##// END OF EJS Templates
Many corrections done after Logiscope analysis
paul -
r166:b9d810e81e1d patch rev 2
parent child
Show More
@@ -1,273 +1,273
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Tue Jul 15 15:57:23 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Wed Sep 24 11:10:53 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=2 -DSW_VERSION_N2=0 -DSW_VERSION_N3=1 -DSW_VERSION_N4=0 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=2 -DSW_VERSION_N2=0 -DSW_VERSION_N3=1 -DSW_VERSION_N4=1 -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_misc.c \
49 49 ../src/fsw_init.c \
50 50 ../src/fsw_globals.c \
51 51 ../src/fsw_spacewire.c \
52 52 ../src/tc_load_dump_parameters.c \
53 53 ../src/tm_lfr_tc_exe.c \
54 54 ../src/tc_acceptance.c \
55 55 ../src/processing/fsw_processing.c \
56 56 ../src/processing/avf0_prc0.c \
57 57 ../src/processing/avf1_prc1.c \
58 58 ../src/processing/avf2_prc2.c \
59 59 ../src/lfr_cpu_usage_report.c \
60 60 ../src/LFR_basic-parameters/basic_parameters.c
61 61 OBJECTS = obj/wf_handler.o \
62 62 obj/tc_handler.o \
63 63 obj/fsw_misc.o \
64 64 obj/fsw_init.o \
65 65 obj/fsw_globals.o \
66 66 obj/fsw_spacewire.o \
67 67 obj/tc_load_dump_parameters.o \
68 68 obj/tm_lfr_tc_exe.o \
69 69 obj/tc_acceptance.o \
70 70 obj/fsw_processing.o \
71 71 obj/avf0_prc0.o \
72 72 obj/avf1_prc1.o \
73 73 obj/avf2_prc2.o \
74 74 obj/lfr_cpu_usage_report.o \
75 75 obj/basic_parameters.o
76 76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
77 77 /usr/lib64/qt4/mkspecs/common/linux.conf \
78 78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
79 79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
80 80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
81 81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
82 82 /usr/lib64/qt4/mkspecs/qconfig.pri \
83 83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
84 84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
85 85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
86 86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
87 87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
88 88 sparc.pri \
89 89 /usr/lib64/qt4/mkspecs/features/release.prf \
90 90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
91 91 /usr/lib64/qt4/mkspecs/features/shared.prf \
92 92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
93 93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
94 94 /usr/lib64/qt4/mkspecs/features/resources.prf \
95 95 /usr/lib64/qt4/mkspecs/features/uic.prf \
96 96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
97 97 /usr/lib64/qt4/mkspecs/features/lex.prf \
98 98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
99 99 fsw-qt.pro
100 100 QMAKE_TARGET = fsw
101 101 DESTDIR = bin/
102 102 TARGET = bin/fsw
103 103
104 104 first: all
105 105 ####### Implicit rules
106 106
107 107 .SUFFIXES: .o .c .cpp .cc .cxx .C
108 108
109 109 .cpp.o:
110 110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111 111
112 112 .cc.o:
113 113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114 114
115 115 .cxx.o:
116 116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117 117
118 118 .C.o:
119 119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
120 120
121 121 .c.o:
122 122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
123 123
124 124 ####### Build rules
125 125
126 126 all: Makefile $(TARGET)
127 127
128 128 $(TARGET): $(OBJECTS)
129 129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
130 130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
131 131
132 132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
133 133 /usr/lib64/qt4/mkspecs/common/linux.conf \
134 134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
135 135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
136 136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
137 137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
138 138 /usr/lib64/qt4/mkspecs/qconfig.pri \
139 139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
140 140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
141 141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
142 142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
143 143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
144 144 sparc.pri \
145 145 /usr/lib64/qt4/mkspecs/features/release.prf \
146 146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
147 147 /usr/lib64/qt4/mkspecs/features/shared.prf \
148 148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
149 149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
150 150 /usr/lib64/qt4/mkspecs/features/resources.prf \
151 151 /usr/lib64/qt4/mkspecs/features/uic.prf \
152 152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
153 153 /usr/lib64/qt4/mkspecs/features/lex.prf \
154 154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
155 155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
156 156 /usr/lib64/qt4/mkspecs/common/unix.conf:
157 157 /usr/lib64/qt4/mkspecs/common/linux.conf:
158 158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
159 159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
160 160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
161 161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
162 162 /usr/lib64/qt4/mkspecs/qconfig.pri:
163 163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
164 164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
165 165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
166 166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
167 167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
168 168 sparc.pri:
169 169 /usr/lib64/qt4/mkspecs/features/release.prf:
170 170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
171 171 /usr/lib64/qt4/mkspecs/features/shared.prf:
172 172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
173 173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
174 174 /usr/lib64/qt4/mkspecs/features/resources.prf:
175 175 /usr/lib64/qt4/mkspecs/features/uic.prf:
176 176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
177 177 /usr/lib64/qt4/mkspecs/features/lex.prf:
178 178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
179 179 qmake: FORCE
180 180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
181 181
182 182 dist:
183 183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
184 184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
185 185
186 186
187 187 clean:compiler_clean
188 188 -$(DEL_FILE) $(OBJECTS)
189 189 -$(DEL_FILE) *~ core *.core
190 190
191 191
192 192 ####### Sub-libraries
193 193
194 194 distclean: clean
195 195 -$(DEL_FILE) $(TARGET)
196 196 -$(DEL_FILE) Makefile
197 197
198 198
199 199 grmon:
200 200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
201 201
202 202 check: first
203 203
204 204 compiler_rcc_make_all:
205 205 compiler_rcc_clean:
206 206 compiler_uic_make_all:
207 207 compiler_uic_clean:
208 208 compiler_image_collection_make_all: qmake_image_collection.cpp
209 209 compiler_image_collection_clean:
210 210 -$(DEL_FILE) qmake_image_collection.cpp
211 211 compiler_yacc_decl_make_all:
212 212 compiler_yacc_decl_clean:
213 213 compiler_yacc_impl_make_all:
214 214 compiler_yacc_impl_clean:
215 215 compiler_lex_make_all:
216 216 compiler_lex_clean:
217 217 compiler_clean:
218 218
219 219 ####### Compile
220 220
221 221 obj/wf_handler.o: ../src/wf_handler.c
222 222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
223 223
224 224 obj/tc_handler.o: ../src/tc_handler.c
225 225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
226 226
227 227 obj/fsw_misc.o: ../src/fsw_misc.c
228 228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
229 229
230 230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
231 231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
232 232
233 233 obj/fsw_globals.o: ../src/fsw_globals.c
234 234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
235 235
236 236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
237 237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
238 238
239 239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
240 240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
241 241
242 242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
243 243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
244 244
245 245 obj/tc_acceptance.o: ../src/tc_acceptance.c
246 246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
247 247
248 248 obj/fsw_processing.o: ../src/processing/fsw_processing.c
249 249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
250 250
251 251 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
252 252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
253 253
254 254 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
255 255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
256 256
257 257 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
258 258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
259 259
260 260 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
261 261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
262 262
263 263 obj/basic_parameters.o: ../src/LFR_basic-parameters/basic_parameters.c
264 264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/LFR_basic-parameters/basic_parameters.c
265 265
266 266 ####### Install
267 267
268 268 install: FORCE
269 269
270 270 uninstall: FORCE
271 271
272 272 FORCE:
273 273
@@ -1,95 +1,95
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 4 CONFIG += console verbose
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=2 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=1 # patch
14 DEFINES += SW_VERSION_N4=0 # internal
14 DEFINES += SW_VERSION_N4=1 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 44 #doxygen.target = doxygen
45 45 #doxygen.commands = doxygen ../doc/Doxyfile
46 46 #QMAKE_EXTRA_TARGETS += doxygen
47 47
48 48 TARGET = fsw
49 49
50 50 INCLUDEPATH += \
51 51 ../src \
52 52 ../header \
53 53 ../header/processing \
54 54 ../src/LFR_basic-parameters
55 55
56 56 SOURCES += \
57 57 ../src/wf_handler.c \
58 58 ../src/tc_handler.c \
59 59 ../src/fsw_misc.c \
60 60 ../src/fsw_init.c \
61 61 ../src/fsw_globals.c \
62 62 ../src/fsw_spacewire.c \
63 63 ../src/tc_load_dump_parameters.c \
64 64 ../src/tm_lfr_tc_exe.c \
65 65 ../src/tc_acceptance.c \
66 66 ../src/processing/fsw_processing.c \
67 67 ../src/processing/avf0_prc0.c \
68 68 ../src/processing/avf1_prc1.c \
69 69 ../src/processing/avf2_prc2.c \
70 70 ../src/lfr_cpu_usage_report.c \
71 71 ../src/LFR_basic-parameters/basic_parameters.c
72 72
73 73 HEADERS += \
74 74 ../header/wf_handler.h \
75 75 ../header/tc_handler.h \
76 76 ../header/grlib_regs.h \
77 77 ../header/fsw_params.h \
78 78 ../header/fsw_misc.h \
79 79 ../header/fsw_init.h \
80 80 ../header/ccsds_types.h \
81 81 ../header/fsw_spacewire.h \
82 82 ../header/tc_load_dump_parameters.h \
83 83 ../header/tm_lfr_tc_exe.h \
84 84 ../header/tc_acceptance.h \
85 85 ../header/fsw_params_nb_bytes.h \
86 86 ../header/fsw_params_processing.h \
87 87 ../header/processing/fsw_processing.h \
88 88 ../header/processing/avf0_prc0.h \
89 89 ../header/processing/avf1_prc1.h \
90 90 ../header/processing/avf2_prc2.h \
91 91 ../header/fsw_params_wf_handler.h \
92 92 ../header/lfr_cpu_usage_report.h \
93 93 ../src/LFR_basic-parameters/basic_parameters.h \
94 94 ../src/LFR_basic-parameters/basic_parameters_params.h
95 95
@@ -1,201 +1,208
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-07-15T16:01:49. -->
3 <!-- Written by QtCreator 3.2.0, 2014-09-23T16:34:13. -->
4 4 <qtcreator>
5 5 <data>
6 <variable>EnvironmentId</variable>
7 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
8 </data>
9 <data>
6 10 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 11 <value type="int">0</value>
8 12 </data>
9 13 <data>
10 14 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 15 <valuemap type="QVariantMap">
12 16 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 17 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 18 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 19 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 20 <value type="QString" key="language">Cpp</value>
17 21 <valuemap type="QVariantMap" key="value">
18 22 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 23 </valuemap>
20 24 </valuemap>
21 25 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 26 <value type="QString" key="language">QmlJS</value>
23 27 <valuemap type="QVariantMap" key="value">
24 28 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 29 </valuemap>
26 30 </valuemap>
27 31 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 32 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 33 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 34 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 35 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
36 <value type="int" key="EditorConfiguration.MarginColumn">80</value>
37 <value type="bool" key="EditorConfiguration.MouseHiding">true</value>
32 38 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 39 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 40 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
41 <value type="bool" key="EditorConfiguration.ShowMargin">false</value>
35 42 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 43 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 44 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 45 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 46 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 47 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 48 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 49 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 50 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 51 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 52 </valuemap>
46 53 </data>
47 54 <data>
48 55 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 56 <valuemap type="QVariantMap"/>
50 57 </data>
51 58 <data>
52 59 <variable>ProjectExplorer.Project.Target.0</variable>
53 60 <valuemap type="QVariantMap">
54 61 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 62 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 63 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 64 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 65 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 66 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 67 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 68 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 69 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 70 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 71 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 72 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 73 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 74 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 75 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 76 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 77 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 78 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 79 </valuemap>
73 80 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 81 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 82 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 83 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 84 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 85 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 86 <value type="QString">-w</value>
80 87 <value type="QString">-r</value>
81 88 </valuelist>
82 89 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 90 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 91 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 92 </valuemap>
86 93 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 97 </valuemap>
91 98 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 99 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 100 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 101 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 102 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 103 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 104 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 105 <value type="QString">-w</value>
99 106 <value type="QString">-r</value>
100 107 </valuelist>
101 108 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 109 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 110 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 111 </valuemap>
105 112 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 116 </valuemap>
110 117 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 118 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 119 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 120 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 121 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 122 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 123 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 124 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 125 </valuemap>
119 126 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 127 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 128 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 129 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 131 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 132 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 133 </valuemap>
127 134 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 135 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 136 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 137 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 138 </valuemap>
132 139 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 140 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 141 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 142 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 143 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 144 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 145 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 146 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 147 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 148 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 149 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 150 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 151 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 152 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 153 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 154 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 155 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 156 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 157 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 158 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 159 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 160 <value type="int">0</value>
154 161 <value type="int">1</value>
155 162 <value type="int">2</value>
156 163 <value type="int">3</value>
157 164 <value type="int">4</value>
158 165 <value type="int">5</value>
159 166 <value type="int">6</value>
160 167 <value type="int">7</value>
161 168 <value type="int">8</value>
162 169 <value type="int">9</value>
163 170 <value type="int">10</value>
164 171 <value type="int">11</value>
165 172 <value type="int">12</value>
166 173 <value type="int">13</value>
167 174 <value type="int">14</value>
168 175 </valuelist>
169 176 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 177 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 178 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 179 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 180 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 181 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 182 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 183 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 184 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 185 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 186 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 187 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 188 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 189 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 190 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 191 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 192 </valuemap>
186 193 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 194 </valuemap>
188 195 </data>
189 196 <data>
190 197 <variable>ProjectExplorer.Project.TargetCount</variable>
191 198 <value type="int">1</value>
192 199 </data>
193 200 <data>
194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
201 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
202 <value type="int">16</value>
196 203 </data>
197 204 <data>
198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 <value type="int">15</value>
205 <variable>Version</variable>
206 <value type="int">16</value>
200 207 </data>
201 208 </qtcreator>
@@ -1,238 +1,238
1 1 #############################################################################
2 2 # Makefile for building: bin/timegen
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Fri Mar 21 09:10:01 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Wed Sep 24 10:50:53 2014
4 4 # Project: timegen.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile timegen.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 13 DEFINES = -DSW_VERSION_N1=0 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=1 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES -DBOOT_MESSAGES
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -Isrc -Iheader -I../src -I../header
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = src/timegen_init.c \
47 47 src/timegen_tc_handler.c \
48 48 src/timegen_misc.c \
49 49 src/timegen_spacewire.c \
50 50 ../src/fsw_misc.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/tm_lfr_tc_exe.c \
53 53 ../src/tc_acceptance.c
54 54 OBJECTS = obj/timegen_init.o \
55 55 obj/timegen_tc_handler.o \
56 56 obj/timegen_misc.o \
57 57 obj/timegen_spacewire.o \
58 58 obj/fsw_misc.o \
59 59 obj/fsw_globals.o \
60 60 obj/tm_lfr_tc_exe.o \
61 61 obj/tc_acceptance.o
62 62 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
63 63 /usr/lib64/qt4/mkspecs/common/linux.conf \
64 64 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
65 65 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
66 66 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
67 67 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
68 68 /usr/lib64/qt4/mkspecs/qconfig.pri \
69 69 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
70 70 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
71 71 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
72 72 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
73 73 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
74 74 sparc.pri \
75 75 /usr/lib64/qt4/mkspecs/features/release.prf \
76 76 /usr/lib64/qt4/mkspecs/features/default_post.prf \
77 77 /usr/lib64/qt4/mkspecs/features/shared.prf \
78 78 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
79 79 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
80 80 /usr/lib64/qt4/mkspecs/features/resources.prf \
81 81 /usr/lib64/qt4/mkspecs/features/uic.prf \
82 82 /usr/lib64/qt4/mkspecs/features/yacc.prf \
83 83 /usr/lib64/qt4/mkspecs/features/lex.prf \
84 84 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
85 85 timegen.pro
86 86 QMAKE_TARGET = timegen
87 87 DESTDIR = bin/
88 88 TARGET = bin/timegen
89 89
90 90 first: all
91 91 ####### Implicit rules
92 92
93 93 .SUFFIXES: .o .c .cpp .cc .cxx .C
94 94
95 95 .cpp.o:
96 96 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
97 97
98 98 .cc.o:
99 99 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
100 100
101 101 .cxx.o:
102 102 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
103 103
104 104 .C.o:
105 105 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
106 106
107 107 .c.o:
108 108 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
109 109
110 110 ####### Build rules
111 111
112 112 all: Makefile $(TARGET)
113 113
114 114 $(TARGET): $(OBJECTS)
115 115 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
116 116 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
117 117
118 118 Makefile: timegen.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
119 119 /usr/lib64/qt4/mkspecs/common/linux.conf \
120 120 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
121 121 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
122 122 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
123 123 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
124 124 /usr/lib64/qt4/mkspecs/qconfig.pri \
125 125 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
126 126 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
127 127 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
128 128 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
129 129 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
130 130 sparc.pri \
131 131 /usr/lib64/qt4/mkspecs/features/release.prf \
132 132 /usr/lib64/qt4/mkspecs/features/default_post.prf \
133 133 /usr/lib64/qt4/mkspecs/features/shared.prf \
134 134 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
135 135 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
136 136 /usr/lib64/qt4/mkspecs/features/resources.prf \
137 137 /usr/lib64/qt4/mkspecs/features/uic.prf \
138 138 /usr/lib64/qt4/mkspecs/features/yacc.prf \
139 139 /usr/lib64/qt4/mkspecs/features/lex.prf \
140 140 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
141 141 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile timegen.pro
142 142 /usr/lib64/qt4/mkspecs/common/unix.conf:
143 143 /usr/lib64/qt4/mkspecs/common/linux.conf:
144 144 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
145 145 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
146 146 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
147 147 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
148 148 /usr/lib64/qt4/mkspecs/qconfig.pri:
149 149 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
150 150 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
151 151 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
152 152 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
153 153 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
154 154 sparc.pri:
155 155 /usr/lib64/qt4/mkspecs/features/release.prf:
156 156 /usr/lib64/qt4/mkspecs/features/default_post.prf:
157 157 /usr/lib64/qt4/mkspecs/features/shared.prf:
158 158 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
159 159 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
160 160 /usr/lib64/qt4/mkspecs/features/resources.prf:
161 161 /usr/lib64/qt4/mkspecs/features/uic.prf:
162 162 /usr/lib64/qt4/mkspecs/features/yacc.prf:
163 163 /usr/lib64/qt4/mkspecs/features/lex.prf:
164 164 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
165 165 qmake: FORCE
166 166 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile timegen.pro
167 167
168 168 dist:
169 169 @$(CHK_DIR_EXISTS) obj/timegen1.0.0 || $(MKDIR) obj/timegen1.0.0
170 170 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/timegen1.0.0/ && (cd `dirname obj/timegen1.0.0` && $(TAR) timegen1.0.0.tar timegen1.0.0 && $(COMPRESS) timegen1.0.0.tar) && $(MOVE) `dirname obj/timegen1.0.0`/timegen1.0.0.tar.gz . && $(DEL_FILE) -r obj/timegen1.0.0
171 171
172 172
173 173 clean:compiler_clean
174 174 -$(DEL_FILE) $(OBJECTS)
175 175 -$(DEL_FILE) *~ core *.core
176 176
177 177
178 178 ####### Sub-libraries
179 179
180 180 distclean: clean
181 181 -$(DEL_FILE) $(TARGET)
182 182 -$(DEL_FILE) Makefile
183 183
184 184
185 185 grmon:
186 186 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
187 187
188 188 check: first
189 189
190 190 compiler_rcc_make_all:
191 191 compiler_rcc_clean:
192 192 compiler_uic_make_all:
193 193 compiler_uic_clean:
194 194 compiler_image_collection_make_all: qmake_image_collection.cpp
195 195 compiler_image_collection_clean:
196 196 -$(DEL_FILE) qmake_image_collection.cpp
197 197 compiler_yacc_decl_make_all:
198 198 compiler_yacc_decl_clean:
199 199 compiler_yacc_impl_make_all:
200 200 compiler_yacc_impl_clean:
201 201 compiler_lex_make_all:
202 202 compiler_lex_clean:
203 203 compiler_clean:
204 204
205 205 ####### Compile
206 206
207 207 obj/timegen_init.o: src/timegen_init.c
208 208 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/timegen_init.o src/timegen_init.c
209 209
210 210 obj/timegen_tc_handler.o: src/timegen_tc_handler.c
211 211 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/timegen_tc_handler.o src/timegen_tc_handler.c
212 212
213 213 obj/timegen_misc.o: src/timegen_misc.c
214 214 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/timegen_misc.o src/timegen_misc.c
215 215
216 216 obj/timegen_spacewire.o: src/timegen_spacewire.c
217 217 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/timegen_spacewire.o src/timegen_spacewire.c
218 218
219 219 obj/fsw_misc.o: ../src/fsw_misc.c
220 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
221 221
222 222 obj/fsw_globals.o: ../src/fsw_globals.c
223 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
224 224
225 225 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
226 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
227 227
228 228 obj/tc_acceptance.o: ../src/tc_acceptance.c
229 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
230 230
231 231 ####### Install
232 232
233 233 install: FORCE
234 234
235 235 uninstall: FORCE
236 236
237 237 FORCE:
238 238
@@ -1,41 +1,39
1 1 #ifndef TIMEGEN_INIT_H_INCLUDED
2 2 #define TIMEGEN_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 #include "fsw_processing.h"
10 9 #include "wf_handler.h"
11 10
12 11 #include "timegen_spacewire.h"
13 12 #include "timegen_misc.h"
14 13
15 14 extern rtems_name Task_name[20]; /* array of task names */
16 15 extern rtems_id Task_id[20]; /* array of task ids */
16 extern rtems_name misc_name[5];
17 17
18 18 // RTEMS TASKS
19 19 rtems_task Init( rtems_task_argument argument);
20 20
21 21 // OTHER functions
22 22 void create_names( void );
23 23 int create_all_tasks( void );
24 24 int start_all_tasks( void );
25 25 //
26 26 rtems_status_code create_message_queues( void );
27 27 rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
28 28 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
29 29 //
30 30 int start_recv_send_tasks( void );
31 31 //
32 32 void init_local_mode_parameters( void );
33 33 void reset_local_time( void );
34 34
35 extern int rtems_cpu_usage_report( void );
36 extern int rtems_cpu_usage_reset( void );
37 35 extern void rtems_stack_checker_report_usage( void );
38 36
39 37 extern int sched_yield( void );
40 38
41 39 #endif // TIMEGEN_INIT_H_INCLUDED
@@ -1,39 +1,41
1 1 #ifndef TIMEGEN_MISC_H_INCLUDED
2 2 #define TIMEGEN_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "TC_types.h"
9 9 #include "tc_acceptance.h"
10 10 #include "timegen_init.h"
11 11
12 12 #define TASK_PRIORITY_UPDT 40
13 13
14 14 typedef struct {
15 15 unsigned char targetLogicalAddress;
16 16 unsigned char protocolIdentifier;
17 17 unsigned char reserved;
18 18 unsigned char userApplication;
19 19 // PACKET HEADER
20 20 Packet_TC_LFR_UPDATE_TIME_t update_time;
21 21 } Packet_TC_LFR_UPDATE_TIME_WITH_OVERHEAD_t;
22 22
23 23 unsigned int coarseTime;
24 24
25 25 rtems_name rtems_name_updt;
26 26 rtems_id rtems_id_updt;
27 rtems_name rtems_name_act_;
28 rtems_id rtems_id_act_;
27 29
28 30 void timegen_timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc );
29 31
30 32 void initCoarseTime( void );
31 33
32 34 rtems_task updt_task( rtems_task_argument unused );
33 35
34 36 int send_tc_lfr_update_time( rtems_id queue_id );
35 37
36 38 #endif // TIMEGEN_MISC_H_INCLUDED
37 39
38 40
39 41
@@ -1,56 +1,34
1 1 #ifndef TIMEGEN_TC_HANDLER_H_INCLUDED
2 2 #define TIMEGEN_TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10
11 11 // MODE PARAMETERS
12 12 extern unsigned int maxCount;
13 13
14 14 //****
15 15 // ISR
16 16 rtems_isr commutation_isr1( rtems_vector_number vector );
17 17 rtems_isr commutation_isr2( rtems_vector_number vector );
18 18
19 19 //***********
20 20 // RTEMS TASK
21 rtems_task actn_task( rtems_task_argument unused );
21 rtems_task act__task( rtems_task_argument unused );
22 22
23 23 //***********
24 24 // TC ACTIONS
25 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
26 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
27 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
28 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 int action_update_time(ccsdsTelecommandPacket_t *TC);
31
32 // mode transition
33 int transition_validation(unsigned char requestedMode);
34 int stop_current_mode( void );
35 int enter_mode(unsigned char mode);
36 int restart_science_tasks();
37 int suspend_science_tasks();
38 void launch_waveform_picker( unsigned char mode );
39 void launch_spectral_matrix( unsigned char mode );
40 void set_irq_on_new_ready_matrix(unsigned char value );
41 void set_run_matrix_spectral( unsigned char value );
42 void launch_spectral_matrix_simu( unsigned char mode );
43
44 // other functions
45 void updateLFRCurrentMode();
46 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC );
47 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC );
48 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
25 int timegen_action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
26 int timegen_action_update_time(ccsdsTelecommandPacket_t *TC);
49 27
50 28 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
51 29 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
52 30
53 31 #endif // TIMEGEN_TC_HANDLER_H_INCLUDED
54 32
55 33
56 34
@@ -1,476 +1,432
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "timegen_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73 rtems_status_code status;
74 74 rtems_status_code status_spw;
75 75
76 76 // initCoarseTime();
77 77
78 78 // UART settings
79 79 send_console_outputs_on_apbuart_port();
80 80 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
81 81 enable_apbuart_transmitter();
82 82 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
83 83
84 84 PRINTF("\n\n\n\n\n")
85 85 PRINTF("*************************\n")
86 86 PRINTF("** Time Generator **\n")
87 87 PRINTF1("** %d.", SW_VERSION_N1)
88 88 PRINTF1("%d.", SW_VERSION_N2)
89 89 PRINTF1("%d.", SW_VERSION_N3)
90 90 PRINTF1("%d **\n", SW_VERSION_N4)
91 91 PRINTF("*************************\n")
92 92 PRINTF("\n\n")
93 93
94 94 // init_local_mode_parameters();
95 95 // init_housekeeping_parameters();
96 96
97 97 // updateLFRCurrentMode();
98 98
99 99 // BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
100 100
101 101 create_names(); // create all names
102 102
103 103 status = create_message_queues(); // create message queues
104 104 if (status != RTEMS_SUCCESSFUL)
105 105 {
106 106 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
107 107 }
108 108
109 109 status = create_all_tasks(); // create all tasks
110 110 if (status != RTEMS_SUCCESSFUL)
111 111 {
112 112 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
113 113 }
114 114
115 115 // **************************
116 116 // <SPACEWIRE INITIALIZATION>
117 117 grspw_timecode_callback = &timegen_timecode_irq_handler;
118 118
119 119 status_spw = spacewire_open_link(); // (1) open the link
120 120 if ( status_spw != RTEMS_SUCCESSFUL )
121 121 {
122 122 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
123 123 }
124 124
125 125 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
126 126 {
127 127 status_spw = spacewire_configure_link( fdSPW );
128 128 if ( status_spw != RTEMS_SUCCESSFUL )
129 129 {
130 130 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
131 131 }
132 132 }
133 133
134 134 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
135 135 {
136 136 status_spw = spacewire_start_link( fdSPW );
137 137 if ( status_spw != RTEMS_SUCCESSFUL )
138 138 {
139 139 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
140 140 }
141 141 }
142 142 // </SPACEWIRE INITIALIZATION>
143 143 // ***************************
144 144
145 145 status = start_all_tasks(); // start all tasks
146 146 if (status != RTEMS_SUCCESSFUL)
147 147 {
148 148 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
149 149 }
150 150
151 151 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
152 152 status = start_recv_send_tasks();
153 153 if ( status != RTEMS_SUCCESSFUL )
154 154 {
155 155 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
156 156 }
157 157
158 // suspend science tasks. they will be restarted later depending on the mode
159 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
160 if (status != RTEMS_SUCCESSFUL)
161 {
162 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
163 }
164
165 158 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
166 159 if ( status_spw != RTEMS_SUCCESSFUL )
167 160 {
168 161 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
169 162 if ( status != RTEMS_SUCCESSFUL ) {
170 163 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
171 164 }
172 165 }
173 166
174 167 BOOT_PRINTF("delete INIT\n")
175 168
176 169 status = rtems_task_delete(RTEMS_SELF);
177 170
178 171 }
179 172
180 void init_local_mode_parameters( void )
181 {
182 /** This function initialize the param_local global variable with default values.
183 *
184 */
185
186 unsigned int i;
187
188 // LOCAL PARAMETERS
189 // set_local_nb_interrupt_f0_MAX();
190
191 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
192 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
193 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
194
195 // init sequence counters
196
197 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
198 {
199 sequenceCounters_TC_EXE[i] = 0x00;
200 }
201 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
202 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
203 }
204
205 173 void create_names( void ) // create all names for tasks and queues
206 174 {
207 175 /** This function creates all RTEMS names used in the software for tasks and queues.
