150 {
151 151 nb_sm_f0 = nb_sm_f0 + 1;
152 152 }
153 153 }
154 154
155 155 //************
156 156 // RTEMS TASKS
157 157
158 158 rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
159 159 {
160 160 rtems_event_set event_out;
161 161
162 162 BOOT_PRINTF("in SMIQ *** \n")
163 163
164 164 while(1){
165 165 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
166 166 }
167 167 }
168 168
169 169 rtems_task avf0_task(rtems_task_argument argument)
170 170 {
171 171 int i;
172 172 static int nb_average;
173 173 rtems_event_set event_out;
174 174 rtems_status_code status;
175 175 ring_node *ring_node_tab[8];
176 176
177 177 nb_average = 0;
178 178
179 179 BOOT_PRINTF("in AVFO *** \n")
180 180
181 181 while(1){
182 182 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
183 183 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
184 184 for (i=2; i<NB_SM_TO_RECEIVE_BEFORE_AVF0+1; i++)
185 185 {
186 186 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
187 187 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
188 188 }
189
190 averaged_sm_f0[0] = ( (int *) (ring_node_tab[7]->buffer_address) ) [0];
191 averaged_sm_f0[1] = ( (int *) (ring_node_tab[7]->buffer_address) ) [1];
189 192 for(i=0; i<TOTAL_SIZE_SM; i++)
190 193 {
191 194 averaged_sm_f0[i] = ( (int *) (ring_node_tab[0]->buffer_address) ) [i + TIME_OFFSET]
192 195 + ( (int *) (ring_node_tab[1]->buffer_address) ) [i + TIME_OFFSET]
193 196 + ( (int *) (ring_node_tab[2]->buffer_address) ) [i + TIME_OFFSET]
194 197 + ( (int *) (ring_node_tab[3]->buffer_address) ) [i + TIME_OFFSET]
195 198 + ( (int *) (ring_node_tab[4]->buffer_address) ) [i + TIME_OFFSET]
196 199 + ( (int *) (ring_node_tab[5]->buffer_address) ) [i + TIME_OFFSET]
197 200 + ( (int *) (ring_node_tab[6]->buffer_address) ) [i + TIME_OFFSET]
198 201 + ( (int *) (ring_node_tab[7]->buffer_address) ) [i + TIME_OFFSET];
199 202 }
200 203
201 204 nb_average = nb_average + NB_SM_TO_RECEIVE_BEFORE_AVF0;
202 205 if (nb_average == NB_AVERAGE_NORMAL_f0) {
203 206 nb_average = 0;
204 207 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ); // sending an event to the task 7, BPF0
205 208 if (status != RTEMS_SUCCESSFUL) {
206 209 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
207 210 }
208 211 }
209 212 }
210 213 }
211 214
212 215 rtems_task matr_task(rtems_task_argument argument)
213 216 {
214 217 spw_ioctl_pkt_send spw_ioctl_send_ASM;
215 218 rtems_event_set event_out;
216 219 rtems_status_code status;
217 220 rtems_id queue_id;
218 221 Header_TM_LFR_SCIENCE_ASM_t headerASM;
219 222
220 223 init_header_asm( &headerASM );
221 224
222 225 status = get_message_queue_id_send( &queue_id );
223 226 if (status != RTEMS_SUCCESSFUL)
224 227 {
225 228 PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
226 229 }
227 230
228 231 BOOT_PRINTF("in MATR *** \n")
229 232
230 233 fill_averaged_spectral_matrix( );
231 234
232 235 while(1){
233 236 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
234 237 // 1) compress the matrix for Basic Parameters calculation
235 238 ASM_compress( averaged_sm_f0, 0, compressed_sm_f0 );
236 239 // 2)
237 240 //BP1_set(compressed_sm_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
238 241 // 3) convert the float array in a char array
239 242 ASM_reorganize( averaged_sm_f0, averaged_sm_f0_reorganized );
240 243 ASM_convert( averaged_sm_f0_reorganized, averaged_sm_f0_char);
241 244 // 4) send the spectral matrix packets
242 245 ASM_send( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
243 246 }
244 247 }
245 248
246 249 //*****************************
247 250 // Spectral matrices processing
248 251
249 252 void matrix_reset(volatile float *averaged_spec_mat)
250 253 {
251 254 int i;
252 255 for(i=0; i<TOTAL_SIZE_SM; i++){
253 256 averaged_spec_mat[i] = 0;
254 257 }
255 258 }
256 259
257 260 void ASM_reorganize( float *averaged_spec_mat, float *averaged_spec_mat_reorganized )
258 261 {
259 262 int frequencyBin;
260 263 int asmComponent;
261 264
262 265 // copy the time information
263 266 averaged_spec_mat_reorganized[ 0 ] = averaged_spec_mat[ 0 ];
264 267 averaged_spec_mat_reorganized[ 1 ] = averaged_spec_mat[ 1 ];
265 268
266 269 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
267 270 {
268 271 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
269 272 {
270 273 averaged_spec_mat_reorganized[ frequencyBin * NB_VALUES_PER_SM + asmComponent + TIME_OFFSET ] =
271 274 averaged_spec_mat[ asmComponent * NB_BINS_PER_SM + frequencyBin + TIME_OFFSET];
272 275 }
273 276 }
274 277 }
275 278
276 279 void ASM_compress( float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat )
277 280 {
278 281 int frequencyBin;
279 282 int asmComponent;
280 283 int offsetASM;
281 284 int offsetCompressed;
282 285 int k;
283 286
284 287 switch (fChannel){
285 288 case 0:
286 289 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
287 290 {
288 291 for( frequencyBin = 0; frequencyBin < NB_BINS_COMPRESSED_SM_F0; frequencyBin++ )
289 292 {
290 293 offsetASM = asmComponent * NB_BINS_PER_SM
291 294 + ASM_F0_INDICE_START
292 295 + frequencyBin * NB_BINS_TO_AVERAGE_ASM_F0;
293 296 offsetCompressed = frequencyBin * NB_VALUES_PER_SM
294 297 + asmComponent;
295 298 compressed_spec_mat[ offsetCompressed ] = 0;
296 299 for ( k = 0; k < NB_BINS_TO_AVERAGE_ASM_F0; k++ )
297 300 {
298 301 compressed_spec_mat[offsetCompressed ] =
299 302 compressed_spec_mat[ offsetCompressed ]
300 303 + averaged_spec_mat[ offsetASM + k ];
301 304 }
302 305 }
303 306 }
304 307 break;
305 308
306 309 case 1:
307 310 // case fChannel = f1 to be completed later
308 311 break;
309 312
310 313 case 2:
311 314 // case fChannel = f1 to be completed later
312 315 break;
313 316
314 317 default:
315 318 break;
316 319 }
317 320 }
318 321
319 322 void ASM_convert( volatile float *input_matrix, char *output_matrix)
320 323 {
321 324 unsigned int i;
322 325 unsigned int frequencyBin;
323 326 unsigned int asmComponent;
324 327 char * pt_char_input;
325 328 char * pt_char_output;
326 329
327 330 pt_char_input = (char*) &input_matrix;
328 331 pt_char_output = (char*) &output_matrix;
329 332
330 333 // copy the time information
331 334 for (i=0; i<TIME_OFFSET_IN_BYTES; i++)
332 335 {
333 336 pt_char_output[ i ] = pt_char_output[ i ];
334 337 }
335 338
336 339 // convert all other data
337 340 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
338 341 {
339 342 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
340 343 {
341 344 pt_char_input = (char*) &input_matrix [ (frequencyBin*NB_VALUES_PER_SM) + asmComponent + TIME_OFFSET ];
342 345 pt_char_output = (char*) &output_matrix[ 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) + TIME_OFFSET_IN_BYTES ];
343 346 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
344 347 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
345 348 }
346 349 }
347 350 }
348 351
349 352 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
350 353 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
351 354 {
352 355 unsigned int i;
353 356 unsigned int length = 0;
354 357 rtems_status_code status;
355 358
356 359 for (i=0; i<2; i++)
357 360 {
358 361 // (1) BUILD THE DATA
359 362 switch(sid)
360 363 {
361 364 case SID_NORM_ASM_F0:
362 365 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2;
363 366 spw_ioctl_send->data = &spectral_matrix[
364 367 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
365 368 + TIME_OFFSET_IN_BYTES
366 369 ];
367 370 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
368 371 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
369 372 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
370 373 break;
371 374 case SID_NORM_ASM_F1:
372 375 break;
373 376 case SID_NORM_ASM_F2:
374 377 break;
375 378 default:
376 379 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
377 380 break;
378 381 }
379 382 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
380 383 spw_ioctl_send->hdr = (char *) header;
381 384 spw_ioctl_send->options = 0;
382 385
383 386 // (2) BUILD THE HEADER
384 387 header->packetLength[0] = (unsigned char) (length>>8);
385 388 header->packetLength[1] = (unsigned char) (length);
386 389 header->sid = (unsigned char) sid; // SID
387 390 header->pa_lfr_pkt_cnt_asm = 2;
388 391 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
389 392
390 393 // (3) SET PACKET TIME
391 394 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
392 395 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
393 396 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
394 397 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
395 398 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
396 399 header->time[5] = (unsigned char) (time_management_regs->fine_time);
397 400 //
398 401 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
399 402 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
400 403 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
401 404 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
402 405 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
403 406 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
404 407
405 408 // (4) SEND PACKET
406 409 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
407 410 if (status != RTEMS_SUCCESSFUL) {
408 411 printf("in ASM_send *** ERR %d\n", (int) status);
409 412 }
410 413 }
411 414 }
412 415
413 416 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
414 417 int i;
415 418 int j;
416 419 unsigned char tmp_u_char;
417 420 unsigned char * pt_char = NULL;
418 421 float PSDB, PSDE;
419 422 float NVEC_V0;
420 423 float NVEC_V1;
421 424 float NVEC_V2;
422 425 //float significand;
423 426 //int exponent;
424 427 float aux;
425 428 float tr_SB_SB;
426 429 float tmp;
427 430 float sx_re;
428 431 float sx_im;
429 432 float nebx_re = 0;
430 433 float nebx_im = 0;
431 434 float ny = 0;
432 435 float nz = 0;
433 436 float bx_bx_star = 0;
434 437 for(i=0; i<nb_bins_compressed_spec_mat; i++){
435 438 //==============================================
436 439 // BP1 PSD == B PAR_LFR_SC_BP1_PE_FL0 == 16 bits
437 440 PSDB = compressed_spec_mat[i*30] // S11
438 441 + compressed_spec_mat[(i*30) + 10] // S22
439 442 + compressed_spec_mat[(i*30) + 18]; // S33
440 443 //significand = frexp(PSDB, &exponent);
441 444 pt_char = (unsigned char*) &PSDB;
442 445 LFR_BP1[(i*9) + 2] = pt_char[0]; // bits 31 downto 24 of the float
443 446 LFR_BP1[(i*9) + 3] = pt_char[1]; // bits 23 downto 16 of the float
444 447 //==============================================
445 448 // BP1 PSD == E PAR_LFR_SC_BP1_PB_FL0 == 16 bits
446 449 PSDE = compressed_spec_mat[(i*30) + 24] * K44_pe // S44
447 450 + compressed_spec_mat[(i*30) + 28] * K55_pe // S55
448 451 + compressed_spec_mat[(i*30) + 26] * K45_pe_re // S45
449 452 - compressed_spec_mat[(i*30) + 27] * K45_pe_im; // S45
450 453 pt_char = (unsigned char*) &PSDE;
451 454 LFR_BP1[(i*9) + 0] = pt_char[0]; // bits 31 downto 24 of the float
452 455 LFR_BP1[(i*9) + 1] = pt_char[1]; // bits 23 downto 16 of the float
453 456 //==============================================================================
454 457 // BP1 normal wave vector == PAR_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
455 458 // == PAR_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
456 459 // == PAR_LFR_SC_BP1_NVEC_V2_F0 == 1 bits
457 460 tmp = sqrt(
458 461 compressed_spec_mat[(i*30) + 3]*compressed_spec_mat[(i*30) + 3] //Im S12
459 462 +compressed_spec_mat[(i*30) + 5]*compressed_spec_mat[(i*30) + 5] //Im S13
460 463 +compressed_spec_mat[(i*30) + 13]*compressed_spec_mat[(i*30) + 13] //Im S23
461 464 );
462 465 NVEC_V0 = compressed_spec_mat[(i*30) + 13] / tmp; // Im S23
463 466 NVEC_V1 = -compressed_spec_mat[(i*30) + 5] / tmp; // Im S13
464 467 NVEC_V2 = compressed_spec_mat[(i*30) + 3] / tmp; // Im S12
465 468 LFR_BP1[(i*9) + 4] = (char) (NVEC_V0*127);
466 469 LFR_BP1[(i*9) + 5] = (char) (NVEC_V1*127);
467 470 pt_char = (unsigned char*) &NVEC_V2;
468 471 LFR_BP1[(i*9) + 6] = pt_char[0] & 0x80; // extract the sign of NVEC_V2
469 472 //=======================================================
470 473 // BP1 ellipticity == PAR_LFR_SC_BP1_ELLIP_F0 == 4 bits
471 474 aux = 2*tmp / PSDB; // compute the ellipticity
472 475 tmp_u_char = (unsigned char) (aux*(16-1)); // convert the ellipticity
473 476 LFR_BP1[i*9+6] = LFR_BP1[i*9+6] | ((tmp_u_char&0x0f)<<3); // keeps 4 bits of the resulting unsigned char
474 477 //==============================================================
475 478 // BP1 degree of polarization == PAR_LFR_SC_BP1_DOP_F0 == 3 bits
476 479 for(j = 0; j<NB_VALUES_PER_SM;j++){
477 480 tr_SB_SB = compressed_spec_mat[i*30] * compressed_spec_mat[i*30]
478 481 + compressed_spec_mat[(i*30) + 10] * compressed_spec_mat[(i*30) + 10]
