##// END OF EJS Templates
Sync
paul -
r125:de367ad91bd0 VHDLib206
parent child
Show More
@@ -1,271 +1,271
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Sun Apr 27 14:59:58 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Sun Apr 27 16:27:36 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=6 -DPRINT_MESSAGES_ON_CONSOLE -DPRINT_TASK_STATISTICS -DBOOT_MESSAGES
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=6 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES -DPRINT_TASK_STATISTICS -DBOOT_MESSAGES
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../src/basic_parameters -I../src/avf_prc
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_misc.c \
49 49 ../src/fsw_init.c \
50 50 ../src/fsw_globals.c \
51 51 ../src/fsw_spacewire.c \
52 52 ../src/tc_load_dump_parameters.c \
53 53 ../src/tm_lfr_tc_exe.c \
54 54 ../src/tc_acceptance.c \
55 55 ../src/basic_parameters/basic_parameters.c \
56 56 ../src/avf_prc/fsw_processing.c \
57 57 ../src/avf_prc/avf0_prc0.c \
58 58 ../src/avf_prc/avf1_prc1.c \
59 59 ../src/avf_prc/avf2_prc2.c
60 60 OBJECTS = obj/wf_handler.o \
61 61 obj/tc_handler.o \
62 62 obj/fsw_misc.o \
63 63 obj/fsw_init.o \
64 64 obj/fsw_globals.o \
65 65 obj/fsw_spacewire.o \
66 66 obj/tc_load_dump_parameters.o \
67 67 obj/tm_lfr_tc_exe.o \
68 68 obj/tc_acceptance.o \
69 69 obj/basic_parameters.o \
70 70 obj/fsw_processing.o \
71 71 obj/avf0_prc0.o \
72 72 obj/avf1_prc1.o \
73 73 obj/avf2_prc2.o
74 74 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
75 75 /usr/lib64/qt4/mkspecs/common/linux.conf \
76 76 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
77 77 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
78 78 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
79 79 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
80 80 /usr/lib64/qt4/mkspecs/qconfig.pri \
81 81 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
82 82 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
83 83 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
84 84 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
85 85 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
86 86 sparc.pri \
87 87 /usr/lib64/qt4/mkspecs/features/release.prf \
88 88 /usr/lib64/qt4/mkspecs/features/default_post.prf \
89 89 /usr/lib64/qt4/mkspecs/features/shared.prf \
90 90 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
91 91 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
92 92 /usr/lib64/qt4/mkspecs/features/resources.prf \
93 93 /usr/lib64/qt4/mkspecs/features/uic.prf \
94 94 /usr/lib64/qt4/mkspecs/features/yacc.prf \
95 95 /usr/lib64/qt4/mkspecs/features/lex.prf \
96 96 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
97 97 fsw-qt.pro
98 98 QMAKE_TARGET = fsw
99 99 DESTDIR = bin/
100 100 TARGET = bin/fsw
101 101
102 102 first: all
103 103 ####### Implicit rules
104 104
105 105 .SUFFIXES: .o .c .cpp .cc .cxx .C
106 106
107 107 .cpp.o:
108 108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109 109
110 110 .cc.o:
111 111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112 112
113 113 .cxx.o:
114 114 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
115 115
116 116 .C.o:
117 117 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
118 118
119 119 .c.o:
120 120 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
121 121
122 122 ####### Build rules
123 123
124 124 all: Makefile $(TARGET)
125 125
126 126 $(TARGET): $(OBJECTS)
127 127 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
128 128 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
129 129
130 130 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
131 131 /usr/lib64/qt4/mkspecs/common/linux.conf \
132 132 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
133 133 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
134 134 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
135 135 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
136 136 /usr/lib64/qt4/mkspecs/qconfig.pri \
137 137 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
138 138 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
139 139 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
140 140 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
141 141 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
142 142 sparc.pri \
143 143 /usr/lib64/qt4/mkspecs/features/release.prf \
144 144 /usr/lib64/qt4/mkspecs/features/default_post.prf \
145 145 /usr/lib64/qt4/mkspecs/features/shared.prf \
146 146 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
147 147 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
148 148 /usr/lib64/qt4/mkspecs/features/resources.prf \
149 149 /usr/lib64/qt4/mkspecs/features/uic.prf \
150 150 /usr/lib64/qt4/mkspecs/features/yacc.prf \
151 151 /usr/lib64/qt4/mkspecs/features/lex.prf \
152 152 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
153 153 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
154 154 /usr/lib64/qt4/mkspecs/common/unix.conf:
155 155 /usr/lib64/qt4/mkspecs/common/linux.conf:
156 156 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
157 157 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
158 158 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
159 159 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
160 160 /usr/lib64/qt4/mkspecs/qconfig.pri:
161 161 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
162 162 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
163 163 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
164 164 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
165 165 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
166 166 sparc.pri:
167 167 /usr/lib64/qt4/mkspecs/features/release.prf:
168 168 /usr/lib64/qt4/mkspecs/features/default_post.prf:
169 169 /usr/lib64/qt4/mkspecs/features/shared.prf:
170 170 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
171 171 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
172 172 /usr/lib64/qt4/mkspecs/features/resources.prf:
173 173 /usr/lib64/qt4/mkspecs/features/uic.prf:
174 174 /usr/lib64/qt4/mkspecs/features/yacc.prf:
175 175 /usr/lib64/qt4/mkspecs/features/lex.prf:
176 176 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
177 177 qmake: FORCE
178 178 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
179 179
180 180 dist:
181 181 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
182 182 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
183 183
184 184
185 185 clean:compiler_clean
186 186 -$(DEL_FILE) $(OBJECTS)
187 187 -$(DEL_FILE) *~ core *.core
188 188
189 189
190 190 ####### Sub-libraries
191 191
192 192 distclean: clean
193 193 -$(DEL_FILE) $(TARGET)
194 194 -$(DEL_FILE) Makefile
195 195
196 196
197 197 grmon:
198 198 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
199 199
200 200 check: first
201 201
202 202 compiler_rcc_make_all:
203 203 compiler_rcc_clean:
204 204 compiler_uic_make_all:
205 205 compiler_uic_clean:
206 206 compiler_image_collection_make_all: qmake_image_collection.cpp
207 207 compiler_image_collection_clean:
208 208 -$(DEL_FILE) qmake_image_collection.cpp
209 209 compiler_yacc_decl_make_all:
210 210 compiler_yacc_decl_clean:
211 211 compiler_yacc_impl_make_all:
212 212 compiler_yacc_impl_clean:
213 213 compiler_lex_make_all:
214 214 compiler_lex_clean:
215 215 compiler_clean:
216 216
217 217 ####### Compile
218 218
219 219 obj/wf_handler.o: ../src/wf_handler.c
220 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
221 221
222 222 obj/tc_handler.o: ../src/tc_handler.c
223 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
224 224
225 225 obj/fsw_misc.o: ../src/fsw_misc.c
226 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
227 227
228 228 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
229 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
230 230
231 231 obj/fsw_globals.o: ../src/fsw_globals.c
232 232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
233 233
234 234 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
235 235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
236 236
237 237 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
238 238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
239 239
240 240 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
241 241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
242 242
243 243 obj/tc_acceptance.o: ../src/tc_acceptance.c
244 244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
245 245
246 246 obj/basic_parameters.o: ../src/basic_parameters/basic_parameters.c ../src/basic_parameters/basic_parameters.h
247 247 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/basic_parameters/basic_parameters.c
248 248
249 249 obj/fsw_processing.o: ../src/avf_prc/fsw_processing.c ../src/avf_prc/fsw_processing.h
250 250 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/avf_prc/fsw_processing.c
251 251
252 252 obj/avf0_prc0.o: ../src/avf_prc/avf0_prc0.c ../src/avf_prc/avf0_prc0.h \
253 253 ../src/avf_prc/fsw_processing.h
254 254 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/avf_prc/avf0_prc0.c
255 255
256 256 obj/avf1_prc1.o: ../src/avf_prc/avf1_prc1.c ../src/avf_prc/avf1_prc1.h \
257 257 ../src/avf_prc/fsw_processing.h
258 258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/avf_prc/avf1_prc1.c
259 259
260 260 obj/avf2_prc2.o: ../src/avf_prc/avf2_prc2.c ../src/avf_prc/avf2_prc2.h \
261 261 ../src/avf_prc/fsw_processing.h
262 262 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/avf_prc/avf2_prc2.c
263 263
264 264 ####### Install
265 265
266 266 install: FORCE
267 267
268 268 uninstall: FORCE
269 269
270 270 FORCE:
271 271
@@ -1,92 +1,92
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 CONFIG += console verbose cpu_usage_report boot_messages
4 CONFIG += console verbose cpu_usage_report boot_messages debug_messages
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=6 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 44 #doxygen.target = doxygen
45 45 #doxygen.commands = doxygen ../doc/Doxyfile
46 46 #QMAKE_EXTRA_TARGETS += doxygen
47 47
48 48 TARGET = fsw
49 49
50 50 INCLUDEPATH += \
51 51 ../src \
52 52 ../header \
53 53 ../src/basic_parameters \
54 54 ../src/avf_prc
55 55
56 56 SOURCES += \
57 57 ../src/wf_handler.c \
58 58 ../src/tc_handler.c \
59 59 ../src/fsw_misc.c \
60 60 ../src/fsw_init.c \
61 61 ../src/fsw_globals.c \
62 62 ../src/fsw_spacewire.c \
63 63 ../src/tc_load_dump_parameters.c \
64 64 ../src/tm_lfr_tc_exe.c \
65 65 ../src/tc_acceptance.c \
66 66 ../src/basic_parameters/basic_parameters.c \
67 67 ../src/avf_prc/fsw_processing.c \
68 68 ../src/avf_prc/avf0_prc0.c \
69 69 ../src/avf_prc/avf1_prc1.c \
70 70 ../src/avf_prc/avf2_prc2.c
71 71
72 72
73 73 HEADERS += \
74 74 ../header/wf_handler.h \
75 75 ../header/tc_handler.h \
76 76 ../header/grlib_regs.h \
77 77 ../header/fsw_params.h \
78 78 ../header/fsw_misc.h \
79 79 ../header/fsw_init.h \
80 80 ../header/ccsds_types.h \
81 81 ../header/fsw_params_processing.h \
82 82 ../header/fsw_spacewire.h \
83 83 ../header/tc_load_dump_parameters.h \
84 84 ../header/tm_lfr_tc_exe.h \
85 85 ../header/tc_acceptance.h \
86 86 ../header/fsw_params_nb_bytes.h \
87 87 ../src/basic_parameters/basic_parameters.h \
88 88 ../src/avf_prc/fsw_processing.h \
89 89 ../src/avf_prc/avf0_prc0.h \
90 90 ../src/avf_prc/avf1_prc1.h \
91 91 ../src/avf_prc/avf2_prc2.h
92 92
@@ -1,201 +1,201
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-04-27T15:09:47. -->
3 <!-- Written by QtCreator 3.0.1, 2014-04-27T16:41:56. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.3 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.3 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{be73cf6a-f9d8-4d5a-8adf-adc2d83e2e44}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.TargetCount</variable>
191 191 <value type="int">1</value>
192 192 </data>
193 193 <data>
194 194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 195 <value type="QByteArray">{cdbf9cdc-1e84-406e-889b-c4feef49e75c}</value>
196 196 </data>
197 197 <data>
198 198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 199 <value type="int">15</value>
200 200 </data>
201 201 </qtcreator>
@@ -1,358 +1,398
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf0_prc0.h"
11 11
12 12 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
13 13 ring_node_asm asm_ring_burst_sbm_f0[ NB_RING_NODES_ASM_BURST_SBM_F0 ];
14 14 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
15 15 ring_node_asm *current_ring_node_asm_norm_f0;
16 16
17 17 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
18 18 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
19 19 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
20 20 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
21 21
22 22 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
23 23
24 24 void reset_nb_sm_f0( unsigned char lfrMode )
25 25 {
26 26 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
27 27 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
28 28 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
29 29 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24;
30 30 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
31 31 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
32 32 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
33 33 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
34 34 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
35 35
36 36 if (lfrMode == LFR_MODE_SBM1)
37 37 {
38 38 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
39 39 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
40 40 }
41 41 else if (lfrMode == LFR_MODE_SBM2)
42 42 {
43 43 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
44 44 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
45 45 }
46 46 else if (lfrMode == LFR_MODE_BURST)
47 47 {
48 48 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
49 49 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
50 50 }
51 51 else
52 52 {
53 53 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
54 54 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
55 55 }
56 56 }
57 57
58 void SM_average_f0( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
59 ring_node_sm *ring_node_tab[],
60 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
61 {
62 float sum;
63 unsigned int i;
64
65 for(i=0; i<TOTAL_SIZE_SM; i++)
66 {
67 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
68 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
69 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
70 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
71 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
72 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
73 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
74 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
75
76 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
77 {