208 176 *
209 177 * @return RTEMS directive status codes:
210 178 * - RTEMS_SUCCESSFUL - successful completion
211 179 *
212 180 */
213 181
214 182 // task names
215 183 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
216 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
217 184 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
218 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
219 185 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
220 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
221 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
222 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
223 186 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
224 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
225 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
226 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
227 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
228 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
229 187 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
230 188 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
231 189
232 190 // TIMEGEN
233 191 rtems_name_updt = rtems_build_name( 'U', 'P', 'D', 'T' );
234
235 // rate monotonic period names
236 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
192 rtems_name_act_ = rtems_build_name( 'A', 'C', 'T', '_' );
237 193
238 194 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
239 195 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
240 196 }
241 197
242 198 int create_all_tasks( void ) // create all tasks which run in the software
243 199 {
244 200 /** This function creates all RTEMS tasks used in the software.
245 201 *
246 202 * @return RTEMS directive status codes:
247 203 * - RTEMS_SUCCESSFUL - task created successfully
248 204 * - RTEMS_INVALID_ADDRESS - id is NULL
249 205 * - RTEMS_INVALID_NAME - invalid task name
250 206 * - RTEMS_INVALID_PRIORITY - invalid task priority
251 207 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
252 208 * - RTEMS_TOO_MANY - too many tasks created
253 209 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
254 210 * - RTEMS_TOO_MANY - too many global objects
255 211 *
256 212 */
257 213
258 214 rtems_status_code status;
259 215
260 216 //**********
261 217 // SPACEWIRE
262 218 // RECV
263 219 status = rtems_task_create(
264 220 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
265 221 RTEMS_DEFAULT_MODES,
266 222 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
267 223 );
268 224 if (status == RTEMS_SUCCESSFUL) // SEND
269 225 {
270 226 status = rtems_task_create(
271 227 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
272 228 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
273 229 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
274 230 );
275 231 }
276 232 if (status == RTEMS_SUCCESSFUL) // WTDG
277 233 {
278 234 status = rtems_task_create(
279 235 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
280 236 RTEMS_DEFAULT_MODES,
281 237 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
282 238 );
283 239 }
284 if (status == RTEMS_SUCCESSFUL) // ACTN
240 if (status == RTEMS_SUCCESSFUL) // ACT_
285 241 {
286 242 status = rtems_task_create(
287 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
243 rtems_id_act_, TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
288 244 RTEMS_DEFAULT_MODES,
289 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
245 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &rtems_id_act_
290 246 );
291 247 }
292 248 if (status == RTEMS_SUCCESSFUL) // SPIQ
293 249 {
294 250 status = rtems_task_create(
295 251 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
296 252 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
297 253 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
298 254 );
299 255 }
300 256
301 257 //*****
302 258 // MISC
303 259 if (status == RTEMS_SUCCESSFUL) // STAT
304 260 {
305 261 status = rtems_task_create(
306 262 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
307 263 RTEMS_DEFAULT_MODES,
308 264 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
309 265 );
310 266 }
311 267 if (status == RTEMS_SUCCESSFUL) // DUMB
312 268 {
313 269 status = rtems_task_create(
314 270 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
315 271 RTEMS_DEFAULT_MODES,
316 272 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
317 273 );
318 274 }
319 275 if (status == RTEMS_SUCCESSFUL) // UPDT
320 276 {
321 277 status = rtems_task_create(
322 278 rtems_name_updt, TASK_PRIORITY_UPDT, RTEMS_MINIMUM_STACK_SIZE,
323 279 RTEMS_DEFAULT_MODES,
324 280 RTEMS_DEFAULT_ATTRIBUTES, &rtems_id_updt
325 281 );
326 282 }
327 283
328 284 return status;
329 285 }
330 286
331 287 int start_recv_send_tasks( void )
332 288 {
333 289 rtems_status_code status;
334 290
335 291 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
336 292 if (status!=RTEMS_SUCCESSFUL) {
337 293 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
338 294 }
339 295
340 296 if (status == RTEMS_SUCCESSFUL) // SEND
341 297 {
342 298 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
343 299 if (status!=RTEMS_SUCCESSFUL) {
344 300 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
345 301 }
346 302 }
347 303
348 304 return status;
349 305 }
350 306
351 307 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
352 308 {
353 309 /** This function starts all RTEMS tasks used in the software.
354 310 *
355 311 * @return RTEMS directive status codes:
356 312 * - RTEMS_SUCCESSFUL - ask started successfully
357 313 * - RTEMS_INVALID_ADDRESS - invalid task entry point
358 314 * - RTEMS_INVALID_ID - invalid task id
359 315 * - RTEMS_INCORRECT_STATE - task not in the dormant state
360 316 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
361 317 *
362 318 */
363 319 // starts all the tasks fot eh flight software
364 320
365 321 rtems_status_code status;
366 322
367 323 //**********
368 324 // SPACEWIRE
369 325 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
370 326 if (status!=RTEMS_SUCCESSFUL) {
371 327 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
372 328 }
373 329
374 330 if (status == RTEMS_SUCCESSFUL) // WTDG
375 331 {
376 332 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
377 333 if (status!=RTEMS_SUCCESSFUL) {
378 334 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
379 335 }
380 336 }
381 337
382 if (status == RTEMS_SUCCESSFUL) // ACTN
338 if (status == RTEMS_SUCCESSFUL) // ACT_
383 339 {
384 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
340 status = rtems_task_start( rtems_id_act_, act__task, 1 );
385 341 if (status!=RTEMS_SUCCESSFUL) {
386 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
342 BOOT_PRINTF("in INIT *** Error starting TASK_ACT_\n")
387 343 }
388 344 }
389 345
390 346 //*****
391 347 // MISC
392 348 if (status == RTEMS_SUCCESSFUL) // DUMB
393 349 {
394 350 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
395 351 if (status!=RTEMS_SUCCESSFUL) {
396 352 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
397 353 }
398 354 }
399 355
400 356 if (status == RTEMS_SUCCESSFUL) // STAT
401 357 {
402 358 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
403 359 if (status!=RTEMS_SUCCESSFUL) {
404 360 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
405 361 }
406 362 }
407 363
408 364 if (status == RTEMS_SUCCESSFUL) // UPDT
409 365 {
410 366 status = rtems_task_start( rtems_id_updt, updt_task, 1 );
411 367 if (status!=RTEMS_SUCCESSFUL) {
412 368 BOOT_PRINTF("in INIT *** Error starting TASK_UPDT\n")
413 369 }
414 370 }
415 371
416 372 return status;
417 373 }
418 374
419 375 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
420 376 {
421 377 rtems_status_code status_recv;
422 378 rtems_status_code status_send;
423 379 rtems_status_code ret;
424 380 rtems_id queue_id;
425 381
426 382 // create the queue for handling valid TCs
427 383 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
428 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
384 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
429 385 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
430 386 if ( status_recv != RTEMS_SUCCESSFUL ) {
431 387 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
432 388 }
433 389
434 390 // create the queue for handling TM packet sending
435 391 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
436 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
392 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
437 393 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
438 394 if ( status_send != RTEMS_SUCCESSFUL ) {
439 395 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
440 396 }
441 397
442 398 if ( status_recv != RTEMS_SUCCESSFUL )
443 399 {
444 400 ret = status_recv;
445 401 }
446 402 else
447 403 {
448 404 ret = status_send;
449 405 }
450 406
451 407 return ret;
452 408 }
453 409
454 410 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
455 411 {
456 412 rtems_status_code status;
457 413 rtems_name queue_name;
458 414
459 415 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
460 416
461 417 status = rtems_message_queue_ident( queue_name, 0, queue_id );
462 418
463 419 return status;
464 420 }
465 421
466 422 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
467 423 {
468 424 rtems_status_code status;
469 425 rtems_name queue_name;
470 426
471 427 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
472 428
473 429 status = rtems_message_queue_ident( queue_name, 0, queue_id );
474 430
475 431 return status;
476 432 }
@@ -1,601 +1,123
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "timegen_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //***********
20 20 // RTEMS TASK
21 21 rtems_task spiq_task(rtems_task_argument unused)
22 22 {
23 23 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
24 24 *
25 25 * @param unused is the starting argument of the RTEMS task
26 26 *
27 27 */
28 28
29 29 rtems_event_set event_out;
30 30 rtems_status_code status;
31 31 int linkStatus;
32 32
33 33 BOOT_PRINTF("in SPIQ *** \n")
34 34
35 35 while(true){
36 36 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
37 37 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
38 38
39 39 // [0] SUSPEND RECV AND SEND TASKS
40 40 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
41 41 if ( status != RTEMS_SUCCESSFUL ) {
42 42 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
43 43 }
44 44 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
45 45 if ( status != RTEMS_SUCCESSFUL ) {
46 46 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
47 47 }
48 48
49 49 // [1] CHECK THE LINK
50 50 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
51 51 if ( linkStatus != 5) {
52 52 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
53 53 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
54 54 }
55 55
56 56 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
57 57 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
58 58 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
59 59 {
60 60 spacewire_compute_stats_offsets();
61 61 status = spacewire_reset_link( );
62 62 }
63 63 else // [2.b] in run state, start the link
64 64 {
65 65 status = spacewire_stop_start_link( fdSPW ); // start the link
66 66 if ( status != RTEMS_SUCCESSFUL)
67 67 {
68 68 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
69 69 }
70 70 }
71 71
72 72 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
73 73 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
74 74 {
75 75 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
76 76 if ( status != RTEMS_SUCCESSFUL ) {
77 77 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
78 78 }
79 79 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
80 80 if ( status != RTEMS_SUCCESSFUL ) {
81 81 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
82 82 }
83 83 }
84 84 else // [3.b] the link is not in run state, go in STANDBY mode
85 85 {
86 status = stop_current_mode();
87 if ( status != RTEMS_SUCCESSFUL ) {
88 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
89 }
90 status = enter_mode( LFR_MODE_STANDBY );
91 if ( status != RTEMS_SUCCESSFUL ) {
92 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
93 }
94 86 // wake the WTDG task up to wait for the link recovery
95 87 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
96 88 status = rtems_task_suspend( RTEMS_SELF );
97 89 }
98 90 }
99 91 }
100 92
101 rtems_task recv_task( rtems_task_argument unused )
102 {
103 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
104 *
105 * @param unused is the starting argument of the RTEMS task
106 *
107 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
108 * 1. It reads the incoming data.
109 * 2. Launches the acceptance procedure.
110 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
111 *
112 */
113
114 int len;
115 ccsdsTelecommandPacket_t currentTC;
116 unsigned char computed_CRC[ 2 ];
117 unsigned char currentTC_LEN_RCV[ 2 ];
118 unsigned char destinationID;
119 unsigned int currentTC_LEN_RCV_AsUnsignedInt;
120 unsigned int parserCode;
121 unsigned char time[6];
122 rtems_status_code status;
123 rtems_id queue_recv_id;
124 rtems_id queue_send_id;
125
126 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
127
128 status = get_message_queue_id_recv( &queue_recv_id );
129 if (status != RTEMS_SUCCESSFUL)
130 {
131 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
132 }
133
134 status = get_message_queue_id_send( &queue_send_id );
135 if (status != RTEMS_SUCCESSFUL)
136 {
137 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
138 }
139
140 BOOT_PRINTF("in RECV *** \n")
141
142 while(1)
143 {
144 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
145 if (len == -1){ // error during the read call
146 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
147 }
148 else {
149 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
150 PRINTF("in RECV *** packet lenght too short\n")
151 }
152 else {
153 currentTC_LEN_RCV_AsUnsignedInt = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
154 currentTC_LEN_RCV[ 0 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt >> 8);
155 currentTC_LEN_RCV[ 1 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt );
156 // CHECK THE TC
157 parserCode = tc_parser( &currentTC, currentTC_LEN_RCV_AsUnsignedInt, computed_CRC ) ;
158 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
159 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
160 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
161 || (parserCode == WRONG_SRC_ID) )
162 { // send TM_LFR_TC_EXE_CORRUPTED
163 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
164 &&
165 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
166 )
167 {
168 if ( parserCode == WRONG_SRC_ID )
169 {
170 destinationID = SID_TC_GROUND;
171 }
172 else
173 {
174 destinationID = currentTC.sourceID;
175 }
176 getTime( time );
177 close_action( &currentTC, LFR_DEFAULT, queue_send_id );
178 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
179 computed_CRC, currentTC_LEN_RCV,
180 destinationID );
181 }
182 }
183 else
184 { // send valid TC to the action launcher
185 status = rtems_message_queue_send( queue_recv_id, &currentTC,
186 currentTC_LEN_RCV_AsUnsignedInt + CCSDS_TC_TM_PACKET_OFFSET + 3);
187 }
188 }
189 }
190 }
191 }
192
193 rtems_task send_task( rtems_task_argument argument)
194 {
195 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
196 *
197 * @param unused is the starting argument of the RTEMS task
198 *
199 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
200 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
201 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
202 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
203 * data it contains.
204 *
205 */
206
207 rtems_status_code status; // RTEMS status code
208 char incomingData[ACTION_MSG_PKTS_MAX_SIZE]; // incoming data buffer
209 size_t size; // size of the incoming TC packet
210 u_int32_t count;
211 rtems_id queue_id;
212
213 status = get_message_queue_id_send( &queue_id );
214 if (status != RTEMS_SUCCESSFUL)
215 {
216 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
217 }
218
219 BOOT_PRINTF("in SEND *** \n")
220
221 while(1)
222 {
223 status = rtems_message_queue_receive( queue_id, incomingData, &size,
224 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
225
226 if (status!=RTEMS_SUCCESSFUL)
227 {
228 PRINTF1("in SEND *** (1) ERR = %d\n", status)
229 }
230 else
231 {
232 status = write( fdSPW, incomingData, size );
233 if (status == -1){
234 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
235 }
236 }
237
238 status = rtems_message_queue_get_number_pending( queue_id, &count );
239 if (status != RTEMS_SUCCESSFUL)
240 {
241 PRINTF1("in SEND *** (3) ERR = %d\n", status)
242 }
243 else
244 {
245 if (count > maxCount)
246 {
247 maxCount = count;
248 }
249 }
250 }
251 }
252
253 rtems_task wtdg_task( rtems_task_argument argument )
254 {
255 rtems_event_set event_out;
256 rtems_status_code status;
257 int linkStatus;
258
259 BOOT_PRINTF("in WTDG ***\n")
260
261 while(1)
262 {
263 // wait for an RTEMS_EVENT
264 rtems_event_receive( RTEMS_EVENT_0,
265 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
266 PRINTF("in WTDG *** wait for the link\n")
267 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
268 while( linkStatus != 5) // wait for the link
269 {
270 rtems_task_wake_after( 10 );
271 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
272 }
273
274 status = spacewire_stop_start_link( fdSPW );
275
276 if (status != RTEMS_SUCCESSFUL)
277 {
278 PRINTF1("in WTDG *** ERR link not started %d\n", status)
279 }
280 else
281 {
282 PRINTF("in WTDG *** OK link started\n")
283 }
284
285 // restart the SPIQ task
286 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
287 if ( status != RTEMS_SUCCESSFUL ) {
288 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
289 }
290
291 // restart RECV and SEND
292 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
293 if ( status != RTEMS_SUCCESSFUL ) {
294 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
295 }
296 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
297 if ( status != RTEMS_SUCCESSFUL ) {
298 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
299 }
300 }
301 }
302
303 //****************
304 // OTHER FUNCTIONS
305 int spacewire_open_link( void )
306 {
307 /** This function opens the SpaceWire link.
308 *
309 * @return a valid file descriptor in case of success, -1 in case of a failure
310 *
311 */
312 rtems_status_code status;
313
314 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
315 if ( fdSPW < 0 ) {
316 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
317 }
318 else
319 {
320 status = RTEMS_SUCCESSFUL;
321 }
322
323 return status;
324 }
325
326 int spacewire_start_link( int fd )
327 {
328 rtems_status_code status;
329
330 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
331 // -1 default hardcoded driver timeout
332
333 return status;
334 }
335
336 int spacewire_stop_start_link( int fd )
337 {
338 rtems_status_code status;
339
340 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
341 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
342 // -1 default hardcoded driver timeout
343
344 return status;
345 }
346
347 int spacewire_configure_link( int fd )
348 {
349 /** This function configures the SpaceWire link.
350 *
351 * @return GR-RTEMS-DRIVER directive status codes:
352 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
353 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
354 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
355 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
356 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
357 * - 5 EIO - Error when writing to grswp hardware registers.
358 * - 2 ENOENT - No such file or directory
359 */
360
361 rtems_status_code status;
362
363 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
364 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
365
366 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
367 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
368 //
369 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
370 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
371 //
372 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
373 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
374 //
375 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
376 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
377 //
378 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
379 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
380 //
381 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
382 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
383 //
384 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
385 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL\n")
386
387 return status;
388 }
389
390 int spacewire_reset_link( void )
391 {
392 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
393 *
394 * @return RTEMS directive status code:
395 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
396 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
397 *
398 */
399
400 rtems_status_code status_spw;
401 int i;
402
403 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
404 {
405 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
406
407 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
408
409 status_spw = spacewire_stop_start_link( fdSPW );
410 if ( status_spw != RTEMS_SUCCESSFUL )
411 {
412 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
413 }
414
415 if ( status_spw == RTEMS_SUCCESSFUL)
416 {
417 break;
418 }
419 }
420
421 return status_spw;
422 }
423
424 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
425 {
426 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
427 *
428 * @param val is the value, 0 or 1, used to set the value of the NP bit.
429 * @param regAddr is the address of the GRSPW control register.
430 *
431 * NP is the bit 20 of the GRSPW control register.
432 *
433 */
434
435 unsigned int *spwptr = (unsigned int*) regAddr;
436
437 if (val == 1) {
438 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
439 }
440 if (val== 0) {
441 *spwptr = *spwptr & 0xffdfffff;
442 }
443 }
444
445 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
446 {
447 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
448 *
449 * @param val is the value, 0 or 1, used to set the value of the RE bit.
450 * @param regAddr is the address of the GRSPW control register.
451 *
452 * RE is the bit 16 of the GRSPW control register.
453 *
454 */
455
456 unsigned int *spwptr = (unsigned int*) regAddr;
457
458 if (val == 1)
459 {
460 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
461 }
462 if (val== 0)
463 {
464 *spwptr = *spwptr & 0xfffdffff;
465 }
466 }
467
468 void spacewire_compute_stats_offsets( void )
469 {
470 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
471 *
472 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
473 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
474 * during the open systel call).
475 *
476 */
477
478 spw_stats spacewire_stats_grspw;
479 rtems_status_code status;
480
481 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
482
483 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
484 + spacewire_stats.packets_received;
485 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
486 + spacewire_stats.packets_sent;
487 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
488 + spacewire_stats.parity_err;
489 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
490 + spacewire_stats.disconnect_err;
491 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
492 + spacewire_stats.escape_err;
493 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
494 + spacewire_stats.credit_err;
495 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
496 + spacewire_stats.write_sync_err;
497 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
498 + spacewire_stats.rx_rmap_header_crc_err;
499 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
500 + spacewire_stats.rx_rmap_data_crc_err;
501 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
502 + spacewire_stats.early_ep;
503 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
504 + spacewire_stats.invalid_address;
505 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
506 + spacewire_stats.rx_eep_err;
507 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
508 + spacewire_stats.rx_truncated;
509 }
510
511 void spacewire_update_statistics( void )
512 {
513 rtems_status_code status;
514 spw_stats spacewire_stats_grspw;
515
516 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
517
518 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
519 + spacewire_stats_grspw.packets_received;
520 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
521 + spacewire_stats_grspw.packets_sent;
522 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
523 + spacewire_stats_grspw.parity_err;
524 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
525 + spacewire_stats_grspw.disconnect_err;
526 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
527 + spacewire_stats_grspw.escape_err;
528 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
529 + spacewire_stats_grspw.credit_err;
530 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
531 + spacewire_stats_grspw.write_sync_err;
532 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
533 + spacewire_stats_grspw.rx_rmap_header_crc_err;
534 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
535 + spacewire_stats_grspw.rx_rmap_data_crc_err;
536 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
537 + spacewire_stats_grspw.early_ep;
538 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
539 + spacewire_stats_grspw.invalid_address;
540 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
541 + spacewire_stats_grspw.rx_eep_err;
542 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
543 + spacewire_stats_grspw.rx_truncated;
544 //spacewire_stats.tx_link_err;
545
546 //****************************
547 // DPU_SPACEWIRE_IF_STATISTICS
548 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
549 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
550 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
551 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
552 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
553 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
554
555 //******************************************
556 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
557 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
558 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
559 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
560 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
561 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
562
563 //*********************************************
564 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
565 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
566 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
567 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
568 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
569 }
570
571 93 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
572 94 {
573 95 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_1 );
574 96 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
575 97
576 98 grgpio_regs->io_port_direction_register =
577 99 grgpio_regs->io_port_direction_register | 0x08; // [0001 1000], 0 = output disabled, 1 = output enabled
578 100
579 101 if ( (grgpio_regs->io_port_output_register & 0x08) == 0x08 )
580 102 {
581 103 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xf7;
582 104 }
583 105 else
584 106 {
585 107 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x08;
586 108 }
587 109
588 110 }
589 111
590 112 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
591 113 {
592 114 int linkStatus;
593 115 rtems_status_code status;
594 116
595 117 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
596 118
597 119 if ( linkStatus == 5) {
598 120 PRINTF("in spacewire_reset_link *** link is running\n")
599 121 status = RTEMS_SUCCESSFUL;
600 122 }
601 123 }
This diff has been collapsed as it changes many lines, (710 lines changed) Show them Hide them
@@ -1,793 +1,107
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "timegen_tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 rtems_task actn_task( rtems_task_argument unused )
18 rtems_task act__task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 case TC_SUBTYPE_RESET:
70 // result = action_reset( &TC, queue_snd_id, time );
71 close_action( &TC, result, queue_snd_id );
72 break;
73 //
74 case TC_SUBTYPE_LOAD_COMM:
75 // result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
77 break;
78 //
79 case TC_SUBTYPE_LOAD_NORM:
80 // result = action_load_normal_par( &TC, queue_snd_id, time );
81 close_action( &TC, result, queue_snd_id );
82 break;
83 //
84 case TC_SUBTYPE_LOAD_BURST:
85 // result = action_load_burst_par( &TC, queue_snd_id, time );
86 close_action( &TC, result, queue_snd_id );
87 break;
88 //
89 case TC_SUBTYPE_LOAD_SBM1:
90 // result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 close_action( &TC, result, queue_snd_id );
92 break;
93 //
94 case TC_SUBTYPE_LOAD_SBM2:
95 // result = action_load_sbm2_par( &TC, queue_snd_id, time );
69 case TC_SUBTYPE_ENTER:
70 result = timegen_action_enter_mode( &TC, queue_snd_id, time );
96 71 close_action( &TC, result, queue_snd_id );
97 72 break;
98 //
99 case TC_SUBTYPE_DUMP:
100 // result = action_dump_par( queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
103 //
104 case TC_SUBTYPE_ENTER:
105 result = action_enter_mode( &TC, queue_snd_id, time );
106 close_action( &TC, result, queue_snd_id );
107 break;
108 //
109 case TC_SUBTYPE_UPDT_INFO:
110 // result = action_update_info( &TC, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
112 break;
113 //
114 case TC_SUBTYPE_EN_CAL:
115 // result = action_enable_calibration( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
117 break;
118 //
119 case TC_SUBTYPE_DIS_CAL:
120 // result = action_disable_calibration( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
122 break;
123 //
124 73 case TC_SUBTYPE_UPDT_TIME:
125 result = action_update_time( &TC );
74 result = timegen_action_update_time( &TC );
126 75 close_action( &TC, result, queue_snd_id );
127 76 break;
128 77 //
129 78 default:
130 79 break;
131 80 }
132 81 }
133 82 }
134 83 }
135 84
136 85 //***********
137 86 // TC ACTIONS
138 87
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
88 int timegen_action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 89 {
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 *
143 * @param TC points to the TeleCommand packet that is being processed
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 *
146 */
147
148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 return LFR_DEFAULT;
150 }
151
152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 {
154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 *
156 * @param TC points to the TeleCommand packet that is being processed
157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 *
159 */
160
161 rtems_status_code status;
162 unsigned char requestedMode;
163
164 requestedMode = TC->dataAndCRC[1];
90 int ret;
165 91
166 if ( (requestedMode != LFR_MODE_STANDBY)
167 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
168 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
169 {
170 status = RTEMS_UNSATISFIED;
171 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode );
172 }
173 else
174 {
175 printf("in action_enter_mode *** enter mode %d\n", requestedMode);
176
177 status = transition_validation(requestedMode);
92 ret = LFR_SUCCESSFUL;
178 93
179 if ( status == LFR_SUCCESSFUL ) {
180 if ( lfrCurrentMode != LFR_MODE_STANDBY)
181 {
182 status = stop_current_mode();
183 }
184 if (status != RTEMS_SUCCESSFUL)
185 {
186 PRINTF("ERR *** in action_enter *** stop_current_mode\n")
187 }
188 status = enter_mode( requestedMode );
189 }
190 else
191 {
192 PRINTF("ERR *** in action_enter *** transition rejected\n")
193 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
194 }
195 }
196
197 return status;
94 return ret;
198 95 }
199 96
200 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
97 int timegen_action_update_time(ccsdsTelecommandPacket_t *TC)
201 98 {
202 // /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
203 // *
204 // * @param TC points to the TeleCommand packet that is being processed
205 // * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
206 // *
207 // * @return LFR directive status code:
208 // * - LFR_DEFAULT
209 // * - LFR_SUCCESSFUL
210 // *
211 // */
212
213 // unsigned int val;
214 int result;
215
216 result = LFR_DEFAULT;
217 // unsigned int status;
218 // unsigned char mode;
219
220 // // check LFR MODE
221 // mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET5 ] & 0x1e) >> 1;
222 // status = check_update_info_hk_lfr_mode( mode );
223 // if (status != LFR_DEFAULT) // check TDS mode
224 // {
225 // mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0xf0) >> 4;
226 // status = check_update_info_hk_tds_mode( mode );
227 // }
228 // if (status != LFR_DEFAULT) // check THR mode
229 // {
230 // mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0x0f);
231 // status = check_update_info_hk_thr_mode( mode );
232 // }
233 // if (status != LFR_DEFAULT) // if the parameter check is successful
234 // {
235 // val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
236 // + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
237 // val++;
238 // housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
239 // housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
240 // }
241
242 // result = status;
243
244 return result;
245 }
246
247 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
248 {
249 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
250 *
251 * @param TC points to the TeleCommand packet that is being processed
252 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
253 *
254 */
99 int ret;
255 100
256 int result;
257 unsigned char lfrMode;
258
259 result = LFR_DEFAULT;
260 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
261
262 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
263 result = LFR_DEFAULT;
264
265 return result;
266 }
267
268 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
269 {
270 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
271 *
272 * @param TC points to the TeleCommand packet that is being processed
273 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
274 *
275 */
276
277 int result;
278 unsigned char lfrMode;
279
280 result = LFR_DEFAULT;
281 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
101 ret = LFR_SUCCESSFUL;
282 102
283 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
284 result = LFR_DEFAULT;
285
286 return result;
287 }
288
289 int action_update_time(ccsdsTelecommandPacket_t *TC)
290 {
291 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
292 *
293 * @param TC points to the TeleCommand packet that is being processed
294 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
295 *
296 * @return LFR_SUCCESSFUL
297 *
298 */
299
300 unsigned int val;
301
302 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
303 + (TC->dataAndCRC[1] << 16)
304 + (TC->dataAndCRC[2] << 8)
305 + TC->dataAndCRC[3];
306 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
307 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
308 val++;
309 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
310 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
311 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
312
313 return LFR_SUCCESSFUL;
103 return ret;
314 104 }
315 105
316 106 //*******************
317 107 // ENTERING THE MODES
318
319 int transition_validation(unsigned char requestedMode)
320 {
321 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
322 *
323 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
324 *
325 * @return LFR directive status codes:
326 * - LFR_SUCCESSFUL - the transition is authorized
327 * - LFR_DEFAULT - the transition is not authorized
328 *
329 */
330
331 int status;
332
333 switch (requestedMode)
334 {
335 case LFR_MODE_STANDBY:
336 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
337 status = LFR_DEFAULT;
338 }
339 else
340 {
341 status = LFR_SUCCESSFUL;
342 }
343 break;
344 case LFR_MODE_NORMAL:
345 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
346 status = LFR_DEFAULT;
347 }
348 else {
349 status = LFR_SUCCESSFUL;
350 }
351 break;
352 case LFR_MODE_BURST:
353 if ( lfrCurrentMode == LFR_MODE_BURST ) {
354 status = LFR_DEFAULT;
355 }
356 else {
357 status = LFR_SUCCESSFUL;
358 }
359 break;
360 case LFR_MODE_SBM1:
361 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
362 status = LFR_DEFAULT;
363 }
364 else {
365 status = LFR_SUCCESSFUL;
366 }
367 break;
368 case LFR_MODE_SBM2:
369 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
370 status = LFR_DEFAULT;
371 }
372 else {
373 status = LFR_SUCCESSFUL;
374 }
375 break;
376 default:
377 status = LFR_DEFAULT;
378 break;
379 }
380
381 return status;
382 }
383
384 int stop_current_mode(void)
385 {
386 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
387 *
388 * @return RTEMS directive status codes:
389 * - RTEMS_SUCCESSFUL - task restarted successfully
390 * - RTEMS_INVALID_ID - task id invalid
391 * - RTEMS_ALREADY_SUSPENDED - task already suspended
392 *
393 */
394
395 rtems_status_code status;
396
397 status = RTEMS_SUCCESSFUL;
398
399 // (1) mask interruptions
400 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
401 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
402
403 // (2) clear interruptions
404 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
405 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
406
407 // (3) reset registers
408 // waveform picker
409 // reset_wfp_burst_enable(); // reset burst and enable bits
410 // reset_wfp_status(); // reset all the status bits
411 // spectral matrices
412 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
413 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
414 // reset_extractSWF(); // reset the extractSWF flag to false
415
416 // <Spectral Matrices simulator>
417 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
418 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
419 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
420 // </Spectral Matrices simulator>
421
422 // suspend several tasks
423 if (lfrCurrentMode != LFR_MODE_STANDBY) {
424 status = suspend_science_tasks();
425 }
426
427 if (status != RTEMS_SUCCESSFUL)
428 {
429 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
430 }
431
432 return status;
433 }
434
435 int enter_mode(unsigned char mode )
436 {
437 /** This function is launched after a mode transition validation.