479 482 + compressed_spec_mat[(i*30) + 18] * compressed_spec_mat[(i*30) + 18]
480 483 + 2 * compressed_spec_mat[(i*30) + 2] * compressed_spec_mat[(i*30) + 2]
481 484 + 2 * compressed_spec_mat[(i*30) + 3] * compressed_spec_mat[(i*30) + 3]
482 485 + 2 * compressed_spec_mat[(i*30) + 4] * compressed_spec_mat[(i*30) + 4]
483 486 + 2 * compressed_spec_mat[(i*30) + 5] * compressed_spec_mat[(i*30) + 5]
484 487 + 2 * compressed_spec_mat[(i*30) + 12] * compressed_spec_mat[(i*30) + 12]
485 488 + 2 * compressed_spec_mat[(i*30) + 13] * compressed_spec_mat[(i*30) + 13];
486 489 }
487 490 aux = PSDB*PSDB;
488 491 tmp = sqrt( abs( ( 3*tr_SB_SB - aux ) / ( 2 * aux ) ) );
489 492 tmp_u_char = (unsigned char) (NVEC_V0*(8-1));
490 493 LFR_BP1[(i*9) + 6] = LFR_BP1[(i*9) + 6] | (tmp_u_char & 0x07); // keeps 3 bits of the resulting unsigned char
491 494 //=======================================================================================
492 495 // BP1 x-component of the normalized Poynting flux == PAR_LFR_SC_BP1_SZ_F0 == 8 bits (7+1)
493 496 sx_re = compressed_spec_mat[(i*30) + 20] * K34_sx_re
494 497 + compressed_spec_mat[(i*30) + 6] * K14_sx_re
495 498 + compressed_spec_mat[(i*30) + 8] * K15_sx_re
496 499 + compressed_spec_mat[(i*30) + 14] * K24_sx_re
497 500 + compressed_spec_mat[(i*30) + 16] * K25_sx_re
498 501 + compressed_spec_mat[(i*30) + 22] * K35_sx_re;
499 502 sx_im = compressed_spec_mat[(i*30) + 21] * K34_sx_im
500 503 + compressed_spec_mat[(i*30) + 7] * K14_sx_im
501 504 + compressed_spec_mat[(i*30) + 9] * K15_sx_im
502 505 + compressed_spec_mat[(i*30) + 15] * K24_sx_im
503 506 + compressed_spec_mat[(i*30) + 17] * K25_sx_im
504 507 + compressed_spec_mat[(i*30) + 23] * K35_sx_im;
505 508 LFR_BP1[(i*9) + 7] = ((unsigned char) (sx_re * 128)) & 0x7f; // cf DOC for the compression
506 509 if ( abs(sx_re) > abs(sx_im) ) {
507 510 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] | (0x80); // extract the sector of sx
508 511 }
509 512 else {
510 513 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] & (0x7f); // extract the sector of sx
511 514 }
512 515 //======================================================================
513 516 // BP1 phase velocity estimator == PAR_LFR_SC_BP1_VPHI_F0 == 8 bits (7+1)
514 517 ny = sin(Alpha_M)*NVEC_V1 + cos(Alpha_M)*NVEC_V2;
515 518 nz = NVEC_V0;
516 519 bx_bx_star = cos(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+10] // re S22
517 520 + sin(Alpha_M) * sin(Alpha_M) * compressed_spec_mat[i*30+18] // re S33
518 521 - 2 * sin(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+12]; // re S23
519 522 nebx_re = ny * (compressed_spec_mat[(i*30) + 14] * K24_ny_re
520 523 +compressed_spec_mat[(i*30) + 16] * K25_ny_re
521 524 +compressed_spec_mat[(i*30) + 20] * K34_ny_re
522 525 +compressed_spec_mat[(i*30) + 22] * K35_ny_re)
523 526 + nz * (compressed_spec_mat[(i*30) + 14] * K24_nz_re
524 527 +compressed_spec_mat[(i*30) + 16] * K25_nz_re
525 528 +compressed_spec_mat[(i*30) + 20] * K34_nz_re
526 529 +compressed_spec_mat[(i*30) + 22] * K35_nz_re);
527 530 nebx_im = ny * (compressed_spec_mat[(i*30) + 15]*K24_ny_re
528 531 +compressed_spec_mat[(i*30) + 17] * K25_ny_re
529 532 +compressed_spec_mat[(i*30) + 21] * K34_ny_re
530 533 +compressed_spec_mat[(i*30) + 23] * K35_ny_re)
531 534 + nz * (compressed_spec_mat[(i*30) + 15] * K24_nz_im
532 535 +compressed_spec_mat[(i*30) + 17] * K25_nz_im
533 536 +compressed_spec_mat[(i*30) + 21] * K34_nz_im
534 537 +compressed_spec_mat[(i*30) + 23] * K35_nz_im);
535 538 tmp = nebx_re / bx_bx_star;
536 539 LFR_BP1[(i*9) + 8] = ((unsigned char) (tmp * 128)) & 0x7f; // cf DOC for the compression
537 540 if ( abs(nebx_re) > abs(nebx_im) ) {
538 541 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] | (0x80); // extract the sector of nebx
539 542 }
540 543 else {
541 544 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] & (0x7f); // extract the sector of nebx
542 545 }
543 546 }
544 547
545 548 }
546 549
547 550 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
548 551 // BP2 autocorrelation
549 552 int i;
550 553 int aux = 0;
551 554
552 555 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
553 556 // S12
554 557 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 10]);
555 558 compressed_spec_mat[(i*30) + 2] = compressed_spec_mat[(i*30) + 2] / aux;
556 559 compressed_spec_mat[(i*30) + 3] = compressed_spec_mat[(i*30) + 3] / aux;
557 560 // S13
558 561 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 18]);
559 562 compressed_spec_mat[(i*30) + 4] = compressed_spec_mat[(i*30) + 4] / aux;
560 563 compressed_spec_mat[(i*30) + 5] = compressed_spec_mat[(i*30) + 5] / aux;
561 564 // S23
562 565 aux = sqrt(compressed_spec_mat[i*30+12]*compressed_spec_mat[(i*30) + 18]);
563 566 compressed_spec_mat[(i*30) + 12] = compressed_spec_mat[(i*30) + 12] / aux;
564 567 compressed_spec_mat[(i*30) + 13] = compressed_spec_mat[(i*30) + 13] / aux;
565 568 // S45
566 569 aux = sqrt(compressed_spec_mat[i*30+24]*compressed_spec_mat[(i*30) + 28]);
567 570 compressed_spec_mat[(i*30) + 26] = compressed_spec_mat[(i*30) + 26] / aux;
568 571 compressed_spec_mat[(i*30) + 27] = compressed_spec_mat[(i*30) + 27] / aux;
569 572 // S14
570 573 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) +24]);
571 574 compressed_spec_mat[(i*30) + 6] = compressed_spec_mat[(i*30) + 6] / aux;
572 575 compressed_spec_mat[(i*30) + 7] = compressed_spec_mat[(i*30) + 7] / aux;
573 576 // S15
574 577 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 28]);
575 578 compressed_spec_mat[(i*30) + 8] = compressed_spec_mat[(i*30) + 8] / aux;
576 579 compressed_spec_mat[(i*30) + 9] = compressed_spec_mat[(i*30) + 9] / aux;
577 580 // S24
578 581 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 24]);
579 582 compressed_spec_mat[(i*30) + 14] = compressed_spec_mat[(i*30) + 14] / aux;
580 583 compressed_spec_mat[(i*30) + 15] = compressed_spec_mat[(i*30) + 15] / aux;
581 584 // S25
582 585 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 28]);
583 586 compressed_spec_mat[(i*30) + 16] = compressed_spec_mat[(i*30) + 16] / aux;
584 587 compressed_spec_mat[(i*30) + 17] = compressed_spec_mat[(i*30) + 17] / aux;
585 588 // S34
586 589 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 24]);
587 590 compressed_spec_mat[(i*30) + 20] = compressed_spec_mat[(i*30) + 20] / aux;
588 591 compressed_spec_mat[(i*30) + 21] = compressed_spec_mat[(i*30) + 21] / aux;
589 592 // S35
590 593 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 28]);
591 594 compressed_spec_mat[(i*30) + 22] = compressed_spec_mat[(i*30) + 22] / aux;
592 595 compressed_spec_mat[(i*30) + 23] = compressed_spec_mat[(i*30) + 23] / aux;
593 596 }
594 597 }
595 598
596 599 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
597 600 {
598 601 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
599 602 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
600 603 header->reserved = 0x00;
601 604 header->userApplication = CCSDS_USER_APP;
602 605 header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
603 606 header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
604 607 header->packetSequenceControl[0] = 0xc0;
605 608 header->packetSequenceControl[1] = 0x00;
606 609 header->packetLength[0] = 0x00;
607 610 header->packetLength[1] = 0x00;
608 611 // DATA FIELD HEADER
609 612 header->spare1_pusVersion_spare2 = 0x10;
610 613 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
611 614 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
612 615 header->destinationID = TM_DESTINATION_ID_GROUND;
613 616 // AUXILIARY DATA HEADER
614 617 header->sid = 0x00;
615 618 header->biaStatusInfo = 0x00;
616 619 header->pa_lfr_pkt_cnt_asm = 0x00;
617 620 header->pa_lfr_pkt_nr_asm = 0x00;
618 621 header->time[0] = 0x00;
619 622 header->time[0] = 0x00;
620 623 header->time[0] = 0x00;
621 624 header->time[0] = 0x00;
622 625 header->time[0] = 0x00;
623 626 header->time[0] = 0x00;
624 627 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
625 628 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
626 629 }
627 630
628 631 void fill_averaged_spectral_matrix(void)
629 632 {
630 633 /** This function fills spectral matrices related buffers with arbitrary data.
631 634 *
632 635 * This function is for testing purpose only.
633 636 *
634 637 */
635 638
636 639 float offset;
637 640 float coeff;
638 641
639 642 offset = 10.;
640 643 coeff = 100000.;
641 644 averaged_sm_f0[ 0 + 25 * 0 ] = 0. + offset;
642 645 averaged_sm_f0[ 0 + 25 * 1 ] = 1. + offset;
643 646 averaged_sm_f0[ 0 + 25 * 2 ] = 2. + offset;
644 647 averaged_sm_f0[ 0 + 25 * 3 ] = 3. + offset;
645 648 averaged_sm_f0[ 0 + 25 * 4 ] = 4. + offset;
646 649 averaged_sm_f0[ 0 + 25 * 5 ] = 5. + offset;
647 650 averaged_sm_f0[ 0 + 25 * 6 ] = 6. + offset;
648 651 averaged_sm_f0[ 0 + 25 * 7 ] = 7. + offset;
649 652 averaged_sm_f0[ 0 + 25 * 8 ] = 8. + offset;
650 653 averaged_sm_f0[ 0 + 25 * 9 ] = 9. + offset;
651 654 averaged_sm_f0[ 0 + 25 * 10 ] = 10. + offset;
652 655 averaged_sm_f0[ 0 + 25 * 11 ] = 11. + offset;
653 656 averaged_sm_f0[ 0 + 25 * 12 ] = 12. + offset;
654 657 averaged_sm_f0[ 0 + 25 * 13 ] = 13. + offset;
655 658 averaged_sm_f0[ 0 + 25 * 14 ] = 14. + offset;
656 659 averaged_sm_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
657 660 averaged_sm_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
658 661 averaged_sm_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
659 662 averaged_sm_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
660 663 averaged_sm_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
661 664 averaged_sm_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
662 665 averaged_sm_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
663 666 averaged_sm_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
664 667 averaged_sm_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
665 668 averaged_sm_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
666 669 averaged_sm_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
667 670 averaged_sm_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
668 671 averaged_sm_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
669 672 averaged_sm_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
670 673 averaged_sm_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
671 674
672 675 offset = 10000000;
673 676 averaged_sm_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
674 677 averaged_sm_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
675 678 averaged_sm_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
676 679 averaged_sm_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
677 680 averaged_sm_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
678 681 averaged_sm_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
679 682 averaged_sm_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
680 683 averaged_sm_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
681 684 averaged_sm_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
682 685 averaged_sm_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
683 686 averaged_sm_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
684 687 averaged_sm_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
685 688 averaged_sm_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
686 689 averaged_sm_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
687 690 averaged_sm_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
688 691
689 692 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_sm_f0[ 0 ];
690 693 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_sm_f0[ 1 ];
691 694 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_sm_f0[ 2 ];
692 695 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_sm_f0[ 3 ];
693 696 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_sm_f0[ 4 ];
694 697 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_sm_f0[ 5 ];
695 698 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_sm_f0[ 6 ];
696 699 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_sm_f0[ 7 ];
697 700 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_sm_f0[ 8 ];
698 701 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_sm_f0[ 9 ];
699 702 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_sm_f0[ 10 ];
700 703 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_sm_f0[ 11 ];
701 704 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_sm_f0[ 12 ];
702 705 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_sm_f0[ 13 ];
703 706 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_sm_f0[ 14 ];
704 707 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_sm_f0[ 15 ];
705 708 }
706 709
707 710 void reset_spectral_matrix_regs()
708 711 {
709 712 /** This function resets the spectral matrices module registers.