78 averaged_spec_mat_f0[ i ] = sum;
79 averaged_spec_mat_f1[ i ] = sum;
80 }
81 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
82 {
83 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
84 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
85 }
86 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
87 {
88 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
89 averaged_spec_mat_f1[ i ] = sum;
90 }
91 else
92 {
93 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
94 }
95 }
96 }
97
58 98 //************
59 99 // RTEMS TASKS
60 100
61 101 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
62 102 {
63 103 int i;
64 104
65 105 rtems_event_set event_out;
66 106 rtems_status_code status;
67 107 rtems_id queue_id_prc0;
68 108 asm_msg msgForMATR;
69 109 ring_node_sm *ring_node_tab[8];
70 110
71 111 unsigned int nb_norm_bp1;
72 112 unsigned int nb_norm_bp2;
73 113 unsigned int nb_norm_asm;
74 114 unsigned int nb_sbm_bp1;
75 115 unsigned int nb_sbm_bp2;
76 116
77 117 nb_norm_bp1 = 0;
78 118 nb_norm_bp2 = 0;
79 119 nb_norm_asm = 0;
80 120 nb_sbm_bp1 = 0;
81 121 nb_sbm_bp2 = 0;
82 122
83 123 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
84 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
124 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
85 125 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
86 126 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
87 127 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
88 128
89 129 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
90 130
91 131 status = get_message_queue_id_prc0( &queue_id_prc0 );
92 132 if (status != RTEMS_SUCCESSFUL)
93 133 {
94 134 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
95 135 }
96 136
97 137 while(1){
98 138 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
99 139 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
100 140 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
101 141 {
102 142 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
103 143 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
104 144 }
105 145
106 146 // compute the average and store it in the averaged_sm_f1 buffer
107 SM_average( current_ring_node_asm_norm_f0->matrix,
147 SM_average_f0( current_ring_node_asm_norm_f0->matrix,
108 148 current_ring_node_asm_burst_sbm_f0->matrix,
109 149 ring_node_tab,
110 150 nb_norm_bp1, nb_sbm_bp1 );
111 151
112 152 // update nb_average
113 153 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
114 154 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
115 155 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
116 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
117 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
156 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
157 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
118 158
119 159 //****************************************
120 160 // initialize the mesage for the MATR task
121 161 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
122 162 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
123 163 msgForMATR.norm = current_ring_node_asm_norm_f0;
124 164 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
125 165 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
126 166 msgForMATR.coarseTime = time_management_regs->coarse_time;
127 167 msgForMATR.fineTime = time_management_regs->fine_time;
128 168
129 169 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
130 170 {
131 171 nb_sbm_bp1 = 0;
132 172 // set another ring for the ASM storage
133 173 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
134 174 if ( (lfrCurrentMode == LFR_MODE_BURST)
135 175 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
136 176 {
137 177 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F0;
138 178 }
139 179 }
140 180
141 181 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
142 182 {
143 183 nb_sbm_bp2 = 0;
144 184 if ( (lfrCurrentMode == LFR_MODE_BURST)
145 185 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 186 {
147 187 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F0;
148 188 }
149 189 }
150 190
151 191 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
152 192 {
153 193 nb_norm_bp1 = 0;
154 194 // set another ring for the ASM storage
155 195 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
156 196 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
157 197 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
158 198 {
159 199 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
160 200 }
161 201 }
162 202
163 203 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
164 204 {
165 205 nb_norm_bp2 = 0;
166 206 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
167 207 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
168 208 {
169 209 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
170 210 }
171 211 }
172 212
173 213 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
174 214 {
175 215 nb_norm_asm = 0;
176 216 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
177 217 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
178 218 {
179 219 // PRINTF1("%lld\n", localTime)
180 220 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
181 221 }
182 222 }
183 223
184 224 //*************************
185 225 // send the message to MATR
186 226 if (msgForMATR.event != 0x00)
187 227 {
188 228 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
189 229 }
190 230
191 231 if (status != RTEMS_SUCCESSFUL) {
192 232 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
193 233 }
194 234 }
195 235 }
196 236
197 237 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
198 238 {
199 239 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
200 240 size_t size; // size of the incoming TC packet
201 241 asm_msg *incomingMsg;
202 242 //
203 243 spw_ioctl_pkt_send spw_ioctl_send_ASM;
204 244 rtems_status_code status;
205 245 rtems_id queue_id;
206 246 rtems_id queue_id_q_p0;
207 247 Header_TM_LFR_SCIENCE_ASM_t headerASM;
208 248 bp_packet_with_spare packet_norm_bp1_f0;
209 249 bp_packet packet_norm_bp2_f0;
210 250 bp_packet packet_sbm_bp1_f0;
211 251 bp_packet packet_sbm_bp2_f0;
212 252
213 253 unsigned long long int localTime;
214 254
215 255 ASM_init_header( &headerASM );
216 256
217 257 //*************
218 258 // NORM headers
219 259 BP_init_header_with_spare( &packet_norm_bp1_f0.header,
220 260 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
221 261 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
222 262 BP_init_header( &packet_norm_bp2_f0.header,
223 263 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
224 264 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
225 265
226 266 //****************************
227 267 // BURST SBM1 and SBM2 headers
228 268 if ( lfrRequestedMode == LFR_MODE_BURST )
229 269 {
230 270 BP_init_header( &packet_sbm_bp1_f0.header,
231 271 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
232 272 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
233 273 BP_init_header( &packet_sbm_bp2_f0.header,
234 274 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
235 275 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
236 276 }
237 277 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
238 278 {
239 279 BP_init_header( &packet_sbm_bp1_f0.header,
240 280 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
241 281 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
242 282 BP_init_header( &packet_sbm_bp2_f0.header,
243 283 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
244 284 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
245 285 }
246 286 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
247 287 {
248 288 BP_init_header( &packet_sbm_bp1_f0.header,
249 289 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
250 290 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
251 291 BP_init_header( &packet_sbm_bp2_f0.header,
252 292 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
253 293 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
254 294 }
255 295 else
256 296 {
257 297 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
258 298 }
259 299
260 300 status = get_message_queue_id_send( &queue_id );
261 301 if (status != RTEMS_SUCCESSFUL)
262 302 {
263 303 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
264 304 }
265 305 status = get_message_queue_id_prc0( &queue_id_q_p0);
266 306 if (status != RTEMS_SUCCESSFUL)
267 307 {
268 308 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
269 309 }
270 310
271 311 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
272 312
273 313 while(1){
274 314 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
275 315 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
276 316
277 317 incomingMsg = (asm_msg*) incomingData;
278 318
279 319 localTime = getTimeAsUnsignedLongLongInt( );
280 320 //****************
281 321 //****************
282 322 // BURST SBM1 SBM2
283 323 //****************
284 324 //****************
285 325 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F0 )
286 326 {
287 327 // 1) compress the matrix for Basic Parameters calculation
288 328 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
289 329 nb_sm_before_f0.burst_sbm_bp1,
290 330 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
291 331 ASM_F0_INDICE_START);
292 332 // 2) compute the BP1 set
293 333
294 334 // 3) send the BP1 set
295 335 set_time( packet_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
296 336 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
297 337 BP_send( (char *) &packet_sbm_bp1_f0.header, queue_id,
298 338 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA);
299 339 // 4) compute the BP2 set if needed
300 340 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F0 )
301 341 {
302 342 // 1) compute the BP2 set
303 343
304 344 // 2) send the BP2 set
305 345 set_time( packet_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
306 346 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
307 347 BP_send( (char *) &packet_sbm_bp2_f0.header, queue_id,
308 348 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA);
309 349 }
310 350 }
311 351
312 352 //*****
313 353 //*****
314 354 // NORM
315 355 //*****
316 356 //*****
317 357 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
318 358 {
319 359 // 1) compress the matrix for Basic Parameters calculation
320 360 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
321 361 nb_sm_before_f0.norm_bp1,
322 362 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
323 363 ASM_F0_INDICE_START );
324 364 // 2) compute the BP1 set
325 365
326 366 // 3) send the BP1 set
327 367 set_time( packet_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
328 368 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
329 369 BP_send( (char *) &packet_norm_bp1_f0.header, queue_id,
330 370 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA);
331 371 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
332 372 {
333 373 // 1) compute the BP2 set using the same ASM as the one used for BP1
334 374
335 375 // 2) send the BP2 set
336 376 set_time( packet_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
337 377 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
338 378 BP_send( (char *) &packet_norm_bp2_f0.header, queue_id,
339 379 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA);
340 380 }
341 381 }
342 382
343 383 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
344 384 {
345 385 // 1) reorganize the ASM and divide
346 386 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
347 387 asm_f0_reorganized,
348 388 nb_sm_before_f0.norm_bp1 );
349 389 // 2) convert the float array in a char array
350 390 ASM_convert( asm_f0_reorganized, asm_f0_char);
351 391 // 3) send the spectral matrix packets
352 392 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
353 393 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
354 394 ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
355 395 }
356 396
357 397 }
358 398 }
@@ -1,30 +1,32
1 1 #ifndef AVF0_PRC0_H
2 2 #define AVF0_PRC0_H
3 3
4 4 #include "fsw_processing.h"
5 5
6 6 typedef struct {
7 7 unsigned int norm_bp1;
8 8 unsigned int norm_bp2;
9 9 unsigned int norm_asm;
10 10 unsigned int burst_sbm_bp1;
11 11 unsigned int burst_sbm_bp2;
12 12 unsigned int burst_bp1;
13 13 unsigned int burst_bp2;
14 14 unsigned int sbm1_bp1;
15 15 unsigned int sbm1_bp2;
16 16 unsigned int sbm2_bp1;
17 17 unsigned int sbm2_bp2;
18 18 } nb_sm_before_bp_asm_f0;
19 19
20 extern struct ring_node_sm *current_ring_node_sm_f0;
21 20 extern struct ring_node_sm *ring_node_for_averaging_sm_f0;
22 21
23 22 extern rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
24 23
25 24 void reset_nb_sm_f0( unsigned char lfrMode );
25 void SM_average_f0( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
26 ring_node_sm *ring_node_tab[],
27 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
26 28
27 29 rtems_task avf0_task( rtems_task_argument lfrRequestedMode );
28 30 rtems_task prc0_task( rtems_task_argument lfrRequestedMode );
29 31
30 32 #endif // AVF0_PRC0_H
@@ -1,339 +1,379
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf1_prc1.h"
11 11
12 12 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
13 13 ring_node_asm asm_ring_burst_sbm_f1[ NB_RING_NODES_ASM_BURST_SBM_F1 ];
14 14 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
15 15 ring_node_asm *current_ring_node_asm_norm_f1;
16 16
17 17 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
18 18 char asm_f1_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
19 19 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
20 20 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
21 21
22 22 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
23 23
24 24 void reset_nb_sm_f1( unsigned char lfrMode )
25 25 {
26 26 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
27 27 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
28 28 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
29 29 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
30 30 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
31 31 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
32 32 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
33 33
34 34 if (lfrMode == LFR_MODE_SBM2)
35 35 {
36 36 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
37 37 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
38 38 }
39 39 else if (lfrMode == LFR_MODE_BURST)
40 40 {
41 41 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
42 42 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
43 43 }
44 44 else
45 45 {
46 46 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
47 47 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
48 48 }
49 49 }
50 50
51 void SM_average_f1( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
52 ring_node_sm *ring_node_tab[],
