##// END OF EJS Templates
sy_lfr_watchdog_enabled handled...
paul -
r262:e2f22269a98c R3a
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 ad7698268954c5d3d203a3b3ad09fcdf2d536472 header/lfr_common_headers
2 fa4fff498e7a3208f9f7ba469d6e25c84fe6ad71 header/lfr_common_headers
@@ -1,82 +1,84
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7 #include <grlib_regs.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "lfr_cpu_usage_report.h"
12 12
13 13
14 14 enum lfr_reset_cause_t{
15 15 UNKNOWN_CAUSE,
16 16 POWER_ON,
17 17 TC_RESET,
18 18 WATCHDOG,
19 19 ERROR_RESET,
20 20 UNEXP_RESET
21 21 };
22 22
23 23 extern gptimer_regs_t *gptimer_regs;
24 24 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
25 25 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
26 26
27 27 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
28 28
29 29 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
30 30 rtems_id HK_id; // id of the HK rate monotonic period
31 31
32 32 void timer_configure( unsigned char timer, unsigned int clock_divider,
33 33 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
34 34 void timer_start( unsigned char timer );
35 35 void timer_stop( unsigned char timer );
36 36 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
37 37
38 38 // WATCHDOG
39 39 rtems_isr watchdog_isr( rtems_vector_number vector );
40 40 void watchdog_configure(void);
41 41 void watchdog_stop(void);
42 void watchdog_reload(void);
42 43 void watchdog_start(void);
43 44
44 45 // SERIAL LINK
45 46 int send_console_outputs_on_apbuart_port( void );
46 47 int enable_apbuart_transmitter( void );
47 48 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
48 49
49 50 // RTEMS TASKS
50 51 rtems_task load_task( rtems_task_argument argument );
51 52 rtems_task hous_task( rtems_task_argument argument );
52 53 rtems_task dumb_task( rtems_task_argument unused );
53 54
54 55 void init_housekeeping_parameters( void );
55 56 void increment_seq_counter(unsigned short *packetSequenceControl);
56 57 void getTime( unsigned char *time);
57 58 unsigned long long int getTimeAsUnsignedLongLongInt( );
58 59 void send_dumb_hk( void );
59 60 void get_temperatures( unsigned char *temperatures );
60 61 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
61 62 void get_cpu_load( unsigned char *resource_statistics );
62 63 void set_hk_lfr_sc_potential_flag( bool state );
63 64 void set_hk_lfr_mag_fields_flag( bool state );
65 void set_sy_lfr_watchdog_enabled( bool state );
64 66 void set_hk_lfr_calib_enable( bool state );
65 67 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
66 68 void hk_lfr_le_me_he_update();
67 69 void set_hk_lfr_time_not_synchro();
68 70
69 71 extern int sched_yield( void );
70 72 extern void rtems_cpu_usage_reset();
71 73 extern ring_node *current_ring_node_f3;
72 74 extern ring_node *ring_node_to_send_cwf_f3;
73 75 extern ring_node waveform_ring_f3[];
74 76 extern unsigned short sequenceCounterHK;
75 77
76 78 extern unsigned char hk_lfr_q_sd_fifo_size_max;
77 79 extern unsigned char hk_lfr_q_rv_fifo_size_max;
78 80 extern unsigned char hk_lfr_q_p0_fifo_size_max;
79 81 extern unsigned char hk_lfr_q_p1_fifo_size_max;
80 82 extern unsigned char hk_lfr_q_p2_fifo_size_max;
81 83
82 84 #endif // FSW_MISC_H_INCLUDED
@@ -1,783 +1,801
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 // WATCHDOG
83 83
84 84 rtems_isr watchdog_isr( rtems_vector_number vector )
85 85 {
86 86 rtems_status_code status_code;
87 87
88 88 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
89
90 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
91
92 exit(0);
89 93 }
90 94
91 95 void watchdog_configure(void)
92 96 {
93 97 /** This function configure the watchdog.
94 98 *
95 99 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
96 100 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
97 101 *
98 102 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
99 103 *
100 104 */
101 105
102 106 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
103 107
104 108 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
105 109
106 110 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
107 111 }
108 112
109 113 void watchdog_stop(void)
110 114 {
111 115 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
112 116 timer_stop( TIMER_WATCHDOG );
113 117 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
114 118 }
115 119
116 120 void watchdog_reload(void)
117 121 {
118 122 /** This function reloads the watchdog timer counter with the timer reload value.
119 123 *
120 124 * @param void
121 125 *
122 126 * @return void
123 127 *
124 128 */
125 129
126 130 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
127 131 }
128 132
129 133 void watchdog_start(void)
130 134 {
131 135 /** This function starts the watchdog timer.
132 136 *
133 137 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
134 138 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
135 139 *
136 140 */
137 141
138 142 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
139 143
140 144 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
141 145 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
142 146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
143 147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
144 148
145 149 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
146 150
147 151 }
148 152
149 153 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
150 154 {
151 155 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
152 156
153 157 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
154 158
155 159 return 0;
156 160 }
157 161
158 162 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
159 163 {
160 164 /** This function sets the scaler reload register of the apbuart module
161 165 *
162 166 * @param regs is the address of the apbuart registers in memory
163 167 * @param value is the value that will be stored in the scaler register
164 168 *
165 169 * The value shall be set by the software to get data on the serial interface.
166 170 *
167 171 */
168 172
169 173 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
170 174
171 175 apbuart_regs->scaler = value;
172 176
173 177 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
174 178 }
175 179
176 180 //************
177 181 // RTEMS TASKS
178 182
179 183 rtems_task load_task(rtems_task_argument argument)
180 184 {
181 185 BOOT_PRINTF("in LOAD *** \n")
182 186
183 187 rtems_status_code status;
184 188 unsigned int i;
185 189 unsigned int j;
186 190 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
187 191 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
188 192
189 193 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
190 194
191 195 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
192 196 if( status != RTEMS_SUCCESSFUL ) {
193 197 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
194 198 }
195 199
196 200 i = 0;
197 201 j = 0;
198 202
199 203 watchdog_configure();
200 204
201 205 watchdog_start();
202 206
207 set_sy_lfr_watchdog_enabled( true );
208
203 209 while(1){
204 210 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
205 211 watchdog_reload();
206 212 i = i + 1;
207 213 if ( i == 10 )
208 214 {
209 215 i = 0;
210 216 j = j + 1;
211 217 PRINTF1("%d\n", j)
212 218 }
213 219 #ifdef DEBUG_WATCHDOG
214 220 if (j == 3 )
215 221 {
216 222 status = rtems_task_delete(RTEMS_SELF);
217 223 }
218 224 #endif
219 225 }
220 226 }
221 227
222 228 rtems_task hous_task(rtems_task_argument argument)
223 229 {
224 230 rtems_status_code status;
225 231 rtems_status_code spare_status;
226 232 rtems_id queue_id;
227 233 rtems_rate_monotonic_period_status period_status;
228 234
229 235 status = get_message_queue_id_send( &queue_id );
230 236 if (status != RTEMS_SUCCESSFUL)
231 237 {
232 238 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
233 239 }
234 240
235 241 BOOT_PRINTF("in HOUS ***\n");
236 242
237 243 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
238 244 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
239 245 if( status != RTEMS_SUCCESSFUL ) {
240 246 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
241 247 }
242 248 }
243 249
244 250 status = rtems_rate_monotonic_cancel(HK_id);
245 251 if( status != RTEMS_SUCCESSFUL ) {
246 252 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
247 253 }
248 254 else {
249 255 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
250 256 }
251 257
252 258 // startup phase
253 259 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
254 260 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
255 261 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
256 262 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
257 263 {
258 264 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
259 265 {
260 266 break; // break if LFR is synchronized
261 267 }
262 268 else
263 269 {
264 270 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
265 271 // sched_yield();
266 272 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
267 273 }
268 274 }
269 275 status = rtems_rate_monotonic_cancel(HK_id);
270 276 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
271 277
272 278 set_hk_lfr_reset_cause( POWER_ON );
273 279
274 280 while(1){ // launch the rate monotonic task
275 281 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
276 282 if ( status != RTEMS_SUCCESSFUL ) {
277 283 PRINTF1( "in HOUS *** ERR period: %d\n", status);
278 284 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
279 285 }
280 286 else {
281 287 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
282 288 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
283 289 increment_seq_counter( &sequenceCounterHK );
284 290
285 291 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
286 292 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
287 293 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
288 294 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
289 295 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
290 296 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
291 297
292 298 spacewire_update_statistics();
293 299
294 300 set_hk_lfr_time_not_synchro();
295 301
296 302 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
297 303 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
298 304 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