438 *
439 * @param mode is the mode in which LFR will be put.
440 *
441 * @return RTEMS directive status codes:
442 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
443 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
444 *
445 */
446
447 rtems_status_code status;
448
449 status = RTEMS_UNSATISFIED;
450
451 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
452 updateLFRCurrentMode();
453
454 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
455 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
456 {
457 #ifdef PRINT_TASK_STATISTICS
458 rtems_cpu_usage_reset();
459 maxCount = 0;
460 #endif
461 status = restart_science_tasks();
462 // launch_waveform_picker( mode );
463 // launch_spectral_matrix( mode );
464 }
465 else if ( mode == LFR_MODE_STANDBY )
466 {
467 #ifdef PRINT_TASK_STATISTICS
468 rtems_cpu_usage_report();
469 #endif
470
471 #ifdef PRINT_STACK_REPORT
472 rtems_stack_checker_report_usage();
473 #endif
474 status = stop_current_mode();
475 PRINTF1("maxCount = %d\n", maxCount)
476 }
477 else
478 {
479 status = RTEMS_UNSATISFIED;
480 }
481
482 if (status != RTEMS_SUCCESSFUL)
483 {
484 PRINTF1("in enter_mode *** ERR = %d\n", status)
485 status = RTEMS_UNSATISFIED;
486 }
487
488 return status;
489 }
490
491 int restart_science_tasks()
492 {
493 /** This function is used to restart all science tasks.
494 *
495 * @return RTEMS directive status codes:
496 * - RTEMS_SUCCESSFUL - task restarted successfully
497 * - RTEMS_INVALID_ID - task id invalid
498 * - RTEMS_INCORRECT_STATE - task never started
499 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
500 *
501 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
502 *
503 */
504
505 rtems_status_code status[6];
506 rtems_status_code ret;
507
508 ret = RTEMS_SUCCESSFUL;
509
510 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
511 if (status[0] != RTEMS_SUCCESSFUL)
512 {
513 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
514 }
515
516 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
517 if (status[2] != RTEMS_SUCCESSFUL)
518 {
519 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
520 }
521
522 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
523 if (status[3] != RTEMS_SUCCESSFUL)
524 {
525 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
526 }
527
528 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
529 if (status[4] != RTEMS_SUCCESSFUL)
530 {
531 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
532 }
533
534 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
535 if (status[5] != RTEMS_SUCCESSFUL)
536 {
537 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
538 }
539
540 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
541 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
542 {
543 ret = RTEMS_UNSATISFIED;
544 }
545
546 return ret;
547 }
548
549 int suspend_science_tasks()
550 {
551 /** This function suspends the science tasks.
552 *
553 * @return RTEMS directive status codes:
554 * - RTEMS_SUCCESSFUL - task restarted successfully
555 * - RTEMS_INVALID_ID - task id invalid
556 * - RTEMS_ALREADY_SUSPENDED - task already suspended
557 *
558 */
559
560 rtems_status_code status;
561
562 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
563 if (status != RTEMS_SUCCESSFUL)
564 {
565 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
566 }
567
568 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
569 {
570 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
571 if (status != RTEMS_SUCCESSFUL)
572 {
573 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
574 }
575 }
576
577 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
578 {
579 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
580 if (status != RTEMS_SUCCESSFUL)
581 {
582 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
583 }
584 }
585
586 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
587 {
588 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
589 if (status != RTEMS_SUCCESSFUL)
590 {
591 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
592 }
593 }
594
595 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
596 {
597 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
598 if (status != RTEMS_SUCCESSFUL)
599 {
600 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
601 }
602 }
603
604 return status;
605 }
606
607 void launch_waveform_picker( unsigned char mode )
608 {
609 // int startDate;
610
611 // reset_current_ring_nodes();
612 // reset_waveform_picker_regs();
613 // set_wfp_burst_enable_register( mode );
614
615 // LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
616 // LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
617
618 // startDate = time_management_regs->coarse_time + 2;
619 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
620 // waveform_picker_regs->start_date = startDate;
621 }
622
623 void launch_spectral_matrix( unsigned char mode )
624 {
625 // reset_nb_sm_f0();
626 // reset_current_sm_ring_nodes();
627 // reset_spectral_matrix_regs();
628
629 //#ifdef VHDL_DEV
630 // set_irq_on_new_ready_matrix( 1 );
631 // LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
632 // LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
633 // set_run_matrix_spectral( 1 );
634 //#else
635 // // Spectral Matrices simulator
636 // timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
637 // LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
638 // LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
639 //#endif
640 }
641
642 void set_irq_on_new_ready_matrix( unsigned char value )
643 {
644 if (value == 1)
645 {
646 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
647 }
648 else
649 {
650 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
651 }
652 }
653
654 void set_run_matrix_spectral( unsigned char value )
655 {
656 if (value == 1)
657 {
658 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // 0100 set run_matrix spectral to 1
659 }
660 else
661 {
662 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // 1011 set run_matrix spectral to 0
663 }
664 }
665
666 void launch_spectral_matrix_simu( unsigned char mode )
667 {
668 // reset_nb_sm_f0();
669 // reset_current_sm_ring_nodes();
670 // reset_spectral_matrix_regs();
671
672 // // Spectral Matrices simulator
673 // timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
674 // LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
675 // LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
676 // set_local_nb_interrupt_f0_MAX();
677 }
678
679 //****************
680 // CLOSING ACTIONS
681 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC)
682 {
683 /** This function is used to update the HK packets statistics after a successful TC execution.
684 *
685 * @param TC points to the TC being processed
686 * @param time is the time used to date the TC execution
687 *
688 */
689
690 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
691 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
692 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
693 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
694 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
695 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
696 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
697 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
698 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
699 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
700 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
701 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
702 }
703
704 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC )
705 {
706 /** This function is used to update the HK packets statistics after a TC rejection.
707 *
708 * @param TC points to the TC being processed
709 * @param time is the time used to date the TC rejection
710 *
711 */
712
713 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
714 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
715 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
716 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
717 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
718 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
719 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
720 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
721 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
722 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
723 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
724 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
725 }
726
727 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
728 {
729 /** This function is the last step of the TC execution workflow.
730 *
731 * @param TC points to the TC being processed
732 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
733 * @param queue_id is the id of the RTEMS message queue used to send TM packets
734 * @param time is the time used to date the TC execution
735 *
736 */
737
738 unsigned int val = 0;
739
740 if (result == LFR_SUCCESSFUL)
741 {
742 if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
743 &&
744 !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
745 )
746 {
747 send_tm_lfr_tc_exe_success( TC, queue_id );
748 }
749 update_last_TC_exe( TC );
750 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
751 val++;
752 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
753 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
754 }
755 else
756 {
757 update_last_TC_rej( TC );
758 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
759 val++;
760 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
761 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
762 }
763 }
764
765 //***************************
766 // Interrupt Service Routines
767 rtems_isr commutation_isr1( rtems_vector_number vector )
768 {
769 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
770 printf("In commutation_isr1 *** Error sending event to DUMB\n");
771 }
772 }
773
774 rtems_isr commutation_isr2( rtems_vector_number vector )
775 {
776 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
777 printf("In commutation_isr2 *** Error sending event to DUMB\n");
778 }
779 }
780
781 //****************
782 // OTHER FUNCTIONS
783 void updateLFRCurrentMode()
784 {
785 /** This function updates the value of the global variable lfrCurrentMode.
786 *
787 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
788 *
789 */
790 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
791 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
792 }
793
@@ -1,398 +1,405
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-03-24T15:57:06. -->
3 <!-- Written by QtCreator 3.2.0, 2014-09-24T11:08:34. -->
4 4 <qtcreator>
5 5 <data>
6 <variable>EnvironmentId</variable>
7 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
8 </data>
9 <data>
6 10 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 11 <value type="int">0</value>
8 12 </data>
9 13 <data>
10 14 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 15 <valuemap type="QVariantMap">
12 16 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 17 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 18 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 19 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 20 <value type="QString" key="language">Cpp</value>
17 21 <valuemap type="QVariantMap" key="value">
18 22 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 23 </valuemap>
20 24 </valuemap>
21 25 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 26 <value type="QString" key="language">QmlJS</value>
23 27 <valuemap type="QVariantMap" key="value">
24 28 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 29 </valuemap>
26 30 </valuemap>
27 31 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 32 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 33 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 34 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 35 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
36 <value type="int" key="EditorConfiguration.MarginColumn">80</value>
37 <value type="bool" key="EditorConfiguration.MouseHiding">true</value>
32 38 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 39 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 40 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
41 <value type="bool" key="EditorConfiguration.ShowMargin">false</value>
35 42 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 43 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 44 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 45 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 46 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 47 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 48 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 49 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 50 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 51 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 52 </valuemap>
46 53 </data>
47 54 <data>
48 55 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 56 <valuemap type="QVariantMap"/>
50 57 </data>
51 58 <data>
52 59 <variable>ProjectExplorer.Project.Target.0</variable>
53 60 <valuemap type="QVariantMap">
54 61 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 62 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 63 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 64 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 65 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 66 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 67 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 68 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory">/opt/DEV_PLE/TimeGenerator-qt</value>
62 69 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 70 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 71 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 72 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 73 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 74 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 75 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 76 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
70 77 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 78 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 79 </valuemap>
73 80 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 81 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 82 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 83 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 84 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 85 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 86 <value type="QString">-w</value>
80 87 <value type="QString">-r</value>
81 88 </valuelist>
82 89 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 90 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 91 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 92 </valuemap>
86 93 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 97 </valuemap>
91 98 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 99 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 100 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 101 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 102 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 103 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 104 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 105 <value type="QString">-w</value>
99 106 <value type="QString">-r</value>
100 107 </valuelist>
101 108 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 109 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 110 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 111 </valuemap>
105 112 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 116 </valuemap>
110 117 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 118 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 119 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 120 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 121 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 122 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 123 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 124 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 125 </valuemap>
119 126 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 127 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 128 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 129 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 131 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 132 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 133 </valuemap>
127 134 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 135 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 136 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 137 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 138 </valuemap>
132 139 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 140 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 141 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 142 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 143 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 144 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 145 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 146 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 147 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 148 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 149 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 150 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 151 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 152 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 153 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 154 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 155 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 156 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 157 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 158 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 159 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 160 <value type="int">0</value>
154 161 <value type="int">1</value>
155 162 <value type="int">2</value>
156 163 <value type="int">3</value>
157 164 <value type="int">4</value>
158 165 <value type="int">5</value>
159 166 <value type="int">6</value>
160 167 <value type="int">7</value>
161 168 <value type="int">8</value>
162 169 <value type="int">9</value>
163 170 <value type="int">10</value>
164 171 <value type="int">11</value>
165 172 <value type="int">12</value>
166 173 <value type="int">13</value>
167 174 <value type="int">14</value>
168 175 </valuelist>
169 176 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 177 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 178 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">timegen</value>
172 179 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 180 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/TimeGenerator-qt/timegen.pro</value>
174 181 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 182 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">timegen.pro</value>
176 183 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 184 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 185 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 186 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 187 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 188 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 189 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 190 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 191 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 192 </valuemap>
186 193 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 194 </valuemap>
188 195 </data>
189 196 <data>
190 197 <variable>ProjectExplorer.Project.Target.1</variable>
191 198 <valuemap type="QVariantMap">
192 199 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
193 200 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
194 201 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
195 202 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 203 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 204 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 205 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 206 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory">/opt/DEV_PLE/build-timegen-Desktop-Debug</value>
200 207 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 208 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 209 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 210 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 211 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 212 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 213 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 214 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
208 215 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 216 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 217 </valuemap>
211 218 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 219 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 220 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 221 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 222 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 223 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 224 <value type="QString">-w</value>
218 225 <value type="QString">-r</value>
219 226 </valuelist>
220 227 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 228 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 229 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 230 </valuemap>
224 231 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 235 </valuemap>
229 236 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 237 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 238 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 239 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 240 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 241 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 242 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 243 <value type="QString">-w</value>
237 244 <value type="QString">-r</value>
238 245 </valuelist>
239 246 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 247 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 248 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 249 </valuemap>
243 250 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 254 </valuemap>
248 255 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 256 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 257 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 258 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Debug</value>
252 259 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 260 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 261 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">2</value>
255 262 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 263 </valuemap>
257 264 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.1">
258 265 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory">/opt/DEV_PLE/build-timegen-Desktop-Release</value>
259 266 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 267 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
261 268 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
262 269 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
263 270 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
264 271 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
265 272 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
266 273 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
267 274 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
268 275 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
269 276 </valuemap>
270 277 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
271 278 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
272 279 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
273 280 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
274 281 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
275 282 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
276 283 <value type="QString">-w</value>
277 284 <value type="QString">-r</value>
278 285 </valuelist>
279 286 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
280 287 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
281 288 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
282 289 </valuemap>
283 290 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
284 291 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
285 292 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
286 293 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
287 294 </valuemap>
288 295 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
289 296 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
290 297 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
291 298 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
292 299 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
293 300 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
294 301 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
295 302 <value type="QString">-w</value>
296 303 <value type="QString">-r</value>
297 304 </valuelist>
298 305 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
299 306 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
300 307 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
301 308 </valuemap>
302 309 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
303 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
304 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
305 312 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
306 313 </valuemap>
307 314 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
308 315 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
309 316 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
310 317 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
311 318 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
312 319 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
313 320 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
314 321 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
315 322 </valuemap>
316 323 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">2</value>
317 324 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
318 325 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
319 326 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
320 327 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
321 328 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
322 329 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
323 330 </valuemap>
324 331 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
325 332 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
326 333 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
327 334 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
328 335 </valuemap>
329 336 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
330 337 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
331 338 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
332 339 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
333 340 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
334 341 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
335 342 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
336 343 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
337 344 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
338 345 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
339 346 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
340 347 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
341 348 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
342 349 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
343 350 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
344 351 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
345 352 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
346 353 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
347 354 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
348 355 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
349 356 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
350 357 <value type="int">0</value>
351 358 <value type="int">1</value>
352 359 <value type="int">2</value>
353 360 <value type="int">3</value>
354 361 <value type="int">4</value>
355 362 <value type="int">5</value>
356 363 <value type="int">6</value>
357 364 <value type="int">7</value>
358 365 <value type="int">8</value>
359 366 <value type="int">9</value>
360 367 <value type="int">10</value>
361 368 <value type="int">11</value>
362 369 <value type="int">12</value>
363 370 <value type="int">13</value>
364 371 <value type="int">14</value>
365 372 </valuelist>
366 373 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
367 374 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
368 375 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">timegen</value>
369 376 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
370 377 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/TimeGenerator-qt/timegen.pro</value>
371 378 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
372 379 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">timegen.pro</value>
373 380 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
374 381 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
375 382 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
376 383 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
377 384 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
378 385 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
379 386 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
380 387 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
381 388 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
382 389 </valuemap>
383 390 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
384 391 </valuemap>
385 392 </data>
386 393 <data>
387 394 <variable>ProjectExplorer.Project.TargetCount</variable>
388 395 <value type="int">2</value>
389 396 </data>
390 397 <data>
391 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
392 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
398 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
399 <value type="int">16</value>
393 400 </data>
394 401 <data>
395 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
396 <value type="int">15</value>
402 <variable>Version</variable>
403 <value type="int">16</value>
397 404 </data>
398 405 </qtcreator>
@@ -1,48 +1,48
1 1 #ifndef FSW_INIT_H_INCLUDED
2 2 #define FSW_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 9 #include "fsw_processing.h"
10 10
11 11 #include "tc_handler.h"
12 12 #include "wf_handler.h"
13 13 #include "fsw_spacewire.h"
14 14
15 15 #include "avf0_prc0.h"
16 16 #include "avf1_prc1.h"
17 17 #include "avf2_prc2.h"
18 18
19 19 extern rtems_name Task_name[20]; /* array of task names */
20 20 extern rtems_id Task_id[20]; /* array of task ids */
21 21
22 22 // RTEMS TASKS
23 23 rtems_task Init( rtems_task_argument argument);
24 24
25 25 // OTHER functions
26 26 void create_names( void );
27 27 int create_all_tasks( void );
28 28 int start_all_tasks( void );
29 29 //
30 30 rtems_status_code create_message_queues( void );
31 31 rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
32 32 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
33 33 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
34 34 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
35 35 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
36 36 //
37 37 int start_recv_send_tasks( void );
38 38 //
39 39 void init_local_mode_parameters( void );
40 40 void reset_local_time( void );
41 41
42 extern int rtems_cpu_usage_report( void );
43 extern int rtems_cpu_usage_reset( void );
42 extern void rtems_cpu_usage_report( void );
43 extern void rtems_cpu_usage_reset( void );
44 44 extern void rtems_stack_checker_report_usage( void );
45 45
46 46 extern int sched_yield( void );
47 47
48 48 #endif // FSW_INIT_H_INCLUDED
@@ -1,49 +1,45
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7
8 8 #include "fsw_params.h"
9 9 #include "fsw_spacewire.h"
10 10 #include "lfr_cpu_usage_report.h"
11 11
12 12 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
13 13 rtems_id HK_id; // id of the HK rate monotonic period
14 14
15 //extern rtems_name misc_name[5];
16 //time_management_regs_t *time_management_regs;
17 //extern Packet_TM_LFR_HK_t housekeeping_packet;
18
19 15 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
20 16 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
21 17 void timer_start( gptimer_regs_t *gptimer_regs, unsigned char timer );
22 18 void timer_stop( gptimer_regs_t *gptimer_regs, unsigned char timer );
23 19 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider);
24 20
25 21 // SERIAL LINK
26 22 int send_console_outputs_on_apbuart_port( void );
27 23 int enable_apbuart_transmitter( void );
28 24 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
29 25
30 26 // RTEMS TASKS
31 27 rtems_task stat_task( rtems_task_argument argument );
32 28 rtems_task hous_task( rtems_task_argument argument );
33 29 rtems_task dumb_task( rtems_task_argument unused );
34 30
35 31 void init_housekeeping_parameters( void );
36 32 void increment_seq_counter(unsigned short *packetSequenceControl);
37 33 void getTime( unsigned char *time);
38 34 unsigned long long int getTimeAsUnsignedLongLongInt( );
39 35 void send_dumb_hk( void );
40 36 void get_v_e1_e2_f3 (unsigned char *spacecraft_potential);
41 37 void get_cpu_load( unsigned char *resource_statistics );
42 38
43 39 extern int sched_yield( void );
44 extern int rtems_cpu_usage_reset();
40 extern void rtems_cpu_usage_reset();
45 41 extern ring_node *current_ring_node_f3;
46 42 extern ring_node *ring_node_to_send_cwf_f3;
47 43 extern unsigned short sequenceCounterHK;
48 44
49 45 #endif // FSW_MISC_H_INCLUDED
@@ -1,255 +1,255
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 21 //************************
22 22 // flight software version
23 23 // this parameters is handled by the Qt project options
24 24
25 25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 28 #define TIME_OFFSET 2
29 29 #define TIME_OFFSET_IN_BYTES 8
30 30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 31 #define NB_BYTES_SWF_BLK (2 * 6)
32 32 #define NB_WORDS_SWF_BLK 3
33 33 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 35 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 36 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 37 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 38 #define NB_RING_NODES_F3 3 // AT LEAST 3
39 39
40 40 //**********
41 41 // LFR MODES
42 42 #define LFR_MODE_STANDBY 0
43 43 #define LFR_MODE_NORMAL 1
44 44 #define LFR_MODE_BURST 2
45 45 #define LFR_MODE_SBM1 3
46 46 #define LFR_MODE_SBM2 4
47 47
48 48 #define TDS_MODE_LFM 5
49 49 #define TDS_MODE_STANDBY 0
50 50 #define TDS_MODE_NORMAL 1
51 51 #define TDS_MODE_BURST 2
52 52 #define TDS_MODE_SBM1 3
53 53 #define TDS_MODE_SBM2 4
54 54
55 55 #define THR_MODE_STANDBY 0
56 56 #define THR_MODE_NORMAL 1
57 57 #define THR_MODE_BURST 2
58 58
59 59 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
60 60 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
61 61 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
62 62 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
63 63 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
64 64 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
65 65 #define RTEMS_EVENT_NORM_BP1_F0 RTEMS_EVENT_6
66 66 #define RTEMS_EVENT_NORM_BP2_F0 RTEMS_EVENT_7
67 67 #define RTEMS_EVENT_NORM_ASM_F0 RTEMS_EVENT_8 // ASM only in NORM mode
68 68 #define RTEMS_EVENT_NORM_BP1_F1 RTEMS_EVENT_9
69 69 #define RTEMS_EVENT_NORM_BP2_F1 RTEMS_EVENT_10
70 70 #define RTEMS_EVENT_NORM_ASM_F1 RTEMS_EVENT_11 // ASM only in NORM mode
71 71 #define RTEMS_EVENT_NORM_BP1_F2 RTEMS_EVENT_12
72 72 #define RTEMS_EVENT_NORM_BP2_F2 RTEMS_EVENT_13
73 73 #define RTEMS_EVENT_NORM_ASM_F2 RTEMS_EVENT_14 // ASM only in NORM mode
74 74 #define RTEMS_EVENT_SBM_BP1_F0 RTEMS_EVENT_15
75 75 #define RTEMS_EVENT_SBM_BP2_F0 RTEMS_EVENT_16
76 76 #define RTEMS_EVENT_SBM_BP1_F1 RTEMS_EVENT_17
77 77 #define RTEMS_EVENT_SBM_BP2_F1 RTEMS_EVENT_18
78 78 #define RTEMS_EVENT_BURST_BP1_F0 RTEMS_EVENT_19
79 79 #define RTEMS_EVENT_BURST_BP2_F0 RTEMS_EVENT_20
80 80 #define RTEMS_EVENT_BURST_BP1_F1 RTEMS_EVENT_21
81 81 #define RTEMS_EVENT_BURST_BP2_F1 RTEMS_EVENT_22
82 82
83 83 //****************************
84 84 // LFR DEFAULT MODE PARAMETERS
85 85 // COMMON
86 86 #define DEFAULT_SY_LFR_COMMON0 0x00
87 87 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
88 88 // NORM
89 #define SY_LFR_N_SWF_L 2048 // nb sample
90 #define SY_LFR_N_SWF_P 300 // sec
91 #define SY_LFR_N_ASM_P 3600 // sec
92 #define SY_LFR_N_BP_P0 4 // sec
93 #define SY_LFR_N_BP_P1 20 // sec
94 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
89 #define DFLT_SY_LFR_N_SWF_L 2048 // nb sample
90 #define DFLT_SY_LFR_N_SWF_P 300 // sec
91 #define DFLT_SY_LFR_N_ASM_P 3600 // sec
92 #define DFLT_SY_LFR_N_BP_P0 4 // sec
93 #define DFLT_SY_LFR_N_BP_P1 20 // sec
94 #define DFLT_SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
95 95 #define MIN_DELTA_SNAPSHOT 16 // sec
96 96 // BURST
97 97 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
98 98 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
99 99 // SBM1
100 100 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
101 101 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
102 102 // SBM2
103 103 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
104 104 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
105 105 // ADDITIONAL PARAMETERS
106 106 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
107 107 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
108 108 // STATUS WORD
109 109 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
110 110 #define DEFAULT_STATUS_WORD_BYTE1 0x00
111 111 //
112 112 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
113 113 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
114 114 //****************************
115 115
116 116 //*****************************
117 117 // APB REGISTERS BASE ADDRESSES
118 118 #define REGS_ADDR_APBUART 0x80000100
119 119 #define REGS_ADDR_GPTIMER 0x80000300
120 120 #define REGS_ADDR_GRSPW 0x80000500
121 121 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
122 122 #define REGS_ADDR_GRGPIO 0x80000b00
123 123
124 124 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
125 125 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f50
126 126 #define REGS_ADDR_VHDL_VERSION 0x80000ff0
127 127
128 128 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
129 129 #define APBUART_CTRL_REG_MASK_TE 0x00000002
130 130 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
131 131
132 132 //**********
133 133 // IRQ LINES
134 134 #define IRQ_SM_SIMULATOR 9
135 135 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