710 713 *
711 714 * The registers affected by this function are located at the following offset addresses:
712 715 *
713 716 * - 0x00 config
714 717 * - 0x04 status
715 718 * - 0x08 matrixF0_Address0
716 719 * - 0x10 matrixFO_Address1
717 720 * - 0x14 matrixF1_Address
718 721 * - 0x18 matrixF2_Address
719 722 *
720 723 */
721 724
722 725 spectral_matrix_regs->config = 0x00;
723 726 spectral_matrix_regs->status = 0x00;
724 727
725 728 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
726 729 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
727 730 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
728 731 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
729 732 }
730 733
731 734 //******************
732 735 // general functions
733 736
734 737
735 738
736 739
@@ -1,601 +1,601
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //***********
20 20 // RTEMS TASK
21 21 rtems_task spiq_task(rtems_task_argument unused)
22 22 {
23 23 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
24 24 *
25 25 * @param unused is the starting argument of the RTEMS task
26 26 *
27 27 */
28 28
29 29 rtems_event_set event_out;
30 30 rtems_status_code status;
31 31 int linkStatus;
32 32
33 33 BOOT_PRINTF("in SPIQ *** \n")
34 34
35 35 while(true){
36 36 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
37 37 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
38 38
39 39 // [0] SUSPEND RECV AND SEND TASKS
40 40 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
41 41 if ( status != RTEMS_SUCCESSFUL ) {
42 42 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
43 43 }
44 44 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
45 45 if ( status != RTEMS_SUCCESSFUL ) {
46 46 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
47 47 }
48 48
49 49 // [1] CHECK THE LINK
50 50 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
51 51 if ( linkStatus != 5) {
52 52 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
53 53 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
54 54 }
55 55
56 56 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
57 57 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
58 58 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
59 59 {
60 60 spacewire_compute_stats_offsets();
61 61 status = spacewire_reset_link( );
62 62 }
63 63 else // [2.b] in run state, start the link
64 64 {
65 65 status = spacewire_stop_start_link( fdSPW ); // start the link
66 66 if ( status != RTEMS_SUCCESSFUL)
67 67 {
68 68 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
69 69 }
70 70 }
71 71
72 72 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
73 73 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
74 74 {
75 75 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
76 76 if ( status != RTEMS_SUCCESSFUL ) {
77 77 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
78 78 }
79 79 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
80 80 if ( status != RTEMS_SUCCESSFUL ) {
81 81 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
82 82 }
83 83 }
84 84 else // [3.b] the link is not in run state, go in STANDBY mode
85 85 {
86 86 status = stop_current_mode();
87 87 if ( status != RTEMS_SUCCESSFUL ) {
88 88 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
89 89 }
90 90 status = enter_mode( LFR_MODE_STANDBY );
91 91 if ( status != RTEMS_SUCCESSFUL ) {
92 92 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
93 93 }
94 94 // wake the WTDG task up to wait for the link recovery
95 95 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
96 96 status = rtems_task_suspend( RTEMS_SELF );
97 97 }
98 98 }
99 99 }
100 100
101 101 rtems_task recv_task( rtems_task_argument unused )
102 102 {
103 103 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
104 104 *
105 105 * @param unused is the starting argument of the RTEMS task
106 106 *
107 107 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
108 108 * 1. It reads the incoming data.
109 109 * 2. Launches the acceptance procedure.
110 110 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
111 111 *
112 112 */
113 113
114 114 int len;
115 115 ccsdsTelecommandPacket_t currentTC;
116 116 unsigned char computed_CRC[ 2 ];
117 117 unsigned char currentTC_LEN_RCV[ 2 ];
118 118 unsigned char destinationID;
119 119 unsigned int currentTC_LEN_RCV_AsUnsignedInt;
120 120 unsigned int parserCode;
121 121 unsigned char time[6];
122 122 rtems_status_code status;
123 123 rtems_id queue_recv_id;
124 124 rtems_id queue_send_id;
125 125
126 126 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
127 127
128 128 status = get_message_queue_id_recv( &queue_recv_id );
129 129 if (status != RTEMS_SUCCESSFUL)
130 130 {
131 131 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
132 132 }
133 133
134 134 status = get_message_queue_id_send( &queue_send_id );
135 135 if (status != RTEMS_SUCCESSFUL)
136 136 {
137 137 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
138 138 }
139 139
140 140 BOOT_PRINTF("in RECV *** \n")
141 141
142 142 while(1)
143 143 {
144 144 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
145 145 if (len == -1){ // error during the read call
146 146 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
147 147 }
148 148 else {
149 149 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
150 150 PRINTF("in RECV *** packet lenght too short\n")
151 151 }
152 152 else {
153 153 currentTC_LEN_RCV_AsUnsignedInt = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
154 154 currentTC_LEN_RCV[ 0 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt >> 8);
155 155 currentTC_LEN_RCV[ 1 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt );
156 156 // CHECK THE TC
157 157 parserCode = tc_parser( &currentTC, currentTC_LEN_RCV_AsUnsignedInt, computed_CRC ) ;
158 158 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
159 159 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
160 160 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
161 161 || (parserCode == WRONG_SRC_ID) )
162 162 { // send TM_LFR_TC_EXE_CORRUPTED
163 163 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
164 164 &&
165 165 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
166 166 )
167 167 {
168 168 if ( parserCode == WRONG_SRC_ID )
169 169 {
170 170 destinationID = SID_TC_GROUND;
171 171 }
172 172 else
173 173 {
174 174 destinationID = currentTC.sourceID;
175 175 }
176 176 getTime( time );
177 close_action( &currentTC, LFR_DEFAULT, queue_send_id, time);
177 close_action( &currentTC, LFR_DEFAULT, queue_send_id );
178 178 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
179 179 computed_CRC, currentTC_LEN_RCV,
180 destinationID, time );
180 destinationID );
181 181 }
182 182 }
183 183 else
184 184 { // send valid TC to the action launcher
185 185 status = rtems_message_queue_send( queue_recv_id, &currentTC,
186 186 currentTC_LEN_RCV_AsUnsignedInt + CCSDS_TC_TM_PACKET_OFFSET + 3);
187 187 }
188 188 }
189 189 }
190 190 }
191 191 }
192 192
193 193 rtems_task send_task( rtems_task_argument argument)
194 194 {
195 195 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
196 196 *
197 197 * @param unused is the starting argument of the RTEMS task
198 198 *
199 199 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
200 200 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
201 201 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
202 202 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
203 203 * data it contains.
204 204 *
205 205 */
206 206
207 207 rtems_status_code status; // RTEMS status code
208 208 char incomingData[ACTION_MSG_PKTS_MAX_SIZE]; // incoming data buffer
209 209 spw_ioctl_pkt_send *spw_ioctl_send;
210 210 size_t size; // size of the incoming TC packet
211 211 u_int32_t count;
212 212 rtems_id queue_id;
213 213
214 214 status = get_message_queue_id_send( &queue_id );
215 215 if (status != RTEMS_SUCCESSFUL)
216 216 {
217 217 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
218 218 }
219 219
220 220 BOOT_PRINTF("in SEND *** \n")
221 221
222 222 while(1)
223 223 {
224 224 status = rtems_message_queue_receive( queue_id, incomingData, &size,
225 225 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
226 226
227 227 if (status!=RTEMS_SUCCESSFUL)
228 228 {
229 229 PRINTF1("in SEND *** (1) ERR = %d\n", status)
230 230 }
231 231 else
232 232 {
233 233 if ( incomingData[0] == CCSDS_DESTINATION_ID) // the incoming message is a ccsds packet
234 234 {
235 235 status = write( fdSPW, incomingData, size );
236 236 if (status == -1){
237 237 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
238 238 }
239 239 }
240 240 else // the incoming message is a spw_ioctl_pkt_send structure
241 241 {
242 242 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
243 243 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
244 244 if (status == -1){
245 245 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
246 246 }
247 247 }
248 248 }
249 249
250 250 status = rtems_message_queue_get_number_pending( queue_id, &count );
251 251 if (status != RTEMS_SUCCESSFUL)
252 252 {
253 253 PRINTF1("in SEND *** (3) ERR = %d\n", status)
254 254 }
255 255 else
256 256 {
257 257 if (count > maxCount)
258 258 {
259 259 maxCount = count;
260 260 }
261 261 }
262 262 }
263 263 }
264 264
265 265 rtems_task wtdg_task( rtems_task_argument argument )
266 266 {
267 267 rtems_event_set event_out;
268 268 rtems_status_code status;
269 269 int linkStatus;
270 270
271 271 BOOT_PRINTF("in WTDG ***\n")
272 272
273 273 while(1)
274 274 {
275 275 // wait for an RTEMS_EVENT
276 276 rtems_event_receive( RTEMS_EVENT_0,
277 277 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
278 278 PRINTF("in WTDG *** wait for the link\n")
279 279 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
280 280 while( linkStatus != 5) // wait for the link
281 281 {
282 282 rtems_task_wake_after( 10 );
283 283 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
284 284 }
285 285
286 286 status = spacewire_stop_start_link( fdSPW );
287 287
288 288 if (status != RTEMS_SUCCESSFUL)
289 289 {
290 290 PRINTF1("in WTDG *** ERR link not started %d\n", status)
291 291 }
292 292 else
293 293 {
294 294 PRINTF("in WTDG *** OK link started\n")
295 295 }
296 296
297 297 // restart the SPIQ task
298 298 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
299 299 if ( status != RTEMS_SUCCESSFUL ) {
300 300 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
301 301 }
302 302
303 303 // restart RECV and SEND
304 304 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
305 305 if ( status != RTEMS_SUCCESSFUL ) {
306 306 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
307 307 }
308 308 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
309 309 if ( status != RTEMS_SUCCESSFUL ) {
310 310 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
311 311 }
312 312 }
313 313 }
314 314
315 315 //****************
316 316 // OTHER FUNCTIONS
317 317 int spacewire_open_link( void )
318 318 {
319 319 /** This function opens the SpaceWire link.
320 320 *
321 321 * @return a valid file descriptor in case of success, -1 in case of a failure
322 322 *
323 323 */
324 324 rtems_status_code status;
325 325
326 326 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
327 327 if ( fdSPW < 0 ) {
328 328 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
329 329 }
330 330 else
331 331 {
332 332 status = RTEMS_SUCCESSFUL;
333 333 }
334 334
335 335 return status;
336 336 }
337 337
338 338 int spacewire_start_link( int fd )
339 339 {
340 340 rtems_status_code status;
341 341
342 342 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
343 343 // -1 default hardcoded driver timeout
344 344
345 345 return status;
346 346 }
347 347
348 348 int spacewire_stop_start_link( int fd )
349 349 {
350 350 rtems_status_code status;
351 351
352 352 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
353 353 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
354 354 // -1 default hardcoded driver timeout
355 355
356 356 return status;
357 357 }
358 358
359 359 int spacewire_configure_link( int fd )
360 360 {
361 361 /** This function configures the SpaceWire link.
362 362 *
363 363 * @return GR-RTEMS-DRIVER directive status codes:
364 364 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
365 365 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
366 366 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
367 367 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
368 368 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
369 369 * - 5 EIO - Error when writing to grswp hardware registers.
370 370 * - 2 ENOENT - No such file or directory
371 371 */
372 372
373 373 rtems_status_code status;
374 374
375 375 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
376 376 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
377 377
378 378 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
379 379 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
380 380 //
381 381 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
382 382 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
383 383 //
384 384 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
385 385 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
386 386 //
387 387 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
388 388 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
389 389 //
390 390 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
391 391 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
392 392 //
393 393 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
394 394 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
395 395 //
396 396 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
397 397 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
398 398
399 399 return status;
400 400 }
401 401
402 402 int spacewire_reset_link( void )
403 403 {
404 404 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
405 405 *
406 406 * @return RTEMS directive status code:
407 407 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
408 408 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
409 409 *
410 410 */
411 411
412 412 rtems_status_code status_spw;
413 413 int i;
414 414
415 415 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
416 416 {
417 417 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
418 418
419 419 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
420 420
421 421 status_spw = spacewire_stop_start_link( fdSPW );
422 422 if ( status_spw != RTEMS_SUCCESSFUL )
423 423 {
424 424 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
425 425 }
426 426
427 427 if ( status_spw == RTEMS_SUCCESSFUL)
428 428 {
429 429 break;
430 430 }
431 431 }
432 432
433 433 return status_spw;
434 434 }
435 435
436 436 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
437 437 {
438 438 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
439 439 *
440 440 * @param val is the value, 0 or 1, used to set the value of the NP bit.
441 441 * @param regAddr is the address of the GRSPW control register.
442 442 *
443 443 * NP is the bit 20 of the GRSPW control register.
444 444 *
445 445 */
446 446
447 447 unsigned int *spwptr = (unsigned int*) regAddr;
448 448
449 449 if (val == 1) {
450 450 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
451 451 }
452 452 if (val== 0) {
453 453 *spwptr = *spwptr & 0xffdfffff;
454 454 }
455 455 }
456 456
457 457 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
458 458 {
459 459 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
460 460 *
461 461 * @param val is the value, 0 or 1, used to set the value of the RE bit.
462 462 * @param regAddr is the address of the GRSPW control register.
463 463 *
464 464 * RE is the bit 16 of the GRSPW control register.
465 465 *
466 466 */
467 467
468 468 unsigned int *spwptr = (unsigned int*) regAddr;
469 469
470 470 if (val == 1)
471 471 {
472 472 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
473 473 }
474 474 if (val== 0)
475 475 {
476 476 *spwptr = *spwptr & 0xfffdffff;
477 477 }
478 478 }
479 479
480 480 void spacewire_compute_stats_offsets( void )
481 481 {
482 482 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
483 483 *
484 484 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
485 485 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
486 486 * during the open systel call).
