##// END OF EJS Templates
3.1.0.1...
paul -
r292:d9dfd2a081bc R3_plus draft
parent child
Show More
@@ -1,123 +1,123
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options =
3 # CONFIG options =
4 # verbose
4 # verbose
5 # boot_messages
5 # boot_messages
6 # debug_messages
6 # debug_messages
7 # cpu_usage_report
7 # cpu_usage_report
8 # stack_report
8 # stack_report
9 # vhdl_dev
9 # vhdl_dev
10 # debug_tch
10 # debug_tch
11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
12 # debug_watchdog
12 # debug_watchdog
13 CONFIG += console verbose lpp_dpu_destid cpu_usage_report
13 CONFIG += console verbose lpp_dpu_destid cpu_usage_report
14 CONFIG -= qt
14 CONFIG -= qt
15
15
16 include(./sparc.pri)
16 include(./sparc.pri)
17
17
18 # flight software version
18 # flight software version
19 SWVERSION=-1-0
19 SWVERSION=-1-0
20 DEFINES += SW_VERSION_N1=3 # major
20 DEFINES += SW_VERSION_N1=3 # major
21 DEFINES += SW_VERSION_N2=1 # minor
21 DEFINES += SW_VERSION_N2=1 # minor
22 DEFINES += SW_VERSION_N3=0 # patch
22 DEFINES += SW_VERSION_N3=0 # patch
23 DEFINES += SW_VERSION_N4=0 # internal
23 DEFINES += SW_VERSION_N4=1 # internal
24
24
25 # <GCOV>
25 # <GCOV>
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
28 # </GCOV>
28 # </GCOV>
29
29
30 # <CHANGE BEFORE FLIGHT>
30 # <CHANGE BEFORE FLIGHT>
31 contains( CONFIG, lpp_dpu_destid ) {
31 contains( CONFIG, lpp_dpu_destid ) {
32 DEFINES += LPP_DPU_DESTID
32 DEFINES += LPP_DPU_DESTID
33 }
33 }
34 # </CHANGE BEFORE FLIGHT>
34 # </CHANGE BEFORE FLIGHT>
35
35
36 contains( CONFIG, debug_tch ) {
36 contains( CONFIG, debug_tch ) {
37 DEFINES += DEBUG_TCH
37 DEFINES += DEBUG_TCH
38 }
38 }
39 DEFINES += MSB_FIRST_TCH
39 DEFINES += MSB_FIRST_TCH
40
40
41 contains( CONFIG, vhdl_dev ) {
41 contains( CONFIG, vhdl_dev ) {
42 DEFINES += VHDL_DEV
42 DEFINES += VHDL_DEV
43 }
43 }
44
44
45 contains( CONFIG, verbose ) {
45 contains( CONFIG, verbose ) {
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
47 }
47 }
48
48
49 contains( CONFIG, debug_messages ) {
49 contains( CONFIG, debug_messages ) {
50 DEFINES += DEBUG_MESSAGES
50 DEFINES += DEBUG_MESSAGES
51 }
51 }
52
52
53 contains( CONFIG, cpu_usage_report ) {
53 contains( CONFIG, cpu_usage_report ) {
54 DEFINES += PRINT_TASK_STATISTICS
54 DEFINES += PRINT_TASK_STATISTICS
55 }
55 }
56
56
57 contains( CONFIG, stack_report ) {
57 contains( CONFIG, stack_report ) {
58 DEFINES += PRINT_STACK_REPORT
58 DEFINES += PRINT_STACK_REPORT
59 }
59 }
60
60
61 contains( CONFIG, boot_messages ) {
61 contains( CONFIG, boot_messages ) {
62 DEFINES += BOOT_MESSAGES
62 DEFINES += BOOT_MESSAGES
63 }
63 }
64
64
65 contains( CONFIG, debug_watchdog ) {
65 contains( CONFIG, debug_watchdog ) {
66 DEFINES += DEBUG_WATCHDOG
66 DEFINES += DEBUG_WATCHDOG
67 }
67 }
68
68
69 #doxygen.target = doxygen
69 #doxygen.target = doxygen
70 #doxygen.commands = doxygen ../doc/Doxyfile
70 #doxygen.commands = doxygen ../doc/Doxyfile
71 #QMAKE_EXTRA_TARGETS += doxygen
71 #QMAKE_EXTRA_TARGETS += doxygen
72
72
73 TARGET = fsw
73 TARGET = fsw
74
74
75 INCLUDEPATH += \
75 INCLUDEPATH += \
76 $${PWD}/../src \
76 $${PWD}/../src \
77 $${PWD}/../header \
77 $${PWD}/../header \
78 $${PWD}/../header/lfr_common_headers \
78 $${PWD}/../header/lfr_common_headers \
79 $${PWD}/../header/processing \
79 $${PWD}/../header/processing \
80 $${PWD}/../LFR_basic-parameters
80 $${PWD}/../LFR_basic-parameters
81
81
82 SOURCES += \
82 SOURCES += \
83 ../src/wf_handler.c \
83 ../src/wf_handler.c \
84 ../src/tc_handler.c \
84 ../src/tc_handler.c \
85 ../src/fsw_misc.c \
85 ../src/fsw_misc.c \
86 ../src/fsw_init.c \
86 ../src/fsw_init.c \
87 ../src/fsw_globals.c \
87 ../src/fsw_globals.c \
88 ../src/fsw_spacewire.c \
88 ../src/fsw_spacewire.c \
89 ../src/tc_load_dump_parameters.c \
89 ../src/tc_load_dump_parameters.c \
90 ../src/tm_lfr_tc_exe.c \
90 ../src/tm_lfr_tc_exe.c \
91 ../src/tc_acceptance.c \
91 ../src/tc_acceptance.c \
92 ../src/processing/fsw_processing.c \
92 ../src/processing/fsw_processing.c \
93 ../src/processing/avf0_prc0.c \
93 ../src/processing/avf0_prc0.c \
94 ../src/processing/avf1_prc1.c \
94 ../src/processing/avf1_prc1.c \
95 ../src/processing/avf2_prc2.c \
95 ../src/processing/avf2_prc2.c \
96 ../src/lfr_cpu_usage_report.c \
96 ../src/lfr_cpu_usage_report.c \
97 ../LFR_basic-parameters/basic_parameters.c
97 ../LFR_basic-parameters/basic_parameters.c
98
98
99 HEADERS += \
99 HEADERS += \
100 ../header/wf_handler.h \
100 ../header/wf_handler.h \
101 ../header/tc_handler.h \
101 ../header/tc_handler.h \
102 ../header/grlib_regs.h \
102 ../header/grlib_regs.h \
103 ../header/fsw_misc.h \
103 ../header/fsw_misc.h \
104 ../header/fsw_init.h \
104 ../header/fsw_init.h \
105 ../header/fsw_spacewire.h \
105 ../header/fsw_spacewire.h \
106 ../header/tc_load_dump_parameters.h \
106 ../header/tc_load_dump_parameters.h \
107 ../header/tm_lfr_tc_exe.h \
107 ../header/tm_lfr_tc_exe.h \
108 ../header/tc_acceptance.h \
108 ../header/tc_acceptance.h \
109 ../header/processing/fsw_processing.h \
109 ../header/processing/fsw_processing.h \
110 ../header/processing/avf0_prc0.h \
110 ../header/processing/avf0_prc0.h \
111 ../header/processing/avf1_prc1.h \
111 ../header/processing/avf1_prc1.h \
112 ../header/processing/avf2_prc2.h \
112 ../header/processing/avf2_prc2.h \
113 ../header/fsw_params_wf_handler.h \
113 ../header/fsw_params_wf_handler.h \
114 ../header/lfr_cpu_usage_report.h \
114 ../header/lfr_cpu_usage_report.h \
115 ../header/lfr_common_headers/ccsds_types.h \
115 ../header/lfr_common_headers/ccsds_types.h \
116 ../header/lfr_common_headers/fsw_params.h \
116 ../header/lfr_common_headers/fsw_params.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
119 ../header/lfr_common_headers/tm_byte_positions.h \
119 ../header/lfr_common_headers/tm_byte_positions.h \
120 ../LFR_basic-parameters/basic_parameters.h \
120 ../LFR_basic-parameters/basic_parameters.h \
121 ../LFR_basic-parameters/basic_parameters_params.h \
121 ../LFR_basic-parameters/basic_parameters_params.h \
122 ../header/GscMemoryLPP.hpp
122 ../header/GscMemoryLPP.hpp
123
123
@@ -1,413 +1,414
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf0_prc0.h"
10 #include "avf0_prc0.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14
14
15 //***
15 //***
16 // F0
16 // F0
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19
19
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
22
22
23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
26
26
27 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
27 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
28 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
28 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
29 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
29 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
30
30
31 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
31 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
32 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
32 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
33
33
34 //************
34 //************
35 // RTEMS TASKS
35 // RTEMS TASKS
36
36
37 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
37 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
38 {
38 {
39 int i;
39 int i;
40
40
41 rtems_event_set event_out;
41 rtems_event_set event_out;
42 rtems_status_code status;
42 rtems_status_code status;
43 rtems_id queue_id_prc0;
43 rtems_id queue_id_prc0;
44 asm_msg msgForPRC;
44 asm_msg msgForPRC;
45 ring_node *nodeForAveraging;
45 ring_node *nodeForAveraging;
46 ring_node *ring_node_tab[8];
46 ring_node *ring_node_tab[8];
47 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
47 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
48 ring_node_asm *current_ring_node_asm_norm_f0;
48 ring_node_asm *current_ring_node_asm_norm_f0;
49
49
50 unsigned int nb_norm_bp1;
50 unsigned int nb_norm_bp1;
51 unsigned int nb_norm_bp2;
51 unsigned int nb_norm_bp2;
52 unsigned int nb_norm_asm;
52 unsigned int nb_norm_asm;
53 unsigned int nb_sbm_bp1;
53 unsigned int nb_sbm_bp1;
54 unsigned int nb_sbm_bp2;
54 unsigned int nb_sbm_bp2;
55
55
56 nb_norm_bp1 = 0;
56 nb_norm_bp1 = 0;
57 nb_norm_bp2 = 0;
57 nb_norm_bp2 = 0;
58 nb_norm_asm = 0;
58 nb_norm_asm = 0;
59 nb_sbm_bp1 = 0;
59 nb_sbm_bp1 = 0;
60 nb_sbm_bp2 = 0;
60 nb_sbm_bp2 = 0;
61
61
62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
67
67
68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69
69
70 status = get_message_queue_id_prc0( &queue_id_prc0 );
70 status = get_message_queue_id_prc0( &queue_id_prc0 );
71 if (status != RTEMS_SUCCESSFUL)
71 if (status != RTEMS_SUCCESSFUL)
72 {
72 {
73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
74 }
74 }
75
75
76 while(1){
76 while(1){
77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78
78
79 //****************************************
79 //****************************************
80 // initialize the mesage for the MATR task
80 // initialize the mesage for the MATR task
81 msgForPRC.norm = current_ring_node_asm_norm_f0;
81 msgForPRC.norm = current_ring_node_asm_norm_f0;
82 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
82 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
83 msgForPRC.event = 0x00; // this composite event will be sent to the PRC0 task
83 msgForPRC.event = 0x00; // this composite event will be sent to the PRC0 task
84 //
84 //
85 //****************************************
85 //****************************************
86
86
87 nodeForAveraging = getRingNodeForAveraging( 0 );
87 nodeForAveraging = getRingNodeForAveraging( 0 );
88
88
89 ring_node_tab[NB_SM_BEFORE_AVF0-1] = nodeForAveraging;
89 ring_node_tab[NB_SM_BEFORE_AVF0-1] = nodeForAveraging;
90 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
90 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
91 {
91 {
92 nodeForAveraging = nodeForAveraging->previous;
92 nodeForAveraging = nodeForAveraging->previous;
93 ring_node_tab[NB_SM_BEFORE_AVF0-i] = nodeForAveraging;
93 ring_node_tab[NB_SM_BEFORE_AVF0-i] = nodeForAveraging;
94 }
94 }
95
95
96 // compute the average and store it in the averaged_sm_f1 buffer
96 // compute the average and store it in the averaged_sm_f1 buffer
97 SM_average( current_ring_node_asm_norm_f0->matrix,
97 SM_average( current_ring_node_asm_norm_f0->matrix,
98 current_ring_node_asm_burst_sbm_f0->matrix,
98 current_ring_node_asm_burst_sbm_f0->matrix,
99 ring_node_tab,
99 ring_node_tab,
100 nb_norm_bp1, nb_sbm_bp1,
100 nb_norm_bp1, nb_sbm_bp1,
101 &msgForPRC, 0 ); // 0 => frequency channel 0
101 &msgForPRC, 0 ); // 0 => frequency channel 0
102
102
103 // update nb_average
103 // update nb_average
104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
109
109
110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
111 {
111 {
112 nb_sbm_bp1 = 0;
112 nb_sbm_bp1 = 0;
113 // set another ring for the ASM storage
113 // set another ring for the ASM storage
114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
115 if ( lfrCurrentMode == LFR_MODE_BURST )
115 if ( lfrCurrentMode == LFR_MODE_BURST )
116 {
116 {
117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
118 }
118 }
119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
120 {
120 {
121 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
121 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
122 }
122 }
123 }
123 }
124
124
125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
126 {
126 {
127 nb_sbm_bp2 = 0;
127 nb_sbm_bp2 = 0;
128 if ( lfrCurrentMode == LFR_MODE_BURST )
128 if ( lfrCurrentMode == LFR_MODE_BURST )
129 {
129 {
130 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
130 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
131 }
131 }
132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
133 {
133 {
134 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
134 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
135 }
135 }
136 }
136 }
137
137
138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
139 {
139 {
140 nb_norm_bp1 = 0;
140 nb_norm_bp1 = 0;
141 // set another ring for the ASM storage
141 // set another ring for the ASM storage
142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 {
145 {
146 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
146 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
147 }
147 }
148 }
148 }
149
149
150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
151 {
151 {
152 nb_norm_bp2 = 0;
152 nb_norm_bp2 = 0;
153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 {
155 {
156 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
156 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
157 }
157 }
158 }
158 }
159
159
160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
161 {
161 {
162 nb_norm_asm = 0;
162 nb_norm_asm = 0;
163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 {
165 {
166 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
166 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
167 }
167 }
168 }
168 }
169
169
170 //*************************
170 //*************************
171 // send the message to PRC
171 // send the message to PRC
172 if (msgForPRC.event != 0x00)
172 if (msgForPRC.event != 0x00)
173 {
173 {
174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
175 }
175 }
176
176
177 if (status != RTEMS_SUCCESSFUL) {
177 if (status != RTEMS_SUCCESSFUL) {
178 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
178 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
179 }
179 }
180 }
180 }
181 }
181 }
182
182
183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
184 {
184 {
185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 size_t size; // size of the incoming TC packet
186 size_t size; // size of the incoming TC packet
187 asm_msg *incomingMsg;
187 asm_msg *incomingMsg;
188 //
188 //
189 unsigned char sid;
189 unsigned char sid;
190 rtems_status_code status;
190 rtems_status_code status;
191 rtems_id queue_id;
191 rtems_id queue_id;
192 rtems_id queue_id_q_p0;
192 rtems_id queue_id_q_p0;
193 bp_packet_with_spare packet_norm_bp1;
193 bp_packet_with_spare packet_norm_bp1;
194 bp_packet packet_norm_bp2;
194 bp_packet packet_norm_bp2;
195 bp_packet packet_sbm_bp1;
195 bp_packet packet_sbm_bp1;
196 bp_packet packet_sbm_bp2;
196 bp_packet packet_sbm_bp2;
197 ring_node *current_ring_node_to_send_asm_f0;
197 ring_node *current_ring_node_to_send_asm_f0;
198 float nbSMInASMNORM;
198 float nbSMInASMNORM;
199 float nbSMInASMSBM;
199 float nbSMInASMSBM;
200
200
201 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
201 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
202 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
202 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
203 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
203 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
204
204
205 //*************
205 //*************
206 // NORM headers
206 // NORM headers
207 BP_init_header_with_spare( &packet_norm_bp1,
207 BP_init_header_with_spare( &packet_norm_bp1,
208 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
208 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
209 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
209 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
210 BP_init_header( &packet_norm_bp2,
210 BP_init_header( &packet_norm_bp2,
211 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
211 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
212 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
212 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
213
213
214 //****************************
214 //****************************
215 // BURST SBM1 and SBM2 headers
215 // BURST SBM1 and SBM2 headers
216 if ( lfrRequestedMode == LFR_MODE_BURST )
216 if ( lfrRequestedMode == LFR_MODE_BURST )
217 {
217 {
