##// END OF EJS Templates
Creation of a spool task (SPOO) to handle
paul -
r165:c9daaae78ba2 spool
parent child
Show More
@@ -0,0 +1,64
1 #ifndef FSW_SPOOL_H_INCLUDED
2 #define FSW_SPOOL_H_INCLUDED
3
4 #include <rtems.h>
5 #include <stdio.h>
6
7 #include "fsw_params.h"
8 #include "fsw_processing.h"
9
10 rtems_name name_spool_rate_monotonic; // name of the SPOOL rate monotonic
11 rtems_id spool_period_id; // id of the SPOOL rate monotonic period
12
13 extern unsigned char lfrCurrentMode;
14
15 extern waveform_picker_regs_new_t *waveform_picker_regs;
16 extern spectral_matrix_regs_t *spectral_matrix_regs;
17
18 // WAVEFORMS
19 extern ring_node *current_ring_node_f0;
20 extern ring_node *ring_node_to_send_swf_f0;
21 extern ring_node *current_ring_node_f1;
22 extern ring_node *ring_node_to_send_swf_f1;
23 extern ring_node *ring_node_to_send_cwf_f1;
24 extern ring_node *current_ring_node_f2;
25 extern ring_node *ring_node_to_send_swf_f2;
26 extern ring_node *ring_node_to_send_cwf_f2;
27 extern ring_node *current_ring_node_f3;
28 extern ring_node *ring_node_to_send_cwf_f3;
29
30 // SPECTRAL MATRICES
31 unsigned int spool_nb_sm_f0;
32 unsigned int spool_nb_sm_f1;
33 extern ring_node_sm *current_ring_node_sm_f0;
34 extern ring_node_sm *current_ring_node_sm_f1;
35 extern ring_node_sm *current_ring_node_sm_f2;
36 extern ring_node_sm *ring_node_for_averaging_sm_f0;
37 extern ring_node_sm *ring_node_for_averaging_sm_f1;
38 extern ring_node_sm *ring_node_for_averaging_sm_f2;
39
40 extern rtems_id Task_id[]; /* array of task ids */
41
42 extern bool swf_f0_ready;
43 extern bool swf_f1_ready;
44 extern bool swf_f2_ready;
45
46 extern bool wake_up_task_wfrm;
47 extern bool wake_up_task_cwf_f1;
48 extern bool wake_up_task_cwf_f2_burst;
49 extern bool wake_up_task_cwf_f2_sbm2;
50 extern bool wake_up_task_cwf_f3;
51
52 //***********
53 // RTEMS_TASK
54 rtems_task spoo_task( rtems_task_argument argument );
55
56 // OTHER FUNCTIONS
57 void spool_waveforms( void );
58 void spool_spectral_matrices_f0( void );
59 void spool_spectral_matrices_f1( void );
60 void spool_spectral_matrices_f2( void );
61 void spool_spectral_matrices( void );
62 void spool_reset_nb_sm( void );
63
64 #endif // FSW_SPOOL_H_INCLUDED
@@ -0,0 +1,276
1 /** Functions and tasks related to waveform packet generation.
2 *
3 * @file
4 * @author P. LEROY
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
8 */
9
10 #include "fsw_spool.h"
11
12 //*********************
13 // Interrupt SubRoutine
14
15 void spool_waveforms( void )
16 {
17 /** This is the interrupt sub routine called by the waveform picker core.
18 *
19 * This ISR launch different actions depending mainly on two pieces of information:
20 * 1. the values read in the registers of the waveform picker.
21 * 2. the current LFR mode.
22 *
23 */
24
25 rtems_status_code status;
26
27 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
28 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
29 { // in modes other than STANDBY and BURST, send the CWF_F3 data
30 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
31 // (1) change the receiving buffer for the waveform picker
32 ring_node_to_send_cwf_f3 = current_ring_node_f3;
33 current_ring_node_f3 = current_ring_node_f3->next;
34 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
35 // (2) send an event for the waveforms transmission
36 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
37 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
38 }
39 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
40 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
41 }
42 }
43
44 switch(lfrCurrentMode)
45 {
46 //********
47 // STANDBY
48 case(LFR_MODE_STANDBY):
49 break;
50
51 //******
52 // NORMAL
53 case(LFR_MODE_NORMAL):
54 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
55 {
56 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
57 }
58 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
59 {
60 // change F0 ring node
61 ring_node_to_send_swf_f0 = current_ring_node_f0;
62 current_ring_node_f0 = current_ring_node_f0->next;
63 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
64 // change F1 ring node
65 ring_node_to_send_swf_f1 = current_ring_node_f1;
66 current_ring_node_f1 = current_ring_node_f1->next;
67 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
68 // change F2 ring node
69 ring_node_to_send_swf_f2 = current_ring_node_f2;
70 current_ring_node_f2 = current_ring_node_f2->next;
71 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
72 //
73 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
74 {
75 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
76 }
77 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
78 }
79 break;
80
81 //******
82 // BURST
83 case(LFR_MODE_BURST):
84 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
85 // (1) change the receiving buffer for the waveform picker
86 ring_node_to_send_cwf_f2 = current_ring_node_f2;
87 current_ring_node_f2 = current_ring_node_f2->next;
88 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
89 // (2) send an event for the waveforms transmission
90 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
91 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
92 }
93 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
94 }
95 break;
96
97 //*****
98 // SBM1
99 case(LFR_MODE_SBM1):
100 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
101 // (1) change the receiving buffer for the waveform picker
102 ring_node_to_send_cwf_f1 = current_ring_node_f1;
103 current_ring_node_f1 = current_ring_node_f1->next;
104 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
105 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
106 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
107 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
108 }
109 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
110 swf_f0_ready = true;
111 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
112 }
113 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
114 swf_f2_ready = true;
115 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
116 }
117 break;
118
119 //*****
120 // SBM2
121 case(LFR_MODE_SBM2):
122 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
123 // (1) change the receiving buffer for the waveform picker
124 ring_node_to_send_cwf_f2 = current_ring_node_f2;
125 current_ring_node_f2 = current_ring_node_f2->next;
126 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
127 // (2) send an event for the waveforms transmission
128 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
129 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
130 }
131 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
132 swf_f0_ready = true;
133 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
134 }
135 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
136 swf_f1_ready = true;
137 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
138 }
139 break;
140
141 //********
142 // DEFAULT
143 default:
144 break;
145 }
146 }
147
148 void spool_waveforms_alt( void )
149 {
150 // WFRM
151 if (wake_up_task_wfrm == true)
152 {
153 rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
154 wake_up_task_wfrm = false;
155 }
156 // CWF_F1
157 if (wake_up_task_cwf_f1 == true)
158 {
159 rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
160 wake_up_task_cwf_f1 = false;
161 }
162 // CWF_F2 BURST
163 if (wake_up_task_cwf_f2_burst == true)
164 {
165 rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST );
166 wake_up_task_cwf_f2_burst = false;
167 }
168 // CWF_F2 SBM2
169 if (wake_up_task_cwf_f2_sbm2 == true)
170 {
171 rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
172 wake_up_task_cwf_f2_sbm2 = false;
173 }
174 // CWF_F3
175 if (wake_up_task_cwf_f3 == true)
176 {
177 rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 );
178 wake_up_task_cwf_f3 = false;
179 }
180 }
181
182 void spool_spectral_matrices( void )
183 {
184 // STATUS REGISTER
185 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
186 // 10 9 8
187 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
188 // 7 6 5 4 3 2 1 0
189
190 unsigned char status_f0;
191 unsigned char status_f1;
192 unsigned char status_f2;
193 static unsigned int counter = 0;
194
195 rtems_interrupt_level level;
196
197 rtems_interrupt_disable( level );
198
199 status_f0 = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
200 status_f1 = (spectral_matrix_regs->status & 0x0c) >> 2; // [0011] get the status_ready_matrix_f0_x bits
201 status_f2 = (spectral_matrix_regs->status & 0x30) >> 4; // [0011] get the status_ready_matrix_f0_x bits
202
203 // if ( status_f0 == 0x03)
204 // {
205 // printf("%d \n", counter);
206 // }
207 if ( status_f1 == 0x03)
208 {
209 printf("f1 %d \n", counter);
210 }
211 if ( status_f2 == 0x03)
212 {
213 printf("f2 %d \n", counter);
214 }
215
216 spectral_matrices_isr_f0();
217
218 spectral_matrices_isr_f1();
219
220 spectral_matrices_isr_f2();
221
222 spectral_matrix_isr_error_handler();
223
224 rtems_interrupt_enable( level );
225
226 counter = counter + 1;
227 }
228
229 //************
230 // RTEMS TASKS
231
232 rtems_task spoo_task(rtems_task_argument argument)
233 {
234 rtems_status_code status;
235
236 BOOT_PRINTF("in SPOOL ***\n")
237
238 if (rtems_rate_monotonic_ident( name_spool_rate_monotonic, &spool_period_id) != RTEMS_SUCCESSFUL) {
239 status = rtems_rate_monotonic_create( name_spool_rate_monotonic, &spool_period_id );
240 if( status != RTEMS_SUCCESSFUL ) {
241 PRINTF1( "in SPOO *** rtems_rate_monotonic_create failed with status %d\n", status )
242 }
243 }
244
245 status = rtems_rate_monotonic_cancel( spool_period_id );
246 if( status != RTEMS_SUCCESSFUL )
247 {
248 PRINTF1( "ERR *** in SPOOL *** rtems_rate_monotonic_cancel(spool_period_id) ***code: %d\n", status )
249 }
250 else
251 {
252 DEBUG_PRINTF("OK *** in SPOOL *** rtems_rate_monotonic_cancel(spool_period_id)\n")
253 }
254
255 while(1){ // launch the rate monotonic task
256 // status = rtems_rate_monotonic_period( spool_period_id, SPOOL_TIMEOUT_in_ticks );
257 rtems_task_wake_after( SPOOL_TIMEOUT_in_ticks / 2 );
258 spool_waveforms_alt();
259 spool_spectral_matrices();
260 // if ( status != RTEMS_SUCCESSFUL )
261 // {
262 // PRINTF1( "in SPOOL *** ERR period: %d\n", status);
263 // }
264 // else
265 // {
266 // spool_waveforms();
267 // spool_spectral_matrices();
268 // }
269 }
270
271 PRINTF("in SPOOL *** deleting task\n")
272
273 status = rtems_task_delete( RTEMS_SELF ); // should not return
274 printf( "rtems_task_delete returned with status of %d.\n", status );
275 return;
276 }
@@ -1,273 +1,278
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Tue Jul 15 15:57:23 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Thu Jul 17 15:49:45 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=2 -DSW_VERSION_N2=0 -DSW_VERSION_N3=1 -DSW_VERSION_N4=0 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=2 -DSW_VERSION_N2=0 -DSW_VERSION_N3=1 -DSW_VERSION_N4=1 -DPRINT_MESSAGES_ON_CONSOLE -DPRINT_TASK_STATISTICS -DFAST_SCHEDULER
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_misc.c \
49 49 ../src/fsw_init.c \
50 50 ../src/fsw_globals.c \
51 51 ../src/fsw_spacewire.c \
52 52 ../src/tc_load_dump_parameters.c \
53 53 ../src/tm_lfr_tc_exe.c \
54 54 ../src/tc_acceptance.c \
55 55 ../src/processing/fsw_processing.c \
56 56 ../src/processing/avf0_prc0.c \
57 57 ../src/processing/avf1_prc1.c \
58 58 ../src/processing/avf2_prc2.c \
59 59 ../src/lfr_cpu_usage_report.c \
60 ../src/LFR_basic-parameters/basic_parameters.c
60 ../src/LFR_basic-parameters/basic_parameters.c \
61 ../src/fsw_spool.c
61 62 OBJECTS = obj/wf_handler.o \
62 63 obj/tc_handler.o \
63 64 obj/fsw_misc.o \
64 65 obj/fsw_init.o \
65 66 obj/fsw_globals.o \
66 67 obj/fsw_spacewire.o \
67 68 obj/tc_load_dump_parameters.o \
68 69 obj/tm_lfr_tc_exe.o \
69 70 obj/tc_acceptance.o \
70 71 obj/fsw_processing.o \
71 72 obj/avf0_prc0.o \
72 73 obj/avf1_prc1.o \
73 74 obj/avf2_prc2.o \
74 75 obj/lfr_cpu_usage_report.o \
75 obj/basic_parameters.o
76 obj/basic_parameters.o \
77 obj/fsw_spool.o
76 78 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
77 79 /usr/lib64/qt4/mkspecs/common/linux.conf \
78 80 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
79 81 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
80 82 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
81 83 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
82 84 /usr/lib64/qt4/mkspecs/qconfig.pri \
83 85 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
84 86 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
85 87 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
86 88 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
87 89 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
88 90 sparc.pri \
89 91 /usr/lib64/qt4/mkspecs/features/release.prf \
90 92 /usr/lib64/qt4/mkspecs/features/default_post.prf \
91 93 /usr/lib64/qt4/mkspecs/features/shared.prf \
92 94 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
93 95 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
94 96 /usr/lib64/qt4/mkspecs/features/resources.prf \
95 97 /usr/lib64/qt4/mkspecs/features/uic.prf \
96 98 /usr/lib64/qt4/mkspecs/features/yacc.prf \
97 99 /usr/lib64/qt4/mkspecs/features/lex.prf \
98 100 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
99 101 fsw-qt.pro
100 102 QMAKE_TARGET = fsw
101 103 DESTDIR = bin/
102 104 TARGET = bin/fsw
103 105
104 106 first: all
105 107 ####### Implicit rules
106 108
107 109 .SUFFIXES: .o .c .cpp .cc .cxx .C
108 110
109 111 .cpp.o:
110 112 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111 113
112 114 .cc.o:
113 115 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114 116
115 117 .cxx.o:
116 118 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117 119
118 120 .C.o:
119 121 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
120 122
121 123 .c.o:
122 124 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
123 125
124 126 ####### Build rules
125 127
126 128 all: Makefile $(TARGET)
127 129
128 130 $(TARGET): $(OBJECTS)
129 131 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
130 132 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
131 133
132 134 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
133 135 /usr/lib64/qt4/mkspecs/common/linux.conf \
134 136 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
135 137 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
136 138 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
137 139 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
138 140 /usr/lib64/qt4/mkspecs/qconfig.pri \
139 141 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
140 142 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
141 143 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
142 144 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
143 145 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
144 146 sparc.pri \
145 147 /usr/lib64/qt4/mkspecs/features/release.prf \
146 148 /usr/lib64/qt4/mkspecs/features/default_post.prf \
147 149 /usr/lib64/qt4/mkspecs/features/shared.prf \
148 150 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
149 151 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
150 152 /usr/lib64/qt4/mkspecs/features/resources.prf \
151 153 /usr/lib64/qt4/mkspecs/features/uic.prf \
152 154 /usr/lib64/qt4/mkspecs/features/yacc.prf \
153 155 /usr/lib64/qt4/mkspecs/features/lex.prf \
154 156 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
155 157 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
156 158 /usr/lib64/qt4/mkspecs/common/unix.conf:
157 159 /usr/lib64/qt4/mkspecs/common/linux.conf:
158 160 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
159 161 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
160 162 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
161 163 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
162 164 /usr/lib64/qt4/mkspecs/qconfig.pri:
163 165 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
164 166 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
165 167 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
166 168 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
167 169 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
168 170 sparc.pri:
169 171 /usr/lib64/qt4/mkspecs/features/release.prf:
170 172 /usr/lib64/qt4/mkspecs/features/default_post.prf:
171 173 /usr/lib64/qt4/mkspecs/features/shared.prf:
172 174 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
173 175 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
174 176 /usr/lib64/qt4/mkspecs/features/resources.prf:
175 177 /usr/lib64/qt4/mkspecs/features/uic.prf:
176 178 /usr/lib64/qt4/mkspecs/features/yacc.prf:
177 179 /usr/lib64/qt4/mkspecs/features/lex.prf:
178 180 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
179 181 qmake: FORCE
180 182 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
181 183
182 184 dist:
183 185 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
184 186 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
185 187
186 188
187 189 clean:compiler_clean
188 190 -$(DEL_FILE) $(OBJECTS)
189 191 -$(DEL_FILE) *~ core *.core
190 192
191 193
192 194 ####### Sub-libraries
193 195
194 196 distclean: clean
195 197 -$(DEL_FILE) $(TARGET)
196 198 -$(DEL_FILE) Makefile
197 199
198 200
199 201 grmon:
200 202 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
201 203
202 204 check: first
203 205
204 206 compiler_rcc_make_all:
205 207 compiler_rcc_clean:
206 208 compiler_uic_make_all:
207 209 compiler_uic_clean:
208 210 compiler_image_collection_make_all: qmake_image_collection.cpp
209 211 compiler_image_collection_clean:
210 212 -$(DEL_FILE) qmake_image_collection.cpp
211 213 compiler_yacc_decl_make_all:
212 214 compiler_yacc_decl_clean:
213 215 compiler_yacc_impl_make_all:
214 216 compiler_yacc_impl_clean:
215 217 compiler_lex_make_all:
216 218 compiler_lex_clean:
217 219 compiler_clean:
218 220
219 221 ####### Compile
220 222
221 223 obj/wf_handler.o: ../src/wf_handler.c
222 224 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
223 225
224 226 obj/tc_handler.o: ../src/tc_handler.c
225 227 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
226 228
227 229 obj/fsw_misc.o: ../src/fsw_misc.c
228 230 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
229 231
230 232 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
231 233 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
232 234
233 235 obj/fsw_globals.o: ../src/fsw_globals.c
234 236 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
235 237
236 238 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
237 239 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
238 240
239 241 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
240 242 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
241 243
242 244 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
243 245 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
244 246
245 247 obj/tc_acceptance.o: ../src/tc_acceptance.c
246 248 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
247 249
248 250 obj/fsw_processing.o: ../src/processing/fsw_processing.c
249 251 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
250 252
251 253 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
252 254 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
253 255
254 256 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
255 257 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
256 258
257 259 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
258 260 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
259 261
260 262 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
261 263 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
262 264
263 265 obj/basic_parameters.o: ../src/LFR_basic-parameters/basic_parameters.c
264 266 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/LFR_basic-parameters/basic_parameters.c
265 267
268 obj/fsw_spool.o: ../src/fsw_spool.c
269 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spool.o ../src/fsw_spool.c
270
266 271 ####### Install
267 272
268 273 install: FORCE
269 274
270 275 uninstall: FORCE
271 276
272 277 FORCE:
273 278
@@ -1,21 +1,20
1 1 SREC_PREFIX = RpwLfrApp
2 SREC_COUNTER_TEXT = 0003
3 SREC_COUNTER_DATA = 0004
4 SREC_FSW_REF = rev-1-0-0-7
2 SREC_COUNTER = 0003
3 SREC_FSW_REF = rev-2-0-1-0
5 4 SREC_SUFFIX = .srec
6 SREC_TEXT = $(SREC_PREFIX)_$(SREC_COUNTER_TEXT)_text_$(SREC_FSW_REF)$(SREC_SUFFIX)
7 SREC_DATA = $(SREC_PREFIX)_$(SREC_COUNTER_DATA)_data_$(SREC_FSW_REF)$(SREC_SUFFIX)
5 SREC_TEXT = $(SREC_PREFIX)_$(SREC_COUNTER)_text_$(SREC_FSW_REF)$(SREC_SUFFIX)
6 SREC_DATA = $(SREC_PREFIX)_$(SREC_COUNTER)_data_$(SREC_FSW_REF)$(SREC_SUFFIX)
8 7 OBJCOPY = sparc-rtems-objcopy
9 8 OBJCOPY_OPT = -g -v
10 9
11 10 all: text data
12 11
13 12 text: fsw
14 13 $(OBJCOPY) $(OBJCOPY_OPT) fsw $(SREC_TEXT) -O srec -j .text
15 14
16 15 data: fsw
17 16 $(OBJCOPY) $(OBJCOPY_OPT) fsw $(SREC_DATA) -O srec -j .data
18 17
19 18 clean:
20 19 rm *.srec
21 20
@@ -1,95 +1,101
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 CONFIG += console verbose
4 CONFIG += console verbose fast_scheduler cpu_usage_report
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=2 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=1 # patch
14 DEFINES += SW_VERSION_N4=0 # internal
14 DEFINES += SW_VERSION_N4=1 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 contains( CONFIG, fast_scheduler ) {
45 DEFINES += FAST_SCHEDULER
46 }
47
44 48 #doxygen.target = doxygen
45 49 #doxygen.commands = doxygen ../doc/Doxyfile
46 50 #QMAKE_EXTRA_TARGETS += doxygen
47 51
48 52 TARGET = fsw
49 53
50 54 INCLUDEPATH += \
51 55 ../src \
52 56 ../header \
53 57 ../header/processing \
54 58 ../src/LFR_basic-parameters
55 59
56 60 SOURCES += \
57 61 ../src/wf_handler.c \
58 62 ../src/tc_handler.c \
59 63 ../src/fsw_misc.c \
60 64 ../src/fsw_init.c \
61 65 ../src/fsw_globals.c \
62 66 ../src/fsw_spacewire.c \
63 67 ../src/tc_load_dump_parameters.c \
64 68 ../src/tm_lfr_tc_exe.c \
65 69 ../src/tc_acceptance.c \
66 70 ../src/processing/fsw_processing.c \
67 71 ../src/processing/avf0_prc0.c \
68 72 ../src/processing/avf1_prc1.c \
69 73 ../src/processing/avf2_prc2.c \
70 74 ../src/lfr_cpu_usage_report.c \
71 ../src/LFR_basic-parameters/basic_parameters.c
75 ../src/LFR_basic-parameters/basic_parameters.c \
76 ../src/fsw_spool.c
72 77
73 78 HEADERS += \
74 79 ../header/wf_handler.h \
75 80 ../header/tc_handler.h \
76 81 ../header/grlib_regs.h \
77 82 ../header/fsw_params.h \
78 83 ../header/fsw_misc.h \
79 84 ../header/fsw_init.h \
80 85 ../header/ccsds_types.h \
81 86 ../header/fsw_spacewire.h \
82 87 ../header/tc_load_dump_parameters.h \
83 88 ../header/tm_lfr_tc_exe.h \
84 89 ../header/tc_acceptance.h \
85 90 ../header/fsw_params_nb_bytes.h \
86 91 ../header/fsw_params_processing.h \
87 92 ../header/processing/fsw_processing.h \
88 93 ../header/processing/avf0_prc0.h \
89 94 ../header/processing/avf1_prc1.h \
90 95 ../header/processing/avf2_prc2.h \
91 96 ../header/fsw_params_wf_handler.h \
92 97 ../header/lfr_cpu_usage_report.h \
93 98 ../src/LFR_basic-parameters/basic_parameters.h \
94 ../src/LFR_basic-parameters/basic_parameters_params.h
99 ../src/LFR_basic-parameters/basic_parameters_params.h \
100 ../header/fsw_spool.h
95 101
@@ -1,201 +1,204
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-07-15T16:01:49. -->
3 <!-- Written by QtCreator 3.1.2, 2014-08-28T14:53:30. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 <value type="int" key="EditorConfiguration.MarginColumn">80</value>
33 <value type="bool" key="EditorConfiguration.MouseHiding">true</value>
32 34 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 35 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 36 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
37 <value type="bool" key="EditorConfiguration.ShowMargin">false</value>
35 38 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 39 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 40 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 41 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 42 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 43 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 44 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 45 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 46 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 47 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 48 </valuemap>
46 49 </data>
47 50 <data>
48 51 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 52 <valuemap type="QVariantMap"/>
50 53 </data>
51 54 <data>
52 55 <variable>ProjectExplorer.Project.Target.0</variable>
53 56 <valuemap type="QVariantMap">
54 57 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 58 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 59 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 60 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 61 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 62 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 63 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 64 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 65 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 66 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 67 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 68 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 69 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 70 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 72 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 73 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 74 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 75 </valuemap>