299 305 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
300 306 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
301 307
302 308 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
303 309 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
304 310 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
305 311 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
306 312 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
307 313
308 314 hk_lfr_le_me_he_update();
309 315
310 316 // SEND PACKET
311 317 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
312 318 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
313 319 if (status != RTEMS_SUCCESSFUL) {
314 320 PRINTF1("in HOUS *** ERR send: %d\n", status)
315 321 }
316 322 }
317 323 }
318 324
319 325 PRINTF("in HOUS *** deleting task\n")
320 326
321 327 status = rtems_task_delete( RTEMS_SELF ); // should not return
322 328
323 329 return;
324 330 }
325 331
326 332 rtems_task dumb_task( rtems_task_argument unused )
327 333 {
328 334 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
329 335 *
330 336 * @param unused is the starting argument of the RTEMS task
331 337 *
332 338 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
333 339 *
334 340 */
335 341
336 342 unsigned int i;
337 343 unsigned int intEventOut;
338 344 unsigned int coarse_time = 0;
339 345 unsigned int fine_time = 0;
340 346 rtems_event_set event_out;
341 347
342 348 char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
343 349 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
344 350 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
345 351 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
346 352 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
347 353 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
348 354 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
349 355 "ready for dump", // RTEMS_EVENT_7
350 356 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
351 357 "tick", // RTEMS_EVENT_9
352 358 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
353 359 "VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
354 360 "WATCHDOG timer", // RTEMS_EVENT_12
355 361 "TIMECODE timer", // RTEMS_EVENT_13
356 362 "TIMECODE ISR" // RTEMS_EVENT_14
357 363 };
358 364
359 365 BOOT_PRINTF("in DUMB *** \n")
360 366
361 367 while(1){
362 368 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
363 369 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
364 370 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
365 371 | RTEMS_EVENT_14,
366 372 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
367 373 intEventOut = (unsigned int) event_out;
368 374 for ( i=0; i<32; i++)
369 375 {
370 376 if ( ((intEventOut >> i) & 0x0001) != 0)
371 377 {
372 378 coarse_time = time_management_regs->coarse_time;
373 379 fine_time = time_management_regs->fine_time;
374 380 if (i==12)
375 381 {
376 382 PRINTF1("%s\n", DumbMessages[12])
377 383 }
378 384 if (i==13)
379 385 {
380 386 PRINTF1("%s\n", DumbMessages[13])
381 387 }
382 388 if (i==14)
383 389 {
384 390 PRINTF1("%s\n", DumbMessages[1])
385 391 }
386 392 }
387 393 }
388 394 }
389 395 }
390 396
391 397 //*****************************
392 398 // init housekeeping parameters
393 399
394 400 void init_housekeeping_parameters( void )
395 401 {
396 402 /** This function initialize the housekeeping_packet global variable with default values.
397 403 *
398 404 */
399 405
400 406 unsigned int i = 0;
401 407 unsigned char *parameters;
402 408 unsigned char sizeOfHK;
403 409
404 410 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
405 411
406 412 parameters = (unsigned char*) &housekeeping_packet;
407 413
408 414 for(i = 0; i< sizeOfHK; i++)
409 415 {
410 416 parameters[i] = 0x00;
411 417 }
412 418
413 419 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
414 420 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
415 421 housekeeping_packet.reserved = DEFAULT_RESERVED;
416 422 housekeeping_packet.userApplication = CCSDS_USER_APP;
417 423 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
418 424 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
419 425 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
420 426 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
421 427 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
422 428 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
423 429 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
424 430 housekeeping_packet.serviceType = TM_TYPE_HK;
425 431 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
426 432 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
427 433 housekeeping_packet.sid = SID_HK;
428 434
429 435 // init status word
430 436 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
431 437 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
432 438 // init software version
433 439 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
434 440 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
435 441 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
436 442 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
437 443 // init fpga version
438 444 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
439 445 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
440 446 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
441 447 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
442 448
443 449 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
444 450 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
445 451 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
446 452 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
447 453 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
448 454 }
449 455
450 456 void increment_seq_counter( unsigned short *packetSequenceControl )
451 457 {
452 458 /** This function increment the sequence counter passes in argument.
453 459 *
454 460 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
455 461 *
456 462 */
457 463
458 464 unsigned short segmentation_grouping_flag;
459 465 unsigned short sequence_cnt;
460 466
461 467 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
462 468 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
463 469
464 470 if ( sequence_cnt < SEQ_CNT_MAX)
465 471 {
466 472 sequence_cnt = sequence_cnt + 1;
467 473 }
468 474 else
469 475 {
470 476 sequence_cnt = 0;
471 477 }
472 478
473 479 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
474 480 }
475 481
476 482 void getTime( unsigned char *time)
477 483 {
478 484 /** This function write the current local time in the time buffer passed in argument.
479 485 *
480 486 */
481 487
482 488 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
483 489 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
484 490 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
485 491 time[3] = (unsigned char) (time_management_regs->coarse_time);
486 492 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
487 493 time[5] = (unsigned char) (time_management_regs->fine_time);
488 494 }
489 495
490 496 unsigned long long int getTimeAsUnsignedLongLongInt( )
491 497 {
492 498 /** This function write the current local time in the time buffer passed in argument.
493 499 *
494 500 */
495 501 unsigned long long int time;
496 502
497 503 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
498 504 + time_management_regs->fine_time;
499 505
500 506 return time;
501 507 }
502 508
503 509 void send_dumb_hk( void )
504 510 {
505 511 Packet_TM_LFR_HK_t dummy_hk_packet;
506 512 unsigned char *parameters;
507 513 unsigned int i;
508 514 rtems_id queue_id;
509 515
510 516 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
511 517 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
512 518 dummy_hk_packet.reserved = DEFAULT_RESERVED;
513 519 dummy_hk_packet.userApplication = CCSDS_USER_APP;
514 520 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
515 521 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
516 522 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
517 523 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
518 524 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
519 525 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
520 526 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
521 527 dummy_hk_packet.serviceType = TM_TYPE_HK;
522 528 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
523 529 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
524 530 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
525 531 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
526 532 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
527 533 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
528 534 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
529 535 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
530 536 dummy_hk_packet.sid = SID_HK;
531 537
532 538 // init status word
533 539 dummy_hk_packet.lfr_status_word[0] = 0xff;
534 540 dummy_hk_packet.lfr_status_word[1] = 0xff;
535 541 // init software version
536 542 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
537 543 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
538 544 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
539 545 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
540 546 // init fpga version
541 547 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
542 548 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
543 549 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
544 550 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
545 551
546 552 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
547 553
548 554 for (i=0; i<100; i++)
549 555 {
550 556 parameters[i] = 0xff;
551 557 }
552 558
553 559 get_message_queue_id_send( &queue_id );
554 560
555 561 rtems_message_queue_send( queue_id, &dummy_hk_packet,
556 562 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
557 563 }
558 564
559 565 void get_temperatures( unsigned char *temperatures )
560 566 {
561 567 unsigned char* temp_scm_ptr;
562 568 unsigned char* temp_pcb_ptr;
563 569 unsigned char* temp_fpga_ptr;
564 570
565 571 // SEL1 SEL0
566 572 // 0 0 => PCB
567 573 // 0 1 => FPGA
568 574 // 1 0 => SCM
569 575
570 576 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
571 577 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