487 487 *
488 488 */
489 489
490 490 spw_stats spacewire_stats_grspw;
491 491 rtems_status_code status;
492 492
493 493 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
494 494
495 495 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
496 496 + spacewire_stats.packets_received;
497 497 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
498 498 + spacewire_stats.packets_sent;
499 499 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
500 500 + spacewire_stats.parity_err;
501 501 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
502 502 + spacewire_stats.disconnect_err;
503 503 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
504 504 + spacewire_stats.escape_err;
505 505 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
506 506 + spacewire_stats.credit_err;
507 507 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
508 508 + spacewire_stats.write_sync_err;
509 509 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
510 510 + spacewire_stats.rx_rmap_header_crc_err;
511 511 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
512 512 + spacewire_stats.rx_rmap_data_crc_err;
513 513 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
514 514 + spacewire_stats.early_ep;
515 515 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
516 516 + spacewire_stats.invalid_address;
517 517 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
518 518 + spacewire_stats.rx_eep_err;
519 519 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
520 520 + spacewire_stats.rx_truncated;
521 521 }
522 522
523 523 void spacewire_update_statistics( void )
524 524 {
525 525 rtems_status_code status;
526 526 spw_stats spacewire_stats_grspw;
527 527
528 528 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
529 529
530 530 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
531 531 + spacewire_stats_grspw.packets_received;
532 532 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
533 533 + spacewire_stats_grspw.packets_sent;
534 534 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
535 535 + spacewire_stats_grspw.parity_err;
536 536 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
537 537 + spacewire_stats_grspw.disconnect_err;
538 538 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
539 539 + spacewire_stats_grspw.escape_err;
540 540 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
541 541 + spacewire_stats_grspw.credit_err;
542 542 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
543 543 + spacewire_stats_grspw.write_sync_err;
544 544 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
545 545 + spacewire_stats_grspw.rx_rmap_header_crc_err;
546 546 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
547 547 + spacewire_stats_grspw.rx_rmap_data_crc_err;
548 548 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
549 549 + spacewire_stats_grspw.early_ep;
550 550 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
551 551 + spacewire_stats_grspw.invalid_address;
552 552 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
553 553 + spacewire_stats_grspw.rx_eep_err;
554 554 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
555 555 + spacewire_stats_grspw.rx_truncated;
556 556 //spacewire_stats.tx_link_err;
557 557
558 558 //****************************
559 559 // DPU_SPACEWIRE_IF_STATISTICS
560 560 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
561 561 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
562 562 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
563 563 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
564 564 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
565 565 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
566 566
567 567 //******************************************
568 568 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
569 569 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
570 570 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
571 571 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
572 572 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
573 573 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
574 574
575 575 //*********************************************
576 576 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
577 577 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
578 578 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
579 579 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
580 580 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
581 581 }
582 582
583 583 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
584 584 {
585 585 //if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_1 ) != RTEMS_SUCCESSFUL) {
586 586 // printf("In timecode_irq_handler *** Error sending event to DUMB\n");
587 587 //}
588 588 }
589 589
590 590 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
591 591 {
592 592 int linkStatus;
593 593 rtems_status_code status;
594 594
595 595 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
596 596
597 597 if ( linkStatus == 5) {
598 598 PRINTF("in spacewire_reset_link *** link is running\n")
599 599 status = RTEMS_SUCCESSFUL;
600 600 }
601 601 }
@@ -1,417 +1,437
1 1 /** Functions related to TeleCommand acceptance.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands parsing.\n
7 7 *
8 8 */
9 9
10 10 #include "tc_acceptance.h"
11 11
12 12 unsigned int lookUpTableForCRC[256];
13 13
14 14 //**********************
15 15 // GENERAL USE FUNCTIONS
16 16 unsigned int Crc_opt( unsigned char D, unsigned int Chk)
17 17 {
18 18 /** This function generate the CRC for one byte and returns the value of the new syndrome.
19 19 *
20 20 * @param D is the current byte of data.
21 21 * @param Chk is the current syndrom value.
22 22 *
23 23 * @return the value of the new syndrome on two bytes.
24 24 *
25 25 */
26 26
27 27 return(((Chk << 8) & 0xff00)^lookUpTableForCRC [(((Chk >> 8)^D) & 0x00ff)]);
28 28 }
29 29
30 30 void initLookUpTableForCRC( void )
31 31 {
32 32 /** This function is used to initiates the look-up table for fast CRC computation.
33 33 *
34 34 * The global table lookUpTableForCRC[256] is initiated.
35 35 *
36 36 */
37 37
38 38 unsigned int i;
39 39 unsigned int tmp;
40 40
41 41 for (i=0; i<256; i++)
42 42 {
43 43 tmp = 0;
44 44 if((i & 1) != 0) {
45 45 tmp = tmp ^ 0x1021;
46 46 }
47 47 if((i & 2) != 0) {
48 48 tmp = tmp ^ 0x2042;
49 49 }
50 50 if((i & 4) != 0) {
51 51 tmp = tmp ^ 0x4084;
52 52 }
53 53 if((i & 8) != 0) {
54 54 tmp = tmp ^ 0x8108;
55 55 }
56 56 if((i & 16) != 0) {
57 57 tmp = tmp ^ 0x1231;
58 58 }
59 59 if((i & 32) != 0) {
60 60 tmp = tmp ^ 0x2462;
61 61 }
62 62 if((i & 64) != 0) {
63 63 tmp = tmp ^ 0x48c4;
64 64 }
65 65 if((i & 128) != 0) {
66 66 tmp = tmp ^ 0x9188;
67 67 }
68 68 lookUpTableForCRC[i] = tmp;
69 69 }
70 70 }
71 71
72 72 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
73 73 {
74 74 /** This function calculates a two bytes Cyclic Redundancy Code.
75 75 *
76 76 * @param data points to a buffer containing the data on which to compute the CRC.
77 77 * @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
78 78 * @param sizeOfData is the number of bytes of *data* used to compute the CRC.
79 79 *
80 80 * The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
81 81 *
82 82 */
83 83
84 84 unsigned int Chk;
85 85 int j;
86 86 Chk = 0xffff; // reset the syndrom to all ones
87 87 for (j=0; j<sizeOfData; j++) {
88 88 Chk = Crc_opt(data[j], Chk);
89 89 }
90 90 crcAsTwoBytes[0] = (unsigned char) (Chk >> 8);
91 91 crcAsTwoBytes[1] = (unsigned char) (Chk & 0x00ff);
92 92 }
93 93
94 94 //*********************
95 95 // ACCEPTANCE FUNCTIONS
96 96 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int TC_LEN_RCV, unsigned char *computed_CRC)
97 97 {
98 98 /** This function parses TeleCommands.
99 99 *
100 100 * @param TC points to the TeleCommand that will be parsed.
101 101 * @param TC_LEN_RCV is the received packet length.
102 102 *
103 103 * @return Status code of the parsing.
104 104 *
105 105 * The parsing checks:
106 106 * - process id
107 107 * - category
108 108 * - length: a global check is performed and a per subtype check also
109 109 * - type
110 110 * - subtype
111 111 * - crc
112 112 *
113 113 */
114 114
115 115 int status;
116 116 int status_crc;
117 117 unsigned char pid;
118 118 unsigned char category;
119 119 unsigned int length;
120 120 unsigned char packetType;
121 121 unsigned char packetSubtype;
122 122 unsigned char sid;
123 123
124 124 status = CCSDS_TM_VALID;
125 125
126 126 // APID check *** APID on 2 bytes
127 127 pid = ((TCPacket->packetID[0] & 0x07)<<4) + ( (TCPacket->packetID[1]>>4) & 0x0f ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
128 128 category = (TCPacket->packetID[1] & 0x0f); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
129 129 length = (TCPacket->packetLength[0] * 256) + TCPacket->packetLength[1];
130 130 packetType = TCPacket->serviceType;
131 131 packetSubtype = TCPacket->serviceSubType;
132 132 sid = TCPacket->sourceID;
133 133
134 134 if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
135 135 {
136 136 status = ILLEGAL_APID;
137 137 }
138 138 if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
139 139 {
140 140 if ( category != CCSDS_PACKET_CATEGORY )
141 141 {
142 142 status = ILLEGAL_APID;
143 143 }
144 144 }
145 145 if (status == CCSDS_TM_VALID) // CHECK THE PACKET LENGTH FIELD AND THE ACTUAL LENGTH COMPLIANCE
146 146 {
147 147 if (length != TC_LEN_RCV ) {
148 148 status = WRONG_LEN_PKT;
149 149 }
150 150 }
151 151 if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
152 152 {
153 153 if ( length >= CCSDS_TC_PKT_MAX_SIZE ) {
154 154 status = WRONG_LEN_PKT;
155 155 }
156 156 }
157 157 if (status == CCSDS_TM_VALID) // CHECK THE TYPE
158 158 {
159 159 status = tc_check_type( packetType );
160 160 }
161 161 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
162 162 {
163 status = tc_check_subtype( packetSubtype );
163 status = tc_check_type_subtype( packetType, packetSubtype );
164 164 }
165 165 if (status == CCSDS_TM_VALID) // CHECK THE SID
166 166 {
167 167 status = tc_check_sid( sid );
168 168 }
169 169 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
170 170 {
171 171 status = tc_check_length( packetSubtype, length );
172 172 }
173 173 status_crc = tc_check_crc( TCPacket, length, computed_CRC );
174 174 if (status == CCSDS_TM_VALID ) // CHECK CRC
175 175 {
176 176 status = status_crc;
177 177 }
178 178
179 179 return status;
180 180 }
181 181
182 182 int tc_check_type( unsigned char packetType )
183 183 {
184 184 /** This function checks that the type of a TeleCommand is valid.
185 185 *
186 186 * @param packetType is the type to check.
187 187 *
188 188 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
189 189 *
190 190 */
191 191
192 192 int status;
193 193
194 194 if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
195 195 {
196 196 status = CCSDS_TM_VALID;
197 197 }
198 198 else
199 199 {
200 200 status = ILL_TYPE;
201 201 }
202 202
203 203 return status;
204 204 }
205 205
206 int tc_check_subtype( unsigned char packetSubType )
206 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType )
207 207 {
208 /** This function checks that the subtype of a TeleCommand is valid.
208 /** This function checks that the subtype of a TeleCommand is valid and coherent with the type.
209 209 *
210 * @param packetType is the type of the TC.
210 211 * @param packetSubType is the subtype to check.
211 212 *
212 213 * @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
213 214 *
214 215 */
215 216
216 217 int status;
217 218
218 if ( (packetSubType == TC_SUBTYPE_RESET)
219 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
220 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
221 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
222 || (packetSubType == TC_SUBTYPE_DUMP)
223 || (packetSubType == TC_SUBTYPE_ENTER)
224 || (packetSubType == TC_SUBTYPE_UPDT_INFO) || (packetSubType == TC_SUBTYPE_UPDT_TIME)
225 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL) )
219 switch(packetType)
226 220 {
227 status = CCSDS_TM_VALID;
228 }
229 else
230 {
221 case TC_TYPE_GEN:
222 if ( (packetSubType == TC_SUBTYPE_RESET)
223 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
224 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
225 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
226 || (packetSubType == TC_SUBTYPE_DUMP)
227 || (packetSubType == TC_SUBTYPE_ENTER)
228 || (packetSubType == TC_SUBTYPE_UPDT_INFO)
229 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL) )
230 {
231 status = CCSDS_TM_VALID;
232 }
233 else
234 {
235 status = ILL_SUBTYPE;
236 }
237 break;
238
239 case TC_TYPE_TIME:
240 if (packetSubType == TC_SUBTYPE_UPDT_TIME)
241 {
242 status = CCSDS_TM_VALID;
243 }
244 else
245 {
246 status = ILL_SUBTYPE;
247 }
248 break;
249
250 default:
231 251 status = ILL_SUBTYPE;
252 break;
232 253 }
233 254
234 255 return status;
235 256 }
236 257
237 258 int tc_check_sid( unsigned char sid )
238 259 {
239 260 /** This function checks that the sid of a TeleCommand is valid.
240 261 *
241 262 * @param sid is the sid to check.
242 263 *
243 264 * @return Status code CCSDS_TM_VALID or CORRUPTED.
244 265 *
245 266 */
246 267
247 268 int status;
248 269
249 if ( (sid == SID_TC_GROUND)
250 || (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
270 if ( (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
251 271 || (sid == SID_TC_BACKUP_MISSION_TIMELINE)
252 272 || (sid == SID_TC_DIRECT_CMD) || (sid == SID_TC_SPARE_GRD_SRC1) || (sid == SID_TC_SPARE_GRD_SRC2)
253 273 || (sid == SID_TC_OBCP) || (sid == SID_TC_SYSTEM_CONTROL) || (sid == SID_TC_AOCS)
254 274 || (sid == SID_TC_RPW_INTERNAL))
255 275 {
256 276 status = CCSDS_TM_VALID;
257 277 }
258 278 else
259 279 {
260 280 status = WRONG_SRC_ID;
261 281 }
262 282
263 283 return status;
264 284 }
265 285
266 286 int tc_check_length( unsigned char packetSubType, unsigned int length )
267 287 {
268 288 /** This function checks that the subtype and the length are compliant.
269 289 *
270 290 * @param packetSubType is the subtype to check.
271 291 * @param length is the length to check.