73 76 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 77 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 78 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 79 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 80 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 81 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 82 <value type="QString">-w</value>
80 83 <value type="QString">-r</value>
81 84 </valuelist>
82 85 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 86 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 87 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 88 </valuemap>
86 89 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 90 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 91 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 92 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 93 </valuemap>
91 94 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 95 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 96 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 97 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 98 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 99 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 100 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 101 <value type="QString">-w</value>
99 102 <value type="QString">-r</value>
100 103 </valuelist>
101 104 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 105 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 106 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 107 </valuemap>
105 108 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 109 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 110 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 111 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 112 </valuemap>
110 113 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 114 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 115 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 116 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 117 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 118 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 119 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 120 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 121 </valuemap>
119 122 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 123 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 124 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 125 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 126 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 127 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 129 </valuemap>
127 130 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 131 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 132 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 133 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 134 </valuemap>
132 135 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 136 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 137 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 138 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 141 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 142 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 143 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 144 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 145 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 146 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 147 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 148 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 149 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 150 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 151 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 152 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 153 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 154 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 155 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 156 <value type="int">0</value>
154 157 <value type="int">1</value>
155 158 <value type="int">2</value>
156 159 <value type="int">3</value>
157 160 <value type="int">4</value>
158 161 <value type="int">5</value>
159 162 <value type="int">6</value>
160 163 <value type="int">7</value>
161 164 <value type="int">8</value>
162 165 <value type="int">9</value>
163 166 <value type="int">10</value>
164 167 <value type="int">11</value>
165 168 <value type="int">12</value>
166 169 <value type="int">13</value>
167 170 <value type="int">14</value>
168 171 </valuelist>
169 172 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 173 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 174 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 175 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 176 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 177 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 179 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 180 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 181 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 182 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 183 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 184 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 185 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 186 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 187 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 188 </valuemap>
186 189 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 190 </valuemap>
188 191 </data>
189 192 <data>
190 193 <variable>ProjectExplorer.Project.TargetCount</variable>
191 194 <value type="int">1</value>
192 195 </data>
193 196 <data>
194 197 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 198 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
196 199 </data>
197 200 <data>
198 201 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 202 <value type="int">15</value>
200 203 </data>
201 204 </qtcreator>
@@ -1,48 +1,49
1 1 #ifndef FSW_INIT_H_INCLUDED
2 2 #define FSW_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 9 #include "fsw_processing.h"
10 10
11 11 #include "tc_handler.h"
12 12 #include "wf_handler.h"
13 13 #include "fsw_spacewire.h"
14 14
15 15 #include "avf0_prc0.h"
16 16 #include "avf1_prc1.h"
17 17 #include "avf2_prc2.h"
18 #include "fsw_spool.h"
18 19
19 extern rtems_name Task_name[20]; /* array of task names */
20 extern rtems_id Task_id[20]; /* array of task ids */
20 extern rtems_name Task_name[]; /* array of task names */
21 extern rtems_id Task_id[]; /* array of task ids */
21 22
22 23 // RTEMS TASKS
23 24 rtems_task Init( rtems_task_argument argument);
24 25
25 26 // OTHER functions
26 27 void create_names( void );
27 28 int create_all_tasks( void );
28 29 int start_all_tasks( void );
29 30 //
30 31 rtems_status_code create_message_queues( void );
31 32 rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
32 33 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
33 34 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
34 35 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
35 36 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
36 37 //
37 38 int start_recv_send_tasks( void );
38 39 //
39 40 void init_local_mode_parameters( void );
40 41 void reset_local_time( void );
41 42
42 43 extern int rtems_cpu_usage_report( void );
43 44 extern int rtems_cpu_usage_reset( void );
44 45 extern void rtems_stack_checker_report_usage( void );
45 46
46 47 extern int sched_yield( void );
47 48
48 49 #endif // FSW_INIT_H_INCLUDED
@@ -1,255 +1,271
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 21 //************************
22 22 // flight software version
23 23 // this parameters is handled by the Qt project options
24 24
25 25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 28 #define TIME_OFFSET 2
29 29 #define TIME_OFFSET_IN_BYTES 8
30 30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 31 #define NB_BYTES_SWF_BLK (2 * 6)
32 32 #define NB_WORDS_SWF_BLK 3
33 33 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 35 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 36 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 37 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 38 #define NB_RING_NODES_F3 3 // AT LEAST 3
39 39
40 40 //**********
41 41 // LFR MODES
42 42 #define LFR_MODE_STANDBY 0
43 43 #define LFR_MODE_NORMAL 1
44 44 #define LFR_MODE_BURST 2
45 45 #define LFR_MODE_SBM1 3
46 46 #define LFR_MODE_SBM2 4
47 47
48 48 #define TDS_MODE_LFM 5
49 49 #define TDS_MODE_STANDBY 0
50 50 #define TDS_MODE_NORMAL 1
51 51 #define TDS_MODE_BURST 2
52 52 #define TDS_MODE_SBM1 3
53 53 #define TDS_MODE_SBM2 4
54 54
55 55 #define THR_MODE_STANDBY 0
56 56 #define THR_MODE_NORMAL 1
57 57 #define THR_MODE_BURST 2
58 58
59 59 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
60 60 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
61 61 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
62 62 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
63 63 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
64 64 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
65 65 #define RTEMS_EVENT_NORM_BP1_F0 RTEMS_EVENT_6
66 66 #define RTEMS_EVENT_NORM_BP2_F0 RTEMS_EVENT_7
67 67 #define RTEMS_EVENT_NORM_ASM_F0 RTEMS_EVENT_8 // ASM only in NORM mode
68 68 #define RTEMS_EVENT_NORM_BP1_F1 RTEMS_EVENT_9
69 69 #define RTEMS_EVENT_NORM_BP2_F1 RTEMS_EVENT_10
70 70 #define RTEMS_EVENT_NORM_ASM_F1 RTEMS_EVENT_11 // ASM only in NORM mode
71 71 #define RTEMS_EVENT_NORM_BP1_F2 RTEMS_EVENT_12
72 72 #define RTEMS_EVENT_NORM_BP2_F2 RTEMS_EVENT_13
73 73 #define RTEMS_EVENT_NORM_ASM_F2 RTEMS_EVENT_14 // ASM only in NORM mode
74 74 #define RTEMS_EVENT_SBM_BP1_F0 RTEMS_EVENT_15
75 75 #define RTEMS_EVENT_SBM_BP2_F0 RTEMS_EVENT_16
76 76 #define RTEMS_EVENT_SBM_BP1_F1 RTEMS_EVENT_17
77 77 #define RTEMS_EVENT_SBM_BP2_F1 RTEMS_EVENT_18
78 78 #define RTEMS_EVENT_BURST_BP1_F0 RTEMS_EVENT_19
79 79 #define RTEMS_EVENT_BURST_BP2_F0 RTEMS_EVENT_20
80 80 #define RTEMS_EVENT_BURST_BP1_F1 RTEMS_EVENT_21
81 81 #define RTEMS_EVENT_BURST_BP2_F1 RTEMS_EVENT_22
82 82
83 83 //****************************
84 84 // LFR DEFAULT MODE PARAMETERS
85 85 // COMMON
86 86 #define DEFAULT_SY_LFR_COMMON0 0x00
87 87 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
88 88 // NORM
89 89 #define SY_LFR_N_SWF_L 2048 // nb sample
90 90 #define SY_LFR_N_SWF_P 300 // sec
91 91 #define SY_LFR_N_ASM_P 3600 // sec
92 92 #define SY_LFR_N_BP_P0 4 // sec
93 93 #define SY_LFR_N_BP_P1 20 // sec
94 94 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
95 95 #define MIN_DELTA_SNAPSHOT 16 // sec
96 96 // BURST
97 97 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
98 98 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
99 99 // SBM1
100 100 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
101 101 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
102 102 // SBM2
103 103 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
104 104 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
105 105 // ADDITIONAL PARAMETERS
106 106 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
107 107 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
108 108 // STATUS WORD
109 109 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
110 110 #define DEFAULT_STATUS_WORD_BYTE1 0x00
111 111 //
112 112 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
113 113 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
114 114 //****************************
115 115
116 116 //*****************************
117 117 // APB REGISTERS BASE ADDRESSES
118 118 #define REGS_ADDR_APBUART 0x80000100
119 119 #define REGS_ADDR_GPTIMER 0x80000300
120 120 #define REGS_ADDR_GRSPW 0x80000500
121 121 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
122 122 #define REGS_ADDR_GRGPIO 0x80000b00
123 123
124 124 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
125 125 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f50
126 126 #define REGS_ADDR_VHDL_VERSION 0x80000ff0
127 127
128 128 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
129 129 #define APBUART_CTRL_REG_MASK_TE 0x00000002
130 130 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
131 131
132 132 //**********
133 133 // IRQ LINES
134 134 #define IRQ_SM_SIMULATOR 9
135 135 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
136 136 #define IRQ_WAVEFORM_PICKER 14
137 137 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
138 138 #define IRQ_SPECTRAL_MATRIX 6
139 139 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
140 140
141 141 //*****
142 142 // TIME
143 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
144 #define TIMER_SM_SIMULATOR 1
145 #define HK_PERIOD 100 // 100 * 10ms => 1s
146 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
147 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
143 #ifdef FAST_SCHEDULER
144 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
145 #define TIMER_SM_SIMULATOR 1
146 #define HK_PERIOD 1000 // 1000 * 1ms = 1s
147 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
148 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 2000 // 2000 * 1ms = 2s
149 #define SPOOL_TIMEOUT_in_ms 10
150 #define SPOOL_TIMEOUT_in_ticks 5 // 10 * 1ms = 10ms
151 #define STAT_TASK_PERIOD 10000 // 10000 * 1ms = 10s
152 #else
153 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
154 #define TIMER_SM_SIMULATOR 1
155 #define HK_PERIOD 100 // 100 * 10ms = 1s
156 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
157 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
158 #define SPOOL_TIMEOUT_in_ms 10
159 #define SPOOL_TIMEOUT_in_ticks 1 // 200 * 10 ms = 2 s
160 #define STAT_TASK_PERIOD 1000 // 1000 * 10ms = 10s
161 #endif
148 162
149 163 //**********
150 164 // LPP CODES
151 165 #define LFR_SUCCESSFUL 0
152 166 #define LFR_DEFAULT 1
153 167 #define LFR_EXE_ERROR 2
154 168
155 169 //******
156 170 // RTEMS
157 171 #define TASKID_RECV 1
158 172 #define TASKID_ACTN 2
159 173 #define TASKID_SPIQ 3
160 174 #define TASKID_STAT 4
161 175 #define TASKID_AVF0 5
162 176 #define TASKID_SWBD 6
163 177 #define TASKID_WFRM 7
164 178 #define TASKID_DUMB 8
165 179 #define TASKID_HOUS 9
166 180 #define TASKID_PRC0 10
167 181 #define TASKID_CWF3 11
168 182 #define TASKID_CWF2 12
169 183 #define TASKID_CWF1 13
170 184 #define TASKID_SEND 14
171 185 #define TASKID_WTDG 15
172 186 #define TASKID_AVF1 16
173 187 #define TASKID_PRC1 17
174 188 #define TASKID_AVF2 18
175 189 #define TASKID_PRC2 19
190 #define TASKID_SPOO 20
176 191
177 192 #define TASK_PRIORITY_SPIQ 5
178 193 #define TASK_PRIORITY_WTDG 20
179 194 #define TASK_PRIORITY_HOUS 30
180 195 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
181 196 #define TASK_PRIORITY_CWF2 35 //
182 197 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
183 198 #define TASK_PRIORITY_WFRM 40
184 199 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
185 200 #define TASK_PRIORITY_SEND 45
186 201 #define TASK_PRIORITY_RECV 50
187 202 #define TASK_PRIORITY_ACTN 50
188 203 #define TASK_PRIORITY_AVF0 60
189 204 #define TASK_PRIORITY_AVF1 70
190 205 #define TASK_PRIORITY_PRC0 100
191 206 #define TASK_PRIORITY_PRC1 100
192 207 #define TASK_PRIORITY_AVF2 110
193 208 #define TASK_PRIORITY_PRC2 110
209 #define TASK_PRIORITY_SPOO 150
194 210 #define TASK_PRIORITY_STAT 200
195 211 #define TASK_PRIORITY_DUMB 200
196 212
197 213 #define MSG_QUEUE_COUNT_RECV 10
198 214 #define MSG_QUEUE_COUNT_SEND 50
199 215 #define MSG_QUEUE_COUNT_PRC0 10
200 216 #define MSG_QUEUE_COUNT_PRC1 10
201 217 #define MSG_QUEUE_COUNT_PRC2 5
202 218 #define MSG_QUEUE_SIZE_SEND 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
203 219 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
204 220 #define MSG_QUEUE_SIZE_PRC0 20 // two pointers and one rtems_event + 2 integers
205 221 #define MSG_QUEUE_SIZE_PRC1 20 // two pointers and one rtems_event + 2 integers
206 222 #define MSG_QUEUE_SIZE_PRC2 20 // two pointers and one rtems_event + 2 integers
207 223
208 224 #define QUEUE_RECV 0
209 225 #define QUEUE_SEND 1
210 226 #define QUEUE_PRC0 2
211 227 #define QUEUE_PRC1 3
212 228 #define QUEUE_PRC2 4
213 229
214 230 //*******
215 231 // MACROS
216 232 #ifdef PRINT_MESSAGES_ON_CONSOLE
217 233 #define PRINTF(x) printf(x);
218 234 #define PRINTF1(x,y) printf(x,y);
219 235 #define PRINTF2(x,y,z) printf(x,y,z);
220 236 #else
221 237 #define PRINTF(x) ;
222 238 #define PRINTF1(x,y) ;
223 239 #define PRINTF2(x,y,z) ;
224 240 #endif
225 241
226 242 #ifdef BOOT_MESSAGES
227 243 #define BOOT_PRINTF(x) printf(x);
228 244 #define BOOT_PRINTF1(x,y) printf(x,y);
229 245 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
230 246 #else
231 247 #define BOOT_PRINTF(x) ;
232 248 #define BOOT_PRINTF1(x,y) ;
233 249 #define BOOT_PRINTF2(x,y,z) ;
234 250 #endif
235 251
236 252 #ifdef DEBUG_MESSAGES
237 253 #define DEBUG_PRINTF(x) printf(x);
238 254 #define DEBUG_PRINTF1(x,y) printf(x,y);
239 255 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
240 256 #else
241 257 #define DEBUG_PRINTF(x) ;
242 258 #define DEBUG_PRINTF1(x,y) ;
243 259 #define DEBUG_PRINTF2(x,y,z) ;
244 260 #endif
245 261
246 262 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
247 263
248 264 struct param_local_str{
249 265 unsigned int local_sbm1_nb_cwf_sent;
250 266 unsigned int local_sbm1_nb_cwf_max;
251 267 unsigned int local_sbm2_nb_cwf_sent;
252 268 unsigned int local_sbm2_nb_cwf_max;
253 269 };
254 270
255 271 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,243 +1,247
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13
14 14 typedef struct ring_node_sm
15 15 {
16 16 struct ring_node_sm *previous;
17 17 struct ring_node_sm *next;
18 18 int buffer_address;
19 19 unsigned int status;
20 20 unsigned int coarseTime;
21 21 unsigned int fineTime;
22 22 } ring_node_sm;
23 23
24 24 typedef struct ring_node_asm
25 25 {
26 26 struct ring_node_asm *next;
27 27 float matrix[ TOTAL_SIZE_SM ];
28 28 unsigned int status;
29 29 } ring_node_asm;
30 30
31 31 typedef struct
32 32 {
33 33 Header_TM_LFR_SCIENCE_BP_t header;
34 34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
35 35 } bp_packet;
36 36
37 37 typedef struct
38 38 {
39 39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
40 40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
41 41 } bp_packet_with_spare;
42 42
43 43 typedef struct
44 44 {
45 45 ring_node_asm *norm;
46 46 ring_node_asm *burst_sbm;
47 47 rtems_event_set event;
48 48 unsigned int coarseTime;
49 49 unsigned int fineTime;
50 50 } asm_msg;
51 51
52 52 extern volatile int sm_f0[ ];
53 53 extern volatile int sm_f1[ ];
54 54 extern volatile int sm_f2[ ];
55 55
56 56 // parameters
57 57 extern struct param_local_str param_local;
58 58
59 59 // registers
60 60 extern time_management_regs_t *time_management_regs;
61 61 extern spectral_matrix_regs_t *spectral_matrix_regs;
62 62
63 extern rtems_name misc_name[5];
64 extern rtems_id Task_id[20]; /* array of task ids */
63 extern rtems_name misc_name[];
64 extern rtems_id Task_id[]; /* array of task ids */
65 65
66 66 // ISR
67 void spectral_matrices_isr_f0( void );
68 void spectral_matrices_isr_f1( void );
69 void spectral_matrices_isr_f2( void );
70 void spectral_matrix_isr_error_handler( void );
67 71 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
68 72 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
69 73
70 74 //******************
71 75 // Spectral Matrices
72 76 void reset_nb_sm( void );
73 77 // SM
74 78 void SM_init_rings( void );
75 79 void SM_reset_current_ring_nodes( void );
76 80 void SM_generic_init_ring(ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] );
77 81 // ASM
78 82 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
79 83 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
80 84 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
81 85 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
82 86
83 87 //*****************
84 88 // Basic Parameters
85 89
86 90 void BP_reset_current_ring_nodes( void );
87 91 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
88 92 unsigned int apid, unsigned char sid,
89 93 unsigned int packetLength , unsigned char blkNr);
90 94 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
91 95 unsigned int apid, unsigned char sid,
92 96 unsigned int packetLength, unsigned char blkNr );
93 97 void BP_send( char *data,
94 98 rtems_id queue_id ,
95 99 unsigned int nbBytesToSend , unsigned int sid );
96 100
97 101 //******************
98 102 // general functions
99 103 void reset_spectral_matrix_regs( void );
100 104 void set_time(unsigned char *time, unsigned char *timeInBuffer );
101 105 unsigned long long int get_acquisition_time( unsigned char *timePtr );
102 106 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
103 107 ring_node_sm *node_for_averaging, ring_node_sm *ringNode, unsigned long long int time);
104 108 unsigned char getSID( rtems_event_set event );
105 109
106 110 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
107 111 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
108 112
109 113 //***************************************
110 114 // DEFINITIONS OF STATIC INLINE FUNCTIONS
111 115 static inline void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
112 116 ring_node_sm *ring_node_tab[],
113 117 unsigned int nbAverageNORM, unsigned int nbAverageSBM );
114 118 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
115 119 float divider );
116 120 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
117 121 float divider,
118 122 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
119 123 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
120 124
121 125 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
122 126 ring_node_sm *ring_node_tab[],
123 127 unsigned int nbAverageNORM, unsigned int nbAverageSBM )
124 128 {
125 129 float sum;
126 130 unsigned int i;
127 131
128 132 for(i=0; i<TOTAL_SIZE_SM; i++)
129 133 {
130 134 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
131 135 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
132 136 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
133 137 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
134 138 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
135 139 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
136 140 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
137 141 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
138 142
139 143 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
140 144 {
141 145 averaged_spec_mat_NORM[ i ] = sum;
142 146 averaged_spec_mat_SBM[ i ] = sum;
143 147 }
144 148 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
145 149 {
146 150 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
147 151 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
148 152 }
149 153 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
150 154 {
151 155 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
152 156 averaged_spec_mat_SBM[ i ] = sum;
153 157 }
154 158 else
155 159 {
156 160 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
157 161 }
158 162 }
159 163 }
160 164
161 165 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
162 166 {
163 167 int frequencyBin;
164 168 int asmComponent;
165 169 unsigned int offsetAveragedSpecMatReorganized;
166 170 unsigned int offsetAveragedSpecMat;
167 171
168 172 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
169 173 {
170 174 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
171 175 {
172 176 offsetAveragedSpecMatReorganized =
173 177 frequencyBin * NB_VALUES_PER_SM
174 178 + asmComponent;
175 179 offsetAveragedSpecMat =
176 180 asmComponent * NB_BINS_PER_SM
177 181 + frequencyBin;
178 182 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
179 183 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
180 184 }
181 185 }
182 186 }
183 187
184 188 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
185 189 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
186 190 {
187 191 int frequencyBin;
188 192 int asmComponent;
189 193 int offsetASM;
190 194 int offsetCompressed;
191 195 int k;
192 196
193 197 // build data
194 198 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
195 199 {
196 200 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
197 201 {
198 202 offsetCompressed = // NO TIME OFFSET
199 203 frequencyBin * NB_VALUES_PER_SM
200 204 + asmComponent;
201 205 offsetASM = // NO TIME OFFSET
202 206 asmComponent * NB_BINS_PER_SM
203 207 + ASMIndexStart
204 208 + frequencyBin * nbBinsToAverage;
205 209 compressed_spec_mat[ offsetCompressed ] = 0;
206 210 for ( k = 0; k < nbBinsToAverage; k++ )
207 211 {
208 212 compressed_spec_mat[offsetCompressed ] =
209 213 ( compressed_spec_mat[ offsetCompressed ]
210 214 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
211 215 }
212 216 }
213 217 }
214 218 }
215 219
216 220 void ASM_convert( volatile float *input_matrix, char *output_matrix)
217 221 {
218 222 unsigned int frequencyBin;
219 223 unsigned int asmComponent;
220 224 char * pt_char_input;
221 225 char * pt_char_output;
222 226 unsigned int offsetInput;
223 227 unsigned int offsetOutput;
224 228
225 229 pt_char_input = (char*) &input_matrix;
226 230 pt_char_output = (char*) &output_matrix;
227 231
228 232 // convert all other data
229 233 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
230 234 {