218 BP_init_header( &packet_sbm_bp1,
218 BP_init_header( &packet_sbm_bp1,
219 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
219 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
220 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
220 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
221 BP_init_header( &packet_sbm_bp2,
221 BP_init_header( &packet_sbm_bp2,
222 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
222 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
223 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
223 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
224 }
224 }
225 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
225 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
226 {
226 {
227 BP_init_header( &packet_sbm_bp1,
227 BP_init_header( &packet_sbm_bp1,
228 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
228 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
230 BP_init_header( &packet_sbm_bp2,
230 BP_init_header( &packet_sbm_bp2,
231 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
231 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
233 }
233 }
234 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
234 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
235 {
235 {
236 BP_init_header( &packet_sbm_bp1,
236 BP_init_header( &packet_sbm_bp1,
237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
239 BP_init_header( &packet_sbm_bp2,
239 BP_init_header( &packet_sbm_bp2,
240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
242 }
242 }
243 else
243 else
244 {
244 {
245 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
245 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
246 }
246 }
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253 status = get_message_queue_id_prc0( &queue_id_q_p0);
253 status = get_message_queue_id_prc0( &queue_id_q_p0);
254 if (status != RTEMS_SUCCESSFUL)
254 if (status != RTEMS_SUCCESSFUL)
255 {
255 {
256 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
256 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
257 }
257 }
258
258
259 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
259 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
260
260
261 while(1){
261 while(1){
262 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
262 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
263 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
263 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
264
264
265 incomingMsg = (asm_msg*) incomingData;
265 incomingMsg = (asm_msg*) incomingData;
266
266
267 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
267 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
268 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
268 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
269
269
270 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
270 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
271 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
271 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
272
272
273 //****************
273 //****************
274 //****************
274 //****************
275 // BURST SBM1 SBM2
275 // BURST SBM1 SBM2
276 //****************
276 //****************
277 //****************
277 //****************
278 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
278 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
279 {
279 {
280 sid = getSID( incomingMsg->event );
280 sid = getSID( incomingMsg->event );
281 // 1) compress the matrix for Basic Parameters calculation
281 // 1) compress the matrix for Basic Parameters calculation
282 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
282 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
283 nbSMInASMSBM,
283 nbSMInASMSBM,
284 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
284 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
285 ASM_F0_INDICE_START, CHANNELF0);
285 ASM_F0_INDICE_START, CHANNELF0);
286 // 2) compute the BP1 set
286 // 2) compute the BP1 set
287 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
287 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
288 // 3) send the BP1 set
288 // 3) send the BP1 set
289 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
289 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
290 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
290 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
291 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
291 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
292 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
292 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
293 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
293 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
295 sid);
295 sid);
296 // 4) compute the BP2 set if needed
296 // 4) compute the BP2 set if needed
297 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
297 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
298 {
298 {
299 // 1) compute the BP2 set
299 // 1) compute the BP2 set
300 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
300 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
301 // 2) send the BP2 set
301 // 2) send the BP2 set
302 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
302 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
303 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
303 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
304 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
304 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
305 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
305 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
306 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
306 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
307 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
307 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
308 sid);
308 sid);
309 }
309 }
310 }
310 }
311
311
312 //*****
312 //*****
313 //*****
313 //*****
314 // NORM
314 // NORM
315 //*****
315 //*****
316 //*****
316 //*****
317 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
317 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
318 {
318 {
319 // 1) compress the matrix for Basic Parameters calculation
319 // 1) compress the matrix for Basic Parameters calculation
320 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
320 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
321 nbSMInASMNORM,
321 nbSMInASMNORM,
322 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
322 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
323 ASM_F0_INDICE_START, CHANNELF0 );
323 ASM_F0_INDICE_START, CHANNELF0 );
324 // 2) compute the BP1 set
324 // 2) compute the BP1 set
325 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
325 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
326 // 3) send the BP1 set
326 // 3) send the BP1 set
327 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
327 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
329 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
329 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
330 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
330 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
331 BP_send( (char *) &packet_norm_bp1, queue_id,
331 BP_send( (char *) &packet_norm_bp1, queue_id,
332 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
332 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
333 SID_NORM_BP1_F0 );
333 SID_NORM_BP1_F0 );
334 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
334 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
335 {
335 {
336 // 1) compute the BP2 set using the same ASM as the one used for BP1
336 // 1) compute the BP2 set using the same ASM as the one used for BP1
337 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
337 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
338 // 2) send the BP2 set
338 // 2) send the BP2 set
339 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
339 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
340 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
340 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
341 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
341 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
342 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
342 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
343 BP_send( (char *) &packet_norm_bp2, queue_id,
343 BP_send( (char *) &packet_norm_bp2, queue_id,
344 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
344 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
345 SID_NORM_BP2_F0);
345 SID_NORM_BP2_F0);
346 }
346 }
347 }
347 }
348
348
349 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
349 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
350 {
350 {
351 // 1) reorganize the ASM and divide
351 // 1) reorganize the ASM and divide
352 ASM_reorganize_and_divide( asm_f0_patched_norm,
352 ASM_reorganize_and_divide( asm_f0_patched_norm,
353 (float*) current_ring_node_to_send_asm_f0->buffer_address,
353 (float*) current_ring_node_to_send_asm_f0->buffer_address,
354 nbSMInASMNORM );
354 nbSMInASMNORM );
355 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
355 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
356 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
356 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
357 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
357 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
358
358
359 // 3) send the spectral matrix packets
359 // 3) send the spectral matrix packets
360 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
360 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
361
361 // change asm ring node
362 // change asm ring node
362 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
363 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
363 }
364 }
364
365
365 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
366 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
366
367
367 }
368 }
368 }
369 }
369
370
370 //**********
371 //**********
371 // FUNCTIONS
372 // FUNCTIONS
372
373
373 void reset_nb_sm_f0( unsigned char lfrMode )
374 void reset_nb_sm_f0( unsigned char lfrMode )
374 {
375 {
375 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
376 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
376 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
377 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
377 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
378 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
378 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24; // 0.25 s per digit
379 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24; // 0.25 s per digit
379 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
380 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
380 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
381 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
381 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
382 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
382 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
383 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
383 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
384 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
384
385
385 if (lfrMode == LFR_MODE_SBM1)
386 if (lfrMode == LFR_MODE_SBM1)
386 {
387 {
387 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
388 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
388 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
389 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
389 }
390 }
390 else if (lfrMode == LFR_MODE_SBM2)
391 else if (lfrMode == LFR_MODE_SBM2)
391 {
392 {
392 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
393 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
393 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
394 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
394 }
395 }
395 else if (lfrMode == LFR_MODE_BURST)
396 else if (lfrMode == LFR_MODE_BURST)
396 {
397 {
397 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
398 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
398 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
399 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
399 }
400 }
400 else
401 else
401 {
402 {
402 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
403 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
403 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
404 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
404 }
405 }
405 }
406 }
406
407
407 void init_k_coefficients_prc0( void )
408 void init_k_coefficients_prc0( void )
408 {
409 {
409 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
410 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
410
411
411 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
412 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
412 }
413 }
413
414
@@ -1,396 +1,398
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf1_prc1.h"
10 #include "avf1_prc1.h"
11
11
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13
13
14 extern ring_node sm_ring_f1[ ];
14 extern ring_node sm_ring_f1[ ];
15
15
16 //***
16 //***
17 // F1
17 // F1
18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
20
20
21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
23
23
24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
27
27
28 char asm_f1_char [ TOTAL_SIZE_SM * 2 ];
28 char asm_f1_char [ TOTAL_SIZE_SM * 2 ];
29 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
29 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
30 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
30 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
31
31
32 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
32 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
33 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
33 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
34
34
35 //************
35 //************
36 // RTEMS TASKS
36 // RTEMS TASKS
37
37
38 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
38 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
39 {
39 {
40 int i;
40 int i;
41
41
42 rtems_event_set event_out;
42 rtems_event_set event_out;
43 rtems_status_code status;
43 rtems_status_code status;
44 rtems_id queue_id_prc1;
44 rtems_id queue_id_prc1;
45 asm_msg msgForPRC;
45 asm_msg msgForPRC;
46 ring_node *nodeForAveraging;
46 ring_node *nodeForAveraging;
47 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0];
47 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0];
48 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
48 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
49 ring_node_asm *current_ring_node_asm_norm_f1;
49 ring_node_asm *current_ring_node_asm_norm_f1;
50
50
51 unsigned int nb_norm_bp1;
51 unsigned int nb_norm_bp1;
52 unsigned int nb_norm_bp2;
52 unsigned int nb_norm_bp2;
53 unsigned int nb_norm_asm;
53 unsigned int nb_norm_asm;
54 unsigned int nb_sbm_bp1;
54 unsigned int nb_sbm_bp1;
55 unsigned int nb_sbm_bp2;
55 unsigned int nb_sbm_bp2;
56
56
57 nb_norm_bp1 = 0;
57 nb_norm_bp1 = 0;
58 nb_norm_bp2 = 0;
58 nb_norm_bp2 = 0;
59 nb_norm_asm = 0;
59 nb_norm_asm = 0;
60 nb_sbm_bp1 = 0;
60 nb_sbm_bp1 = 0;
61 nb_sbm_bp2 = 0;
61 nb_sbm_bp2 = 0;
62
62
63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
68
68
69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
70
70
71 status = get_message_queue_id_prc1( &queue_id_prc1 );
71 status = get_message_queue_id_prc1( &queue_id_prc1 );
72 if (status != RTEMS_SUCCESSFUL)
72 if (status != RTEMS_SUCCESSFUL)
73 {
73 {
74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