272 292 *
273 293 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
274 294 *
275 295 */
276 296
277 297 int status;
278 298
279 299 status = LFR_SUCCESSFUL;
280 300
281 301 switch(packetSubType)
282 302 {
283 303 case TC_SUBTYPE_RESET:
284 304 if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
285 305 status = WRONG_LEN_PKT;
286 306 }
287 307 else {
288 308 status = CCSDS_TM_VALID;
289 309 }
290 310 break;
291 311 case TC_SUBTYPE_LOAD_COMM:
292 312 if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
293 313 status = WRONG_LEN_PKT;
294 314 }
295 315 else {
296 316 status = CCSDS_TM_VALID;
297 317 }
298 318 break;
299 319 case TC_SUBTYPE_LOAD_NORM:
300 320 if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
301 321 status = WRONG_LEN_PKT;
302 322 }
303 323 else {
304 324 status = CCSDS_TM_VALID;
305 325 }
306 326 break;
307 327 case TC_SUBTYPE_LOAD_BURST:
308 328 if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
309 329 status = WRONG_LEN_PKT;
310 330 }
311 331 else {
312 332 status = CCSDS_TM_VALID;
313 333 }
314 334 break;
315 335 case TC_SUBTYPE_LOAD_SBM1:
316 336 if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
317 337 status = WRONG_LEN_PKT;
318 338 }
319 339 else {
320 340 status = CCSDS_TM_VALID;
321 341 }
322 342 break;
323 343 case TC_SUBTYPE_LOAD_SBM2:
324 344 if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
325 345 status = WRONG_LEN_PKT;
326 346 }
327 347 else {
328 348 status = CCSDS_TM_VALID;
329 349 }
330 350 break;
331 351 case TC_SUBTYPE_DUMP:
332 352 if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
333 353 status = WRONG_LEN_PKT;
334 354 }
335 355 else {
336 356 status = CCSDS_TM_VALID;
337 357 }
338 358 break;
339 359 case TC_SUBTYPE_ENTER:
340 360 if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
341 361 status = WRONG_LEN_PKT;
342 362 }
343 363 else {
344 364 status = CCSDS_TM_VALID;
345 365 }
346 366 break;
347 367 case TC_SUBTYPE_UPDT_INFO:
348 368 if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
349 369 status = WRONG_LEN_PKT;
350 370 }
351 371 else {
352 372 status = CCSDS_TM_VALID;
353 373 }
354 374 break;
355 375 case TC_SUBTYPE_EN_CAL:
356 376 if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
357 377 status = WRONG_LEN_PKT;
358 378 }
359 379 else {
360 380 status = CCSDS_TM_VALID;
361 381 }
362 382 break;
363 383 case TC_SUBTYPE_DIS_CAL:
364 384 if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
365 385 status = WRONG_LEN_PKT;
366 386 }
367 387 else {
368 388 status = CCSDS_TM_VALID;
369 389 }
370 390 break;
371 391 case TC_SUBTYPE_UPDT_TIME:
372 392 if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
373 393 status = WRONG_LEN_PKT;
374 394 }
375 395 else {
376 396 status = CCSDS_TM_VALID;
377 397 }
378 398 break;
379 399 default: // if the subtype is not a legal value, return ILL_SUBTYPE
380 400 status = ILL_SUBTYPE;
381 401 break ;
382 402 }
383 403
384 404 return status;
385 405 }
386 406
387 407 int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length, unsigned char *computed_CRC )
388 408 {
389 409 /** This function checks the CRC validity of the corresponding TeleCommand packet.
390 410 *
391 411 * @param TCPacket points to the TeleCommand packet to check.
392 412 * @param length is the length of the TC packet.
393 413 *
394 414 * @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
395 415 *
396 416 */
397 417
398 418 int status;
399 419 unsigned char * CCSDSContent;
400 420
401 421 CCSDSContent = (unsigned char*) TCPacket->packetID;
402 422 GetCRCAsTwoBytes(CCSDSContent, computed_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - 2); // 2 CRC bytes removed from the calculation of the CRC
403 423 if (computed_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -2]) {
404 424 status = INCOR_CHECKSUM;
405 425 }
406 426 else if (computed_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
407 427 status = INCOR_CHECKSUM;
408 428 }
409 429 else {
410 430 status = CCSDS_TM_VALID;
411 431 }
412 432
413 433 return status;
414 434 }
415 435
416 436
417 437
@@ -1,757 +1,765
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 close_action( &TC, result, queue_snd_id, time );
71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id, time );
76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 close_action( &TC, result, queue_snd_id, time );
81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 close_action( &TC, result, queue_snd_id, time );
86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 close_action( &TC, result, queue_snd_id, time );
91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 close_action( &TC, result, queue_snd_id, time );
96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 close_action( &TC, result, queue_snd_id, time );
101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id, time );
106 close_action( &TC, result, queue_snd_id, time );
106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 close_action( &TC, result, queue_snd_id, time );
111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 close_action( &TC, result, queue_snd_id, time );
126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163
164 164 requestedMode = TC->dataAndCRC[1];
165 165
166 166 if ( (requestedMode != LFR_MODE_STANDBY)
167 167 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
168 168 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
169 169 {
170 170 status = RTEMS_UNSATISFIED;
171 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode, time );
171 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode );
172 172 }
173 173 else
174 174 {
175 175 printf("in action_enter_mode *** enter mode %d\n", requestedMode);
176 176
177 177 status = transition_validation(requestedMode);
178 178
179 179 if ( status == LFR_SUCCESSFUL ) {
180 180 if ( lfrCurrentMode != LFR_MODE_STANDBY)
181 181 {
182 182 status = stop_current_mode();
183 183 }
184 184 if (status != RTEMS_SUCCESSFUL)
185 185 {
186 186 PRINTF("ERR *** in action_enter *** stop_current_mode\n")
187 187 }
188 188 status = enter_mode( requestedMode );
189 189 }
190 190 else
191 191 {
192 192 PRINTF("ERR *** in action_enter *** transition rejected\n")
193 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
193 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
194 194 }
195 195 }
196 196
197 197 return status;
198 198 }
199 199
200 200 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
201 201 {
202 202 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
203 203 *
204 204 * @param TC points to the TeleCommand packet that is being processed
205 205 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
206 206 *
207 207 * @return LFR directive status code:
208 208 * - LFR_DEFAULT
209 209 * - LFR_SUCCESSFUL
210 210 *
211 211 */
212 212
213 213 unsigned int val;
214 214 int result;
215
216 result = LFR_SUCCESSFUL;
215 unsigned int status;
216 unsigned char mode;
217 217
218 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
219 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
220 val++;
221 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
222 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
218 // check LFR MODE
219 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET5 ] & 0x1e) >> 1;
220 status = check_update_info_hk_lfr_mode( mode );
221 if (status != LFR_DEFAULT) // check TDS mode
222 {
223 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0xf0) >> 4;
224 status = check_update_info_hk_tds_mode( mode );
225 }
226 if (status != LFR_DEFAULT) // check THR mode
227 {
228 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0x0f);
229 status = check_update_info_hk_thr_mode( mode );
230 }
231 if (status != LFR_DEFAULT) // if the parameter check is successful
232 {
233 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
234 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
235 val++;
236 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
237 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
238 }
239
240 result = status;
223 241
224 242 return result;
225 243 }
226 244
227 245 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
228 246 {
229 247 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
230 248 *
231 249 * @param TC points to the TeleCommand packet that is being processed
232 250 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
233 251 *
234 252 */
235 253
236 254 int result;
237 255 unsigned char lfrMode;
238 256
239 257 result = LFR_DEFAULT;
240 258 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
241 259
242 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
243 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
244 result = LFR_DEFAULT;
245 }
246 else {
247 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
248 result = LFR_DEFAULT;
249 }
260 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
261 result = LFR_DEFAULT;
262
250 263 return result;
251 264 }
252 265
253 266 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
254 267 {
255 268 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
256 269 *
257 270 * @param TC points to the TeleCommand packet that is being processed
258 271 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
259 272 *
260 273 */
261 274
262 275 int result;
263 276 unsigned char lfrMode;
264 277
265 278 result = LFR_DEFAULT;
266 279 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
267 280
268 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
269 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
270 result = LFR_DEFAULT;
271 }
272 else {
273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 result = LFR_DEFAULT;
275 }
281 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
282 result = LFR_DEFAULT;
283
276 284 return result;
277 285 }
278 286
279 287 int action_update_time(ccsdsTelecommandPacket_t *TC)
280 288 {
281 289 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
282 290 *
283 291 * @param TC points to the TeleCommand packet that is being processed
284 292 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 293 *
286 294 * @return LFR_SUCCESSFUL
287 295 *
288 296 */
289 297
290 298 unsigned int val;
291 299
292 300 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
293 301 + (TC->dataAndCRC[1] << 16)
294 302 + (TC->dataAndCRC[2] << 8)
295 303 + TC->dataAndCRC[3];
296 304 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
297 305 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
298 306 val++;
299 307 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
300 308 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
301 309 time_management_regs->ctrl = time_management_regs->ctrl | 1;
302 310
303 311 return LFR_SUCCESSFUL;
304 312 }
305 313
306 314 //*******************
307 315 // ENTERING THE MODES
308 316
309 317 int transition_validation(unsigned char requestedMode)
310 318 {
311 319 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
312 320 *
313 321 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
314 322 *
315 323 * @return LFR directive status codes:
316 324 * - LFR_SUCCESSFUL - the transition is authorized
317 325 * - LFR_DEFAULT - the transition is not authorized
318 326 *
319 327 */
320 328
321 329 int status;
322 330
323 331 switch (requestedMode)
324 332 {
325 333 case LFR_MODE_STANDBY:
326 334 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
327 335 status = LFR_DEFAULT;
328 336 }
329 337 else
330 338 {
331 339 status = LFR_SUCCESSFUL;
332 340 }
333 341 break;
334 342 case LFR_MODE_NORMAL:
335 343 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
336 344 status = LFR_DEFAULT;
337 345 }
338 346 else {
339 347 status = LFR_SUCCESSFUL;
340 348 }
341 349 break;
342 350 case LFR_MODE_BURST:
343 351 if ( lfrCurrentMode == LFR_MODE_BURST ) {
344 352 status = LFR_DEFAULT;
345 353 }
346 354 else {
347 355 status = LFR_SUCCESSFUL;
348 356 }
349 357 break;
350 358 case LFR_MODE_SBM1:
351 359 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
352 360 status = LFR_DEFAULT;
353 361 }
354 362 else {
355 363 status = LFR_SUCCESSFUL;
356 364 }
357 365 break;
358 366 case LFR_MODE_SBM2:
359 367 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
360 368 status = LFR_DEFAULT;
361 369 }
362 370 else {
363 371 status = LFR_SUCCESSFUL;
364 372 }
365 373 break;
366 374 default:
367 375 status = LFR_DEFAULT;
368 376 break;
369 377 }
370 378
371 379 return status;
372 380 }
373 381
374 382 int stop_current_mode(void)
375 383 {
376 384 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
377 385 *
378 386 * @return RTEMS directive status codes:
379 387 * - RTEMS_SUCCESSFUL - task restarted successfully
380 388 * - RTEMS_INVALID_ID - task id invalid
381 389 * - RTEMS_ALREADY_SUSPENDED - task already suspended
382 390 *
383 391 */
384 392
385 393 rtems_status_code status;
386 394
387 395 status = RTEMS_SUCCESSFUL;
388 396
389 397 // (1) mask interruptions
390 398 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
391 399 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
392 400
393 401 // (2) clear interruptions
394 402 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
395 403 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
396 404
397 405 // (3) reset registers
398 406 reset_wfp_burst_enable(); // reset burst and enable bits
399 407 reset_wfp_status(); // reset all the status bits
400 408 disable_irq_on_new_ready_matrix(); // stop the spectral matrices
401 409
402 410 // <Spectral Matrices simulator>
403 411 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
404 412 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
405 413 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
406 414 // </Spectral Matrices simulator>
407 415
408 416 // suspend several tasks
409 417 if (lfrCurrentMode != LFR_MODE_STANDBY) {
410 418 status = suspend_science_tasks();
411 419 }
412 420
413 421 if (status != RTEMS_SUCCESSFUL)
414 422 {
415 423 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
416 424 }
417 425
418 426 return status;
419 427 }
420 428
421 429 int enter_mode(unsigned char mode )
422 430 {
423 431 /** This function is launched after a mode transition validation.
424 432 *
425 433 * @param mode is the mode in which LFR will be put.
426 434 *
427 435 * @return RTEMS directive status codes:
428 436 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
429 437 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
430 438 *
431 439 */
432 440
433 441 rtems_status_code status;
434 442
435 443 status = RTEMS_UNSATISFIED;
436 444
437 445 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
438 446 updateLFRCurrentMode();
439 447
440 448 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
441 449 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
442 450 {
443 451 #ifdef PRINT_TASK_STATISTICS
444 452 rtems_cpu_usage_reset();
445 453 maxCount = 0;
446 454 #endif
447 455 status = restart_science_tasks();
448 456 launch_waveform_picker( mode );
449 457 launch_spectral_matrix( mode );
450 458 }
451 459 else if ( mode == LFR_MODE_STANDBY )
452 460 {
453 461 #ifdef PRINT_TASK_STATISTICS
454 462 rtems_cpu_usage_report();
455 463 #endif
456 464
457 465 #ifdef PRINT_STACK_REPORT
458 466 rtems_stack_checker_report_usage();
459 467 #endif
460 468 status = stop_current_mode();
461 469 PRINTF1("maxCount = %d\n", maxCount)
462 470 }
463 471 else
464 472 {
465 473 status = RTEMS_UNSATISFIED;
466 474 }
467 475
468 476 if (status != RTEMS_SUCCESSFUL)
469 477 {
470 478 PRINTF1("in enter_mode *** ERR = %d\n", status)
471 479 status = RTEMS_UNSATISFIED;
472 480 }
473 481
474 482 return status;
475 483 }
476 484
477 485 int restart_science_tasks()
478 486 {
479 487 /** This function is used to restart all science tasks.