231 235 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
232 236 {
233 237 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
234 238 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
235 239 pt_char_input = (char*) &input_matrix [ offsetInput ];
236 240 pt_char_output = (char*) &output_matrix[ offsetOutput ];
237 241 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
238 242 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
239 243 }
240 244 }
241 245 }
242 246
243 247 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,62 +1,64
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 13 #include "lfr_cpu_usage_report.h"
14 14
15 15 // MODE PARAMETERS
16 16 extern unsigned int maxCount;
17 17
18 18 //****
19 19 // ISR
20 20 rtems_isr commutation_isr1( rtems_vector_number vector );
21 21 rtems_isr commutation_isr2( rtems_vector_number vector );
22 22
23 23 //***********
24 24 // RTEMS TASK
25 25 rtems_task actn_task( rtems_task_argument unused );
26 26
27 27 //***********
28 28 // TC ACTIONS
29 29 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
30 30 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
31 31 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
32 32 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
33 33 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
34 34 int action_update_time( ccsdsTelecommandPacket_t *TC);
35 35
36 36 // mode transition
37 37 int check_mode_value( unsigned char requestedMode );
38 38 int check_mode_transition( unsigned char requestedMode );
39 39 int check_transition_date( unsigned int transitionCoarseTime );
40 40 int stop_current_mode( void );
41 41 int enter_mode( unsigned char mode , unsigned int transitionCoarseTime );
42 42 int restart_science_tasks(unsigned char lfrRequestedMode );
43 43 int suspend_science_tasks();
44 44 void launch_waveform_picker(unsigned char mode , unsigned int transitionCoarseTime);
45 void launch_waveform_picker_spool(unsigned char mode , unsigned int transitionCoarseTime);
45 46 void launch_spectral_matrix( void );
47 void launch_spectral_matrix_spool( void );
46 48 void launch_spectral_matrix_simu( void );
47 49 void set_irq_on_new_ready_matrix(unsigned char value );
48 50 void set_run_matrix_spectral( unsigned char value );
49 51
50 52 // other functions
51 53 void updateLFRCurrentMode();
52 54 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
53 55 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
54 56 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
55 57
56 58 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
57 59 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
58 60
59 61 #endif // TC_HANDLER_H_INCLUDED
60 62
61 63
62 64
@@ -1,92 +1,93
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "fsw_misc.h"
12 12 #include "fsw_params_wf_handler.h"
13 13
14 14 #define pi 3.1415
15 15
16 16 extern int fdSPW;
17 17
18 18 //*****************
19 19 // waveform buffers
20 20 extern volatile int wf_snap_f0[ ];
21 21 extern volatile int wf_snap_f1[ ];
22 22 extern volatile int wf_snap_f2[ ];
23 23 extern volatile int wf_cont_f3[ ];
24 24 extern char wf_cont_f3_light[ ];
25 25
26 26 extern waveform_picker_regs_new_t *waveform_picker_regs;
27 27 extern time_management_regs_t *time_management_regs;
28 28 extern Packet_TM_LFR_HK_t housekeeping_packet;
29 29 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
30 30 extern struct param_local_str param_local;
31 31
32 32 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
33 33 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
34 34
35 extern rtems_id Task_id[20]; /* array of task ids */
35 extern rtems_id Task_id[]; /* array of task ids */
36 36
37 37 extern unsigned char lfrCurrentMode;
38 38
39 39 //**********
40 40 // RTEMS_ISR
41 41 void reset_extractSWF( void );
42 42 rtems_isr waveforms_isr( rtems_vector_number vector );
43 rtems_isr waveforms_isr_alt( rtems_vector_number vector );
43 44
44 45 //***********
45 46 // RTEMS_TASK
46 47 rtems_task wfrm_task( rtems_task_argument argument );
47 48 rtems_task cwf3_task( rtems_task_argument argument );
48 49 rtems_task cwf2_task( rtems_task_argument argument );
49 50 rtems_task cwf1_task( rtems_task_argument argument );
50 51 rtems_task swbd_task( rtems_task_argument argument );
51 52
52 53 //******************
53 54 // general functions
54 55 void WFP_init_rings( void );
55 56 void init_waveform_ring( ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] );
56 57 void WFP_reset_current_ring_nodes( void );
57 58 //
58 59 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
59 60 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
60 61 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
61 62 //
62 63 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
63 64 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
64 65 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
65 66 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
66 67 //
67 68 void compute_acquisition_time(unsigned int coarseTime, unsigned int fineTime,
68 69 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char *acquisitionTime );
69 70 void build_snapshot_from_ring(ring_node *ring_node_to_send , unsigned char frequencyChannel );
70 71 void build_acquisition_time( unsigned long long int * acquisitionTimeAslong, ring_node *current_ring_node );
71 72 //
72 73 rtems_id get_pkts_queue_id( void );
73 74
74 75 //**************
75 76 // wfp registers
76 77 // RESET
77 78 void reset_wfp_burst_enable( void );
78 79 void reset_wfp_status(void);
79 80 void reset_waveform_picker_regs( void );
80 81 // SET
81 82 void set_wfp_data_shaping(void);
82 83 void set_wfp_burst_enable_register( unsigned char mode );
83 84 void set_wfp_delta_snapshot( void );
84 85 void set_wfp_delta_f0_f0_2( void );
85 86 void set_wfp_delta_f1( void );
86 87 void set_wfp_delta_f2( void );
87 88
88 89 //*****************
89 90 // local parameters
90 91 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
91 92
92 93 #endif // WF_HANDLER_H_INCLUDED
@@ -1,75 +1,75
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23 #include "fsw_params_wf_handler.h"
24 24
25 25 // RTEMS GLOBAL VARIABLES
26 26 rtems_name misc_name[5];
27 27 rtems_id misc_id[5];
28 rtems_name Task_name[20]; /* array of task names */
29 rtems_id Task_id[20]; /* array of task ids */
28 rtems_name Task_name[21]; /* array of task names */
29 rtems_id Task_id[21]; /* array of task ids */
30 30 unsigned int maxCount;
31 31 int fdSPW = 0;
32 32 int fdUART = 0;
33 33 unsigned char lfrCurrentMode;
34 34
35 35 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
36 36 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
37 37 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
38 38 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
39 39 // F0 F1 F2 F3
40 40 volatile int wf_snap_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
41 41 volatile int wf_snap_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
42 42 volatile int wf_snap_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
43 43 volatile int wf_cont_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
44 44 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK + TIME_OFFSET_IN_BYTES ] __attribute__((aligned(0x100)));
45 45
46 46 //***********************************
47 47 // SPECTRAL MATRICES GLOBAL VARIABLES
48 48
49 49 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
50 50 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
51 51 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
52 52 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
53 53
54 54 // APB CONFIGURATION REGISTERS
55 55 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
56 56 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
57 57 waveform_picker_regs_new_t *waveform_picker_regs = (waveform_picker_regs_new_t*) REGS_ADDR_WAVEFORM_PICKER;
58 58 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
59 59
60 60 // MODE PARAMETERS
61 61 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
62 62 struct param_local_str param_local;
63 63
64 64 // HK PACKETS
65 65 Packet_TM_LFR_HK_t housekeeping_packet;
66 66 // sequence counters are incremented by APID (PID + CAT) and destination ID
67 67 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
68 68 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
69 69 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
70 70 unsigned short sequenceCounterHK;
71 71 unsigned short sequenceCounterParameterDump;
72 72 spw_stats spacewire_stats;
73 73 spw_stats spacewire_stats_backup;
74 74
75 75
@@ -1,780 +1,800
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 #define CONFIGURE_MAXIMUM_TASKS 20
29 #define CONFIGURE_MAXIMUM_TASKS 21
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
39 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 40 #ifdef PRINT_STACK_REPORT
41 41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 42 #endif
43 #ifdef FAST_SCHEDULER
44 #define CONFIGURE_MICROSECONDS_PER_TICK 1000 /* 1 millisecond */
45 #endif
43 46
44 47 #include <rtems/confdefs.h>
45 48
46 49 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 50 #ifdef RTEMS_DRVMGR_STARTUP
48 51 #ifdef LEON3
49 52 /* Add Timer and UART Driver */
50 53 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
51 54 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
52 55 #endif
53 56 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
54 57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
55 58 #endif
56 59 #endif
57 60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
58 61 #include <drvmgr/drvmgr_confdefs.h>
59 62 #endif
60 63
61 64 #include "fsw_init.h"
62 65 #include "fsw_config.c"
63 66
64 67 rtems_task Init( rtems_task_argument ignored )
65 68 {
66 69 /** This is the RTEMS INIT taks, it the first task launched by the system.
67 70 *
68 71 * @param unused is the starting argument of the RTEMS task
69 72 *
70 73 * The INIT task create and run all other RTEMS tasks.
71 74 *
72 75 */
73 76
74 77 unsigned char *vhdlVersion;
75 78
76 79 reset_local_time();
77 80
78 81 rtems_cpu_usage_reset();
79 82
80 83 rtems_status_code status;
81 84 rtems_status_code status_spw;
82 85 rtems_isr_entry old_isr_handler;
83 86
84 87 // UART settings
85 88 send_console_outputs_on_apbuart_port();
86 89 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
87 90 enable_apbuart_transmitter();
88 91 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
89 92
90 93 PRINTF("\n\n\n\n\n")
91 94 PRINTF("*************************\n")
92 95 PRINTF("** LFR Flight Software **\n")
93 96 PRINTF1("** %d.", SW_VERSION_N1)
94 97 PRINTF1("%d." , SW_VERSION_N2)
95 98 PRINTF1("%d." , SW_VERSION_N3)
96 99 PRINTF1("%d **\n", SW_VERSION_N4)
97 100
98 101 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
99 102 PRINTF("** VHDL **\n")
100 103 PRINTF1("** %d.", vhdlVersion[1])
101 104 PRINTF1("%d." , vhdlVersion[2])
102 105 PRINTF1("%d **\n", vhdlVersion[3])
103 106 PRINTF("*************************\n")
104 107 PRINTF("\n\n")
105 108
106 109 init_parameter_dump();
107 110 init_local_mode_parameters();
108 111 init_housekeeping_parameters();
109 112
110 113 // waveform picker initialization
111 114 WFP_init_rings(); // initialize the waveform rings
112 115 WFP_reset_current_ring_nodes();
113 116 reset_waveform_picker_regs();
114 117
115 118 // spectral matrices initialization
116 119 SM_init_rings(); // initialize spectral matrices rings
117 120 SM_reset_current_ring_nodes();
118 121 reset_spectral_matrix_regs();
119 122
120 123 updateLFRCurrentMode();
121 124
122 125 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
123 126
124 127 create_names(); // create all names
125 128
126 129 status = create_message_queues(); // create message queues
127 130 if (status != RTEMS_SUCCESSFUL)
128 131 {
129 132 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
130 133 }
131 134
132 135 status = create_all_tasks(); // create all tasks
133 136 if (status != RTEMS_SUCCESSFUL)
134 137 {
135 138 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
136 139 }
137 140
138 141 // **************************
139 142 // <SPACEWIRE INITIALIZATION>
140 143 grspw_timecode_callback = &timecode_irq_handler;
141 144
142 145 status_spw = spacewire_open_link(); // (1) open the link
143 146 if ( status_spw != RTEMS_SUCCESSFUL )
144 147 {
145 148 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
146 149 }
147 150
148 151 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
149 152 {
150 153 status_spw = spacewire_configure_link( fdSPW );
151 154 if ( status_spw != RTEMS_SUCCESSFUL )
152 155 {
153 156 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
154 157 }
155 158 }
156 159
157 160 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
158 161 {
159 162 status_spw = spacewire_start_link( fdSPW );
160 163 if ( status_spw != RTEMS_SUCCESSFUL )
161 164 {
162 165 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
163 166 }
164 167 }
165 168 // </SPACEWIRE INITIALIZATION>
166 169 // ***************************
167 170
168 171 status = start_all_tasks(); // start all tasks
169 172 if (status != RTEMS_SUCCESSFUL)
170 173 {
171 174 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
172 175 }
173 176
174 177 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
175 178 status = start_recv_send_tasks();
176 179 if ( status != RTEMS_SUCCESSFUL )
177 180 {
178 181 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
179 182 }
180 183
181 184 // suspend science tasks, they will be restarted later depending on the mode
182 185 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
183 186 if (status != RTEMS_SUCCESSFUL)
184 187 {
185 188 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
186 189 }
187 190
188 191 //******************************
189 192 // <SPECTRAL MATRICES SIMULATOR>
190 193 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
191 194 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
192 195 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
193 196 // </SPECTRAL MATRICES SIMULATOR>
194 197 //*******************************
195 198
196 199 // configure IRQ handling for the waveform picker unit
197 status = rtems_interrupt_catch( waveforms_isr,
200 status = rtems_interrupt_catch( waveforms_isr_alt,
198 201 IRQ_SPARC_WAVEFORM_PICKER,
199 202 &old_isr_handler) ;
200 203 // configure IRQ handling for the spectral matrices unit
201 status = rtems_interrupt_catch( spectral_matrices_isr,
202 IRQ_SPARC_SPECTRAL_MATRIX,
203 &old_isr_handler) ;
204 // status = rtems_interrupt_catch( spectral_matrices_isr,
205 // IRQ_SPARC_SPECTRAL_MATRIX,
206 // &old_isr_handler) ;
204 207
205 208 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
206 209 if ( status_spw != RTEMS_SUCCESSFUL )
207 210 {
208 211 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
209 212 if ( status != RTEMS_SUCCESSFUL ) {
210 213 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
211 214 }
212 215 }
213 216
214 217 BOOT_PRINTF("delete INIT\n")
215 218
216 219 status = rtems_task_delete(RTEMS_SELF);
217 220
218 221 }
219 222
220 223 void init_local_mode_parameters( void )
221 224 {
222 225 /** This function initialize the param_local global variable with default values.
223 226 *
224 227 */
225 228
226 229 unsigned int i;
227 230
228 231 // LOCAL PARAMETERS
229 232
230 233 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
231 234 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
232 235 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
233 236
234 237 // init sequence counters
235 238
236 239 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
237 240 {
238 241 sequenceCounters_TC_EXE[i] = 0x00;
239 242 }
240 243 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
241 244 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
242 245 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
243 246 sequenceCounterParameterDump = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
244 247 }
245 248
246 249 void reset_local_time( void )
247 250 {
248 251 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
249 252 }
250 253
251 254 void create_names( void ) // create all names for tasks and queues
252 255 {
253 256 /** This function creates all RTEMS names used in the software for tasks and queues.
254 257 *
255 258 * @return RTEMS directive status codes:
256 259 * - RTEMS_SUCCESSFUL - successful completion
257 260 *
258 261 */
259 262
260 263 // task names
261 264 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
262 265 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
263 266 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
264 267 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
265 268 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
266 269 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
267 270 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
268 271 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
269 272 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
270 273 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
271 274 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
272 275 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
273 276 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
274 277 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
275 278 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
276 279 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
277 280 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
278 281 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
279 282 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
283 Task_name[TASKID_SPOO] = rtems_build_name( 'S', 'P', 'O', 'O' );
280 284
281 285 // rate monotonic period names
282 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
286 name_hk_rate_monotonic = rtems_build_name( 'R', '_', 'H', 'K' );
287 name_spool_rate_monotonic = rtems_build_name( 'R', '_', 'S', 'P' );
283 288
284 289 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
285 290 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
286 291 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
287 292 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
288 293 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
289 294 }
290 295
291 296 int create_all_tasks( void ) // create all tasks which run in the software
292 297 {
293 298 /** This function creates all RTEMS tasks used in the software.
294 299 *
295 300 * @return RTEMS directive status codes:
296 301 * - RTEMS_SUCCESSFUL - task created successfully
297 302 * - RTEMS_INVALID_ADDRESS - id is NULL
298 303 * - RTEMS_INVALID_NAME - invalid task name
299 304 * - RTEMS_INVALID_PRIORITY - invalid task priority
300 305 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
301 306 * - RTEMS_TOO_MANY - too many tasks created
302 307 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
303 308 * - RTEMS_TOO_MANY - too many global objects
304 309 *
305 310 */
306 311
307 312 rtems_status_code status;
308 313
309 314 //**********
310 315 // SPACEWIRE
311 316 // RECV
312 317 status = rtems_task_create(
313 318 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
314 319 RTEMS_DEFAULT_MODES,
315 320 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
316 321 );
317 322 if (status == RTEMS_SUCCESSFUL) // SEND
318 323 {
319 324 status = rtems_task_create(
320 325 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
321 326 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
322 327 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
323 328 );
324 329 }
325 330 if (status == RTEMS_SUCCESSFUL) // WTDG
326 331 {
327 332 status = rtems_task_create(
328 333 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
329 334 RTEMS_DEFAULT_MODES,
330 335 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
331 336 );
332 337 }
333 338 if (status == RTEMS_SUCCESSFUL) // ACTN
334 339 {
335 340 status = rtems_task_create(
336 341 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
337 342 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
338 343 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
339 344 );
340 345 }
341 346 if (status == RTEMS_SUCCESSFUL) // SPIQ
342 347 {
343 348 status = rtems_task_create(
344 349 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
345 350 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
346 351 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
347 352 );
348 353 }
349 354
350 355 //******************
351 356 // SPECTRAL MATRICES
352 357 if (status == RTEMS_SUCCESSFUL) // AVF0
353 358 {
354 359 status = rtems_task_create(
355 360 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
356 361 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
357 362 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
358 363 );
359 364 }
360 365 if (status == RTEMS_SUCCESSFUL) // PRC0
361 366 {
362 367 status = rtems_task_create(
363 368 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
364 369 RTEMS_DEFAULT_MODES,
365 370 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
366 371 );
367 372 }
368 373 if (status == RTEMS_SUCCESSFUL) // AVF1
369 374 {
370 375 status = rtems_task_create(
371 376 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
372 377 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
373 378 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
374 379 );
375 380 }
376 381 if (status == RTEMS_SUCCESSFUL) // PRC1
377 382 {
378 383 status = rtems_task_create(
379 384 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
380 385 RTEMS_DEFAULT_MODES,
381 386 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
382 387 );
383 388 }
384 389 if (status == RTEMS_SUCCESSFUL) // AVF2
385 390 {
386 391 status = rtems_task_create(
387 392 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
388 393 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
389 394 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
390 395 );
391 396 }
392 397 if (status == RTEMS_SUCCESSFUL) // PRC2
393 398 {
394 399 status = rtems_task_create(
395 400 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
396 401 RTEMS_DEFAULT_MODES,
397 402 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
398 403 );
399 404 }
400 405
401 406 //****************
402 407 // WAVEFORM PICKER
403 408 if (status == RTEMS_SUCCESSFUL) // WFRM
404 409 {
405 410 status = rtems_task_create(
406 411 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
407 412 RTEMS_DEFAULT_MODES,
408 413 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
409 414 );
410 415 }
411 416 if (status == RTEMS_SUCCESSFUL) // CWF3
412 417 {
413 418 status = rtems_task_create(
414 419 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
415 420 RTEMS_DEFAULT_MODES,
416 421 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
417 422 );
418 423 }
419 424 if (status == RTEMS_SUCCESSFUL) // CWF2
420 425 {
421 426 status = rtems_task_create(
422 427 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
423 428 RTEMS_DEFAULT_MODES,
424 429 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
425 430 );
426 431 }
427 432 if (status == RTEMS_SUCCESSFUL) // CWF1
428 433 {
429 434 status = rtems_task_create(
430 435 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
431 436 RTEMS_DEFAULT_MODES,
432 437 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
433 438 );
434 439 }
435 440 if (status == RTEMS_SUCCESSFUL) // SWBD
436 441 {
437 442 status = rtems_task_create(
438 443 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
439 444 RTEMS_DEFAULT_MODES,
440 445 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
441 446 );
442 447 }
443 448
444 449 //*****
445 450 // MISC
446 451 if (status == RTEMS_SUCCESSFUL) // STAT
447 452 {
448 453 status = rtems_task_create(
449 454 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
450 455 RTEMS_DEFAULT_MODES,
451 456 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
452 457 );
453 458 }
454 459 if (status == RTEMS_SUCCESSFUL) // DUMB
455 460 {
456 461 status = rtems_task_create(
457 462 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
458 463 RTEMS_DEFAULT_MODES,
459 464 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
460 465 );
461 466 }
462 467 if (status == RTEMS_SUCCESSFUL) // HOUS
463 468 {
464 469 status = rtems_task_create(
465 470 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
466 471 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
467 472 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
468 473 );
469 474 }
475 if (status == RTEMS_SUCCESSFUL) // SPOO
476 {
477 status = rtems_task_create(
478 Task_name[TASKID_SPOO], TASK_PRIORITY_SPOO, RTEMS_MINIMUM_STACK_SIZE,
479 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
480 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPOO]
481 );
482 }
470 483
471 484 return status;
472 485 }
473 486
474 487 int start_recv_send_tasks( void )
475 488 {
476 489 rtems_status_code status;
477 490
478 491 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
479 492 if (status!=RTEMS_SUCCESSFUL) {
480 493 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
481 494 }
482 495
483 496 if (status == RTEMS_SUCCESSFUL) // SEND
484 497 {
485 498 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
486 499 if (status!=RTEMS_SUCCESSFUL) {
487 500 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
488 501 }
489 502 }
490 503
491 504 return status;
492 505 }
493 506
494 507 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
495 508 {
496 509 /** This function starts all RTEMS tasks used in the software.