572 578 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
573 579
574 580 temperatures[0] = temp_scm_ptr[2];
575 581 temperatures[1] = temp_scm_ptr[3];
576 582 temperatures[2] = temp_pcb_ptr[2];
577 583 temperatures[3] = temp_pcb_ptr[3];
578 584 temperatures[4] = temp_fpga_ptr[2];
579 585 temperatures[5] = temp_fpga_ptr[3];
580 586 }
581 587
582 588 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
583 589 {
584 590 unsigned char* v_ptr;
585 591 unsigned char* e1_ptr;
586 592 unsigned char* e2_ptr;
587 593
588 594 v_ptr = (unsigned char *) &waveform_picker_regs->v;
589 595 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
590 596 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
591 597
592 598 spacecraft_potential[0] = v_ptr[2];
593 599 spacecraft_potential[1] = v_ptr[3];
594 600 spacecraft_potential[2] = e1_ptr[2];
595 601 spacecraft_potential[3] = e1_ptr[3];
596 602 spacecraft_potential[4] = e2_ptr[2];
597 603 spacecraft_potential[5] = e2_ptr[3];
598 604 }
599 605
600 606 void get_cpu_load( unsigned char *resource_statistics )
601 607 {
602 608 unsigned char cpu_load;
603 609
604 610 cpu_load = lfr_rtems_cpu_usage_report();
605 611
606 612 // HK_LFR_CPU_LOAD
607 613 resource_statistics[0] = cpu_load;
608 614
609 615 // HK_LFR_CPU_LOAD_MAX
610 616 if (cpu_load > resource_statistics[1])
611 617 {
612 618 resource_statistics[1] = cpu_load;
613 619 }
614 620
615 621 // CPU_LOAD_AVE
616 622 resource_statistics[2] = 0;
617 623
618 624 #ifndef PRINT_TASK_STATISTICS
619 625 rtems_cpu_usage_reset();
620 626 #endif
621 627
622 628 }
623 629
624 630 void set_hk_lfr_sc_potential_flag( bool state )
625 631 {
626 632 if (state == true)
627 633 {
628 634 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
629 635 }
630 636 else
631 637 {
632 638 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
633 639 }
634 640 }
635 641
636 642 void set_hk_lfr_mag_fields_flag( bool state )
637 643 {
638 644 if (state == true)
639 645 {
640 646 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x20; // [0010 0000]
641 647 }
642 648 else
643 649 {
644 650 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xd7; // [1101 1111]
645 651 }
646 652 }
647 653
654 void set_sy_lfr_watchdog_enabled( bool state )
655 {
656 if (state == true)
657 {
658 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x10; // [0001 0000]
659 }
660 else
661 {
662 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xef; // [1110 1111]
663 }
664 }
665
648 666 void set_hk_lfr_calib_enable( bool state )
649 667 {
650 668 if (state == true)
651 669 {
652 670 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
653 671 }
654 672 else
655 673 {
656 674 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
657 675 }
658 676 }
659 677
660 678 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
661 679 {
662 680 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
663 681 | (lfr_reset_cause & 0x07 ); // [0000 0111]
664 682 }
665 683
666 684 void hk_lfr_le_me_he_update()
667 685 {
668 686 unsigned int hk_lfr_le_cnt;
669 687 unsigned int hk_lfr_me_cnt;
670 688 unsigned int hk_lfr_he_cnt;
671 689
672 690 hk_lfr_le_cnt = 0;
673 691 hk_lfr_me_cnt = 0;
674 692 hk_lfr_he_cnt = 0;
675 693
676 694 //update the low severity error counter
677 695 hk_lfr_le_cnt =
678 696 housekeeping_packet.hk_lfr_dpu_spw_parity
679 697 + housekeeping_packet.hk_lfr_dpu_spw_disconnect
680 698 + housekeeping_packet.hk_lfr_dpu_spw_escape
681 699 + housekeeping_packet.hk_lfr_dpu_spw_credit
682 700 + housekeeping_packet.hk_lfr_dpu_spw_write_sync
683 701 + housekeeping_packet.hk_lfr_timecode_erroneous
684 702 + housekeeping_packet.hk_lfr_timecode_missing
685 703 + housekeeping_packet.hk_lfr_timecode_invalid
686 704 + housekeeping_packet.hk_lfr_time_timecode_it
687 705 + housekeeping_packet.hk_lfr_time_not_synchro
688 706 + housekeeping_packet.hk_lfr_time_timecode_ctr;
689 707 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
690 708 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
691 709
692 710 //update the medium severity error counter
693 711 hk_lfr_me_cnt =
694 712 housekeeping_packet.hk_lfr_dpu_spw_early_eop
695 713 + housekeeping_packet.hk_lfr_dpu_spw_invalid_addr
696 714 + housekeeping_packet.hk_lfr_dpu_spw_eep
697 715 + housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
698 716
699 717 //update the high severity error counter
700 718 hk_lfr_he_cnt = 0;
701 719
702 720 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
703 721 // LE
704 722 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((hk_lfr_le_cnt & 0xff00) >> 8);
705 723 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (hk_lfr_le_cnt & 0x00ff);
706 724 // ME
707 725 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((hk_lfr_me_cnt & 0xff00) >> 8);
708 726 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (hk_lfr_me_cnt & 0x00ff);
709 727 // HE
710 728 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & 0xff00) >> 8);
711 729 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & 0x00ff);
712 730
713 731 }
714 732
715 733 void set_hk_lfr_time_not_synchro()
716 734 {
717 735 static unsigned char synchroLost = 1;
718 736 int synchronizationBit;
719 737
720 738 // get the synchronization bit
721 739 synchronizationBit = (time_management_regs->coarse_time & 0x80000000) >> 31; // 1000 0000 0000 0000
722 740
723 741 switch (synchronizationBit)
724 742 {
725 743 case 0:
726 744 if (synchroLost == 1)
727 745 {
728 746 synchroLost = 0;
729 747 }
730 748 break;
731 749 case 1:
732 750 if (synchroLost == 0 )
733 751 {
734 752 synchroLost = 1;
735 753 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
736 754 }
737 755 break;
738 756 default:
739 757 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
740 758 break;
741 759 }
742 760
743 761 }
744 762
745 763 void set_hk_lfr_ahb_correctable()
746 764 {
747 765 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
748 766 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
749 767 * detected errors in the cache, in the integer unit and in the floating point unit.
750 768 *
751 769 * @param void
752 770 *
753 771 * @return void
754 772 *
755 773 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
756 774 *
757 775 */
758 776
759 777 unsigned int ahb_correctable;
760 778 unsigned int instructionErrorCounter;
761 779 unsigned int dataErrorCounter;
762 780 unsigned int fprfErrorCounter;
763 781 unsigned int iurfErrorCounter;
764 782
765 783 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
766 784 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
767 785
768 786 ahb_correctable = instructionErrorCounter
769 787 + dataErrorCounter
770 788 + fprfErrorCounter
771 789 + iurfErrorCounter
772 790 + housekeeping_packet.hk_lfr_ahb_correctable;
773 791
774 792 if (ahb_correctable > 255)
775 793 {
776 794 housekeeping_packet.hk_lfr_ahb_correctable = 255;
777 795 }
778 796 else
779 797 {
780 798 housekeeping_packet.hk_lfr_ahb_correctable = ahb_correctable;
781 799 }
782 800
783 801 }
@@ -1,1441 +1,1442
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //*****************
20 20 // waveform headers
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
24 24
25 25 unsigned char previousTimecodeCtr = 0;
26 26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27 27
28 28 //***********
29 29 // RTEMS TASK
30 30 rtems_task spiq_task(rtems_task_argument unused)
31 31 {
32 32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 33 *
34 34 * @param unused is the starting argument of the RTEMS task
35 35 *
36 36 */
37 37
38 38 rtems_event_set event_out;
39 39 rtems_status_code status;
40 40 int linkStatus;
41 41
42 42 BOOT_PRINTF("in SPIQ *** \n")
43 43
44 44 while(true){
45 45 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
46 46 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
47 47
48 48 // [0] SUSPEND RECV AND SEND TASKS
49 49 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
50 50 if ( status != RTEMS_SUCCESSFUL ) {
51 51 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
52 52 }
53 53 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
54 54 if ( status != RTEMS_SUCCESSFUL ) {
55 55 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
56 56 }
57 57
58 58 // [1] CHECK THE LINK
59 59 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
60 60 if ( linkStatus != 5) {
61 61 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
62 62 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
63 63 }
64 64
65 65 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
66 66 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
67 67 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
68 68 {
69 69 spacewire_compute_stats_offsets();
70 70 status = spacewire_several_connect_attemps( );
71 71 }
72 72 else // [2.b] in run state, start the link
73 73 {
74 74 status = spacewire_stop_and_start_link( fdSPW ); // start the link
75 75 if ( status != RTEMS_SUCCESSFUL)
76 76 {
77 77 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
78 78 }
79 79 }
80 80
81 81 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
82 82 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
83 83 {
84 84 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
85 85 if ( status != RTEMS_SUCCESSFUL ) {
86 86 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
87 87 }
88 88 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
89 89 if ( status != RTEMS_SUCCESSFUL ) {
90 90 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
91 91 }
92 92 }
93 93 else // [3.b] the link is not in run state, go in STANDBY mode
94 94 {
95 95 status = enter_mode_standby();
96 96 if ( status != RTEMS_SUCCESSFUL )
97 97 {
98 98 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
99 99 }
100 100 {
101 101 updateLFRCurrentMode( LFR_MODE_STANDBY );
102 102 }
103 103 // wake the LINK task up to wait for the link recovery
104 104 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
105 105 status = rtems_task_suspend( RTEMS_SELF );
106 106 }
107 107 }
108 108 }
109 109
110 110 rtems_task recv_task( rtems_task_argument unused )
111 111 {
112 112 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
113 113 *
114 114 * @param unused is the starting argument of the RTEMS task
115 115 *
116 116 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
117 117 * 1. It reads the incoming data.