53 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
54 {
55 float sum;
56 unsigned int i;
57
58 for(i=0; i<TOTAL_SIZE_SM; i++)
59 {
60 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
61 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
62 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
63 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
64 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
65 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
66 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
67 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
68
69 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
70 {
71 averaged_spec_mat_f0[ i ] = sum;
72 averaged_spec_mat_f1[ i ] = sum;
73 }
74 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
75 {
76 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
77 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
78 }
79 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
80 {
81 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
82 averaged_spec_mat_f1[ i ] = sum;
83 }
84 else
85 {
86 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
87 }
88 }
89 }
90
51 91 //************
52 92 // RTEMS TASKS
53 93
54 94 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
55 95 {
56 96 int i;
57 97
58 98 rtems_event_set event_out;
59 99 rtems_status_code status;
60 100 rtems_id queue_id_prc1;
61 101 asm_msg msgForMATR;
62 102 ring_node_sm *ring_node_tab[8];
63 103
64 104 unsigned int nb_norm_bp1;
65 105 unsigned int nb_norm_bp2;
66 106 unsigned int nb_norm_asm;
67 107 unsigned int nb_sbm_bp1;
68 108 unsigned int nb_sbm_bp2;
69 109
70 110 nb_norm_bp1 = 0;
71 111 nb_norm_bp2 = 0;
72 112 nb_norm_asm = 0;
73 113 nb_sbm_bp1 = 0;
74 114 nb_sbm_bp2 = 0;
75 115
76 116 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
77 117 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
78 118 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
79 119 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
80 120 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
81 121
82 122 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
83 123
84 124 status = get_message_queue_id_prc1( &queue_id_prc1 );
85 125 if (status != RTEMS_SUCCESSFUL)
86 126 {
87 127 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
88 128 }
89 129
90 130 while(1){
91 131 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
92 132 ring_node_tab[NB_SM_BEFORE_AVF1-1] = ring_node_for_averaging_sm_f1;
93 133 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
94 134 {
95 135 ring_node_for_averaging_sm_f1 = ring_node_for_averaging_sm_f1->previous;
96 136 ring_node_tab[NB_SM_BEFORE_AVF1-i] = ring_node_for_averaging_sm_f1;
97 137 }
98 138
99 139 // compute the average and store it in the averaged_sm_f1 buffer
100 SM_average( current_ring_node_asm_norm_f1->matrix,
140 SM_average_f1( current_ring_node_asm_norm_f1->matrix,
101 141 current_ring_node_asm_burst_sbm_f1->matrix,
102 142 ring_node_tab,
103 143 nb_norm_bp1, nb_sbm_bp1 );
104 144
105 145 // update nb_average
106 146 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
107 147 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
108 148 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
109 149 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
110 150 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
111 151
112 152 //****************************************
113 153 // initialize the mesage for the MATR task
114 154 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
115 155 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
116 156 msgForMATR.norm = current_ring_node_asm_norm_f1;
117 157 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
118 158 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
119 159 msgForMATR.coarseTime = time_management_regs->coarse_time;
120 160 msgForMATR.fineTime = time_management_regs->fine_time;
121 161
122 162 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
123 163 {
124 164 nb_sbm_bp1 = 0;
125 165 // set another ring for the ASM storage
126 166 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
127 167 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
128 168 {
129 169 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F1;
130 170 }
131 171 }
132 172
133 173 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
134 174 {
135 175 nb_sbm_bp2 = 0;
136 176 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
137 177 {
138 178 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F1;
139 179 }
140 180 }
141 181
142 182 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
143 183 {
144 184 nb_norm_bp1 = 0;
145 185 // set another ring for the ASM storage
146 186 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
147 187 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
148 188 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
149 189 {
150 190 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
151 191 }
152 192 }
153 193
154 194 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
155 195 {
156 196 nb_norm_bp2 = 0;
157 197 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
158 198 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
159 199 {
160 200 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
161 201 }
162 202 }
163 203
164 204 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
165 205 {
166 206 nb_norm_asm = 0;
167 207 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
168 208 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
169 209 {
170 210 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
171 211 }
172 212 }
173 213
174 214 //*************************
175 215 // send the message to MATR
176 216 if (msgForMATR.event != 0x00)
177 217 {
178 218 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
179 219 }
180 220
181 221 if (status != RTEMS_SUCCESSFUL) {
182 222 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
183 223 }
184 224 }
185 225 }
186 226
187 227 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
188 228 {
189 229 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
190 230 size_t size; // size of the incoming TC packet
191 231 asm_msg *incomingMsg;
192 232 //
193 233 spw_ioctl_pkt_send spw_ioctl_send_ASM;
194 234 rtems_status_code status;
195 235 rtems_id queue_id_send;
196 236 rtems_id queue_id_q_p1;
197 237 Header_TM_LFR_SCIENCE_ASM_t headerASM;
198 238 bp_packet_with_spare packet_norm_bp1;
199 239 bp_packet packet_norm_bp2;
200 240 bp_packet packet_sbm_bp1;
201 241 bp_packet packet_sbm_bp2;
202 242
203 243 unsigned long long int localTime;
204 244
205 245 ASM_init_header( &headerASM );
206 246
207 247 //*************
208 248 // NORM headers
209 249 BP_init_header_with_spare( &packet_norm_bp1.header,
210 250 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
211 251 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
212 252 BP_init_header( &packet_norm_bp2.header,
213 253 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
214 254 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
215 255
216 256 //***********************
217 257 // BURST and SBM2 headers
218 258 if ( lfrRequestedMode == LFR_MODE_BURST )
219 259 {
220 260 BP_init_header( &packet_sbm_bp1.header,
221 261 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
222 262 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
223 263 BP_init_header( &packet_sbm_bp2.header,
224 264 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
225 265 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
226 266 }
227 267 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
228 268 {
229 269 BP_init_header( &packet_sbm_bp1.header,
230 270 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
231 271 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
232 272 BP_init_header( &packet_sbm_bp2.header,
233 273 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
234 274 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
235 275 }
236 276 else
237 277 {
238 278 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
239 279 }
240 280
241 281 status = get_message_queue_id_send( &queue_id_send );
242 282 if (status != RTEMS_SUCCESSFUL)
243 283 {
244 284 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
245 285 }
246 286 status = get_message_queue_id_prc1( &queue_id_q_p1);
247 287 if (status != RTEMS_SUCCESSFUL)
248 288 {
249 289 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
250 290 }
251 291
252 292 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
253 293
254 294 while(1){
255 295 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
256 296 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
257 297
258 298 incomingMsg = (asm_msg*) incomingData;
259 299
260 300 localTime = getTimeAsUnsignedLongLongInt( );
261 301 //***********
262 302 //***********
263 303 // BURST SBM2
264 304 //***********
265 305 //***********
266 306 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F1 )
267 307 {
268 308 // 1) compress the matrix for Basic Parameters calculation
269 309 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f1,
270 310 nb_sm_before_f1.burst_sbm_bp1,
271 311 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
272 312 ASM_F1_INDICE_START);
273 313 // 2) compute the BP1 set
274 314
275 315 // 3) send the BP1 set
276 316 set_time( packet_sbm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
277 317 set_time( packet_sbm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
278 318 BP_send( (char *) &packet_sbm_bp1.header, queue_id_send,
279 319 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA);
280 320 // 4) compute the BP2 set if needed
281 321 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F1 )
282 322 {
283 323 // 1) compute the BP2 set
284 324
285 325 // 2) send the BP2 set
286 326 set_time( packet_sbm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
287 327 set_time( packet_sbm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
288 328 BP_send( (char *) &packet_sbm_bp2.header, queue_id_send,
289 329 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA);
290 330 }
291 331 }
292 332
293 333 //*****
294 334 //*****
295 335 // NORM
296 336 //*****
297 337 //*****
298 338 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
299 339 {
300 340 // 1) compress the matrix for Basic Parameters calculation
301 341 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f1,
302 342 nb_sm_before_f1.norm_bp1,
303 343 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
304 344 ASM_F0_INDICE_START );
305 345 // 2) compute the BP1 set
306 346
307 347 // 3) send the BP1 set
308 348 set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
309 349 set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
310 350 BP_send( (char *) &packet_norm_bp1.header, queue_id_send,
311 351 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA);
312 352 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
313 353 {
314 354 // 1) compute the BP2 set
315 355
316 356 // 2) send the BP2 set
317 357 set_time( packet_norm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
318 358 set_time( packet_norm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
319 359 BP_send( (char *) &packet_norm_bp2.header, queue_id_send,
320 360 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA);
321 361 }
322 362 }
323 363
324 364 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
325 365 {
326 366 // 1) reorganize the ASM and divide
327 367 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
328 368 asm_f1_reorganized,
329 369 nb_sm_before_f1.norm_bp1 );
330 370 // 2) convert the float array in a char array
331 371 ASM_convert( asm_f1_reorganized, asm_f1_char);
332 372 // 3) send the spectral matrix packets
333 373 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
334 374 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
335 375 ASM_send( &headerASM, asm_f1_char, SID_NORM_ASM_F1, &spw_ioctl_send_ASM, queue_id_send);
336 376 }
337 377
338 378 }
339 379 }
@@ -1,28 +1,30
1 1 #ifndef AVF1_PRC1_H
2 2 #define AVF1_PRC1_H
3 3
4 4 #include "fsw_processing.h"
5 5
6 6 typedef struct {
7 7 unsigned int norm_bp1;
8 8 unsigned int norm_bp2;
9 9 unsigned int norm_asm;
10 10 unsigned int burst_sbm_bp1;
11 11 unsigned int burst_sbm_bp2;
12 12 unsigned int burst_bp1;
13 13 unsigned int burst_bp2;
14 14 unsigned int sbm2_bp1;
15 15 unsigned int sbm2_bp2;
16 16 } nb_sm_before_bp_asm_f1;
17 17
18 extern struct ring_node_sm *current_ring_node_sm_f1;
19 18 extern struct ring_node_sm *ring_node_for_averaging_sm_f1;
20 19
21 20 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
22 21
23 22 void reset_nb_sm_f1( unsigned char lfrMode );
23 void SM_average_f1( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
24 ring_node_sm *ring_node_tab[],
25 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
24 26
25 27 rtems_task avf1_task( rtems_task_argument lfrRequestedMode );
26 28 rtems_task prc1_task( rtems_task_argument lfrRequestedMode );
27 29
28 30 #endif // AVF1_PRC1_H
@@ -1,240 +1,240
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing at f2 = 256 Hz, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf2_prc2.h"
11 11
12 12 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
13 13 ring_node_asm asm_ring_burst_sbm_f2[ NB_RING_NODES_ASM_BURST_SBM_F2 ];
14 14 ring_node_asm *current_ring_node_asm_burst_sbm_f2;
15 15 ring_node_asm *current_ring_node_asm_norm_f2;
16 16
17 17 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
18 18 char asm_f2_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
19 19 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
20 20 float compressed_sm_sbm_f2 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 ];
21 21
22 22 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
23 23
24 24 void reset_nb_sm_f2( void )
25 25 {
26 26 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
27 27 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
28 28 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
29 29 }
30 30
31 31 void SM_average_f2( float *averaged_spec_mat_f2,
32 32 ring_node_sm *ring_node,
33 33 unsigned int nbAverageNormF2 )
34 34 {
35 35 float sum;
36 36 unsigned int i;
37 37
38 38 for(i=0; i<TOTAL_SIZE_SM; i++)
39 39 {
40 40 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
41 41 if ( (nbAverageNormF2 == 0) )
42 42 {
43 43 averaged_spec_mat_f2[ i ] = sum;
44 44 }
45 45 else
46 46 {
47 47 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
48 48 }
49 49 }
50 50 }
51 51
52 52 //************
53 53 // RTEMS TASKS
54 54
55 55 rtems_task avf2_task( rtems_task_argument lfrRequestedMode )
56 56 {
57 rtems_event_set event_out;
58 rtems_status_code status;
59 rtems_id queue_id_prc2;
60 asm_msg msgForMATR;
57 // rtems_event_set event_out;
58 // rtems_status_code status;
59 // rtems_id queue_id_prc2;
60 // asm_msg msgForMATR;
61 61
62 unsigned int nb_norm_bp1;