75 }
75 }
76
76
77 while(1){
77 while(1){
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
79
79
80 //****************************************
80 //****************************************
81 // initialize the mesage for the MATR task
81 // initialize the mesage for the MATR task
82 msgForPRC.norm = current_ring_node_asm_norm_f1;
82 msgForPRC.norm = current_ring_node_asm_norm_f1;
83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
84 msgForPRC.event = 0x00; // this composite event will be sent to the PRC1 task
84 msgForPRC.event = 0x00; // this composite event will be sent to the PRC1 task
85 //
85 //
86 //****************************************
86 //****************************************
87
87
88 nodeForAveraging = getRingNodeForAveraging( 1 );
88 nodeForAveraging = getRingNodeForAveraging( 1 );
89
89
90 ring_node_tab[NB_SM_BEFORE_AVF1-1] = nodeForAveraging;
90 ring_node_tab[NB_SM_BEFORE_AVF1-1] = nodeForAveraging;
91 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
91 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
92 {
92 {
93 nodeForAveraging = nodeForAveraging->previous;
93 nodeForAveraging = nodeForAveraging->previous;
94 ring_node_tab[NB_SM_BEFORE_AVF1-i] = nodeForAveraging;
94 ring_node_tab[NB_SM_BEFORE_AVF1-i] = nodeForAveraging;
95 }
95 }
96
96
97 // compute the average and store it in the averaged_sm_f1 buffer
97 // compute the average and store it in the averaged_sm_f1 buffer
98 SM_average( current_ring_node_asm_norm_f1->matrix,
98 SM_average( current_ring_node_asm_norm_f1->matrix,
99 current_ring_node_asm_burst_sbm_f1->matrix,
99 current_ring_node_asm_burst_sbm_f1->matrix,
100 ring_node_tab,
100 ring_node_tab,
101 nb_norm_bp1, nb_sbm_bp1,
101 nb_norm_bp1, nb_sbm_bp1,
102 &msgForPRC, 1 ); // 1 => frequency channel 1
102 &msgForPRC, 1 ); // 1 => frequency channel 1
103
103
104 // update nb_average
104 // update nb_average
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
110
110
111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
112 {
112 {
113 nb_sbm_bp1 = 0;
113 nb_sbm_bp1 = 0;
114 // set another ring for the ASM storage
114 // set another ring for the ASM storage
115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
116 if ( lfrCurrentMode == LFR_MODE_BURST )
116 if ( lfrCurrentMode == LFR_MODE_BURST )
117 {
117 {
118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
119 }
119 }
120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
121 {
121 {
122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
123 }
123 }
124 }
124 }
125
125
126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
127 {
127 {
128 nb_sbm_bp2 = 0;
128 nb_sbm_bp2 = 0;
129 if ( lfrCurrentMode == LFR_MODE_BURST )
129 if ( lfrCurrentMode == LFR_MODE_BURST )
130 {
130 {
131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
132 }
132 }
133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
134 {
134 {
135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
136 }
136 }
137 }
137 }
138
138
139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
140 {
140 {
141 nb_norm_bp1 = 0;
141 nb_norm_bp1 = 0;
142 // set another ring for the ASM storage
142 // set another ring for the ASM storage
143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 {
146 {
147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
148 }
148 }
149 }
149 }
150
150
151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
152 {
152 {
153 nb_norm_bp2 = 0;
153 nb_norm_bp2 = 0;
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
156 {
156 {
157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
158 }
158 }
159 }
159 }
160
160
161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
162 {
162 {
163 nb_norm_asm = 0;
163 nb_norm_asm = 0;
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
166 {
166 {
167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
168 }
168 }
169 }
169 }
170
170
171 //*************************
171 //*************************
172 // send the message to PRC
172 // send the message to PRC
173 if (msgForPRC.event != 0x00)
173 if (msgForPRC.event != 0x00)
174 {
174 {
175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
176 }
176 }
177
177
178 if (status != RTEMS_SUCCESSFUL) {
178 if (status != RTEMS_SUCCESSFUL) {
179 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
179 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
180 }
180 }
181 }
181 }
182 }
182 }
183
183
184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
185 {
185 {
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
187 size_t size; // size of the incoming TC packet
187 size_t size; // size of the incoming TC packet
188 asm_msg *incomingMsg;
188 asm_msg *incomingMsg;
189 //
189 //
190 unsigned char sid;
190 unsigned char sid;
191 rtems_status_code status;
191 rtems_status_code status;
192 rtems_id queue_id_send;
192 rtems_id queue_id_send;
193 rtems_id queue_id_q_p1;
193 rtems_id queue_id_q_p1;
194 bp_packet_with_spare packet_norm_bp1;
194 bp_packet_with_spare packet_norm_bp1;
195 bp_packet packet_norm_bp2;
195 bp_packet packet_norm_bp2;
196 bp_packet packet_sbm_bp1;
196 bp_packet packet_sbm_bp1;
197 bp_packet packet_sbm_bp2;
197 bp_packet packet_sbm_bp2;
198 ring_node *current_ring_node_to_send_asm_f1;
198 ring_node *current_ring_node_to_send_asm_f1;
199 float nbSMInASMNORM;
199 float nbSMInASMNORM;
200 float nbSMInASMSBM;
200 float nbSMInASMSBM;
201
201
202 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
202 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
203 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
203 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
204 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
204 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
205
205
206 //*************
206 //*************
207 // NORM headers
207 // NORM headers
208 BP_init_header_with_spare( &packet_norm_bp1,
208 BP_init_header_with_spare( &packet_norm_bp1,
209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
211 BP_init_header( &packet_norm_bp2,
211 BP_init_header( &packet_norm_bp2,
212 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
212 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
213 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
213 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
214
214
215 //***********************
215 //***********************
216 // BURST and SBM2 headers
216 // BURST and SBM2 headers
217 if ( lfrRequestedMode == LFR_MODE_BURST )
217 if ( lfrRequestedMode == LFR_MODE_BURST )
218 {
218 {
219 BP_init_header( &packet_sbm_bp1,
219 BP_init_header( &packet_sbm_bp1,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
222 BP_init_header( &packet_sbm_bp2,
222 BP_init_header( &packet_sbm_bp2,
223 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
223 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
225 }
225 }
226 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
226 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
227 {
227 {
228 BP_init_header( &packet_sbm_bp1,
228 BP_init_header( &packet_sbm_bp1,
229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
231 BP_init_header( &packet_sbm_bp2,
231 BP_init_header( &packet_sbm_bp2,
232 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
232 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
233 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
233 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
234 }
234 }
235 else
235 else
236 {
236 {
237 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
237 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
238 }
238 }
239
239
240 status = get_message_queue_id_send( &queue_id_send );
240 status = get_message_queue_id_send( &queue_id_send );
241 if (status != RTEMS_SUCCESSFUL)
241 if (status != RTEMS_SUCCESSFUL)
242 {
242 {
243 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
243 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
244 }
244 }
245 status = get_message_queue_id_prc1( &queue_id_q_p1);
245 status = get_message_queue_id_prc1( &queue_id_q_p1);
246 if (status != RTEMS_SUCCESSFUL)
246 if (status != RTEMS_SUCCESSFUL)
247 {
247 {
248 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
248 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
249 }
249 }
250
250
251 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
251 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
252
252
253 while(1){
253 while(1){
254 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
254 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
255 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
255 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
256
256
257 incomingMsg = (asm_msg*) incomingData;
257 incomingMsg = (asm_msg*) incomingData;
258
258
259 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
259 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
260 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
260 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
261
261
262 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
262 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
263 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
263 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
264
264
265 //***********
265 //***********
266 //***********
266 //***********
267 // BURST SBM2
267 // BURST SBM2
268 //***********
268 //***********
269 //***********
269 //***********
270 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
270 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
271 {
271 {
272 sid = getSID( incomingMsg->event );
272 sid = getSID( incomingMsg->event );
273 // 1) compress the matrix for Basic Parameters calculation
273 // 1) compress the matrix for Basic Parameters calculation
274 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
274 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
275 nbSMInASMSBM,
275 nbSMInASMSBM,
276 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
276 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
277 ASM_F1_INDICE_START, CHANNELF1);
277 ASM_F1_INDICE_START, CHANNELF1);
278 // 2) compute the BP1 set
278 // 2) compute the BP1 set
279 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
279 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
280 // 3) send the BP1 set
280 // 3) send the BP1 set
281 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
281 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
282 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
282 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
283 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
283 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
284 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
284 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
285 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
285 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
286 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
286 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
287 sid );
287 sid );
288 // 4) compute the BP2 set if needed
288 // 4) compute the BP2 set if needed
289 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
289 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
290 {
290 {
291 // 1) compute the BP2 set
291 // 1) compute the BP2 set
292 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
292 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
293 // 2) send the BP2 set
293 // 2) send the BP2 set
294 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
294 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
295 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
295 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
296 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
296 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
297 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
297 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
298 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
298 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
299 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
299 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
300 sid );
300 sid );
301 }
301 }
302 }
302 }
303
303
304 //*****
304 //*****
305 //*****
305 //*****
306 // NORM
306 // NORM
307 //*****
307 //*****
308 //*****
308 //*****
309 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
309 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
310 {
310 {
311 // 1) compress the matrix for Basic Parameters calculation
311 // 1) compress the matrix for Basic Parameters calculation
312 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
312 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
313 nbSMInASMNORM,
313 nbSMInASMNORM,
314 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
314 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
315 ASM_F1_INDICE_START, CHANNELF1 );
315 ASM_F1_INDICE_START, CHANNELF1 );
316 // 2) compute the BP1 set
316 // 2) compute the BP1 set
317 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
317 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
318 // 3) send the BP1 set
318 // 3) send the BP1 set
319 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
319 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
320 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
320 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
321 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
321 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
322 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
322 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
323 BP_send( (char *) &packet_norm_bp1, queue_id_send,
323 BP_send( (char *) &packet_norm_bp1, queue_id_send,
324 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
324 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
325 SID_NORM_BP1_F1 );
325 SID_NORM_BP1_F1 );
326 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
326 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
327 {
327 {
328 // 1) compute the BP2 set
328 // 1) compute the BP2 set
329 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
329 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
330 // 2) send the BP2 set
330 // 2) send the BP2 set
331 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
331 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
332 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
332 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
333 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
333 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
334 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
334 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
335 BP_send( (char *) &packet_norm_bp2, queue_id_send,
335 BP_send( (char *) &packet_norm_bp2, queue_id_send,
336 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
336 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
337 SID_NORM_BP2_F1 );
337 SID_NORM_BP2_F1 );
338 }
338 }
339 }
339 }
340
340
341 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
341 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
342 {
342 {
343 // 1) reorganize the ASM and divide
343 // 1) reorganize the ASM and divide
344 ASM_reorganize_and_divide( asm_f1_patched_norm,
344 ASM_reorganize_and_divide( asm_f1_patched_norm,
345 (float*) current_ring_node_to_send_asm_f1->buffer_address,
345 (float*) current_ring_node_to_send_asm_f1->buffer_address,
346 nbSMInASMNORM );
346 nbSMInASMNORM );
347 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
347 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
348 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
348 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
349 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
349 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