118 118 * 2. Launches the acceptance procedure.
119 119 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
120 120 *
121 121 */
122 122
123 123 int len;
124 124 ccsdsTelecommandPacket_t currentTC;
125 125 unsigned char computed_CRC[ 2 ];
126 126 unsigned char currentTC_LEN_RCV[ 2 ];
127 127 unsigned char destinationID;
128 128 unsigned int estimatedPacketLength;
129 129 unsigned int parserCode;
130 130 rtems_status_code status;
131 131 rtems_id queue_recv_id;
132 132 rtems_id queue_send_id;
133 133
134 134 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
135 135
136 136 status = get_message_queue_id_recv( &queue_recv_id );
137 137 if (status != RTEMS_SUCCESSFUL)
138 138 {
139 139 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
140 140 }
141 141
142 142 status = get_message_queue_id_send( &queue_send_id );
143 143 if (status != RTEMS_SUCCESSFUL)
144 144 {
145 145 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
146 146 }
147 147
148 148 BOOT_PRINTF("in RECV *** \n")
149 149
150 150 while(1)
151 151 {
152 152 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
153 153 if (len == -1){ // error during the read call
154 154 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
155 155 }
156 156 else {
157 157 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
158 158 PRINTF("in RECV *** packet lenght too short\n")
159 159 }
160 160 else {
161 161 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
162 162 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
163 163 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
164 164 // CHECK THE TC
165 165 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
166 166 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
167 167 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
168 168 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
169 169 || (parserCode == WRONG_SRC_ID) )
170 170 { // send TM_LFR_TC_EXE_CORRUPTED
171 171 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
172 172 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
173 173 &&
174 174 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
175 175 )
176 176 {
177 177 if ( parserCode == WRONG_SRC_ID )
178 178 {
179 179 destinationID = SID_TC_GROUND;
180 180 }
181 181 else
182 182 {
183 183 destinationID = currentTC.sourceID;
184 184 }
185 185 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
186 186 computed_CRC, currentTC_LEN_RCV,
187 187 destinationID );
188 188 }
189 189 }
190 190 else
191 191 { // send valid TC to the action launcher
192 192 status = rtems_message_queue_send( queue_recv_id, &currentTC,
193 193 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
194 194 }
195 195 }
196 196 }
197 197
198 198 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
199 199
200 200 }
201 201 }
202 202
203 203 rtems_task send_task( rtems_task_argument argument)
204 204 {
205 205 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
206 206 *
207 207 * @param unused is the starting argument of the RTEMS task
208 208 *
209 209 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
210 210 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
211 211 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
212 212 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
213 213 * data it contains.
214 214 *
215 215 */
216 216
217 217 rtems_status_code status; // RTEMS status code
218 218 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
219 219 ring_node *incomingRingNodePtr;
220 220 int ring_node_address;
221 221 char *charPtr;
222 222 spw_ioctl_pkt_send *spw_ioctl_send;
223 223 size_t size; // size of the incoming TC packet
224 224 rtems_id queue_send_id;
225 225 unsigned int sid;
226 226 unsigned char sidAsUnsignedChar;
227 227 unsigned char type;
228 228
229 229 incomingRingNodePtr = NULL;
230 230 ring_node_address = 0;
231 231 charPtr = (char *) &ring_node_address;
232 232 sid = 0;
233 233 sidAsUnsignedChar = 0;
234 234
235 235 init_header_cwf( &headerCWF );
236 236 init_header_swf( &headerSWF );
237 237 init_header_asm( &headerASM );
238 238
239 239 status = get_message_queue_id_send( &queue_send_id );
240 240 if (status != RTEMS_SUCCESSFUL)
241 241 {
242 242 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
243 243 }
244 244
245 245 BOOT_PRINTF("in SEND *** \n")
246 246
247 247 while(1)
248 248 {
249 249 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
250 250 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
251 251
252 252 if (status!=RTEMS_SUCCESSFUL)
253 253 {
254 254 PRINTF1("in SEND *** (1) ERR = %d\n", status)
255 255 }
256 256 else
257 257 {
258 258 if ( size == sizeof(ring_node*) )
259 259 {
260 260 charPtr[0] = incomingData[0];
261 261 charPtr[1] = incomingData[1];
262 262 charPtr[2] = incomingData[2];
263 263 charPtr[3] = incomingData[3];
264 264 incomingRingNodePtr = (ring_node*) ring_node_address;
265 265 sid = incomingRingNodePtr->sid;
266 266 if ( (sid==SID_NORM_CWF_LONG_F3)
267 267 || (sid==SID_BURST_CWF_F2 )
268 268 || (sid==SID_SBM1_CWF_F1 )
269 269 || (sid==SID_SBM2_CWF_F2 ))
270 270 {
271 271 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
272 272 }
273 273 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
274 274 {
275 275 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
276 276 }
277 277 else if ( (sid==SID_NORM_CWF_F3) )
278 278 {
279 279 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
280 280 }
281 281 else if (sid==SID_NORM_ASM_F0)
282 282 {
283 283 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
284 284 }
285 285 else if (sid==SID_NORM_ASM_F1)
286 286 {
287 287 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
288 288 }
289 289 else if (sid==SID_NORM_ASM_F2)
290 290 {
291 291 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
292 292 }
293 293 else if ( sid==TM_CODE_K_DUMP )
294 294 {
295 295 spw_send_k_dump( incomingRingNodePtr );
296 296 }
297 297 else
298 298 {
299 299 PRINTF1("unexpected sid = %d\n", sid);
300 300 }
301 301 }
302 302 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
303 303 {
304 304 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
305 305 sid = sidAsUnsignedChar;
306 306 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
307 307 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
308 308 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
309 309 {
310 310 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
311 311 }
312 312
313 313 status = write( fdSPW, incomingData, size );
314 314 if (status == -1){
315 315 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
316 316 }
317 317 }
318 318 else // the incoming message is a spw_ioctl_pkt_send structure
319 319 {
320 320 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
321 321 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
322 322 if (status == -1){
323 323 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
324 324 }
325 325 }
326 326 }
327 327
328 328 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
329 329
330 330 }
331 331 }
332 332
333 333 rtems_task link_task( rtems_task_argument argument )
334 334 {
335 335 rtems_event_set event_out;
336 336 rtems_status_code status;
337 337 int linkStatus;
338 338
339 339 BOOT_PRINTF("in LINK ***\n")
340 340
341 341 while(1)
342 342 {
343 343 // wait for an RTEMS_EVENT
344 344 rtems_event_receive( RTEMS_EVENT_0,
345 345 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
346 346 PRINTF("in LINK *** wait for the link\n")
347 347 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
348 348 while( linkStatus != 5) // wait for the link
349 349 {
350 350 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
351 351 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
352 watchdog_reload();
352 353 }
353 354
354 355 status = spacewire_stop_and_start_link( fdSPW );
355 356
356 357 if (status != RTEMS_SUCCESSFUL)
357 358 {
358 359 PRINTF1("in LINK *** ERR link not started %d\n", status)
359 360 }
360 361 else
361 362 {
362 363 PRINTF("in LINK *** OK link started\n")
363 364 }
364 365
365 366 // restart the SPIQ task
366 367 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
367 368 if ( status != RTEMS_SUCCESSFUL ) {
368 369 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
369 370 }
370 371
371 372 // restart RECV and SEND
372 373 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
373 374 if ( status != RTEMS_SUCCESSFUL ) {
374 375 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
375 376 }
376 377 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
377 378 if ( status != RTEMS_SUCCESSFUL ) {
378 379 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
379 380 }
380 381 }
381 382 }
382 383
383 384 //****************
384 385 // OTHER FUNCTIONS
385 386 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
386 387 {
387 388 /** This function opens the SpaceWire link.