63 unsigned int nb_norm_bp2;
64 unsigned int nb_norm_asm;
62 // unsigned int nb_norm_bp1;
63 // unsigned int nb_norm_bp2;
64 // unsigned int nb_norm_asm;
65 65
66 nb_norm_bp1 = 0;
67 nb_norm_bp2 = 0;
68 nb_norm_asm = 0;
66 // nb_norm_bp1 = 0;
67 // nb_norm_bp2 = 0;
68 // nb_norm_asm = 0;
69 69
70 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
70 // reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
71 71
72 BOOT_PRINTF1("in AVF2 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
72 // BOOT_PRINTF1("in AVF2 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
73 73
74 status = get_message_queue_id_prc2( &queue_id_prc2 );
75 if (status != RTEMS_SUCCESSFUL)
76 {
77 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
78 }
74 // status = get_message_queue_id_prc2( &queue_id_prc2 );
75 // if (status != RTEMS_SUCCESSFUL)
76 // {
77 // PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
78 // }
79 79
80 while(1){
81 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
80 // while(1){
81 // rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
82 82
83 // compute the average and store it in the averaged_sm_f2 buffer
84 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
85 ring_node_for_averaging_sm_f2,
86 nb_norm_bp1 );
83 // // compute the average and store it in the averaged_sm_f2 buffer
84 // SM_average_f2( current_ring_node_asm_norm_f2->matrix,
85 // ring_node_for_averaging_sm_f2,
86 // nb_norm_bp1 );
87 87
88 // update nb_average
89 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
90 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
91 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
88 // // update nb_average
89 // nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
90 // nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
91 // nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
92 92
93 //****************************************
94 // initialize the mesage for the MATR task
95 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
96 msgForMATR.burst_sbm = NULL;
97 msgForMATR.norm = current_ring_node_asm_norm_f2;
98 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
99 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
100 msgForMATR.coarseTime = time_management_regs->coarse_time;
101 msgForMATR.fineTime = time_management_regs->fine_time;
93 // //****************************************
94 // // initialize the mesage for the MATR task
95 // msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
96 // msgForMATR.burst_sbm = NULL;
97 // msgForMATR.norm = current_ring_node_asm_norm_f2;
98 //// msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
99 //// msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
100 // msgForMATR.coarseTime = time_management_regs->coarse_time;
101 // msgForMATR.fineTime = time_management_regs->fine_time;
102 102
103 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
104 {
105 nb_norm_bp1 = 0;
106 // set another ring for the ASM storage
107 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
108 if ( lfrCurrentMode == LFR_MODE_NORMAL )
109 {
110 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
111 }
112 }
103 // if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
104 // {
105 // nb_norm_bp1 = 0;
106 // // set another ring for the ASM storage
107 // current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
108 // if ( lfrCurrentMode == LFR_MODE_NORMAL )
109 // {
110 // msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
111 // }
112 // }
113 113
114 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
115 {
116 nb_norm_bp2 = 0;
117 if ( lfrCurrentMode == LFR_MODE_NORMAL )
118 {
119 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
120 }
121 }
114 // if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
115 // {
116 // nb_norm_bp2 = 0;
117 // if ( lfrCurrentMode == LFR_MODE_NORMAL )
118 // {
119 // msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
120 // }
121 // }
122 122
123 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
124 {
125 nb_norm_asm = 0;
126 if ( lfrCurrentMode == LFR_MODE_NORMAL )
127 {
128 // PRINTF1("%lld\n", localTime)
129 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
130 }
131 }
123 // if (nb_norm_asm == nb_sm_before_f2.norm_asm)
124 // {
125 // nb_norm_asm = 0;
126 // if ( lfrCurrentMode == LFR_MODE_NORMAL )
127 // {
128 //// PRINTF1("%lld\n", localTime)
129 // msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
130 // }
131 // }
132 132
133 //*************************
134 // send the message to MATR
135 if (msgForMATR.event != 0x00)
136 {
137 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
138 }
133 // //*************************
134 // // send the message to MATR
135 // if (msgForMATR.event != 0x00)
136 // {
137 // status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
138 // }
139 139
140 if (status != RTEMS_SUCCESSFUL) {
141 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
142 }
143 }
140 // if (status != RTEMS_SUCCESSFUL) {
141 // printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
142 // }
143 // }
144 144 }
145 145
146 146 rtems_task prc2_task( rtems_task_argument argument )
147 147 {
148 148 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
149 149 size_t size; // size of the incoming TC packet
150 150 asm_msg *incomingMsg;
151 151 //
152 152 spw_ioctl_pkt_send spw_ioctl_send_ASM;
153 153 rtems_status_code status;
154 154 rtems_id queue_id;
155 155 rtems_id queue_id_q_p2;
156 156 Header_TM_LFR_SCIENCE_ASM_t headerASM;
157 157 bp_packet packet_norm_bp1_f2;
158 158 bp_packet packet_norm_bp2_f2;
159 159
160 160 unsigned long long int localTime;
161 161
162 162 ASM_init_header( &headerASM );
163 163
164 164 //*************
165 165 // NORM headers
166 166 BP_init_header( &packet_norm_bp1_f2.header,
167 167 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
168 168 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
169 169 BP_init_header( &packet_norm_bp2_f2.header,
170 170 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
171 171 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
172 172
173 173 status = get_message_queue_id_send( &queue_id );
174 174 if (status != RTEMS_SUCCESSFUL)
175 175 {
176 176 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
177 177 }
178 178 status = get_message_queue_id_prc2( &queue_id_q_p2);
179 179 if (status != RTEMS_SUCCESSFUL)
180 180 {
181 181 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
182 182 }
183 183
184 184 BOOT_PRINTF("in PRC2 ***\n")
185 185
186 186 while(1){
187 187 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
188 188 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
189 189
190 190 incomingMsg = (asm_msg*) incomingData;
191 191
192 192 localTime = getTimeAsUnsignedLongLongInt( );
193 193
194 194 //*****
195 195 //*****
196 196 // NORM
197 197 //*****
198 198 //*****
199 199 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
200 200 {
201 201 // 1) compress the matrix for Basic Parameters calculation
202 202 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f2,
203 203 nb_sm_before_f2.norm_bp1,
204 204 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
205 205 ASM_F2_INDICE_START );
206 206 // 2) compute the BP1 set
207 207
208 208 // 3) send the BP1 set
209 209 set_time( packet_norm_bp1_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
210 210 set_time( packet_norm_bp1_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
211 211 BP_send( (char *) &packet_norm_bp1_f2.header, queue_id,
212 212 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA);
213 213 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
214 214 {
215 215 // 1) compute the BP2 set using the same ASM as the one used for BP1
216 216
217 217 // 2) send the BP2 set
218 218 set_time( packet_norm_bp2_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
219 219 set_time( packet_norm_bp2_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
220 220 BP_send( (char *) &packet_norm_bp2_f2.header, queue_id,
221 221 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA);
222 222 }
223 223 }
224 224
225 225 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
226 226 {
227 227 // 1) reorganize the ASM and divide
228 228 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
229 229 asm_f2_reorganized,
230 230 nb_sm_before_f2.norm_bp1 );
231 231 // 2) convert the float array in a char array
232 232 ASM_convert( asm_f2_reorganized, asm_f2_char);
233 233 // 3) send the spectral matrix packets
234 234 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
235 235 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
236 236 ASM_send( &headerASM, asm_f2_char, SID_NORM_ASM_F2, &spw_ioctl_send_ASM, queue_id);
237 237 }
238 238
239 239 }
240 240 }
@@ -1,24 +1,23
1 1 #ifndef AVF2_PRC2_H
2 2 #define AVF2_PRC2_H
3 3
4 4 #include "fsw_processing.h"
5 5
6 6 typedef struct {
7 7 unsigned int norm_bp1;
8 8 unsigned int norm_bp2;
9 9 unsigned int norm_asm;
10 10 } nb_sm_before_bp_asm_f2;
11 11
12 extern struct ring_node_sm *current_ring_node_sm_f2;
13 12 extern struct ring_node_sm *ring_node_for_averaging_sm_f2;
14 13
15 14 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
16 15
17 16 void reset_nb_sm_f2(void );
18 17 void SM_average_f2( float *averaged_spec_mat_f2, ring_node_sm *ring_node, unsigned int nbAverageNormF2 );
19 18
20 19 // RTEMS TASKS
21 20 rtems_task avf2_task( rtems_task_argument lfrRequestedMode );
22 21 rtems_task prc2_task(rtems_task_argument argument );
23 22
24 23 #endif // AVF2_PRC2_H
@@ -1,570 +1,532
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12
13 13 unsigned int nb_sm_f0;
14 14 unsigned int nb_sm_f0_aux_f1;
15 15 unsigned int nb_sm_f1;
16 16 unsigned int nb_sm_f0_aux_f2;
17 17
18 18 //************************
19 19 // spectral matrices rings
20 20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 23 ring_node_sm *current_ring_node_sm_f0;
24 24 ring_node_sm *current_ring_node_sm_f1;
25 25 ring_node_sm *current_ring_node_sm_f2;
26 26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 28 ring_node_sm *ring_node_for_averaging_sm_f2;
29 29
30 30 //***********************************************************
31 31 // Interrupt Service Routine for spectral matrices processing
32 32
33 33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
34 34 {
35 ring_node_sm *previous_ring_node_sm_f0;
35 // ring_node_sm *previous_ring_node_sm_f0;
36 36
37 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
37 //// rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
38 38
39 previous_ring_node_sm_f0 = current_ring_node_sm_f0;
39 // previous_ring_node_sm_f0 = current_ring_node_sm_f0;
40 40
41 if ( (spectral_matrix_regs->status & 0x2) == 0x02) // check ready matrix bit f0_1
42 {
43 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
44 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
45 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
46 nb_sm_f0 = nb_sm_f0 + 1;
47 }
41 // if ( (spectral_matrix_regs->status & 0x2) == 0x02) // check ready matrix bit f0_1
42 // {
43 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
44 // spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
45 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
46 // nb_sm_f0 = nb_sm_f0 + 1;
47 // }
48 48
49 //************************
50 // reset status error bits
51 if ( (spectral_matrix_regs->status & 0x30) != 0x00)
52 {
53 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
54 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
55 }
49 // //************************
50 // // reset status error bits
51 // if ( (spectral_matrix_regs->status & 0x30) != 0x00)
52 // {
53 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
54 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
55 // }
56 56
57 //**************************************
58 // reset ready matrix bits for f0_0, f1 and f2
59 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff2; // 0010
57 // //**************************************
58 // // reset ready matrix bits for f0_0, f1 and f2
59 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff2; // 0010
60 60
61 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
62 {
63 ring_node_for_averaging_sm_f0 = previous_ring_node_sm_f0;
64 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
65 {
66 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
67 }
68 nb_sm_f0 = 0;
69 }
61 // if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
62 // {
63 // ring_node_for_averaging_sm_f0 = previous_ring_node_sm_f0;
64 // if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
65 // {
66 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
67 // }
68 // nb_sm_f0 = 0;
69 // }
70 70
71 71 }
72 72
73 73 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
74 74 {
75 75 //***
76 76 // F0
77 77 nb_sm_f0 = nb_sm_f0 + 1;
78 78 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
79 79 {
80 80 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
81 81 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
82 82 {
83 83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
84 84 }
85 85 nb_sm_f0 = 0;
86 86 }
87 87
88 88 //***
89 89 // F1
90 90 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
91 91 if (nb_sm_f0_aux_f1 == 6)
92 92 {
93 93 nb_sm_f0_aux_f1 = 0;
94 94 nb_sm_f1 = nb_sm_f1 + 1;
95 95 }
96 96 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
97 97 {
98 98 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
99 99 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
100 100 {
101 101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
102 102 }
103 103 nb_sm_f1 = 0;
104 104 }
105 105
106 106 //***
107 107 // F2
108 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
109 if (nb_sm_f0_aux_f2 == 96)
110 {
111 nb_sm_f0_aux_f2 = 0;
112 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
113 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
114 {
115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
116 }
117 }
108 // nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
109 // if (nb_sm_f0_aux_f2 == 96)
110 // {
111 // nb_sm_f0_aux_f2 = 0;
112 // ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
113 // if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
114 // {
115 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
116 // }
117 // }
118 118 }
119 119
120 120 //******************
121 121 // Spectral Matrices
122 122
123 123 void reset_nb_sm( void )
124 124 {
125 125 nb_sm_f0 = 0;
126 126 nb_sm_f0_aux_f1 = 0;
127 127 nb_sm_f0_aux_f2 = 0;
128 128
129 129 nb_sm_f1 = 0;
130 130 }
131 131
132 132 void SM_init_rings( void )
133 133 {
134 134 unsigned char i;
135 135
136 136 // F0 RING
137 137 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
138 138 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
139 139 sm_ring_f0[0].buffer_address =
140 140 (int) &sm_f0[ 0 ];
141 141
142 142 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