136 136 #define IRQ_WAVEFORM_PICKER 14
137 137 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
138 138 #define IRQ_SPECTRAL_MATRIX 6
139 139 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
140 140
141 141 //*****
142 142 // TIME
143 143 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
144 144 #define TIMER_SM_SIMULATOR 1
145 145 #define HK_PERIOD 100 // 100 * 10ms => 1s
146 146 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
147 147 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
148 148
149 149 //**********
150 150 // LPP CODES
151 151 #define LFR_SUCCESSFUL 0
152 152 #define LFR_DEFAULT 1
153 153 #define LFR_EXE_ERROR 2
154 154
155 155 //******
156 156 // RTEMS
157 157 #define TASKID_RECV 1
158 158 #define TASKID_ACTN 2
159 159 #define TASKID_SPIQ 3
160 160 #define TASKID_STAT 4
161 161 #define TASKID_AVF0 5
162 162 #define TASKID_SWBD 6
163 163 #define TASKID_WFRM 7
164 164 #define TASKID_DUMB 8
165 165 #define TASKID_HOUS 9
166 166 #define TASKID_PRC0 10
167 167 #define TASKID_CWF3 11
168 168 #define TASKID_CWF2 12
169 169 #define TASKID_CWF1 13
170 170 #define TASKID_SEND 14
171 171 #define TASKID_WTDG 15
172 172 #define TASKID_AVF1 16
173 173 #define TASKID_PRC1 17
174 174 #define TASKID_AVF2 18
175 175 #define TASKID_PRC2 19
176 176
177 177 #define TASK_PRIORITY_SPIQ 5
178 178 #define TASK_PRIORITY_WTDG 20
179 179 #define TASK_PRIORITY_HOUS 30
180 180 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
181 181 #define TASK_PRIORITY_CWF2 35 //
182 182 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
183 183 #define TASK_PRIORITY_WFRM 40
184 184 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
185 185 #define TASK_PRIORITY_SEND 45
186 186 #define TASK_PRIORITY_RECV 50
187 187 #define TASK_PRIORITY_ACTN 50
188 188 #define TASK_PRIORITY_AVF0 60
189 189 #define TASK_PRIORITY_AVF1 70
190 190 #define TASK_PRIORITY_PRC0 100
191 191 #define TASK_PRIORITY_PRC1 100
192 192 #define TASK_PRIORITY_AVF2 110
193 193 #define TASK_PRIORITY_PRC2 110
194 194 #define TASK_PRIORITY_STAT 200
195 195 #define TASK_PRIORITY_DUMB 200
196 196
197 197 #define MSG_QUEUE_COUNT_RECV 10
198 198 #define MSG_QUEUE_COUNT_SEND 50
199 199 #define MSG_QUEUE_COUNT_PRC0 10
200 200 #define MSG_QUEUE_COUNT_PRC1 10
201 201 #define MSG_QUEUE_COUNT_PRC2 5
202 202 #define MSG_QUEUE_SIZE_SEND 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
203 203 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
204 204 #define MSG_QUEUE_SIZE_PRC0 20 // two pointers and one rtems_event + 2 integers
205 205 #define MSG_QUEUE_SIZE_PRC1 20 // two pointers and one rtems_event + 2 integers
206 206 #define MSG_QUEUE_SIZE_PRC2 20 // two pointers and one rtems_event + 2 integers
207 207
208 208 #define QUEUE_RECV 0
209 209 #define QUEUE_SEND 1
210 210 #define QUEUE_PRC0 2
211 211 #define QUEUE_PRC1 3
212 212 #define QUEUE_PRC2 4
213 213
214 214 //*******
215 215 // MACROS
216 216 #ifdef PRINT_MESSAGES_ON_CONSOLE
217 217 #define PRINTF(x) printf(x);
218 218 #define PRINTF1(x,y) printf(x,y);
219 219 #define PRINTF2(x,y,z) printf(x,y,z);
220 220 #else
221 221 #define PRINTF(x) ;
222 222 #define PRINTF1(x,y) ;
223 223 #define PRINTF2(x,y,z) ;
224 224 #endif
225 225
226 226 #ifdef BOOT_MESSAGES
227 227 #define BOOT_PRINTF(x) printf(x);
228 228 #define BOOT_PRINTF1(x,y) printf(x,y);
229 229 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
230 230 #else
231 231 #define BOOT_PRINTF(x) ;
232 232 #define BOOT_PRINTF1(x,y) ;
233 233 #define BOOT_PRINTF2(x,y,z) ;
234 234 #endif
235 235
236 236 #ifdef DEBUG_MESSAGES
237 237 #define DEBUG_PRINTF(x) printf(x);
238 238 #define DEBUG_PRINTF1(x,y) printf(x,y);
239 239 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
240 240 #else
241 241 #define DEBUG_PRINTF(x) ;
242 242 #define DEBUG_PRINTF1(x,y) ;
243 243 #define DEBUG_PRINTF2(x,y,z) ;
244 244 #endif
245 245
246 246 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
247 247
248 248 struct param_local_str{
249 249 unsigned int local_sbm1_nb_cwf_sent;
250 250 unsigned int local_sbm1_nb_cwf_max;
251 251 unsigned int local_sbm2_nb_cwf_sent;
252 252 unsigned int local_sbm2_nb_cwf_max;
253 253 };
254 254
255 255 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,6 +1,32
1 1 #ifndef LFR_CPU_USAGE_REPORT_H
2 2 #define LFR_CPU_USAGE_REPORT_H
3 3
4 #ifdef HAVE_CONFIG_H
5 #include "config.h"
6 #endif
7
8 #include <rtems.h>
9
10 #include <assert.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <stdio.h>
14 #include <ctype.h>
15 #include <inttypes.h>
16
17 #include <rtems/cpuuse.h>
18 #include <rtems/bspIo.h>
19
20 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
21 #include <rtems/score/timestamp.h>
22 #endif
23
24 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
25 extern Timestamp_Control CPU_usage_Uptime_at_last_reset;
26 #else
27 extern uint32_t CPU_usage_Ticks_at_last_reset;
28 #endif
29
4 30 unsigned char lfr_rtems_cpu_usage_report( void );
5 31
6 32 #endif // LFR_CPU_USAGE_REPORT_H
@@ -1,243 +1,243
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13
14 14 typedef struct ring_node_sm
15 15 {
16 16 struct ring_node_sm *previous;
17 17 struct ring_node_sm *next;
18 18 int buffer_address;
19 19 unsigned int status;
20 20 unsigned int coarseTime;
21 21 unsigned int fineTime;
22 22 } ring_node_sm;
23 23
24 24 typedef struct ring_node_asm
25 25 {
26 26 struct ring_node_asm *next;
27 27 float matrix[ TOTAL_SIZE_SM ];
28 28 unsigned int status;
29 29 } ring_node_asm;
30 30
31 31 typedef struct
32 32 {
33 33 Header_TM_LFR_SCIENCE_BP_t header;
34 34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
35 35 } bp_packet;
36 36
37 37 typedef struct
38 38 {
39 39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
40 40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
41 41 } bp_packet_with_spare;
42 42
43 43 typedef struct
44 44 {
45 45 ring_node_asm *norm;
46 46 ring_node_asm *burst_sbm;
47 47 rtems_event_set event;
48 48 unsigned int coarseTime;
49 49 unsigned int fineTime;
50 50 } asm_msg;
51 51
52 52 extern volatile int sm_f0[ ];
53 53 extern volatile int sm_f1[ ];
54 54 extern volatile int sm_f2[ ];
55 55
56 56 // parameters
57 57 extern struct param_local_str param_local;
58 58
59 59 // registers
60 60 extern time_management_regs_t *time_management_regs;
61 61 extern spectral_matrix_regs_t *spectral_matrix_regs;
62 62
63 63 extern rtems_name misc_name[5];
64 64 extern rtems_id Task_id[20]; /* array of task ids */
65 65
66 66 // ISR
67 67 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
68 68 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
69 69
70 70 //******************
71 71 // Spectral Matrices
72 72 void reset_nb_sm( void );
73 73 // SM
74 74 void SM_init_rings( void );
75 75 void SM_reset_current_ring_nodes( void );
76 76 void SM_generic_init_ring(ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] );
77 77 // ASM
78 78 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
79 79 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
80 80 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
81 81 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
82 82
83 83 //*****************
84 84 // Basic Parameters
85 85
86 86 void BP_reset_current_ring_nodes( void );
87 87 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
88 88 unsigned int apid, unsigned char sid,
89 89 unsigned int packetLength , unsigned char blkNr);
90 90 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
91 91 unsigned int apid, unsigned char sid,
92 92 unsigned int packetLength, unsigned char blkNr );
93 93 void BP_send( char *data,
94 94 rtems_id queue_id ,
95 95 unsigned int nbBytesToSend , unsigned int sid );
96 96
97 97 //******************
98 98 // general functions
99 99 void reset_spectral_matrix_regs( void );
100 100 void set_time(unsigned char *time, unsigned char *timeInBuffer );
101 101 unsigned long long int get_acquisition_time( unsigned char *timePtr );
102 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
102 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id avf_task_id,
103 103 ring_node_sm *node_for_averaging, ring_node_sm *ringNode, unsigned long long int time);
104 104 unsigned char getSID( rtems_event_set event );
105 105
106 106 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
107 107 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
108 108
109 109 //***************************************
110 110 // DEFINITIONS OF STATIC INLINE FUNCTIONS
111 111 static inline void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
112 112 ring_node_sm *ring_node_tab[],
113 113 unsigned int nbAverageNORM, unsigned int nbAverageSBM );
114 114 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
115 115 float divider );
116 116 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
117 117 float divider,
118 118 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
119 119 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
120 120
121 121 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
122 122 ring_node_sm *ring_node_tab[],
123 123 unsigned int nbAverageNORM, unsigned int nbAverageSBM )
124 124 {
125 125 float sum;
126 126 unsigned int i;
127 127
128 128 for(i=0; i<TOTAL_SIZE_SM; i++)
129 129 {
130 130 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
131 131 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
132 132 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
133 133 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
134 134 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
135 135 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
136 136 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
137 137 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
138 138
139 139 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
140 140 {
141 141 averaged_spec_mat_NORM[ i ] = sum;
142 142 averaged_spec_mat_SBM[ i ] = sum;
143 143 }
144 144 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
145 145 {
146 146 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
147 147 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
148 148 }
149 149 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
150 150 {
151 151 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
152 152 averaged_spec_mat_SBM[ i ] = sum;
153 153 }
154 154 else
155 155 {
156 156 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
157 157 }
158 158 }
159 159 }
160 160
161 161 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
162 162 {
163 163 int frequencyBin;
164 164 int asmComponent;
165 165 unsigned int offsetAveragedSpecMatReorganized;
166 166 unsigned int offsetAveragedSpecMat;
167 167
168 168 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
169 169 {
170 170 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
171 171 {
172 172 offsetAveragedSpecMatReorganized =
173 173 frequencyBin * NB_VALUES_PER_SM
174 174 + asmComponent;
175 175 offsetAveragedSpecMat =
176 176 asmComponent * NB_BINS_PER_SM
177 177 + frequencyBin;
178 178 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
179 179 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
180 180 }
181 181 }
182 182 }
183 183
184 184 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
185 185 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
186 186 {
187 187 int frequencyBin;
188 188 int asmComponent;
189 189 int offsetASM;
190 190 int offsetCompressed;
191 191 int k;
192 192
193 193 // build data
194 194 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
195 195 {
196 196 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
197 197 {
198 198 offsetCompressed = // NO TIME OFFSET
199 199 frequencyBin * NB_VALUES_PER_SM
200 200 + asmComponent;
201 201 offsetASM = // NO TIME OFFSET
202 202 asmComponent * NB_BINS_PER_SM
203 203 + ASMIndexStart
204 204 + frequencyBin * nbBinsToAverage;
205 205 compressed_spec_mat[ offsetCompressed ] = 0;
206 206 for ( k = 0; k < nbBinsToAverage; k++ )
207 207 {
208 208 compressed_spec_mat[offsetCompressed ] =
209 209 ( compressed_spec_mat[ offsetCompressed ]
210 210 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
211 211 }
212 212 }
213 213 }
214 214 }
215 215
216 216 void ASM_convert( volatile float *input_matrix, char *output_matrix)
217 217 {
218 218 unsigned int frequencyBin;
219 219 unsigned int asmComponent;
220 220 char * pt_char_input;
221 221 char * pt_char_output;
222 222 unsigned int offsetInput;
223 223 unsigned int offsetOutput;
224 224
225 225 pt_char_input = (char*) &input_matrix;
226 226 pt_char_output = (char*) &output_matrix;
227 227
228 228 // convert all other data
229 229 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
230 230 {
231 231 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
232 232 {
233 233 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
234 234 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
235 235 pt_char_input = (char*) &input_matrix [ offsetInput ];
236 236 pt_char_output = (char*) &output_matrix[ offsetOutput ];
237 237 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
238 238 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
239 239 }
240 240 }
241 241 }
242 242
243 243 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,49 +1,51
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11
12 #define FLOAT_EQUAL_ZERO 0.001
13
12 14 extern unsigned short sequenceCounterParameterDump;
13 15
14 16 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
15 17 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
16 18 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
17 19 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
18 20 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
19 21 int action_dump_par(rtems_id queue_id );
20 22
21 23 // NORMAL
22 24 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
23 25 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
24 26 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
25 27 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
26 28 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
27 29 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
28 30 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
29 31
30 32 // BURST
31 33 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
32 34 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
33 35
34 36 // SBM1
35 37 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
36 38 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
37 39
38 40 // SBM2
39 41 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
40 42 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
41 43
42 44 // TC_LFR_UPDATE_INFO
43 45 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
44 46 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
45 47 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
46 48
47 49 void init_parameter_dump( void );
48 50
49 51 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,55 +1,25
1 1 #include <drvmgr/ambapp_bus.h>
2 2
3 3 // GRSPW0 resources
4 4 struct drvmgr_key grlib_grspw_0n1_res[] = {
5 5 {"txBdCnt", KEY_TYPE_INT, {(unsigned int)50}}, // 7 SWF_F0, 7 SWF_F1, 7 SWF_F2, 7 CWF_F3, 7 CWF_F1 ou 7 CWF_F2
6 6 {"rxBdCnt", KEY_TYPE_INT, {(unsigned int)10}},
7 7 {"txDataSize", KEY_TYPE_INT, {(unsigned int)4096}},
8 8 {"txHdrSize", KEY_TYPE_INT, {(unsigned int)20+12}}, // 12 is for the auxiliary header, when needed
9 9 {"rxPktSize", KEY_TYPE_INT, {(unsigned int)248+4}},
10 10 KEY_EMPTY
11 11 };
12 12
13 #if 0
14 /* APBUART0 */
15 struct drvmgr_key grlib_drv_res_apbuart0[] =
16 {
17 {"mode", KEY_TYPE_INT, {(unsigned int)1}},
18 {"syscon", KEY_TYPE_INT, {(unsigned int)1}},
19 KEY_EMPTY
20 };
21 /* APBUART1 */
22 struct drvmgr_key grlib_drv_res_apbuart1[] =
23 {
24 {"mode", KEY_TYPE_INT, {(unsigned int)1}},
25 {"syscon", KEY_TYPE_INT, {(unsigned int)0}},
26 KEY_EMPTY
27 };
28 /* LEON3 System with driver configuration for 2 APBUARTs, the
29 * the rest of the AMBA device drivers use their defaults.
30 */
31
32 /* Override default debug UART assignment.
33 * 0 = Default APBUART. APBUART[0], but on MP system CPU0=APBUART0,
34 * CPU1=APBUART1...
35 * 1 = APBUART[0]
36 * 2 = APBUART[1]
37 * 3 = APBUART[2]
38 * ...
39 */
40 //int debug_uart_index = 2; /* second UART -- APBUART[1] */
41 #endif
42
43 13 // If RTEMS_DRVMGR_STARTUP is defined we override the "weak defaults" that is defined by the LEON3 BSP.
44 14
45 15 struct drvmgr_bus_res grlib_drv_resources = {
46 16 .next = NULL,
47 17 .resource = {
48 18 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &grlib_grspw_0n1_res[0]},
49 19 // {DRIVER_AMBAPP_GAISLER_APBUART_ID, 0, &grlib_drv_res_apbuart0[0]},
50 20 // {DRIVER_AMBAPP_GAISLER_APBUART_ID, 1, &grlib_drv_res_apbuart1[0]},
51 21 RES_EMPTY /* Mark end of device resource array */
52 22 }
53 23 };
54 24
55 25
@@ -1,529 +1,530
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 83 {
84 84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85 85
86 86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87 87
88 88 return 0;
89 89 }
90 90
91 91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 92 {
93 93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94 94
95 95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96 96
97 97 return 0;
98 98 }
99 99
100 100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 101 {
102 102 /** This function sets the scaler reload register of the apbuart module
103 103 *
104 104 * @param regs is the address of the apbuart registers in memory
105 105 * @param value is the value that will be stored in the scaler register
106 106 *
107 107 * The value shall be set by the software to get data on the serial interface.
108 108 *
109 109 */
110 110
111 111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112 112
113 113 apbuart_regs->scaler = value;
114 114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 115 }
116 116
117 117 //************
118 118 // RTEMS TASKS
119 119
120 120 rtems_task stat_task(rtems_task_argument argument)
121 121 {
122 122 int i;
123 123 int j;
124 124 i = 0;
125 125 j = 0;
126 126 BOOT_PRINTF("in STAT *** \n")
127 127 while(1){
128 128 rtems_task_wake_after(1000);
129 129 PRINTF1("%d\n", j)
130 130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 131 // #ifdef PRINT_TASK_STATISTICS
132 132 // rtems_cpu_usage_report();
133 133 // rtems_cpu_usage_reset();
134 134 // #endif
135 135 i = 0;
136 136 }
137 137 else i++;
138 138 j++;
139 139 }
140 140 }
141 141
142 142 rtems_task hous_task(rtems_task_argument argument)
143 143 {
144 144 rtems_status_code status;
145 rtems_status_code spare_status;
145 146 rtems_id queue_id;
146 147 rtems_rate_monotonic_period_status period_status;
147 148
148 149 status = get_message_queue_id_send( &queue_id );
149 150 if (status != RTEMS_SUCCESSFUL)
150 151 {
151 152 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 153 }
153 154
154 155 BOOT_PRINTF("in HOUS ***\n")
155 156
156 157 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 158 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 159 if( status != RTEMS_SUCCESSFUL ) {
159 160 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 161 }
161 162 }
162 163
163 164 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 165 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 166 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 167 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 168 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
168 169 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
169 170 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 171 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 172 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 173 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 174 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 175 housekeeping_packet.serviceType = TM_TYPE_HK;
175 176 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 177 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 178 housekeeping_packet.sid = SID_HK;
178 179
179 180 status = rtems_rate_monotonic_cancel(HK_id);
180 181 if( status != RTEMS_SUCCESSFUL ) {
181 182 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 183 }
183 184 else {
184 185 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 186 }
186 187
187 188 // startup phase
188 189 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 190 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 191 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 192 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 193 {
193 194 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 195 {
195 196 break; // break if LFR is synchronized
196 197 }
197 198 else
198 199 {
199 200 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 201 // sched_yield();
201 202 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
202 203 }
203 204 }
204 205 status = rtems_rate_monotonic_cancel(HK_id);
205 206 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
206 207
207 208 while(1){ // launch the rate monotonic task
208 209 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
209 210 if ( status != RTEMS_SUCCESSFUL ) {
210 211 PRINTF1( "in HOUS *** ERR period: %d\n", status);
211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 213 }
213 214 else {
214 215 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
215 216 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
216 217 increment_seq_counter( &sequenceCounterHK );
217 218
218 219 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
219 220 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
220 221 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
221 222 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
222 223 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
223 224 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
224 225
225 226 spacewire_update_statistics();
226 227
227 228 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
228 229 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
229 230
230 231 // SEND PACKET
231 232 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
232 233 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
233 234 if (status != RTEMS_SUCCESSFUL) {
234 235 PRINTF1("in HOUS *** ERR send: %d\n", status)
235 236 }
236 237 }
237 238 }
238 239
239 240 PRINTF("in HOUS *** deleting task\n")
240 241
241 242 status = rtems_task_delete( RTEMS_SELF ); // should not return
242 243 printf( "rtems_task_delete returned with status of %d.\n", status );
243 244 return;
244 245 }
245 246
246 247 rtems_task dumb_task( rtems_task_argument unused )
247 248 {
248 249 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
249 250 *
250 251 * @param unused is the starting argument of the RTEMS task
251 252 *
252 253 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
253 254 *
254 255 */
255 256
256 257 unsigned int i;
257 258 unsigned int intEventOut;
258 259 unsigned int coarse_time = 0;
259 260 unsigned int fine_time = 0;
260 261 rtems_event_set event_out;
261 262
262 263 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
263 264 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
264 265 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
265 266 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
266 267 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
267 268 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
268 269 "ERR HK", // RTEMS_EVENT_6
269 270 "ready for dump", // RTEMS_EVENT_7
270 271 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
271 272 "tick", // RTEMS_EVENT_9
272 273 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
273 274 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
274 275 };
275 276
276 277 BOOT_PRINTF("in DUMB *** \n")
277 278
278 279 while(1){
279 280 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
280 281 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
281 282 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
282 283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
283 284 intEventOut = (unsigned int) event_out;
284 285 for ( i=0; i<32; i++)
285 286 {
286 287 if ( ((intEventOut >> i) & 0x0001) != 0)
287 288 {
288 289 coarse_time = time_management_regs->coarse_time;
289 290 fine_time = time_management_regs->fine_time;
290 291 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
291 292 if (i==8)
292 293 {
293 PRINTF1("spectral_matrix_regs->status = %x\n", spectral_matrix_regs->status)
294 294 }
295 295 if (i==10)
296 296 {
297 PRINTF1("waveform_picker_regs->status = %x\n", waveform_picker_regs->status)
298 297 }
299 298 }
300 299 }
301 300 }
302 301 }
303 302
304 303 //*****************************
305 304 // init housekeeping parameters
306 305
307 306 void init_housekeeping_parameters( void )
308 307 {
309 308 /** This function initialize the housekeeping_packet global variable with default values.
310 309 *
311 310 */
312 311
313 312 unsigned int i = 0;
314 313 unsigned char *parameters;
315 314
316 315 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
317 316 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
318 317 {
319 318 parameters[i] = 0x00;
320 319 }
321 320 // init status word
322 321 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
323 322 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
324 323 // init software version
325 324 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
326 325 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
327 326 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
328 327 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
329 328 // init fpga version
330 329 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
331 330 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
332 331 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
333 332 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
334 333 }
335 334
336 335 void increment_seq_counter( unsigned short *packetSequenceControl )
337 336 {
338 337 /** This function increment the sequence counter psased in argument.
339 338 *
340 339 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
341 340 *
342 341 */
343 342
344 343 unsigned short segmentation_grouping_flag;
345 344 unsigned short sequence_cnt;
346 345
347 346 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
348 347 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
349 348
350 349 if ( sequence_cnt < SEQ_CNT_MAX)
351 350 {
352 351 sequence_cnt = sequence_cnt + 1;
353 352 }
354 353 else
355 354 {
356 355 sequence_cnt = 0;
357 356 }
358 357
359 358 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
360 359 }
361 360
362 361 void getTime( unsigned char *time)
363 362 {
364 363 /** This function write the current local time in the time buffer passed in argument.
365 364 *
366 365 */
367 366
368 367 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
369 368 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
370 369 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
371 370 time[3] = (unsigned char) (time_management_regs->coarse_time);
372 371 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
373 372 time[5] = (unsigned char) (time_management_regs->fine_time);
374 373 }
375 374
376 375 unsigned long long int getTimeAsUnsignedLongLongInt( )
377 376 {
378 377 /** This function write the current local time in the time buffer passed in argument.
379 378 *
380 379 */
381 380 unsigned long long int time;
382 381
383 382 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
384 383 + time_management_regs->fine_time;
385 384
386 385 return time;
387 386 }
388 387
389 388 void send_dumb_hk( void )
390 389 {
391 390 Packet_TM_LFR_HK_t dummy_hk_packet;
392 391 unsigned char *parameters;
393 392 unsigned int i;
394 393 rtems_id queue_id;
395 394
396 395 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
397 396 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
398 397 dummy_hk_packet.reserved = DEFAULT_RESERVED;
399 398 dummy_hk_packet.userApplication = CCSDS_USER_APP;
400 399 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
401 400 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
402 401 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
403 402 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
404 403 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
405 404 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
406 405 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
407 406 dummy_hk_packet.serviceType = TM_TYPE_HK;
408 407 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
409 408 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
410 409 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
411 410 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
412 411 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
413 412 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
414 413 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
415 414 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
416 415 dummy_hk_packet.sid = SID_HK;
417 416
418 417 // init status word
419 418 dummy_hk_packet.lfr_status_word[0] = 0xff;
420 419 dummy_hk_packet.lfr_status_word[1] = 0xff;
421 420 // init software version
422 421 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
423 422 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
424 423 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
425 424 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
426 425 // init fpga version
427 426 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
428 427 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
429 428 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
430 429 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
431 430
432 431 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
433 432
434 433 for (i=0; i<100; i++)
435 434 {
436 435 parameters[i] = 0xff;
437 436 }
438 437
439 438 get_message_queue_id_send( &queue_id );
440 439
441 440 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
442 441 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
443 442 }
444 443
445 444 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
446 445 {
447 446 unsigned int coarseTime;
448 447 unsigned int acquisitionTime;
449 448 unsigned int deltaT = 0;
450 449 unsigned char *bufferPtr;
451 450
452 451 unsigned int offset_in_samples;
453 452 unsigned int offset_in_bytes;
454 453 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
455 454
455 bufferPtr = NULL;
456
456 457 if (lfrCurrentMode == LFR_MODE_STANDBY)
457 458 {
458 459 spacecraft_potential[0] = 0x00;
459 460 spacecraft_potential[1] = 0x00;
460 461 spacecraft_potential[2] = 0x00;
461 462 spacecraft_potential[3] = 0x00;
462 463 spacecraft_potential[4] = 0x00;
463 464 spacecraft_potential[5] = 0x00;
464 465 }
465 466 else
466 467 {
467 468 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
468 469 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
469 470 acquisitionTime = (unsigned int) ( ( bufferPtr[0] & 0x7f ) << 24 )
470 471 + (unsigned int) ( bufferPtr[1] << 16 )
471 472 + (unsigned int) ( bufferPtr[2] << 8 )
472 473 + (unsigned int) ( bufferPtr[3] );
473 474 if ( coarseTime > acquisitionTime )
474 475 {
475 476 deltaT = coarseTime - acquisitionTime;
476 477 offset_in_samples = (deltaT-1) * f3 ;
477 478 }
478 479 else if( coarseTime == acquisitionTime )
479 480 {
480 481 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
481 482 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
482 483 }
483 484 else
484 485 {
485 486 offset_in_samples = 0;
486 487 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
487 488 }
488 489
489 490 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
490 491 {
491 492 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
492 493 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
493 494 }
494 495 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
495 496 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
496 497 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
497 498 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
498 499 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
499 500 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
500 501 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
501 502 }
502 503 }
503 504
504 505 void get_cpu_load( unsigned char *resource_statistics )
505 506 {
506 507 unsigned char cpu_load;
507 508
508 509 cpu_load = lfr_rtems_cpu_usage_report();
509 510
510 511 // HK_LFR_CPU_LOAD
511 512 resource_statistics[0] = cpu_load;
512 513
513 514 // HK_LFR_CPU_LOAD_MAX
514 515 if (cpu_load > resource_statistics[1])
515 516 {
516 517 resource_statistics[1] = cpu_load;
517 518 }
518 519
519 520 // CPU_LOAD_AVE
520 521 resource_statistics[2] = 0;
521 522
522 523 #ifndef PRINT_TASK_STATISTICS
523 524 rtems_cpu_usage_reset();
524 525 #endif
525 526
526 527 }
527 528
528 529
529 530
@@ -1,610 +1,624
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //***********
20 20 // RTEMS TASK
21 21 rtems_task spiq_task(rtems_task_argument unused)
22 22 {
23 23 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
24 24 *
25 25 * @param unused is the starting argument of the RTEMS task
26 26 *
27 27 */
28 28
29 29 rtems_event_set event_out;
30 30 rtems_status_code status;
31 31 int linkStatus;
32 32
33 33 BOOT_PRINTF("in SPIQ *** \n")
34 34
35 35 while(true){
36 36 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
37 37 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
38 38
39 39 // [0] SUSPEND RECV AND SEND TASKS
40 40 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
41 41 if ( status != RTEMS_SUCCESSFUL ) {
42 42 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
43 43 }
44 44 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
45 45 if ( status != RTEMS_SUCCESSFUL ) {
46 46 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
47 47 }
48 48
49 49 // [1] CHECK THE LINK
50 50 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
51 51 if ( linkStatus != 5) {
52 52 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
53 53 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
54 54 }
55 55
56 56 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
57 57 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
58 58 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
59 59 {
60 60 spacewire_compute_stats_offsets();
61 61 status = spacewire_reset_link( );
62 62 }
63 63 else // [2.b] in run state, start the link
64 64 {
65 65 status = spacewire_stop_and_start_link( fdSPW ); // start the link
66 66 if ( status != RTEMS_SUCCESSFUL)
67 67 {
68 68 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
69 69 }
70 70 }
71 71
72 72 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
73 73 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
74 74 {
75 75 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
76 76 if ( status != RTEMS_SUCCESSFUL ) {
77 77 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
78 78 }
79 79 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
80 80 if ( status != RTEMS_SUCCESSFUL ) {
81 81 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
82 82 }
83 83 }
84 84 else // [3.b] the link is not in run state, go in STANDBY mode
85 85 {
86 86 status = stop_current_mode();
87 87 if ( status != RTEMS_SUCCESSFUL ) {
88 88 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
89 89 }
90 90 status = enter_mode( LFR_MODE_STANDBY, 0 );
91 91 if ( status != RTEMS_SUCCESSFUL ) {
92 92 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
93 93 }
94 94 // wake the WTDG task up to wait for the link recovery
95 95 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
96 96 status = rtems_task_suspend( RTEMS_SELF );
97 97 }
98 98 }
99 99 }
100 100
101 101 rtems_task recv_task( rtems_task_argument unused )
102 102 {
103 103 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
104 104 *
105 105 * @param unused is the starting argument of the RTEMS task
106 106 *
107 107 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
108 108 * 1. It reads the incoming data.
109 109 * 2. Launches the acceptance procedure.
110 110 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
111 111 *
112 112 */
113 113
114 114 int len;
115 115 ccsdsTelecommandPacket_t currentTC;
116 116 unsigned char computed_CRC[ 2 ];
117 117 unsigned char currentTC_LEN_RCV[ 2 ];
118 118 unsigned char destinationID;
119 119 unsigned int estimatedPacketLength;
120 120 unsigned int parserCode;
121 121 rtems_status_code status;
122 122 rtems_id queue_recv_id;
123 123 rtems_id queue_send_id;
124 124
125 125 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
126 126
127 127 status = get_message_queue_id_recv( &queue_recv_id );
128 128 if (status != RTEMS_SUCCESSFUL)
129 129 {
130 130 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
131 131 }
132 132
133 133 status = get_message_queue_id_send( &queue_send_id );
134 134 if (status != RTEMS_SUCCESSFUL)
135 135 {
136 136 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
137 137 }
138 138
139 139 BOOT_PRINTF("in RECV *** \n")
140 140
141 141 while(1)
142 142 {
143 143 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
144 144 if (len == -1){ // error during the read call
145 145 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
146 146 }
147 147 else {
148 148 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
149 149 PRINTF("in RECV *** packet lenght too short\n")
150 150 }
151 151 else {
152 152 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
153 153 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
154 154 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
155 155 // CHECK THE TC
156 156 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
157 157 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
158 158 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
159 159 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
160 160 || (parserCode == WRONG_SRC_ID) )
161 161 { // send TM_LFR_TC_EXE_CORRUPTED
162 162 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
163 163 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
164 164 &&
165 165 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
166 166 )
167 167 {
168 168 if ( parserCode == WRONG_SRC_ID )
169 169 {
170 170 destinationID = SID_TC_GROUND;
171 171 }
172 172 else
173 173 {
174 174 destinationID = currentTC.sourceID;
175 175 }
176 176 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
177 177 computed_CRC, currentTC_LEN_RCV,
178 178 destinationID );
179 179 }
180 180 }
181 181 else
182 182 { // send valid TC to the action launcher
183 183 status = rtems_message_queue_send( queue_recv_id, &currentTC,
184 184 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
185 185 }
186 186 }
187 187 }
188 188 }
189 189 }
190 190
191 191 rtems_task send_task( rtems_task_argument argument)
192 192 {
193 193 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
194 194 *
195 195 * @param unused is the starting argument of the RTEMS task
196 196 *
197 197 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
198 198 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
199 199 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
200 200 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
201 201 * data it contains.