350
350 // 3) send the spectral matrix packets
351 // 3) send the spectral matrix packets
351 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
352 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
353
352 // change asm ring node
354 // change asm ring node
353 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
355 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
354 }
356 }
355
357
356 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
358 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
357
359
358 }
360 }
359 }
361 }
360
362
361 //**********
363 //**********
362 // FUNCTIONS
364 // FUNCTIONS
363
365
364 void reset_nb_sm_f1( unsigned char lfrMode )
366 void reset_nb_sm_f1( unsigned char lfrMode )
365 {
367 {
366 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
368 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
367 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
369 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
368 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
370 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
369 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
371 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
370 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
372 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
371 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
373 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
372 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
374 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
373
375
374 if (lfrMode == LFR_MODE_SBM2)
376 if (lfrMode == LFR_MODE_SBM2)
375 {
377 {
376 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
378 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
377 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
379 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
378 }
380 }
379 else if (lfrMode == LFR_MODE_BURST)
381 else if (lfrMode == LFR_MODE_BURST)
380 {
382 {
381 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
383 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
382 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
384 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
383 }
385 }
384 else
386 else
385 {
387 {
386 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
388 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
387 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
389 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
388 }
390 }
389 }
391 }
390
392
391 void init_k_coefficients_prc1( void )
393 void init_k_coefficients_prc1( void )
392 {
394 {
393 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
395 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
394
396
395 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
397 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
396 }
398 }
@@ -1,325 +1,327
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf2_prc2.h"
10 #include "avf2_prc2.h"
11
11
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13
13
14 extern ring_node sm_ring_f2[ ];
14 extern ring_node sm_ring_f2[ ];
15
15
16 //***
16 //***
17 // F2
17 // F2
18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
19
19
20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
22
22
23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
25
25
26 char asm_f2_char [ TOTAL_SIZE_SM * 2 ];
26 char asm_f2_char [ TOTAL_SIZE_SM * 2 ];
27 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
27 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
28
28
29 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
29 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
30
30
31 //************
31 //************
32 // RTEMS TASKS
32 // RTEMS TASKS
33
33
34 //***
34 //***
35 // F2
35 // F2
36 rtems_task avf2_task( rtems_task_argument argument )
36 rtems_task avf2_task( rtems_task_argument argument )
37 {
37 {
38 rtems_event_set event_out;
38 rtems_event_set event_out;
39 rtems_status_code status;
39 rtems_status_code status;
40 rtems_id queue_id_prc2;
40 rtems_id queue_id_prc2;
41 asm_msg msgForPRC;
41 asm_msg msgForPRC;
42 ring_node *nodeForAveraging;
42 ring_node *nodeForAveraging;
43 ring_node_asm *current_ring_node_asm_norm_f2;
43 ring_node_asm *current_ring_node_asm_norm_f2;
44
44
45 unsigned int nb_norm_bp1;
45 unsigned int nb_norm_bp1;
46 unsigned int nb_norm_bp2;
46 unsigned int nb_norm_bp2;
47 unsigned int nb_norm_asm;
47 unsigned int nb_norm_asm;
48
48
49 nb_norm_bp1 = 0;
49 nb_norm_bp1 = 0;
50 nb_norm_bp2 = 0;
50 nb_norm_bp2 = 0;
51 nb_norm_asm = 0;
51 nb_norm_asm = 0;
52
52
53 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
53 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
54 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
54 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
55 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
55 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
56
56
57 BOOT_PRINTF("in AVF2 ***\n")
57 BOOT_PRINTF("in AVF2 ***\n")
58
58
59 status = get_message_queue_id_prc2( &queue_id_prc2 );
59 status = get_message_queue_id_prc2( &queue_id_prc2 );
60 if (status != RTEMS_SUCCESSFUL)
60 if (status != RTEMS_SUCCESSFUL)
61 {
61 {
62 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
62 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
63 }
63 }
64
64
65 while(1){
65 while(1){
66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
67
67
68 //****************************************
68 //****************************************
69 // initialize the mesage for the MATR task
69 // initialize the mesage for the MATR task
70 msgForPRC.norm = current_ring_node_asm_norm_f2;
70 msgForPRC.norm = current_ring_node_asm_norm_f2;
71 msgForPRC.burst_sbm = NULL;
71 msgForPRC.burst_sbm = NULL;
72 msgForPRC.event = 0x00; // this composite event will be sent to the PRC2 task
72 msgForPRC.event = 0x00; // this composite event will be sent to the PRC2 task
73 //
73 //
74 //****************************************
74 //****************************************
75
75
76 nodeForAveraging = getRingNodeForAveraging( 2 );
76 nodeForAveraging = getRingNodeForAveraging( 2 );
77
77
78 // compute the average and store it in the averaged_sm_f2 buffer
78 // compute the average and store it in the averaged_sm_f2 buffer
79 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
79 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
80 nodeForAveraging,
80 nodeForAveraging,
81 nb_norm_bp1,
81 nb_norm_bp1,
82 &msgForPRC );
82 &msgForPRC );
83
83
84 // update nb_average
84 // update nb_average
85 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
85 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
86 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
86 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
87 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
87 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
88
88
89 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
89 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
90 {
90 {
91 nb_norm_bp1 = 0;
91 nb_norm_bp1 = 0;
92 // set another ring for the ASM storage
92 // set another ring for the ASM storage
93 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
93 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
94 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
94 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
95 || (lfrCurrentMode == LFR_MODE_SBM2) )
95 || (lfrCurrentMode == LFR_MODE_SBM2) )
96 {
96 {
97 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
97 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
98 }
98 }
99 }
99 }
100
100
101 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
101 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
102 {
102 {
103 nb_norm_bp2 = 0;
103 nb_norm_bp2 = 0;
104 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
104 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
105 || (lfrCurrentMode == LFR_MODE_SBM2) )
105 || (lfrCurrentMode == LFR_MODE_SBM2) )
106 {
106 {
107 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
107 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
108 }
108 }
109 }
109 }
110
110
111 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
111 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
112 {
112 {
113 nb_norm_asm = 0;
113 nb_norm_asm = 0;
114 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
114 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
115 || (lfrCurrentMode == LFR_MODE_SBM2) )
115 || (lfrCurrentMode == LFR_MODE_SBM2) )
116 {
116 {
117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
118 }
118 }
119 }
119 }
120
120
121 //*************************
121 //*************************
122 // send the message to PRC2
122 // send the message to PRC2
123 if (msgForPRC.event != 0x00)
123 if (msgForPRC.event != 0x00)
124 {
124 {
125 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
125 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
126 }
126 }
127
127
128 if (status != RTEMS_SUCCESSFUL) {
128 if (status != RTEMS_SUCCESSFUL) {
129 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
129 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
130 }
130 }
131 }
131 }
132 }
132 }
133
133
134 rtems_task prc2_task( rtems_task_argument argument )
134 rtems_task prc2_task( rtems_task_argument argument )
135 {
135 {
136 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
136 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
137 size_t size; // size of the incoming TC packet
137 size_t size; // size of the incoming TC packet
138 asm_msg *incomingMsg;
138 asm_msg *incomingMsg;
139 //
139 //
140 rtems_status_code status;
140 rtems_status_code status;
141 rtems_id queue_id_send;
141 rtems_id queue_id_send;
142 rtems_id queue_id_q_p2;
142 rtems_id queue_id_q_p2;
143 bp_packet packet_norm_bp1;
143 bp_packet packet_norm_bp1;
144 bp_packet packet_norm_bp2;
144 bp_packet packet_norm_bp2;
145 ring_node *current_ring_node_to_send_asm_f2;
145 ring_node *current_ring_node_to_send_asm_f2;
146 float nbSMInASMNORM;
146 float nbSMInASMNORM;
147
147
148 unsigned long long int localTime;
148 unsigned long long int localTime;
149
149
150 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
150 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
151 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
151 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
152 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
152 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
153
153
154 //*************
154 //*************
155 // NORM headers
155 // NORM headers
156 BP_init_header( &packet_norm_bp1,
156 BP_init_header( &packet_norm_bp1,
157 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
157 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
158 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
158 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
159 BP_init_header( &packet_norm_bp2,
159 BP_init_header( &packet_norm_bp2,
160 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
160 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
161 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
161 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
162
162
163 status = get_message_queue_id_send( &queue_id_send );
163 status = get_message_queue_id_send( &queue_id_send );
164 if (status != RTEMS_SUCCESSFUL)
164 if (status != RTEMS_SUCCESSFUL)
165 {
165 {
166 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
166 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
167 }
167 }
168 status = get_message_queue_id_prc2( &queue_id_q_p2);
168 status = get_message_queue_id_prc2( &queue_id_q_p2);
169 if (status != RTEMS_SUCCESSFUL)
169 if (status != RTEMS_SUCCESSFUL)
170 {
170 {
171 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
171 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
172 }
172 }
173
173
174 BOOT_PRINTF("in PRC2 ***\n")
174 BOOT_PRINTF("in PRC2 ***\n")
175
175
176 while(1){
176 while(1){
177 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
177 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
178 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
178 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
179
179
180 incomingMsg = (asm_msg*) incomingData;
180 incomingMsg = (asm_msg*) incomingData;
181
181
182 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
182 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
183
183
184 localTime = getTimeAsUnsignedLongLongInt( );
184 localTime = getTimeAsUnsignedLongLongInt( );
185
185
186 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
186 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
187
187
188 //*****
188 //*****
189 //*****
189 //*****
190 // NORM
190 // NORM
191 //*****
191 //*****
192 //*****
192 //*****
193 // 1) compress the matrix for Basic Parameters calculation
193 // 1) compress the matrix for Basic Parameters calculation
194 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
194 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
195 nbSMInASMNORM,
195 nbSMInASMNORM,
196 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
196 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
197 ASM_F2_INDICE_START, CHANNELF2 );
197 ASM_F2_INDICE_START, CHANNELF2 );
198 // BP1_F2
198 // BP1_F2
199 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
199 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
200 {
200 {
201 // 1) compute the BP1 set
201 // 1) compute the BP1 set
202 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
202 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
203 // 2) send the BP1 set
203 // 2) send the BP1 set
204 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
204 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
205 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
205 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
206 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
206 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
207 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
207 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
208 BP_send( (char *) &packet_norm_bp1, queue_id_send,
208 BP_send( (char *) &packet_norm_bp1, queue_id_send,
209 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
209 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
210 SID_NORM_BP1_F2 );
210 SID_NORM_BP1_F2 );
211 }
211 }
212 // BP2_F2
212 // BP2_F2
213 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
213 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
214 {
214 {
215 // 1) compute the BP2 set
215 // 1) compute the BP2 set
216 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
216 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
217 // 2) send the BP2 set
217 // 2) send the BP2 set
218 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
218 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
219 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
219 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
220 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
220 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
221 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
221 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
222 BP_send( (char *) &packet_norm_bp2, queue_id_send,
222 BP_send( (char *) &packet_norm_bp2, queue_id_send,
223 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
223 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
224 SID_NORM_BP2_F2 );
224 SID_NORM_BP2_F2 );
225 }
225 }
226
226
227 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
227 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
228 {
228 {
229 // 1) reorganize the ASM and divide
229 // 1) reorganize the ASM and divide