143 143 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
144 144 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
145 145 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
146 146
147 147 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
148 148 {
149 149 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
150 150 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
151 151 sm_ring_f0[i].buffer_address =
152 152 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
153 153 }
154 154
155 155 // F1 RING
156 156 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
157 157 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
158 158 sm_ring_f1[0].buffer_address =
159 159 (int) &sm_f1[ 0 ];
160 160
161 161 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
162 162 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
163 163 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
164 164 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
165 165
166 166 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
167 167 {
168 168 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
169 169 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
170 170 sm_ring_f1[i].buffer_address =
171 171 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
172 172 }
173 173
174 174 // F2 RING
175 175 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
176 176 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
177 177 sm_ring_f2[0].buffer_address =
178 178 (int) &sm_f2[ 0 ];
179 179
180 180 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
181 181 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
182 182 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
183 183 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
184 184
185 185 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
186 186 {
187 187 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
188 188 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
189 189 sm_ring_f2[i].buffer_address =
190 190 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
191 191 }
192 192
193 193 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
194 194 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
195 195 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
196 196
197 197 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
198 198 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
199 199 }
200 200
201 201 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
202 202 {
203 203 unsigned char i;
204 204
205 205 ring[ nbNodes - 1 ].next
206 206 = (ring_node_asm*) &ring[ 0 ];
207 207
208 208 for(i=0; i<nbNodes-1; i++)
209 209 {
210 210 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
211 211 }
212 212 }
213 213
214 214 void SM_reset_current_ring_nodes( void )
215 215 {
216 216 current_ring_node_sm_f0 = sm_ring_f0;
217 217 current_ring_node_sm_f1 = sm_ring_f1;
218 218 current_ring_node_sm_f2 = sm_ring_f2;
219 219
220 ring_node_for_averaging_sm_f0 = sm_ring_f0;
220 ring_node_for_averaging_sm_f0 = sm_ring_f0;
221 ring_node_for_averaging_sm_f1 = sm_ring_f1;
222 ring_node_for_averaging_sm_f2 = sm_ring_f2;
221 223 }
222 224
223 225 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
224 226 {
225 227 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
226 228 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
227 229 header->reserved = 0x00;
228 230 header->userApplication = CCSDS_USER_APP;
229 231 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
230 232 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
231 233 header->packetSequenceControl[0] = 0xc0;
232 234 header->packetSequenceControl[1] = 0x00;
233 235 header->packetLength[0] = 0x00;
234 236 header->packetLength[1] = 0x00;
235 237 // DATA FIELD HEADER
236 238 header->spare1_pusVersion_spare2 = 0x10;
237 239 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
238 240 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
239 241 header->destinationID = TM_DESTINATION_ID_GROUND;
240 242 // AUXILIARY DATA HEADER
241 243 header->sid = 0x00;
242 244 header->biaStatusInfo = 0x00;
243 245 header->pa_lfr_pkt_cnt_asm = 0x00;
244 246 header->pa_lfr_pkt_nr_asm = 0x00;
245 247 header->time[0] = 0x00;
246 248 header->time[0] = 0x00;
247 249 header->time[0] = 0x00;
248 250 header->time[0] = 0x00;
249 251 header->time[0] = 0x00;
250 252 header->time[0] = 0x00;
251 253 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
252 254 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
253 255 }
254 256
255 void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
256 ring_node_sm *ring_node_tab[],
257 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
258 {
259 float sum;
260 unsigned int i;
261
262 for(i=0; i<TOTAL_SIZE_SM; i++)
263 {
264 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
265 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
266 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
267 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
268 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
269 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
270 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
271 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
272
273 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
274 {
275 averaged_spec_mat_f0[ i ] = sum;
276 averaged_spec_mat_f1[ i ] = sum;
277 }
278 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
279 {
280 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
281 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
282 }
283 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
284 {
285 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
286 averaged_spec_mat_f1[ i ] = sum;
287 }
288 else
289 {
290 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
291 }
292 }
293 }
294
295 257 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
296 258 {
297 259 int frequencyBin;
298 260 int asmComponent;
299 261 unsigned int offsetAveragedSpecMatReorganized;
300 262 unsigned int offsetAveragedSpecMat;
301 263
302 264 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
303 265 {
304 266 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
305 267 {
306 268 offsetAveragedSpecMatReorganized =
307 269 frequencyBin * NB_VALUES_PER_SM
308 270 + asmComponent;
309 271 offsetAveragedSpecMat =
310 272 asmComponent * NB_BINS_PER_SM
311 273 + frequencyBin;
312 274 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
313 275 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
314 276 }
315 277 }
316 278 }
317 279
318 280 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
319 281 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
320 282 {
321 283 int frequencyBin;
322 284 int asmComponent;
323 285 int offsetASM;
324 286 int offsetCompressed;
325 287 int k;
326 288
327 289 // build data
328 290 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
329 291 {
330 292 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
331 293 {
332 294 offsetCompressed = // NO TIME OFFSET
333 295 frequencyBin * NB_VALUES_PER_SM
334 296 + asmComponent;
335 297 offsetASM = // NO TIME OFFSET
336 298 asmComponent * NB_BINS_PER_SM
337 299 + ASMIndexStart
338 300 + frequencyBin * nbBinsToAverage;
339 301 compressed_spec_mat[ offsetCompressed ] = 0;
340 302 for ( k = 0; k < nbBinsToAverage; k++ )
341 303 {
342 304 compressed_spec_mat[offsetCompressed ] =
343 305 ( compressed_spec_mat[ offsetCompressed ]
344 306 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
345 307 }
346 308 }
347 309 }
348 310 }
349 311
350 312 void ASM_convert( volatile float *input_matrix, char *output_matrix)
351 313 {
352 314 unsigned int frequencyBin;
353 315 unsigned int asmComponent;
354 316 char * pt_char_input;
355 317 char * pt_char_output;
356 318 unsigned int offsetInput;
357 319 unsigned int offsetOutput;
358 320
359 321 pt_char_input = (char*) &input_matrix;
360 322 pt_char_output = (char*) &output_matrix;
361 323
362 324 // convert all other data
363 325 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
364 326 {
365 327 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
366 328 {
367 329 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
368 330 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
369 331 pt_char_input = (char*) &input_matrix [ offsetInput ];
370 332 pt_char_output = (char*) &output_matrix[ offsetOutput ];
371 333 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
372 334 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
373 335 }
374 336 }
375 337 }
376 338
377 339 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
378 340 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
379 341 {
380 342 unsigned int i;
381 343 unsigned int length = 0;
382 344 rtems_status_code status;
383 345
384 346 for (i=0; i<2; i++)
385 347 {
386 348 // (1) BUILD THE DATA
387 349 switch(sid)
388 350 {
389 351 case SID_NORM_ASM_F0:
390 352 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
391 353 spw_ioctl_send->data = &spectral_matrix[
392 354 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
393 355 ];
394 356 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
395 357 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
396 358 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
397 359 break;
398 360 case SID_NORM_ASM_F1:
399 361 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
400 362 spw_ioctl_send->data = &spectral_matrix[
401 363 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
402 364 ];
403 365 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
404 366 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
405 367 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
406 368 break;
407 369 case SID_NORM_ASM_F2:
408 370 break;
409 371 default:
410 372 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
411 373 break;
412 374 }
413 375 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
414 376 spw_ioctl_send->hdr = (char *) header;
415 377 spw_ioctl_send->options = 0;
416 378
417 379 // (2) BUILD THE HEADER
418 380 header->packetLength[0] = (unsigned char) (length>>8);
419 381 header->packetLength[1] = (unsigned char) (length);
420 382 header->sid = (unsigned char) sid; // SID
421 383 header->pa_lfr_pkt_cnt_asm = 2;
422 384 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
423 385
424 386 // (3) SET PACKET TIME
425 387 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
426 388 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
427 389 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
428 390 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
429 391 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
430 392 header->time[5] = (unsigned char) (time_management_regs->fine_time);
431 393 //
432 394 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
433 395 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
434 396 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
435 397 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
436 398 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
437 399 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
438 400
439 401 // (4) SEND PACKET
440 402 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
441 403 if (status != RTEMS_SUCCESSFUL) {
442 404 printf("in ASM_send *** ERR %d\n", (int) status);
443 405 }
444 406 }
445 407 }
446 408
447 409 //*****************
448 410 // Basic Parameters
449 411
450 412 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
451 413 unsigned int apid, unsigned char sid,
452 414 unsigned int packetLength, unsigned char blkNr )
453 415 {
454 416 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
455 417 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
456 418 header->reserved = 0x00;
457 419 header->userApplication = CCSDS_USER_APP;
458 420 header->packetID[0] = (unsigned char) (apid >> 8);
459 421 header->packetID[1] = (unsigned char) (apid);
460 422 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
461 423 header->packetSequenceControl[1] = 0x00;
462 424 header->packetLength[0] = (unsigned char) (packetLength >> 8);
463 425 header->packetLength[1] = (unsigned char) (packetLength);
464 426 // DATA FIELD HEADER
465 427 header->spare1_pusVersion_spare2 = 0x10;
466 428 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
467 429 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
468 430 header->destinationID = TM_DESTINATION_ID_GROUND;
469 431 // AUXILIARY DATA HEADER
470 432 header->sid = sid;
471 433 header->biaStatusInfo = 0x00;
472 434 header->time[0] = 0x00;
473 435 header->time[0] = 0x00;
474 436 header->time[0] = 0x00;
475 437 header->time[0] = 0x00;
476 438 header->time[0] = 0x00;
477 439 header->time[0] = 0x00;
478 440 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
479 441 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
480 442 }
481 443
482 444 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
483 445 unsigned int apid, unsigned char sid,
484 446 unsigned int packetLength , unsigned char blkNr)
485 447 {
486 448 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
487 449 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
488 450 header->reserved = 0x00;
489 451 header->userApplication = CCSDS_USER_APP;
490 452 header->packetID[0] = (unsigned char) (apid >> 8);
491 453 header->packetID[1] = (unsigned char) (apid);
492 454 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
493 455 header->packetSequenceControl[1] = 0x00;
494 456 header->packetLength[0] = (unsigned char) (packetLength >> 8);
495 457 header->packetLength[1] = (unsigned char) (packetLength);
496 458 // DATA FIELD HEADER
497 459 header->spare1_pusVersion_spare2 = 0x10;
498 460 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
499 461 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
500 462 header->destinationID = TM_DESTINATION_ID_GROUND;
501 463 // AUXILIARY DATA HEADER
502 464 header->sid = sid;
503 465 header->biaStatusInfo = 0x00;
504 466 header->time[0] = 0x00;
505 467 header->time[0] = 0x00;
506 468 header->time[0] = 0x00;
507 469 header->time[0] = 0x00;
508 470 header->time[0] = 0x00;
509 471 header->time[0] = 0x00;
510 472 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
511 473 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
512 474 }
513 475
514 476 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend )
515 477 {
516 478 rtems_status_code status;
517 479
518 480 // SEND PACKET
519 481 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
520 482 if (status != RTEMS_SUCCESSFUL)
521 483 {
522 484 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
523 485 }
524 486 }
525 487
526 488 //******************
527 489 // general functions
528 490
529 491 void reset_spectral_matrix_regs( void )
530 492 {
531 493 /** This function resets the spectral matrices module registers.