480 488 *
481 489 * @return RTEMS directive status codes:
482 490 * - RTEMS_SUCCESSFUL - task restarted successfully
483 491 * - RTEMS_INVALID_ID - task id invalid
484 492 * - RTEMS_INCORRECT_STATE - task never started
485 493 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
486 494 *
487 495 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
488 496 *
489 497 */
490 498
491 499 rtems_status_code status[6];
492 500 rtems_status_code ret;
493 501
494 502 ret = RTEMS_SUCCESSFUL;
495 503
496 504 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
497 505 if (status[0] != RTEMS_SUCCESSFUL)
498 506 {
499 507 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
500 508 }
501 509
502 510 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
503 511 if (status[2] != RTEMS_SUCCESSFUL)
504 512 {
505 513 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
506 514 }
507 515
508 516 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
509 517 if (status[3] != RTEMS_SUCCESSFUL)
510 518 {
511 519 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
512 520 }
513 521
514 522 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
515 523 if (status[4] != RTEMS_SUCCESSFUL)
516 524 {
517 525 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
518 526 }
519 527
520 528 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
521 529 if (status[5] != RTEMS_SUCCESSFUL)
522 530 {
523 531 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
524 532 }
525 533
526 534 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
527 535 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
528 536 {
529 537 ret = RTEMS_UNSATISFIED;
530 538 }
531 539
532 540 return ret;
533 541 }
534 542
535 543 int suspend_science_tasks()
536 544 {
537 545 /** This function suspends the science tasks.
538 546 *
539 547 * @return RTEMS directive status codes:
540 548 * - RTEMS_SUCCESSFUL - task restarted successfully
541 549 * - RTEMS_INVALID_ID - task id invalid
542 550 * - RTEMS_ALREADY_SUSPENDED - task already suspended
543 551 *
544 552 */
545 553
546 554 rtems_status_code status;
547 555
548 556 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
549 557 if (status != RTEMS_SUCCESSFUL)
550 558 {
551 559 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
552 560 }
553 561
554 562 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
555 563 {
556 564 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
557 565 if (status != RTEMS_SUCCESSFUL)
558 566 {
559 567 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
560 568 }
561 569 }
562 570
563 571 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
564 572 {
565 573 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
566 574 if (status != RTEMS_SUCCESSFUL)
567 575 {
568 576 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
569 577 }
570 578 }
571 579
572 580 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
573 581 {
574 582 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
575 583 if (status != RTEMS_SUCCESSFUL)
576 584 {
577 585 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
578 586 }
579 587 }
580 588
581 589 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
582 590 {
583 591 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
584 592 if (status != RTEMS_SUCCESSFUL)
585 593 {
586 594 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
587 595 }
588 596 }
589 597
590 598 return status;
591 599 }
592 600
593 601 void launch_waveform_picker( unsigned char mode )
594 602 {
595 603 int startDate;
596 604
597 605 reset_current_ring_nodes();
598 606 reset_waveform_picker_regs();
599 607 set_wfp_burst_enable_register( mode );
600 608 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
601 609 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
602 610 startDate = time_management_regs->coarse_time + 2;
603 611 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
604 612 waveform_picker_regs->start_date = startDate;
605 613 }
606 614
607 615 void launch_spectral_matrix( unsigned char mode )
608 616 {
609 617 reset_nb_sm_f0();
610 618 reset_current_sm_ring_nodes();
611 619 reset_spectral_matrix_regs();
612 620
613 621 enable_irq_on_new_ready_matrix();
614 622
615 623 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
616 624 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
617 625 }
618 626
619 627 void enable_irq_on_new_ready_matrix( void )
620 628 {
621 629 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
622 630 }
623 631
624 632 void disable_irq_on_new_ready_matrix( void )
625 633 {
626 634 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
627 635 }
628 636
629 637
630 638 void launch_spectral_matrix_simu( unsigned char mode )
631 639 {
632 640 reset_nb_sm_f0();
633 641 reset_current_sm_ring_nodes();
634 642 reset_spectral_matrix_regs();
635 643
636 644 // Spectral Matrices simulator
637 645 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
638 646 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
639 647 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
640 648 set_local_nb_interrupt_f0_MAX();
641 649 }
642 650
643 651 //****************
644 652 // CLOSING ACTIONS
645 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC, unsigned char *time)
653 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC)
646 654 {
647 655 /** This function is used to update the HK packets statistics after a successful TC execution.
648 656 *
649 657 * @param TC points to the TC being processed
650 658 * @param time is the time used to date the TC execution
651 659 *
652 660 */
653 661
654 662 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
655 663 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
656 664 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
657 665 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
658 666 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
659 667 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
660 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
661 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
662 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
663 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
664 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
665 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
668 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
669 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
670 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
671 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
672 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
673 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
666 674 }
667 675
668 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char *time)
676 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC )
669 677 {
670 678 /** This function is used to update the HK packets statistics after a TC rejection.
671 679 *
672 680 * @param TC points to the TC being processed
673 681 * @param time is the time used to date the TC rejection
674 682 *
675 683 */
676 684
677 685 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
678 686 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
679 687 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
680 688 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
681 689 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
682 690 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
683 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
684 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
685 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
686 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
687 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
688 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
691 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
692 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
693 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
694 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
695 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
696 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
689 697 }
690 698
691 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id, unsigned char *time)
699 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
692 700 {
693 701 /** This function is the last step of the TC execution workflow.
694 702 *
695 703 * @param TC points to the TC being processed
696 704 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
697 705 * @param queue_id is the id of the RTEMS message queue used to send TM packets
698 706 * @param time is the time used to date the TC execution
699 707 *
700 708 */
701 709
702 710 unsigned int val = 0;
703 711
704 712 if (result == LFR_SUCCESSFUL)
705 713 {
706 714 if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
707 715 &&
708 716 !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
709 717 )
710 718 {
711 send_tm_lfr_tc_exe_success( TC, queue_id, time );
719 send_tm_lfr_tc_exe_success( TC, queue_id );
712 720 }
713 update_last_TC_exe( TC, time );
721 update_last_TC_exe( TC );
714 722 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
715 723 val++;
716 724 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
717 725 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
718 726 }
719 727 else
720 728 {
721 update_last_TC_rej( TC, time );
729 update_last_TC_rej( TC );
722 730 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
723 731 val++;
724 732 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
725 733 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
726 734 }
727 735 }
728 736
729 737 //***************************
730 738 // Interrupt Service Routines
731 739 rtems_isr commutation_isr1( rtems_vector_number vector )
732 740 {
733 741 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
734 742 printf("In commutation_isr1 *** Error sending event to DUMB\n");
735 743 }
736 744 }
737 745
738 746 rtems_isr commutation_isr2( rtems_vector_number vector )
739 747 {
740 748 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
741 749 printf("In commutation_isr2 *** Error sending event to DUMB\n");
742 750 }
743 751 }
744 752
745 753 //****************
746 754 // OTHER FUNCTIONS
747 755 void updateLFRCurrentMode()
748 756 {
749 757 /** This function updates the value of the global variable lfrCurrentMode.
750 758 *
751 759 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
752 760 *
753 761 */
754 762 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
755 763 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
756 764 }
757 765
@@ -1,483 +1,539
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 28 set_wfp_data_shaping( );
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43 rtems_status_code status;
44 44
45 45 flag = LFR_SUCCESSFUL;
46 46
47 47 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
48 48 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
49 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
49 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
50 50 flag = LFR_DEFAULT;
51 51 }
52 52
53 53 //***************
54 54 // sy_lfr_n_swf_l
55 55 if (flag == LFR_SUCCESSFUL)
56 56 {
57 57 result = set_sy_lfr_n_swf_l( TC, queue_id, time );
58 58 if (result != LFR_SUCCESSFUL)
59 59 {
60 60 flag = LFR_DEFAULT;
61 61 }
62 62 }
63 63
64 64 //***************
65 65 // sy_lfr_n_swf_p
66 66 if (flag == LFR_SUCCESSFUL)
67 67 {
68 68 result = set_sy_lfr_n_swf_p( TC, queue_id, time );
69 69 if (result != LFR_SUCCESSFUL)
70 70 {
71 71 flag = LFR_DEFAULT;
72 72 }
73 73 }
74 74
75 75 //***************
76 76 // sy_lfr_n_asm_p
77 77 if (flag == LFR_SUCCESSFUL)
78 78 {
79 79 result = set_sy_lfr_n_asm_p( TC, queue_id );
80 80 if (result != LFR_SUCCESSFUL)
81 81 {
82 82 flag = LFR_DEFAULT;
83 83 }
84 84 }
85 85
86 86 //***************
87 87 // sy_lfr_n_bp_p0
88 88 if (flag == LFR_SUCCESSFUL)
89 89 {
90 90 result = set_sy_lfr_n_bp_p0( TC, queue_id );
91 91 if (result != LFR_SUCCESSFUL)
92 92 {
93 93 flag = LFR_DEFAULT;
94 94 }
95 95 }
96 96
97 97 //***************
98 98 // sy_lfr_n_bp_p1
99 99 if (flag == LFR_SUCCESSFUL)
100 100 {
101 101 result = set_sy_lfr_n_bp_p1( TC, queue_id );
102 102 if (result != LFR_SUCCESSFUL)
103 103 {
104 104 flag = LFR_DEFAULT;
105 105 }
106 106 }
107 107
108 108 //*********************
109 109 // sy_lfr_n_cwf_long_f3
110 110 if (flag == LFR_SUCCESSFUL)
111 111 {
112 112 result = set_sy_lfr_n_cwf_long_f3( TC, queue_id );
113 113 if (result != LFR_SUCCESSFUL)
114 114 {
115 115 flag = LFR_DEFAULT;
116 116 }
117 117 }
118 118
119 119 return flag;
120 120 }
121 121
122 122 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
123 123 {
124 124 /** This function updates the LFR registers with the incoming burst parameters.
125 125 *
126 126 * @param TC points to the TeleCommand packet that is being processed
127 127 * @param queue_id is the id of the queue which handles TM related to this execution step
128 128 *
129 129 */
130 130
131 131 int result;
132 132 unsigned char lfrMode;
133 133 rtems_status_code status;
134 134
135 135 result = LFR_DEFAULT;
136 136 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
137 137
138 138 if ( lfrMode == LFR_MODE_BURST ) {
139 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
139 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
140 140 result = LFR_DEFAULT;
141 141 }
142 142 else {
143 143 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[0];
144 144 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[1];
145 145
146 146 result = LFR_SUCCESSFUL;
147 147 }
148 148
149 149 return result;
150 150 }
151 151
152 152 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function updates the LFR registers with the incoming sbm1 parameters.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM related to this execution step
158 158 *
159 159 */
160 160 int result;
161 161 unsigned char lfrMode;
162 162 rtems_status_code status;
163 163
164 164 result = LFR_DEFAULT;
165 165 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
166 166
167 167 if ( (lfrMode == LFR_MODE_SBM1) || (lfrMode == LFR_MODE_SBM2) ) {
168 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
168 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
169 169 result = LFR_DEFAULT;
170 170 }
171 171 else {
172 172 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[0];
173 173 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[1];
174 174
175 175 result = LFR_SUCCESSFUL;
176 176 }
177 177
178 178 return result;
179 179 }
180 180
181 181 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
182 182 {
183 183 /** This function updates the LFR registers with the incoming sbm2 parameters.
184 184 *
185 185 * @param TC points to the TeleCommand packet that is being processed
186 186 * @param queue_id is the id of the queue which handles TM related to this execution step
187 187 *
188 188 */
189 189
190 190 int result;
191 191 unsigned char lfrMode;
192 192 rtems_status_code status;
193 193
194 194 result = LFR_DEFAULT;
195 195 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
196 196
197 if ( (lfrMode == LFR_MODE_SBM2) || (lfrMode == LFR_MODE_SBM2) ) {
198 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
197 if ( (lfrMode == LFR_MODE_SBM1) || (lfrMode == LFR_MODE_SBM2) ) {
198 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
199 199 result = LFR_DEFAULT;
200 200 }
201 201 else {
202 202 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[0];
203 203 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[1];
204 204
205 205 result = LFR_SUCCESSFUL;
206 206 }
207 207
208 208 return result;
209 209 }
210 210
211 211 int action_dump_par( rtems_id queue_id )
212 212 {
213 213 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
214 214 *
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step.