497 510 *
498 511 * @return RTEMS directive status codes:
499 512 * - RTEMS_SUCCESSFUL - ask started successfully
500 513 * - RTEMS_INVALID_ADDRESS - invalid task entry point
501 514 * - RTEMS_INVALID_ID - invalid task id
502 515 * - RTEMS_INCORRECT_STATE - task not in the dormant state
503 516 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
504 517 *
505 518 */
506 519 // starts all the tasks fot eh flight software
507 520
508 521 rtems_status_code status;
509 522
510 523 //**********
511 524 // SPACEWIRE
512 525 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
513 526 if (status!=RTEMS_SUCCESSFUL) {
514 527 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
515 528 }
516 529
517 530 if (status == RTEMS_SUCCESSFUL) // WTDG
518 531 {
519 532 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
520 533 if (status!=RTEMS_SUCCESSFUL) {
521 534 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
522 535 }
523 536 }
524 537
525 538 if (status == RTEMS_SUCCESSFUL) // ACTN
526 539 {
527 540 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
528 541 if (status!=RTEMS_SUCCESSFUL) {
529 542 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
530 543 }
531 544 }
532 545
533 546 //******************
534 547 // SPECTRAL MATRICES
535 548 if (status == RTEMS_SUCCESSFUL) // AVF0
536 549 {
537 550 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
538 551 if (status!=RTEMS_SUCCESSFUL) {
539 552 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
540 553 }
541 554 }
542 555 if (status == RTEMS_SUCCESSFUL) // PRC0
543 556 {
544 557 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
545 558 if (status!=RTEMS_SUCCESSFUL) {
546 559 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
547 560 }
548 561 }
549 562 if (status == RTEMS_SUCCESSFUL) // AVF1
550 563 {
551 564 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
552 565 if (status!=RTEMS_SUCCESSFUL) {
553 566 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
554 567 }
555 568 }
556 569 if (status == RTEMS_SUCCESSFUL) // PRC1
557 570 {
558 571 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
559 572 if (status!=RTEMS_SUCCESSFUL) {
560 573 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
561 574 }
562 575 }
563 576 if (status == RTEMS_SUCCESSFUL) // AVF2
564 577 {
565 578 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
566 579 if (status!=RTEMS_SUCCESSFUL) {
567 580 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
568 581 }
569 582 }
570 583 if (status == RTEMS_SUCCESSFUL) // PRC2
571 584 {
572 585 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
573 586 if (status!=RTEMS_SUCCESSFUL) {
574 587 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
575 588 }
576 589 }
577 590
578 591 //****************
579 592 // WAVEFORM PICKER
580 593 if (status == RTEMS_SUCCESSFUL) // WFRM
581 594 {
582 595 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
583 596 if (status!=RTEMS_SUCCESSFUL) {
584 597 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
585 598 }
586 599 }
587 600 if (status == RTEMS_SUCCESSFUL) // CWF3
588 601 {
589 602 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
590 603 if (status!=RTEMS_SUCCESSFUL) {
591 604 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
592 605 }
593 606 }
594 607 if (status == RTEMS_SUCCESSFUL) // CWF2
595 608 {
596 609 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
597 610 if (status!=RTEMS_SUCCESSFUL) {
598 611 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
599 612 }
600 613 }
601 614 if (status == RTEMS_SUCCESSFUL) // CWF1
602 615 {
603 616 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
604 617 if (status!=RTEMS_SUCCESSFUL) {
605 618 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
606 619 }
607 620 }
608 621 if (status == RTEMS_SUCCESSFUL) // SWBD
609 622 {
610 623 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
611 624 if (status!=RTEMS_SUCCESSFUL) {
612 625 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
613 626 }
614 627 }
615 628
616 629 //*****
617 630 // MISC
618 631 if (status == RTEMS_SUCCESSFUL) // HOUS
619 632 {
620 633 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
621 634 if (status!=RTEMS_SUCCESSFUL) {
622 635 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
623 636 }
624 637 }
625 638 if (status == RTEMS_SUCCESSFUL) // DUMB
626 639 {
627 640 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
628 641 if (status!=RTEMS_SUCCESSFUL) {
629 642 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
630 643 }
631 644 }
632 645 if (status == RTEMS_SUCCESSFUL) // STAT
633 646 {
634 647 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
635 648 if (status!=RTEMS_SUCCESSFUL) {
636 649 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
637 650 }
638 651 }
652 if (status == RTEMS_SUCCESSFUL) // SPOO
653 {
654 status = rtems_task_start( Task_id[TASKID_SPOO], spoo_task, 1 );
655 if (status!=RTEMS_SUCCESSFUL) {
656 BOOT_PRINTF("in INIT *** Error starting TASK_SPOO\n")
657 }
658 }
639 659
640 660 return status;
641 661 }
642 662
643 663 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
644 664 {
645 665 rtems_status_code status_recv;
646 666 rtems_status_code status_send;
647 667 rtems_status_code status_q_p0;
648 668 rtems_status_code status_q_p1;
649 669 rtems_status_code status_q_p2;
650 670 rtems_status_code ret;
651 671 rtems_id queue_id;
652 672
653 673 //****************************************
654 674 // create the queue for handling valid TCs
655 675 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
656 676 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
657 677 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
658 678 if ( status_recv != RTEMS_SUCCESSFUL ) {
659 679 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
660 680 }
661 681
662 682 //************************************************
663 683 // create the queue for handling TM packet sending
664 684 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
665 685 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
666 686 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
667 687 if ( status_send != RTEMS_SUCCESSFUL ) {
668 688 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
669 689 }
670 690
671 691 //*****************************************************************************
672 692 // create the queue for handling averaged spectral matrices for processing @ f0
673 693 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
674 694 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
675 695 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
676 696 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
677 697 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
678 698 }
679 699
680 700 //*****************************************************************************
681 701 // create the queue for handling averaged spectral matrices for processing @ f1
682 702 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
683 703 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
684 704 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
685 705 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
686 706 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
687 707 }
688 708
689 709 //*****************************************************************************
690 710 // create the queue for handling averaged spectral matrices for processing @ f2
691 711 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
692 712 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
693 713 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
694 714 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
695 715 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
696 716 }
697 717
698 718 if ( status_recv != RTEMS_SUCCESSFUL )
699 719 {
700 720 ret = status_recv;
701 721 }
702 722 else if( status_send != RTEMS_SUCCESSFUL )
703 723 {
704 724 ret = status_send;
705 725 }
706 726 else if( status_q_p0 != RTEMS_SUCCESSFUL )
707 727 {
708 728 ret = status_q_p0;
709 729 }
710 730 else if( status_q_p1 != RTEMS_SUCCESSFUL )
711 731 {
712 732 ret = status_q_p1;
713 733 }
714 734 else
715 735 {
716 736 ret = status_q_p2;
717 737 }
718 738
719 739 return ret;
720 740 }
721 741
722 742 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
723 743 {
724 744 rtems_status_code status;
725 745 rtems_name queue_name;
726 746
727 747 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
728 748
729 749 status = rtems_message_queue_ident( queue_name, 0, queue_id );
730 750
731 751 return status;
732 752 }
733 753
734 754 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
735 755 {
736 756 rtems_status_code status;
737 757 rtems_name queue_name;
738 758
739 759 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
740 760
741 761 status = rtems_message_queue_ident( queue_name, 0, queue_id );
742 762
743 763 return status;
744 764 }
745 765
746 766 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
747 767 {
748 768 rtems_status_code status;
749 769 rtems_name queue_name;
750 770
751 771 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
752 772
753 773 status = rtems_message_queue_ident( queue_name, 0, queue_id );
754 774
755 775 return status;
756 776 }
757 777
758 778 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
759 779 {
760 780 rtems_status_code status;
761 781 rtems_name queue_name;
762 782
763 783 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
764 784
765 785 status = rtems_message_queue_ident( queue_name, 0, queue_id );
766 786
767 787 return status;
768 788 }
769 789
770 790 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
771 791 {
772 792 rtems_status_code status;
773 793 rtems_name queue_name;
774 794
775 795 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
776 796
777 797 status = rtems_message_queue_ident( queue_name, 0, queue_id );
778 798
779 799 return status;
780 800 }
@@ -1,529 +1,526
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 83 {
84 84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85 85
86 86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87 87
88 88 return 0;
89 89 }
90 90
91 91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 92 {
93 93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94 94
95 95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96 96
97 97 return 0;
98 98 }
99 99
100 100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 101 {
102 102 /** This function sets the scaler reload register of the apbuart module
103 103 *
104 104 * @param regs is the address of the apbuart registers in memory
105 105 * @param value is the value that will be stored in the scaler register
106 106 *
107 107 * The value shall be set by the software to get data on the serial interface.
108 108 *
109 109 */
110 110
111 111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112 112
113 113 apbuart_regs->scaler = value;
114 114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 115 }
116 116
117 117 //************
118 118 // RTEMS TASKS
119 119
120 120 rtems_task stat_task(rtems_task_argument argument)
121 121 {
122 122 int i;
123 123 int j;
124 124 i = 0;
125 125 j = 0;
126 126 BOOT_PRINTF("in STAT *** \n")
127 127 while(1){
128 rtems_task_wake_after(1000);
128 rtems_task_wake_after(STAT_TASK_PERIOD);
129 129 PRINTF1("%d\n", j)
130 130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 131 // #ifdef PRINT_TASK_STATISTICS
132 132 // rtems_cpu_usage_report();
133 133 // rtems_cpu_usage_reset();
134 134 // #endif
135 135 i = 0;
136 136 }
137 137 else i++;
138 138 j++;
139 139 }
140 140 }
141 141
142 142 rtems_task hous_task(rtems_task_argument argument)
143 143 {
144 144 rtems_status_code status;
145 145 rtems_id queue_id;
146 146 rtems_rate_monotonic_period_status period_status;
147 147
148 148 status = get_message_queue_id_send( &queue_id );
149 149 if (status != RTEMS_SUCCESSFUL)
150 150 {
151 151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 152 }
153 153
154 154 BOOT_PRINTF("in HOUS ***\n")
155 155
156 156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 158 if( status != RTEMS_SUCCESSFUL ) {
159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
159 PRINTF1( "in HOUS *** rtems_rate_monotonic_create failed with status of %d\n", status )
160 160 }
161 161 }
162 162
163 163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 165 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 166 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 167 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
168 168 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
169 169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 174 housekeeping_packet.serviceType = TM_TYPE_HK;
175 175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 177 housekeeping_packet.sid = SID_HK;
178 178
179 179 status = rtems_rate_monotonic_cancel(HK_id);
180 180 if( status != RTEMS_SUCCESSFUL ) {
181 181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 182 }
183 183 else {
184 184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 185 }
186 186
187 187 // startup phase
188 188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 192 {
193 193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 194 {
195 195 break; // break if LFR is synchronized
196 196 }
197 197 else
198 198 {
199 199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 200 // sched_yield();
201 201 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
202 202 }
203 203 }
204 204 status = rtems_rate_monotonic_cancel(HK_id);
205 205 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
206 206
207 207 while(1){ // launch the rate monotonic task
208 208 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
209 209 if ( status != RTEMS_SUCCESSFUL ) {
210 210 PRINTF1( "in HOUS *** ERR period: %d\n", status);
211 211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 212 }
213 213 else {
214 214 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
215 215 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
216 216 increment_seq_counter( &sequenceCounterHK );
217 217
218 218 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
219 219 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
220 220 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
221 221 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
222 222 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
223 223 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
224 224
225 225 spacewire_update_statistics();
226 226
227 227 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
228 228 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
229 229
230 230 // SEND PACKET
231 231 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
232 232 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
233 233 if (status != RTEMS_SUCCESSFUL) {
234 234 PRINTF1("in HOUS *** ERR send: %d\n", status)
235 235 }
236 236 }
237 237 }
238 238
239 239 PRINTF("in HOUS *** deleting task\n")
240 240
241 241 status = rtems_task_delete( RTEMS_SELF ); // should not return
242 242 printf( "rtems_task_delete returned with status of %d.\n", status );
243 243 return;
244 244 }
245 245
246 246 rtems_task dumb_task( rtems_task_argument unused )
247 247 {
248 248 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
249 249 *
250 250 * @param unused is the starting argument of the RTEMS task
251 251 *
252 252 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
253 253 *
254 254 */
255 255
256 256 unsigned int i;
257 257 unsigned int intEventOut;
258 258 unsigned int coarse_time = 0;
259 259 unsigned int fine_time = 0;
260 260 rtems_event_set event_out;
261 261
262 262 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
263 263 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
264 264 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
265 265 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
266 266 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
267 267 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
268 268 "ERR HK", // RTEMS_EVENT_6
269 269 "ready for dump", // RTEMS_EVENT_7
270 270 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
271 271 "tick", // RTEMS_EVENT_9
272 272 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
273 273 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
274 274 };
275 275
276 276 BOOT_PRINTF("in DUMB *** \n")
277 277
278 278 while(1){
279 279 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
280 280 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
281 281 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
282 282 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
283 283 intEventOut = (unsigned int) event_out;
284 284 for ( i=0; i<32; i++)
285 285 {
286 286 if ( ((intEventOut >> i) & 0x0001) != 0)
287 287 {
288 288 coarse_time = time_management_regs->coarse_time;
289 289 fine_time = time_management_regs->fine_time;
290 290 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
291 291 if (i==8)
292 292 {
293 293 PRINTF1("spectral_matrix_regs->status = %x\n", spectral_matrix_regs->status)
294 294 }
295 295 if (i==10)
296 296 {
297 297 PRINTF1("waveform_picker_regs->status = %x\n", waveform_picker_regs->status)
298 298 }
299 299 }
300 300 }
301 301 }
302 302 }
303 303
304 304 //*****************************
305 305 // init housekeeping parameters
306 306
307 307 void init_housekeeping_parameters( void )
308 308 {
309 309 /** This function initialize the housekeeping_packet global variable with default values.
310 310 *
311 311 */
312 312
313 313 unsigned int i = 0;
314 314 unsigned char *parameters;
315 315
316 316 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
317 317 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
318 318 {
319 319 parameters[i] = 0x00;
320 320 }
321 321 // init status word
322 322 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
323 323 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
324 324 // init software version
325 325 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
326 326 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
327 327 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
328 328 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
329 329 // init fpga version
330 330 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
331 331 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
332 332 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
333 333 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
334 334 }
335 335
336 336 void increment_seq_counter( unsigned short *packetSequenceControl )
337 337 {
338 338 /** This function increment the sequence counter psased in argument.
339 339 *
340 340 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
341 341 *
342 342 */
343 343
344 344 unsigned short segmentation_grouping_flag;
345 345 unsigned short sequence_cnt;
346 346
347 347 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
348 348 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
349 349
350 350 if ( sequence_cnt < SEQ_CNT_MAX)
351 351 {
352 352 sequence_cnt = sequence_cnt + 1;
353 353 }
354 354 else
355 355 {
356 356 sequence_cnt = 0;
357 357 }
358 358
359 359 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
360 360 }
361 361
362 362 void getTime( unsigned char *time)
363 363 {
364 364 /** This function write the current local time in the time buffer passed in argument.
365 365 *
366 366 */
367 367
368 368 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
369 369 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
370 370 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
371 371 time[3] = (unsigned char) (time_management_regs->coarse_time);
372 372 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
373 373 time[5] = (unsigned char) (time_management_regs->fine_time);
374 374 }
375 375
376 376 unsigned long long int getTimeAsUnsignedLongLongInt( )
377 377 {
378 378 /** This function write the current local time in the time buffer passed in argument.
379 379 *
380 380 */
381 381 unsigned long long int time;
382 382
383 383 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
384 384 + time_management_regs->fine_time;
385 385
386 386 return time;
387 387 }
388 388
389 389 void send_dumb_hk( void )
390 390 {
391 391 Packet_TM_LFR_HK_t dummy_hk_packet;
392 392 unsigned char *parameters;
393 393 unsigned int i;
394 394 rtems_id queue_id;
395 395
396 396 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
397 397 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
398 398 dummy_hk_packet.reserved = DEFAULT_RESERVED;
399 399 dummy_hk_packet.userApplication = CCSDS_USER_APP;
400 400 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
401 401 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
402 402 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
403 403 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
404 404 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
405 405 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
406 406 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
407 407 dummy_hk_packet.serviceType = TM_TYPE_HK;
408 408 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
409 409 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
410 410 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
411 411 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
412 412 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
413 413 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
414 414 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
415 415 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
416 416 dummy_hk_packet.sid = SID_HK;
417 417
418 418 // init status word
419 419 dummy_hk_packet.lfr_status_word[0] = 0xff;
420 420 dummy_hk_packet.lfr_status_word[1] = 0xff;
421 421 // init software version
422 422 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
423 423 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
424 424 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
425 425 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
426 426 // init fpga version
427 427 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
428 428 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
429 429 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
430 430 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
431 431
432 432 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
433 433
434 434 for (i=0; i<100; i++)
435 435 {
436 436 parameters[i] = 0xff;
437 437 }
438 438
439 439 get_message_queue_id_send( &queue_id );
440 440
441 441 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
442 442 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
443 443 }
444 444
445 445 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
446 446 {
447 447 unsigned int coarseTime;
448 448 unsigned int acquisitionTime;
449 449 unsigned int deltaT = 0;
450 450 unsigned char *bufferPtr;
451 451
452 452 unsigned int offset_in_samples;
453 453 unsigned int offset_in_bytes;
454 454 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
455 455
456 456 if (lfrCurrentMode == LFR_MODE_STANDBY)
457 457 {
458 458 spacecraft_potential[0] = 0x00;
459 459 spacecraft_potential[1] = 0x00;
460 460 spacecraft_potential[2] = 0x00;
461 461 spacecraft_potential[3] = 0x00;
462 462 spacecraft_potential[4] = 0x00;
463 463 spacecraft_potential[5] = 0x00;
464 464 }
465 465 else
466 466 {
467 467 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
468 468 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
469 469 acquisitionTime = (unsigned int) ( ( bufferPtr[0] & 0x7f ) << 24 )
470 470 + (unsigned int) ( bufferPtr[1] << 16 )
471 471 + (unsigned int) ( bufferPtr[2] << 8 )
472 472 + (unsigned int) ( bufferPtr[3] );
473 473 if ( coarseTime > acquisitionTime )
474 474 {
475 475 deltaT = coarseTime - acquisitionTime;
476 476 offset_in_samples = (deltaT-1) * f3 ;
477 477 }
478 478 else if( coarseTime == acquisitionTime )
479 479 {
480 480 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
481 481 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
482 482 }
483 483 else
484 484 {
485 485 offset_in_samples = 0;
486 486 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
487 487 }
488 488
489 489 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
490 490 {
491 491 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
492 492 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
493 493 }
494 494 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
495 495 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
496 496 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
497 497 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
498 498 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
499 499 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
500 500 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
501 501 }
502 502 }
503 503
504 504 void get_cpu_load( unsigned char *resource_statistics )
505 505 {
506 506 unsigned char cpu_load;
507 507
508 508 cpu_load = lfr_rtems_cpu_usage_report();
509 509
510 510 // HK_LFR_CPU_LOAD
511 511 resource_statistics[0] = cpu_load;
512 512
513 513 // HK_LFR_CPU_LOAD_MAX
514 514 if (cpu_load > resource_statistics[1])
515 515 {
516 516 resource_statistics[1] = cpu_load;
517 517 }
518 518
519 519 // CPU_LOAD_AVE
520 520 resource_statistics[2] = 0;
521 521
522 522 #ifndef PRINT_TASK_STATISTICS
523 523 rtems_cpu_usage_reset();
524 524 #endif
525 525
526 526 }
527
528
529
@@ -1,610 +1,613
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //***********
20 20 // RTEMS TASK
21 21 rtems_task spiq_task(rtems_task_argument unused)
22 22 {
23 23 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
24 24 *
25 25 * @param unused is the starting argument of the RTEMS task
26 26 *
27 27 */
28 28
29 29 rtems_event_set event_out;
30 30 rtems_status_code status;
31 31 int linkStatus;
32 32
33 33 BOOT_PRINTF("in SPIQ *** \n")
34 34
35 35 while(true){
36 36 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
37 37 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
38 38
39 39 // [0] SUSPEND RECV AND SEND TASKS
40 40 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
41 41 if ( status != RTEMS_SUCCESSFUL ) {
42 42 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
43 43 }
44 44 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
45 45 if ( status != RTEMS_SUCCESSFUL ) {
46 46 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
47 47 }
48 48
49 49 // [1] CHECK THE LINK
50 50 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
51 51 if ( linkStatus != 5) {
52 52 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
53 53 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
54 54 }
55 55
56 56 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
57 57 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
58 58 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
59 59 {
60 60 spacewire_compute_stats_offsets();
61 61 status = spacewire_reset_link( );
62 62 }
63 63 else // [2.b] in run state, start the link
64 64 {
65 65 status = spacewire_stop_and_start_link( fdSPW ); // start the link
66 66 if ( status != RTEMS_SUCCESSFUL)
67 67 {
68 68 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
69 69 }
70 70 }
71 71
72 72 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
73 73 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
74 74 {
75 75 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
76 76 if ( status != RTEMS_SUCCESSFUL ) {
77 77 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
78 78 }
79 79 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
80 80 if ( status != RTEMS_SUCCESSFUL ) {
81 81 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
82 82 }
83 83 }
84 84 else // [3.b] the link is not in run state, go in STANDBY mode
85 85 {
86 86 status = stop_current_mode();
87 87 if ( status != RTEMS_SUCCESSFUL ) {
88 88 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
89 89 }
90 90 status = enter_mode( LFR_MODE_STANDBY, 0 );
91 91 if ( status != RTEMS_SUCCESSFUL ) {
92 92 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
93 93 }
94 94 // wake the WTDG task up to wait for the link recovery
95 95 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
96 96 status = rtems_task_suspend( RTEMS_SELF );
97 97 }
98 98 }
99 99 }
100 100
101 101 rtems_task recv_task( rtems_task_argument unused )
102 102 {
103 103 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
104 104 *
105 105 * @param unused is the starting argument of the RTEMS task
106 106 *
107 107 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
108 108 * 1. It reads the incoming data.
109 109 * 2. Launches the acceptance procedure.
110 110 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
111 111 *
112 112 */
113 113
114 114 int len;
115 115 ccsdsTelecommandPacket_t currentTC;
116 116 unsigned char computed_CRC[ 2 ];
117 117 unsigned char currentTC_LEN_RCV[ 2 ];
118 118 unsigned char destinationID;
119 119 unsigned int estimatedPacketLength;
120 120 unsigned int parserCode;
121 121 rtems_status_code status;
122 122 rtems_id queue_recv_id;
123 123 rtems_id queue_send_id;
124 124
125 125 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
126 126
127 127 status = get_message_queue_id_recv( &queue_recv_id );
128 128 if (status != RTEMS_SUCCESSFUL)
129 129 {
130 130 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
131 131 }
132 132
133 133 status = get_message_queue_id_send( &queue_send_id );
134 134 if (status != RTEMS_SUCCESSFUL)
135 135 {
136 136 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
137 137 }
138 138
139 139 BOOT_PRINTF("in RECV *** \n")
140 140
141 141 while(1)
142 142 {
143 143 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
144 144 if (len == -1){ // error during the read call
145 145 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
146 146 }
147 147 else {
148 148 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
149 149 PRINTF("in RECV *** packet lenght too short\n")
150 150 }
151 151 else {
152 152 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
153 153 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
154 154 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
155 155 // CHECK THE TC
156 156 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
157 157 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
158 158 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
159 159 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
160 160 || (parserCode == WRONG_SRC_ID) )
161 161 { // send TM_LFR_TC_EXE_CORRUPTED
162 162 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
163 163 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
164 164 &&
165 165 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
166 166 )
167 167 {
168 168 if ( parserCode == WRONG_SRC_ID )
169 169 {
170 170 destinationID = SID_TC_GROUND;
171 171 }
172 172 else
173 173 {
174 174 destinationID = currentTC.sourceID;
175 175 }
176 176 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
177 177 computed_CRC, currentTC_LEN_RCV,
178 178 destinationID );
179 179 }
180 180 }
181 181 else
182 182 { // send valid TC to the action launcher
183 183 status = rtems_message_queue_send( queue_recv_id, &currentTC,
184 184 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
185 185 }
186 186 }
187 187 }
188 188 }
189 189 }
190 190
191 191 rtems_task send_task( rtems_task_argument argument)
192 192 {
193 193 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
194 194 *
195 195 * @param unused is the starting argument of the RTEMS task
196 196 *
197 197 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
198 198 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
199 199 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
200 200 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
201 201 * data it contains.