202 202 *
203 203 */
204 204
205 205 rtems_status_code status; // RTEMS status code
206 206 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
207 207 spw_ioctl_pkt_send *spw_ioctl_send;
208 208 size_t size; // size of the incoming TC packet
209 209 u_int32_t count;
210 210 rtems_id queue_id;
211 211
212 212 status = get_message_queue_id_send( &queue_id );
213 213 if (status != RTEMS_SUCCESSFUL)
214 214 {
215 215 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
216 216 }
217 217
218 218 BOOT_PRINTF("in SEND *** \n")
219 219
220 220 while(1)
221 221 {
222 222 status = rtems_message_queue_receive( queue_id, incomingData, &size,
223 223 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
224 224
225 225 if (status!=RTEMS_SUCCESSFUL)
226 226 {
227 227 PRINTF1("in SEND *** (1) ERR = %d\n", status)
228 228 }
229 229 else
230 230 {
231 231 if ( incomingData[0] == CCSDS_DESTINATION_ID) // the incoming message is a ccsds packet
232 232 {
233 233 status = write( fdSPW, incomingData, size );
234 234 if (status == -1){
235 235 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
236 236 }
237 237 }
238 238 else // the incoming message is a spw_ioctl_pkt_send structure
239 239 {
240 240 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
241 241 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
242 242 if (status == -1){
243 243 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
244 244 }
245 245 }
246 246 }
247 247
248 248 status = rtems_message_queue_get_number_pending( queue_id, &count );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in SEND *** (3) ERR = %d\n", status)
252 252 }
253 253 else
254 254 {
255 255 if (count > maxCount)
256 256 {
257 257 maxCount = count;
258 258 }
259 259 }
260 260 }
261 261 }
262 262
263 263 rtems_task wtdg_task( rtems_task_argument argument )
264 264 {
265 265 rtems_event_set event_out;
266 266 rtems_status_code status;
267 267 int linkStatus;
268 268
269 269 BOOT_PRINTF("in WTDG ***\n")
270 270
271 271 while(1)
272 272 {
273 273 // wait for an RTEMS_EVENT
274 274 rtems_event_receive( RTEMS_EVENT_0,
275 275 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
276 276 PRINTF("in WTDG *** wait for the link\n")
277 277 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
278 278 while( linkStatus != 5) // wait for the link
279 279 {
280 280 rtems_task_wake_after( 10 );
281 281 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
282 282 }
283 283
284 284 status = spacewire_stop_and_start_link( fdSPW );
285 285
286 286 if (status != RTEMS_SUCCESSFUL)
287 287 {
288 288 PRINTF1("in WTDG *** ERR link not started %d\n", status)
289 289 }
290 290 else
291 291 {
292 292 PRINTF("in WTDG *** OK link started\n")
293 293 }
294 294
295 295 // restart the SPIQ task
296 296 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
297 297 if ( status != RTEMS_SUCCESSFUL ) {
298 298 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
299 299 }
300 300
301 301 // restart RECV and SEND
302 302 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
303 303 if ( status != RTEMS_SUCCESSFUL ) {
304 304 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
305 305 }
306 306 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
307 307 if ( status != RTEMS_SUCCESSFUL ) {
308 308 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
309 309 }
310 310 }
311 311 }
312 312
313 313 //****************
314 314 // OTHER FUNCTIONS
315 315 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
316 316 {
317 317 /** This function opens the SpaceWire link.
318 318 *
319 319 * @return a valid file descriptor in case of success, -1 in case of a failure
320 320 *
321 321 */
322 322 rtems_status_code status;
323 323
324 324 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
325 325 if ( fdSPW < 0 ) {
326 326 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
327 327 }
328 328 else
329 329 {
330 330 status = RTEMS_SUCCESSFUL;
331 331 }
332 332
333 333 return status;
334 334 }
335 335
336 336 int spacewire_start_link( int fd )
337 337 {
338 338 rtems_status_code status;
339 339
340 340 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
341 341 // -1 default hardcoded driver timeout
342 342
343 343 return status;
344 344 }
345 345
346 346 int spacewire_stop_and_start_link( int fd )
347 347 {
348 348 rtems_status_code status;
349 349
350 350 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
351 351 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
352 352 // -1 default hardcoded driver timeout
353 353
354 354 return status;
355 355 }
356 356
357 357 int spacewire_configure_link( int fd )
358 358 {
359 359 /** This function configures the SpaceWire link.
360 360 *
361 361 * @return GR-RTEMS-DRIVER directive status codes:
362 362 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
363 363 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
364 364 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
365 365 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
366 366 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
367 367 * - 5 EIO - Error when writing to grswp hardware registers.
368 368 * - 2 ENOENT - No such file or directory
369 369 */
370 370
371 371 rtems_status_code status;
372 372
373 373 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
374 374 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
375 375
376 376 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
377 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
377 if (status!=RTEMS_SUCCESSFUL) {
378 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
379 }
378 380 //
379 381 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
380 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
382 if (status!=RTEMS_SUCCESSFUL) {
383 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
384 }
381 385 //
382 386 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
383 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
387 if (status!=RTEMS_SUCCESSFUL) {
388 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
389 }
384 390 //
385 391 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
386 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
392 if (status!=RTEMS_SUCCESSFUL) {
393 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
394 }
387 395 //
388 396 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
389 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
397 if (status!=RTEMS_SUCCESSFUL) {
398 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
399 }
390 400 //
391 401 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
392 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
402 if (status!=RTEMS_SUCCESSFUL) {
403 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
404 }
393 405 //
394 406 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
395 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
407 if (status!=RTEMS_SUCCESSFUL) {
408 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
409 }
396 410
397 411 return status;
398 412 }
399 413
400 414 int spacewire_reset_link( void )
401 415 {
402 416 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
403 417 *
404 418 * @return RTEMS directive status code:
405 419 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
406 420 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
407 421 *
408 422 */
409 423
410 424 rtems_status_code status_spw;
411 425 int i;
412 426
413 427 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
414 428 {
415 429 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
416 430
417 431 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
418 432
419 433 status_spw = spacewire_stop_and_start_link( fdSPW );
420 434 if ( status_spw != RTEMS_SUCCESSFUL )
421 435 {
422 436 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
423 437 }
424 438
425 439 if ( status_spw == RTEMS_SUCCESSFUL)
426 440 {
427 441 break;
428 442 }
429 443 }
430 444
431 445 return status_spw;
432 446 }
433 447
434 448 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
435 449 {
436 450 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
437 451 *
438 452 * @param val is the value, 0 or 1, used to set the value of the NP bit.
439 453 * @param regAddr is the address of the GRSPW control register.
440 454 *
441 455 * NP is the bit 20 of the GRSPW control register.
442 456 *
443 457 */
444 458
445 459 unsigned int *spwptr = (unsigned int*) regAddr;
446 460
447 461 if (val == 1) {
448 462 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
449 463 }
450 464 if (val== 0) {
451 465 *spwptr = *spwptr & 0xffdfffff;
452 466 }
453 467 }
454 468
455 469 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
456 470 {
457 471 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
458 472 *
459 473 * @param val is the value, 0 or 1, used to set the value of the RE bit.
460 474 * @param regAddr is the address of the GRSPW control register.
461 475 *
462 476 * RE is the bit 16 of the GRSPW control register.
463 477 *
464 478 */
465 479
466 480 unsigned int *spwptr = (unsigned int*) regAddr;
467 481
468 482 if (val == 1)
469 483 {
470 484 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
471 485 }
472 486 if (val== 0)
473 487 {
474 488 *spwptr = *spwptr & 0xfffdffff;
475 489 }
476 490 }
477 491
478 492 void spacewire_compute_stats_offsets( void )
479 493 {
480 494 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
481 495 *
482 496 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
483 497 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
484 498 * during the open systel call).
485 499 *
486 500 */
487 501
488 502 spw_stats spacewire_stats_grspw;
489 503 rtems_status_code status;
490 504
491 505 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
492 506
493 507 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
494 508 + spacewire_stats.packets_received;
495 509 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
496 510 + spacewire_stats.packets_sent;
497 511 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
498 512 + spacewire_stats.parity_err;
499 513 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
500 514 + spacewire_stats.disconnect_err;
501 515 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
502 516 + spacewire_stats.escape_err;
503 517 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
504 518 + spacewire_stats.credit_err;
505 519 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
506 520 + spacewire_stats.write_sync_err;
507 521 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
508 522 + spacewire_stats.rx_rmap_header_crc_err;
509 523 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
510 524 + spacewire_stats.rx_rmap_data_crc_err;
511 525 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
512 526 + spacewire_stats.early_ep;
513 527 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
514 528 + spacewire_stats.invalid_address;
515 529 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
516 530 + spacewire_stats.rx_eep_err;
517 531 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
518 532 + spacewire_stats.rx_truncated;
519 533 }
520 534
521 535 void spacewire_update_statistics( void )
522 536 {
523 537 rtems_status_code status;
524 538 spw_stats spacewire_stats_grspw;
525 539
526 540 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
527 541
528 542 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
529 543 + spacewire_stats_grspw.packets_received;
530 544 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
531 545 + spacewire_stats_grspw.packets_sent;
532 546 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
533 547 + spacewire_stats_grspw.parity_err;
534 548 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
535 549 + spacewire_stats_grspw.disconnect_err;
536 550 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
537 551 + spacewire_stats_grspw.escape_err;
538 552 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
539 553 + spacewire_stats_grspw.credit_err;
540 554 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
541 555 + spacewire_stats_grspw.write_sync_err;
542 556 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
543 557 + spacewire_stats_grspw.rx_rmap_header_crc_err;
544 558 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
545 559 + spacewire_stats_grspw.rx_rmap_data_crc_err;
546 560 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
547 561 + spacewire_stats_grspw.early_ep;
548 562 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
549 563 + spacewire_stats_grspw.invalid_address;
550 564 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
551 565 + spacewire_stats_grspw.rx_eep_err;
552 566 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
553 567 + spacewire_stats_grspw.rx_truncated;
554 568 //spacewire_stats.tx_link_err;
555 569
556 570 //****************************
557 571 // DPU_SPACEWIRE_IF_STATISTICS
558 572 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
559 573 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
560 574 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
561 575 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
562 576 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
563 577 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
564 578
565 579 //******************************************
566 580 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
567 581 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
568 582 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
569 583 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
570 584 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
571 585 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
572 586
573 587 //*********************************************
574 588 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
575 589 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
576 590 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
577 591 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
578 592 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
579 593 }
580 594
581 595 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
582 596 {
583 597 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_9 );
584 598 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
585 599
586 600 grgpio_regs->io_port_direction_register =
587 601 grgpio_regs->io_port_direction_register | 0x08; // [0001 1000], 0 = output disabled, 1 = output enabled
588 602
589 603 if ( (grgpio_regs->io_port_output_register & 0x08) == 0x08 )
590 604 {
591 605 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xf7;
592 606 }
593 607 else
594 608 {
595 609 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x08;
596 610 }
597 611 }
598 612
599 613 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
600 614 {
601 615 int linkStatus;
602 616 rtems_status_code status;
603 617
604 618 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
605 619
606 620 if ( linkStatus == 5) {
607 621 PRINTF("in spacewire_reset_link *** link is running\n")
608 622 status = RTEMS_SUCCESSFUL;
609 623 }
610 624 }
@@ -1,145 +1,115
1 1 /*
2 2 * CPU Usage Reporter
3 3 *
4 4 * COPYRIGHT (c) 1989-2009
5 5 * On-Line Applications Research Corporation (OAR).
6 6 *
7 7 * The license and distribution terms for this file may be
8 8 * found in the file LICENSE in this distribution or at
9 9 * http://www.rtems.com/license/LICENSE.
10 10 *
11 11 * $Id$
12 12 */
13 13
14 #ifdef HAVE_CONFIG_H
15 #include "config.h"
16 #endif
17
18 #include <rtems.h>
19
20 #include <assert.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <ctype.h>
25 #include <inttypes.h>
26
27 #include <rtems/cpuuse.h>
28 #include <rtems/bspIo.h>
29
30 14 #include "lfr_cpu_usage_report.h"
31 15
32 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
33 #include <rtems/score/timestamp.h>
34 #endif
35
36 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
37 extern Timestamp_Control CPU_usage_Uptime_at_last_reset;
38 #else
39 extern uint32_t CPU_usage_Ticks_at_last_reset;
40 #endif
41
42 /*PAGE
43 *
44 * rtems_cpu_usage_report
45 */
46
47 16 unsigned char lfr_rtems_cpu_usage_report( void )
48 17 {
49 18 uint32_t api_index;
50 19 Thread_Control *the_thread;
51 20 Objects_Information *information;
52 21 uint32_t ival, fval;
53 22 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
54 Timestamp_Control uptime, total, ran;
23 Timestamp_Control uptime;
24 Timestamp_Control total;
25 Timestamp_Control ran;
55 26 #else
56 27 uint32_t total_units = 0;
57 28 #endif
58 29
59 30 unsigned char cpu_load;
60 31 cpu_load = 0;
61 32
62 33 /*
63 34 * When not using nanosecond CPU usage resolution, we have to count
64 35 * the number of "ticks" we gave credit for to give the user a rough
65 36 * guideline as to what each number means proportionally.
66 37 */
67 38 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
68 39 _TOD_Get_uptime( &uptime );
69 40 _Timestamp_Subtract( &CPU_usage_Uptime_at_last_reset, &uptime, &total );
70 41 #else
71 42 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
72 if ( !_Objects_Information_table[ api_index ] )
43 if ( !_Objects_Information_table[ api_index ] ) { }
44 else
73 45 {
74 continue;
75 }
76 46 information = _Objects_Information_table[ api_index ][ 1 ];
77 if ( information )
47 if ( information != NULL )
78 48 {
79 49 for ( i=1 ; i <= information->maximum ; i++ ) {
80 50 the_thread = (Thread_Control *)information->local_table[ i ];
81 51
82 if ( the_thread )
52 if ( the_thread != NULL )
83 53 total_units += the_thread->cpu_time_used;
84 54 }
85 55 }
86 56 }
57 }
87 58 #endif
88 59
89 60 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ )
90 61 {
91 if ( !_Objects_Information_table[ api_index ] )
62 if ( !_Objects_Information_table[ api_index ] ) { }
63 else
92 64 {
93 continue;
94 }
95 65 information = _Objects_Information_table[ api_index ][ 1 ];
96 if ( information )
66 if ( information != NULL )
97 67 {
98 68 the_thread = (Thread_Control *)information->local_table[ 1 ];
99 69
100 if ( !the_thread )
70 if ( the_thread == NULL ) { }
71 else
101 72 {
102 continue;
103 }
104
105 73 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
106 74 /*
107 75 * If this is the currently executing thread, account for time
108 76 * since the last context switch.
109 77 */
110 78 ran = the_thread->cpu_time_used;
111 79 if ( _Thread_Executing->Object.id == the_thread->Object.id )
112 80 {
113 81 Timestamp_Control used;
114 82 _Timestamp_Subtract(
115 83 &_Thread_Time_of_last_context_switch, &uptime, &used
116 84 );
117 85 _Timestamp_Add_to( &ran, &used );
118 86 }
119 87 _Timestamp_Divide( &ran, &total, &ival, &fval );
120 88
121 89 #else
122 if (total_units)
90 if (total_units != 0)
123 91 {
124 92 uint64_t ival_64;
125 93
126 94 ival_64 = the_thread->cpu_time_used;
127 95 ival_64 *= 100000;
128 96 ival = ival_64 / total_units;
129 97 }
130 98 else
131 99 {
132 100 ival = 0;
133 101 }
134 102
135 103 fval = ival % 1000;
136 104 ival /= 1000;
137 105 #endif
138 106 }
139 107 }
108 }
109 }
140 110 cpu_load = (unsigned char) (100 - ival);
141 111
142 112 return cpu_load;
143 113 }
144 114
145 115
@@ -1,253 +1,255
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf2_prc2.h"
11 11
12 12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13 13
14 14 //***
15 15 // F2
16 16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
17 17 ring_node_asm asm_ring_burst_sbm_f2[ NB_RING_NODES_ASM_BURST_SBM_F2 ];
18 18
19 19 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
20 20 char asm_f2_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
21 21 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
22 22 float compressed_sm_sbm_f2 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 ];
23 23
24 24 //************
25 25 // RTEMS TASKS
26 26
27 27 //***
28 28 // F2
29 29 rtems_task avf2_task( rtems_task_argument argument )
30 30 {
31 31 rtems_event_set event_out;
32 32 rtems_status_code status;
33 33 rtems_id queue_id_prc2;
34 34 asm_msg msgForMATR;
35 35 ring_node_asm *current_ring_node_asm_norm_f2;
36 36
37 37 unsigned int nb_norm_bp1;
38 38 unsigned int nb_norm_bp2;
39 39 unsigned int nb_norm_asm;
40 40
41 41 nb_norm_bp1 = 0;
42 42 nb_norm_bp2 = 0;
43 43 nb_norm_asm = 0;
44 44
45 45 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
46 46 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
47 47 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
48 48
49 49 BOOT_PRINTF("in AVF2 ***\n")
50 50
51 51 status = get_message_queue_id_prc2( &queue_id_prc2 );
52 52 if (status != RTEMS_SUCCESSFUL)
53 53 {
54 54 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
55 55 }
56 56
57 57 while(1){
58 58 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
59 59
60 60 //****************************************
61 61 // initialize the mesage for the MATR task
62 62 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
63 63 msgForMATR.burst_sbm = NULL;
64 64 msgForMATR.norm = current_ring_node_asm_norm_f2;
65 65 msgForMATR.coarseTime = ring_node_for_averaging_sm_f2->coarseTime;
66 66 msgForMATR.fineTime = ring_node_for_averaging_sm_f2->fineTime;
67 67 //
68 68 //****************************************
69 69
70 70 // compute the average and store it in the averaged_sm_f2 buffer
71 71 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
72 72 ring_node_for_averaging_sm_f2,
73 73 nb_norm_bp1 );
74 74
75 75 // update nb_average
76 76 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
77 77 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
78 78 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
79 79
80 80 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
81 81 {
82 82 nb_norm_bp1 = 0;
83 83 // set another ring for the ASM storage
84 84 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
85 85 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
86 86 || (lfrCurrentMode == LFR_MODE_SBM2) )
87 87 {
88 88 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
89 89 }
90 90 }
91 91
92 92 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
93 93 {
94 94 nb_norm_bp2 = 0;
95 95 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
96 96 || (lfrCurrentMode == LFR_MODE_SBM2) )
97 97 {
98 98 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
99 99 }
100 100 }
101 101
102 102 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
103 103 {
104 104 nb_norm_asm = 0;
105 105 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
106 106 || (lfrCurrentMode == LFR_MODE_SBM2) )
107 107 {
108 108 // PRINTF1("%lld\n", localTime)
109 109 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
110 110 }
111 111 }
112 112
113 113 //*************************
114 114 // send the message to MATR
115 115 if (msgForMATR.event != 0x00)
116 116 {
117 117 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
118 118 }
119 119
120 120 if (status != RTEMS_SUCCESSFUL) {
121 121 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
122 122 }
123 123 }
124 124 }
125 125
126 126 rtems_task prc2_task( rtems_task_argument argument )
127 127 {
128 128 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
129 129 size_t size; // size of the incoming TC packet
130 130 asm_msg *incomingMsg;
131 131 //
132 132 spw_ioctl_pkt_send spw_ioctl_send_ASM;
133 133 rtems_status_code status;
134 134 rtems_id queue_id;
135 135 rtems_id queue_id_q_p2;
136 136 Header_TM_LFR_SCIENCE_ASM_t headerASM;
137 137 bp_packet packet_norm_bp1_f2;
138 138 bp_packet packet_norm_bp2_f2;
139 139
140 140 unsigned long long int localTime;
141 141
142 incomingMsg = NULL;
143
142 144 ASM_init_header( &headerASM );
143 145
144 146 //*************
145 147 // NORM headers
146 148 BP_init_header( &packet_norm_bp1_f2.header,
147 149 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
148 150 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
149 151 BP_init_header( &packet_norm_bp2_f2.header,
150 152 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
151 153 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
152 154
153 155 status = get_message_queue_id_send( &queue_id );
154 156 if (status != RTEMS_SUCCESSFUL)
155 157 {
156 158 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
157 159 }
158 160 status = get_message_queue_id_prc2( &queue_id_q_p2);
159 161 if (status != RTEMS_SUCCESSFUL)
160 162 {
161 163 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
162 164 }
163 165
164 166 BOOT_PRINTF("in PRC2 ***\n")
165 167
166 168 while(1){
167 169 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
168 170 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
169 171
170 172 incomingMsg = (asm_msg*) incomingData;
171 173
172 174 localTime = getTimeAsUnsignedLongLongInt( );
173 175
174 176 //*****
175 177 //*****
176 178 // NORM
177 179 //*****
178 180 //*****
179 181 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
180 182 {
181 183 // 1) compress the matrix for Basic Parameters calculation
182 184 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f2,
183 185 nb_sm_before_f2.norm_bp1,
184 186 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
185 187 ASM_F2_INDICE_START );
186 188 // 2) compute the BP1 set
187 189
188 190 // 3) send the BP1 set
189 191 set_time( packet_norm_bp1_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
190 192 set_time( packet_norm_bp1_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
191 193 BP_send( (char *) &packet_norm_bp1_f2, queue_id,
192 194 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
193 195 SID_NORM_BP1_F2 );
194 196 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
195 197 {
196 198 // 1) compute the BP2 set using the same ASM as the one used for BP1
197 199
198 200 // 2) send the BP2 set
199 201 set_time( packet_norm_bp2_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
200 202 set_time( packet_norm_bp2_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
201 203 BP_send( (char *) &packet_norm_bp2_f2, queue_id,
202 204 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
203 205 SID_NORM_BP2_F2 );
204 206 }
205 207 }
206 208
207 209 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
208 210 {
209 211 // 1) reorganize the ASM and divide
210 212 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
211 213 asm_f2_reorganized,
212 214 nb_sm_before_f2.norm_bp1 );
213 215 // 2) convert the float array in a char array
214 216 ASM_convert( asm_f2_reorganized, asm_f2_char);
215 217 // 3) send the spectral matrix packets
216 218 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
217 219 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
218 220 ASM_send( &headerASM, asm_f2_char, SID_NORM_ASM_F2, &spw_ioctl_send_ASM, queue_id);
219 221 }
220 222
221 223 }
222 224 }
223 225
224 226 //**********
225 227 // FUNCTIONS
226 228
227 229 void reset_nb_sm_f2( void )
228 230 {
229 231 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
230 232 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
231 233 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
232 234 }
233 235
234 236 void SM_average_f2( float *averaged_spec_mat_f2,
235 237 ring_node_sm *ring_node,
236 238 unsigned int nbAverageNormF2 )
237 239 {
238 240 float sum;
239 241 unsigned int i;
240 242
241 243 for(i=0; i<TOTAL_SIZE_SM; i++)
242 244 {
243 245 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
244 246 if ( (nbAverageNormF2 == 0) )
245 247 {
246 248 averaged_spec_mat_f2[ i ] = sum;
247 249 }
248 250 else
249 251 {
250 252 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
251 253 }
252 254 }
253 255 }
@@ -1,689 +1,696
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12
13 13 unsigned int nb_sm_f0;
14 14 unsigned int nb_sm_f0_aux_f1;
15 15 unsigned int nb_sm_f1;
16 16 unsigned int nb_sm_f0_aux_f2;
17 17
18 18 //************************
19 19 // spectral matrices rings
20 20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 23 ring_node_sm *current_ring_node_sm_f0;
24 24 ring_node_sm *current_ring_node_sm_f1;
25 25 ring_node_sm *current_ring_node_sm_f2;
26 26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 28 ring_node_sm *ring_node_for_averaging_sm_f2;
29 29
30 30 //***********************************************************
31 31 // Interrupt Service Routine for spectral matrices processing
32 32
33 33 void spectral_matrices_isr_f0( void )
34 34 {
35 35 unsigned char status;
36 36 unsigned long long int time_0;
37 37 unsigned long long int time_1;
38 38 unsigned long long int syncBit0;
39 39 unsigned long long int syncBit1;
40 40
41 41 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
42 42
43 43 time_0 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_0_coarse_time );
44 44 time_1 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_1_coarse_time );
45 45 syncBit0 = ( (unsigned long long int) (spectral_matrix_regs->f0_0_coarse_time & 0x80000000) ) << 16;
46 46 syncBit1 = ( (unsigned long long int) (spectral_matrix_regs->f0_1_coarse_time & 0x80000000) ) << 16;
47 47
48 48 switch(status)
49 49 {
50 50 case 0:
51 51 break;
52 52 case 3:
53 53 if ( time_0 < time_1 )
54 54 {
55 55 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
56 56 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
57 57 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
58 58 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
59 59 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
60 60 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
61 61 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
62 62 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
63 63 }
64 64 else
65 65 {
66 66 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
67 67 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
68 68 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
69 69 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
70 70 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
71 71 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
72 72 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
73 73 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
74 74 }
75 75 spectral_matrix_regs->status = 0x03; // [0011]
76 76 break;
77 77 case 1:
78 78 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
79 79 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
80 80 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
81 81 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
82 82 spectral_matrix_regs->status = 0x01; // [0001]
83 83 break;
84 84 case 2:
85 85 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
86 86 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
87 87 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
88 88 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
89 89 spectral_matrix_regs->status = 0x02; // [0010]
90 90 break;
91 91 }
92 92 }
93 93
94 94 void spectral_matrices_isr_f1( void )
95 95 {
96 96 unsigned char status;
97 97 unsigned long long int time;
98 98 unsigned long long int syncBit;
99 rtems_status_code status_code;
99 100
100 101 status = (spectral_matrix_regs->status & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
101 102
102 103 switch(status)
103 104 {
104 105 case 0:
105 106 break;
106 107 case 3:
107 108 // UNEXPECTED VALUE
108 109 spectral_matrix_regs->status = 0xc0; // [1100]
109 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
110 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
110 111 break;
111 112 case 1:
112 113 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_0_coarse_time );
113 114 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_0_coarse_time & 0x80000000) ) << 16;
114 115 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
115 116 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
116 117 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
117 118 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
118 119 spectral_matrix_regs->status = 0x04; // [0100]
119 120 break;
120 121 case 2:
121 122 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_1_coarse_time );
122 123 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_1_coarse_time & 0x80000000) ) << 16;
123 124 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
124 125 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
125 126 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
126 127 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
127 128 spectral_matrix_regs->status = 0x08; // [1000]
128 129 break;
129 130 }
130 131 }
131 132
132 133 void spectral_matrices_isr_f2( void )
133 134 {
134 135 unsigned char status;
136 rtems_status_code status_code;
135 137
136 138 status = (spectral_matrix_regs->status & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
137 139
138 140 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
139 141
140 142 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
141 143
142 144 switch(status)
143 145 {
144 146 case 0:
145 147 break;
146 148 case 3:
147 149 // UNEXPECTED VALUE
148 150 spectral_matrix_regs->status = 0x30; // [0011 0000]
149 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
151 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
150 152 break;
151 153 case 1:
152 154 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
153 155 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
154 156 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
155 157 spectral_matrix_regs->status = 0x10; // [0001 0000]
156 158 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
157 159 {
158 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
160 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
159 161 }
160 162 break;
161 163 case 2:
162 164 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
163 165 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
164 166 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
165 167 spectral_matrix_regs->status = 0x20; // [0010 0000]
166 168 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
167 169 {
168 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
170 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
169 171 }
170 172 break;
171 173 }
172 174 }
173 175
174 176 void spectral_matrix_isr_error_handler( void )
175 177 {
178 rtems_status_code status_code;
179
176 180 if (spectral_matrix_regs->status & 0x7c0) // [0111 1100 0000]
177 181 {
178 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
182 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
179 183 }
180 184 }
181 185
182 186 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
183 187 {
184 188 // STATUS REGISTER
185 189 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
186 190 // 10 9 8
187 191 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
188 192 // 7 6 5 4 3 2 1 0
189 193
190 194 spectral_matrices_isr_f0();
191 195
192 196 spectral_matrices_isr_f1();
193 197
194 198 spectral_matrices_isr_f2();
195 199
196 200 // spectral_matrix_isr_error_handler();
197 201 }
198 202
199 203 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
200 204 {
205 rtems_status_code status_code;
206
201 207 //***
202 208 // F0
203 209 nb_sm_f0 = nb_sm_f0 + 1;
204 210 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
205 211 {
206 212 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
207 213 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 214 {
209 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
215 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 216 }
211 217 nb_sm_f0 = 0;
212 218 }
213 219
214 220 //***
215 221 // F1
216 222 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
217 223 if (nb_sm_f0_aux_f1 == 6)
218 224 {
219 225 nb_sm_f0_aux_f1 = 0;
220 226 nb_sm_f1 = nb_sm_f1 + 1;
221 227 }
222 228 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
223 229 {
224 230 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
225 231 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
226 232 {
227 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
233 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
228 234 }
229 235 nb_sm_f1 = 0;
230 236 }
231 237
232 238 //***
233 239 // F2