532 494 *
533 495 * The registers affected by this function are located at the following offset addresses:
534 496 *
535 497 * - 0x00 config
536 498 * - 0x04 status
537 499 * - 0x08 matrixF0_Address0
538 500 * - 0x10 matrixFO_Address1
539 501 * - 0x14 matrixF1_Address
540 502 * - 0x18 matrixF2_Address
541 503 *
542 504 */
543 505
544 506 spectral_matrix_regs->config = 0x00;
545 507 spectral_matrix_regs->status = 0x00;
546 508
547 509 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
548 510 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
549 511 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
550 512 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
551 513 }
552 514
553 515 void set_time( unsigned char *time, unsigned char * timeInBuffer )
554 516 {
555 517 // time[0] = timeInBuffer[2];
556 518 // time[1] = timeInBuffer[3];
557 519 // time[2] = timeInBuffer[0];
558 520 // time[3] = timeInBuffer[1];
559 521 // time[4] = timeInBuffer[6];
560 522 // time[5] = timeInBuffer[7];
561 523
562 524 time[0] = timeInBuffer[0];
563 525 time[1] = timeInBuffer[1];
564 526 time[2] = timeInBuffer[2];
565 527 time[3] = timeInBuffer[3];
566 528 time[4] = timeInBuffer[6];
567 529 time[5] = timeInBuffer[7];
568 530 }
569 531
570 532
@@ -1,108 +1,105
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13
14 14 typedef struct ring_node_sm
15 15 {
16 16 struct ring_node_sm *previous;
17 17 struct ring_node_sm *next;
18 18 int buffer_address;
19 19 unsigned int status;
20 20 unsigned int coarseTime;
21 21 unsigned int fineTime;
22 22 } ring_node_sm;
23 23
24 24 typedef struct ring_node_asm
25 25 {
26 26 struct ring_node_asm *next;
27 27 float matrix[ TOTAL_SIZE_SM ];
28 28 unsigned int status;
29 29 } ring_node_asm;
30 30
31 31 typedef struct bp_packet
32 32 {
33 33 Header_TM_LFR_SCIENCE_BP_t header;
34 34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
35 35 } bp_packet;
36 36
37 37 typedef struct bp_packet_with_spare
38 38 {
39 39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
40 40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
41 41 } bp_packet_with_spare;
42 42
43 43 typedef struct asm_msg
44 44 {
45 45 ring_node_asm *norm;
46 46 ring_node_asm *burst_sbm;
47 47 rtems_event_set event;
48 48 unsigned int coarseTime;
49 49 unsigned int fineTime;
50 50 } asm_msg;
51 51
52 52 extern volatile int sm_f0[ ];
53 53 extern volatile int sm_f1[ ];
54 54 extern volatile int sm_f2[ ];
55 55
56 56 // parameters
57 57 extern struct param_local_str param_local;
58 58
59 59 // registers
60 60 extern time_management_regs_t *time_management_regs;
61 61 extern spectral_matrix_regs_t *spectral_matrix_regs;
62 62
63 63 extern rtems_name misc_name[5];
64 64 extern rtems_id Task_id[20]; /* array of task ids */
65 65
66 66 // ISR
67 67 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
68 68 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
69 69
70 70 //******************
71 71 // Spectral Matrices
72 72 void reset_nb_sm( void );
73 73 void SM_init_rings( void );
74 74 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
75 75 void SM_reset_current_ring_nodes( void );
76 76 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
77 void SM_average(float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
78 ring_node_sm *ring_node_tab[],
79 unsigned int firstTimeF0, unsigned int firstTimeF1 );
80 77 void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
81 78 float divider );
82 79 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
83 80 float divider,
84 81 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
85 82 void ASM_convert(volatile float *input_matrix, char *output_matrix);
86 83 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
87 84 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
88 85
89 86 //*****************
90 87 // Basic Parameters
91 88
92 89 void BP_reset_current_ring_nodes( void );
93 90 void BP_init_header(Header_TM_LFR_SCIENCE_BP_t *header,
94 91 unsigned int apid, unsigned char sid,
95 92 unsigned int packetLength , unsigned char blkNr);
96 93 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
97 94 unsigned int apid, unsigned char sid,
98 95 unsigned int packetLength, unsigned char blkNr );
99 96 void BP_send(char *data,
100 97 rtems_id queue_id ,
101 98 unsigned int nbBytesToSend );
102 99
103 100 //******************
104 101 // general functions
105 102 void reset_spectral_matrix_regs( void );
106 103 void set_time(unsigned char *time, unsigned char *timeInBuffer );
107 104
108 105 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,767 +1,767
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73 reset_local_time();
74 74
75 75 rtems_status_code status;
76 76 rtems_status_code status_spw;
77 77 rtems_isr_entry old_isr_handler;
78 78
79 79 // UART settings
80 80 send_console_outputs_on_apbuart_port();
81 81 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
82 82 enable_apbuart_transmitter();
83 83 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
84 84
85 85 PRINTF("\n\n\n\n\n")
86 86 PRINTF("*************************\n")
87 87 PRINTF("** LFR Flight Software **\n")
88 88 PRINTF1("** %d.", SW_VERSION_N1)
89 89 PRINTF1("%d." , SW_VERSION_N2)
90 90 PRINTF1("%d." , SW_VERSION_N3)
91 91 PRINTF1("%d **\n", SW_VERSION_N4)
92 92 PRINTF("*************************\n")
93 93 PRINTF("\n\n")
94 94
95 95 init_parameter_dump();
96 96 init_local_mode_parameters();
97 97 init_housekeeping_parameters();
98 98
99 99 init_waveform_rings(); // initialize the waveform rings
100 100 SM_init_rings(); // initialize spectral matrices rings
101 101
102 102 reset_wfp_burst_enable();
103 103 reset_wfp_status();
104 104 set_wfp_data_shaping();
105 105
106 106 updateLFRCurrentMode();
107 107
108 108 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
109 109
110 110 create_names(); // create all names
111 111
112 112 status = create_message_queues(); // create message queues
113 113 if (status != RTEMS_SUCCESSFUL)
114 114 {
115 115 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
116 116 }
117 117
118 118 status = create_all_tasks(); // create all tasks
119 119 if (status != RTEMS_SUCCESSFUL)
120 120 {
121 121 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
122 122 }
123 123
124 124 // **************************
125 125 // <SPACEWIRE INITIALIZATION>
126 126 grspw_timecode_callback = &timecode_irq_handler;
127 127
128 128 status_spw = spacewire_open_link(); // (1) open the link
129 129 if ( status_spw != RTEMS_SUCCESSFUL )
130 130 {
131 131 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
132 132 }
133 133
134 134 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
135 135 {
136 136 status_spw = spacewire_configure_link( fdSPW );
137 137 if ( status_spw != RTEMS_SUCCESSFUL )
138 138 {
139 139 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
140 140 }
141 141 }
142 142
143 143 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
144 144 {
145 145 status_spw = spacewire_start_link( fdSPW );
146 146 if ( status_spw != RTEMS_SUCCESSFUL )
147 147 {
148 148 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
149 149 }
150 150 }
151 151 // </SPACEWIRE INITIALIZATION>
152 152 // ***************************
153 153
154 154 status = start_all_tasks(); // start all tasks
155 155 if (status != RTEMS_SUCCESSFUL)
156 156 {
157 157 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
158 158 }
159 159
160 160 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
161 161 status = start_recv_send_tasks();
162 162 if ( status != RTEMS_SUCCESSFUL )
163 163 {
164 164 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
165 165 }
166 166
167 167 // suspend science tasks, they will be restarted later depending on the mode
168 168 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
169 169 if (status != RTEMS_SUCCESSFUL)
170 170 {
171 171 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
172 172 }
173 173
174 174 //******************************
175 175 // <SPECTRAL MATRICES SIMULATOR>
176 176 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
177 177 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
178 178 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
179 179 // </SPECTRAL MATRICES SIMULATOR>
180 180 //*******************************
181 181
182 182 // configure IRQ handling for the waveform picker unit
183 183 status = rtems_interrupt_catch( waveforms_isr,
184 184 IRQ_SPARC_WAVEFORM_PICKER,
185 185 &old_isr_handler) ;
186 186 // configure IRQ handling for the spectral matrices unit
187 187 status = rtems_interrupt_catch( spectral_matrices_isr,
188 188 IRQ_SPARC_SPECTRAL_MATRIX,
189 189 &old_isr_handler) ;
190 190
191 191 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
192 192 if ( status_spw != RTEMS_SUCCESSFUL )
193 193 {
194 194 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
195 195 if ( status != RTEMS_SUCCESSFUL ) {
196 196 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
197 197 }
198 198 }
199 199
200 200 BOOT_PRINTF("delete INIT\n")
201 201
202 202 send_dumb_hk();
203 203
204 204 status = rtems_task_delete(RTEMS_SELF);
205 205
206 206 }
207 207
208 208 void init_local_mode_parameters( void )
209 209 {
210 210 /** This function initialize the param_local global variable with default values.
211 211 *
212 212 */
213 213
214 214 unsigned int i;
215 215
216 216 // LOCAL PARAMETERS
217 217 set_local_nb_interrupt_f0_MAX();
218 218
219 219 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
220 220 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
221 221 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
222 222
223 223 // init sequence counters
224 224
225 225 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
226 226 {
227 227 sequenceCounters_TC_EXE[i] = 0x00;
228 228 }
229 229 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
230 230 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
231 231 }
232 232
233 233 void reset_local_time( void )
234 234 {
235 235 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
236 236 }
237 237
238 238 void create_names( void ) // create all names for tasks and queues
239 239 {
240 240 /** This function creates all RTEMS names used in the software for tasks and queues.
241 241 *
242 242 * @return RTEMS directive status codes:
243 243 * - RTEMS_SUCCESSFUL - successful completion
244 244 *
245 245 */
246 246
247 247 // task names
248 248 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
249 249 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
250 250 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
251 251 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
252 252 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
253 253 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
254 254 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
255 255 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
256 256 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
257 257 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
258 258 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
259 259 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
260 260 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
261 261 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
262 262 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
263 263 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
264 264 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
265 265 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
266 266 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
267 267
268 268 // rate monotonic period names
269 269 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
270 270
271 271 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
272 272 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
273 273 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
274 274 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
275 275 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
276 276 }
277 277
278 278 int create_all_tasks( void ) // create all tasks which run in the software
279 279 {
280 280 /** This function creates all RTEMS tasks used in the software.
281 281 *
282 282 * @return RTEMS directive status codes:
283 283 * - RTEMS_SUCCESSFUL - task created successfully
284 284 * - RTEMS_INVALID_ADDRESS - id is NULL
285 285 * - RTEMS_INVALID_NAME - invalid task name
286 286 * - RTEMS_INVALID_PRIORITY - invalid task priority
287 287 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
288 288 * - RTEMS_TOO_MANY - too many tasks created
289 289 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
290 290 * - RTEMS_TOO_MANY - too many global objects
291 291 *
292 292 */
293 293
294 294 rtems_status_code status;
295 295
296 296 //**********
297 297 // SPACEWIRE
298 298 // RECV
299 299 status = rtems_task_create(
300 300 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
301 301 RTEMS_DEFAULT_MODES,
302 302 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
303 303 );
304 304 if (status == RTEMS_SUCCESSFUL) // SEND
305 305 {
306 306 status = rtems_task_create(
307 307 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
308 308 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
309 309 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
310 310 );
311 311 }
312 312 if (status == RTEMS_SUCCESSFUL) // WTDG
313 313 {
314 314 status = rtems_task_create(
315 315 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
316 316 RTEMS_DEFAULT_MODES,
317 317 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
318 318 );
319 319 }
320 320 if (status == RTEMS_SUCCESSFUL) // ACTN
321 321 {
322 322 status = rtems_task_create(
323 323 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
324 324 RTEMS_DEFAULT_MODES,
325 325 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
326 326 );
327 327 }
328 328 if (status == RTEMS_SUCCESSFUL) // SPIQ
329 329 {
330 330 status = rtems_task_create(
331 331 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
332 332 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
333 333 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
334 334 );
335 335 }
336 336
337 337 //******************
338 338 // SPECTRAL MATRICES
339 339 if (status == RTEMS_SUCCESSFUL) // AVF0
340 340 {
341 341 status = rtems_task_create(
342 342 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
343 343 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
344 344 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
345 345 );
346 346 }
347 347 if (status == RTEMS_SUCCESSFUL) // PRC0
348 348 {
349 349 status = rtems_task_create(
350 350 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
351 351 RTEMS_DEFAULT_MODES,
352 352 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
353 353 );
354 354 }
355 355 if (status == RTEMS_SUCCESSFUL) // AVF1
356 356 {
357 357 status = rtems_task_create(
358 358 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
359 359 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
360 360 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
361 361 );
362 362 }
363 363 if (status == RTEMS_SUCCESSFUL) // PRC1
364 364 {
365 365 status = rtems_task_create(
366 366 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
367 367 RTEMS_DEFAULT_MODES,
368 368 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
369 369 );
370 370 }
371 371 if (status == RTEMS_SUCCESSFUL) // AVF2
372 372 {
373 373 status = rtems_task_create(
374 374 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
375 375 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
376 376 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
377 377 );
378 378 }
379 379 if (status == RTEMS_SUCCESSFUL) // PRC2
380 380 {
381 381 status = rtems_task_create(
382 382 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
383 383 RTEMS_DEFAULT_MODES,
384 384 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
385 385 );
386 386 }
387 387
388 388 //****************
389 389 // WAVEFORM PICKER
390 390 if (status == RTEMS_SUCCESSFUL) // WFRM
391 391 {
392 392 status = rtems_task_create(
393 393 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
394 394 RTEMS_DEFAULT_MODES,
395 395 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
396 396 );
397 397 }
398 398 if (status == RTEMS_SUCCESSFUL) // CWF3
399 399 {
400 400 status = rtems_task_create(
401 401 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
402 402 RTEMS_DEFAULT_MODES,
403 403 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
404 404 );
405 405 }
406 406 if (status == RTEMS_SUCCESSFUL) // CWF2
407 407 {
408 408 status = rtems_task_create(
409 409 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
410 410 RTEMS_DEFAULT_MODES,
411 411 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
412 412 );
413 413 }
414 414 if (status == RTEMS_SUCCESSFUL) // CWF1
415 415 {
416 416 status = rtems_task_create(
417 417 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
418 418 RTEMS_DEFAULT_MODES,
419 419 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
420 420 );
421 421 }
422 422 if (status == RTEMS_SUCCESSFUL) // SWBD
423 423 {
424 424 status = rtems_task_create(
425 425 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
426 426 RTEMS_DEFAULT_MODES,
427 427 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
428 428 );
429 429 }
430 430
431 431 //*****
432 432 // MISC
433 433 if (status == RTEMS_SUCCESSFUL) // STAT
434 434 {
435 435 status = rtems_task_create(
436 436 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
437 437 RTEMS_DEFAULT_MODES,
438 438 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
439 439 );
440 440 }
441 441 if (status == RTEMS_SUCCESSFUL) // DUMB
442 442 {
443 443 status = rtems_task_create(
444 444 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
445 445 RTEMS_DEFAULT_MODES,
446 446 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
447 447 );
448 448 }
449 449 if (status == RTEMS_SUCCESSFUL) // HOUS
450 450 {
451 451 status = rtems_task_create(
452 452 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
453 453 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
454 454 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
455 455 );
456 456 }
457 457
458 458 return status;
459 459 }
460 460
461 461 int start_recv_send_tasks( void )
462 462 {
463 463 rtems_status_code status;
464 464
465 465 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
466 466 if (status!=RTEMS_SUCCESSFUL) {
467 467 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
468 468 }
469 469
470 470 if (status == RTEMS_SUCCESSFUL) // SEND
471 471 {
472 472 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
473 473 if (status!=RTEMS_SUCCESSFUL) {
474 474 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
475 475 }
476 476 }
477 477
478 478 return status;
479 479 }
480 480
481 481 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
482 482 {
483 483 /** This function starts all RTEMS tasks used in the software.