202 202 *
203 203 */
204 204
205 205 rtems_status_code status; // RTEMS status code
206 206 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
207 207 spw_ioctl_pkt_send *spw_ioctl_send;
208 208 size_t size; // size of the incoming TC packet
209 209 u_int32_t count;
210 210 rtems_id queue_id;
211 rtems_interrupt_level level;
211 212
212 213 status = get_message_queue_id_send( &queue_id );
213 214 if (status != RTEMS_SUCCESSFUL)
214 215 {
215 216 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
216 217 }
217 218
218 219 BOOT_PRINTF("in SEND *** \n")
219 220
220 221 while(1)
221 222 {
222 223 status = rtems_message_queue_receive( queue_id, incomingData, &size,
223 224 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
224
225 rtems_interrupt_disable( level );
225 226 if (status!=RTEMS_SUCCESSFUL)
226 227 {
227 228 PRINTF1("in SEND *** (1) ERR = %d\n", status)
228 229 }
229 230 else
230 231 {
231 232 if ( incomingData[0] == CCSDS_DESTINATION_ID) // the incoming message is a ccsds packet
232 233 {
233 234 status = write( fdSPW, incomingData, size );
234 235 if (status == -1){
235 236 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
236 237 }
237 238 }
238 239 else // the incoming message is a spw_ioctl_pkt_send structure
239 240 {
240 241 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
241 242 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
242 243 if (status == -1){
243 244 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
244 245 }
245 246 }
246 247 }
247 248
248 249 status = rtems_message_queue_get_number_pending( queue_id, &count );
249 250 if (status != RTEMS_SUCCESSFUL)
250 251 {
251 252 PRINTF1("in SEND *** (3) ERR = %d\n", status)
252 253 }
253 254 else
254 255 {
255 256 if (count > maxCount)
256 257 {
257 258 maxCount = count;
258 259 }
259 260 }
261
262 rtems_interrupt_enable( level );
260 263 }
261 264 }
262 265
263 266 rtems_task wtdg_task( rtems_task_argument argument )
264 267 {
265 268 rtems_event_set event_out;
266 269 rtems_status_code status;
267 270 int linkStatus;
268 271
269 272 BOOT_PRINTF("in WTDG ***\n")
270 273
271 274 while(1)
272 275 {
273 276 // wait for an RTEMS_EVENT
274 277 rtems_event_receive( RTEMS_EVENT_0,
275 278 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
276 279 PRINTF("in WTDG *** wait for the link\n")
277 280 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
278 281 while( linkStatus != 5) // wait for the link
279 282 {
280 283 rtems_task_wake_after( 10 );
281 284 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
282 285 }
283 286
284 287 status = spacewire_stop_and_start_link( fdSPW );
285 288
286 289 if (status != RTEMS_SUCCESSFUL)
287 290 {
288 291 PRINTF1("in WTDG *** ERR link not started %d\n", status)
289 292 }
290 293 else
291 294 {
292 295 PRINTF("in WTDG *** OK link started\n")
293 296 }
294 297
295 298 // restart the SPIQ task
296 299 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
297 300 if ( status != RTEMS_SUCCESSFUL ) {
298 301 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
299 302 }
300 303
301 304 // restart RECV and SEND
302 305 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
303 306 if ( status != RTEMS_SUCCESSFUL ) {
304 307 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
305 308 }
306 309 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
307 310 if ( status != RTEMS_SUCCESSFUL ) {
308 311 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
309 312 }
310 313 }
311 314 }
312 315
313 316 //****************
314 317 // OTHER FUNCTIONS
315 318 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
316 319 {
317 320 /** This function opens the SpaceWire link.
318 321 *
319 322 * @return a valid file descriptor in case of success, -1 in case of a failure
320 323 *
321 324 */
322 325 rtems_status_code status;
323 326
324 327 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
325 328 if ( fdSPW < 0 ) {
326 329 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
327 330 }
328 331 else
329 332 {
330 333 status = RTEMS_SUCCESSFUL;
331 334 }
332 335
333 336 return status;
334 337 }
335 338
336 339 int spacewire_start_link( int fd )
337 340 {
338 341 rtems_status_code status;
339 342
340 343 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
341 344 // -1 default hardcoded driver timeout
342 345
343 346 return status;
344 347 }
345 348
346 349 int spacewire_stop_and_start_link( int fd )
347 350 {
348 351 rtems_status_code status;
349 352
350 353 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
351 354 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
352 355 // -1 default hardcoded driver timeout
353 356
354 357 return status;
355 358 }
356 359
357 360 int spacewire_configure_link( int fd )
358 361 {
359 362 /** This function configures the SpaceWire link.
360 363 *
361 364 * @return GR-RTEMS-DRIVER directive status codes:
362 365 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
363 366 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
364 367 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
365 368 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
366 369 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
367 370 * - 5 EIO - Error when writing to grswp hardware registers.
368 371 * - 2 ENOENT - No such file or directory
369 372 */
370 373
371 374 rtems_status_code status;
372 375
373 376 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
374 377 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
375 378
376 379 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
377 380 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
378 381 //
379 382 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
380 383 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
381 384 //
382 385 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
383 386 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
384 387 //
385 388 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
386 389 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
387 390 //
388 391 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
389 392 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
390 393 //
391 394 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
392 395 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
393 396 //
394 397 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
395 398 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
396 399
397 400 return status;
398 401 }
399 402
400 403 int spacewire_reset_link( void )
401 404 {
402 405 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
403 406 *
404 407 * @return RTEMS directive status code:
405 408 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
406 409 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
407 410 *
408 411 */
409 412
410 413 rtems_status_code status_spw;
411 414 int i;
412 415
413 416 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
414 417 {
415 418 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
416 419
417 420 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
418 421
419 422 status_spw = spacewire_stop_and_start_link( fdSPW );
420 423 if ( status_spw != RTEMS_SUCCESSFUL )
421 424 {
422 425 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
423 426 }
424 427
425 428 if ( status_spw == RTEMS_SUCCESSFUL)
426 429 {
427 430 break;
428 431 }
429 432 }
430 433
431 434 return status_spw;
432 435 }
433 436
434 437 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
435 438 {
436 439 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
437 440 *
438 441 * @param val is the value, 0 or 1, used to set the value of the NP bit.
439 442 * @param regAddr is the address of the GRSPW control register.
440 443 *
441 444 * NP is the bit 20 of the GRSPW control register.
442 445 *
443 446 */
444 447
445 448 unsigned int *spwptr = (unsigned int*) regAddr;
446 449
447 450 if (val == 1) {
448 451 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
449 452 }
450 453 if (val== 0) {
451 454 *spwptr = *spwptr & 0xffdfffff;
452 455 }
453 456 }
454 457
455 458 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
456 459 {
457 460 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
458 461 *
459 462 * @param val is the value, 0 or 1, used to set the value of the RE bit.
460 463 * @param regAddr is the address of the GRSPW control register.
461 464 *
462 465 * RE is the bit 16 of the GRSPW control register.
463 466 *
464 467 */
465 468
466 469 unsigned int *spwptr = (unsigned int*) regAddr;
467 470
468 471 if (val == 1)
469 472 {
470 473 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
471 474 }
472 475 if (val== 0)
473 476 {
474 477 *spwptr = *spwptr & 0xfffdffff;
475 478 }
476 479 }
477 480
478 481 void spacewire_compute_stats_offsets( void )
479 482 {
480 483 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
481 484 *
482 485 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
483 486 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
484 487 * during the open systel call).
485 488 *
486 489 */
487 490
488 491 spw_stats spacewire_stats_grspw;
489 492 rtems_status_code status;
490 493
491 494 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
492 495
493 496 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
494 497 + spacewire_stats.packets_received;
495 498 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
496 499 + spacewire_stats.packets_sent;
497 500 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
498 501 + spacewire_stats.parity_err;
499 502 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
500 503 + spacewire_stats.disconnect_err;
501 504 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
502 505 + spacewire_stats.escape_err;
503 506 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
504 507 + spacewire_stats.credit_err;
505 508 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
506 509 + spacewire_stats.write_sync_err;
507 510 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
508 511 + spacewire_stats.rx_rmap_header_crc_err;
509 512 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
510 513 + spacewire_stats.rx_rmap_data_crc_err;
511 514 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
512 515 + spacewire_stats.early_ep;
513 516 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
514 517 + spacewire_stats.invalid_address;
515 518 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
516 519 + spacewire_stats.rx_eep_err;
517 520 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
518 521 + spacewire_stats.rx_truncated;
519 522 }
520 523
521 524 void spacewire_update_statistics( void )
522 525 {
523 526 rtems_status_code status;
524 527 spw_stats spacewire_stats_grspw;
525 528
526 529 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
527 530
528 531 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
529 532 + spacewire_stats_grspw.packets_received;
530 533 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
531 534 + spacewire_stats_grspw.packets_sent;
532 535 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
533 536 + spacewire_stats_grspw.parity_err;
534 537 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
535 538 + spacewire_stats_grspw.disconnect_err;
536 539 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
537 540 + spacewire_stats_grspw.escape_err;
538 541 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
539 542 + spacewire_stats_grspw.credit_err;
540 543 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
541 544 + spacewire_stats_grspw.write_sync_err;
542 545 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
543 546 + spacewire_stats_grspw.rx_rmap_header_crc_err;
544 547 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
545 548 + spacewire_stats_grspw.rx_rmap_data_crc_err;
546 549 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
547 550 + spacewire_stats_grspw.early_ep;
548 551 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
549 552 + spacewire_stats_grspw.invalid_address;
550 553 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
551 554 + spacewire_stats_grspw.rx_eep_err;
552 555 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
553 556 + spacewire_stats_grspw.rx_truncated;
554 557 //spacewire_stats.tx_link_err;
555 558
556 559 //****************************
557 560 // DPU_SPACEWIRE_IF_STATISTICS
558 561 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
559 562 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
560 563 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
561 564 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
562 565 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
563 566 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
564 567
565 568 //******************************************
566 569 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
567 570 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
568 571 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
569 572 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
570 573 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
571 574 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
572 575
573 576 //*********************************************
574 577 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
575 578 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
576 579 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
577 580 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
578 581 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
579 582 }
580 583
581 584 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
582 585 {
583 586 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_9 );
584 587 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
585 588
586 589 grgpio_regs->io_port_direction_register =
587 590 grgpio_regs->io_port_direction_register | 0x08; // [0001 1000], 0 = output disabled, 1 = output enabled
588 591
589 592 if ( (grgpio_regs->io_port_output_register & 0x08) == 0x08 )
590 593 {
591 594 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xf7;
592 595 }
593 596 else
594 597 {
595 598 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x08;
596 599 }
597 600 }
598 601
599 602 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
600 603 {
601 604 int linkStatus;
602 605 rtems_status_code status;
603 606
604 607 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
605 608
606 609 if ( linkStatus == 5) {
607 610 PRINTF("in spacewire_reset_link *** link is running\n")
608 611 status = RTEMS_SUCCESSFUL;
609 612 }
610 613 }
@@ -1,689 +1,691
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12
13 13 unsigned int nb_sm_f0;
14 14 unsigned int nb_sm_f0_aux_f1;
15 15 unsigned int nb_sm_f1;
16 16 unsigned int nb_sm_f0_aux_f2;
17 17
18 18 //************************
19 19 // spectral matrices rings
20 20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 23 ring_node_sm *current_ring_node_sm_f0;
24 24 ring_node_sm *current_ring_node_sm_f1;
25 25 ring_node_sm *current_ring_node_sm_f2;
26 26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 28 ring_node_sm *ring_node_for_averaging_sm_f2;
29 29
30 30 //***********************************************************
31 31 // Interrupt Service Routine for spectral matrices processing
32 32
33 33 void spectral_matrices_isr_f0( void )
34 34 {
35 35 unsigned char status;
36 36 unsigned long long int time_0;
37 37 unsigned long long int time_1;
38 38 unsigned long long int syncBit0;
39 39 unsigned long long int syncBit1;
40 40
41 41 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
42 42
43 43 time_0 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_0_coarse_time );
44 44 time_1 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_1_coarse_time );
45 45 syncBit0 = ( (unsigned long long int) (spectral_matrix_regs->f0_0_coarse_time & 0x80000000) ) << 16;
46 46 syncBit1 = ( (unsigned long long int) (spectral_matrix_regs->f0_1_coarse_time & 0x80000000) ) << 16;
47 47
48 48 switch(status)
49 49 {
50 50 case 0:
51 51 break;
52 52 case 3:
53 53 if ( time_0 < time_1 )
54 54 {
55 55 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
56 56 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
57 57 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
58 58 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
59 59 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
60 60 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
61 61 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
62 62 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
63 63 }
64 64 else
65 65 {
66 66 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
67 67 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
68 68 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
69 69 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
70 70 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
71 71 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
72 72 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
73 73 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
74 74 }
75 75 spectral_matrix_regs->status = 0x03; // [0011]
76 76 break;
77 77 case 1:
78 78 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
79 79 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
80 80 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
81 81 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
82 82 spectral_matrix_regs->status = 0x01; // [0001]
83 83 break;
84 84 case 2:
85 85 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
86 86 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
87 87 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
88 88 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
89 89 spectral_matrix_regs->status = 0x02; // [0010]
90 90 break;
91 91 }
92 92 }
93 93
94 94 void spectral_matrices_isr_f1( void )
95 95 {
96 96 unsigned char status;
97 97 unsigned long long int time;
98 98 unsigned long long int syncBit;
99 99
100 100 status = (spectral_matrix_regs->status & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
101 101
102 102 switch(status)
103 103 {
104 104 case 0:
105 105 break;
106 106 case 3:
107 107 // UNEXPECTED VALUE
108 108 spectral_matrix_regs->status = 0xc0; // [1100]
109 109 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
110 110 break;
111 111 case 1:
112 112 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_0_coarse_time );
113 113 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_0_coarse_time & 0x80000000) ) << 16;
114 114 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
115 115 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
116 116 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
117 117 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
118 118 spectral_matrix_regs->status = 0x04; // [0100]
119 119 break;
120 120 case 2:
121 121 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_1_coarse_time );
122 122 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_1_coarse_time & 0x80000000) ) << 16;
123 123 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
124 124 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
125 125 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
126 126 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
127 127 spectral_matrix_regs->status = 0x08; // [1000]
128 128 break;
129 129 }
130 130 }
131 131
132 132 void spectral_matrices_isr_f2( void )
133 133 {
134 134 unsigned char status;
135 135
136 136 status = (spectral_matrix_regs->status & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
137 137
138 138 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
139 139
140 140 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
141 141
142 142 switch(status)
143 143 {
144 144 case 0:
145 145 break;
146 146 case 3:
147 147 // UNEXPECTED VALUE
148 148 spectral_matrix_regs->status = 0x30; // [0011 0000]
149 149 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
150 150 break;
151 151 case 1:
152 152 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
153 153 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
154 154 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
155 155 spectral_matrix_regs->status = 0x10; // [0001 0000]
156 156 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
157 157 {
158 158 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
159 159 }
160 160 break;
161 161 case 2:
162 162 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
163 163 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
164 164 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
165 165 spectral_matrix_regs->status = 0x20; // [0010 0000]
166 166 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
167 167 {
168 168 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
169 169 }
170 170 break;
171 171 }
172 172 }
173 173
174 174 void spectral_matrix_isr_error_handler( void )
175 175 {
176 if (spectral_matrix_regs->status & 0x7c0) // [0111 1100 0000]
177 {
178 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
179 }
176 // if (spectral_matrix_regs->status & 0x7c0) // [0111 1100 0000]
177 // {
178 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
179 // }
180
181 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x83f;
180 182 }
181 183
182 184 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
183 185 {
184 186 // STATUS REGISTER
185 187 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
186 188 // 10 9 8
187 189 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
188 190 // 7 6 5 4 3 2 1 0
189 191
190 192 spectral_matrices_isr_f0();
191 193
192 194 spectral_matrices_isr_f1();
193 195
194 196 spectral_matrices_isr_f2();
195 197
196 198 // spectral_matrix_isr_error_handler();
197 199 }
198 200
199 201 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
200 202 {
201 203 //***
202 204 // F0
203 205 nb_sm_f0 = nb_sm_f0 + 1;
204 206 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
205 207 {
206 208 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
207 209 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 210 {
209 211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 212 }
211 213 nb_sm_f0 = 0;
212 214 }
213 215
214 216 //***
215 217 // F1
216 218 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
217 219 if (nb_sm_f0_aux_f1 == 6)
218 220 {
219 221 nb_sm_f0_aux_f1 = 0;
220 222 nb_sm_f1 = nb_sm_f1 + 1;
221 223 }
222 224 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
223 225 {
224 226 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
225 227 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
226 228 {
227 229 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
228 230 }
229 231 nb_sm_f1 = 0;
230 232 }
231 233
232 234 //***
233 235 // F2
234 236 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
235 237 if (nb_sm_f0_aux_f2 == 96)
236 238 {
237 239 nb_sm_f0_aux_f2 = 0;
238 240 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
239 241 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
240 242 {
241 243 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
242 244 }
243 245 }
244 246 }
245 247
246 248 //******************
247 249 // Spectral Matrices
248 250
249 251 void reset_nb_sm( void )
250 252 {
251 253 nb_sm_f0 = 0;
252 254 nb_sm_f0_aux_f1 = 0;
253 255 nb_sm_f0_aux_f2 = 0;
254 256
255 257 nb_sm_f1 = 0;
256 258 }
257 259
258 260 void SM_init_rings( void )
259 261 {
260 262 unsigned char i;
261 263
262 264 // F0 RING
263 265 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
264 266 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
265 267 sm_ring_f0[0].buffer_address =
266 268 (int) &sm_f0[ 0 ];
267 269
268 270 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
269 271 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
270 272 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
271 273 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
272 274
273 275 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
274 276 {
275 277 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
276 278 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
277 279 sm_ring_f0[i].buffer_address =
278 280 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
279 281 }
280 282
281 283 // F1 RING
282 284 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
283 285 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
284 286 sm_ring_f1[0].buffer_address =
285 287 (int) &sm_f1[ 0 ];
286 288
287 289 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
288 290 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
289 291 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
290 292 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
291 293
292 294 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
293 295 {
294 296 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
295 297 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
296 298 sm_ring_f1[i].buffer_address =
297 299 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
298 300 }
299 301
300 302 // F2 RING
301 303 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
302 304 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
303 305 sm_ring_f2[0].buffer_address =
304 306 (int) &sm_f2[ 0 ];
305 307
306 308 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
307 309 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
308 310 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
309 311 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
310 312
311 313 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
312 314 {
313 315 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
314 316 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
315 317 sm_ring_f2[i].buffer_address =
316 318 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
317 319 }
318 320
319 321 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
320 322 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
321 323 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
322 324
323 325 spectral_matrix_regs->f0_0_address = sm_ring_f0[0].buffer_address;
324 326 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->f0_0_address)
325 327 }
326 328
327 329 void SM_generic_init_ring( ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] )
328 330 {
329 331 unsigned char i;
330 332
331 333 //***************
332 334 // BUFFER ADDRESS
333 335 for(i=0; i<nbNodes; i++)
334 336 {
335 337 ring[ i ].buffer_address = (int) &sm_f[ i * TOTAL_SIZE_SM ];
336 338 }
337 339
338 340 //*****
339 341 // NEXT
340 342 ring[ nbNodes - 1 ].next = (ring_node_sm*) &ring[ 0 ];
341 343 for(i=0; i<nbNodes-1; i++)
342 344 {
343 345 ring[ i ].next = (ring_node_sm*) &ring[ i + 1 ];
344 346 }
345 347
346 348 //*********
347 349 // PREVIOUS
348 350 ring[ 0 ].previous = (ring_node_sm*) &ring[ nbNodes -1 ];
349 351 for(i=1; i<nbNodes; i++)
350 352 {
351 353 ring[ i ].previous = (ring_node_sm*) &ring[ i - 1 ];
352 354 }
353 355 }
354 356
355 357 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
356 358 {
357 359 unsigned char i;
358 360
359 361 ring[ nbNodes - 1 ].next
360 362 = (ring_node_asm*) &ring[ 0 ];
361 363
362 364 for(i=0; i<nbNodes-1; i++)
363 365 {
364 366 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
365 367 }
366 368 }
367 369
368 370 void SM_reset_current_ring_nodes( void )
369 371 {
370 372 current_ring_node_sm_f0 = sm_ring_f0[0].next;
371 373 current_ring_node_sm_f1 = sm_ring_f1[0].next;
372 374 current_ring_node_sm_f2 = sm_ring_f2[0].next;
373 375
374 376 ring_node_for_averaging_sm_f0 = sm_ring_f0;
375 377 ring_node_for_averaging_sm_f1 = sm_ring_f1;
376 378 ring_node_for_averaging_sm_f2 = sm_ring_f2;
377 379 }
378 380
379 381 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
380 382 {
381 383 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
382 384 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
383 385 header->reserved = 0x00;
384 386 header->userApplication = CCSDS_USER_APP;
385 387 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
386 388 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
387 389 header->packetSequenceControl[0] = 0xc0;
388 390 header->packetSequenceControl[1] = 0x00;
389 391 header->packetLength[0] = 0x00;
390 392 header->packetLength[1] = 0x00;
391 393 // DATA FIELD HEADER
392 394 header->spare1_pusVersion_spare2 = 0x10;
393 395 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
394 396 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
395 397 header->destinationID = TM_DESTINATION_ID_GROUND;
396 398 // AUXILIARY DATA HEADER
397 399 header->sid = 0x00;
398 400 header->biaStatusInfo = 0x00;
399 401 header->pa_lfr_pkt_cnt_asm = 0x00;
400 402 header->pa_lfr_pkt_nr_asm = 0x00;
401 403 header->time[0] = 0x00;
402 404 header->time[0] = 0x00;
403 405 header->time[0] = 0x00;
404 406 header->time[0] = 0x00;
405 407 header->time[0] = 0x00;
406 408 header->time[0] = 0x00;
407 409 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
408 410 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
409 411 }
410 412
411 413 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
412 414 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
413 415 {
414 416 unsigned int i;
415 417 unsigned int length = 0;
416 418 rtems_status_code status;
417 419
418 420 for (i=0; i<2; i++)
419 421 {
420 422 // (1) BUILD THE DATA
421 423 switch(sid)
422 424 {
423 425 case SID_NORM_ASM_F0:
424 426 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
425 427 spw_ioctl_send->data = &spectral_matrix[
426 428 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
427 429 ];
428 430 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
429 431 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
430 432 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
431 433 break;
432 434 case SID_NORM_ASM_F1:
433 435 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
434 436 spw_ioctl_send->data = &spectral_matrix[
435 437 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
436 438 ];
437 439 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
438 440 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
439 441 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
440 442 break;
441 443 case SID_NORM_ASM_F2:
442 444 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
443 445 spw_ioctl_send->data = &spectral_matrix[
444 446 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
445 447 ];
446 448 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
447 449 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
448 450 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
449 451 break;
450 452 default:
451 453 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
452 454 break;
453 455 }
454 456 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
455 457 spw_ioctl_send->hdr = (char *) header;
456 458 spw_ioctl_send->options = 0;
457 459
458 460 // (2) BUILD THE HEADER
459 461 increment_seq_counter_source_id( header->packetSequenceControl, sid );
460 462 header->packetLength[0] = (unsigned char) (length>>8);
461 463 header->packetLength[1] = (unsigned char) (length);
462 464 header->sid = (unsigned char) sid; // SID
463 465 header->pa_lfr_pkt_cnt_asm = 2;
464 466 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
465 467
466 468 // (3) SET PACKET TIME
467 469 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
468 470 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
469 471 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
470 472 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
471 473 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
472 474 header->time[5] = (unsigned char) (time_management_regs->fine_time);
473 475 //
474 476 header->acquisitionTime[0] = header->time[0];
475 477 header->acquisitionTime[1] = header->time[1];
476 478 header->acquisitionTime[2] = header->time[2];
477 479 header->acquisitionTime[3] = header->time[3];
478 480 header->acquisitionTime[4] = header->time[4];
479 481 header->acquisitionTime[5] = header->time[5];
480 482
481 483 // (4) SEND PACKET
482 484 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
483 485 if (status != RTEMS_SUCCESSFUL) {
484 486 printf("in ASM_send *** ERR %d\n", (int) status);
485 487 }
486 488 }
487 489 }
488 490
489 491 //*****************
490 492 // Basic Parameters
491 493
492 494 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
493 495 unsigned int apid, unsigned char sid,
494 496 unsigned int packetLength, unsigned char blkNr )
495 497 {
496 498 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
497 499 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
498 500 header->reserved = 0x00;
499 501 header->userApplication = CCSDS_USER_APP;
500 502 header->packetID[0] = (unsigned char) (apid >> 8);
501 503 header->packetID[1] = (unsigned char) (apid);
502 504 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
503 505 header->packetSequenceControl[1] = 0x00;
504 506 header->packetLength[0] = (unsigned char) (packetLength >> 8);
505 507 header->packetLength[1] = (unsigned char) (packetLength);
506 508 // DATA FIELD HEADER
507 509 header->spare1_pusVersion_spare2 = 0x10;
508 510 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
509 511 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
510 512 header->destinationID = TM_DESTINATION_ID_GROUND;
511 513 // AUXILIARY DATA HEADER
512 514 header->sid = sid;
513 515 header->biaStatusInfo = 0x00;
514 516 header->time[0] = 0x00;
515 517 header->time[0] = 0x00;
516 518 header->time[0] = 0x00;
517 519 header->time[0] = 0x00;
518 520 header->time[0] = 0x00;
519 521 header->time[0] = 0x00;
520 522 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
521 523 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
522 524 }
523 525
524 526 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
525 527 unsigned int apid, unsigned char sid,
526 528 unsigned int packetLength , unsigned char blkNr)
527 529 {
528 530 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
529 531 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
530 532 header->reserved = 0x00;
531 533 header->userApplication = CCSDS_USER_APP;
532 534 header->packetID[0] = (unsigned char) (apid >> 8);
533 535 header->packetID[1] = (unsigned char) (apid);
534 536 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
535 537 header->packetSequenceControl[1] = 0x00;
536 538 header->packetLength[0] = (unsigned char) (packetLength >> 8);
537 539 header->packetLength[1] = (unsigned char) (packetLength);
538 540 // DATA FIELD HEADER
539 541 header->spare1_pusVersion_spare2 = 0x10;
540 542 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
541 543 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
542 544 header->destinationID = TM_DESTINATION_ID_GROUND;
543 545 // AUXILIARY DATA HEADER
544 546 header->sid = sid;
545 547 header->biaStatusInfo = 0x00;
546 548 header->time[0] = 0x00;
547 549 header->time[0] = 0x00;
548 550 header->time[0] = 0x00;
549 551 header->time[0] = 0x00;
550 552 header->time[0] = 0x00;
551 553 header->time[0] = 0x00;
552 554 header->source_data_spare = 0x00;
553 555 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
554 556 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
555 557 }
556 558
557 559 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
558 560 {
559 561 rtems_status_code status;
560 562
561 563 // SET THE SEQUENCE_CNT PARAMETER
562 564 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
563 565 // SEND PACKET
564 566 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
565 567 if (status != RTEMS_SUCCESSFUL)
566 568 {
567 569 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
568 570 }
569 571 }
570 572
571 573 //******************
572 574 // general functions
573 575
574 576 void reset_spectral_matrix_regs( void )
575 577 {
576 578 /** This function resets the spectral matrices module registers.