230 ASM_reorganize_and_divide( asm_f2_patched_norm,
230 ASM_reorganize_and_divide( asm_f2_patched_norm,
231 (float*) current_ring_node_to_send_asm_f2->buffer_address,
231 (float*) current_ring_node_to_send_asm_f2->buffer_address,
232 nb_sm_before_f2.norm_bp1 );
232 nb_sm_before_f2.norm_bp1 );
233 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
233 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
234 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
234 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
235 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
235 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
236
236 // 3) send the spectral matrix packets
237 // 3) send the spectral matrix packets
237 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
238 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
239
238 // change asm ring node
240 // change asm ring node
239 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
241 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
240 }
242 }
241
243
242 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
244 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
243
245
244 }
246 }
245 }
247 }
246
248
247 //**********
249 //**********
248 // FUNCTIONS
250 // FUNCTIONS
249
251
250 void reset_nb_sm_f2( void )
252 void reset_nb_sm_f2( void )
251 {
253 {
252 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
254 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
253 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
255 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
254 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
256 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
255 }
257 }
256
258
257 void SM_average_f2( float *averaged_spec_mat_f2,
259 void SM_average_f2( float *averaged_spec_mat_f2,
258 ring_node *ring_node,
260 ring_node *ring_node,
259 unsigned int nbAverageNormF2,
261 unsigned int nbAverageNormF2,
260 asm_msg *msgForMATR )
262 asm_msg *msgForMATR )
261 {
263 {
262 float sum;
264 float sum;
263 unsigned int i;
265 unsigned int i;
264 unsigned char keepMatrix;
266 unsigned char keepMatrix;
265
267
266 // test acquisitionTime validity
268 // test acquisitionTime validity
267 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, 2 );
269 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, 2 );
268
270
269 for(i=0; i<TOTAL_SIZE_SM; i++)
271 for(i=0; i<TOTAL_SIZE_SM; i++)
270 {
272 {
271 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
273 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
272 if ( (nbAverageNormF2 == 0) ) // average initialization
274 if ( (nbAverageNormF2 == 0) ) // average initialization
273 {
275 {
274 if (keepMatrix == 1) // keep the matrix and add it to the average
276 if (keepMatrix == 1) // keep the matrix and add it to the average
275 {
277 {
276 averaged_spec_mat_f2[ i ] = sum;
278 averaged_spec_mat_f2[ i ] = sum;
277 }
279 }
278 else // drop the matrix and initialize the average
280 else // drop the matrix and initialize the average
279 {
281 {
280 averaged_spec_mat_f2[ i ] = 0.;
282 averaged_spec_mat_f2[ i ] = 0.;
281 }
283 }
282 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
284 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
283 msgForMATR->fineTimeNORM = ring_node->fineTime;
285 msgForMATR->fineTimeNORM = ring_node->fineTime;
284 }
286 }
285 else
287 else
286 {
288 {
287 if (keepMatrix == 1) // keep the matrix and add it to the average
289 if (keepMatrix == 1) // keep the matrix and add it to the average
288 {
290 {
289 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
291 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
290 }
292 }
291 else
293 else
292 {
294 {
293 // nothing to do, the matrix is not valid
295 // nothing to do, the matrix is not valid
294 }
296 }
295 }
297 }
296 }
298 }
297
299
298 if (keepMatrix == 1)
300 if (keepMatrix == 1)
299 {
301 {
300 if ( (nbAverageNormF2 == 0) )
302 if ( (nbAverageNormF2 == 0) )
301 {
303 {
302 msgForMATR->numberOfSMInASMNORM = 1;
304 msgForMATR->numberOfSMInASMNORM = 1;
303 }
305 }
304 else
306 else
305 {
307 {
306 msgForMATR->numberOfSMInASMNORM++;
308 msgForMATR->numberOfSMInASMNORM++;
307 }
309 }
308 }
310 }
309 else
311 else
310 {
312 {
311 if ( (nbAverageNormF2 == 0) )
313 if ( (nbAverageNormF2 == 0) )
312 {
314 {
313 msgForMATR->numberOfSMInASMNORM = 0;
315 msgForMATR->numberOfSMInASMNORM = 0;
314 }
316 }
315 else
317 else
316 {
318 {
317 // nothing to do
319 // nothing to do
318 }
320 }
319 }
321 }
320 }
322 }
321
323
322 void init_k_coefficients_prc2( void )
324 void init_k_coefficients_prc2( void )
323 {
325 {
324 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
326 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
325 }
327 }
@@ -1,1310 +1,1314
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //***************
12 //***************
13 // waveform rings
13 // waveform rings
14 // F0
14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 ring_node *current_ring_node_f0;
16 ring_node *current_ring_node_f0;
17 ring_node *ring_node_to_send_swf_f0;
17 ring_node *ring_node_to_send_swf_f0;
18 // F1
18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 ring_node *current_ring_node_f1;
20 ring_node *current_ring_node_f1;
21 ring_node *ring_node_to_send_swf_f1;
21 ring_node *ring_node_to_send_swf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
23 // F2
23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 ring_node *current_ring_node_f2;
25 ring_node *current_ring_node_f2;
26 ring_node *ring_node_to_send_swf_f2;
26 ring_node *ring_node_to_send_swf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
28 // F3
28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node *current_ring_node_f3;
30 ring_node *current_ring_node_f3;
31 ring_node *ring_node_to_send_cwf_f3;
31 ring_node *ring_node_to_send_cwf_f3;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33
33
34 bool extractSWF1 = false;
34 bool extractSWF1 = false;
35 bool extractSWF2 = false;
35 bool extractSWF2 = false;
36 bool swf0_ready_flag_f1 = false;
36 bool swf0_ready_flag_f1 = false;
37 bool swf0_ready_flag_f2 = false;
37 bool swf0_ready_flag_f2 = false;
38 bool swf1_ready = false;
38 bool swf1_ready = false;
39 bool swf2_ready = false;
39 bool swf2_ready = false;
40
40
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 ring_node ring_node_swf1_extracted;
43 ring_node ring_node_swf1_extracted;
44 ring_node ring_node_swf2_extracted;
44 ring_node ring_node_swf2_extracted;
45
45
46 typedef enum resynchro_state_t
46 typedef enum resynchro_state_t
47 {
47 {
48 MEASURE,
48 MEASURE,
49 CORRECTION
49 CORRECTION
50 } resynchro_state;
50 } resynchro_state;
51
51
52 //*********************
52 //*********************
53 // Interrupt SubRoutine
53 // Interrupt SubRoutine
54
54
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 {
56 {
57 ring_node *node;
57 ring_node *node;
58
58
59 node = NULL;
59 node = NULL;
60 switch ( frequencyChannel ) {
60 switch ( frequencyChannel ) {
61 case 1:
61 case 1:
62 node = ring_node_to_send_cwf_f1;
62 node = ring_node_to_send_cwf_f1;
63 break;
63 break;
64 case 2:
64 case 2:
65 node = ring_node_to_send_cwf_f2;
65 node = ring_node_to_send_cwf_f2;
66 break;
66 break;
67 case 3:
67 case 3:
68 node = ring_node_to_send_cwf_f3;
68 node = ring_node_to_send_cwf_f3;
69 break;
69 break;
70 default:
70 default:
71 break;
71 break;
72 }
72 }
73
73
74 return node;
74 return node;
75 }
75 }
76
76
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 {
78 {
79 ring_node *node;
79 ring_node *node;
80
80
81 node = NULL;
81 node = NULL;
82 switch ( frequencyChannel ) {
82 switch ( frequencyChannel ) {
83 case 0:
83 case 0:
84 node = ring_node_to_send_swf_f0;
84 node = ring_node_to_send_swf_f0;
85 break;
85 break;
86 case 1:
86 case 1:
87 node = ring_node_to_send_swf_f1;
87 node = ring_node_to_send_swf_f1;
88 break;
88 break;
89 case 2:
89 case 2:
90 node = ring_node_to_send_swf_f2;
90 node = ring_node_to_send_swf_f2;
91 break;
91 break;
92 default:
92 default:
93 break;
93 break;
94 }
94 }
95
95
96 return node;
96 return node;
97 }
97 }
98
98
99 void reset_extractSWF( void )
99 void reset_extractSWF( void )
100 {
100 {
101 extractSWF1 = false;
101 extractSWF1 = false;
102 extractSWF2 = false;
102 extractSWF2 = false;
103 swf0_ready_flag_f1 = false;
103 swf0_ready_flag_f1 = false;
104 swf0_ready_flag_f2 = false;
104 swf0_ready_flag_f2 = false;
105 swf1_ready = false;
105 swf1_ready = false;
106 swf2_ready = false;
106 swf2_ready = false;
107 }
107 }
108
108
109 inline void waveforms_isr_f3( void )
109 inline void waveforms_isr_f3( void )
110 {
110 {
111 rtems_status_code spare_status;
111 rtems_status_code spare_status;
112
112
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 //***
116 //***
117 // F3
117 // F3
118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 current_ring_node_f3 = current_ring_node_f3->next;
120 current_ring_node_f3 = current_ring_node_f3->next;
121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
126 }
126 }
127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
132 }
132 }
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 }
135 }
136 }
136 }
137 }
137 }
138 }
138 }
139
139
140 inline void waveforms_isr_burst( void )
140 inline void waveforms_isr_burst( void )
141 {
141 {
142 unsigned char status;
142 unsigned char status;
143 rtems_status_code spare_status;
143 rtems_status_code spare_status;
144
144
145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
146
146
147
147
148 switch(status)
148 switch(status)
149 {
149 {
150 case 1:
150 case 1:
151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
155 current_ring_node_f2 = current_ring_node_f2->next;
155 current_ring_node_f2 = current_ring_node_f2->next;
156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
159 }
159 }
160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
161 break;
161 break;
162 case 2:
162 case 2:
163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
167 current_ring_node_f2 = current_ring_node_f2->next;
167 current_ring_node_f2 = current_ring_node_f2->next;
168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
171 }
171 }
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
173 break;
173 break;
174 default:
174 default:
175 break;
175 break;
176 }
176 }
177 }
177 }
178
178
179 inline void waveform_isr_normal_sbm1_sbm2( void )
179 inline void waveform_isr_normal_sbm1_sbm2( void )
180 {
180 {
181 rtems_status_code status;
181 rtems_status_code status;
182
182
183 //***
183 //***
184 // F0
184 // F0
185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
186 {
186 {
187 swf0_ready_flag_f1 = true;
187 swf0_ready_flag_f1 = true;
188 swf0_ready_flag_f2 = true;
188 swf0_ready_flag_f2 = true;
189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
190 current_ring_node_f0 = current_ring_node_f0->next;
190 current_ring_node_f0 = current_ring_node_f0->next;
191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
192 {
192 {
193
193
194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
198 }
198 }
199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
200 {
200 {
201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
205 }
205 }
206 // send an event to the WFRM task for resynchro activities
206 // send an event to the WFRM task for resynchro activities
207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
208 }
208 }
209
209
210 //***
210 //***
211 // F1
211 // F1
212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
213 // (1) change the receiving buffer for the waveform picker
213 // (1) change the receiving buffer for the waveform picker
214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 current_ring_node_f1 = current_ring_node_f1->next;
215 current_ring_node_f1 = current_ring_node_f1->next;
216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
217 {
217 {
218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
222 }
222 }
223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
224 {
224 {
225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
229 }
229 }
230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 }
232 }
233
233
234 //***
234 //***
235 // F2
235 // F2
236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
237 // (1) change the receiving buffer for the waveform picker
237 // (1) change the receiving buffer for the waveform picker
238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 current_ring_node_f2 = current_ring_node_f2->next;
240 current_ring_node_f2 = current_ring_node_f2->next;
241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
242 {
242 {
243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
247 }
247 }
248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
249 {
249 {
250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
254 }
254 }
255 // (2) send an event for the waveforms transmission
255 // (2) send an event for the waveforms transmission
256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 }
257 }
258 }
258 }
259
259
260 rtems_isr waveforms_isr( rtems_vector_number vector )
260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 {
261 {
262 /** This is the interrupt sub routine called by the waveform picker core.
262 /** This is the interrupt sub routine called by the waveform picker core.
263 *
263 *
264 * This ISR launch different actions depending mainly on two pieces of information:
264 * This ISR launch different actions depending mainly on two pieces of information:
265 * 1. the values read in the registers of the waveform picker.
265 * 1. the values read in the registers of the waveform picker.
266 * 2. the current LFR mode.
266 * 2. the current LFR mode.
267 *
267 *
268 */
268 */
269
269
270 // STATUS
270 // STATUS
271 // new error error buffer full
271 // new error error buffer full
272 // 15 14 13 12 11 10 9 8
272 // 15 14 13 12 11 10 9 8
273 // f3 f2 f1 f0 f3 f2 f1 f0
273 // f3 f2 f1 f0 f3 f2 f1 f0
274 //
274 //
275 // ready buffer
275 // ready buffer
276 // 7 6 5 4 3 2 1 0
276 // 7 6 5 4 3 2 1 0
277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278
278
279 rtems_status_code spare_status;
279 rtems_status_code spare_status;
280
280
281 waveforms_isr_f3();
281 waveforms_isr_f3();
282
282
283 //*************************************************
283 //*************************************************
284 // copy the status bits in the housekeeping packets
284 // copy the status bits in the housekeeping packets
285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
287
287
288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
289 {
289 {
290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 }
291 }
292
292
293 switch(lfrCurrentMode)
293 switch(lfrCurrentMode)
294 {
294 {
295 //********
295 //********
296 // STANDBY
296 // STANDBY
297 case LFR_MODE_STANDBY:
297 case LFR_MODE_STANDBY:
298 break;
298 break;
299 //**************************
299 //**************************
300 // LFR NORMAL, SBM1 and SBM2
300 // LFR NORMAL, SBM1 and SBM2
301 case LFR_MODE_NORMAL:
301 case LFR_MODE_NORMAL:
302 case LFR_MODE_SBM1:
302 case LFR_MODE_SBM1:
303 case LFR_MODE_SBM2:
303 case LFR_MODE_SBM2:
304 waveform_isr_normal_sbm1_sbm2();
304 waveform_isr_normal_sbm1_sbm2();
305 break;
305 break;
306 //******
306 //******
307 // BURST
307 // BURST
308 case LFR_MODE_BURST:
308 case LFR_MODE_BURST:
309 waveforms_isr_burst();
309 waveforms_isr_burst();
310 break;
310 break;
311 //********
311 //********
312 // DEFAULT
312 // DEFAULT
313 default:
313 default:
314 break;
314 break;
315 }
315 }
316 }
316 }
317
317
318 //************
318 //************
319 // RTEMS TASKS
319 // RTEMS TASKS
320
320
321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 {
322 {
323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 *
324 *
325 * @param unused is the starting argument of the RTEMS task