388 389 *
389 390 * @return a valid file descriptor in case of success, -1 in case of a failure
390 391 *
391 392 */
392 393 rtems_status_code status;
393 394
394 395 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
395 396 if ( fdSPW < 0 ) {
396 397 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
397 398 }
398 399 else
399 400 {
400 401 status = RTEMS_SUCCESSFUL;
401 402 }
402 403
403 404 return status;
404 405 }
405 406
406 407 int spacewire_start_link( int fd )
407 408 {
408 409 rtems_status_code status;
409 410
410 411 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
411 412 // -1 default hardcoded driver timeout
412 413
413 414 return status;
414 415 }
415 416
416 417 int spacewire_stop_and_start_link( int fd )
417 418 {
418 419 rtems_status_code status;
419 420
420 421 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
421 422 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
422 423 // -1 default hardcoded driver timeout
423 424
424 425 return status;
425 426 }
426 427
427 428 int spacewire_configure_link( int fd )
428 429 {
429 430 /** This function configures the SpaceWire link.
430 431 *
431 432 * @return GR-RTEMS-DRIVER directive status codes:
432 433 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
433 434 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
434 435 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
435 436 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
436 437 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
437 438 * - 5 EIO - Error when writing to grswp hardware registers.
438 439 * - 2 ENOENT - No such file or directory
439 440 */
440 441
441 442 rtems_status_code status;
442 443
443 444 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
444 445 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
445 446
446 447 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
447 448 if (status!=RTEMS_SUCCESSFUL) {
448 449 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
449 450 }
450 451 //
451 452 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
452 453 if (status!=RTEMS_SUCCESSFUL) {
453 454 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
454 455 }
455 456 //
456 457 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
457 458 if (status!=RTEMS_SUCCESSFUL) {
458 459 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
459 460 }
460 461 //
461 462 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
462 463 if (status!=RTEMS_SUCCESSFUL) {
463 464 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
464 465 }
465 466 //
466 467 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
467 468 if (status!=RTEMS_SUCCESSFUL) {
468 469 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
469 470 }
470 471 //
471 472 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
472 473 if (status!=RTEMS_SUCCESSFUL) {
473 474 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
474 475 }
475 476 //
476 477 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
477 478 if (status!=RTEMS_SUCCESSFUL) {
478 479 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
479 480 }
480 481
481 482 return status;
482 483 }
483 484
484 485 int spacewire_several_connect_attemps( void )
485 486 {
486 487 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
487 488 *
488 489 * @return RTEMS directive status code:
489 490 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
490 491 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
491 492 *
492 493 */
493 494
494 495 rtems_status_code status_spw;
495 496 rtems_status_code status;
496 497 int i;
497 498
498 499 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
499 500 {
500 501 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
501 502
502 503 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
503 504
504 505 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
505 506
506 507 status_spw = spacewire_stop_and_start_link( fdSPW );
507 508 if ( status_spw != RTEMS_SUCCESSFUL )
508 509 {
509 510 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
510 511 }
511 512
512 513 if ( status_spw == RTEMS_SUCCESSFUL)
513 514 {
514 515 break;
515 516 }
516 517 }
517 518
518 519 return status_spw;
519 520 }
520 521
521 522 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
522 523 {
523 524 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
524 525 *
525 526 * @param val is the value, 0 or 1, used to set the value of the NP bit.
526 527 * @param regAddr is the address of the GRSPW control register.
527 528 *
528 529 * NP is the bit 20 of the GRSPW control register.
529 530 *
530 531 */
531 532
532 533 unsigned int *spwptr = (unsigned int*) regAddr;
533 534
534 535 if (val == 1) {
535 536 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
536 537 }
537 538 if (val== 0) {
538 539 *spwptr = *spwptr & 0xffdfffff;
539 540 }
540 541 }
541 542
542 543 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
543 544 {
544 545 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
545 546 *
546 547 * @param val is the value, 0 or 1, used to set the value of the RE bit.
547 548 * @param regAddr is the address of the GRSPW control register.
548 549 *
549 550 * RE is the bit 16 of the GRSPW control register.
550 551 *
551 552 */
552 553
553 554 unsigned int *spwptr = (unsigned int*) regAddr;
554 555
555 556 if (val == 1)
556 557 {
557 558 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
558 559 }
559 560 if (val== 0)
560 561 {
561 562 *spwptr = *spwptr & 0xfffdffff;
562 563 }
563 564 }
564 565
565 566 void spacewire_compute_stats_offsets( void )
566 567 {
567 568 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
568 569 *
569 570 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
570 571 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
571 572 * during the open systel call).
572 573 *
573 574 */
574 575
575 576 spw_stats spacewire_stats_grspw;
576 577 rtems_status_code status;
577 578
578 579 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
579 580
580 581 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
581 582 + spacewire_stats.packets_received;
582 583 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
583 584 + spacewire_stats.packets_sent;
584 585 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
585 586 + spacewire_stats.parity_err;
586 587 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
587 588 + spacewire_stats.disconnect_err;
588 589 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
589 590 + spacewire_stats.escape_err;
590 591 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
591 592 + spacewire_stats.credit_err;
592 593 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
593 594 + spacewire_stats.write_sync_err;
594 595 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
595 596 + spacewire_stats.rx_rmap_header_crc_err;
596 597 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
597 598 + spacewire_stats.rx_rmap_data_crc_err;
598 599 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
599 600 + spacewire_stats.early_ep;
600 601 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
601 602 + spacewire_stats.invalid_address;
602 603 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
603 604 + spacewire_stats.rx_eep_err;
604 605 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
605 606 + spacewire_stats.rx_truncated;
606 607 }
607 608
608 609 void spacewire_update_statistics( void )
609 610 {
610 611 rtems_status_code status;
611 612 spw_stats spacewire_stats_grspw;
612 613
613 614 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
614 615
615 616 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
616 617 + spacewire_stats_grspw.packets_received;
617 618 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
618 619 + spacewire_stats_grspw.packets_sent;
619 620 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
620 621 + spacewire_stats_grspw.parity_err;
621 622 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
622 623 + spacewire_stats_grspw.disconnect_err;
623 624 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
624 625 + spacewire_stats_grspw.escape_err;
625 626 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
626 627 + spacewire_stats_grspw.credit_err;
627 628 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
628 629 + spacewire_stats_grspw.write_sync_err;
629 630 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
630 631 + spacewire_stats_grspw.rx_rmap_header_crc_err;
631 632 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
632 633 + spacewire_stats_grspw.rx_rmap_data_crc_err;
633 634 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
634 635 + spacewire_stats_grspw.early_ep;
635 636 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
636 637 + spacewire_stats_grspw.invalid_address;
637 638 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
638 639 + spacewire_stats_grspw.rx_eep_err;
639 640 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
640 641 + spacewire_stats_grspw.rx_truncated;
641 642 //spacewire_stats.tx_link_err;
642 643
643 644 //****************************
644 645 // DPU_SPACEWIRE_IF_STATISTICS
645 646 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
646 647 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
647 648 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
648 649 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
649 650 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
650 651 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
651 652
652 653 //******************************************
653 654 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
654 655 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
655 656 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
656 657 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
657 658 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
658 659 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
659 660
660 661 //*********************************************
661 662 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
662 663 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
663 664 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
664 665 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
665 666 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
666 667 }
667 668
668 669 void increase_unsigned_char_counter( unsigned char *counter )
669 670 {
670 671 // update the number of valid timecodes that have been received
671 672 if (*counter == 255)
672 673 {
673 674 *counter = 0;
674 675 }
675 676 else
676 677 {
677 678 *counter = *counter + 1;
678 679 }
679 680 }
680 681
681 682 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
682 683 {
683 684 static unsigned char initStep = 1;
684 685
685 686 unsigned char currentTimecodeCtr;
686 687
687 688 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
688 689
689 690 if (initStep == 1)
690 691 {
691 692 if (currentTimecodeCtr == previousTimecodeCtr)
692 693 {
693 694 //************************
694 695 // HK_LFR_TIMECODE_MISSING
695 696 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
696 697 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
697 698 }
698 699 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
699 700 {
700 701 // the timecode value has changed and the value is valid, this is unexpected because
701 702 // the timer should not have fired, the timecode_irq_handler should have been raised
702 703 }
703 704 else
704 705 {
705 706 //************************
706 707 // HK_LFR_TIMECODE_INVALID
707 708 // the timecode value has changed and the value is not valid, no tickout has been generated
708 709 // this is why the timer has fired
709 710 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
710 711 }
711 712 }
712 713 else
713 714 {
714 715 initStep = 1;
715 716 //************************
716 717 // HK_LFR_TIMECODE_MISSING
717 718 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
718 719 }
719 720
720 721 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
721 722 }
722 723
723 724 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
724 725 {
725 726 /** This function checks the coherency between the incoming timecode and the last valid timecode.