577 579 *
578 580 * The registers affected by this function are located at the following offset addresses:
579 581 *
580 582 * - 0x00 config
581 583 * - 0x04 status
582 584 * - 0x08 matrixF0_Address0
583 585 * - 0x10 matrixFO_Address1
584 586 * - 0x14 matrixF1_Address
585 587 * - 0x18 matrixF2_Address
586 588 *
587 589 */
588 590
589 591 spectral_matrix_regs->config = 0x00;
590 592 spectral_matrix_regs->status = 0x00;
591 593
592 594 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
593 595 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
594 596 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
595 597 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
596 598 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
597 599 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
598 600 }
599 601
600 602 void set_time( unsigned char *time, unsigned char * timeInBuffer )
601 603 {
602 604 time[0] = timeInBuffer[0];
603 605 time[1] = timeInBuffer[1];
604 606 time[2] = timeInBuffer[2];
605 607 time[3] = timeInBuffer[3];
606 608 time[4] = timeInBuffer[6];
607 609 time[5] = timeInBuffer[7];
608 610 }
609 611
610 612 unsigned long long int get_acquisition_time( unsigned char *timePtr )
611 613 {
612 614 unsigned long long int acquisitionTimeAslong;
613 615 acquisitionTimeAslong = 0x00;
614 616 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
615 617 + ( (unsigned long long int) timePtr[1] << 32 )
616 618 + ( (unsigned long long int) timePtr[2] << 24 )
617 619 + ( (unsigned long long int) timePtr[3] << 16 )
618 620 + ( (unsigned long long int) timePtr[6] << 8 )
619 621 + ( (unsigned long long int) timePtr[7] );
620 622 return acquisitionTimeAslong;
621 623 }
622 624
623 625 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
624 626 ring_node_sm *node_for_averaging, ring_node_sm *ringNode,
625 627 unsigned long long int time )
626 628 {
627 629 unsigned char *timePtr;
628 630 unsigned char *coarseTimePtr;
629 631 unsigned char *fineTimePtr;
630 632
631 633 timePtr = (unsigned char *) &time;
632 634 coarseTimePtr = (unsigned char *) &node_for_averaging->coarseTime;
633 635 fineTimePtr = (unsigned char *) &node_for_averaging->fineTime;
634 636
635 637 *nb_sm = *nb_sm + 1;
636 638 if (*nb_sm == nb_sm_before_avf)
637 639 {
638 640 node_for_averaging = ringNode;
639 641 coarseTimePtr[0] = timePtr[2];
640 642 coarseTimePtr[1] = timePtr[3];
641 643 coarseTimePtr[2] = timePtr[4];
642 644 coarseTimePtr[3] = timePtr[5];
643 645 fineTimePtr[2] = timePtr[6];
644 646 fineTimePtr[3] = timePtr[7];
645 647 if (rtems_event_send( task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
646 648 {
647 649 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
648 650 }
649 651 *nb_sm = 0;
650 652 }
651 653 }
652 654
653 655 unsigned char getSID( rtems_event_set event )
654 656 {
655 657 unsigned char sid;
656 658
657 659 rtems_event_set eventSetBURST;
658 660 rtems_event_set eventSetSBM;
659 661
660 662 //******
661 663 // BURST
662 664 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
663 665 | RTEMS_EVENT_BURST_BP1_F1
664 666 | RTEMS_EVENT_BURST_BP2_F0
665 667 | RTEMS_EVENT_BURST_BP2_F1;
666 668
667 669 //****
668 670 // SBM
669 671 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
670 672 | RTEMS_EVENT_SBM_BP1_F1
671 673 | RTEMS_EVENT_SBM_BP2_F0
672 674 | RTEMS_EVENT_SBM_BP2_F1;
673 675
674 676 if (event & eventSetBURST)
675 677 {
676 678 sid = SID_BURST_BP1_F0;
677 679 }
678 680 else if (event & eventSetSBM)
679 681 {
680 682 sid = SID_SBM1_BP1_F0;
681 683 }
682 684 else
683 685 {
684 686 sid = 0;
685 687 }
686 688
687 689 return sid;
688 690 }
689 691
@@ -1,948 +1,1002
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 165 unsigned char * bytePosPtr;
166 166
167 167 bytePosPtr = (unsigned char *) &TC->packetID;
168 168
169 169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 172
173 173 status = check_mode_value( requestedMode );
174 174
175 175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 176 {
177 177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 178 }
179 179 else // the mode value is consistent, check the transition
180 180 {
181 181 status = check_mode_transition(requestedMode);
182 182 if (status != LFR_SUCCESSFUL)
183 183 {
184 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 186 }
187 187 }
188 188
189 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 190 {
191 191 status = check_transition_date( transitionCoarseTime );
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 198 }
199 199 }
200 200
201 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 202 {
203 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 204 status = enter_mode( requestedMode, transitionCoarseTime );
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 211 {
212 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 216 *
217 217 * @return LFR directive status code:
218 218 * - LFR_DEFAULT
219 219 * - LFR_SUCCESSFUL
220 220 *
221 221 */
222 222
223 223 unsigned int val;
224 224 int result;
225 225 unsigned int status;
226 226 unsigned char mode;
227 227 unsigned char * bytePosPtr;
228 228
229 229 bytePosPtr = (unsigned char *) &TC->packetID;
230 230
231 231 // check LFR mode
232 232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 233 status = check_update_info_hk_lfr_mode( mode );
234 234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 235 {
236 236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 237 status = check_update_info_hk_tds_mode( mode );
238 238 }
239 239 if (status == LFR_SUCCESSFUL) // check THR mode
240 240 {
241 241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 242 status = check_update_info_hk_thr_mode( mode );
243 243 }
244 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 245 {
246 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 248 val++;
249 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 251 }
252 252
253 253 result = status;
254 254
255 255 return result;
256 256 }
257 257
258 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 259 {
260 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 261 *
262 262 * @param TC points to the TeleCommand packet that is being processed
263 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 264 *
265 265 */
266 266
267 267 int result;
268 268 unsigned char lfrMode;
269 269
270 270 result = LFR_DEFAULT;
271 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 272
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275
276 276 return result;
277 277 }
278 278
279 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 */
287 287
288 288 int result;
289 289 unsigned char lfrMode;
290 290
291 291 result = LFR_DEFAULT;
292 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 293
294 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 295 result = LFR_DEFAULT;
296 296
297 297 return result;
298 298 }
299 299
300 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 301 {
302 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 303 *
304 304 * @param TC points to the TeleCommand packet that is being processed
305 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 306 *
307 307 * @return LFR_SUCCESSFUL
308 308 *
309 309 */
310 310
311 311 unsigned int val;
312 312
313 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 314 + (TC->dataAndCRC[1] << 16)
315 315 + (TC->dataAndCRC[2] << 8)
316 316 + TC->dataAndCRC[3];
317 317
318 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319 319
320 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 322 val++;
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326 326
327 327 return LFR_SUCCESSFUL;
328 328 }
329 329
330 330 //*******************
331 331 // ENTERING THE MODES
332 332 int check_mode_value( unsigned char requestedMode )
333 333 {
334 334 int status;
335 335
336 336 if ( (requestedMode != LFR_MODE_STANDBY)
337 337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 339 {
340 340 status = LFR_DEFAULT;
341 341 }
342 342 else
343 343 {
344 344 status = LFR_SUCCESSFUL;
345 345 }
346 346
347 347 return status;
348 348 }
349 349
350 350 int check_mode_transition( unsigned char requestedMode )
351 351 {
352 352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 353 *
354 354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 355 *
356 356 * @return LFR directive status codes:
357 357 * - LFR_SUCCESSFUL - the transition is authorized
358 358 * - LFR_DEFAULT - the transition is not authorized
359 359 *
360 360 */
361 361
362 362 int status;
363 363
364 364 switch (requestedMode)
365 365 {
366 366 case LFR_MODE_STANDBY:
367 367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else
371 371 {
372 372 status = LFR_SUCCESSFUL;
373 373 }
374 374 break;
375 375 case LFR_MODE_NORMAL:
376 376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 377 status = LFR_DEFAULT;
378 378 }
379 379 else {
380 380 status = LFR_SUCCESSFUL;
381 381 }
382 382 break;
383 383 case LFR_MODE_BURST:
384 384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 385 status = LFR_DEFAULT;
386 386 }
387 387 else {
388 388 status = LFR_SUCCESSFUL;
389 389 }
390 390 break;
391 391 case LFR_MODE_SBM1:
392 392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 393 status = LFR_DEFAULT;
394 394 }
395 395 else {
396 396 status = LFR_SUCCESSFUL;
397 397 }
398 398 break;
399 399 case LFR_MODE_SBM2:
400 400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 401 status = LFR_DEFAULT;
402 402 }
403 403 else {
404 404 status = LFR_SUCCESSFUL;
405 405 }
406 406 break;
407 407 default:
408 408 status = LFR_DEFAULT;
409 409 break;
410 410 }
411 411
412 412 return status;
413 413 }
414 414
415 415 int check_transition_date( unsigned int transitionCoarseTime )
416 416 {
417 417 int status;
418 418 unsigned int localCoarseTime;
419 419 unsigned int deltaCoarseTime;
420 420
421 421 status = LFR_SUCCESSFUL;
422 422
423 423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 424 {
425 425 status = LFR_SUCCESSFUL;
426 426 }
427 427 else
428 428 {
429 429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) clear interruptions
471 471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473 473
474 474 // (3) reset waveform picker registers
475 475 reset_wfp_burst_enable(); // reset burst and enable bits
476 476 reset_wfp_status(); // reset all the status bits
477 477
478 478 // (4) reset spectral matrices registers
479 479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // <Spectral Matrices simulator>
484 484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 487 // </Spectral Matrices simulator>
488 488
489 489 // suspend several tasks
490 490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 491 status = suspend_science_tasks();
492 492 }
493 493
494 494 if (status != RTEMS_SUCCESSFUL)
495 495 {
496 496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 503 {
504 504 /** This function is launched after a mode transition validation.
505 505 *
506 506 * @param mode is the mode in which LFR will be put.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 511 *
512 512 */
513 513
514 514 rtems_status_code status;
515 515
516 516 //**********************
517 517 // STOP THE CURRENT MODE
518 518 status = stop_current_mode();
519 519 if (status != RTEMS_SUCCESSFUL)
520 520 {
521 521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 522 }
523 523
524 524 //*************************
525 525 // ENTER THE REQUESTED MODE
526 526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 528 {
529 529 #ifdef PRINT_TASK_STATISTICS
530 530 rtems_cpu_usage_reset();
531 531 maxCount = 0;
532 532 #endif
533 533 status = restart_science_tasks( mode );
534 //****************
535 // WAVEFORM PICKER
534 536 launch_waveform_picker( mode, transitionCoarseTime );
535 launch_spectral_matrix( );
537 // launch_waveform_picker_spool( mode, transitionCoarseTime );
538
539 //******************
540 // SPECTRAL MATRICES
541 // launch_spectral_matrix( );
536 542 // launch_spectral_matrix_simu( );
543 launch_spectral_matrix_spool( );
537 544 }
538 545 else if ( mode == LFR_MODE_STANDBY )
539 546 {
540 547 #ifdef PRINT_TASK_STATISTICS
541 548 rtems_cpu_usage_report();
542 549 #endif
543 550
544 551 #ifdef PRINT_STACK_REPORT
545 552 PRINTF("stack report selected\n")
546 553 rtems_stack_checker_report_usage();
547 554 #endif
548 555 PRINTF1("maxCount = %d\n", maxCount)
549 556 }
550 557 else
551 558 {
552 559 status = RTEMS_UNSATISFIED;
553 560 }
554 561
555 562 if (status != RTEMS_SUCCESSFUL)
556 563 {
557 564 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 565 status = RTEMS_UNSATISFIED;
559 566 }
560 567
561 568 return status;
562 569 }
563 570
564 571 int restart_science_tasks(unsigned char lfrRequestedMode )
565 572 {
566 573 /** This function is used to restart all science tasks.
567 574 *
568 575 * @return RTEMS directive status codes:
569 576 * - RTEMS_SUCCESSFUL - task restarted successfully
570 577 * - RTEMS_INVALID_ID - task id invalid
571 578 * - RTEMS_INCORRECT_STATE - task never started
572 579 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 580 *
574 581 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 582 *
576 583 */
577 584
578 rtems_status_code status[10];
585 rtems_status_code status[11];
579 586 rtems_status_code ret;
580 587
581 588 ret = RTEMS_SUCCESSFUL;
582 589
583 590 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 591 if (status[0] != RTEMS_SUCCESSFUL)
585 592 {
586 593 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 594 }
588 595
589 596 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 597 if (status[1] != RTEMS_SUCCESSFUL)
591 598 {
592 599 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 600 }
594 601
595 602 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 603 if (status[2] != RTEMS_SUCCESSFUL)
597 604 {
598 605 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 606 }
600 607
601 608 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 609 if (status[3] != RTEMS_SUCCESSFUL)
603 610 {
604 611 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 612 }
606 613
607 614 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 615 if (status[4] != RTEMS_SUCCESSFUL)
609 616 {
610 617 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 618 }
612 619
613 620 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 621 if (status[5] != RTEMS_SUCCESSFUL)
615 622 {
616 623 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 624 }
618 625
619 626 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 627 if (status[6] != RTEMS_SUCCESSFUL)
621 628 {
622 629 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 630 }
624 631
625 632 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 633 if (status[7] != RTEMS_SUCCESSFUL)
627 634 {
628 635 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 636 }
630 637
631 638 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 639 if (status[8] != RTEMS_SUCCESSFUL)
633 640 {
634 641 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 642 }
636 643
637 644 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 645 if (status[9] != RTEMS_SUCCESSFUL)
639 646 {
640 647 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 648 }
642 649
650 status[10] = rtems_task_restart( Task_id[TASKID_SPOO], 1 );
651 if (status[10] != RTEMS_SUCCESSFUL)
652 {
653 PRINTF1("in restart_science_task *** SPOO ERR %d\n", status[10])
654 }
655
656
643 657 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 658 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 659 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 660 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
661 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) ||
662 (status[10]!= RTEMS_SUCCESSFUL) )
648 663 {
649 664 ret = RTEMS_UNSATISFIED;
650 665 }
651 666
652 667 return ret;
653 668 }
654 669
655 670 int suspend_science_tasks()
656 671 {
657 672 /** This function suspends the science tasks.
658 673 *
659 674 * @return RTEMS directive status codes:
660 675 * - RTEMS_SUCCESSFUL - task restarted successfully
661 676 * - RTEMS_INVALID_ID - task id invalid
662 677 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 678 *
664 679 */
665 680
666 681 rtems_status_code status;
667 682
668 683 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 684 if (status != RTEMS_SUCCESSFUL)
670 685 {
671 686 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 687 }
673 688 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 689 {
675 690 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 691 if (status != RTEMS_SUCCESSFUL)
677 692 {
678 693 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 694 }
680 695 }
681 696 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 697 {
683 698 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 699 if (status != RTEMS_SUCCESSFUL)
685 700 {
686 701 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 702 }
688 703 }
689 704 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 705 {
691 706 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 707 if (status != RTEMS_SUCCESSFUL)
693 708 {
694 709 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 710 }
696 711 }
697 712 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 713 {
699 714 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 715 if (status != RTEMS_SUCCESSFUL)
701 716 {
702 717 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 718 }
704 719 }
705 720 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 721 {
707 722 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 723 if (status != RTEMS_SUCCESSFUL)
709 724 {
710 725 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 726 }
712 727 }
713 728 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 729 {
715 730 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 731 if (status != RTEMS_SUCCESSFUL)
717 732 {
718 733 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 734 }
720 735 }
721 736 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 737 {
723 738 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 739 if (status != RTEMS_SUCCESSFUL)
725 740 {
726 741 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 742 }
728 743 }
729 744 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 745 {
731 746 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 747 if (status != RTEMS_SUCCESSFUL)
733 748 {
734 749 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 750 }
736 751 }
737 752 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 753 {
739 754 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 755 if (status != RTEMS_SUCCESSFUL)
741 756 {
742 757 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 758 }
744 759 }
760 if (status == RTEMS_SUCCESSFUL) // suspend SPOO
761 {
762 status = rtems_task_suspend( Task_id[TASKID_SPOO] );
763 if (status != RTEMS_SUCCESSFUL)
764 {
765 PRINTF1("in suspend_science_task *** SPOO ERR %d\n", status)
766 }
767 }
745 768
746 769 return status;
747 770 }
748 771
772 void launch_waveform_picker_spool( unsigned char mode, unsigned int transitionCoarseTime )
773 {
774 WFP_reset_current_ring_nodes();
775 reset_waveform_picker_regs();
776 set_wfp_burst_enable_register( mode );
777
778 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
779 if (transitionCoarseTime == 0)
780 {
781 waveform_picker_regs->start_date = time_management_regs->coarse_time;
782 }
783 else
784 {
785 waveform_picker_regs->start_date = transitionCoarseTime;
786 }
787 }
788
749 789 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 790 {
751 791 WFP_reset_current_ring_nodes();
752 792 reset_waveform_picker_regs();
753 793 set_wfp_burst_enable_register( mode );
754 794
755 795 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 796 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757 797
758 798 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 799 if (transitionCoarseTime == 0)
760 800 {
761 801 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 802 }
763 803 else
764 804 {
765 805 waveform_picker_regs->start_date = transitionCoarseTime;
766 806 }
767 807 }
768 808
809 void launch_spectral_matrix_spool( void )
810 {
811 SM_reset_current_ring_nodes();
812 reset_spectral_matrix_regs();
813 reset_nb_sm();
814
815 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
816 grgpio_regs->io_port_direction_register =
817 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
818 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
819 set_irq_on_new_ready_matrix( 0 );
820 set_run_matrix_spectral( 1 );
821 }
822
769 823 void launch_spectral_matrix( void )
770 824 {
771 825 SM_reset_current_ring_nodes();
772 826 reset_spectral_matrix_regs();
773 827 reset_nb_sm();
774 828
775 829 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 830 grgpio_regs->io_port_direction_register =
777 831 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 832 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 833 set_irq_on_new_ready_matrix( 1 );
780 834 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 835 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 836 set_run_matrix_spectral( 1 );
783 837 }
784 838
785 839 void launch_spectral_matrix_simu( void )
786 840 {
787 841 SM_reset_current_ring_nodes();
788 842 reset_spectral_matrix_regs();
789 843 reset_nb_sm();
790 844
791 845 // Spectral Matrices simulator
792 846 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
793 847 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
794 848 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
795 849 }
796 850
797 851 void set_irq_on_new_ready_matrix( unsigned char value )
798 852 {
799 853 if (value == 1)
800 854 {
801 855 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
802 856 }
803 857 else
804 858 {
805 859 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
806 860 }
807 861 }
808 862
809 863 void set_run_matrix_spectral( unsigned char value )
810 864 {
811 865 if (value == 1)
812 866 {
813 867 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
814 868 }
815 869 else
816 870 {
817 871 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
818 872 }
819 873 }
820 874
821 875 //****************
822 876 // CLOSING ACTIONS
823 877 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
824 878 {
825 879 /** This function is used to update the HK packets statistics after a successful TC execution.