216 216 *
217 217 * @return RTEMS directive status codes:
218 218 * - RTEMS_SUCCESSFUL - message sent successfully
219 219 * - RTEMS_INVALID_ID - invalid queue id
220 220 * - RTEMS_INVALID_SIZE - invalid message size
221 221 * - RTEMS_INVALID_ADDRESS - buffer is NULL
222 222 * - RTEMS_UNSATISFIED - out of message buffers
223 223 * - RTEMS_TOO_MANY - queue s limit has been reached
224 224 *
225 225 */
226 226
227 227 int status;
228 228
229 229 // UPDATE TIME
230 230 increment_seq_counter( parameter_dump_packet.packetSequenceControl );
231 231 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
232 232 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
233 233 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
234 234 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
235 235 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
236 236 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
237 237 // SEND DATA
238 238 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
239 239 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
240 240 if (status != RTEMS_SUCCESSFUL) {
241 241 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
242 242 }
243 243
244 244 return status;
245 245 }
246 246
247 247 //***********************
248 248 // NORMAL MODE PARAMETERS
249 249
250 250 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
251 251 {
252 252 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
253 253 *
254 254 * @param TC points to the TeleCommand packet that is being processed
255 255 * @param queue_id is the id of the queue which handles TM related to this execution step
256 256 *
257 257 */
258 258
259 259 unsigned int tmp;
260 260 int result;
261 261 unsigned char msb;
262 262 unsigned char lsb;
263 263 rtems_status_code status;
264 264
265 265 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L ];
266 266 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L+1 ];
267 267
268 268 tmp = ( unsigned int ) floor(
269 269 ( ( msb*256 ) + lsb ) / 16
270 270 ) * 16;
271 271
272 272 if ( (tmp < 16) || (tmp > 2048) ) // the snapshot period is a multiple of 16
273 273 { // 2048 is the maximum limit due to the size of the buffers
274 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_L+10, lsb, time );
274 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_L+10, lsb );
275 275 result = WRONG_APP_DATA;
276 276 }
277 277 else if (tmp != 2048)
278 278 {
279 279 status = send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
280 280 result = FUNCT_NOT_IMPL;
281 281 }
282 282 else
283 283 {
284 284 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (tmp >> 8);
285 285 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (tmp );
286 286 result = LFR_SUCCESSFUL;
287 287 }
288 288
289 289 return result;
290 290 }
291 291
292 292 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time)
293 293 {
294 294 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
295 295 *
296 296 * @param TC points to the TeleCommand packet that is being processed
297 297 * @param queue_id is the id of the queue which handles TM related to this execution step
298 298 *
299 299 */
300 300
301 301 unsigned int tmp;
302 302 int result;
303 303 unsigned char msb;
304 304 unsigned char lsb;
305 305 rtems_status_code status;
306 306
307 307 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P ];
308 308 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P+1 ];
309 309
310 310 tmp = msb * 256 + lsb;
311 311
312 312 if ( tmp < 16 )
313 313 {
314 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_P+10, lsb, time );
314 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_P+10, lsb );
315 315 result = WRONG_APP_DATA;
316 316 }
317 317 else
318 318 {
319 319 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (tmp >> 8);
320 320 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (tmp );
321 321 result = LFR_SUCCESSFUL;
322 322 }
323 323
324 324 return result;
325 325 }
326 326
327 327 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
328 328 {
329 329 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
330 330 *
331 331 * @param TC points to the TeleCommand packet that is being processed
332 332 * @param queue_id is the id of the queue which handles TM related to this execution step
333 333 *
334 334 */
335 335
336 336 int result;
337 337 unsigned char msb;
338 338 unsigned char lsb;
339 339
340 340 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P ];
341 341 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P+1 ];
342 342
343 343 parameter_dump_packet.sy_lfr_n_asm_p[0] = msb;
344 344 parameter_dump_packet.sy_lfr_n_asm_p[1] = lsb;
345 345 result = LFR_SUCCESSFUL;
346 346
347 347 return result;
348 348 }
349 349
350 350 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
351 351 {
352 352 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
353 353 *
354 354 * @param TC points to the TeleCommand packet that is being processed
355 355 * @param queue_id is the id of the queue which handles TM related to this execution step
356 356 *
357 357 */
358 358
359 359 int status;
360 360
361 361 status = LFR_SUCCESSFUL;
362 362
363 363 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P0 ];
364 364
365 365 return status;
366 366 }
367 367
368 368 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
369 369 {
370 370 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
371 371 *
372 372 * @param TC points to the TeleCommand packet that is being processed
373 373 * @param queue_id is the id of the queue which handles TM related to this execution step
374 374 *
375 375 */
376 376
377 377 int status;
378 378
379 379 status = LFR_SUCCESSFUL;
380 380
381 381 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P1 ];
382 382
383 383 return status;
384 384 }
385 385
386 386 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
387 387 {
388 388 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
389 389 *
390 390 * @param TC points to the TeleCommand packet that is being processed
391 391 * @param queue_id is the id of the queue which handles TM related to this execution step
392 392 *
393 393 */
394 394
395 395 int status;
396 396
397 397 status = LFR_SUCCESSFUL;
398 398
399 399 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_CWF_LONG_F3 ];
400 400
401 401 return status;
402 402 }
403 403
404 404 //**********************
405 405 // BURST MODE PARAMETERS
406 406
407 407 //*********************
408 408 // SBM1 MODE PARAMETERS
409 409
410 410 //*********************
411 411 // SBM2 MODE PARAMETERS
412 412
413 //*******************
414 // TC_LFR_UPDATE_INFO
415 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
416 {
417 unsigned int status;
418
419 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
420 || (mode = LFR_MODE_BURST)
421 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
422 {
423 status = LFR_SUCCESSFUL;
424 }
425 else
426 {
427 status = LFR_DEFAULT;
428 }
429
430 return status;
431 }
432
433 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
434 {
435 unsigned int status;
436
437 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
438 || (mode = TDS_MODE_BURST)
439 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
440 || (mode == TDS_MODE_LFM))
441 {
442 status = LFR_SUCCESSFUL;
443 }
444 else
445 {
446 status = LFR_DEFAULT;
447 }
448
449 return status;
450 }
451
452 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
453 {
454 unsigned int status;
455
456 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
457 || (mode = THR_MODE_BURST))
458 {
459 status = LFR_SUCCESSFUL;
460 }
461 else
462 {
463 status = LFR_DEFAULT;
464 }
465
466 return status;
467 }
468
413 469 //**********
414 470 // init dump
415 471
416 472 void init_parameter_dump( void )
417 473 {
418 474 /** This function initialize the parameter_dump_packet global variable with default values.
419 475 *
420 476 */
421 477
422 478 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
423 479 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
424 480 parameter_dump_packet.reserved = CCSDS_RESERVED;
425 481 parameter_dump_packet.userApplication = CCSDS_USER_APP;
426 482 parameter_dump_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_PARAMETER_DUMP >> 8);
427 483 parameter_dump_packet.packetID[1] = (unsigned char) TM_PACKET_ID_PARAMETER_DUMP;
428 484 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
429 485 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
430 486 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
431 487 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
432 488 // DATA FIELD HEADER
433 489 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
434 490 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
435 491 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
436 492 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
437 493 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
438 494 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
439 495 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
440 496 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
441 497 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
442 498 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
443 499 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
444 500
445 501 //******************
446 502 // COMMON PARAMETERS
447 503 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
448 504 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
449 505
450 506 //******************
451 507 // NORMAL PARAMETERS
452 508 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
453 509 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
454 510 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
455 511 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
456 512 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
457 513 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
458 514 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
459 515 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
460 516 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) SY_LFR_N_CWF_LONG_F3;
461 517
462 518 //*****************
463 519 // BURST PARAMETERS
464 520 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
465 521 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
466 522
467 523 //****************
468 524 // SBM1 PARAMETERS
469 525 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
470 526 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
471 527
472 528 //****************
473 529 // SBM2 PARAMETERS
474 530 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
475 531 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
476 532 }
477 533
478 534
479 535
480 536
481 537
482 538
483 539
@@ -1,494 +1,493
1 1 /** Functions to send TM packets related to TC parsing and execution.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to send appropriate TM packets after parsing and execution:
7 7 * - TM_LFR_TC_EXE_SUCCESS
8 8 * - TM_LFR_TC_EXE_INCONSISTENT
9 9 * - TM_LFR_TC_EXE_NOT_EXECUTABLE
10 10 * - TM_LFR_TC_EXE_NOT_IMPLEMENTED
11 11 * - TM_LFR_TC_EXE_ERROR
12 12 * - TM_LFR_TC_EXE_CORRUPTED
13 13 *
14 14 */
15 15
16 16 #include "tm_lfr_tc_exe.h"
17 17
18 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
18 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
19 19 {
20 20 /** This function sends a TM_LFR_TC_EXE_SUCCESS packet in the dedicated RTEMS message queue.
21 21 *
22 22 * @param TC points to the TeleCommand packet that is being processed
23 23 * @param queue_id is the id of the queue which handles TM
24 24 *
25 25 * @return RTEMS directive status code:
26 26 * - RTEMS_SUCCESSFUL - message sent successfully
27 27 * - RTEMS_INVALID_ID - invalid queue id
28 28 * - RTEMS_INVALID_SIZE - invalid message size
29 29 * - RTEMS_INVALID_ADDRESS - buffer is NULL
30 30 * - RTEMS_UNSATISFIED - out of message buffers
31 31 * - RTEMS_TOO_MANY - queue s limit has been reached
32 32 *
33 33 */
34 34
35 35 rtems_status_code status;
36 36 Packet_TM_LFR_TC_EXE_SUCCESS_t TM;
37 37 unsigned char messageSize;
38 38
39 39 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
40 40 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
41 41 TM.reserved = DEFAULT_RESERVED;
42 42 TM.userApplication = CCSDS_USER_APP;
43 43 // PACKET HEADER
44 44 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
45 45 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
46 46 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
47 47 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS >> 8);
48 48 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS );
49 49 // DATA FIELD HEADER
50 50 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
51 51 TM.serviceType = TM_TYPE_TC_EXE;
52 52 TM.serviceSubType = TM_SUBTYPE_EXE_OK;
53 53 TM.destinationID = TC->sourceID;
54 TM.time[0] = time[0];
55 TM.time[1] = time[1];
56 TM.time[2] = time[2];
57 TM.time[3] = time[3];
58 TM.time[4] = time[4];
59 TM.time[5] = time[5];
54 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
55 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
56 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
57 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
58 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
59 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
60 60 //
61 61 TM.telecommand_pkt_id[0] = TC->packetID[0];
62 62 TM.telecommand_pkt_id[1] = TC->packetID[1];
63 63 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
64 64 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
65 65
66 66 messageSize = PACKET_LENGTH_TC_EXE_SUCCESS + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
67 67
68 68 // SEND DATA
69 69 status = rtems_message_queue_send( queue_id, &TM, messageSize);
70 70 if (status != RTEMS_SUCCESSFUL) {
71 71 PRINTF("in send_tm_lfr_tc_exe_success *** ERR\n")
72 72 }
73 73
74 74 return status;
75 75 }
76 76
77 77 int send_tm_lfr_tc_exe_inconsistent( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
78 unsigned char byte_position, unsigned char rcv_value,
79 unsigned char *time)
78 unsigned char byte_position, unsigned char rcv_value )
80 79 {
81 80 /** This function sends a TM_LFR_TC_EXE_INCONSISTENT packet in the dedicated RTEMS message queue.
82 81 *
83 82 * @param TC points to the TeleCommand packet that is being processed
84 83 * @param queue_id is the id of the queue which handles TM
85 84 * @param byte_position is the byte position of the MSB of the parameter that has been seen as inconsistent
86 85 * @param rcv_value is the value of the LSB of the parameter that has been deteced as inconsistent
87 86 *
88 87 * @return RTEMS directive status code:
89 88 * - RTEMS_SUCCESSFUL - message sent successfully
90 89 * - RTEMS_INVALID_ID - invalid queue id
91 90 * - RTEMS_INVALID_SIZE - invalid message size
92 91 * - RTEMS_INVALID_ADDRESS - buffer is NULL
93 92 * - RTEMS_UNSATISFIED - out of message buffers
94 93 * - RTEMS_TOO_MANY - queue s limit has been reached
95 94 *
96 95 */
97 96
98 97 rtems_status_code status;
99 98 Packet_TM_LFR_TC_EXE_INCONSISTENT_t TM;
100 99 unsigned char messageSize;
101 100
102 101 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
103 102 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
104 103 TM.reserved = DEFAULT_RESERVED;
105 104 TM.userApplication = CCSDS_USER_APP;
106 105 // PACKET HEADER
107 106 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
108 107 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
109 108 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
110 109 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT >> 8);
111 110 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT );
112 111 // DATA FIELD HEADER
113 112 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
114 113 TM.serviceType = TM_TYPE_TC_EXE;
115 114 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
116 115 TM.destinationID = TC->sourceID;
117 116 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
118 117 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
119 118 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
120 119 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
121 120 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
122 121 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
123 122 //
124 123 TM.tc_failure_code[0] = (char) (WRONG_APP_DATA >> 8);
125 124 TM.tc_failure_code[1] = (char) (WRONG_APP_DATA );
126 125 TM.telecommand_pkt_id[0] = TC->packetID[0];
127 126 TM.telecommand_pkt_id[1] = TC->packetID[1];
128 127 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
129 128 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
130 129 TM.tc_service = TC->serviceType; // type of the rejected TC
131 130 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
132 131 TM.byte_position = byte_position;
133 132 TM.rcv_value = rcv_value;
134 133
135 134 messageSize = PACKET_LENGTH_TC_EXE_INCONSISTENT + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
136 135
137 136 // SEND DATA
138 137 status = rtems_message_queue_send( queue_id, &TM, messageSize);
139 138 if (status != RTEMS_SUCCESSFUL) {
140 139 PRINTF("in send_tm_lfr_tc_exe_inconsistent *** ERR\n")
141 140 }
142 141
143 142 return status;
144 143 }
145 144
146 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
145 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
147 146 {
148 147 /** This function sends a TM_LFR_TC_EXE_NOT_EXECUTABLE packet in the dedicated RTEMS message queue.