325 * @param unused is the starting argument of the RTEMS task
326 *
326 *
327 * The following data packets are sent by this task:
327 * The following data packets are sent by this task:
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 *
331 *
332 */
332 */
333
333
334 rtems_event_set event_out;
334 rtems_event_set event_out;
335 rtems_id queue_id;
335 rtems_id queue_id;
336 rtems_status_code status;
336 rtems_status_code status;
337 ring_node *ring_node_swf1_extracted_ptr;
337 ring_node *ring_node_swf1_extracted_ptr;
338 ring_node *ring_node_swf2_extracted_ptr;
338 ring_node *ring_node_swf2_extracted_ptr;
339
339
340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
342
342
343 status = get_message_queue_id_send( &queue_id );
343 status = get_message_queue_id_send( &queue_id );
344 if (status != RTEMS_SUCCESSFUL)
344 if (status != RTEMS_SUCCESSFUL)
345 {
345 {
346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
347 }
347 }
348
348
349 BOOT_PRINTF("in WFRM ***\n");
349 BOOT_PRINTF("in WFRM ***\n");
350
350
351 while(1){
351 while(1){
352 // wait for an RTEMS_EVENT
352 // wait for an RTEMS_EVENT
353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
355
355
356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
357 {
357 {
358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
365 }
365 }
366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
367 {
367 {
368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
369 }
369 }
370 }
370 }
371 }
371 }
372
372
373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
374 {
374 {
375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
376 *
376 *
377 * @param unused is the starting argument of the RTEMS task
377 * @param unused is the starting argument of the RTEMS task
378 *
378 *
379 * The following data packet is sent by this task:
379 * The following data packet is sent by this task:
380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
381 *
381 *
382 */
382 */
383
383
384 rtems_event_set event_out;
384 rtems_event_set event_out;
385 rtems_id queue_id;
385 rtems_id queue_id;
386 rtems_status_code status;
386 rtems_status_code status;
387 ring_node ring_node_cwf3_light;
387 ring_node ring_node_cwf3_light;
388 ring_node *ring_node_to_send_cwf;
388 ring_node *ring_node_to_send_cwf;
389
389
390 status = get_message_queue_id_send( &queue_id );
390 status = get_message_queue_id_send( &queue_id );
391 if (status != RTEMS_SUCCESSFUL)
391 if (status != RTEMS_SUCCESSFUL)
392 {
392 {
393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
394 }
394 }
395
395
396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
397
397
398 // init the ring_node_cwf3_light structure
398 // init the ring_node_cwf3_light structure
399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
400 ring_node_cwf3_light.coarseTime = 0x00;
400 ring_node_cwf3_light.coarseTime = 0x00;
401 ring_node_cwf3_light.fineTime = 0x00;
401 ring_node_cwf3_light.fineTime = 0x00;
402 ring_node_cwf3_light.next = NULL;
402 ring_node_cwf3_light.next = NULL;
403 ring_node_cwf3_light.previous = NULL;
403 ring_node_cwf3_light.previous = NULL;
404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
405 ring_node_cwf3_light.status = 0x00;
405 ring_node_cwf3_light.status = 0x00;
406
406
407 BOOT_PRINTF("in CWF3 ***\n")
407 BOOT_PRINTF("in CWF3 ***\n");
408
408
409 while(1){
409 while(1){
410 // wait for an RTEMS_EVENT
410 // wait for an RTEMS_EVENT
411 rtems_event_receive( RTEMS_EVENT_0,
411 rtems_event_receive( RTEMS_EVENT_0,
412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
415 {
415 {
416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
418 {
418 {
419 PRINTF("send CWF_LONG_F3\n")
419 PRINTF("send CWF_LONG_F3\n");
420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
422 }
422 }
423 else
423 else
424 {
424 {
425 PRINTF("send CWF_F3 (light)\n")
425 PRINTF("send CWF_F3 (light)\n");
426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
427 }
427 }
428
428
429 }
429 }
430 else
430 else
431 {
431 {
432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
433 }
433 }
434 }
434 }
435 }
435 }
436
436
437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
438 {
438 {
439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
440 *
440 *
441 * @param unused is the starting argument of the RTEMS task
441 * @param unused is the starting argument of the RTEMS task
442 *
442 *
443 * The following data packet is sent by this function:
443 * The following data packet is sent by this function:
444 * - TM_LFR_SCIENCE_BURST_CWF_F2
444 * - TM_LFR_SCIENCE_BURST_CWF_F2
445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
446 *
446 *
447 */
447 */
448
448
449 rtems_event_set event_out;
449 rtems_event_set event_out;
450 rtems_id queue_id;
450 rtems_id queue_id;
451 rtems_status_code status;
451 rtems_status_code status;
452 ring_node *ring_node_to_send;
452 ring_node *ring_node_to_send;
453 unsigned long long int acquisitionTimeF0_asLong;
453 unsigned long long int acquisitionTimeF0_asLong;
454
454
455 acquisitionTimeF0_asLong = 0x00;
455 acquisitionTimeF0_asLong = 0x00;
456
456
457 status = get_message_queue_id_send( &queue_id );
457 status = get_message_queue_id_send( &queue_id );
458 if (status != RTEMS_SUCCESSFUL)
458 if (status != RTEMS_SUCCESSFUL)
459 {
459 {
460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
461 }
461 }
462
462
463 BOOT_PRINTF("in CWF2 ***\n")
463 BOOT_PRINTF("in CWF2 ***\n");
464
464
465 while(1){
465 while(1){
466 // wait for an RTEMS_EVENT// send the snapshot when built
466 // wait for an RTEMS_EVENT// send the snapshot when built
467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
470 ring_node_to_send = getRingNodeToSendCWF( 2 );
470 ring_node_to_send = getRingNodeToSendCWF( 2 );
471 if (event_out == RTEMS_EVENT_MODE_BURST)
471 if (event_out == RTEMS_EVENT_MODE_BURST)
472 {
472 { // data are sent whatever the transition time
473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
474 }
474 }
475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
476 {
476 {
477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
478 {
478 {
479 // data are sent depending on the transition time
480 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
481 {
479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
480 }
483 }
484 }
481 // launch snapshot extraction if needed
485 // launch snapshot extraction if needed
482 if (extractSWF2 == true)
486 if (extractSWF2 == true)
483 {
487 {
484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
488 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
485 // extract the snapshot
489 // extract the snapshot
486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
490 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
487 &ring_node_swf2_extracted, swf2_extracted );
491 &ring_node_swf2_extracted, swf2_extracted );
488 extractSWF2 = false;
492 extractSWF2 = false;
489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
493 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
490 }
494 }
491 if (swf0_ready_flag_f2 == true)
495 if (swf0_ready_flag_f2 == true)
492 {
496 {
493 extractSWF2 = true;
497 extractSWF2 = true;
494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
498 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
499 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
496 swf0_ready_flag_f2 = false;
500 swf0_ready_flag_f2 = false;
497 }
501 }
498 }
502 }
499 }
503 }
500 }
504 }
501
505
502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
506 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
503 {
507 {
504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
508 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
505 *
509 *
506 * @param unused is the starting argument of the RTEMS task
510 * @param unused is the starting argument of the RTEMS task
507 *
511 *
508 * The following data packet is sent by this function:
512 * The following data packet is sent by this function:
509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
513 * - TM_LFR_SCIENCE_SBM1_CWF_F1
510 *
514 *
511 */
515 */
512
516
513 rtems_event_set event_out;
517 rtems_event_set event_out;
514 rtems_id queue_id;
518 rtems_id queue_id;
515 rtems_status_code status;
519 rtems_status_code status;
516
520
517 ring_node *ring_node_to_send_cwf;
521 ring_node *ring_node_to_send_cwf;
518
522
519 status = get_message_queue_id_send( &queue_id );
523 status = get_message_queue_id_send( &queue_id );
520 if (status != RTEMS_SUCCESSFUL)
524 if (status != RTEMS_SUCCESSFUL)
521 {
525 {
522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
526 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
523 }
527 }
524
528
525 BOOT_PRINTF("in CWF1 ***\n");
529 BOOT_PRINTF("in CWF1 ***\n");
526
530
527 while(1){
531 while(1){
528 // wait for an RTEMS_EVENT
532 // wait for an RTEMS_EVENT
529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
533 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
534 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
535 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
536 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
533 if (lfrCurrentMode == LFR_MODE_SBM1)
537 if (lfrCurrentMode == LFR_MODE_SBM1)
534 {
538 {
539 // data are sent depending on the transition time
540 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
541 {
535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
542 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
536 if (status != 0)
537 {
538 PRINTF("cwf sending failed\n")
539 }
543 }
540 }
544 }
541 // launch snapshot extraction if needed
545 // launch snapshot extraction if needed
542 if (extractSWF1 == true)
546 if (extractSWF1 == true)
543 {
547 {
544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
548 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
545 // launch the snapshot extraction
549 // launch the snapshot extraction
546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
550 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
547 extractSWF1 = false;
551 extractSWF1 = false;
548 }
552 }
549 if (swf0_ready_flag_f1 == true)
553 if (swf0_ready_flag_f1 == true)
550 {
554 {
551 extractSWF1 = true;
555 extractSWF1 = true;
552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
556 swf0_ready_flag_f1 = false; // this step shall be executed only one time
553 }
557 }
554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
558 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
555 {
559 {
556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
560 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
557 swf1_ready = false;
561 swf1_ready = false;
558 swf2_ready = false;
562 swf2_ready = false;
559 }
563 }
560 }
564 }
561 }
565 }
562
566
563 rtems_task swbd_task(rtems_task_argument argument)
567 rtems_task swbd_task(rtems_task_argument argument)
564 {
568 {
565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
569 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
566 *
570 *
567 * @param unused is the starting argument of the RTEMS task
571 * @param unused is the starting argument of the RTEMS task
568 *
572 *
569 */
573 */
570
574
571 rtems_event_set event_out;
575 rtems_event_set event_out;
572 unsigned long long int acquisitionTimeF0_asLong;
576 unsigned long long int acquisitionTimeF0_asLong;
573
577
574 acquisitionTimeF0_asLong = 0x00;
578 acquisitionTimeF0_asLong = 0x00;
575
579
576 BOOT_PRINTF("in SWBD ***\n")
580 BOOT_PRINTF("in SWBD ***\n")
577
581
578 while(1){
582 while(1){
579 // wait for an RTEMS_EVENT
583 // wait for an RTEMS_EVENT
580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
584 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
585 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
586 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
583 {
587 {
584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
588 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
589 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
586 &ring_node_swf1_extracted, swf1_extracted );
590 &ring_node_swf1_extracted, swf1_extracted );
587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
591 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
588 }
592 }
589 else
593 else
590 {
594 {
591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
595 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
592 }
596 }
593 }
597 }
594 }
598 }
595
599
596 //******************
600 //******************
597 // general functions
601 // general functions
598
602
599 void WFP_init_rings( void )
603 void WFP_init_rings( void )
600 {
604 {
601 // F0 RING
605 // F0 RING
602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
606 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
603 // F1 RING
607 // F1 RING
604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
608 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
605 // F2 RING
609 // F2 RING
606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
610 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
607 // F3 RING
611 // F3 RING
608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
612 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
609
613
610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
614 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
615 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
612
616
613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
617 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
618 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
619 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
620 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
621 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
622 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
623 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
624 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
621
625
622 }
626 }
623
627
624 void WFP_reset_current_ring_nodes( void )
628 void WFP_reset_current_ring_nodes( void )
625 {
629 {
626 current_ring_node_f0 = waveform_ring_f0[0].next;
630 current_ring_node_f0 = waveform_ring_f0[0].next;
627 current_ring_node_f1 = waveform_ring_f1[0].next;
631 current_ring_node_f1 = waveform_ring_f1[0].next;
628 current_ring_node_f2 = waveform_ring_f2[0].next;
632 current_ring_node_f2 = waveform_ring_f2[0].next;
629 current_ring_node_f3 = waveform_ring_f3[0].next;
633 current_ring_node_f3 = waveform_ring_f3[0].next;
630
634
631 ring_node_to_send_swf_f0 = waveform_ring_f0;
635 ring_node_to_send_swf_f0 = waveform_ring_f0;
632 ring_node_to_send_swf_f1 = waveform_ring_f1;
636 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 ring_node_to_send_swf_f2 = waveform_ring_f2;
637 ring_node_to_send_swf_f2 = waveform_ring_f2;
634
638
635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
639 ring_node_to_send_cwf_f1 = waveform_ring_f1;
636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
640 ring_node_to_send_cwf_f2 = waveform_ring_f2;
637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
641 ring_node_to_send_cwf_f3 = waveform_ring_f3;
638 }
642 }
639
643
640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
644 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
641 {
645 {
642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
646 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
643 *
647 *
644 * @param waveform points to the buffer containing the data that will be send.
648 * @param waveform points to the buffer containing the data that will be send.
645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
649 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
650 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
647 * contain information to setup the transmission of the data packets.
651 * contain information to setup the transmission of the data packets.