826 880 *
827 881 * @param TC points to the TC being processed
828 882 * @param time is the time used to date the TC execution
829 883 *
830 884 */
831 885
832 886 unsigned int val;
833 887
834 888 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
835 889 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
836 890 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
837 891 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
838 892 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
839 893 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
840 894 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
841 895 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
842 896 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
843 897 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
844 898 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
845 899 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
846 900
847 901 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
848 902 val++;
849 903 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
850 904 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
851 905 }
852 906
853 907 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
854 908 {
855 909 /** This function is used to update the HK packets statistics after a TC rejection.
856 910 *
857 911 * @param TC points to the TC being processed
858 912 * @param time is the time used to date the TC rejection
859 913 *
860 914 */
861 915
862 916 unsigned int val;
863 917
864 918 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
865 919 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
866 920 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
867 921 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
868 922 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
869 923 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
870 924 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
871 925 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
872 926 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
873 927 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
874 928 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
875 929 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
876 930
877 931 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
878 932 val++;
879 933 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
880 934 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
881 935 }
882 936
883 937 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
884 938 {
885 939 /** This function is the last step of the TC execution workflow.
886 940 *
887 941 * @param TC points to the TC being processed
888 942 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
889 943 * @param queue_id is the id of the RTEMS message queue used to send TM packets
890 944 * @param time is the time used to date the TC execution
891 945 *
892 946 */
893 947
894 948 unsigned char requestedMode;
895 949
896 950 if (result == LFR_SUCCESSFUL)
897 951 {
898 952 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
899 953 &
900 954 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
901 955 )
902 956 {
903 957 send_tm_lfr_tc_exe_success( TC, queue_id );
904 958 }
905 959 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
906 960 {
907 961 //**********************************
908 962 // UPDATE THE LFRMODE LOCAL VARIABLE
909 963 requestedMode = TC->dataAndCRC[1];
910 964 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
911 965 updateLFRCurrentMode();
912 966 }
913 967 }
914 968 else if (result == LFR_EXE_ERROR)
915 969 {
916 970 send_tm_lfr_tc_exe_error( TC, queue_id );
917 971 }
918 972 }
919 973
920 974 //***************************
921 975 // Interrupt Service Routines
922 976 rtems_isr commutation_isr1( rtems_vector_number vector )
923 977 {
924 978 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
925 979 printf("In commutation_isr1 *** Error sending event to DUMB\n");
926 980 }
927 981 }
928 982
929 983 rtems_isr commutation_isr2( rtems_vector_number vector )
930 984 {
931 985 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
932 986 printf("In commutation_isr2 *** Error sending event to DUMB\n");
933 987 }
934 988 }
935 989
936 990 //****************
937 991 // OTHER FUNCTIONS
938 992 void updateLFRCurrentMode()
939 993 {
940 994 /** This function updates the value of the global variable lfrCurrentMode.
941 995 *
942 996 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
943 997 *
944 998 */
945 999 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
946 1000 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
947 1001 }
948 1002
@@ -1,1310 +1,1457
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 31 ring_node *current_ring_node_f0;
32 32 ring_node *ring_node_to_send_swf_f0;
33 33 ring_node *current_ring_node_f1;
34 34 ring_node *ring_node_to_send_swf_f1;
35 35 ring_node *ring_node_to_send_cwf_f1;
36 36 ring_node *current_ring_node_f2;
37 37 ring_node *ring_node_to_send_swf_f2;
38 38 ring_node *ring_node_to_send_cwf_f2;
39 39 ring_node *current_ring_node_f3;
40 40 ring_node *ring_node_to_send_cwf_f3;
41 41
42 42 bool extractSWF = false;
43 43 bool swf_f0_ready = false;
44 44 bool swf_f1_ready = false;
45 45 bool swf_f2_ready = false;
46 46
47 bool wake_up_task_wfrm = false;
48 bool wake_up_task_cwf_f1 = false;
49 bool wake_up_task_cwf_f2_burst = false;
50 bool wake_up_task_cwf_f2_sbm2 = false;
51 bool wake_up_task_cwf_f3 = false;
52
47 53 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48 54
49 55 //*********************
50 56 // Interrupt SubRoutine
51 57
52 58 void reset_extractSWF( void )
53 59 {
54 60 extractSWF = false;
55 61 swf_f0_ready = false;
56 62 swf_f1_ready = false;
57 63 swf_f2_ready = false;
58 64 }
59 65
60 66 rtems_isr waveforms_isr( rtems_vector_number vector )
61 67 {
62 68 /** This is the interrupt sub routine called by the waveform picker core.
63 69 *
64 70 * This ISR launch different actions depending mainly on two pieces of information:
65 71 * 1. the values read in the registers of the waveform picker.
66 72 * 2. the current LFR mode.
67 73 *
68 74 */
69 75
70 76 rtems_status_code status;
71 77
72 78 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
73 79 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
74 80 { // in modes other than STANDBY and BURST, send the CWF_F3 data
75 81 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
76 82 // (1) change the receiving buffer for the waveform picker
77 83 ring_node_to_send_cwf_f3 = current_ring_node_f3;
78 84 current_ring_node_f3 = current_ring_node_f3->next;
79 85 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
80 86 // (2) send an event for the waveforms transmission
81 87 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
82 88 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 89 }
84 90 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
85 91 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 92 }
87 93 }
88 94
89 95 switch(lfrCurrentMode)
90 96 {
91 97 //********
92 98 // STANDBY
93 99 case(LFR_MODE_STANDBY):
94 100 break;
95 101
96 102 //******
97 103 // NORMAL
98 104 case(LFR_MODE_NORMAL):
99 105 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 106 {
101 107 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 108 }
103 109 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 110 {
105 111 // change F0 ring node
106 112 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 113 current_ring_node_f0 = current_ring_node_f0->next;
108 114 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 115 // change F1 ring node
110 116 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 117 current_ring_node_f1 = current_ring_node_f1->next;
112 118 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 119 // change F2 ring node
114 120 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 121 current_ring_node_f2 = current_ring_node_f2->next;
116 122 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 123 //
118 124 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
119 125 {
120 126 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 127 }
122 128 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
123 129 }
124 130 break;
125 131
126 132 //******
127 133 // BURST
128 134 case(LFR_MODE_BURST):
129 135 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
130 136 // (1) change the receiving buffer for the waveform picker
131 137 ring_node_to_send_cwf_f2 = current_ring_node_f2;
132 138 current_ring_node_f2 = current_ring_node_f2->next;
133 139 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
134 140 // (2) send an event for the waveforms transmission
135 141 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
136 142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 143 }
138 144 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
139 145 }
140 146 break;
141 147
142 148 //*****
143 149 // SBM1
144 150 case(LFR_MODE_SBM1):
145 151 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
146 152 // (1) change the receiving buffer for the waveform picker
147 153 ring_node_to_send_cwf_f1 = current_ring_node_f1;
148 154 current_ring_node_f1 = current_ring_node_f1->next;
149 155 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
150 156 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
151 157 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
152 158 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
153 159 }
154 160 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
155 161 swf_f0_ready = true;
156 162 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
157 163 }
158 164 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
159 165 swf_f2_ready = true;
160 166 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
161 167 }
162 168 break;
163 169
164 170 //*****
165 171 // SBM2
166 172 case(LFR_MODE_SBM2):
167 173 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
168 174 // (1) change the receiving buffer for the waveform picker
169 175 ring_node_to_send_cwf_f2 = current_ring_node_f2;
170 176 current_ring_node_f2 = current_ring_node_f2->next;
171 177 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
172 178 // (2) send an event for the waveforms transmission
173 179 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
174 180 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
175 181 }
176 182 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
177 183 swf_f0_ready = true;
178 184 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
179 185 }
180 186 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
181 187 swf_f1_ready = true;
182 188 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
183 189 }
184 190 break;
185 191
186 192 //********
187 193 // DEFAULT
188 194 default:
189 195 break;
190 196 }
191 197 }
192 198
199 rtems_isr waveforms_isr_alt( rtems_vector_number vector )
200 {
201 /** This is the interrupt sub routine called by the waveform picker core.
202 *
203 * This ISR launch different actions depending mainly on two pieces of information:
204 * 1. the values read in the registers of the waveform picker.
205 * 2. the current LFR mode.
206 *
207 */
208
209 rtems_interrupt_level level;
210
211 rtems_interrupt_disable( level );
212
213 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
214 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
215 { // in modes other than STANDBY and BURST, send the CWF_F3 data
216 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
217 // (1) change the receiving buffer for the waveform picker
218 ring_node_to_send_cwf_f3 = current_ring_node_f3;
219 current_ring_node_f3 = current_ring_node_f3->next;
220 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
221 // (2) send an event for the waveforms transmission
222 wake_up_task_cwf_f3 = true;
223 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
224 }
225 }
226
227 switch(lfrCurrentMode)
228 {
229 //********
230 // STANDBY
231 case(LFR_MODE_STANDBY):
232 break;
233
234 //******
235 // NORMAL
236 case(LFR_MODE_NORMAL):
237 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
238 {
239 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
240 }
241 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
242 {
243 // change F0 ring node
244 ring_node_to_send_swf_f0 = current_ring_node_f0;
245 current_ring_node_f0 = current_ring_node_f0->next;
246 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
247 // change F1 ring node
248 ring_node_to_send_swf_f1 = current_ring_node_f1;
249 current_ring_node_f1 = current_ring_node_f1->next;
250 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
251 // change F2 ring node
252 ring_node_to_send_swf_f2 = current_ring_node_f2;
253 current_ring_node_f2 = current_ring_node_f2->next;
254 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
255 //
256 wake_up_task_wfrm = true;
257 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
258 }
259 break;
260
261 //******
262 // BURST
263 case(LFR_MODE_BURST):
264 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
265 // (1) change the receiving buffer for the waveform picker
266 ring_node_to_send_cwf_f2 = current_ring_node_f2;
267 current_ring_node_f2 = current_ring_node_f2->next;
268 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
269 // (2) send an event for the waveforms transmission
270 wake_up_task_cwf_f2_burst = true;
271 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
272 }
273 break;
274
275 //*****
276 // SBM1
277 case(LFR_MODE_SBM1):
278 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
279 // (1) change the receiving buffer for the waveform picker
280 ring_node_to_send_cwf_f1 = current_ring_node_f1;
281 current_ring_node_f1 = current_ring_node_f1->next;
282 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
283 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
284 wake_up_task_cwf_f1 = true;
285 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
286 }
287 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
288 swf_f0_ready = true;
289 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
290 }
291 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
292 swf_f2_ready = true;
293 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
294 }
295 break;
296
297 //*****
298 // SBM2
299 case(LFR_MODE_SBM2):
300 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
301 // (1) change the receiving buffer for the waveform picker
302 ring_node_to_send_cwf_f2 = current_ring_node_f2;
303 current_ring_node_f2 = current_ring_node_f2->next;
304 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
305 // (2) send an event for the waveforms transmission
306 wake_up_task_cwf_f2_sbm2 = true;
307 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
308 }
309 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
310 swf_f0_ready = true;
311 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
312 }
313 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
314 swf_f1_ready = true;
315 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
316 }
317 break;
318
319 //********
320 // DEFAULT
321 default:
322 break;
323 }
324
325 rtems_interrupt_enable( level );
326 }
327
193 328 //************
194 329 // RTEMS TASKS
195 330
196 331 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
197 332 {
198 333 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
199 334 *
200 335 * @param unused is the starting argument of the RTEMS task
201 336 *
202 337 * The following data packets are sent by this task:
203 338 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
204 339 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
205 340 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
206 341 *
207 342 */
208 343
209 344 rtems_event_set event_out;
210 345 rtems_id queue_id;
211 346 rtems_status_code status;
212 347
213 348 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
214 349 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
215 350 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
216 351
217 352 status = get_message_queue_id_send( &queue_id );
218 353 if (status != RTEMS_SUCCESSFUL)
219 354 {
220 355 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
221 356 }
222 357
223 358 BOOT_PRINTF("in WFRM ***\n")
224 359
225 360 while(1){
226 361 // wait for an RTEMS_EVENT
227 362 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
228 363 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
229 364 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
230 365 if (event_out == RTEMS_EVENT_MODE_NORMAL)
231 366 {
232 367 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
233 368 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
234 369 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
235 370 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
236 371 }
237 372 if (event_out == RTEMS_EVENT_MODE_SBM1)
238 373 {
239 374 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
240 375 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
241 376 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
242 377 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
243 378 }
244 379 if (event_out == RTEMS_EVENT_MODE_SBM2)
245 380 {
246 381 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
247 382 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
248 383 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
249 384 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
250 385 }
251 386 }
252 387 }
253 388
254 389 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
255 390 {
256 391 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
257 392 *
258 393 * @param unused is the starting argument of the RTEMS task
259 394 *
260 395 * The following data packet is sent by this task:
261 396 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
262 397 *
263 398 */
264 399
265 400 rtems_event_set event_out;
266 401 rtems_id queue_id;
267 402 rtems_status_code status;
268 403
269 404 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
270 405 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
271 406
272 407 status = get_message_queue_id_send( &queue_id );
273 408 if (status != RTEMS_SUCCESSFUL)
274 409 {
275 410 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
276 411 }
277 412
278 413 BOOT_PRINTF("in CWF3 ***\n")
279 414
280 415 while(1){
281 416 // wait for an RTEMS_EVENT
282 417 rtems_event_receive( RTEMS_EVENT_0,
283 418 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
284 419 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
285 420 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
286 421 {
287 422 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
288 423 {
289 424 PRINTF("send CWF_LONG_F3\n")
290 425 send_waveform_CWF(
291 426 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
292 427 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
293 428 }
294 429 else
295 430 {
296 431 PRINTF("send CWF_F3 (light)\n")
297 432 send_waveform_CWF3_light(
298 433 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
299 434 headerCWF_F3_light, queue_id );
300 435 }
301 436
302 437 }
303 438 else
304 439 {
305 440 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
306 441 }
307 442 }
308 443 }
309 444
310 445 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
311 446 {
312 447 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
313 448 *
314 449 * @param unused is the starting argument of the RTEMS task
315 450 *
316 451 * The following data packet is sent by this function:
317 452 * - TM_LFR_SCIENCE_BURST_CWF_F2
318 453 * - TM_LFR_SCIENCE_SBM2_CWF_F2
319 454 *
320 455 */
321 456
322 457 rtems_event_set event_out;
323 458 rtems_id queue_id;
324 459 rtems_status_code status;
325 460
326 461 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
327 462 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
328 463
329 464 status = get_message_queue_id_send( &queue_id );
330 465 if (status != RTEMS_SUCCESSFUL)
331 466 {
332 467 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
333 468 }
334 469
335 470 BOOT_PRINTF("in CWF2 ***\n")
336 471
337 472 while(1){
338 473 // wait for an RTEMS_EVENT
339 474 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
340 475 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 476 if (event_out == RTEMS_EVENT_MODE_BURST)
342 477 {
343 478 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
344 479 }
345 480 if (event_out == RTEMS_EVENT_MODE_SBM2)
346 481 {
347 482 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
348 483 // launch snapshot extraction if needed
349 484 if (extractSWF == true)
350 485 {
351 486 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
352 487 // extract the snapshot
353 488 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
354 489 // send the snapshot when built
355 490 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
356 491 extractSWF = false;
357 492 }
358 493 if (swf_f0_ready && swf_f1_ready)
359 494 {
360 495 extractSWF = true;
361 496 swf_f0_ready = false;
362 497 swf_f1_ready = false;
363 498 }
364 499 }
365 500 }
366 501 }
367 502
368 503 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
369 504 {
370 505 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
371 506 *
372 507 * @param unused is the starting argument of the RTEMS task
373 508 *
374 509 * The following data packet is sent by this function:
375 510 * - TM_LFR_SCIENCE_SBM1_CWF_F1
376 511 *
377 512 */
378 513
379 514 rtems_event_set event_out;
380 515 rtems_id queue_id;
381 516 rtems_status_code status;
517 rtems_interrupt_level level = 0;
382 518
383 519 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
384 520
385 521 status = get_message_queue_id_send( &queue_id );
386 522 if (status != RTEMS_SUCCESSFUL)
387 523 {
388 524 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
389 525 }
390 526
391 527 BOOT_PRINTF("in CWF1 ***\n")
392 528
529 printf("(0) level = %x\n", (unsigned int) level);
530
393 531 while(1){
394 532 // wait for an RTEMS_EVENT
395 533 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
396 534 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
535
536 rtems_interrupt_disable( level );
537
538 printf("(1) level = %x\n", (unsigned int) level);
539
397 540 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
398 541 // launch snapshot extraction if needed
399 542 if (extractSWF == true)
400 543 {
401 544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
402 545 // launch the snapshot extraction
403 546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
404 547 extractSWF = false;
405 548 }
406 549 if (swf_f0_ready == true)
407 550 {
408 551 extractSWF = true;
409 552 swf_f0_ready = false; // this step shall be executed only one time
410 553 }
411 554 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
412 555 {
413 556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
414 557 swf_f1_ready = false;
415 558 swf_f2_ready = false;
416 559 }
560
561 rtems_interrupt_enable( level );
562
563 printf("(2) level = %x\n", (unsigned int) level);
417 564 }
418 565 }
419 566
420 567 rtems_task swbd_task(rtems_task_argument argument)
421 568 {
422 569 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
423 570 *
424 571 * @param unused is the starting argument of the RTEMS task
425 572 *
426 573 */
427 574
428 575 rtems_event_set event_out;
429 576
430 577 BOOT_PRINTF("in SWBD ***\n")
431 578
432 579 while(1){
433 580 // wait for an RTEMS_EVENT
434 581 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
435 582 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
436 583 if (event_out == RTEMS_EVENT_MODE_SBM1)
437 584 {
438 585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
439 586 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
440 587 }
441 588 else
442 589 {
443 590 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
444 591 }
445 592 }
446 593 }
447 594
448 595 //******************
449 596 // general functions
450 597
451 598 void WFP_init_rings( void )
452 599 {
453 600 // F0 RING
454 601 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
455 602 // F1 RING
456 603 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
457 604 // F2 RING
458 605 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
459 606 // F3 RING
460 607 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
461 608
462 609 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
463 610 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
464 611 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
465 612 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
466 613 }
467 614
468 615 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
469 616 {
470 617 unsigned char i;
471 618
472 619 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
473 620 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
474 621 waveform_ring[0].buffer_address = (int) &wfrm[0];
475 622
476 623 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
477 624 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
478 625 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
479 626
480 627 for(i=1; i<nbNodes-1; i++)
481 628 {
482 629 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
483 630 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
484 631 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
485 632 }
486 633 }
487 634
488 635 void WFP_reset_current_ring_nodes( void )
489 636 {
490 637 current_ring_node_f0 = waveform_ring_f0;
491 638 ring_node_to_send_swf_f0 = waveform_ring_f0;
492 639
493 640 current_ring_node_f1 = waveform_ring_f1;
494 641 ring_node_to_send_cwf_f1 = waveform_ring_f1;
495 642 ring_node_to_send_swf_f1 = waveform_ring_f1;
496 643
497 644 current_ring_node_f2 = waveform_ring_f2;
498 645 ring_node_to_send_cwf_f2 = waveform_ring_f2;
499 646 ring_node_to_send_swf_f2 = waveform_ring_f2;
500 647
501 648 current_ring_node_f3 = waveform_ring_f3;
502 649 ring_node_to_send_cwf_f3 = waveform_ring_f3;
503 650 }
504 651
505 652 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
506 653 {
507 654 unsigned char i;
508 655
509 656 for (i=0; i<7; i++)
510 657 {
511 658 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
512 659 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
513 660 headerSWF[ i ].reserved = DEFAULT_RESERVED;
514 661 headerSWF[ i ].userApplication = CCSDS_USER_APP;
515 662 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
516 663 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
517 664 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
518 665 if (i == 6)
519 666 {
520 667 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
521 668 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
522 669 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
523 670 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
524 671 }
525 672 else
526 673 {
527 674 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
528 675 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
529 676 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
530 677 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
531 678 }
532 679 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
533 680 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
534 681 headerSWF[ i ].pktNr = i+1; // PKT_NR
535 682 // DATA FIELD HEADER
536 683 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
537 684 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 685 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 686 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
540 687 // AUXILIARY DATA HEADER
541 688 headerSWF[ i ].time[0] = 0x00;
542 689 headerSWF[ i ].time[0] = 0x00;
543 690 headerSWF[ i ].time[0] = 0x00;
544 691 headerSWF[ i ].time[0] = 0x00;
545 692 headerSWF[ i ].time[0] = 0x00;
546 693 headerSWF[ i ].time[0] = 0x00;
547 694 headerSWF[ i ].sid = sid;
548 695 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
549 696 }
550 697 return LFR_SUCCESSFUL;
551 698 }
552 699
553 700 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
554 701 {
555 702 unsigned int i;
556 703
557 704 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
558 705 {
559 706 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
560 707 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
561 708 headerCWF[ i ].reserved = DEFAULT_RESERVED;
562 709 headerCWF[ i ].userApplication = CCSDS_USER_APP;
563 710 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
564 711 {
565 712 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
566 713 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
567 714 }
568 715 else
569 716 {
570 717 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
571 718 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
572 719 }
573 720 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
574 721 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
575 722 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
576 723 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
577 724 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
578 725 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
579 726 // DATA FIELD HEADER
580 727 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
581 728 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
582 729 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
583 730 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
584 731 // AUXILIARY DATA HEADER
585 732 headerCWF[ i ].sid = sid;
586 733 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
587 734 headerCWF[ i ].time[0] = 0x00;
588 735 headerCWF[ i ].time[0] = 0x00;
589 736 headerCWF[ i ].time[0] = 0x00;
590 737 headerCWF[ i ].time[0] = 0x00;
591 738 headerCWF[ i ].time[0] = 0x00;
592 739 headerCWF[ i ].time[0] = 0x00;
593 740 }
594 741 return LFR_SUCCESSFUL;
595 742 }
596 743
597 744 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
598 745 {
599 746 unsigned int i;
600 747
601 748 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
602 749 {
603 750 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
604 751 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
605 752 headerCWF[ i ].reserved = DEFAULT_RESERVED;
606 753 headerCWF[ i ].userApplication = CCSDS_USER_APP;
607 754
608 755 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
609 756 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
610 757
611 758 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 759 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
613 760 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
614 761 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
615 762 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
616 763
617 764 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
618 765 // DATA FIELD HEADER
619 766 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
620 767 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
621 768 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
622 769 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
623 770 // AUXILIARY DATA HEADER
624 771 headerCWF[ i ].sid = SID_NORM_CWF_F3;
625 772 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
626 773 headerCWF[ i ].time[0] = 0x00;
627 774 headerCWF[ i ].time[0] = 0x00;
628 775 headerCWF[ i ].time[0] = 0x00;
629 776 headerCWF[ i ].time[0] = 0x00;
630 777 headerCWF[ i ].time[0] = 0x00;
631 778 headerCWF[ i ].time[0] = 0x00;
632 779 }
633 780 return LFR_SUCCESSFUL;
634 781 }
635 782
636 783 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
637 784 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
638 785 {
639 786 /** This function sends SWF CCSDS packets (F2, F1 or F0).