149 148 *
150 149 * @param TC points to the TeleCommand packet that is being processed
151 150 * @param queue_id is the id of the queue which handles TM
152 151 *
153 152 * @return RTEMS directive status code:
154 153 * - RTEMS_SUCCESSFUL - message sent successfully
155 154 * - RTEMS_INVALID_ID - invalid queue id
156 155 * - RTEMS_INVALID_SIZE - invalid message size
157 156 * - RTEMS_INVALID_ADDRESS - buffer is NULL
158 157 * - RTEMS_UNSATISFIED - out of message buffers
159 158 * - RTEMS_TOO_MANY - queue s limit has been reached
160 159 *
161 160 */
162 161
163 162 rtems_status_code status;
164 163 Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t TM;
165 164 unsigned char messageSize;
166 165
167 166 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
168 167 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
169 168 TM.reserved = DEFAULT_RESERVED;
170 169 TM.userApplication = CCSDS_USER_APP;
171 170 // PACKET HEADER
172 171 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
173 172 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
174 173 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
175 174 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE >> 8);
176 175 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE );
177 176 // DATA FIELD HEADER
178 177 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
179 178 TM.serviceType = TM_TYPE_TC_EXE;
180 179 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
181 180 TM.destinationID = TC->sourceID; // default destination id
182 181 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
183 182 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
184 183 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
185 184 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
186 185 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
187 186 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
188 187 //
189 188 TM.tc_failure_code[0] = (char) (TC_NOT_EXE >> 8);
190 189 TM.tc_failure_code[1] = (char) (TC_NOT_EXE );
191 190 TM.telecommand_pkt_id[0] = TC->packetID[0];
192 191 TM.telecommand_pkt_id[1] = TC->packetID[1];
193 192 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
194 193 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
195 194 TM.tc_service = TC->serviceType; // type of the rejected TC
196 195 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
197 196 TM.lfr_status_word[0] = housekeeping_packet.lfr_status_word[0];
198 197 TM.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1];
199 198
200 199 messageSize = PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
201 200
202 201 // SEND DATA
203 202 status = rtems_message_queue_send( queue_id, &TM, messageSize);
204 203 if (status != RTEMS_SUCCESSFUL) {
205 204 PRINTF("in send_tm_lfr_tc_exe_not_executable *** ERR\n")
206 205 }
207 206
208 207 return status;
209 208 }
210 209
211 210 int send_tm_lfr_tc_exe_not_implemented( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
212 211 {
213 212 /** This function sends a TM_LFR_TC_EXE_NOT_IMPLEMENTED packet in the dedicated RTEMS message queue.
214 213 *
215 214 * @param TC points to the TeleCommand packet that is being processed
216 215 * @param queue_id is the id of the queue which handles TM
217 216 *
218 217 * @return RTEMS directive status code:
219 218 * - RTEMS_SUCCESSFUL - message sent successfully
220 219 * - RTEMS_INVALID_ID - invalid queue id
221 220 * - RTEMS_INVALID_SIZE - invalid message size
222 221 * - RTEMS_INVALID_ADDRESS - buffer is NULL
223 222 * - RTEMS_UNSATISFIED - out of message buffers
224 223 * - RTEMS_TOO_MANY - queue s limit has been reached
225 224 *
226 225 */
227 226
228 227 rtems_status_code status;
229 228 Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t TM;
230 229 unsigned char messageSize;
231 230
232 231 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
233 232 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
234 233 TM.reserved = DEFAULT_RESERVED;
235 234 TM.userApplication = CCSDS_USER_APP;
236 235 // PACKET HEADER
237 236 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
238 237 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
239 238 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
240 239 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED >> 8);
241 240 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED );
242 241 // DATA FIELD HEADER
243 242 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
244 243 TM.serviceType = TM_TYPE_TC_EXE;
245 244 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
246 245 TM.destinationID = TC->sourceID; // default destination id
247 246 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
248 247 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
249 248 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
250 249 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
251 250 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
252 251 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
253 252 //
254 253 TM.tc_failure_code[0] = (char) (FUNCT_NOT_IMPL >> 8);
255 254 TM.tc_failure_code[1] = (char) (FUNCT_NOT_IMPL );
256 255 TM.telecommand_pkt_id[0] = TC->packetID[0];
257 256 TM.telecommand_pkt_id[1] = TC->packetID[1];
258 257 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
259 258 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
260 259 TM.tc_service = TC->serviceType; // type of the rejected TC
261 260 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
262 261
263 262 messageSize = PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
264 263
265 264 // SEND DATA
266 265 status = rtems_message_queue_send( queue_id, &TM, messageSize);
267 266 if (status != RTEMS_SUCCESSFUL) {
268 267 PRINTF("in send_tm_lfr_tc_exe_not_implemented *** ERR\n")
269 268 }
270 269
271 270 return status;
272 271 }
273 272
274 273 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
275 274 {
276 275 /** This function sends a TM_LFR_TC_EXE_ERROR packet in the dedicated RTEMS message queue.
277 276 *
278 277 * @param TC points to the TeleCommand packet that is being processed
279 278 * @param queue_id is the id of the queue which handles TM
280 279 *
281 280 * @return RTEMS directive status code:
282 281 * - RTEMS_SUCCESSFUL - message sent successfully
283 282 * - RTEMS_INVALID_ID - invalid queue id
284 283 * - RTEMS_INVALID_SIZE - invalid message size
285 284 * - RTEMS_INVALID_ADDRESS - buffer is NULL
286 285 * - RTEMS_UNSATISFIED - out of message buffers
287 286 * - RTEMS_TOO_MANY - queue s limit has been reached
288 287 *
289 288 */
290 289
291 290 rtems_status_code status;
292 291 Packet_TM_LFR_TC_EXE_ERROR_t TM;
293 292 unsigned char messageSize;
294 293
295 294 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
296 295 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
297 296 TM.reserved = DEFAULT_RESERVED;
298 297 TM.userApplication = CCSDS_USER_APP;
299 298 // PACKET HEADER
300 299 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
301 300 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
302 301 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
303 302 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR >> 8);
304 303 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR );
305 304 // DATA FIELD HEADER
306 305 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
307 306 TM.serviceType = TM_TYPE_TC_EXE;
308 307 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
309 308 TM.destinationID = TC->sourceID; // default destination id
310 309 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
311 310 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
312 311 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
313 312 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
314 313 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
315 314 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
316 315 //
317 316 TM.tc_failure_code[0] = (char) (FAIL_DETECTED >> 8);
318 317 TM.tc_failure_code[1] = (char) (FAIL_DETECTED );
319 318 TM.telecommand_pkt_id[0] = TC->packetID[0];
320 319 TM.telecommand_pkt_id[1] = TC->packetID[1];
321 320 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
322 321 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
323 322 TM.tc_service = TC->serviceType; // type of the rejected TC
324 323 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
325 324
326 325 messageSize = PACKET_LENGTH_TC_EXE_ERROR + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
327 326
328 327 // SEND DATA
329 328 status = rtems_message_queue_send( queue_id, &TM, messageSize);
330 329 if (status != RTEMS_SUCCESSFUL) {
331 330 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
332 331 }
333 332
334 333 return status;
335 334 }
336 335
337 336 int send_tm_lfr_tc_exe_corrupted(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
338 337 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV,
339 unsigned char destinationID, unsigned char *time)
338 unsigned char destinationID )
340 339 {
341 340 /** This function sends a TM_LFR_TC_EXE_CORRUPTED packet in the dedicated RTEMS message queue.
342 341 *
343 342 * @param TC points to the TeleCommand packet that is being processed
344 343 * @param queue_id is the id of the queue which handles TM
345 344 * @param computed_CRC points to a buffer of two bytes containing the CRC computed during the parsing of the TeleCommand
346 345 * @param currentTC_LEN_RCV points to a buffer of two bytes containing a packet size field computed on the received data
347 346 *
348 347 * @return RTEMS directive status code:
349 348 * - RTEMS_SUCCESSFUL - message sent successfully
350 349 * - RTEMS_INVALID_ID - invalid queue id
351 350 * - RTEMS_INVALID_SIZE - invalid message size
352 351 * - RTEMS_INVALID_ADDRESS - buffer is NULL
353 352 * - RTEMS_UNSATISFIED - out of message buffers
354 353 * - RTEMS_TOO_MANY - queue s limit has been reached
355 354 *
356 355 */
357 356
358 357 rtems_status_code status;
359 358 Packet_TM_LFR_TC_EXE_CORRUPTED_t TM;
360 359 unsigned char messageSize;
361 360 unsigned int packetLength;
362 361 unsigned char *packetDataField;
363 362
364 363 packetLength = (TC->packetLength[0] * 256) + TC->packetLength[1]; // compute the packet length parameter
365 364 packetDataField = (unsigned char *) &TC->headerFlag_pusVersion_Ack; // get the beginning of the data field
366 365
367 366 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
368 367 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
369 368 TM.reserved = DEFAULT_RESERVED;
370 369 TM.userApplication = CCSDS_USER_APP;
371 370 // PACKET HEADER
372 371 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
373 372 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
374 373 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
375 374 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED >> 8);
376 375 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED );
377 376 // DATA FIELD HEADER
378 377 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
379 378 TM.serviceType = TM_TYPE_TC_EXE;
380 379 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
381 380 TM.destinationID = destinationID;
382 381 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
383 382 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
384 383 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
385 384 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
386 385 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
387 386 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
388 387 //
389 388 TM.tc_failure_code[0] = (unsigned char) (CORRUPTED >> 8);
390 389 TM.tc_failure_code[1] = (unsigned char) (CORRUPTED );
391 390 TM.telecommand_pkt_id[0] = TC->packetID[0];
392 391 TM.telecommand_pkt_id[1] = TC->packetID[1];
393 392 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
394 393 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
395 394 TM.tc_service = TC->serviceType; // type of the rejected TC
396 395 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
397 396 TM.pkt_len_rcv_value[0] = TC->packetLength[0];
398 397 TM.pkt_len_rcv_value[1] = TC->packetLength[1];
399 398 TM.pkt_datafieldsize_cnt[0] = currentTC_LEN_RCV[0];
400 399 TM.pkt_datafieldsize_cnt[1] = currentTC_LEN_RCV[1];
401 400 TM.rcv_crc[0] = packetDataField[ packetLength - 1 ];
402 401 TM.rcv_crc[1] = packetDataField[ packetLength ];
403 402 TM.computed_crc[0] = computed_CRC[0];
404 403 TM.computed_crc[1] = computed_CRC[1];
405 404
406 405 messageSize = PACKET_LENGTH_TC_EXE_CORRUPTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
407 406
408 407 // SEND DATA
409 408 status = rtems_message_queue_send( queue_id, &TM, messageSize);
410 409 if (status != RTEMS_SUCCESSFUL) {
411 410 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
412 411 }
413 412
414 413 return status;
415 414 }
416 415
417 416 void increment_seq_counter_destination_id( unsigned char *packet_sequence_control, unsigned char destination_id )
418 417 {
419 418 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
420 419 *
421 420 * @param packet_sequence_control points to the packet sequence control which will be incremented
422 421 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
423 422 *
424 423 * If the destination ID is not known, a dedicated counter is incremented.
425 424 *
426 425 */
427 426
428 427 unsigned short sequence_cnt;
429 428 unsigned short segmentation_grouping_flag;
430 429 unsigned short new_packet_sequence_control;
431 430 unsigned char i;
432 431
433 432 switch (destination_id)
434 433 {
435 434 case SID_TC_GROUND:
436 435 i = GROUND;
437 436 break;
438 437 case SID_TC_MISSION_TIMELINE:
439 438 i = MISSION_TIMELINE;
440 439 break;
441 440 case SID_TC_TC_SEQUENCES:
442 441 i = TC_SEQUENCES;
443 442 break;
444 443 case SID_TC_RECOVERY_ACTION_CMD:
445 444 i = RECOVERY_ACTION_CMD;
446 445 break;
447 446 case SID_TC_BACKUP_MISSION_TIMELINE:
448 447 i = BACKUP_MISSION_TIMELINE;
449 448 break;
450 449 case SID_TC_DIRECT_CMD:
451 450 i = DIRECT_CMD;
452 451 break;
453 452 case SID_TC_SPARE_GRD_SRC1:
454 453 i = SPARE_GRD_SRC1;
455 454 break;
456 455 case SID_TC_SPARE_GRD_SRC2:
457 456 i = SPARE_GRD_SRC2;
458 457 break;
459 458 case SID_TC_OBCP:
460 459 i = OBCP;
461 460 break;
462 461 case SID_TC_SYSTEM_CONTROL:
463 462 i = SYSTEM_CONTROL;
464 463 break;
465 464 case SID_TC_AOCS:
466 465 i = AOCS;
467 466 break;
468 467 case SID_TC_RPW_INTERNAL:
469 468 i = RPW_INTERNAL;
470 469 break;
471 470 default:
472 471 i = GROUND;
473 472 break;
474 473 }
475 474
475 // increment the sequence counter
476 if ( sequenceCounters_TC_EXE[ i ] < SEQ_CNT_MAX )
477 {
478 sequenceCounters_TC_EXE[ i ] = sequenceCounters_TC_EXE[ i ] + 1;
479 }
480 else
481 {
482 sequenceCounters_TC_EXE[ i ] = 0;
483 }
484
476 485 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
477 486 sequence_cnt = sequenceCounters_TC_EXE[ i ] & 0x3fff;
478 487
479 488 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
480 489
481 490 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
482 491 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
483 492
484 // increment the sequence counter for the next packet
485 if ( sequenceCounters_TC_EXE[ i ] < SEQ_CNT_MAX)
486 {
487 sequenceCounters_TC_EXE[ i ] = sequenceCounters_TC_EXE[ i ] + 1;
488 }
489 else
490 {
491 sequenceCounters_TC_EXE[ i ] = 0;
492 }
493
494 493 }
General Comments 0
You need to be logged in to leave comments. Login now