484 484 *
485 485 * @return RTEMS directive status codes:
486 486 * - RTEMS_SUCCESSFUL - ask started successfully
487 487 * - RTEMS_INVALID_ADDRESS - invalid task entry point
488 488 * - RTEMS_INVALID_ID - invalid task id
489 489 * - RTEMS_INCORRECT_STATE - task not in the dormant state
490 490 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
491 491 *
492 492 */
493 493 // starts all the tasks fot eh flight software
494 494
495 495 rtems_status_code status;
496 496
497 497 //**********
498 498 // SPACEWIRE
499 499 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
500 500 if (status!=RTEMS_SUCCESSFUL) {
501 501 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
502 502 }
503 503
504 504 if (status == RTEMS_SUCCESSFUL) // WTDG
505 505 {
506 506 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
507 507 if (status!=RTEMS_SUCCESSFUL) {
508 508 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
509 509 }
510 510 }
511 511
512 512 if (status == RTEMS_SUCCESSFUL) // ACTN
513 513 {
514 514 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
515 515 if (status!=RTEMS_SUCCESSFUL) {
516 516 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
517 517 }
518 518 }
519 519
520 520 //******************
521 521 // SPECTRAL MATRICES
522 522 if (status == RTEMS_SUCCESSFUL) // AVF0
523 523 {
524 524 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
525 525 if (status!=RTEMS_SUCCESSFUL) {
526 526 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
527 527 }
528 528 }
529 529 if (status == RTEMS_SUCCESSFUL) // PRC0
530 530 {
531 531 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
532 532 if (status!=RTEMS_SUCCESSFUL) {
533 533 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
534 534 }
535 535 }
536 536 if (status == RTEMS_SUCCESSFUL) // AVF1
537 537 {
538 538 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
539 539 if (status!=RTEMS_SUCCESSFUL) {
540 540 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
541 541 }
542 542 }
543 543 if (status == RTEMS_SUCCESSFUL) // PRC1
544 544 {
545 545 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
546 546 if (status!=RTEMS_SUCCESSFUL) {
547 547 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
548 548 }
549 549 }
550 if (status == RTEMS_SUCCESSFUL) // AVF2
551 {
552 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
553 if (status!=RTEMS_SUCCESSFUL) {
554 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
555 }
556 }
557 if (status == RTEMS_SUCCESSFUL) // PRC2
558 {
559 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
560 if (status!=RTEMS_SUCCESSFUL) {
561 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
562 }
563 }
550 // if (status == RTEMS_SUCCESSFUL) // AVF2
551 // {
552 // status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
553 // if (status!=RTEMS_SUCCESSFUL) {
554 // BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
555 // }
556 // }
557 // if (status == RTEMS_SUCCESSFUL) // PRC2
558 // {
559 // status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
560 // if (status!=RTEMS_SUCCESSFUL) {
561 // BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
562 // }
563 // }
564 564
565 565 //****************
566 566 // WAVEFORM PICKER
567 567 if (status == RTEMS_SUCCESSFUL) // WFRM
568 568 {
569 569 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
570 570 if (status!=RTEMS_SUCCESSFUL) {
571 571 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
572 572 }
573 573 }
574 574 if (status == RTEMS_SUCCESSFUL) // CWF3
575 575 {
576 576 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
577 577 if (status!=RTEMS_SUCCESSFUL) {
578 578 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
579 579 }
580 580 }
581 581 if (status == RTEMS_SUCCESSFUL) // CWF2
582 582 {
583 583 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
584 584 if (status!=RTEMS_SUCCESSFUL) {
585 585 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
586 586 }
587 587 }
588 588 if (status == RTEMS_SUCCESSFUL) // CWF1
589 589 {
590 590 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
591 591 if (status!=RTEMS_SUCCESSFUL) {
592 592 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
593 593 }
594 594 }
595 595 if (status == RTEMS_SUCCESSFUL) // SWBD
596 596 {
597 597 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
598 598 if (status!=RTEMS_SUCCESSFUL) {
599 599 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
600 600 }
601 601 }
602 602
603 603 //*****
604 604 // MISC
605 605 if (status == RTEMS_SUCCESSFUL) // HOUS
606 606 {
607 607 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
608 608 if (status!=RTEMS_SUCCESSFUL) {
609 609 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
610 610 }
611 611 }
612 612 if (status == RTEMS_SUCCESSFUL) // DUMB
613 613 {
614 614 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
615 615 if (status!=RTEMS_SUCCESSFUL) {
616 616 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
617 617 }
618 618 }
619 619 if (status == RTEMS_SUCCESSFUL) // STAT
620 620 {
621 621 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
622 622 if (status!=RTEMS_SUCCESSFUL) {
623 623 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
624 624 }
625 625 }
626 626
627 627 return status;
628 628 }
629 629
630 630 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
631 631 {
632 632 rtems_status_code status_recv;
633 633 rtems_status_code status_send;
634 634 rtems_status_code status_q_p0;
635 635 rtems_status_code status_q_p1;
636 636 rtems_status_code status_q_p2;
637 637 rtems_status_code ret;
638 638 rtems_id queue_id;
639 639
640 640 //****************************************
641 641 // create the queue for handling valid TCs
642 642 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
643 643 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
644 644 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
645 645 if ( status_recv != RTEMS_SUCCESSFUL ) {
646 646 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
647 647 }
648 648
649 649 //************************************************
650 650 // create the queue for handling TM packet sending
651 651 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
652 652 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
653 653 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
654 654 if ( status_send != RTEMS_SUCCESSFUL ) {
655 655 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
656 656 }
657 657
658 658 //*****************************************************************************
659 659 // create the queue for handling averaged spectral matrices for processing @ f0
660 660 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
661 661 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
662 662 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
663 663 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
664 664 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
665 665 }
666 666
667 667 //*****************************************************************************
668 668 // create the queue for handling averaged spectral matrices for processing @ f1
669 669 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
670 670 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
671 671 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
672 672 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
673 673 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
674 674 }
675 675
676 676 //*****************************************************************************
677 677 // create the queue for handling averaged spectral matrices for processing @ f2
678 678 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
679 679 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
680 680 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
681 681 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
682 682 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
683 683 }
684 684
685 685 if ( status_recv != RTEMS_SUCCESSFUL )
686 686 {
687 687 ret = status_recv;
688 688 }
689 689 else if( status_send != RTEMS_SUCCESSFUL )
690 690 {
691 691 ret = status_send;
692 692 }
693 693 else if( status_q_p0 != RTEMS_SUCCESSFUL )
694 694 {
695 695 ret = status_q_p0;
696 696 }
697 697 else if( status_q_p1 != RTEMS_SUCCESSFUL )
698 698 {
699 699 ret = status_q_p1;
700 700 }
701 701 else
702 702 {
703 703 ret = status_q_p2;
704 704 }
705 705
706 706 return ret;
707 707 }
708 708
709 709 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
710 710 {
711 711 rtems_status_code status;
712 712 rtems_name queue_name;
713 713
714 714 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
715 715
716 716 status = rtems_message_queue_ident( queue_name, 0, queue_id );
717 717
718 718 return status;
719 719 }
720 720
721 721 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
722 722 {
723 723 rtems_status_code status;
724 724 rtems_name queue_name;
725 725
726 726 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
727 727
728 728 status = rtems_message_queue_ident( queue_name, 0, queue_id );
729 729
730 730 return status;
731 731 }
732 732
733 733 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
734 734 {
735 735 rtems_status_code status;
736 736 rtems_name queue_name;
737 737
738 738 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
739 739
740 740 status = rtems_message_queue_ident( queue_name, 0, queue_id );
741 741
742 742 return status;
743 743 }
744 744
745 745 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
746 746 {
747 747 rtems_status_code status;
748 748 rtems_name queue_name;
749 749
750 750 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
751 751
752 752 status = rtems_message_queue_ident( queue_name, 0, queue_id );
753 753
754 754 return status;
755 755 }
756 756
757 757 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
758 758 {
759 759 rtems_status_code status;
760 760 rtems_name queue_name;
761 761
762 762 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
763 763
764 764 status = rtems_message_queue_ident( queue_name, 0, queue_id );
765 765
766 766 return status;
767 767 }
@@ -1,950 +1,949
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 165 unsigned char * bytePosPtr;
166 166
167 167 bytePosPtr = (unsigned char *) &TC->packetID;
168 168
169 169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 172
173 173 status = check_mode_value( requestedMode );
174 174
175 175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 176 {
177 177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 178 }
179 179 else // the mode value is consistent, check the transition
180 180 {
181 181 status = check_mode_transition(requestedMode);
182 182 if (status != LFR_SUCCESSFUL)
183 183 {
184 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 186 }
187 187 }
188 188
189 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 190 {
191 191 status = check_transition_date( transitionCoarseTime );
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 198 }
199 199 }
200 200
201 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 202 {
203 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 204 status = enter_mode( requestedMode, transitionCoarseTime );
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 211 {
212 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 216 *
217 217 * @return LFR directive status code:
218 218 * - LFR_DEFAULT
219 219 * - LFR_SUCCESSFUL
220 220 *
221 221 */
222 222
223 223 unsigned int val;
224 224 int result;
225 225 unsigned int status;
226 226 unsigned char mode;
227 227 unsigned char * bytePosPtr;
228 228
229 229 bytePosPtr = (unsigned char *) &TC->packetID;
230 230
231 231 // check LFR mode
232 232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 233 status = check_update_info_hk_lfr_mode( mode );
234 234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 235 {
236 236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 237 status = check_update_info_hk_tds_mode( mode );
238 238 }
239 239 if (status == LFR_SUCCESSFUL) // check THR mode
240 240 {
241 241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 242 status = check_update_info_hk_thr_mode( mode );
243 243 }
244 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 245 {
246 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 248 val++;
249 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 251 }
252 252
253 253 result = status;
254 254
255 255 return result;
256 256 }
257 257
258 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 259 {
260 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 261 *
262 262 * @param TC points to the TeleCommand packet that is being processed
263 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 264 *
265 265 */
266 266
267 267 int result;
268 268 unsigned char lfrMode;
269 269
270 270 result = LFR_DEFAULT;
271 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 272
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275
276 276 return result;
277 277 }
278 278
279 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 */
287 287
288 288 int result;
289 289 unsigned char lfrMode;
290 290
291 291 result = LFR_DEFAULT;
292 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 293
294 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 295 result = LFR_DEFAULT;
296 296
297 297 return result;
298 298 }
299 299
300 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 301 {
302 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 303 *
304 304 * @param TC points to the TeleCommand packet that is being processed
305 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 306 *
307 307 * @return LFR_SUCCESSFUL
308 308 *
309 309 */
310 310
311 311 unsigned int val;
312 312
313 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 314 + (TC->dataAndCRC[1] << 16)
315 315 + (TC->dataAndCRC[2] << 8)
316 316 + TC->dataAndCRC[3];
317 317
318 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319 319
320 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 322 val++;
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326 326
327 327 return LFR_SUCCESSFUL;
328 328 }
329 329
330 330 //*******************
331 331 // ENTERING THE MODES
332 332 int check_mode_value( unsigned char requestedMode )
333 333 {
334 334 int status;
335 335
336 336 if ( (requestedMode != LFR_MODE_STANDBY)
337 337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 339 {
340 340 status = LFR_DEFAULT;
341 341 }
342 342 else
343 343 {
344 344 status = LFR_SUCCESSFUL;
345 345 }
346 346
347 347 return status;
348 348 }
349 349
350 350 int check_mode_transition( unsigned char requestedMode )
351 351 {
352 352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 353 *
354 354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 355 *
356 356 * @return LFR directive status codes:
357 357 * - LFR_SUCCESSFUL - the transition is authorized
358 358 * - LFR_DEFAULT - the transition is not authorized
359 359 *
360 360 */
361 361
362 362 int status;
363 363
364 364 switch (requestedMode)
365 365 {
366 366 case LFR_MODE_STANDBY:
367 367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else
371 371 {
372 372 status = LFR_SUCCESSFUL;
373 373 }
374 374 break;
375 375 case LFR_MODE_NORMAL:
376 376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 377 status = LFR_DEFAULT;
378 378 }
379 379 else {
380 380 status = LFR_SUCCESSFUL;
381 381 }
382 382 break;
383 383 case LFR_MODE_BURST:
384 384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 385 status = LFR_DEFAULT;
386 386 }
387 387 else {
388 388 status = LFR_SUCCESSFUL;
389 389 }
390 390 break;
391 391 case LFR_MODE_SBM1:
392 392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 393 status = LFR_DEFAULT;
394 394 }
395 395 else {
396 396 status = LFR_SUCCESSFUL;
397 397 }
398 398 break;
399 399 case LFR_MODE_SBM2:
400 400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 401 status = LFR_DEFAULT;
402 402 }
403 403 else {
404 404 status = LFR_SUCCESSFUL;
405 405 }
406 406 break;
407 407 default:
408 408 status = LFR_DEFAULT;
409 409 break;
410 410 }
411 411
412 412 return status;
413 413 }
414 414
415 415 int check_transition_date( unsigned int transitionCoarseTime )
416 416 {
417 417 int status;
418 418 unsigned int localCoarseTime;
419 419 unsigned int deltaCoarseTime;
420 420
421 421 status = LFR_SUCCESSFUL;
422 422
423 423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 424 {
425 425 status = LFR_SUCCESSFUL;
426 426 }
427 427 else
428 428 {
429 429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) clear interruptions
471 471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473 473
474 474 // (3) reset waveform picker registers
475 475 reset_wfp_burst_enable(); // reset burst and enable bits
476 476 reset_wfp_status(); // reset all the status bits
477 477
478 478 // (4) reset spectral matrices registers
479 479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // <Spectral Matrices simulator>
484 484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 487 // </Spectral Matrices simulator>
488 488
489 489 // suspend several tasks
490 490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 491 status = suspend_science_tasks();
492 492 }
493 493
494 494 if (status != RTEMS_SUCCESSFUL)
495 495 {
496 496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 503 {
504 504 /** This function is launched after a mode transition validation.