640 787 *
641 788 * @param waveform points to the buffer containing the data that will be send.
642 789 * @param sid is the source identifier of the data that will be sent.
643 790 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
644 791 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
645 792 * contain information to setup the transmission of the data packets.
646 793 *
647 794 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
648 795 *
649 796 */
650 797
651 798 unsigned int i;
652 799 int ret;
653 800 unsigned int coarseTime;
654 801 unsigned int fineTime;
655 802 rtems_status_code status;
656 803 spw_ioctl_pkt_send spw_ioctl_send_SWF;
657 804
658 805 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
659 806 spw_ioctl_send_SWF.options = 0;
660 807
661 808 ret = LFR_DEFAULT;
662 809
663 810 coarseTime = waveform[0];
664 811 fineTime = waveform[1];
665 812
666 813 for (i=0; i<7; i++) // send waveform
667 814 {
668 815 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
669 816 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
670 817 // BUILD THE DATA
671 818 if (i==6) {
672 819 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
673 820 }
674 821 else {
675 822 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
676 823 }
677 824 // SET PACKET SEQUENCE COUNTER
678 825 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
679 826 // SET PACKET TIME
680 827 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
681 828 //
682 829 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
683 830 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
684 831 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
685 832 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
686 833 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
687 834 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
688 835 // SEND PACKET
689 836 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
690 837 if (status != RTEMS_SUCCESSFUL) {
691 838 printf("%d-%d, ERR %d\n", sid, i, (int) status);
692 839 ret = LFR_DEFAULT;
693 840 }
694 841 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
695 842 }
696 843
697 844 return ret;
698 845 }
699 846
700 847 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
701 848 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
702 849 {
703 850 /** This function sends CWF CCSDS packets (F2, F1 or F0).
704 851 *
705 852 * @param waveform points to the buffer containing the data that will be send.
706 853 * @param sid is the source identifier of the data that will be sent.
707 854 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
708 855 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
709 856 * contain information to setup the transmission of the data packets.
710 857 *
711 858 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
712 859 *
713 860 */
714 861
715 862 unsigned int i;
716 863 int ret;
717 864 unsigned int coarseTime;
718 865 unsigned int fineTime;
719 866 rtems_status_code status;
720 867 spw_ioctl_pkt_send spw_ioctl_send_CWF;
721 868
722 869 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
723 870 spw_ioctl_send_CWF.options = 0;
724 871
725 872 ret = LFR_DEFAULT;
726 873
727 874 coarseTime = waveform[0];
728 875 fineTime = waveform[1];
729 876
730 877 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
731 878 {
732 879 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
733 880 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
734 881 // BUILD THE DATA
735 882 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
736 883 // SET PACKET SEQUENCE COUNTER
737 884 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
738 885 // SET PACKET TIME
739 886 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
740 887 //
741 888 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
742 889 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
743 890 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
744 891 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
745 892 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
746 893 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
747 894 // SEND PACKET
748 895 if (sid == SID_NORM_CWF_LONG_F3)
749 896 {
750 897 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
751 898 if (status != RTEMS_SUCCESSFUL) {
752 899 printf("%d-%d, ERR %d\n", sid, i, (int) status);
753 900 ret = LFR_DEFAULT;
754 901 }
755 902 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
756 903 }
757 904 else
758 905 {
759 906 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
760 907 if (status != RTEMS_SUCCESSFUL) {
761 908 printf("%d-%d, ERR %d\n", sid, i, (int) status);
762 909 ret = LFR_DEFAULT;
763 910 }
764 911 }
765 912 }
766 913
767 914 return ret;
768 915 }
769 916
770 917 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 918 {
772 919 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
773 920 *
774 921 * @param waveform points to the buffer containing the data that will be send.
775 922 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
776 923 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
777 924 * contain information to setup the transmission of the data packets.
778 925 *
779 926 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
780 927 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
781 928 *
782 929 */
783 930
784 931 unsigned int i;
785 932 int ret;
786 933 unsigned int coarseTime;
787 934 unsigned int fineTime;
788 935 rtems_status_code status;
789 936 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 937 char *sample;
791 938
792 939 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
793 940 spw_ioctl_send_CWF.options = 0;
794 941
795 942 ret = LFR_DEFAULT;
796 943
797 944 //**********************
798 945 // BUILD CWF3_light DATA
799 946 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
800 947 {
801 948 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
802 949 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
803 950 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
804 951 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
805 952 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
806 953 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
807 954 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
808 955 }
809 956
810 957 coarseTime = waveform[0];
811 958 fineTime = waveform[1];
812 959
813 960 //*********************
814 961 // SEND CWF3_light DATA
815 962 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
816 963 {
817 964 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
818 965 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
819 966 // BUILD THE DATA
820 967 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
821 968 // SET PACKET SEQUENCE COUNTER
822 969 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
823 970 // SET PACKET TIME
824 971 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
825 972 //
826 973 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
827 974 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
828 975 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
829 976 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
830 977 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
831 978 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
832 979 // SEND PACKET
833 980 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 981 if (status != RTEMS_SUCCESSFUL) {
835 982 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
836 983 ret = LFR_DEFAULT;
837 984 }
838 985 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
839 986 }
840 987
841 988 return ret;
842 989 }
843 990
844 991 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
845 992 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
846 993 {
847 994 unsigned long long int acquisitionTimeAsLong;
848 995 unsigned char localAcquisitionTime[6];
849 996 double deltaT;
850 997
851 998 deltaT = 0.;
852 999
853 1000 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
854 1001 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
855 1002 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
856 1003 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
857 1004 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
858 1005 localAcquisitionTime[5] = (unsigned char) ( fineTime );
859 1006
860 1007 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
861 1008 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
862 1009 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
863 1010 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
864 1011 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
865 1012 + ( (unsigned long long int) localAcquisitionTime[5] );
866 1013
867 1014 switch( sid )
868 1015 {
869 1016 case SID_NORM_SWF_F0:
870 1017 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
871 1018 break;
872 1019
873 1020 case SID_NORM_SWF_F1:
874 1021 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
875 1022 break;
876 1023
877 1024 case SID_NORM_SWF_F2:
878 1025 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
879 1026 break;
880 1027
881 1028 case SID_SBM1_CWF_F1:
882 1029 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
883 1030 break;
884 1031
885 1032 case SID_SBM2_CWF_F2:
886 1033 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
887 1034 break;
888 1035
889 1036 case SID_BURST_CWF_F2:
890 1037 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
891 1038 break;
892 1039
893 1040 case SID_NORM_CWF_F3:
894 1041 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
895 1042 break;
896 1043
897 1044 case SID_NORM_CWF_LONG_F3:
898 1045 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
899 1046 break;
900 1047
901 1048 default:
902 1049 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
903 1050 deltaT = 0.;
904 1051 break;
905 1052 }
906 1053
907 1054 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
908 1055 //
909 1056 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
910 1057 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
911 1058 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
912 1059 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
913 1060 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
914 1061 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
915 1062
916 1063 }
917 1064
918 1065 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
919 1066 {
920 1067 unsigned int i;
921 1068 unsigned long long int centerTime_asLong;
922 1069 unsigned long long int acquisitionTimeF0_asLong;
923 1070 unsigned long long int acquisitionTime_asLong;
924 1071 unsigned long long int bufferAcquisitionTime_asLong;
925 1072 unsigned char *ptr1;
926 1073 unsigned char *ptr2;
927 1074 unsigned char *timeCharPtr;
928 1075 unsigned char nb_ring_nodes;
929 1076 unsigned long long int frequency_asLong;
930 1077 unsigned long long int nbTicksPerSample_asLong;
931 1078 unsigned long long int nbSamplesPart1_asLong;
932 1079 unsigned long long int sampleOffset_asLong;
933 1080
934 1081 unsigned int deltaT_F0;
935 1082 unsigned int deltaT_F1;
936 1083 unsigned long long int deltaT_F2;
937 1084
938 1085 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
939 1086 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
940 1087 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
941 1088 sampleOffset_asLong = 0x00;
942 1089
943 1090 // (1) get the f0 acquisition time
944 1091 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
945 1092
946 1093 // (2) compute the central reference time
947 1094 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
948 1095
949 1096 // (3) compute the acquisition time of the current snapshot
950 1097 switch(frequencyChannel)
951 1098 {
952 1099 case 1: // 1 is for F1 = 4096 Hz
953 1100 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
954 1101 nb_ring_nodes = NB_RING_NODES_F1;
955 1102 frequency_asLong = 4096;
956 1103 nbTicksPerSample_asLong = 16; // 65536 / 4096;
957 1104 break;
958 1105 case 2: // 2 is for F2 = 256 Hz
959 1106 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
960 1107 nb_ring_nodes = NB_RING_NODES_F2;
961 1108 frequency_asLong = 256;
962 1109 nbTicksPerSample_asLong = 256; // 65536 / 256;
963 1110 break;
964 1111 default:
965 1112 acquisitionTime_asLong = centerTime_asLong;
966 1113 frequency_asLong = 256;
967 1114 nbTicksPerSample_asLong = 256;
968 1115 break;
969 1116 }
970 1117
971 1118 //****************************************************************************
972 1119 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
973 1120 for (i=0; i<nb_ring_nodes; i++)
974 1121 {
975 1122 PRINTF1("%d ... ", i)
976 1123 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
977 1124 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
978 1125 {
979 1126 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
980 1127 break;
981 1128 }
982 1129 ring_node_to_send = ring_node_to_send->previous;
983 1130 }
984 1131
985 1132 // (5) compute the number of samples to take in the current buffer
986 1133 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
987 1134 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
988 1135 PRINTF2("sampleOffset_asLong = %llx, nbSamplesPart1_asLong = %llx\n", sampleOffset_asLong, nbSamplesPart1_asLong)
989 1136
990 1137 // (6) compute the final acquisition time
991 1138 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
992 1139 sampleOffset_asLong * nbTicksPerSample_asLong;
993 1140
994 1141 // (7) copy the acquisition time at the beginning of the extrated snapshot
995 1142 ptr1 = (unsigned char*) &acquisitionTime_asLong;
996 1143 ptr2 = (unsigned char*) wf_snap_extracted;
997 1144 ptr2[0] = ptr1[ 0 + 2 ];
998 1145 ptr2[1] = ptr1[ 1 + 2 ];
999 1146 ptr2[2] = ptr1[ 2 + 2 ];
1000 1147 ptr2[3] = ptr1[ 3 + 2 ];
1001 1148 ptr2[6] = ptr1[ 4 + 2 ];
1002 1149 ptr2[7] = ptr1[ 5 + 2 ];
1003 1150
1004 1151 // re set the synchronization bit
1005 1152 timeCharPtr = (unsigned char*) ring_node_to_send->buffer_address;
1006 1153 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1007 1154
1008 1155 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1009 1156 {
1010 1157 nbSamplesPart1_asLong = 0;
1011 1158 }
1012 1159 // copy the part 1 of the snapshot in the extracted buffer
1013 1160 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1014 1161 {
1015 1162 wf_snap_extracted[i + TIME_OFFSET] =
1016 1163 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1017 1164 }
1018 1165 // copy the part 2 of the snapshot in the extracted buffer
1019 1166 ring_node_to_send = ring_node_to_send->next;
1020 1167 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1021 1168 {
1022 1169 wf_snap_extracted[i + TIME_OFFSET] =
1023 1170 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1024 1171 }
1025 1172 }
1026 1173
1027 1174 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1028 1175 {
1029 1176 unsigned char *acquisitionTimeCharPtr;
1030 1177
1031 1178 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1032 1179
1033 1180 *acquisitionTimeAslong = 0x00;
1034 1181 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1035 1182 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1036 1183 + ( (unsigned long long int) acquisitionTimeCharPtr[2] << 24 )
1037 1184 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 16 )
1038 1185 + ( (unsigned long long int) acquisitionTimeCharPtr[6] << 8 )
1039 1186 + ( (unsigned long long int) acquisitionTimeCharPtr[7] );
1040 1187 }
1041 1188
1042 1189 //**************
1043 1190 // wfp registers
1044 1191 void reset_wfp_burst_enable(void)
1045 1192 {
1046 1193 /** This function resets the waveform picker burst_enable register.
1047 1194 *
1048 1195 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1049 1196 *
1050 1197 */
1051 1198
1052 1199 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1053 1200 }
1054 1201
1055 1202 void reset_wfp_status( void )
1056 1203 {
1057 1204 /** This function resets the waveform picker status register.
1058 1205 *
1059 1206 * All status bits are set to 0 [new_err full_err full].
1060 1207 *
1061 1208 */
1062 1209
1063 1210 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1064 1211 }
1065 1212
1066 1213 void reset_waveform_picker_regs(void)
1067 1214 {
1068 1215 /** This function resets the waveform picker module registers.
1069 1216 *
1070 1217 * The registers affected by this function are located at the following offset addresses:
1071 1218 * - 0x00 data_shaping
1072 1219 * - 0x04 run_burst_enable
1073 1220 * - 0x08 addr_data_f0
1074 1221 * - 0x0C addr_data_f1
1075 1222 * - 0x10 addr_data_f2
1076 1223 * - 0x14 addr_data_f3
1077 1224 * - 0x18 status
1078 1225 * - 0x1C delta_snapshot
1079 1226 * - 0x20 delta_f0
1080 1227 * - 0x24 delta_f0_2
1081 1228 * - 0x28 delta_f1
1082 1229 * - 0x2c delta_f2
1083 1230 * - 0x30 nb_data_by_buffer
1084 1231 * - 0x34 nb_snapshot_param
1085 1232 * - 0x38 start_date
1086 1233 * - 0x3c nb_word_in_buffer
1087 1234 *
1088 1235 */
1089 1236
1090 1237 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1091 1238 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1092 1239 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1093 1240 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1094 1241 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1095 1242 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1096 1243 reset_wfp_status(); // 0x18
1097 1244 //
1098 1245 set_wfp_delta_snapshot(); // 0x1c
1099 1246 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1100 1247 set_wfp_delta_f1(); // 0x28
1101 1248 set_wfp_delta_f2(); // 0x2c
1102 1249 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1103 1250 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1104 1251 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1105 1252 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1106 1253 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1107 1254 // 2688 = 8 * 336
1108 1255 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1109 1256 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1110 1257 waveform_picker_regs->start_date = 0x00; // 0x38
1111 1258 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1112 1259 }
1113 1260
1114 1261 void set_wfp_data_shaping( void )
1115 1262 {
1116 1263 /** This function sets the data_shaping register of the waveform picker module.
1117 1264 *
1118 1265 * The value is read from one field of the parameter_dump_packet structure:\n
1119 1266 * bw_sp0_sp1_r0_r1
1120 1267 *
1121 1268 */
1122 1269
1123 1270 unsigned char data_shaping;
1124 1271
1125 1272 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1126 1273 // waveform picker : [R1 R0 SP1 SP0 BW]
1127 1274
1128 1275 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1129 1276
1130 1277 waveform_picker_regs->data_shaping =
1131 1278 ( (data_shaping & 0x10) >> 4 ) // BW
1132 1279 + ( (data_shaping & 0x08) >> 2 ) // SP0
1133 1280 + ( (data_shaping & 0x04) ) // SP1
1134 1281 + ( (data_shaping & 0x02) << 2 ) // R0
1135 1282 + ( (data_shaping & 0x01) << 4 ); // R1
1136 1283 }
1137 1284
1138 1285 void set_wfp_burst_enable_register( unsigned char mode )
1139 1286 {
1140 1287 /** This function sets the waveform picker burst_enable register depending on the mode.
1141 1288 *
1142 1289 * @param mode is the LFR mode to launch.
1143 1290 *
1144 1291 * The burst bits shall be before the enable bits.
1145 1292 *
1146 1293 */
1147 1294
1148 1295 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1149 1296 // the burst bits shall be set first, before the enable bits
1150 1297 switch(mode) {
1151 1298 case(LFR_MODE_NORMAL):
1152 1299 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1153 1300 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1154 1301 break;
1155 1302 case(LFR_MODE_BURST):
1156 1303 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1157 1304 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1158 1305 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1159 1306 break;
1160 1307 case(LFR_MODE_SBM1):
1161 1308 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1162 1309 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1163 1310 break;
1164 1311 case(LFR_MODE_SBM2):
1165 1312 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1166 1313 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1167 1314 break;
1168 1315 default:
1169 1316 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1170 1317 break;
1171 1318 }
1172 1319 }
1173 1320
1174 1321 void set_wfp_delta_snapshot( void )
1175 1322 {
1176 1323 /** This function sets the delta_snapshot register of the waveform picker module.
1177 1324 *
1178 1325 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1179 1326 * - sy_lfr_n_swf_p[0]
1180 1327 * - sy_lfr_n_swf_p[1]
1181 1328 *
1182 1329 */
1183 1330
1184 1331 unsigned int delta_snapshot;
1185 1332 unsigned int delta_snapshot_in_T2;
1186 1333
1187 1334 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1188 1335 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1189 1336
1190 1337 delta_snapshot_in_T2 = delta_snapshot * 256;
1191 1338 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1192 1339 }
1193 1340
1194 1341 void set_wfp_delta_f0_f0_2( void )
1195 1342 {
1196 1343 unsigned int delta_snapshot;
1197 1344 unsigned int nb_samples_per_snapshot;
1198 1345 float delta_f0_in_float;
1199 1346
1200 1347 delta_snapshot = waveform_picker_regs->delta_snapshot;
1201 1348 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1202 1349 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1203 1350
1204 1351 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1205 1352 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1206 1353 }
1207 1354
1208 1355 void set_wfp_delta_f1( void )
1209 1356 {
1210 1357 unsigned int delta_snapshot;
1211 1358 unsigned int nb_samples_per_snapshot;
1212 1359 float delta_f1_in_float;
1213 1360
1214 1361 delta_snapshot = waveform_picker_regs->delta_snapshot;
1215 1362 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1216 1363 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1217 1364
1218 1365 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1219 1366 }
1220 1367
1221 1368 void set_wfp_delta_f2()
1222 1369 {
1223 1370 unsigned int delta_snapshot;
1224 1371 unsigned int nb_samples_per_snapshot;
1225 1372
1226 1373 delta_snapshot = waveform_picker_regs->delta_snapshot;
1227 1374 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1228 1375
1229 1376 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1230 1377 }
1231 1378
1232 1379 //*****************
1233 1380 // local parameters
1234 1381
1235 1382 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1236 1383 {
1237 1384 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1238 1385 *
1239 1386 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1240 1387 * @param sid is the source identifier of the packet being updated.
1241 1388 *
1242 1389 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1243 1390 * The sequence counters shall wrap around from 2^14 to zero.
1244 1391 * The sequence counter shall start at zero at startup.
1245 1392 *
1246 1393 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1247 1394 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1248 1395 *
1249 1396 */
1250 1397
1251 1398 unsigned short *sequence_cnt;
1252 1399 unsigned short segmentation_grouping_flag;
1253 1400 unsigned short new_packet_sequence_control;
1254 1401 rtems_mode initial_mode_set;
1255 1402 rtems_mode current_mode_set;
1256 1403 rtems_status_code status;
1257 1404
1258 1405 //******************************************
1259 1406 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1260 1407 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1261 1408
1262 1409 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1263 1410 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1264 1411 || (sid == SID_BURST_CWF_F2)
1265 1412 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1266 1413 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1267 1414 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1268 1415 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1269 1416 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1270 1417 {
1271 1418 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1272 1419 }
1273 1420 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1274 1421 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1275 1422 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1276 1423 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1277 1424 {
1278 1425 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1279 1426 }
1280 1427 else
1281 1428 {
1282 1429 sequence_cnt = (unsigned short *) NULL;
1283 1430 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1284 1431 }
1285 1432
1286 1433 if (sequence_cnt != NULL)
1287 1434 {
1288 1435 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1289 1436 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1290 1437
1291 1438 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1292 1439
1293 1440 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1294 1441 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1295 1442
1296 1443 // increment the sequence counter
1297 1444 if ( *sequence_cnt < SEQ_CNT_MAX)
1298 1445 {
1299 1446 *sequence_cnt = *sequence_cnt + 1;
1300 1447 }
1301 1448 else
1302 1449 {
1303 1450 *sequence_cnt = 0;
1304 1451 }
1305 1452 }
1306 1453
1307 1454 //***********************************
1308 1455 // RESET THE MODE OF THE CALLING TASK
1309 1456 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1310 1457 }
General Comments 0
You need to be logged in to leave comments. Login now