234 240 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
235 241 if (nb_sm_f0_aux_f2 == 96)
236 242 {
237 243 nb_sm_f0_aux_f2 = 0;
238 244 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
239 245 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
240 246 {
241 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
247 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
242 248 }
243 249 }
244 250 }
245 251
246 252 //******************
247 253 // Spectral Matrices
248 254
249 255 void reset_nb_sm( void )
250 256 {
251 257 nb_sm_f0 = 0;
252 258 nb_sm_f0_aux_f1 = 0;
253 259 nb_sm_f0_aux_f2 = 0;
254 260
255 261 nb_sm_f1 = 0;
256 262 }
257 263
258 264 void SM_init_rings( void )
259 265 {
260 266 unsigned char i;
261 267
262 268 // F0 RING
263 269 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
264 270 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
265 271 sm_ring_f0[0].buffer_address =
266 272 (int) &sm_f0[ 0 ];
267 273
268 274 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
269 275 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
270 276 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
271 277 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
272 278
273 279 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
274 280 {
275 281 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
276 282 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
277 283 sm_ring_f0[i].buffer_address =
278 284 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
279 285 }
280 286
281 287 // F1 RING
282 288 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
283 289 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
284 290 sm_ring_f1[0].buffer_address =
285 291 (int) &sm_f1[ 0 ];
286 292
287 293 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
288 294 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
289 295 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
290 296 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
291 297
292 298 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
293 299 {
294 300 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
295 301 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
296 302 sm_ring_f1[i].buffer_address =
297 303 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
298 304 }
299 305
300 306 // F2 RING
301 307 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
302 308 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
303 309 sm_ring_f2[0].buffer_address =
304 310 (int) &sm_f2[ 0 ];
305 311
306 312 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
307 313 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
308 314 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
309 315 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
310 316
311 317 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
312 318 {
313 319 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
314 320 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
315 321 sm_ring_f2[i].buffer_address =
316 322 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
317 323 }
318 324
319 325 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
320 326 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
321 327 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
322 328
323 329 spectral_matrix_regs->f0_0_address = sm_ring_f0[0].buffer_address;
324 330 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->f0_0_address)
325 331 }
326 332
327 333 void SM_generic_init_ring( ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] )
328 334 {
329 335 unsigned char i;
330 336
331 337 //***************
332 338 // BUFFER ADDRESS
333 339 for(i=0; i<nbNodes; i++)
334 340 {
335 341 ring[ i ].buffer_address = (int) &sm_f[ i * TOTAL_SIZE_SM ];
336 342 }
337 343
338 344 //*****
339 345 // NEXT
340 346 ring[ nbNodes - 1 ].next = (ring_node_sm*) &ring[ 0 ];
341 347 for(i=0; i<nbNodes-1; i++)
342 348 {
343 349 ring[ i ].next = (ring_node_sm*) &ring[ i + 1 ];
344 350 }
345 351
346 352 //*********
347 353 // PREVIOUS
348 354 ring[ 0 ].previous = (ring_node_sm*) &ring[ nbNodes -1 ];
349 355 for(i=1; i<nbNodes; i++)
350 356 {
351 357 ring[ i ].previous = (ring_node_sm*) &ring[ i - 1 ];
352 358 }
353 359 }
354 360
355 361 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
356 362 {
357 363 unsigned char i;
358 364
359 365 ring[ nbNodes - 1 ].next
360 366 = (ring_node_asm*) &ring[ 0 ];
361 367
362 368 for(i=0; i<nbNodes-1; i++)
363 369 {
364 370 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
365 371 }
366 372 }
367 373
368 374 void SM_reset_current_ring_nodes( void )
369 375 {
370 376 current_ring_node_sm_f0 = sm_ring_f0[0].next;
371 377 current_ring_node_sm_f1 = sm_ring_f1[0].next;
372 378 current_ring_node_sm_f2 = sm_ring_f2[0].next;
373 379
374 380 ring_node_for_averaging_sm_f0 = sm_ring_f0;
375 381 ring_node_for_averaging_sm_f1 = sm_ring_f1;
376 382 ring_node_for_averaging_sm_f2 = sm_ring_f2;
377 383 }
378 384
379 385 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
380 386 {
381 387 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
382 388 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
383 389 header->reserved = 0x00;
384 390 header->userApplication = CCSDS_USER_APP;
385 391 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
386 392 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
387 393 header->packetSequenceControl[0] = 0xc0;
388 394 header->packetSequenceControl[1] = 0x00;
389 395 header->packetLength[0] = 0x00;
390 396 header->packetLength[1] = 0x00;
391 397 // DATA FIELD HEADER
392 398 header->spare1_pusVersion_spare2 = 0x10;
393 399 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
394 400 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
395 401 header->destinationID = TM_DESTINATION_ID_GROUND;
396 402 // AUXILIARY DATA HEADER
397 403 header->sid = 0x00;
398 404 header->biaStatusInfo = 0x00;
399 405 header->pa_lfr_pkt_cnt_asm = 0x00;
400 406 header->pa_lfr_pkt_nr_asm = 0x00;
401 407 header->time[0] = 0x00;
402 408 header->time[0] = 0x00;
403 409 header->time[0] = 0x00;
404 410 header->time[0] = 0x00;
405 411 header->time[0] = 0x00;
406 412 header->time[0] = 0x00;
407 413 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
408 414 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
409 415 }
410 416
411 417 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
412 418 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
413 419 {
414 420 unsigned int i;
415 421 unsigned int length = 0;
416 422 rtems_status_code status;
417 423
418 424 for (i=0; i<2; i++)
419 425 {
420 426 // (1) BUILD THE DATA
421 427 switch(sid)
422 428 {
423 429 case SID_NORM_ASM_F0:
424 430 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
425 431 spw_ioctl_send->data = &spectral_matrix[
426 432 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
427 433 ];
428 434 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
429 435 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
430 436 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
431 437 break;
432 438 case SID_NORM_ASM_F1:
433 439 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
434 440 spw_ioctl_send->data = &spectral_matrix[
435 441 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
436 442 ];
437 443 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
438 444 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
439 445 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
440 446 break;
441 447 case SID_NORM_ASM_F2:
442 448 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
443 449 spw_ioctl_send->data = &spectral_matrix[
444 450 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
445 451 ];
446 452 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
447 453 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
448 454 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
449 455 break;
450 456 default:
451 457 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
452 458 break;
453 459 }
454 460 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
455 461 spw_ioctl_send->hdr = (char *) header;
456 462 spw_ioctl_send->options = 0;
457 463
458 464 // (2) BUILD THE HEADER
459 465 increment_seq_counter_source_id( header->packetSequenceControl, sid );
460 466 header->packetLength[0] = (unsigned char) (length>>8);
461 467 header->packetLength[1] = (unsigned char) (length);
462 468 header->sid = (unsigned char) sid; // SID
463 469 header->pa_lfr_pkt_cnt_asm = 2;
464 470 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
465 471
466 472 // (3) SET PACKET TIME
467 473 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
468 474 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
469 475 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
470 476 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
471 477 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
472 478 header->time[5] = (unsigned char) (time_management_regs->fine_time);
473 479 //
474 480 header->acquisitionTime[0] = header->time[0];
475 481 header->acquisitionTime[1] = header->time[1];
476 482 header->acquisitionTime[2] = header->time[2];
477 483 header->acquisitionTime[3] = header->time[3];
478 484 header->acquisitionTime[4] = header->time[4];
479 485 header->acquisitionTime[5] = header->time[5];
480 486
481 487 // (4) SEND PACKET
482 488 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
483 489 if (status != RTEMS_SUCCESSFUL) {
484 490 printf("in ASM_send *** ERR %d\n", (int) status);
485 491 }
486 492 }
487 493 }
488 494
489 495 //*****************
490 496 // Basic Parameters
491 497
492 498 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
493 499 unsigned int apid, unsigned char sid,
494 500 unsigned int packetLength, unsigned char blkNr )
495 501 {
496 502 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
497 503 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
498 504 header->reserved = 0x00;
499 505 header->userApplication = CCSDS_USER_APP;
500 506 header->packetID[0] = (unsigned char) (apid >> 8);
501 507 header->packetID[1] = (unsigned char) (apid);
502 508 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
503 509 header->packetSequenceControl[1] = 0x00;
504 510 header->packetLength[0] = (unsigned char) (packetLength >> 8);
505 511 header->packetLength[1] = (unsigned char) (packetLength);
506 512 // DATA FIELD HEADER
507 513 header->spare1_pusVersion_spare2 = 0x10;
508 514 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
509 515 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
510 516 header->destinationID = TM_DESTINATION_ID_GROUND;
511 517 // AUXILIARY DATA HEADER
512 518 header->sid = sid;
513 519 header->biaStatusInfo = 0x00;
514 520 header->time[0] = 0x00;
515 521 header->time[0] = 0x00;
516 522 header->time[0] = 0x00;
517 523 header->time[0] = 0x00;
518 524 header->time[0] = 0x00;
519 525 header->time[0] = 0x00;
520 526 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
521 527 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
522 528 }
523 529
524 530 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
525 531 unsigned int apid, unsigned char sid,
526 532 unsigned int packetLength , unsigned char blkNr)
527 533 {
528 534 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
529 535 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
530 536 header->reserved = 0x00;
531 537 header->userApplication = CCSDS_USER_APP;
532 538 header->packetID[0] = (unsigned char) (apid >> 8);
533 539 header->packetID[1] = (unsigned char) (apid);
534 540 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
535 541 header->packetSequenceControl[1] = 0x00;
536 542 header->packetLength[0] = (unsigned char) (packetLength >> 8);
537 543 header->packetLength[1] = (unsigned char) (packetLength);
538 544 // DATA FIELD HEADER
539 545 header->spare1_pusVersion_spare2 = 0x10;
540 546 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
541 547 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
542 548 header->destinationID = TM_DESTINATION_ID_GROUND;
543 549 // AUXILIARY DATA HEADER
544 550 header->sid = sid;
545 551 header->biaStatusInfo = 0x00;
546 552 header->time[0] = 0x00;
547 553 header->time[0] = 0x00;
548 554 header->time[0] = 0x00;
549 555 header->time[0] = 0x00;
550 556 header->time[0] = 0x00;
551 557 header->time[0] = 0x00;
552 558 header->source_data_spare = 0x00;
553 559 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
554 560 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
555 561 }
556 562
557 563 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
558 564 {
559 565 rtems_status_code status;
560 566
561 567 // SET THE SEQUENCE_CNT PARAMETER
562 568 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
563 569 // SEND PACKET
564 570 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
565 571 if (status != RTEMS_SUCCESSFUL)
566 572 {
567 573 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
568 574 }
569 575 }
570 576
571 577 //******************
572 578 // general functions
573 579
574 580 void reset_spectral_matrix_regs( void )
575 581 {
576 582 /** This function resets the spectral matrices module registers.
577 583 *
578 584 * The registers affected by this function are located at the following offset addresses:
579 585 *
580 586 * - 0x00 config
581 587 * - 0x04 status
582 588 * - 0x08 matrixF0_Address0
583 589 * - 0x10 matrixFO_Address1
584 590 * - 0x14 matrixF1_Address
585 591 * - 0x18 matrixF2_Address
586 592 *
587 593 */
588 594
589 595 spectral_matrix_regs->config = 0x00;
590 596 spectral_matrix_regs->status = 0x00;
591 597
592 598 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
593 599 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
594 600 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
595 601 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
596 602 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
597 603 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
598 604 }
599 605
600 606 void set_time( unsigned char *time, unsigned char * timeInBuffer )
601 607 {
602 608 time[0] = timeInBuffer[0];
603 609 time[1] = timeInBuffer[1];
604 610 time[2] = timeInBuffer[2];
605 611 time[3] = timeInBuffer[3];
606 612 time[4] = timeInBuffer[6];
607 613 time[5] = timeInBuffer[7];
608 614 }
609 615
610 616 unsigned long long int get_acquisition_time( unsigned char *timePtr )
611 617 {
612 618 unsigned long long int acquisitionTimeAslong;
613 619 acquisitionTimeAslong = 0x00;
614 620 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
615 621 + ( (unsigned long long int) timePtr[1] << 32 )
616 622 + ( (unsigned long long int) timePtr[2] << 24 )
617 623 + ( (unsigned long long int) timePtr[3] << 16 )
618 624 + ( (unsigned long long int) timePtr[6] << 8 )
619 625 + ( (unsigned long long int) timePtr[7] );
620 626 return acquisitionTimeAslong;
621 627 }
622 628
623 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
629 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id avf_task_id,
624 630 ring_node_sm *node_for_averaging, ring_node_sm *ringNode,
625 631 unsigned long long int time )
626 632 {
627 633 unsigned char *timePtr;
628 634 unsigned char *coarseTimePtr;
629 635 unsigned char *fineTimePtr;
636 rtems_status_code status_code;
630 637
631 638 timePtr = (unsigned char *) &time;
632 639 coarseTimePtr = (unsigned char *) &node_for_averaging->coarseTime;
633 640 fineTimePtr = (unsigned char *) &node_for_averaging->fineTime;
634 641
635 642 *nb_sm = *nb_sm + 1;
636 643 if (*nb_sm == nb_sm_before_avf)
637 644 {
638 645 node_for_averaging = ringNode;
639 646 coarseTimePtr[0] = timePtr[2];
640 647 coarseTimePtr[1] = timePtr[3];
641 648 coarseTimePtr[2] = timePtr[4];
642 649 coarseTimePtr[3] = timePtr[5];
643 650 fineTimePtr[2] = timePtr[6];
644 651 fineTimePtr[3] = timePtr[7];
645 if (rtems_event_send( task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
652 if (rtems_event_send( avf_task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
646 653 {
647 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
654 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
648 655 }
649 656 *nb_sm = 0;
650 657 }
651 658 }
652 659
653 660 unsigned char getSID( rtems_event_set event )
654 661 {
655 662 unsigned char sid;
656 663
657 664 rtems_event_set eventSetBURST;
658 665 rtems_event_set eventSetSBM;
659 666
660 667 //******
661 668 // BURST
662 669 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
663 670 | RTEMS_EVENT_BURST_BP1_F1
664 671 | RTEMS_EVENT_BURST_BP2_F0
665 672 | RTEMS_EVENT_BURST_BP2_F1;
666 673
667 674 //****
668 675 // SBM
669 676 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
670 677 | RTEMS_EVENT_SBM_BP1_F1
671 678 | RTEMS_EVENT_SBM_BP2_F0
672 679 | RTEMS_EVENT_SBM_BP2_F1;
673 680
674 681 if (event & eventSetBURST)
675 682 {
676 683 sid = SID_BURST_BP1_F0;
677 684 }
678 685 else if (event & eventSetSBM)
679 686 {
680 687 sid = SID_SBM1_BP1_F0;
681 688 }
682 689 else
683 690 {
684 691 sid = 0;
685 692 }
686 693
687 694 return sid;
688 695 }
689 696
@@ -1,948 +1,949
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 165 unsigned char * bytePosPtr;
166 166
167 167 bytePosPtr = (unsigned char *) &TC->packetID;
168 168
169 169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 172
173 173 status = check_mode_value( requestedMode );
174 174
175 175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 176 {
177 177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 178 }
179 179 else // the mode value is consistent, check the transition
180 180 {
181 181 status = check_mode_transition(requestedMode);
182 182 if (status != LFR_SUCCESSFUL)
183 183 {
184 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 186 }
187 187 }
188 188
189 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 190 {
191 191 status = check_transition_date( transitionCoarseTime );
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 198 }
199 199 }
200 200
201 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 202 {
203 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 204 status = enter_mode( requestedMode, transitionCoarseTime );
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 211 {
212 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 216 *
217 217 * @return LFR directive status code:
218 218 * - LFR_DEFAULT
219 219 * - LFR_SUCCESSFUL
220 220 *
221 221 */
222 222
223 223 unsigned int val;
224 224 int result;
225 225 unsigned int status;
226 226 unsigned char mode;
227 227 unsigned char * bytePosPtr;
228 228
229 229 bytePosPtr = (unsigned char *) &TC->packetID;
230 230
231 231 // check LFR mode
232 232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 233 status = check_update_info_hk_lfr_mode( mode );
234 234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 235 {
236 236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 237 status = check_update_info_hk_tds_mode( mode );
238 238 }
239 239 if (status == LFR_SUCCESSFUL) // check THR mode
240 240 {
241 241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 242 status = check_update_info_hk_thr_mode( mode );
243 243 }
244 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 245 {
246 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 248 val++;
249 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 251 }
252 252
253 253 result = status;
254 254
255 255 return result;
256 256 }
257 257
258 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 259 {
260 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 261 *
262 262 * @param TC points to the TeleCommand packet that is being processed
263 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 264 *
265 265 */
266 266
267 267 int result;
268 268 unsigned char lfrMode;
269 269
270 270 result = LFR_DEFAULT;
271 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 272
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275
276 276 return result;
277 277 }
278 278
279 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 */
287 287
288 288 int result;
289 289 unsigned char lfrMode;
290 290
291 291 result = LFR_DEFAULT;
292 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 293
294 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 295 result = LFR_DEFAULT;
296 296
297 297 return result;
298 298 }
299 299
300 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 301 {
302 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 303 *
304 304 * @param TC points to the TeleCommand packet that is being processed
305 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 306 *
307 307 * @return LFR_SUCCESSFUL
308 308 *
309 309 */
310 310
311 311 unsigned int val;
312 312
313 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 314 + (TC->dataAndCRC[1] << 16)
315 315 + (TC->dataAndCRC[2] << 8)
316 316 + TC->dataAndCRC[3];
317 317
318 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319 319
320 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 322 val++;
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326 325
327 326 return LFR_SUCCESSFUL;
328 327 }
329 328
330 329 //*******************
331 330 // ENTERING THE MODES
332 331 int check_mode_value( unsigned char requestedMode )
333 332 {
334 333 int status;
335 334
336 335 if ( (requestedMode != LFR_MODE_STANDBY)
337 336 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 337 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 338 {
340 339 status = LFR_DEFAULT;
341 340 }
342 341 else
343 342 {
344 343 status = LFR_SUCCESSFUL;
345 344 }
346 345
347 346 return status;
348 347 }
349 348
350 349 int check_mode_transition( unsigned char requestedMode )
351 350 {
352 351 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 352 *
354 353 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 354 *
356 355 * @return LFR directive status codes:
357 356 * - LFR_SUCCESSFUL - the transition is authorized
358 357 * - LFR_DEFAULT - the transition is not authorized
359 358 *
360 359 */
361 360
362 361 int status;
363 362
364 363 switch (requestedMode)
365 364 {
366 365 case LFR_MODE_STANDBY:
367 366 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 367 status = LFR_DEFAULT;
369 368 }
370 369 else
371 370 {
372 371 status = LFR_SUCCESSFUL;
373 372 }
374 373 break;
375 374 case LFR_MODE_NORMAL:
376 375 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 376 status = LFR_DEFAULT;
378 377 }
379 378 else {
380 379 status = LFR_SUCCESSFUL;
381 380 }
382 381 break;
383 382 case LFR_MODE_BURST:
384 383 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 384 status = LFR_DEFAULT;
386 385 }
387 386 else {
388 387 status = LFR_SUCCESSFUL;
389 388 }
390 389 break;
391 390 case LFR_MODE_SBM1:
392 391 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 392 status = LFR_DEFAULT;
394 393 }
395 394 else {
396 395 status = LFR_SUCCESSFUL;
397 396 }
398 397 break;
399 398 case LFR_MODE_SBM2:
400 399 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 400 status = LFR_DEFAULT;
402 401 }
403 402 else {
404 403 status = LFR_SUCCESSFUL;
405 404 }
406 405 break;
407 406 default:
408 407 status = LFR_DEFAULT;
409 408 break;
410 409 }
411 410
412 411 return status;
413 412 }
414 413
415 414 int check_transition_date( unsigned int transitionCoarseTime )
416 415 {
417 416 int status;
418 417 unsigned int localCoarseTime;
419 418 unsigned int deltaCoarseTime;
420 419
421 420 status = LFR_SUCCESSFUL;
422 421
423 422 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 423 {
425 424 status = LFR_SUCCESSFUL;
426 425 }
427 426 else
428 427 {
429 428 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430 429
431 430 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 431 {
433 432 status = LFR_DEFAULT;
434 433 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 434 }
436 435
437 436 if (status == LFR_SUCCESSFUL)
438 437 {
439 438 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 439 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 440 {
442 441 status = LFR_DEFAULT;
443 442 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 443 }
445 444 }
446 445 }
447 446
448 447 return status;
449 448 }
450 449
451 450 int stop_current_mode( void )
452 451 {
453 452 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 453 *
455 454 * @return RTEMS directive status codes:
456 455 * - RTEMS_SUCCESSFUL - task restarted successfully
457 456 * - RTEMS_INVALID_ID - task id invalid
458 457 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 458 *
460 459 */
461 460
462 461 rtems_status_code status;
463 462
464 463 status = RTEMS_SUCCESSFUL;
465 464
466 465 // (1) mask interruptions
467 466 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 467 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 468
470 469 // (2) clear interruptions
471 470 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 471 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473 472
474 473 // (3) reset waveform picker registers
475 474 reset_wfp_burst_enable(); // reset burst and enable bits
476 475 reset_wfp_status(); // reset all the status bits
477 476
478 477 // (4) reset spectral matrices registers
479 478 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 479 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 480 reset_extractSWF(); // reset the extractSWF flag to false
482 481
483 482 // <Spectral Matrices simulator>
484 483 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 484 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 485 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 486 // </Spectral Matrices simulator>
488 487
489 488 // suspend several tasks
490 489 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 490 status = suspend_science_tasks();
492 491 }
493 492
494 493 if (status != RTEMS_SUCCESSFUL)
495 494 {
496 495 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 496 }
498 497
499 498 return status;
500 499 }
501 500
502 501 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 502 {
504 503 /** This function is launched after a mode transition validation.
505 504 *
506 505 * @param mode is the mode in which LFR will be put.
507 506 *
508 507 * @return RTEMS directive status codes:
509 508 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 509 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 510 *
512 511 */
513 512
514 513 rtems_status_code status;
515 514
516 515 //**********************
517 516 // STOP THE CURRENT MODE
518 517 status = stop_current_mode();
519 518 if (status != RTEMS_SUCCESSFUL)
520 519 {
521 520 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 521 }
523 522
524 523 //*************************
525 524 // ENTER THE REQUESTED MODE
526 525 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 526 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 527 {
529 528 #ifdef PRINT_TASK_STATISTICS
530 529 rtems_cpu_usage_reset();
531 530 maxCount = 0;
532 531 #endif
533 532 status = restart_science_tasks( mode );
534 533 launch_waveform_picker( mode, transitionCoarseTime );
535 534 launch_spectral_matrix( );
536 535 // launch_spectral_matrix_simu( );
537 536 }
538 537 else if ( mode == LFR_MODE_STANDBY )
539 538 {
540 539 #ifdef PRINT_TASK_STATISTICS
541 540 rtems_cpu_usage_report();
542 541 #endif
543 542
544 543 #ifdef PRINT_STACK_REPORT
545 544 PRINTF("stack report selected\n")
546 545 rtems_stack_checker_report_usage();
547 546 #endif
548 547 PRINTF1("maxCount = %d\n", maxCount)
549 548 }
550 549 else
551 550 {
552 551 status = RTEMS_UNSATISFIED;
553 552 }
554 553
555 554 if (status != RTEMS_SUCCESSFUL)
556 555 {
557 556 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 557 status = RTEMS_UNSATISFIED;
559 558 }
560 559
561 560 return status;
562 561 }
563 562
564 563 int restart_science_tasks(unsigned char lfrRequestedMode )
565 564 {
566 565 /** This function is used to restart all science tasks.
567 566 *
568 567 * @return RTEMS directive status codes:
569 568 * - RTEMS_SUCCESSFUL - task restarted successfully
570 569 * - RTEMS_INVALID_ID - task id invalid
571 570 * - RTEMS_INCORRECT_STATE - task never started
572 571 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 572 *
574 573 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 574 *
576 575 */
577 576
578 577 rtems_status_code status[10];
579 578 rtems_status_code ret;
580 579
581 580 ret = RTEMS_SUCCESSFUL;
582 581
583 582 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 583 if (status[0] != RTEMS_SUCCESSFUL)
585 584 {
586 585 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 586 }
588 587
589 588 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 589 if (status[1] != RTEMS_SUCCESSFUL)
591 590 {
592 591 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 592 }
594 593
595 594 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 595 if (status[2] != RTEMS_SUCCESSFUL)
597 596 {
598 597 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 598 }
600 599
601 600 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 601 if (status[3] != RTEMS_SUCCESSFUL)
603 602 {
604 603 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 604 }
606 605
607 606 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 607 if (status[4] != RTEMS_SUCCESSFUL)
609 608 {
610 609 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 610 }
612 611
613 612 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 613 if (status[5] != RTEMS_SUCCESSFUL)
615 614 {
616 615 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 616 }
618 617
619 618 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 619 if (status[6] != RTEMS_SUCCESSFUL)
621 620 {
622 621 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 622 }
624 623
625 624 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 625 if (status[7] != RTEMS_SUCCESSFUL)
627 626 {
628 627 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 628 }
630 629
631 630 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 631 if (status[8] != RTEMS_SUCCESSFUL)
633 632 {
634 633 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 634 }
636 635
637 636 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 637 if (status[9] != RTEMS_SUCCESSFUL)
639 638 {
640 639 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 640 }
642 641
643 642 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 643 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 644 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 645 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 646 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
648 647 {
649 648 ret = RTEMS_UNSATISFIED;
650 649 }
651 650
652 651 return ret;
653 652 }
654 653
655 654 int suspend_science_tasks()
656 655 {
657 656 /** This function suspends the science tasks.
658 657 *
659 658 * @return RTEMS directive status codes:
660 659 * - RTEMS_SUCCESSFUL - task restarted successfully
661 660 * - RTEMS_INVALID_ID - task id invalid
662 661 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 662 *
664 663 */
665 664
666 665 rtems_status_code status;
667 666
668 667 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 668 if (status != RTEMS_SUCCESSFUL)
670 669 {
671 670 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 671 }
673 672 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 673 {
675 674 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 675 if (status != RTEMS_SUCCESSFUL)
677 676 {
678 677 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 678 }
680 679 }
681 680 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 681 {
683 682 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 683 if (status != RTEMS_SUCCESSFUL)
685 684 {
686 685 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 686 }
688 687 }
689 688 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 689 {
691 690 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 691 if (status != RTEMS_SUCCESSFUL)
693 692 {
694 693 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 694 }
696 695 }
697 696 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 697 {
699 698 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 699 if (status != RTEMS_SUCCESSFUL)
701 700 {
702 701 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 702 }
704 703 }
705 704 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 705 {
707 706 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 707 if (status != RTEMS_SUCCESSFUL)
709 708 {
710 709 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 710 }
712 711 }
713 712 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 713 {
715 714 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 715 if (status != RTEMS_SUCCESSFUL)
717 716 {
718 717 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 718 }
720 719 }
721 720 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 721 {
723 722 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 723 if (status != RTEMS_SUCCESSFUL)
725 724 {
726 725 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 726 }
728 727 }
729 728 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 729 {
731 730 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 731 if (status != RTEMS_SUCCESSFUL)
733 732 {
734 733 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 734 }
736 735 }
737 736 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 737 {
739 738 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 739 if (status != RTEMS_SUCCESSFUL)
741 740 {
742 741 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 742 }
744 743 }
745 744
746 745 return status;
747 746 }
748 747
749 748 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 749 {
751 750 WFP_reset_current_ring_nodes();
752 751 reset_waveform_picker_regs();
753 752 set_wfp_burst_enable_register( mode );
754 753
755 754 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 755 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757 756
758 757 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 758 if (transitionCoarseTime == 0)
760 759 {
761 760 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 761 }
763 762 else
764 763 {
765 764 waveform_picker_regs->start_date = transitionCoarseTime;
766 765 }
766
767 PRINTF1("commutation coarse time = %d\n", transitionCoarseTime)
767 768 }
768 769
769 770 void launch_spectral_matrix( void )
770 771 {
771 772 SM_reset_current_ring_nodes();
772 773 reset_spectral_matrix_regs();
773 774 reset_nb_sm();
774 775
775 776 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 777 grgpio_regs->io_port_direction_register =
777 778 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 779 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 780 set_irq_on_new_ready_matrix( 1 );
780 781 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 782 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 783 set_run_matrix_spectral( 1 );
783 784 }
784 785
785 786 void launch_spectral_matrix_simu( void )
786 787 {
787 788 SM_reset_current_ring_nodes();
788 789 reset_spectral_matrix_regs();
789 790 reset_nb_sm();
790 791
791 792 // Spectral Matrices simulator
792 793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
793 794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
794 795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
795 796 }
796 797
797 798 void set_irq_on_new_ready_matrix( unsigned char value )
798 799 {
799 800 if (value == 1)
800 801 {
801 802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
802 803 }
803 804 else
804 805 {
805 806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
806 807 }
807 808 }
808 809
809 810 void set_run_matrix_spectral( unsigned char value )
810 811 {
811 812 if (value == 1)
812 813 {
813 814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
814 815 }
815 816 else
816 817 {
817 818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
818 819 }
819 820 }
820 821
821 822 //****************
822 823 // CLOSING ACTIONS
823 824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
824 825 {
825 826 /** This function is used to update the HK packets statistics after a successful TC execution.