648 *
652 *
649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
653 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
654 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
651 *
655 *
652 */
656 */
653
657
654 unsigned int i;
658 unsigned int i;
655 int ret;
659 int ret;
656 rtems_status_code status;
660 rtems_status_code status;
657
661
658 char *sample;
662 char *sample;
659 int *dataPtr;
663 int *dataPtr;
660
664
661 ret = LFR_DEFAULT;
665 ret = LFR_DEFAULT;
662
666
663 dataPtr = (int*) ring_node_to_send->buffer_address;
667 dataPtr = (int*) ring_node_to_send->buffer_address;
664
668
665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
669 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
670 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
667
671
668 //**********************
672 //**********************
669 // BUILD CWF3_light DATA
673 // BUILD CWF3_light DATA
670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
674 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
671 {
675 {
672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
676 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
679 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
680 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
681 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
682 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
679 }
683 }
680
684
681 // SEND PACKET
685 // SEND PACKET
682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
686 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
683 if (status != RTEMS_SUCCESSFUL) {
687 if (status != RTEMS_SUCCESSFUL) {
684 ret = LFR_DEFAULT;
688 ret = LFR_DEFAULT;
685 }
689 }
686
690
687 return ret;
691 return ret;
688 }
692 }
689
693
690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
694 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
695 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
692 {
696 {
693 unsigned long long int acquisitionTimeAsLong;
697 unsigned long long int acquisitionTimeAsLong;
694 unsigned char localAcquisitionTime[6];
698 unsigned char localAcquisitionTime[6];
695 double deltaT;
699 double deltaT;
696
700
697 deltaT = 0.;
701 deltaT = 0.;
698
702
699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
703 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
704 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
705 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
706 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
707 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
708 localAcquisitionTime[5] = (unsigned char) ( fineTime );
705
709
706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
710 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
711 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
712 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
713 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
714 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
711 + ( (unsigned long long int) localAcquisitionTime[5] );
715 + ( (unsigned long long int) localAcquisitionTime[5] );
712
716
713 switch( sid )
717 switch( sid )
714 {
718 {
715 case SID_NORM_SWF_F0:
719 case SID_NORM_SWF_F0:
716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
717 break;
721 break;
718
722
719 case SID_NORM_SWF_F1:
723 case SID_NORM_SWF_F1:
720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
721 break;
725 break;
722
726
723 case SID_NORM_SWF_F2:
727 case SID_NORM_SWF_F2:
724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
725 break;
729 break;
726
730
727 case SID_SBM1_CWF_F1:
731 case SID_SBM1_CWF_F1:
728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
729 break;
733 break;
730
734
731 case SID_SBM2_CWF_F2:
735 case SID_SBM2_CWF_F2:
732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
733 break;
737 break;
734
738
735 case SID_BURST_CWF_F2:
739 case SID_BURST_CWF_F2:
736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
737 break;
741 break;
738
742
739 case SID_NORM_CWF_F3:
743 case SID_NORM_CWF_F3:
740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
741 break;
745 break;
742
746
743 case SID_NORM_CWF_LONG_F3:
747 case SID_NORM_CWF_LONG_F3:
744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
748 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
745 break;
749 break;
746
750
747 default:
751 default:
748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
752 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
749 deltaT = 0.;
753 deltaT = 0.;
750 break;
754 break;
751 }
755 }
752
756
753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
757 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
754 //
758 //
755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
759 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
760 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
761 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
762 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
763 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
764 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
761
765
762 }
766 }
763
767
764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
768 void build_snapshot_from_ring( ring_node *ring_node_to_send,
765 unsigned char frequencyChannel,
769 unsigned char frequencyChannel,
766 unsigned long long int acquisitionTimeF0_asLong,
770 unsigned long long int acquisitionTimeF0_asLong,
767 ring_node *ring_node_swf_extracted,
771 ring_node *ring_node_swf_extracted,
768 int *swf_extracted)
772 int *swf_extracted)
769 {
773 {
770 unsigned int i;
774 unsigned int i;
771 unsigned long long int centerTime_asLong;
775 unsigned long long int centerTime_asLong;
772 unsigned long long int acquisitionTime_asLong;
776 unsigned long long int acquisitionTime_asLong;
773 unsigned long long int bufferAcquisitionTime_asLong;
777 unsigned long long int bufferAcquisitionTime_asLong;
774 unsigned char *ptr1;
778 unsigned char *ptr1;
775 unsigned char *ptr2;
779 unsigned char *ptr2;
776 unsigned char *timeCharPtr;
780 unsigned char *timeCharPtr;
777 unsigned char nb_ring_nodes;
781 unsigned char nb_ring_nodes;
778 unsigned long long int frequency_asLong;
782 unsigned long long int frequency_asLong;
779 unsigned long long int nbTicksPerSample_asLong;
783 unsigned long long int nbTicksPerSample_asLong;
780 unsigned long long int nbSamplesPart1_asLong;
784 unsigned long long int nbSamplesPart1_asLong;
781 unsigned long long int sampleOffset_asLong;
785 unsigned long long int sampleOffset_asLong;
782
786
783 unsigned int deltaT_F0;
787 unsigned int deltaT_F0;
784 unsigned int deltaT_F1;
788 unsigned int deltaT_F1;
785 unsigned long long int deltaT_F2;
789 unsigned long long int deltaT_F2;
786
790
787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
791 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
792 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
793 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
790 sampleOffset_asLong = 0x00;
794 sampleOffset_asLong = 0x00;
791
795
792 // (1) get the f0 acquisition time => the value is passed in argument
796 // (1) get the f0 acquisition time => the value is passed in argument
793
797
794 // (2) compute the central reference time
798 // (2) compute the central reference time
795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
799 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
796
800
797 // (3) compute the acquisition time of the current snapshot
801 // (3) compute the acquisition time of the current snapshot
798 switch(frequencyChannel)
802 switch(frequencyChannel)
799 {
803 {
800 case 1: // 1 is for F1 = 4096 Hz
804 case 1: // 1 is for F1 = 4096 Hz
801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
805 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
802 nb_ring_nodes = NB_RING_NODES_F1;
806 nb_ring_nodes = NB_RING_NODES_F1;
803 frequency_asLong = 4096;
807 frequency_asLong = 4096;
804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
808 nbTicksPerSample_asLong = 16; // 65536 / 4096;
805 break;
809 break;
806 case 2: // 2 is for F2 = 256 Hz
810 case 2: // 2 is for F2 = 256 Hz
807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
811 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
808 nb_ring_nodes = NB_RING_NODES_F2;
812 nb_ring_nodes = NB_RING_NODES_F2;
809 frequency_asLong = 256;
813 frequency_asLong = 256;
810 nbTicksPerSample_asLong = 256; // 65536 / 256;
814 nbTicksPerSample_asLong = 256; // 65536 / 256;
811 break;
815 break;
812 default:
816 default:
813 acquisitionTime_asLong = centerTime_asLong;
817 acquisitionTime_asLong = centerTime_asLong;
814 frequency_asLong = 256;
818 frequency_asLong = 256;
815 nbTicksPerSample_asLong = 256;
819 nbTicksPerSample_asLong = 256;
816 break;
820 break;
817 }
821 }
818
822
819 //****************************************************************************
823 //****************************************************************************
820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
824 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
821 for (i=0; i<nb_ring_nodes; i++)
825 for (i=0; i<nb_ring_nodes; i++)
822 {
826 {
823 //PRINTF1("%d ... ", i);
827 //PRINTF1("%d ... ", i);
824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
828 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
829 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
826 {
830 {
827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
831 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
828 break;
832 break;
829 }
833 }
830 ring_node_to_send = ring_node_to_send->previous;
834 ring_node_to_send = ring_node_to_send->previous;
831 }
835 }
832
836
833 // (5) compute the number of samples to take in the current buffer
837 // (5) compute the number of samples to take in the current buffer
834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
838 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
839 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
840 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
837
841
838 // (6) compute the final acquisition time
842 // (6) compute the final acquisition time
839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
843 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
840 sampleOffset_asLong * nbTicksPerSample_asLong;
844 sampleOffset_asLong * nbTicksPerSample_asLong;
841
845
842 // (7) copy the acquisition time at the beginning of the extrated snapshot
846 // (7) copy the acquisition time at the beginning of the extrated snapshot
843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
847 ptr1 = (unsigned char*) &acquisitionTime_asLong;
844 // fine time
848 // fine time
845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
849 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
846 ptr2[2] = ptr1[ 4 + 2 ];
850 ptr2[2] = ptr1[ 4 + 2 ];
847 ptr2[3] = ptr1[ 5 + 2 ];
851 ptr2[3] = ptr1[ 5 + 2 ];
848 // coarse time
852 // coarse time
849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
853 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
850 ptr2[0] = ptr1[ 0 + 2 ];
854 ptr2[0] = ptr1[ 0 + 2 ];
851 ptr2[1] = ptr1[ 1 + 2 ];
855 ptr2[1] = ptr1[ 1 + 2 ];
852 ptr2[2] = ptr1[ 2 + 2 ];
856 ptr2[2] = ptr1[ 2 + 2 ];
853 ptr2[3] = ptr1[ 3 + 2 ];
857 ptr2[3] = ptr1[ 3 + 2 ];
854
858
855 // re set the synchronization bit
859 // re set the synchronization bit
856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
860 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
861 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
858
862
859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
863 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
860 {
864 {
861 nbSamplesPart1_asLong = 0;
865 nbSamplesPart1_asLong = 0;
862 }
866 }
863 // copy the part 1 of the snapshot in the extracted buffer
867 // copy the part 1 of the snapshot in the extracted buffer
864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
868 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
865 {
869 {
866 swf_extracted[i] =
870 swf_extracted[i] =
867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
871 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
868 }
872 }
869 // copy the part 2 of the snapshot in the extracted buffer
873 // copy the part 2 of the snapshot in the extracted buffer
870 ring_node_to_send = ring_node_to_send->next;
874 ring_node_to_send = ring_node_to_send->next;
871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
875 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
872 {
876 {
873 swf_extracted[i] =
877 swf_extracted[i] =
874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
878 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
875 }
879 }
876 }
880 }
877
881
878 double computeCorrection( unsigned char *timePtr )
882 double computeCorrection( unsigned char *timePtr )
879 {
883 {
880 unsigned long long int acquisitionTime;
884 unsigned long long int acquisitionTime;
881 unsigned long long int centerTime;
885 unsigned long long int centerTime;
882 unsigned long long int previousTick;
886 unsigned long long int previousTick;
883 unsigned long long int nextTick;
887 unsigned long long int nextTick;
884 unsigned long long int deltaPreviousTick;
888 unsigned long long int deltaPreviousTick;
885 unsigned long long int deltaNextTick;
889 unsigned long long int deltaNextTick;
886 double deltaPrevious_ms;
890 double deltaPrevious_ms;
887 double deltaNext_ms;
891 double deltaNext_ms;
888 double correctionInF2;
892 double correctionInF2;
889
893
890 // get acquisition time in fine time ticks
894 // get acquisition time in fine time ticks
891 acquisitionTime = get_acquisition_time( timePtr );
895 acquisitionTime = get_acquisition_time( timePtr );
892
896
893 // compute center time
897 // compute center time
894 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
898 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
895 previousTick = centerTime - (centerTime & 0xffff);
899 previousTick = centerTime - (centerTime & 0xffff);
896 nextTick = previousTick + 65536;
900 nextTick = previousTick + 65536;
897
901
898 deltaPreviousTick = centerTime - previousTick;
902 deltaPreviousTick = centerTime - previousTick;
899 deltaNextTick = nextTick - centerTime;
903 deltaNextTick = nextTick - centerTime;
900
904
901 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
905 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
902 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
906 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
903
907
904 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
908 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
905
909
906 // which tick is the closest?
910 // which tick is the closest?
907 if (deltaPreviousTick > deltaNextTick)
911 if (deltaPreviousTick > deltaNextTick)
908 {
912 {
909 // the snapshot center is just before the second => increase delta_snapshot
913 // the snapshot center is just before the second => increase delta_snapshot
910 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
914 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
911 }
915 }
912 else
916 else
913 {
917 {
914 // the snapshot center is just after the second => decrease delta_snapshot
918 // the snapshot center is just after the second => decrease delta_snapshot
915 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
919 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
916 }
920 }
917
921
918 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
922 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
919
923
920 return correctionInF2;
924 return correctionInF2;
921 }
925 }
922
926
923 void applyCorrection( double correction )
927 void applyCorrection( double correction )
924 {
928 {
925 int correctionInt;
929 int correctionInt;
926
930
927 if (correction >= 0.)
931 if (correction >= 0.)
928 {
932 {
929 if ( (1. > correction) && (correction > 0.5) )
933 if ( (1. > correction) && (correction > 0.5) )
930 {
934 {
931 correctionInt = 1;
935 correctionInt = 1;
932 }
936 }
933 else
937 else
934 {
938 {
935 correctionInt = 2 * floor(correction);
939 correctionInt = 2 * floor(correction);
936 }
940 }
937 }
941 }
938 else
942 else
939 {
943 {
940 if ( (-1. < correction) && (correction < -0.5) )
944 if ( (-1. < correction) && (correction < -0.5) )
941 {
945 {
942 correctionInt = -1;
946 correctionInt = -1;
943 }
947 }
944 else
948 else
945 {
949 {
946 correctionInt = 2 * ceil(correction);
950 correctionInt = 2 * ceil(correction);
947 }
951 }
948 }
952 }
949 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
953 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
950 }
954 }
951
955
952 void snapshot_resynchronization( unsigned char *timePtr )
956 void snapshot_resynchronization( unsigned char *timePtr )
953 {
957 {
954 /** This function compute a correction to apply on delta_snapshot.
958 /** This function compute a correction to apply on delta_snapshot.
955 *
959 *
956 *
960 *
957 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
961 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
958 *
962 *
959 * @return void
963 * @return void
960 *
964 *
961 */
965 */
962
966
963 static double correction = 0.;
967 static double correction = 0.;
964 static resynchro_state state = MEASURE;
968 static resynchro_state state = MEASURE;
965 static unsigned int nbSnapshots = 0;
969 static unsigned int nbSnapshots = 0;
966
970
967 int correctionInt;
971 int correctionInt;
968
972
969 correctionInt = 0;
973 correctionInt = 0;
970
974
971 switch (state)
975 switch (state)
972 {
976 {
973
977
974 case MEASURE:
978 case MEASURE:
975 // ********
979 // ********
976 PRINTF1("MEASURE === %d\n", nbSnapshots);
980 PRINTF1("MEASURE === %d\n", nbSnapshots);
977 state = CORRECTION;
981 state = CORRECTION;
978 correction = computeCorrection( timePtr );
982 correction = computeCorrection( timePtr );
979 PRINTF1("MEASURE === correction = %.2f\n", correction );
983 PRINTF1("MEASURE === correction = %.2f\n", correction );
980 applyCorrection( correction );
984 applyCorrection( correction );
981 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
985 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
982 //****
986 //****
983 break;
987 break;
984
988
985 case CORRECTION:
989 case CORRECTION:
986 //************
990 //************
987 PRINTF1("CORRECTION === %d\n", nbSnapshots);
991 PRINTF1("CORRECTION === %d\n", nbSnapshots);
988 state = MEASURE;
992 state = MEASURE;
989 computeCorrection( timePtr );
993 computeCorrection( timePtr );
990 set_wfp_delta_snapshot();
994 set_wfp_delta_snapshot();
991 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
995 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
992 //****
996 //****
993 break;
997 break;
994
998
995 default:
999 default:
996 break;
1000 break;
997
1001
998 }
1002 }
999
1003
1000 nbSnapshots++;
1004 nbSnapshots++;
1001 }
1005 }
1002
1006
1003 //**************
1007 //**************
1004 // wfp registers
1008 // wfp registers
1005 void reset_wfp_burst_enable( void )
1009 void reset_wfp_burst_enable( void )
1006 {
1010 {
1007 /** This function resets the waveform picker burst_enable register.
1011 /** This function resets the waveform picker burst_enable register.
1008 *
1012 *
1009 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1013 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1010 *
1014 *
1011 */
1015 */
1012
1016
1013 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1017 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1014 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1018 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1015 }
1019 }
1016
1020
1017 void reset_wfp_status( void )
1021 void reset_wfp_status( void )
1018 {
1022 {
1019 /** This function resets the waveform picker status register.
1023 /** This function resets the waveform picker status register.
1020 *
1024 *
1021 * All status bits are set to 0 [new_err full_err full].
1025 * All status bits are set to 0 [new_err full_err full].