726 727 *
727 728 * @param currentTimecodeCtr is the incoming timecode
728 729 *
729 730 * @return returned codes::
730 731 * - LFR_DEFAULT
731 732 * - LFR_SUCCESSFUL
732 733 *
733 734 */
734 735
735 736 static unsigned char firstTickout = 1;
736 737 unsigned char ret;
737 738
738 739 ret = LFR_DEFAULT;
739 740
740 741 if (firstTickout == 0)
741 742 {
742 743 if (currentTimecodeCtr == 0)
743 744 {
744 745 if (previousTimecodeCtr == 63)
745 746 {
746 747 ret = LFR_SUCCESSFUL;
747 748 }
748 749 else
749 750 {
750 751 ret = LFR_DEFAULT;
751 752 }
752 753 }
753 754 else
754 755 {
755 756 if (currentTimecodeCtr == (previousTimecodeCtr +1))
756 757 {
757 758 ret = LFR_SUCCESSFUL;
758 759 }
759 760 else
760 761 {
761 762 ret = LFR_DEFAULT;
762 763 }
763 764 }
764 765 }
765 766 else
766 767 {
767 768 firstTickout = 0;
768 769 ret = LFR_SUCCESSFUL;
769 770 }
770 771
771 772 return ret;
772 773 }
773 774
774 775 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
775 776 {
776 777 unsigned int ret;
777 778
778 779 ret = LFR_DEFAULT;
779 780
780 781 if (timecode == internalTime)
781 782 {
782 783 ret = LFR_SUCCESSFUL;
783 784 }
784 785 else
785 786 {
786 787 ret = LFR_DEFAULT;
787 788 }
788 789
789 790 return ret;
790 791 }
791 792
792 793 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
793 794 {
794 795 // a tickout has been emitted, perform actions on the incoming timecode
795 796
796 797 unsigned char incomingTimecode;
797 798 unsigned char updateTime;
798 799 unsigned char internalTime;
799 800 rtems_status_code status;
800 801
801 802 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
802 803 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
803 804 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
804 805
805 806 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
806 807
807 808 // update the number of tickout that have been generated
808 809 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
809 810
810 811 //**************************
811 812 // HK_LFR_TIMECODE_ERRONEOUS
812 813 // MISSING and INVALID are handled by the timecode_timer_routine service routine
813 814 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
814 815 {
815 816 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
816 817 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
817 818 }
818 819
819 820 //************************
820 821 // HK_LFR_TIME_TIMECODE_IT
821 822 // check the coherency between the SpaceWire timecode and the Internal Time
822 823 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
823 824 {
824 825 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
825 826 }
826 827
827 828 //********************
828 829 // HK_LFR_TIMECODE_CTR
829 830 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
830 831 if (incomingTimecode != updateTime)
831 832 {
832 833 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
833 834 }
834 835
835 836 // launch the timecode timer to detect missing or invalid timecodes
836 837 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
837 838 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
838 839 if (status != RTEMS_SUCCESSFUL)
839 840 {
840 841 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
841 842 }
842 843 }
843 844
844 845 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
845 846 {
846 847 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
847 848 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
848 849 header->reserved = DEFAULT_RESERVED;
849 850 header->userApplication = CCSDS_USER_APP;
850 851 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
851 852 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
852 853 header->packetLength[0] = 0x00;
853 854 header->packetLength[1] = 0x00;
854 855 // DATA FIELD HEADER
855 856 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
856 857 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
857 858 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
858 859 header->destinationID = TM_DESTINATION_ID_GROUND;
859 860 header->time[0] = 0x00;
860 861 header->time[0] = 0x00;
861 862 header->time[0] = 0x00;
862 863 header->time[0] = 0x00;
863 864 header->time[0] = 0x00;
864 865 header->time[0] = 0x00;
865 866 // AUXILIARY DATA HEADER
866 867 header->sid = 0x00;
867 868 header->hkBIA = DEFAULT_HKBIA;
868 869 header->blkNr[0] = 0x00;
869 870 header->blkNr[1] = 0x00;
870 871 }
871 872
872 873 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
873 874 {
874 875 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
875 876 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
876 877 header->reserved = DEFAULT_RESERVED;
877 878 header->userApplication = CCSDS_USER_APP;
878 879 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
879 880 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
880 881 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
881 882 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
882 883 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
883 884 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
884 885 // DATA FIELD HEADER
885 886 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
886 887 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
887 888 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
888 889 header->destinationID = TM_DESTINATION_ID_GROUND;
889 890 header->time[0] = 0x00;
890 891 header->time[0] = 0x00;
891 892 header->time[0] = 0x00;
892 893 header->time[0] = 0x00;
893 894 header->time[0] = 0x00;
894 895 header->time[0] = 0x00;
895 896 // AUXILIARY DATA HEADER
896 897 header->sid = 0x00;
897 898 header->hkBIA = DEFAULT_HKBIA;
898 899 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
899 900 header->pktNr = 0x00;
900 901 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
901 902 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
902 903 }
903 904
904 905 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
905 906 {
906 907 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
907 908 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
908 909 header->reserved = DEFAULT_RESERVED;
909 910 header->userApplication = CCSDS_USER_APP;
910 911 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
911 912 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
912 913 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
913 914 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
914 915 header->packetLength[0] = 0x00;
915 916 header->packetLength[1] = 0x00;
916 917 // DATA FIELD HEADER
917 918 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
918 919 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
919 920 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
920 921 header->destinationID = TM_DESTINATION_ID_GROUND;
921 922 header->time[0] = 0x00;
922 923 header->time[0] = 0x00;
923 924 header->time[0] = 0x00;
924 925 header->time[0] = 0x00;
925 926 header->time[0] = 0x00;
926 927 header->time[0] = 0x00;
927 928 // AUXILIARY DATA HEADER
928 929 header->sid = 0x00;
929 930 header->biaStatusInfo = 0x00;
930 931 header->pa_lfr_pkt_cnt_asm = 0x00;
931 932 header->pa_lfr_pkt_nr_asm = 0x00;
932 933 header->pa_lfr_asm_blk_nr[0] = 0x00;
933 934 header->pa_lfr_asm_blk_nr[1] = 0x00;
934 935 }
935 936
936 937 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
937 938 Header_TM_LFR_SCIENCE_CWF_t *header )
938 939 {
939 940 /** This function sends CWF CCSDS packets (F2, F1 or F0).
940 941 *
941 942 * @param waveform points to the buffer containing the data that will be send.
942 943 * @param sid is the source identifier of the data that will be sent.
943 944 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
944 945 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
945 946 * contain information to setup the transmission of the data packets.