826 827 *
827 828 * @param TC points to the TC being processed
828 829 * @param time is the time used to date the TC execution
829 830 *
830 831 */
831 832
832 833 unsigned int val;
833 834
834 835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
835 836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
836 837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
837 838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
838 839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
839 840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
840 841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
841 842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
842 843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
843 844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
844 845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
845 846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
846 847
847 848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
848 849 val++;
849 850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
850 851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
851 852 }
852 853
853 854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
854 855 {
855 856 /** This function is used to update the HK packets statistics after a TC rejection.
856 857 *
857 858 * @param TC points to the TC being processed
858 859 * @param time is the time used to date the TC rejection
859 860 *
860 861 */
861 862
862 863 unsigned int val;
863 864
864 865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
865 866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
866 867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
867 868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
868 869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
869 870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
870 871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
871 872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
872 873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
873 874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
874 875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
875 876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
876 877
877 878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
878 879 val++;
879 880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
880 881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
881 882 }
882 883
883 884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
884 885 {
885 886 /** This function is the last step of the TC execution workflow.
886 887 *
887 888 * @param TC points to the TC being processed
888 889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
889 890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
890 891 * @param time is the time used to date the TC execution
891 892 *
892 893 */
893 894
894 895 unsigned char requestedMode;
895 896
896 897 if (result == LFR_SUCCESSFUL)
897 898 {
898 899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
899 900 &
900 901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
901 902 )
902 903 {
903 904 send_tm_lfr_tc_exe_success( TC, queue_id );
904 905 }
905 906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
906 907 {
907 908 //**********************************
908 909 // UPDATE THE LFRMODE LOCAL VARIABLE
909 910 requestedMode = TC->dataAndCRC[1];
910 911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
911 912 updateLFRCurrentMode();
912 913 }
913 914 }
914 915 else if (result == LFR_EXE_ERROR)
915 916 {
916 917 send_tm_lfr_tc_exe_error( TC, queue_id );
917 918 }
918 919 }
919 920
920 921 //***************************
921 922 // Interrupt Service Routines
922 923 rtems_isr commutation_isr1( rtems_vector_number vector )
923 924 {
924 925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
925 926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
926 927 }
927 928 }
928 929
929 930 rtems_isr commutation_isr2( rtems_vector_number vector )
930 931 {
931 932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
932 933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
933 934 }
934 935 }
935 936
936 937 //****************
937 938 // OTHER FUNCTIONS
938 939 void updateLFRCurrentMode()
939 940 {
940 941 /** This function updates the value of the global variable lfrCurrentMode.
941 942 *
942 943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
943 944 *
944 945 */
945 946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
946 947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
947 948 }
948 949
@@ -1,772 +1,772
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 28 set_wfp_data_shaping( );
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43 rtems_status_code status;
44 44
45 45 flag = LFR_SUCCESSFUL;
46 46
47 47 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
48 48 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
49 49 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
50 50 flag = LFR_DEFAULT;
51 51 }
52 52
53 53 // CHECK THE PARAMETERS SET CONSISTENCY
54 54 if (flag == LFR_SUCCESSFUL)
55 55 {
56 56 flag = check_common_par_consistency( TC, queue_id );
57 57 }
58 58
59 59 // SET THE PARAMETERS IF THEY ARE CONSISTENT
60 60 if (flag == LFR_SUCCESSFUL)
61 61 {
62 62 result = set_sy_lfr_n_swf_l( TC );
63 63 result = set_sy_lfr_n_swf_p( TC );
64 64 result = set_sy_lfr_n_bp_p0( TC );
65 65 result = set_sy_lfr_n_bp_p1( TC );
66 66 result = set_sy_lfr_n_asm_p( TC );
67 67 result = set_sy_lfr_n_cwf_long_f3( TC );
68 68 }
69 69
70 70 return flag;
71 71 }
72 72
73 73 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
74 74 {
75 75 /** This function updates the LFR registers with the incoming burst parameters.
76 76 *
77 77 * @param TC points to the TeleCommand packet that is being processed
78 78 * @param queue_id is the id of the queue which handles TM related to this execution step
79 79 *
80 80 */
81 81
82 82 int flag;
83 83 rtems_status_code status;
84 84 unsigned char sy_lfr_b_bp_p0;
85 85 unsigned char sy_lfr_b_bp_p1;
86 86 float aux;
87 87
88 88 flag = LFR_SUCCESSFUL;
89 89
90 90 if ( lfrCurrentMode == LFR_MODE_BURST ) {
91 91 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
92 92 flag = LFR_DEFAULT;
93 93 }
94 94
95 95 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
96 96 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
97 97
98 98 // sy_lfr_b_bp_p0
99 99 if (flag == LFR_SUCCESSFUL)
100 100 {
101 101 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
102 102 {
103 103 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
104 104 flag = WRONG_APP_DATA;
105 105 }
106 106 }
107 107 // sy_lfr_b_bp_p1
108 108 if (flag == LFR_SUCCESSFUL)
109 109 {
110 110 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
111 111 {
112 112 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
113 113 flag = WRONG_APP_DATA;
114 114 }
115 115 }
116 116 //****************************************************************
117 117 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
118 118 if (flag == LFR_SUCCESSFUL)
119 119 {
120 120 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
121 121 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
122 122 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
123 if (aux != 0)
123 if (aux > FLOAT_EQUAL_ZERO)
124 124 {
125 125 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
126 126 flag = LFR_DEFAULT;
127 127 }
128 128 }
129 129
130 130 // SET HTE PARAMETERS
131 131 if (flag == LFR_SUCCESSFUL)
132 132 {
133 133 flag = set_sy_lfr_b_bp_p0( TC );
134 134 flag = set_sy_lfr_b_bp_p1( TC );
135 135 }
136 136
137 137 return flag;
138 138 }
139 139
140 140 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 141 {
142 142 /** This function updates the LFR registers with the incoming sbm1 parameters.
143 143 *
144 144 * @param TC points to the TeleCommand packet that is being processed
145 145 * @param queue_id is the id of the queue which handles TM related to this execution step
146 146 *
147 147 */
148 148
149 149 int flag;
150 150 rtems_status_code status;
151 151 unsigned char sy_lfr_s1_bp_p0;
152 152 unsigned char sy_lfr_s1_bp_p1;
153 153 float aux;
154 154
155 155 flag = LFR_SUCCESSFUL;
156 156
157 157 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
158 158 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
159 159 flag = LFR_DEFAULT;
160 160 }
161 161
162 162 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
163 163 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
164 164
165 165 // sy_lfr_s1_bp_p0
166 166 if (flag == LFR_SUCCESSFUL)
167 167 {
168 168 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
169 169 {
170 170 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
171 171 flag = WRONG_APP_DATA;
172 172 }
173 173 }
174 174 // sy_lfr_s1_bp_p1
175 175 if (flag == LFR_SUCCESSFUL)
176 176 {
177 177 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
178 178 {
179 179 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
180 180 flag = WRONG_APP_DATA;
181 181 }
182 182 }
183 183 //******************************************************************
184 184 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
185 185 if (flag == LFR_SUCCESSFUL)
186 186 {
187 187 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
188 if (aux != 0)
188 if (aux > FLOAT_EQUAL_ZERO)
189 189 {
190 190 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
191 191 flag = LFR_DEFAULT;
192 192 }
193 193 }
194 194
195 195 // SET THE PARAMETERS
196 196 if (flag == LFR_SUCCESSFUL)
197 197 {
198 198 flag = set_sy_lfr_s1_bp_p0( TC );
199 199 flag = set_sy_lfr_s1_bp_p1( TC );
200 200 }
201 201
202 202 return flag;
203 203 }
204 204
205 205 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
206 206 {
207 207 /** This function updates the LFR registers with the incoming sbm2 parameters.
208 208 *
209 209 * @param TC points to the TeleCommand packet that is being processed
210 210 * @param queue_id is the id of the queue which handles TM related to this execution step
211 211 *
212 212 */
213 213
214 214 int flag;
215 215 rtems_status_code status;
216 216 unsigned char sy_lfr_s2_bp_p0;
217 217 unsigned char sy_lfr_s2_bp_p1;
218 218 float aux;
219 219
220 220 flag = LFR_SUCCESSFUL;
221 221
222 222 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
223 223 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
224 224 flag = LFR_DEFAULT;
225 225 }
226 226
227 227 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
228 228 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
229 229
230 230 // sy_lfr_s2_bp_p0
231 231 if (flag == LFR_SUCCESSFUL)
232 232 {
233 233 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
234 234 {
235 235 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
236 236 flag = WRONG_APP_DATA;
237 237 }
238 238 }
239 239 // sy_lfr_s2_bp_p1
240 240 if (flag == LFR_SUCCESSFUL)
241 241 {
242 242 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
243 243 {
244 244 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
245 245 flag = WRONG_APP_DATA;
246 246 }
247 247 }
248 248 //******************************************************************
249 249 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
250 250 if (flag == LFR_SUCCESSFUL)
251 251 {
252 252 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
253 253 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
254 254 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
255 if (aux != 0)
255 if (aux > FLOAT_EQUAL_ZERO)
256 256 {
257 257 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
258 258 flag = LFR_DEFAULT;
259 259 }
260 260 }
261 261
262 262 // SET THE PARAMETERS
263 263 if (flag == LFR_SUCCESSFUL)
264 264 {
265 265 flag = set_sy_lfr_s2_bp_p0( TC );
266 266 flag = set_sy_lfr_s2_bp_p1( TC );
267 267 }
268 268
269 269 return flag;
270 270 }
271 271
272 272 int action_dump_par( rtems_id queue_id )
273 273 {
274 274 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
275 275 *
276 276 * @param queue_id is the id of the queue which handles TM related to this execution step.
277 277 *
278 278 * @return RTEMS directive status codes:
279 279 * - RTEMS_SUCCESSFUL - message sent successfully
280 280 * - RTEMS_INVALID_ID - invalid queue id
281 281 * - RTEMS_INVALID_SIZE - invalid message size
282 282 * - RTEMS_INVALID_ADDRESS - buffer is NULL
283 283 * - RTEMS_UNSATISFIED - out of message buffers
284 284 * - RTEMS_TOO_MANY - queue s limit has been reached
285 285 *
286 286 */
287 287
288 288 int status;
289 289
290 290 // UPDATE TIME
291 291 parameter_dump_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
292 292 parameter_dump_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
293 293 increment_seq_counter( &sequenceCounterParameterDump );
294 294
295 295 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
296 296 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
297 297 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
298 298 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
299 299 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
300 300 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
301 301 // SEND DATA
302 302 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
303 303 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
304 304 if (status != RTEMS_SUCCESSFUL) {
305 305 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
306 306 }
307 307
308 308 return status;
309 309 }
310 310
311 311 //***********************
312 312 // NORMAL MODE PARAMETERS
313 313
314 314 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
315 315 {
316 316 unsigned char msb;
317 317 unsigned char lsb;
318 318 int flag;
319 319 float aux;
320 320 rtems_status_code status;
321 321
322 322 unsigned int sy_lfr_n_swf_l;
323 323 unsigned int sy_lfr_n_swf_p;
324 324 unsigned int sy_lfr_n_asm_p;
325 325 unsigned char sy_lfr_n_bp_p0;
326 326 unsigned char sy_lfr_n_bp_p1;
327 327 unsigned char sy_lfr_n_cwf_long_f3;
328 328
329 329 flag = LFR_SUCCESSFUL;
330 330
331 331 //***************
332 332 // get parameters
333 333 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
334 334 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
335 335 sy_lfr_n_swf_l = msb * 256 + lsb;
336 336
337 337 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
338 338 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
339 339 sy_lfr_n_swf_p = msb * 256 + lsb;
340 340
341 341 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
342 342 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
343 343 sy_lfr_n_asm_p = msb * 256 + lsb;
344 344
345 345 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
346 346
347 347 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
348 348
349 349 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
350 350
351 351 //******************
352 352 // check consistency
353 353 // sy_lfr_n_swf_l
354 354 if (sy_lfr_n_swf_l != 2048)
355 355 {
356 356 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
357 357 flag = WRONG_APP_DATA;
358 358 }
359 359 // sy_lfr_n_swf_p
360 360 if (flag == LFR_SUCCESSFUL)
361 361 {
362 362 if ( sy_lfr_n_swf_p < 16 )
363 363 {
364 364 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
365 365 flag = WRONG_APP_DATA;
366 366 }
367 367 }
368 368 // sy_lfr_n_bp_p0
369 369 if (flag == LFR_SUCCESSFUL)
370 370 {
371 if (sy_lfr_n_bp_p0 < SY_LFR_N_BP_P0)
371 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
372 372 {
373 373 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
374 374 flag = WRONG_APP_DATA;
375 375 }
376 376 }
377 377 // sy_lfr_n_asm_p
378 378 if (flag == LFR_SUCCESSFUL)
379 379 {
380 380 if (sy_lfr_n_asm_p == 0)
381 381 {
382 382 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
383 383 flag = WRONG_APP_DATA;
384 384 }
385 385 }
386 386 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
387 387 if (flag == LFR_SUCCESSFUL)
388 388 {
389 389 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
390 if (aux != 0)
390 if (aux > FLOAT_EQUAL_ZERO)
391 391 {
392 392 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
393 393 flag = WRONG_APP_DATA;
394 394 }
395 395 }
396 396 // sy_lfr_n_bp_p1
397 397 if (flag == LFR_SUCCESSFUL)
398 398 {
399 if (sy_lfr_n_bp_p1 < SY_LFR_N_BP_P1)
399 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
400 400 {
401 401 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
402 402 flag = WRONG_APP_DATA;
403 403 }
404 404 }
405 405 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
406 406 if (flag == LFR_SUCCESSFUL)
407 407 {
408 408 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
409 if (aux != 0)
409 if (aux > FLOAT_EQUAL_ZERO)
410 410 {
411 411 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
412 412 flag = LFR_DEFAULT;
413 413 }
414 414 }
415 415 // sy_lfr_n_cwf_long_f3
416 416
417 417 return flag;
418 418 }
419 419
420 420 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
421 421 {
422 422 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
423 423 *
424 424 * @param TC points to the TeleCommand packet that is being processed
425 425 * @param queue_id is the id of the queue which handles TM related to this execution step
426 426 *
427 427 */
428 428
429 429 int result;
430 430
431 431 result = LFR_SUCCESSFUL;
432 432
433 433 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
434 434 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
435 435
436 436 return result;
437 437 }
438 438
439 439 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
440 440 {
441 441 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
442 442 *
443 443 * @param TC points to the TeleCommand packet that is being processed
444 444 * @param queue_id is the id of the queue which handles TM related to this execution step
445 445 *
446 446 */
447 447
448 448 int result;
449 449
450 450 result = LFR_SUCCESSFUL;
451 451
452 452 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
453 453 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
454 454
455 455 return result;
456 456 }
457 457
458 458 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
459 459 {
460 460 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
461 461 *
462 462 * @param TC points to the TeleCommand packet that is being processed
463 463 * @param queue_id is the id of the queue which handles TM related to this execution step
464 464 *
465 465 */
466 466
467 467 int result;
468 468
469 469 result = LFR_SUCCESSFUL;
470 470
471 471 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
472 472 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
473 473
474 474 return result;
475 475 }
476 476
477 477 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
478 478 {
479 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
479 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
480 480 *
481 481 * @param TC points to the TeleCommand packet that is being processed
482 482 * @param queue_id is the id of the queue which handles TM related to this execution step
483 483 *
484 484 */
485 485
486 486 int status;
487 487
488 488 status = LFR_SUCCESSFUL;
489 489
490 490 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
491 491
492 492 return status;
493 493 }
494 494
495 495 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
496 496 {
497 497 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
498 498 *
499 499 * @param TC points to the TeleCommand packet that is being processed
500 500 * @param queue_id is the id of the queue which handles TM related to this execution step
501 501 *
502 502 */
503 503
504 504 int status;
505 505
506 506 status = LFR_SUCCESSFUL;
507 507
508 508 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
509 509
510 510 return status;
511 511 }
512 512
513 513 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
514 514 {
515 515 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
516 516 *
517 517 * @param TC points to the TeleCommand packet that is being processed
518 518 * @param queue_id is the id of the queue which handles TM related to this execution step
519 519 *
520 520 */
521 521
522 522 int status;
523 523
524 524 status = LFR_SUCCESSFUL;
525 525
526 526 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
527 527
528 528 return status;
529 529 }
530 530
531 531 //**********************
532 532 // BURST MODE PARAMETERS
533 533 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
534 534 {
535 535 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
536 536 *
537 537 * @param TC points to the TeleCommand packet that is being processed
538 538 * @param queue_id is the id of the queue which handles TM related to this execution step
539 539 *
540 540 */
541 541
542 542 int status;
543 543
544 544 status = LFR_SUCCESSFUL;
545 545
546 546 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
547 547
548 548 return status;
549 549 }
550 550
551 551 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
552 552 {
553 553 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
554 554 *
555 555 * @param TC points to the TeleCommand packet that is being processed
556 556 * @param queue_id is the id of the queue which handles TM related to this execution step
557 557 *
558 558 */
559 559
560 560 int status;
561 561
562 562 status = LFR_SUCCESSFUL;
563 563
564 564 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
565 565
566 566 return status;
567 567 }
568 568
569 569 //*********************
570 570 // SBM1 MODE PARAMETERS
571 571 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
572 572 {
573 573 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
574 574 *
575 575 * @param TC points to the TeleCommand packet that is being processed
576 576 * @param queue_id is the id of the queue which handles TM related to this execution step
577 577 *
578 578 */
579 579
580 580 int status;
581 581
582 582 status = LFR_SUCCESSFUL;
583 583
584 584 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
585 585
586 586 return status;
587 587 }
588 588
589 589 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
590 590 {
591 591 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
592 592 *
593 593 * @param TC points to the TeleCommand packet that is being processed
594 594 * @param queue_id is the id of the queue which handles TM related to this execution step
595 595 *
596 596 */
597 597
598 598 int status;
599 599
600 600 status = LFR_SUCCESSFUL;
601 601
602 602 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
603 603
604 604 return status;
605 605 }
606 606
607 607 //*********************
608 608 // SBM2 MODE PARAMETERS
609 609 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
610 610 {
611 611 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
612 612 *
613 613 * @param TC points to the TeleCommand packet that is being processed
614 614 * @param queue_id is the id of the queue which handles TM related to this execution step
615 615 *
616 616 */
617 617
618 618 int status;
619 619
620 620 status = LFR_SUCCESSFUL;
621 621
622 622 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
623 623
624 624 return status;
625 625 }
626 626
627 627 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
628 628 {
629 629 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
630 630 *
631 631 * @param TC points to the TeleCommand packet that is being processed
632 632 * @param queue_id is the id of the queue which handles TM related to this execution step
633 633 *
634 634 */
635 635
636 636 int status;
637 637
638 638 status = LFR_SUCCESSFUL;
639 639
640 640 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
641 641
642 642 return status;
643 643 }
644 644
645 645
646 646 //*******************
647 647 // TC_LFR_UPDATE_INFO
648 648 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
649 649 {
650 650 unsigned int status;
651 651
652 652 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
653 653 || (mode == LFR_MODE_BURST)
654 654 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
655 655 {
656 656 status = LFR_SUCCESSFUL;
657 657 }
658 658 else
659 659 {
660 660 status = LFR_DEFAULT;
661 661 }
662 662
663 663 return status;
664 664 }
665 665
666 666 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
667 667 {
668 668 unsigned int status;
669 669
670 670 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
671 671 || (mode == TDS_MODE_BURST)
672 672 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
673 673 || (mode == TDS_MODE_LFM))
674 674 {
675 675 status = LFR_SUCCESSFUL;
676 676 }
677 677 else
678 678 {
679 679 status = LFR_DEFAULT;
680 680 }
681 681
682 682 return status;
683 683 }
684 684
685 685 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
686 686 {
687 687 unsigned int status;
688 688
689 689 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
690 690 || (mode == THR_MODE_BURST))
691 691 {
692 692 status = LFR_SUCCESSFUL;
693 693 }
694 694 else
695 695 {
696 696 status = LFR_DEFAULT;
697 697 }
698 698
699 699 return status;
700 700 }
701 701
702 702 //**********
703 703 // init dump
704 704
705 705 void init_parameter_dump( void )
706 706 {
707 707 /** This function initialize the parameter_dump_packet global variable with default values.
708 708 *
709 709 */
710 710
711 711 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
712 712 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
713 713 parameter_dump_packet.reserved = CCSDS_RESERVED;
714 714 parameter_dump_packet.userApplication = CCSDS_USER_APP;
715 715 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
716 716 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
717 717 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
718 718 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
719 719 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
720 720 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
721 721 // DATA FIELD HEADER
722 722 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
723 723 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
724 724 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
725 725 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
726 726 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
727 727 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
728 728 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
729 729 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
730 730 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
731 731 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
732 732 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
733 733
734 734 //******************
735 735 // COMMON PARAMETERS
736 736 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
737 737 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
738 738
739 739 //******************
740 740 // NORMAL PARAMETERS
741 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
742 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
743 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
744 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
745 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
746 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
747 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
748 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
749 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) SY_LFR_N_CWF_LONG_F3;
741 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
742 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
743 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
744 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
745 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
746 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
747 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
748 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
749 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
750 750
751 751 //*****************
752 752 // BURST PARAMETERS
753 753 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
754 754 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
755 755
756 756 //****************
757 757 // SBM1 PARAMETERS
758 758 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
759 759 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
760 760
761 761 //****************
762 762 // SBM2 PARAMETERS
763 763 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
764 764 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
765 765 }
766 766
767 767
768 768
769 769
770 770
771 771
772 772
@@ -1,1310 +1,1323
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 31 ring_node *current_ring_node_f0;
32 32 ring_node *ring_node_to_send_swf_f0;
33 33 ring_node *current_ring_node_f1;
34 34 ring_node *ring_node_to_send_swf_f1;
35 35 ring_node *ring_node_to_send_cwf_f1;
36 36 ring_node *current_ring_node_f2;
37 37 ring_node *ring_node_to_send_swf_f2;
38 38 ring_node *ring_node_to_send_cwf_f2;
39 39 ring_node *current_ring_node_f3;
40 40 ring_node *ring_node_to_send_cwf_f3;
41 41
42 42 bool extractSWF = false;
43 43 bool swf_f0_ready = false;
44 44 bool swf_f1_ready = false;
45 45 bool swf_f2_ready = false;
46 46
47 47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48 48
49 49 //*********************
50 50 // Interrupt SubRoutine
51 51
52 52 void reset_extractSWF( void )
53 53 {
54 54 extractSWF = false;
55 55 swf_f0_ready = false;
56 56 swf_f1_ready = false;
57 57 swf_f2_ready = false;
58 58 }
59 59
60 60 rtems_isr waveforms_isr( rtems_vector_number vector )
61 61 {
62 62 /** This is the interrupt sub routine called by the waveform picker core.
63 63 *
64 64 * This ISR launch different actions depending mainly on two pieces of information:
65 65 * 1. the values read in the registers of the waveform picker.
66 66 * 2. the current LFR mode.