505 505 *
506 506 * @param mode is the mode in which LFR will be put.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 511 *
512 512 */
513 513
514 514 rtems_status_code status;
515 515
516 516 //**********************
517 517 // STOP THE CURRENT MODE
518 518 status = stop_current_mode();
519 519 if (status != RTEMS_SUCCESSFUL)
520 520 {
521 521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 522 }
523 523
524 524 //*************************
525 525 // ENTER THE REQUESTED MODE
526 526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 528 {
529 529 #ifdef PRINT_TASK_STATISTICS
530 530 rtems_cpu_usage_reset();
531 531 maxCount = 0;
532 532 #endif
533 533 status = restart_science_tasks( mode );
534 534 launch_waveform_picker( mode, transitionCoarseTime );
535 535 // launch_spectral_matrix( );
536 536 launch_spectral_matrix_simu( );
537 537 }
538 538 else if ( mode == LFR_MODE_STANDBY )
539 539 {
540 540 #ifdef PRINT_TASK_STATISTICS
541 541 rtems_cpu_usage_report();
542 542 #endif
543 543
544 544 #ifdef PRINT_STACK_REPORT
545 545 PRINTF("stack report selected\n")
546 546 rtems_stack_checker_report_usage();
547 547 #endif
548 548 PRINTF1("maxCount = %d\n", maxCount)
549 549 }
550 550 else
551 551 {
552 552 status = RTEMS_UNSATISFIED;
553 553 }
554 554
555 555 if (status != RTEMS_SUCCESSFUL)
556 556 {
557 557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 558 status = RTEMS_UNSATISFIED;
559 559 }
560 560
561 561 return status;
562 562 }
563 563
564 564 int restart_science_tasks(unsigned char lfrRequestedMode )
565 565 {
566 566 /** This function is used to restart all science tasks.
567 567 *
568 568 * @return RTEMS directive status codes:
569 569 * - RTEMS_SUCCESSFUL - task restarted successfully
570 570 * - RTEMS_INVALID_ID - task id invalid
571 571 * - RTEMS_INCORRECT_STATE - task never started
572 572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 573 *
574 574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 575 *
576 576 */
577 577
578 578 rtems_status_code status[10];
579 579 rtems_status_code ret;
580 580
581 581 ret = RTEMS_SUCCESSFUL;
582 582
583 583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 584 if (status[0] != RTEMS_SUCCESSFUL)
585 585 {
586 586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 587 }
588 588
589 589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 590 if (status[1] != RTEMS_SUCCESSFUL)
591 591 {
592 592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 593 }
594 594
595 595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 596 if (status[2] != RTEMS_SUCCESSFUL)
597 597 {
598 598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 599 }
600 600
601 601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 602 if (status[3] != RTEMS_SUCCESSFUL)
603 603 {
604 604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 605 }
606 606
607 607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 608 if (status[4] != RTEMS_SUCCESSFUL)
609 609 {
610 610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 611 }
612 612
613 613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 614 if (status[5] != RTEMS_SUCCESSFUL)
615 615 {
616 616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 617 }
618 618
619 619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 620 if (status[6] != RTEMS_SUCCESSFUL)
621 621 {
622 622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 623 }
624 624
625 625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 626 if (status[7] != RTEMS_SUCCESSFUL)
627 627 {
628 628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 629 }
630 630
631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 if (status[8] != RTEMS_SUCCESSFUL)
633 {
634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 }
631 // status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 // if (status[8] != RTEMS_SUCCESSFUL)
633 // {
634 // PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 // }
636 636
637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 if (status[9] != RTEMS_SUCCESSFUL)
639 {
640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 }
637 // status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 // if (status[9] != RTEMS_SUCCESSFUL)
639 // {
640 // PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 // }
642 642
643 643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL))
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) )
648 647 {
649 648 ret = RTEMS_UNSATISFIED;
650 649 }
651 650
652 651 return ret;
653 652 }
654 653
655 654 int suspend_science_tasks()
656 655 {
657 656 /** This function suspends the science tasks.
658 657 *
659 658 * @return RTEMS directive status codes:
660 659 * - RTEMS_SUCCESSFUL - task restarted successfully
661 660 * - RTEMS_INVALID_ID - task id invalid
662 661 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 662 *
664 663 */
665 664
666 665 rtems_status_code status;
667 666
668 667 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 668 if (status != RTEMS_SUCCESSFUL)
670 669 {
671 670 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 671 }
673 672 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 673 {
675 674 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 675 if (status != RTEMS_SUCCESSFUL)
677 676 {
678 677 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 678 }
680 679 }
681 680 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 681 {
683 682 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 683 if (status != RTEMS_SUCCESSFUL)
685 684 {
686 685 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 686 }
688 687 }
689 688 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 689 {
691 690 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 691 if (status != RTEMS_SUCCESSFUL)
693 692 {
694 693 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 694 }
696 695 }
697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 {
699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 if (status != RTEMS_SUCCESSFUL)
701 {
702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 }
704 }
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 {
707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 if (status != RTEMS_SUCCESSFUL)
709 {
710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 }
712 }
696 // if (status == RTEMS_SUCCESSFUL) // suspend AVF2
697 // {
698 // status = rtems_task_suspend( Task_id[TASKID_AVF2] );
699 // if (status != RTEMS_SUCCESSFUL)
700 // {
701 // PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
702 // }
703 // }
704 // if (status == RTEMS_SUCCESSFUL) // suspend PRC2
705 // {
706 // status = rtems_task_suspend( Task_id[TASKID_PRC2] );
707 // if (status != RTEMS_SUCCESSFUL)
708 // {
709 // PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
710 // }
711 // }
713 712 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 713 {
715 714 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 715 if (status != RTEMS_SUCCESSFUL)
717 716 {
718 717 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 718 }
720 719 }
721 720 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 721 {
723 722 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 723 if (status != RTEMS_SUCCESSFUL)
725 724 {
726 725 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 726 }
728 727 }
729 728 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 729 {
731 730 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 731 if (status != RTEMS_SUCCESSFUL)
733 732 {
734 733 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 734 }
736 735 }
737 736 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 737 {
739 738 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 739 if (status != RTEMS_SUCCESSFUL)
741 740 {
742 741 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 742 }
744 743 }
745 744
746 745 return status;
747 746 }
748 747
749 748 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 749 {
751 750 reset_current_ring_nodes();
752 751 reset_waveform_picker_regs();
753 752 set_wfp_burst_enable_register( mode );
754 753
755 754 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 755 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757 756
758 757 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 758 if (transitionCoarseTime == 0)
760 759 {
761 760 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 761 }
763 762 else
764 763 {
765 764 waveform_picker_regs->start_date = transitionCoarseTime;
766 765 }
767 766 }
768 767
769 768 void launch_spectral_matrix( void )
770 769 {
771 770 SM_reset_current_ring_nodes();
772 771 reset_spectral_matrix_regs();
773 772 reset_nb_sm();
774 773
775 774 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 775 grgpio_regs->io_port_direction_register =
777 776 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 777 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 778 set_irq_on_new_ready_matrix( 1 );
780 779 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 780 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 781 set_run_matrix_spectral( 1 );
783 782
784 783 }
785 784
786 785 void launch_spectral_matrix_simu( void )
787 786 {
788 787 SM_reset_current_ring_nodes();
789 788 reset_spectral_matrix_regs();
790 789 reset_nb_sm();
791 790
792 791 // Spectral Matrices simulator
793 792 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
794 793 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
795 794 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
796 795 set_local_nb_interrupt_f0_MAX();
797 796 }
798 797
799 798 void set_irq_on_new_ready_matrix( unsigned char value )
800 799 {
801 800 if (value == 1)
802 801 {
803 802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
804 803 }
805 804 else
806 805 {
807 806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
808 807 }
809 808 }
810 809
811 810 void set_run_matrix_spectral( unsigned char value )
812 811 {
813 812 if (value == 1)
814 813 {
815 814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
816 815 }
817 816 else
818 817 {
819 818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
820 819 }
821 820 }
822 821
823 822 //****************
824 823 // CLOSING ACTIONS
825 824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
826 825 {
827 826 /** This function is used to update the HK packets statistics after a successful TC execution.
828 827 *
829 828 * @param TC points to the TC being processed
830 829 * @param time is the time used to date the TC execution
831 830 *
832 831 */
833 832
834 833 unsigned int val;
835 834
836 835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
837 836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
838 837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
839 838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
840 839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
841 840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
842 841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
843 842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
844 843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
845 844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
846 845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
847 846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
848 847
849 848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
850 849 val++;
851 850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
852 851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
853 852 }
854 853
855 854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
856 855 {
857 856 /** This function is used to update the HK packets statistics after a TC rejection.
858 857 *
859 858 * @param TC points to the TC being processed
860 859 * @param time is the time used to date the TC rejection
861 860 *
862 861 */
863 862
864 863 unsigned int val;
865 864
866 865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
867 866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
868 867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
869 868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
870 869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
871 870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
872 871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
873 872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
874 873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
875 874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
876 875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
877 876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
878 877
879 878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
880 879 val++;
881 880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
882 881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
883 882 }
884 883
885 884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
886 885 {
887 886 /** This function is the last step of the TC execution workflow.
888 887 *
889 888 * @param TC points to the TC being processed
890 889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
891 890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
892 891 * @param time is the time used to date the TC execution
893 892 *
894 893 */
895 894
896 895 unsigned char requestedMode;
897 896
898 897 if (result == LFR_SUCCESSFUL)
899 898 {
900 899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
901 900 &
902 901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
903 902 )
904 903 {
905 904 send_tm_lfr_tc_exe_success( TC, queue_id );
906 905 }
907 906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
908 907 {
909 908 //**********************************
910 909 // UPDATE THE LFRMODE LOCAL VARIABLE
911 910 requestedMode = TC->dataAndCRC[1];
912 911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
913 912 updateLFRCurrentMode();
914 913 }
915 914 }
916 915 else if (result == LFR_EXE_ERROR)
917 916 {
918 917 send_tm_lfr_tc_exe_error( TC, queue_id );
919 918 }
920 919 }
921 920
922 921 //***************************
923 922 // Interrupt Service Routines
924 923 rtems_isr commutation_isr1( rtems_vector_number vector )
925 924 {
926 925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
927 926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
928 927 }
929 928 }
930 929
931 930 rtems_isr commutation_isr2( rtems_vector_number vector )
932 931 {
933 932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
934 933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
935 934 }
936 935 }
937 936
938 937 //****************
939 938 // OTHER FUNCTIONS
940 939 void updateLFRCurrentMode()
941 940 {
942 941 /** This function updates the value of the global variable lfrCurrentMode.
943 942 *
944 943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
945 944 *
946 945 */
947 946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
948 947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
949 948 }
950 949
General Comments 0
You need to be logged in to leave comments. Login now