946 947 *
947 948 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
948 949 *
949 950 */
950 951
951 952 unsigned int i;
952 953 int ret;
953 954 unsigned int coarseTime;
954 955 unsigned int fineTime;
955 956 rtems_status_code status;
956 957 spw_ioctl_pkt_send spw_ioctl_send_CWF;
957 958 int *dataPtr;
958 959 unsigned char sid;
959 960
960 961 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
961 962 spw_ioctl_send_CWF.options = 0;
962 963
963 964 ret = LFR_DEFAULT;
964 965 sid = (unsigned char) ring_node_to_send->sid;
965 966
966 967 coarseTime = ring_node_to_send->coarseTime;
967 968 fineTime = ring_node_to_send->fineTime;
968 969 dataPtr = (int*) ring_node_to_send->buffer_address;
969 970
970 971 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
971 972 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
972 973 header->hkBIA = pa_bia_status_info;
973 974 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
974 975 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
975 976 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
976 977
977 978 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
978 979 {
979 980 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
980 981 spw_ioctl_send_CWF.hdr = (char*) header;
981 982 // BUILD THE DATA
982 983 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
983 984
984 985 // SET PACKET SEQUENCE CONTROL
985 986 increment_seq_counter_source_id( header->packetSequenceControl, sid );
986 987
987 988 // SET SID
988 989 header->sid = sid;
989 990
990 991 // SET PACKET TIME
991 992 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
992 993 //
993 994 header->time[0] = header->acquisitionTime[0];
994 995 header->time[1] = header->acquisitionTime[1];
995 996 header->time[2] = header->acquisitionTime[2];
996 997 header->time[3] = header->acquisitionTime[3];
997 998 header->time[4] = header->acquisitionTime[4];
998 999 header->time[5] = header->acquisitionTime[5];
999 1000
1000 1001 // SET PACKET ID
1001 1002 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1002 1003 {
1003 1004 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
1004 1005 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1005 1006 }
1006 1007 else
1007 1008 {
1008 1009 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1009 1010 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1010 1011 }
1011 1012
1012 1013 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1013 1014 if (status != RTEMS_SUCCESSFUL) {
1014 1015 ret = LFR_DEFAULT;
1015 1016 }
1016 1017 }
1017 1018
1018 1019 return ret;
1019 1020 }
1020 1021
1021 1022 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1022 1023 Header_TM_LFR_SCIENCE_SWF_t *header )
1023 1024 {
1024 1025 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1025 1026 *
1026 1027 * @param waveform points to the buffer containing the data that will be send.
1027 1028 * @param sid is the source identifier of the data that will be sent.
1028 1029 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1029 1030 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1030 1031 * contain information to setup the transmission of the data packets.
1031 1032 *
1032 1033 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1033 1034 *
1034 1035 */
1035 1036
1036 1037 unsigned int i;
1037 1038 int ret;
1038 1039 unsigned int coarseTime;
1039 1040 unsigned int fineTime;
1040 1041 rtems_status_code status;
1041 1042 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1042 1043 int *dataPtr;
1043 1044 unsigned char sid;
1044 1045
1045 1046 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1046 1047 spw_ioctl_send_SWF.options = 0;
1047 1048
1048 1049 ret = LFR_DEFAULT;
1049 1050
1050 1051 coarseTime = ring_node_to_send->coarseTime;
1051 1052 fineTime = ring_node_to_send->fineTime;
1052 1053 dataPtr = (int*) ring_node_to_send->buffer_address;
1053 1054 sid = ring_node_to_send->sid;
1054 1055
1055 1056 header->hkBIA = pa_bia_status_info;
1056 1057 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1057 1058
1058 1059 for (i=0; i<7; i++) // send waveform
1059 1060 {
1060 1061 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1061 1062 spw_ioctl_send_SWF.hdr = (char*) header;
1062 1063
1063 1064 // SET PACKET SEQUENCE CONTROL
1064 1065 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1065 1066
1066 1067 // SET PACKET LENGTH AND BLKNR
1067 1068 if (i == 6)
1068 1069 {
1069 1070 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1070 1071 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
1071 1072 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1072 1073 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
1073 1074 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1074 1075 }
1075 1076 else
1076 1077 {
1077 1078 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1078 1079 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
1079 1080 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1080 1081 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
1081 1082 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1082 1083 }
1083 1084
1084 1085 // SET PACKET TIME
1085 1086 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1086 1087 //
1087 1088 header->time[0] = header->acquisitionTime[0];
1088 1089 header->time[1] = header->acquisitionTime[1];
1089 1090 header->time[2] = header->acquisitionTime[2];
1090 1091 header->time[3] = header->acquisitionTime[3];
1091 1092 header->time[4] = header->acquisitionTime[4];
1092 1093 header->time[5] = header->acquisitionTime[5];
1093 1094
1094 1095 // SET SID
1095 1096 header->sid = sid;
1096 1097
1097 1098 // SET PKTNR
1098 1099 header->pktNr = i+1; // PKT_NR
1099 1100
1100 1101 // SEND PACKET
1101 1102 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1102 1103 if (status != RTEMS_SUCCESSFUL) {
1103 1104 ret = LFR_DEFAULT;
1104 1105 }
1105 1106 }
1106 1107
1107 1108 return ret;
1108 1109 }
1109 1110
1110 1111 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1111 1112 Header_TM_LFR_SCIENCE_CWF_t *header )
1112 1113 {
1113 1114 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1114 1115 *
1115 1116 * @param waveform points to the buffer containing the data that will be send.
1116 1117 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1117 1118 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1118 1119 * contain information to setup the transmission of the data packets.
1119 1120 *
1120 1121 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1121 1122 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1122 1123 *
1123 1124 */
1124 1125
1125 1126 unsigned int i;
1126 1127 int ret;
1127 1128 unsigned int coarseTime;
1128 1129 unsigned int fineTime;
1129 1130 rtems_status_code status;
1130 1131 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1131 1132 char *dataPtr;
1132 1133 unsigned char sid;
1133 1134
1134 1135 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1135 1136 spw_ioctl_send_CWF.options = 0;
1136 1137
1137 1138 ret = LFR_DEFAULT;
1138 1139 sid = ring_node_to_send->sid;
1139 1140
1140 1141 coarseTime = ring_node_to_send->coarseTime;
1141 1142 fineTime = ring_node_to_send->fineTime;
1142 1143 dataPtr = (char*) ring_node_to_send->buffer_address;
1143 1144
1144 1145 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
1145 1146 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1146 1147 header->hkBIA = pa_bia_status_info;
1147 1148 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1148 1149 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
1149 1150 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1150 1151
1151 1152 //*********************
1152 1153 // SEND CWF3_light DATA
1153 1154 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1154 1155 {
1155 1156 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1156 1157 spw_ioctl_send_CWF.hdr = (char*) header;
1157 1158 // BUILD THE DATA
1158 1159 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1159 1160
1160 1161 // SET PACKET SEQUENCE COUNTER
1161 1162 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1162 1163
1163 1164 // SET SID
1164 1165 header->sid = sid;
1165 1166
1166 1167 // SET PACKET TIME
1167 1168 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1168 1169 //
1169 1170 header->time[0] = header->acquisitionTime[0];
1170 1171 header->time[1] = header->acquisitionTime[1];
1171 1172 header->time[2] = header->acquisitionTime[2];
1172 1173 header->time[3] = header->acquisitionTime[3];
1173 1174 header->time[4] = header->acquisitionTime[4];
1174 1175 header->time[5] = header->acquisitionTime[5];
1175 1176
1176 1177 // SET PACKET ID
1177 1178 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1178 1179 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1179 1180
1180 1181 // SEND PACKET
1181 1182 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1182 1183 if (status != RTEMS_SUCCESSFUL) {
1183 1184 ret = LFR_DEFAULT;
1184 1185 }
1185 1186 }
1186 1187
1187 1188 return ret;
1188 1189 }
1189 1190
1190 1191 void spw_send_asm_f0( ring_node *ring_node_to_send,
1191 1192 Header_TM_LFR_SCIENCE_ASM_t *header )
1192 1193 {
1193 1194 unsigned int i;
1194 1195 unsigned int length = 0;
1195 1196 rtems_status_code status;
1196 1197 unsigned int sid;
1197 1198 float *spectral_matrix;
1198 1199 int coarseTime;
1199 1200 int fineTime;
1200 1201 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1201 1202
1202 1203 sid = ring_node_to_send->sid;
1203 1204 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1204 1205 coarseTime = ring_node_to_send->coarseTime;
1205 1206 fineTime = ring_node_to_send->fineTime;
1206 1207
1207 1208 header->biaStatusInfo = pa_bia_status_info;
1208 1209 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1209 1210
1210 1211 for (i=0; i<3; i++)