67 67 *
68 68 */
69 69
70 70 rtems_status_code status;
71 rtems_status_code spare_status;
71 72
72 73 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
73 74 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
74 75 { // in modes other than STANDBY and BURST, send the CWF_F3 data
75 76 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
76 77 // (1) change the receiving buffer for the waveform picker
77 78 ring_node_to_send_cwf_f3 = current_ring_node_f3;
78 79 current_ring_node_f3 = current_ring_node_f3->next;
79 80 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
80 81 // (2) send an event for the waveforms transmission
81 82 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 84 }
84 85 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
85 86 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 87 }
87 88 }
88 89
89 90 switch(lfrCurrentMode)
90 91 {
91 92 //********
92 93 // STANDBY
93 94 case(LFR_MODE_STANDBY):
94 95 break;
95 96
96 97 //******
97 98 // NORMAL
98 99 case(LFR_MODE_NORMAL):
99 100 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 101 {
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 103 }
103 104 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 105 {
105 106 // change F0 ring node
106 107 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 108 current_ring_node_f0 = current_ring_node_f0->next;
108 109 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 110 // change F1 ring node
110 111 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 112 current_ring_node_f1 = current_ring_node_f1->next;
112 113 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 114 // change F2 ring node
114 115 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 116 current_ring_node_f2 = current_ring_node_f2->next;
116 117 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 118 //
118 119 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
119 120 {
120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 122 }
122 123 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
123 124 }
124 125 break;
125 126
126 127 //******
127 128 // BURST
128 129 case(LFR_MODE_BURST):
129 130 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
130 131 // (1) change the receiving buffer for the waveform picker
131 132 ring_node_to_send_cwf_f2 = current_ring_node_f2;
132 133 current_ring_node_f2 = current_ring_node_f2->next;
133 134 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
134 135 // (2) send an event for the waveforms transmission
135 136 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 138 }
138 139 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
139 140 }
140 141 break;
141 142
142 143 //*****
143 144 // SBM1
144 145 case(LFR_MODE_SBM1):
145 146 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
146 147 // (1) change the receiving buffer for the waveform picker
147 148 ring_node_to_send_cwf_f1 = current_ring_node_f1;
148 149 current_ring_node_f1 = current_ring_node_f1->next;
149 150 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
150 151 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
151 152 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
152 153 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
153 154 }
154 155 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
155 156 swf_f0_ready = true;
156 157 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
157 158 }
158 159 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
159 160 swf_f2_ready = true;
160 161 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
161 162 }
162 163 break;
163 164
164 165 //*****
165 166 // SBM2
166 167 case(LFR_MODE_SBM2):
167 168 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
168 169 // (1) change the receiving buffer for the waveform picker
169 170 ring_node_to_send_cwf_f2 = current_ring_node_f2;
170 171 current_ring_node_f2 = current_ring_node_f2->next;
171 172 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
172 173 // (2) send an event for the waveforms transmission
173 174 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
174 175 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
175 176 }
176 177 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
177 178 swf_f0_ready = true;
178 179 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
179 180 }
180 181 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
181 182 swf_f1_ready = true;
182 183 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
183 184 }
184 185 break;
185 186
186 187 //********
187 188 // DEFAULT
188 189 default:
189 190 break;
190 191 }
191 192 }
192 193
193 194 //************
194 195 // RTEMS TASKS
195 196
196 197 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
197 198 {
198 199 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
199 200 *
200 201 * @param unused is the starting argument of the RTEMS task
201 202 *
202 203 * The following data packets are sent by this task:
203 204 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
204 205 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
205 206 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
206 207 *
207 208 */
208 209
209 210 rtems_event_set event_out;
210 211 rtems_id queue_id;
211 212 rtems_status_code status;
212 213
213 214 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
214 215 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
215 216 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
216 217
217 218 status = get_message_queue_id_send( &queue_id );
218 219 if (status != RTEMS_SUCCESSFUL)
219 220 {
220 221 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
221 222 }
222 223
223 224 BOOT_PRINTF("in WFRM ***\n")
224 225
225 226 while(1){
226 227 // wait for an RTEMS_EVENT
227 228 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
228 229 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
229 230 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
230 231 if (event_out == RTEMS_EVENT_MODE_NORMAL)
231 232 {
232 233 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
233 234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
234 235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
235 236 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
236 237 }
237 238 if (event_out == RTEMS_EVENT_MODE_SBM1)
238 239 {
239 240 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
240 241 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
241 242 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
242 243 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
243 244 }
244 245 if (event_out == RTEMS_EVENT_MODE_SBM2)
245 246 {
246 247 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
247 248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
248 249 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
249 250 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
250 251 }
251 252 }
252 253 }
253 254
254 255 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
255 256 {
256 257 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
257 258 *
258 259 * @param unused is the starting argument of the RTEMS task
259 260 *
260 261 * The following data packet is sent by this task:
261 262 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
262 263 *
263 264 */
264 265
265 266 rtems_event_set event_out;
266 267 rtems_id queue_id;
267 268 rtems_status_code status;
268 269
269 270 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
270 271 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
271 272
272 273 status = get_message_queue_id_send( &queue_id );
273 274 if (status != RTEMS_SUCCESSFUL)
274 275 {
275 276 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
276 277 }
277 278
278 279 BOOT_PRINTF("in CWF3 ***\n")
279 280
280 281 while(1){
281 282 // wait for an RTEMS_EVENT
282 283 rtems_event_receive( RTEMS_EVENT_0,
283 284 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
284 285 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
285 286 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
286 287 {
287 288 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
288 289 {
289 290 PRINTF("send CWF_LONG_F3\n")
290 291 send_waveform_CWF(
291 292 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
292 293 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
293 294 }
294 295 else
295 296 {
296 297 PRINTF("send CWF_F3 (light)\n")
297 298 send_waveform_CWF3_light(
298 299 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
299 300 headerCWF_F3_light, queue_id );
300 301 }
301 302
302 303 }
303 304 else
304 305 {
305 306 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
306 307 }
307 308 }
308 309 }
309 310
310 311 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
311 312 {
312 313 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
313 314 *
314 315 * @param unused is the starting argument of the RTEMS task
315 316 *
316 317 * The following data packet is sent by this function:
317 318 * - TM_LFR_SCIENCE_BURST_CWF_F2
318 319 * - TM_LFR_SCIENCE_SBM2_CWF_F2
319 320 *
320 321 */
321 322
322 323 rtems_event_set event_out;
323 324 rtems_id queue_id;
324 325 rtems_status_code status;
325 326
326 327 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
327 328 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
328 329
329 330 status = get_message_queue_id_send( &queue_id );
330 331 if (status != RTEMS_SUCCESSFUL)
331 332 {
332 333 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
333 334 }
334 335
335 336 BOOT_PRINTF("in CWF2 ***\n")
336 337
337 338 while(1){
338 339 // wait for an RTEMS_EVENT
339 340 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
340 341 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 342 if (event_out == RTEMS_EVENT_MODE_BURST)
342 343 {
343 344 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
344 345 }
345 346 if (event_out == RTEMS_EVENT_MODE_SBM2)
346 347 {
347 348 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
348 349 // launch snapshot extraction if needed
349 350 if (extractSWF == true)
350 351 {
351 352 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
352 353 // extract the snapshot
353 354 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
354 355 // send the snapshot when built
355 356 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
356 357 extractSWF = false;
357 358 }
358 359 if (swf_f0_ready && swf_f1_ready)
359 360 {
360 361 extractSWF = true;
361 362 swf_f0_ready = false;
362 363 swf_f1_ready = false;
363 364 }
364 365 }
365 366 }
366 367 }
367 368
368 369 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
369 370 {
370 371 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
371 372 *
372 373 * @param unused is the starting argument of the RTEMS task
373 374 *
374 375 * The following data packet is sent by this function:
375 376 * - TM_LFR_SCIENCE_SBM1_CWF_F1
376 377 *
377 378 */
378 379
379 380 rtems_event_set event_out;
380 381 rtems_id queue_id;
381 382 rtems_status_code status;
382 383
383 384 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
384 385
385 386 status = get_message_queue_id_send( &queue_id );
386 387 if (status != RTEMS_SUCCESSFUL)
387 388 {
388 389 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
389 390 }
390 391
391 392 BOOT_PRINTF("in CWF1 ***\n")
392 393
393 394 while(1){
394 395 // wait for an RTEMS_EVENT
395 396 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
396 397 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
397 398 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
398 399 // launch snapshot extraction if needed
399 400 if (extractSWF == true)
400 401 {
401 402 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
402 403 // launch the snapshot extraction
403 404 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
404 405 extractSWF = false;
405 406 }
406 407 if (swf_f0_ready == true)
407 408 {
408 409 extractSWF = true;
409 410 swf_f0_ready = false; // this step shall be executed only one time
410 411 }
411 412 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
412 413 {
413 414 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
414 415 swf_f1_ready = false;
415 416 swf_f2_ready = false;
416 417 }
417 418 }
418 419 }
419 420
420 421 rtems_task swbd_task(rtems_task_argument argument)
421 422 {
422 423 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
423 424 *
424 425 * @param unused is the starting argument of the RTEMS task
425 426 *
426 427 */
427 428
428 429 rtems_event_set event_out;
429 430
430 431 BOOT_PRINTF("in SWBD ***\n")
431 432
432 433 while(1){
433 434 // wait for an RTEMS_EVENT
434 435 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
435 436 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
436 437 if (event_out == RTEMS_EVENT_MODE_SBM1)
437 438 {
438 439 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
439 440 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
440 441 }
441 442 else
442 443 {
443 444 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
444 445 }
445 446 }
446 447 }
447 448
448 449 //******************
449 450 // general functions
450 451
451 452 void WFP_init_rings( void )
452 453 {
453 454 // F0 RING
454 455 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
455 456 // F1 RING
456 457 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
457 458 // F2 RING
458 459 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
459 460 // F3 RING
460 461 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
461 462
462 463 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
463 464 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
464 465 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
465 466 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
466 467 }
467 468
468 469 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
469 470 {
470 471 unsigned char i;
471 472
472 473 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
473 474 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
474 475 waveform_ring[0].buffer_address = (int) &wfrm[0];
475 476
476 477 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
477 478 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
478 479 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
479 480
480 481 for(i=1; i<nbNodes-1; i++)
481 482 {
482 483 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
483 484 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
484 485 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
485 486 }
486 487 }
487 488
488 489 void WFP_reset_current_ring_nodes( void )
489 490 {
490 491 current_ring_node_f0 = waveform_ring_f0;
491 492 ring_node_to_send_swf_f0 = waveform_ring_f0;
492 493
493 494 current_ring_node_f1 = waveform_ring_f1;
494 495 ring_node_to_send_cwf_f1 = waveform_ring_f1;
495 496 ring_node_to_send_swf_f1 = waveform_ring_f1;
496 497
497 498 current_ring_node_f2 = waveform_ring_f2;
498 499 ring_node_to_send_cwf_f2 = waveform_ring_f2;
499 500 ring_node_to_send_swf_f2 = waveform_ring_f2;
500 501
501 502 current_ring_node_f3 = waveform_ring_f3;
502 503 ring_node_to_send_cwf_f3 = waveform_ring_f3;
503 504 }
504 505
505 506 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
506 507 {
507 508 unsigned char i;
509 int return_value;
510
511 return_value = LFR_SUCCESSFUL;
508 512
509 513 for (i=0; i<7; i++)
510 514 {
511 515 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
512 516 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
513 517 headerSWF[ i ].reserved = DEFAULT_RESERVED;
514 518 headerSWF[ i ].userApplication = CCSDS_USER_APP;
515 519 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
516 520 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
517 521 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
518 522 if (i == 6)
519 523 {
520 524 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
521 525 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
522 526 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
523 527 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
524 528 }
525 529 else
526 530 {
527 531 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
528 532 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
529 533 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
530 534 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
531 535 }
532 536 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
533 537 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
534 538 headerSWF[ i ].pktNr = i+1; // PKT_NR
535 539 // DATA FIELD HEADER
536 540 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
537 541 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 542 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 543 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
540 544 // AUXILIARY DATA HEADER
541 545 headerSWF[ i ].time[0] = 0x00;
542 546 headerSWF[ i ].time[0] = 0x00;
543 547 headerSWF[ i ].time[0] = 0x00;
544 548 headerSWF[ i ].time[0] = 0x00;
545 549 headerSWF[ i ].time[0] = 0x00;
546 550 headerSWF[ i ].time[0] = 0x00;
547 551 headerSWF[ i ].sid = sid;
548 552 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
549 553 }
550 return LFR_SUCCESSFUL;
554
555 return return_value;
551 556 }
552 557
553 558 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
554 559 {
555 560 unsigned int i;
561 int return_value;
562
563 return_value = LFR_SUCCESSFUL;
556 564
557 565 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
558 566 {
559 567 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
560 568 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
561 569 headerCWF[ i ].reserved = DEFAULT_RESERVED;
562 570 headerCWF[ i ].userApplication = CCSDS_USER_APP;
563 571 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
564 572 {
565 573 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
566 574 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
567 575 }
568 576 else
569 577 {
570 578 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
571 579 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
572 580 }
573 581 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
574 582 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
575 583 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
576 584 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
577 585 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
578 586 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
579 587 // DATA FIELD HEADER
580 588 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
581 589 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
582 590 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
583 591 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
584 592 // AUXILIARY DATA HEADER
585 593 headerCWF[ i ].sid = sid;
586 594 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
587 595 headerCWF[ i ].time[0] = 0x00;
588 596 headerCWF[ i ].time[0] = 0x00;
589 597 headerCWF[ i ].time[0] = 0x00;
590 598 headerCWF[ i ].time[0] = 0x00;
591 599 headerCWF[ i ].time[0] = 0x00;
592 600 headerCWF[ i ].time[0] = 0x00;
593 601 }
594 return LFR_SUCCESSFUL;
602
603 return return_value;
595 604 }
596 605
597 606 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
598 607 {
599 608 unsigned int i;
609 int return_value;
610
611 return_value = LFR_SUCCESSFUL;
600 612
601 613 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
602 614 {
603 615 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
604 616 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
605 617 headerCWF[ i ].reserved = DEFAULT_RESERVED;
606 618 headerCWF[ i ].userApplication = CCSDS_USER_APP;
607 619
608 620 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
609 621 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
610 622
611 623 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 624 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
613 625 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
614 626 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
615 627 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
616 628
617 629 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
618 630 // DATA FIELD HEADER
619 631 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
620 632 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
621 633 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
622 634 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
623 635 // AUXILIARY DATA HEADER
624 636 headerCWF[ i ].sid = SID_NORM_CWF_F3;
625 637 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
626 638 headerCWF[ i ].time[0] = 0x00;
627 639 headerCWF[ i ].time[0] = 0x00;
628 640 headerCWF[ i ].time[0] = 0x00;
629 641 headerCWF[ i ].time[0] = 0x00;
630 642 headerCWF[ i ].time[0] = 0x00;
631 643 headerCWF[ i ].time[0] = 0x00;
632 644 }
633 return LFR_SUCCESSFUL;
645
646 return return_value;
634 647 }
635 648
636 649 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
637 650 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
638 651 {
639 652 /** This function sends SWF CCSDS packets (F2, F1 or F0).
640 653 *
641 654 * @param waveform points to the buffer containing the data that will be send.
642 655 * @param sid is the source identifier of the data that will be sent.
643 656 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
644 657 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
645 658 * contain information to setup the transmission of the data packets.
646 659 *
647 660 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
648 661 *
649 662 */
650 663
651 664 unsigned int i;
652 665 int ret;
653 666 unsigned int coarseTime;
654 667 unsigned int fineTime;
655 668 rtems_status_code status;
656 669 spw_ioctl_pkt_send spw_ioctl_send_SWF;
657 670
658 671 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
659 672 spw_ioctl_send_SWF.options = 0;
660 673
661 674 ret = LFR_DEFAULT;
662 675
663 676 coarseTime = waveform[0];
664 677 fineTime = waveform[1];
665 678
666 679 for (i=0; i<7; i++) // send waveform
667 680 {
668 681 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
669 682 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
670 683 // BUILD THE DATA
671 684 if (i==6) {
672 685 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
673 686 }
674 687 else {
675 688 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
676 689 }
677 690 // SET PACKET SEQUENCE COUNTER
678 691 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
679 692 // SET PACKET TIME
680 693 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
681 694 //
682 695 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
683 696 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
684 697 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
685 698 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
686 699 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
687 700 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
688 701 // SEND PACKET
689 702 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
690 703 if (status != RTEMS_SUCCESSFUL) {
691 704 printf("%d-%d, ERR %d\n", sid, i, (int) status);
692 705 ret = LFR_DEFAULT;
693 706 }
694 707 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
695 708 }
696 709
697 710 return ret;
698 711 }
699 712
700 713 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
701 714 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
702 715 {
703 716 /** This function sends CWF CCSDS packets (F2, F1 or F0).
704 717 *
705 718 * @param waveform points to the buffer containing the data that will be send.
706 719 * @param sid is the source identifier of the data that will be sent.
707 720 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
708 721 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
709 722 * contain information to setup the transmission of the data packets.
710 723 *
711 724 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
712 725 *
713 726 */
714 727
715 728 unsigned int i;
716 729 int ret;
717 730 unsigned int coarseTime;
718 731 unsigned int fineTime;
719 732 rtems_status_code status;
720 733 spw_ioctl_pkt_send spw_ioctl_send_CWF;
721 734
722 735 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
723 736 spw_ioctl_send_CWF.options = 0;
724 737
725 738 ret = LFR_DEFAULT;
726 739
727 740 coarseTime = waveform[0];
728 741 fineTime = waveform[1];
729 742
730 743 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
731 744 {
732 745 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
733 746 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
734 747 // BUILD THE DATA
735 748 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
736 749 // SET PACKET SEQUENCE COUNTER
737 750 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
738 751 // SET PACKET TIME
739 752 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
740 753 //
741 754 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
742 755 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
743 756 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
744 757 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
745 758 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
746 759 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
747 760 // SEND PACKET
748 761 if (sid == SID_NORM_CWF_LONG_F3)
749 762 {
750 763 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
751 764 if (status != RTEMS_SUCCESSFUL) {
752 765 printf("%d-%d, ERR %d\n", sid, i, (int) status);
753 766 ret = LFR_DEFAULT;
754 767 }
755 768 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
756 769 }
757 770 else
758 771 {
759 772 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
760 773 if (status != RTEMS_SUCCESSFUL) {
761 774 printf("%d-%d, ERR %d\n", sid, i, (int) status);
762 775 ret = LFR_DEFAULT;
763 776 }
764 777 }
765 778 }
766 779
767 780 return ret;
768 781 }
769 782
770 783 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 784 {
772 785 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
773 786 *
774 787 * @param waveform points to the buffer containing the data that will be send.
775 788 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
776 789 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
777 790 * contain information to setup the transmission of the data packets.
778 791 *
779 792 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
780 793 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
781 794 *
782 795 */
783 796
784 797 unsigned int i;
785 798 int ret;
786 799 unsigned int coarseTime;
787 800 unsigned int fineTime;
788 801 rtems_status_code status;
789 802 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 803 char *sample;
791 804
792 805 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
793 806 spw_ioctl_send_CWF.options = 0;
794 807
795 808 ret = LFR_DEFAULT;
796 809
797 810 //**********************
798 811 // BUILD CWF3_light DATA
799 812 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
800 813 {
801 814 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
802 815 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
803 816 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
804 817 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
805 818 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
806 819 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
807 820 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
808 821 }
809 822
810 823 coarseTime = waveform[0];
811 824 fineTime = waveform[1];
812 825
813 826 //*********************
814 827 // SEND CWF3_light DATA
815 828 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
816 829 {
817 830 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
818 831 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
819 832 // BUILD THE DATA
820 833 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
821 834 // SET PACKET SEQUENCE COUNTER
822 835 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
823 836 // SET PACKET TIME
824 837 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
825 838 //
826 839 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
827 840 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
828 841 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
829 842 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
830 843 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
831 844 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
832 845 // SEND PACKET
833 846 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 847 if (status != RTEMS_SUCCESSFUL) {
835 848 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
836 849 ret = LFR_DEFAULT;
837 850 }
838 851 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
839 852 }
840 853
841 854 return ret;
842 855 }
843 856
844 857 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
845 858 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
846 859 {
847 860 unsigned long long int acquisitionTimeAsLong;
848 861 unsigned char localAcquisitionTime[6];
849 862 double deltaT;
850 863
851 864 deltaT = 0.;
852 865
853 866 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
854 867 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
855 868 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
856 869 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
857 870 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
858 871 localAcquisitionTime[5] = (unsigned char) ( fineTime );
859 872
860 873 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
861 874 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
862 875 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
863 876 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
864 877 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
865 878 + ( (unsigned long long int) localAcquisitionTime[5] );
866 879
867 880 switch( sid )
868 881 {
869 882 case SID_NORM_SWF_F0:
870 883 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
871 884 break;
872 885
873 886 case SID_NORM_SWF_F1:
874 887 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
875 888 break;
876 889
877 890 case SID_NORM_SWF_F2:
878 891 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
879 892 break;
880 893
881 894 case SID_SBM1_CWF_F1:
882 895 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
883 896 break;
884 897
885 898 case SID_SBM2_CWF_F2:
886 899 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
887 900 break;
888 901
889 902 case SID_BURST_CWF_F2:
890 903 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
891 904 break;
892 905
893 906 case SID_NORM_CWF_F3:
894 907 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
895 908 break;
896 909
897 910 case SID_NORM_CWF_LONG_F3:
898 911 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
899 912 break;
900 913
901 914 default:
902 915 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
903 916 deltaT = 0.;
904 917 break;
905 918 }
906 919
907 920 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
908 921 //
909 922 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
910 923 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
911 924 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
912 925 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
913 926 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
914 927 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
915 928
916 929 }
917 930
918 931 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
919 932 {
920 933 unsigned int i;
921 934 unsigned long long int centerTime_asLong;
922 935 unsigned long long int acquisitionTimeF0_asLong;
923 936 unsigned long long int acquisitionTime_asLong;
924 937 unsigned long long int bufferAcquisitionTime_asLong;
925 938 unsigned char *ptr1;
926 939 unsigned char *ptr2;
927 940 unsigned char *timeCharPtr;
928 941 unsigned char nb_ring_nodes;
929 942 unsigned long long int frequency_asLong;
930 943 unsigned long long int nbTicksPerSample_asLong;
931 944 unsigned long long int nbSamplesPart1_asLong;
932 945 unsigned long long int sampleOffset_asLong;
933 946
934 947 unsigned int deltaT_F0;
935 948 unsigned int deltaT_F1;
936 949 unsigned long long int deltaT_F2;
937 950
938 951 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
939 952 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
940 953 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
941 954 sampleOffset_asLong = 0x00;
942 955
943 956 // (1) get the f0 acquisition time
944 957 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
945 958
946 959 // (2) compute the central reference time
947 960 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
948 961
949 962 // (3) compute the acquisition time of the current snapshot
950 963 switch(frequencyChannel)
951 964 {
952 965 case 1: // 1 is for F1 = 4096 Hz
953 966 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
954 967 nb_ring_nodes = NB_RING_NODES_F1;
955 968 frequency_asLong = 4096;
956 969 nbTicksPerSample_asLong = 16; // 65536 / 4096;
957 970 break;
958 971 case 2: // 2 is for F2 = 256 Hz
959 972 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
960 973 nb_ring_nodes = NB_RING_NODES_F2;
961 974 frequency_asLong = 256;
962 975 nbTicksPerSample_asLong = 256; // 65536 / 256;
963 976 break;
964 977 default:
965 978 acquisitionTime_asLong = centerTime_asLong;
966 979 frequency_asLong = 256;
967 980 nbTicksPerSample_asLong = 256;
968 981 break;
969 982 }
970 983
971 984 //****************************************************************************
972 985 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
973 986 for (i=0; i<nb_ring_nodes; i++)
974 987 {
975 988 PRINTF1("%d ... ", i)
976 989 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
977 990 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
978 991 {
979 992 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
980 993 break;
981 994 }
982 995 ring_node_to_send = ring_node_to_send->previous;
983 996 }
984 997
985 998 // (5) compute the number of samples to take in the current buffer
986 999 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
987 1000 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
988 1001 PRINTF2("sampleOffset_asLong = %llx, nbSamplesPart1_asLong = %llx\n", sampleOffset_asLong, nbSamplesPart1_asLong)
989 1002
990 1003 // (6) compute the final acquisition time
991 1004 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
992 1005 sampleOffset_asLong * nbTicksPerSample_asLong;
993 1006
994 1007 // (7) copy the acquisition time at the beginning of the extrated snapshot
995 1008 ptr1 = (unsigned char*) &acquisitionTime_asLong;
996 1009 ptr2 = (unsigned char*) wf_snap_extracted;
997 1010 ptr2[0] = ptr1[ 0 + 2 ];
998 1011 ptr2[1] = ptr1[ 1 + 2 ];
999 1012 ptr2[2] = ptr1[ 2 + 2 ];
1000 1013 ptr2[3] = ptr1[ 3 + 2 ];
1001 1014 ptr2[6] = ptr1[ 4 + 2 ];
1002 1015 ptr2[7] = ptr1[ 5 + 2 ];
1003 1016
1004 1017 // re set the synchronization bit
1005 1018 timeCharPtr = (unsigned char*) ring_node_to_send->buffer_address;
1006 1019 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1007 1020
1008 1021 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1009 1022 {
1010 1023 nbSamplesPart1_asLong = 0;
1011 1024 }
1012 1025 // copy the part 1 of the snapshot in the extracted buffer
1013 1026 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1014 1027 {
1015 1028 wf_snap_extracted[i + TIME_OFFSET] =
1016 1029 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1017 1030 }
1018 1031 // copy the part 2 of the snapshot in the extracted buffer
1019 1032 ring_node_to_send = ring_node_to_send->next;
1020 1033 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1021 1034 {
1022 1035 wf_snap_extracted[i + TIME_OFFSET] =
1023 1036 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1024 1037 }
1025 1038 }
1026 1039
1027 1040 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1028 1041 {
1029 1042 unsigned char *acquisitionTimeCharPtr;
1030 1043
1031 1044 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1032 1045
1033 1046 *acquisitionTimeAslong = 0x00;
1034 1047 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1035 1048 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1036 1049 + ( (unsigned long long int) acquisitionTimeCharPtr[2] << 24 )
1037 1050 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 16 )
1038 1051 + ( (unsigned long long int) acquisitionTimeCharPtr[6] << 8 )
1039 1052 + ( (unsigned long long int) acquisitionTimeCharPtr[7] );
1040 1053 }
1041 1054
1042 1055 //**************
1043 1056 // wfp registers
1044 1057 void reset_wfp_burst_enable(void)
1045 1058 {
1046 1059 /** This function resets the waveform picker burst_enable register.
1047 1060 *
1048 1061 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1049 1062 *
1050 1063 */
1051 1064
1052 1065 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1053 1066 }
1054 1067
1055 1068 void reset_wfp_status( void )
1056 1069 {
1057 1070 /** This function resets the waveform picker status register.
1058 1071 *
1059 1072 * All status bits are set to 0 [new_err full_err full].
1060 1073 *
1061 1074 */
1062 1075
1063 1076 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1064 1077 }
1065 1078
1066 1079 void reset_waveform_picker_regs(void)
1067 1080 {
1068 1081 /** This function resets the waveform picker module registers.
1069 1082 *
1070 1083 * The registers affected by this function are located at the following offset addresses:
1071 1084 * - 0x00 data_shaping
1072 1085 * - 0x04 run_burst_enable
1073 1086 * - 0x08 addr_data_f0
1074 1087 * - 0x0C addr_data_f1
1075 1088 * - 0x10 addr_data_f2
1076 1089 * - 0x14 addr_data_f3
1077 1090 * - 0x18 status
1078 1091 * - 0x1C delta_snapshot
1079 1092 * - 0x20 delta_f0
1080 1093 * - 0x24 delta_f0_2
1081 1094 * - 0x28 delta_f1
1082 1095 * - 0x2c delta_f2
1083 1096 * - 0x30 nb_data_by_buffer
1084 1097 * - 0x34 nb_snapshot_param
1085 1098 * - 0x38 start_date
1086 1099 * - 0x3c nb_word_in_buffer
1087 1100 *
1088 1101 */
1089 1102
1090 1103 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1091 1104 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1092 1105 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1093 1106 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1094 1107 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1095 1108 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1096 1109 reset_wfp_status(); // 0x18
1097 1110 //
1098 1111 set_wfp_delta_snapshot(); // 0x1c
1099 1112 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1100 1113 set_wfp_delta_f1(); // 0x28
1101 1114 set_wfp_delta_f2(); // 0x2c
1102 1115 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1103 1116 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1104 1117 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1105 1118 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1106 1119 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1107 1120 // 2688 = 8 * 336
1108 1121 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1109 1122 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1110 1123 waveform_picker_regs->start_date = 0x00; // 0x38
1111 1124 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1112 1125 }
1113 1126
1114 1127 void set_wfp_data_shaping( void )
1115 1128 {
1116 1129 /** This function sets the data_shaping register of the waveform picker module.
1117 1130 *
1118 1131 * The value is read from one field of the parameter_dump_packet structure:\n
1119 1132 * bw_sp0_sp1_r0_r1
1120 1133 *
1121 1134 */
1122 1135
1123 1136 unsigned char data_shaping;
1124 1137
1125 1138 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1126 1139 // waveform picker : [R1 R0 SP1 SP0 BW]
1127 1140
1128 1141 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1129 1142
1130 1143 waveform_picker_regs->data_shaping =
1131 1144 ( (data_shaping & 0x10) >> 4 ) // BW
1132 1145 + ( (data_shaping & 0x08) >> 2 ) // SP0
1133 1146 + ( (data_shaping & 0x04) ) // SP1
1134 1147 + ( (data_shaping & 0x02) << 2 ) // R0
1135 1148 + ( (data_shaping & 0x01) << 4 ); // R1
1136 1149 }
1137 1150
1138 1151 void set_wfp_burst_enable_register( unsigned char mode )
1139 1152 {
1140 1153 /** This function sets the waveform picker burst_enable register depending on the mode.
1141 1154 *
1142 1155 * @param mode is the LFR mode to launch.
1143 1156 *
1144 1157 * The burst bits shall be before the enable bits.
1145 1158 *
1146 1159 */
1147 1160
1148 1161 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1149 1162 // the burst bits shall be set first, before the enable bits
1150 1163 switch(mode) {
1151 1164 case(LFR_MODE_NORMAL):
1152 1165 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1153 1166 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1154 1167 break;
1155 1168 case(LFR_MODE_BURST):
1156 1169 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1157 1170 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1158 1171 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1159 1172 break;
1160 1173 case(LFR_MODE_SBM1):
1161 1174 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1162 1175 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1163 1176 break;
1164 1177 case(LFR_MODE_SBM2):
1165 1178 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1166 1179 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1167 1180 break;
1168 1181 default:
1169 1182 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1170 1183 break;
1171 1184 }
1172 1185 }
1173 1186
1174 1187 void set_wfp_delta_snapshot( void )
1175 1188 {
1176 1189 /** This function sets the delta_snapshot register of the waveform picker module.
1177 1190 *
1178 1191 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1179 1192 * - sy_lfr_n_swf_p[0]
1180 1193 * - sy_lfr_n_swf_p[1]
1181 1194 *
1182 1195 */
1183 1196
1184 1197 unsigned int delta_snapshot;
1185 1198 unsigned int delta_snapshot_in_T2;
1186 1199
1187 1200 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1188 1201 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1189 1202
1190 1203 delta_snapshot_in_T2 = delta_snapshot * 256;
1191 1204 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1192 1205 }
1193 1206
1194 1207 void set_wfp_delta_f0_f0_2( void )
1195 1208 {
1196 1209 unsigned int delta_snapshot;
1197 1210 unsigned int nb_samples_per_snapshot;
1198 1211 float delta_f0_in_float;
1199 1212
1200 1213 delta_snapshot = waveform_picker_regs->delta_snapshot;
1201 1214 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1202 1215 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1203 1216
1204 1217 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1205 1218 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1206 1219 }
1207 1220
1208 1221 void set_wfp_delta_f1( void )
1209 1222 {
1210 1223 unsigned int delta_snapshot;
1211 1224 unsigned int nb_samples_per_snapshot;
1212 1225 float delta_f1_in_float;
1213 1226
1214 1227 delta_snapshot = waveform_picker_regs->delta_snapshot;
1215 1228 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1216 1229 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1217 1230
1218 1231 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1219 1232 }
1220 1233
1221 1234 void set_wfp_delta_f2()
1222 1235 {
1223 1236 unsigned int delta_snapshot;
1224 1237 unsigned int nb_samples_per_snapshot;
1225 1238
1226 1239 delta_snapshot = waveform_picker_regs->delta_snapshot;
1227 1240 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1228 1241
1229 1242 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1230 1243 }
1231 1244
1232 1245 //*****************
1233 1246 // local parameters
1234 1247
1235 1248 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1236 1249 {
1237 1250 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1238 1251 *
1239 1252 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1240 1253 * @param sid is the source identifier of the packet being updated.
1241 1254 *
1242 1255 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1243 1256 * The sequence counters shall wrap around from 2^14 to zero.
1244 1257 * The sequence counter shall start at zero at startup.
1245 1258 *
1246 1259 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1247 1260 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1248 1261 *
1249 1262 */
1250 1263
1251 1264 unsigned short *sequence_cnt;
1252 1265 unsigned short segmentation_grouping_flag;
1253 1266 unsigned short new_packet_sequence_control;
1254 1267 rtems_mode initial_mode_set;
1255 1268 rtems_mode current_mode_set;
1256 1269 rtems_status_code status;
1257 1270
1258 1271 //******************************************
1259 1272 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1260 1273 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1261 1274
1262 1275 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1263 1276 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1264 1277 || (sid == SID_BURST_CWF_F2)
1265 1278 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1266 1279 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1267 1280 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1268 1281 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1269 1282 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1270 1283 {
1271 1284 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1272 1285 }
1273 1286 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1274 1287 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1275 1288 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1276 1289 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1277 1290 {
1278 1291 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1279 1292 }
1280 1293 else
1281 1294 {
1282 1295 sequence_cnt = (unsigned short *) NULL;
1283 1296 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1284 1297 }
1285 1298
1286 1299 if (sequence_cnt != NULL)
1287 1300 {
1288 1301 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1289 1302 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1290 1303
1291 1304 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1292 1305
1293 1306 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1294 1307 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1295 1308
1296 1309 // increment the sequence counter
1297 1310 if ( *sequence_cnt < SEQ_CNT_MAX)
1298 1311 {
1299 1312 *sequence_cnt = *sequence_cnt + 1;
1300 1313 }
1301 1314 else
1302 1315 {
1303 1316 *sequence_cnt = 0;
1304 1317 }
1305 1318 }
1306 1319
1307 1320 //***********************************
1308 1321 // RESET THE MODE OF THE CALLING TASK
1309 1322 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1310 1323 }
General Comments 0
You need to be logged in to leave comments. Login now