1022 *
1026 *
1023 */
1027 */
1024
1028
1025 waveform_picker_regs->status = 0xffff;
1029 waveform_picker_regs->status = 0xffff;
1026 }
1030 }
1027
1031
1028 void reset_wfp_buffer_addresses( void )
1032 void reset_wfp_buffer_addresses( void )
1029 {
1033 {
1030 // F0
1034 // F0
1031 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1035 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1032 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1036 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1033 // F1
1037 // F1
1034 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1038 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1035 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1039 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1036 // F2
1040 // F2
1037 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1041 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1038 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1042 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1039 // F3
1043 // F3
1040 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1044 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1041 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1045 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1042 }
1046 }
1043
1047
1044 void reset_waveform_picker_regs( void )
1048 void reset_waveform_picker_regs( void )
1045 {
1049 {
1046 /** This function resets the waveform picker module registers.
1050 /** This function resets the waveform picker module registers.
1047 *
1051 *
1048 * The registers affected by this function are located at the following offset addresses:
1052 * The registers affected by this function are located at the following offset addresses:
1049 * - 0x00 data_shaping
1053 * - 0x00 data_shaping
1050 * - 0x04 run_burst_enable
1054 * - 0x04 run_burst_enable
1051 * - 0x08 addr_data_f0
1055 * - 0x08 addr_data_f0
1052 * - 0x0C addr_data_f1
1056 * - 0x0C addr_data_f1
1053 * - 0x10 addr_data_f2
1057 * - 0x10 addr_data_f2
1054 * - 0x14 addr_data_f3
1058 * - 0x14 addr_data_f3
1055 * - 0x18 status
1059 * - 0x18 status
1056 * - 0x1C delta_snapshot
1060 * - 0x1C delta_snapshot
1057 * - 0x20 delta_f0
1061 * - 0x20 delta_f0
1058 * - 0x24 delta_f0_2
1062 * - 0x24 delta_f0_2
1059 * - 0x28 delta_f1 (obsolet parameter)
1063 * - 0x28 delta_f1 (obsolet parameter)
1060 * - 0x2c delta_f2
1064 * - 0x2c delta_f2
1061 * - 0x30 nb_data_by_buffer
1065 * - 0x30 nb_data_by_buffer
1062 * - 0x34 nb_snapshot_param
1066 * - 0x34 nb_snapshot_param
1063 * - 0x38 start_date
1067 * - 0x38 start_date
1064 * - 0x3c nb_word_in_buffer
1068 * - 0x3c nb_word_in_buffer
1065 *
1069 *
1066 */
1070 */
1067
1071
1068 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1072 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1069
1073
1070 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1074 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1071
1075
1072 reset_wfp_buffer_addresses();
1076 reset_wfp_buffer_addresses();
1073
1077
1074 reset_wfp_status(); // 0x18
1078 reset_wfp_status(); // 0x18
1075
1079
1076 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1080 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1077
1081
1078 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1082 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1079
1083
1080 //the parameter delta_f1 [0x28] is not used anymore
1084 //the parameter delta_f1 [0x28] is not used anymore
1081
1085
1082 set_wfp_delta_f2(); // 0x2c
1086 set_wfp_delta_f2(); // 0x2c
1083
1087
1084 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1088 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1085 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1089 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1086 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1090 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1087 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1091 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1088 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1092 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1089 // 2688 = 8 * 336
1093 // 2688 = 8 * 336
1090 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1094 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1091 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1095 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1092 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1096 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1093 //
1097 //
1094 // coarse time and fine time registers are not initialized, they are volatile
1098 // coarse time and fine time registers are not initialized, they are volatile
1095 //
1099 //
1096 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1100 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1097 }
1101 }
1098
1102
1099 void set_wfp_data_shaping( void )
1103 void set_wfp_data_shaping( void )
1100 {
1104 {
1101 /** This function sets the data_shaping register of the waveform picker module.
1105 /** This function sets the data_shaping register of the waveform picker module.
1102 *
1106 *
1103 * The value is read from one field of the parameter_dump_packet structure:\n
1107 * The value is read from one field of the parameter_dump_packet structure:\n
1104 * bw_sp0_sp1_r0_r1
1108 * bw_sp0_sp1_r0_r1
1105 *
1109 *
1106 */
1110 */
1107
1111
1108 unsigned char data_shaping;
1112 unsigned char data_shaping;
1109
1113
1110 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1114 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1111 // waveform picker : [R1 R0 SP1 SP0 BW]
1115 // waveform picker : [R1 R0 SP1 SP0 BW]
1112
1116
1113 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1117 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1114
1118
1115 waveform_picker_regs->data_shaping =
1119 waveform_picker_regs->data_shaping =
1116 ( (data_shaping & 0x20) >> 5 ) // BW
1120 ( (data_shaping & 0x20) >> 5 ) // BW
1117 + ( (data_shaping & 0x10) >> 3 ) // SP0
1121 + ( (data_shaping & 0x10) >> 3 ) // SP0
1118 + ( (data_shaping & 0x08) >> 1 ) // SP1
1122 + ( (data_shaping & 0x08) >> 1 ) // SP1
1119 + ( (data_shaping & 0x04) << 1 ) // R0
1123 + ( (data_shaping & 0x04) << 1 ) // R0
1120 + ( (data_shaping & 0x02) << 3 ) // R1
1124 + ( (data_shaping & 0x02) << 3 ) // R1
1121 + ( (data_shaping & 0x01) << 5 ); // R2
1125 + ( (data_shaping & 0x01) << 5 ); // R2
1122 }
1126 }
1123
1127
1124 void set_wfp_burst_enable_register( unsigned char mode )
1128 void set_wfp_burst_enable_register( unsigned char mode )
1125 {
1129 {
1126 /** This function sets the waveform picker burst_enable register depending on the mode.
1130 /** This function sets the waveform picker burst_enable register depending on the mode.
1127 *
1131 *
1128 * @param mode is the LFR mode to launch.
1132 * @param mode is the LFR mode to launch.
1129 *
1133 *
1130 * The burst bits shall be before the enable bits.
1134 * The burst bits shall be before the enable bits.
1131 *
1135 *
1132 */
1136 */
1133
1137
1134 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1138 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1135 // the burst bits shall be set first, before the enable bits
1139 // the burst bits shall be set first, before the enable bits
1136 switch(mode) {
1140 switch(mode) {
1137 case LFR_MODE_NORMAL:
1141 case LFR_MODE_NORMAL:
1138 case LFR_MODE_SBM1:
1142 case LFR_MODE_SBM1:
1139 case LFR_MODE_SBM2:
1143 case LFR_MODE_SBM2:
1140 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1144 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1141 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1145 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1142 break;
1146 break;
1143 case LFR_MODE_BURST:
1147 case LFR_MODE_BURST:
1144 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1148 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1145 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1149 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1146 break;
1150 break;
1147 default:
1151 default:
1148 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1152 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1149 break;
1153 break;
1150 }
1154 }
1151 }
1155 }
1152
1156
1153 void set_wfp_delta_snapshot( void )
1157 void set_wfp_delta_snapshot( void )
1154 {
1158 {
1155 /** This function sets the delta_snapshot register of the waveform picker module.
1159 /** This function sets the delta_snapshot register of the waveform picker module.
1156 *
1160 *
1157 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1161 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1158 * - sy_lfr_n_swf_p[0]
1162 * - sy_lfr_n_swf_p[0]
1159 * - sy_lfr_n_swf_p[1]
1163 * - sy_lfr_n_swf_p[1]
1160 *
1164 *
1161 */
1165 */
1162
1166
1163 unsigned int delta_snapshot;
1167 unsigned int delta_snapshot;
1164 unsigned int delta_snapshot_in_T2;
1168 unsigned int delta_snapshot_in_T2;
1165
1169
1166 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1170 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1167 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1171 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1168
1172
1169 delta_snapshot_in_T2 = delta_snapshot * 256;
1173 delta_snapshot_in_T2 = delta_snapshot * 256;
1170 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1174 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1171 }
1175 }
1172
1176
1173 void set_wfp_delta_f0_f0_2( void )
1177 void set_wfp_delta_f0_f0_2( void )
1174 {
1178 {
1175 unsigned int delta_snapshot;
1179 unsigned int delta_snapshot;
1176 unsigned int nb_samples_per_snapshot;
1180 unsigned int nb_samples_per_snapshot;
1177 float delta_f0_in_float;
1181 float delta_f0_in_float;
1178
1182
1179 delta_snapshot = waveform_picker_regs->delta_snapshot;
1183 delta_snapshot = waveform_picker_regs->delta_snapshot;
1180 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1184 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1181 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1185 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1182
1186
1183 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1187 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1184 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1188 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1185 }
1189 }
1186
1190
1187 void set_wfp_delta_f1( void )
1191 void set_wfp_delta_f1( void )
1188 {
1192 {
1189 /** Sets the value of the delta_f1 parameter
1193 /** Sets the value of the delta_f1 parameter
1190 *
1194 *
1191 * @param void
1195 * @param void
1192 *
1196 *
1193 * @return void
1197 * @return void
1194 *
1198 *
1195 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1199 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1196 *
1200 *
1197 */
1201 */
1198
1202
1199 unsigned int delta_snapshot;
1203 unsigned int delta_snapshot;
1200 unsigned int nb_samples_per_snapshot;
1204 unsigned int nb_samples_per_snapshot;
1201 float delta_f1_in_float;
1205 float delta_f1_in_float;
1202
1206
1203 delta_snapshot = waveform_picker_regs->delta_snapshot;
1207 delta_snapshot = waveform_picker_regs->delta_snapshot;
1204 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1208 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1205 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1209 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1206
1210
1207 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1211 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1208 }
1212 }
1209
1213
1210 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1214 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1211 {
1215 {
1212 /** Sets the value of the delta_f2 parameter
1216 /** Sets the value of the delta_f2 parameter
1213 *
1217 *
1214 * @param void
1218 * @param void
1215 *
1219 *
1216 * @return void
1220 * @return void
1217 *
1221 *
1218 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1222 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1219 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1223 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1220 *
1224 *
1221 */
1225 */
1222
1226
1223 unsigned int delta_snapshot;
1227 unsigned int delta_snapshot;
1224 unsigned int nb_samples_per_snapshot;
1228 unsigned int nb_samples_per_snapshot;
1225
1229
1226 delta_snapshot = waveform_picker_regs->delta_snapshot;
1230 delta_snapshot = waveform_picker_regs->delta_snapshot;
1227 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1231 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1228
1232
1229 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1233 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1230 }
1234 }
1231
1235
1232 //*****************
1236 //*****************
1233 // local parameters
1237 // local parameters
1234
1238
1235 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1239 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1236 {
1240 {
1237 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1241 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1238 *
1242 *
1239 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1243 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1240 * @param sid is the source identifier of the packet being updated.
1244 * @param sid is the source identifier of the packet being updated.
1241 *
1245 *
1242 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1246 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1243 * The sequence counters shall wrap around from 2^14 to zero.
1247 * The sequence counters shall wrap around from 2^14 to zero.
1244 * The sequence counter shall start at zero at startup.
1248 * The sequence counter shall start at zero at startup.
1245 *
1249 *
1246 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1250 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1247 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1251 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1248 *
1252 *
1249 */
1253 */
1250
1254
1251 unsigned short *sequence_cnt;
1255 unsigned short *sequence_cnt;
1252 unsigned short segmentation_grouping_flag;
1256 unsigned short segmentation_grouping_flag;
1253 unsigned short new_packet_sequence_control;
1257 unsigned short new_packet_sequence_control;
1254 rtems_mode initial_mode_set;
1258 rtems_mode initial_mode_set;
1255 rtems_mode current_mode_set;
1259 rtems_mode current_mode_set;
1256 rtems_status_code status;
1260 rtems_status_code status;
1257
1261
1258 //******************************************
1262 //******************************************
1259 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1263 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1260 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1264 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1261
1265
1262 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1266 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1263 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1267 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1264 || (sid == SID_BURST_CWF_F2)
1268 || (sid == SID_BURST_CWF_F2)
1265 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1269 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1266 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1270 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1267 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1271 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1268 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1272 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1269 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1273 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1270 {
1274 {
1271 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1275 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1272 }
1276 }
1273 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1277 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1274 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1278 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1275 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1279 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1276 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1280 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1277 {
1281 {
1278 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1282 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1279 }
1283 }
1280 else
1284 else
1281 {
1285 {
1282 sequence_cnt = (unsigned short *) NULL;
1286 sequence_cnt = (unsigned short *) NULL;
1283 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1287 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1284 }
1288 }
1285
1289
1286 if (sequence_cnt != NULL)
1290 if (sequence_cnt != NULL)
1287 {
1291 {
1288 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1292 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1289 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1293 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1290
1294
1291 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1295 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1292
1296
1293 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1297 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1294 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1298 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1295
1299
1296 // increment the sequence counter
1300 // increment the sequence counter
1297 if ( *sequence_cnt < SEQ_CNT_MAX)
1301 if ( *sequence_cnt < SEQ_CNT_MAX)
1298 {
1302 {
1299 *sequence_cnt = *sequence_cnt + 1;
1303 *sequence_cnt = *sequence_cnt + 1;
1300 }
1304 }
1301 else
1305 else
1302 {
1306 {
1303 *sequence_cnt = 0;
1307 *sequence_cnt = 0;
1304 }
1308 }
1305 }
1309 }
1306
1310
1307 //*************************************
1311 //*************************************
1308 // RESTORE THE MODE OF THE CALLING TASK
1312 // RESTORE THE MODE OF THE CALLING TASK
1309 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1313 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1310 }
1314 }
General Comments 0
You need to be logged in to leave comments. Login now