1211 1212 {
1212 1213 if ((i==0) || (i==1))
1213 1214 {
1214 1215 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1215 1216 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1216 1217 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1217 1218 ];
1218 1219 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1219 1220 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1220 1221 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> 8 ); // BLK_NR MSB
1221 1222 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1222 1223 }
1223 1224 else
1224 1225 {
1225 1226 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1226 1227 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1227 1228 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1228 1229 ];
1229 1230 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1230 1231 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1231 1232 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> 8 ); // BLK_NR MSB
1232 1233 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1233 1234 }
1234 1235
1235 1236 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1236 1237 spw_ioctl_send_ASM.hdr = (char *) header;
1237 1238 spw_ioctl_send_ASM.options = 0;
1238 1239
1239 1240 // (2) BUILD THE HEADER
1240 1241 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1241 1242 header->packetLength[0] = (unsigned char) (length>>8);
1242 1243 header->packetLength[1] = (unsigned char) (length);
1243 1244 header->sid = (unsigned char) sid; // SID
1244 1245 header->pa_lfr_pkt_cnt_asm = 3;
1245 1246 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1246 1247
1247 1248 // (3) SET PACKET TIME
1248 1249 header->time[0] = (unsigned char) (coarseTime>>24);
1249 1250 header->time[1] = (unsigned char) (coarseTime>>16);
1250 1251 header->time[2] = (unsigned char) (coarseTime>>8);
1251 1252 header->time[3] = (unsigned char) (coarseTime);
1252 1253 header->time[4] = (unsigned char) (fineTime>>8);
1253 1254 header->time[5] = (unsigned char) (fineTime);
1254 1255 //
1255 1256 header->acquisitionTime[0] = header->time[0];
1256 1257 header->acquisitionTime[1] = header->time[1];
1257 1258 header->acquisitionTime[2] = header->time[2];
1258 1259 header->acquisitionTime[3] = header->time[3];
1259 1260 header->acquisitionTime[4] = header->time[4];
1260 1261 header->acquisitionTime[5] = header->time[5];
1261 1262
1262 1263 // (4) SEND PACKET
1263 1264 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1264 1265 if (status != RTEMS_SUCCESSFUL) {
1265 1266 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1266 1267 }
1267 1268 }
1268 1269 }
1269 1270
1270 1271 void spw_send_asm_f1( ring_node *ring_node_to_send,
1271 1272 Header_TM_LFR_SCIENCE_ASM_t *header )
1272 1273 {
1273 1274 unsigned int i;
1274 1275 unsigned int length = 0;
1275 1276 rtems_status_code status;
1276 1277 unsigned int sid;
1277 1278 float *spectral_matrix;
1278 1279 int coarseTime;
1279 1280 int fineTime;
1280 1281 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1281 1282
1282 1283 sid = ring_node_to_send->sid;
1283 1284 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1284 1285 coarseTime = ring_node_to_send->coarseTime;
1285 1286 fineTime = ring_node_to_send->fineTime;
1286 1287
1287 1288 header->biaStatusInfo = pa_bia_status_info;
1288 1289 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1289 1290
1290 1291 for (i=0; i<3; i++)
1291 1292 {
1292 1293 if ((i==0) || (i==1))
1293 1294 {
1294 1295 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1295 1296 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1296 1297 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1297 1298 ];
1298 1299 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1299 1300 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1300 1301 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> 8 ); // BLK_NR MSB
1301 1302 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1302 1303 }
1303 1304 else
1304 1305 {
1305 1306 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1306 1307 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1307 1308 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1308 1309 ];
1309 1310 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1310 1311 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1311 1312 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> 8 ); // BLK_NR MSB
1312 1313 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1313 1314 }
1314 1315
1315 1316 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1316 1317 spw_ioctl_send_ASM.hdr = (char *) header;
1317 1318 spw_ioctl_send_ASM.options = 0;
1318 1319
1319 1320 // (2) BUILD THE HEADER
1320 1321 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1321 1322 header->packetLength[0] = (unsigned char) (length>>8);
1322 1323 header->packetLength[1] = (unsigned char) (length);
1323 1324 header->sid = (unsigned char) sid; // SID
1324 1325 header->pa_lfr_pkt_cnt_asm = 3;
1325 1326 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1326 1327
1327 1328 // (3) SET PACKET TIME
1328 1329 header->time[0] = (unsigned char) (coarseTime>>24);
1329 1330 header->time[1] = (unsigned char) (coarseTime>>16);
1330 1331 header->time[2] = (unsigned char) (coarseTime>>8);
1331 1332 header->time[3] = (unsigned char) (coarseTime);
1332 1333 header->time[4] = (unsigned char) (fineTime>>8);
1333 1334 header->time[5] = (unsigned char) (fineTime);
1334 1335 //
1335 1336 header->acquisitionTime[0] = header->time[0];
1336 1337 header->acquisitionTime[1] = header->time[1];
1337 1338 header->acquisitionTime[2] = header->time[2];
1338 1339 header->acquisitionTime[3] = header->time[3];
1339 1340 header->acquisitionTime[4] = header->time[4];
1340 1341 header->acquisitionTime[5] = header->time[5];
1341 1342
1342 1343 // (4) SEND PACKET
1343 1344 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1344 1345 if (status != RTEMS_SUCCESSFUL) {
1345 1346 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1346 1347 }
1347 1348 }
1348 1349 }
1349 1350
1350 1351 void spw_send_asm_f2( ring_node *ring_node_to_send,
1351 1352 Header_TM_LFR_SCIENCE_ASM_t *header )
1352 1353 {
1353 1354 unsigned int i;
1354 1355 unsigned int length = 0;
1355 1356 rtems_status_code status;
1356 1357 unsigned int sid;
1357 1358 float *spectral_matrix;
1358 1359 int coarseTime;
1359 1360 int fineTime;
1360 1361 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1361 1362
1362 1363 sid = ring_node_to_send->sid;
1363 1364 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1364 1365 coarseTime = ring_node_to_send->coarseTime;
1365 1366 fineTime = ring_node_to_send->fineTime;
1366 1367
1367 1368 header->biaStatusInfo = pa_bia_status_info;
1368 1369 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1369 1370
1370 1371 for (i=0; i<3; i++)
1371 1372 {
1372 1373
1373 1374 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1374 1375 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1375 1376 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1376 1377 ];
1377 1378 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1378 1379 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1379 1380 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1380 1381 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1381 1382
1382 1383 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1383 1384 spw_ioctl_send_ASM.hdr = (char *) header;
1384 1385 spw_ioctl_send_ASM.options = 0;
1385 1386
1386 1387 // (2) BUILD THE HEADER
1387 1388 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1388 1389 header->packetLength[0] = (unsigned char) (length>>8);
1389 1390 header->packetLength[1] = (unsigned char) (length);
1390 1391 header->sid = (unsigned char) sid; // SID
1391 1392 header->pa_lfr_pkt_cnt_asm = 3;
1392 1393 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1393 1394
1394 1395 // (3) SET PACKET TIME
1395 1396 header->time[0] = (unsigned char) (coarseTime>>24);
1396 1397 header->time[1] = (unsigned char) (coarseTime>>16);
1397 1398 header->time[2] = (unsigned char) (coarseTime>>8);
1398 1399 header->time[3] = (unsigned char) (coarseTime);
1399 1400 header->time[4] = (unsigned char) (fineTime>>8);
1400 1401 header->time[5] = (unsigned char) (fineTime);
1401 1402 //
1402 1403 header->acquisitionTime[0] = header->time[0];
1403 1404 header->acquisitionTime[1] = header->time[1];
1404 1405 header->acquisitionTime[2] = header->time[2];
1405 1406 header->acquisitionTime[3] = header->time[3];
1406 1407 header->acquisitionTime[4] = header->time[4];
1407 1408 header->acquisitionTime[5] = header->time[5];
1408 1409
1409 1410 // (4) SEND PACKET
1410 1411 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1411 1412 if (status != RTEMS_SUCCESSFUL) {
1412 1413 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1413 1414 }
1414 1415 }
1415 1416 }
1416 1417
1417 1418 void spw_send_k_dump( ring_node *ring_node_to_send )
1418 1419 {
1419 1420 rtems_status_code status;
1420 1421 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1421 1422 unsigned int packetLength;
1422 1423 unsigned int size;
1423 1424
1424 1425 PRINTF("spw_send_k_dump\n")
1425 1426
1426 1427 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1427 1428
1428 1429 packetLength = kcoefficients_dump->packetLength[0] * 256 + kcoefficients_dump->packetLength[1];
1429 1430
1430 1431 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1431 1432
1432 1433 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1433 1434
1434 1435 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1435 1436
1436 1437 if (status == -1){
1437 1438 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1438 1439 }
1439 1440
1440 1441 ring_node_to_send->status = 0x00;
1441 1442 }
General Comments 0
You need to be logged in to leave comments. Login now