##// END OF EJS Templates
fsw-0-20...
paul -
r51:b0e1ec810ca1 default
parent child
Show More
@@ -1,248 +1,248
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Sun Oct 27 15:33:40 2013
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Mon Nov 4 07:05:32 2013
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=0 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=19 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=0 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=20 -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c
56 56 OBJECTS = obj/wf_handler.o \
57 57 obj/tc_handler.o \
58 58 obj/fsw_processing.o \
59 59 obj/fsw_misc.o \
60 60 obj/fsw_init.o \
61 61 obj/fsw_globals.o \
62 62 obj/fsw_spacewire.o \
63 63 obj/tc_load_dump_parameters.o \
64 64 obj/tm_lfr_tc_exe.o \
65 65 obj/tc_acceptance.o
66 66 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
67 67 /usr/lib64/qt4/mkspecs/common/linux.conf \
68 68 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
69 69 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
70 70 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/qconfig.pri \
73 73 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
74 74 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
75 75 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
76 76 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
77 77 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
78 78 sparc.pri \
79 79 /usr/lib64/qt4/mkspecs/features/release.prf \
80 80 /usr/lib64/qt4/mkspecs/features/default_post.prf \
81 81 /usr/lib64/qt4/mkspecs/features/shared.prf \
82 82 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
83 83 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
84 84 /usr/lib64/qt4/mkspecs/features/resources.prf \
85 85 /usr/lib64/qt4/mkspecs/features/uic.prf \
86 86 /usr/lib64/qt4/mkspecs/features/yacc.prf \
87 87 /usr/lib64/qt4/mkspecs/features/lex.prf \
88 88 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
89 89 fsw-qt.pro
90 90 QMAKE_TARGET = fsw
91 91 DESTDIR = bin/
92 92 TARGET = bin/fsw
93 93
94 94 first: all
95 95 ####### Implicit rules
96 96
97 97 .SUFFIXES: .o .c .cpp .cc .cxx .C
98 98
99 99 .cpp.o:
100 100 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
101 101
102 102 .cc.o:
103 103 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
104 104
105 105 .cxx.o:
106 106 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
107 107
108 108 .C.o:
109 109 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
110 110
111 111 .c.o:
112 112 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
113 113
114 114 ####### Build rules
115 115
116 116 all: Makefile $(TARGET)
117 117
118 118 $(TARGET): $(OBJECTS)
119 119 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
120 120 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
121 121
122 122 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
123 123 /usr/lib64/qt4/mkspecs/common/linux.conf \
124 124 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
125 125 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
126 126 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/qconfig.pri \
129 129 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
130 130 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
131 131 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
132 132 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
133 133 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
134 134 sparc.pri \
135 135 /usr/lib64/qt4/mkspecs/features/release.prf \
136 136 /usr/lib64/qt4/mkspecs/features/default_post.prf \
137 137 /usr/lib64/qt4/mkspecs/features/shared.prf \
138 138 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
139 139 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
140 140 /usr/lib64/qt4/mkspecs/features/resources.prf \
141 141 /usr/lib64/qt4/mkspecs/features/uic.prf \
142 142 /usr/lib64/qt4/mkspecs/features/yacc.prf \
143 143 /usr/lib64/qt4/mkspecs/features/lex.prf \
144 144 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
145 145 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
146 146 /usr/lib64/qt4/mkspecs/common/unix.conf:
147 147 /usr/lib64/qt4/mkspecs/common/linux.conf:
148 148 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
149 149 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
150 150 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/qconfig.pri:
153 153 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
154 154 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
155 155 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
156 156 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
157 157 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
158 158 sparc.pri:
159 159 /usr/lib64/qt4/mkspecs/features/release.prf:
160 160 /usr/lib64/qt4/mkspecs/features/default_post.prf:
161 161 /usr/lib64/qt4/mkspecs/features/shared.prf:
162 162 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
163 163 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
164 164 /usr/lib64/qt4/mkspecs/features/resources.prf:
165 165 /usr/lib64/qt4/mkspecs/features/uic.prf:
166 166 /usr/lib64/qt4/mkspecs/features/yacc.prf:
167 167 /usr/lib64/qt4/mkspecs/features/lex.prf:
168 168 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
169 169 qmake: FORCE
170 170 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
171 171
172 172 dist:
173 173 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
174 174 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
175 175
176 176
177 177 clean:compiler_clean
178 178 -$(DEL_FILE) $(OBJECTS)
179 179 -$(DEL_FILE) *~ core *.core
180 180
181 181
182 182 ####### Sub-libraries
183 183
184 184 distclean: clean
185 185 -$(DEL_FILE) $(TARGET)
186 186 -$(DEL_FILE) Makefile
187 187
188 188
189 189 grmon:
190 190 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
191 191
192 192 check: first
193 193
194 194 compiler_rcc_make_all:
195 195 compiler_rcc_clean:
196 196 compiler_uic_make_all:
197 197 compiler_uic_clean:
198 198 compiler_image_collection_make_all: qmake_image_collection.cpp
199 199 compiler_image_collection_clean:
200 200 -$(DEL_FILE) qmake_image_collection.cpp
201 201 compiler_yacc_decl_make_all:
202 202 compiler_yacc_decl_clean:
203 203 compiler_yacc_impl_make_all:
204 204 compiler_yacc_impl_clean:
205 205 compiler_lex_make_all:
206 206 compiler_lex_clean:
207 207 compiler_clean:
208 208
209 209 ####### Compile
210 210
211 211 obj/wf_handler.o: ../src/wf_handler.c
212 212 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
213 213
214 214 obj/tc_handler.o: ../src/tc_handler.c
215 215 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
216 216
217 217 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
218 218 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
219 219
220 220 obj/fsw_misc.o: ../src/fsw_misc.c
221 221 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
222 222
223 223 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
224 224 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
225 225
226 226 obj/fsw_globals.o: ../src/fsw_globals.c
227 227 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
228 228
229 229 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
230 230 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
231 231
232 232 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
233 233 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
234 234
235 235 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
236 236 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
237 237
238 238 obj/tc_acceptance.o: ../src/tc_acceptance.c
239 239 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
240 240
241 241 ####### Install
242 242
243 243 install: FORCE
244 244
245 245 uninstall: FORCE
246 246
247 247 FORCE:
248 248
1 NO CONTENT: modified file, binary diff hidden
@@ -1,74 +1,74
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** gsa
4 4 CONFIG += console verbose
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 SWVERSION=-0-19
10 SWVERSION=-0-20
11 11 DEFINES += SW_VERSION_N1=0
12 12 DEFINES += SW_VERSION_N2=0
13 13 DEFINES += SW_VERSION_N3=0
14 DEFINES += SW_VERSION_N4=19
14 DEFINES += SW_VERSION_N4=20
15 15
16 16 contains( CONFIG, verbose ) {
17 17 DEFINES += PRINT_MESSAGES_ON_CONSOLE
18 18 }
19 19
20 20 contains( CONFIG, cpu_usage_report ) {
21 21 DEFINES += PRINT_TASK_STATISTICS
22 22 }
23 23
24 24 contains( CONFIG, stack_report ) {
25 25 DEFINES += PRINT_STACK_REPORT
26 26 }
27 27
28 28 contains( CONFIG, boot_messages ) {
29 29 DEFINES += BOOT_MESSAGES
30 30 }
31 31
32 32 #doxygen.target = doxygen
33 33 #doxygen.commands = doxygen ../doc/Doxyfile
34 34 #QMAKE_EXTRA_TARGETS += doxygen
35 35
36 36 TARGET = fsw
37 37 contains( CONFIG, gsa ) {
38 38 DEFINES += GSA
39 39 TARGET = fsw-gsa
40 40 }
41 41
42 42 INCLUDEPATH += \
43 43 ../src \
44 44 ../header
45 45
46 46 SOURCES += \
47 47 ../src/wf_handler.c \
48 48 ../src/tc_handler.c \
49 49 ../src/fsw_processing.c \
50 50 ../src/fsw_misc.c \
51 51 ../src/fsw_init.c \
52 52 ../src/fsw_globals.c \
53 53 ../src/fsw_spacewire.c \
54 54 ../src/tc_load_dump_parameters.c \
55 55 ../src/tm_lfr_tc_exe.c \
56 56 ../src/tc_acceptance.c
57 57
58 58
59 59 HEADERS += \
60 60 ../header/wf_handler.h \
61 61 ../header/tc_handler.h \
62 62 ../header/grlib_regs.h \
63 63 ../header/fsw_processing.h \
64 64 ../header/fsw_params.h \
65 65 ../header/fsw_misc.h \
66 66 ../header/fsw_init.h \
67 67 ../header/ccsds_types.h \
68 68 ../header/fsw_params_processing.h \
69 69 ../header/fsw_spacewire.h \
70 70 ../header/tm_byte_positions.h \
71 71 ../header/tc_load_dump_parameters.h \
72 72 ../header/tm_lfr_tc_exe.h \
73 73 ../header/tc_acceptance.h
74 74
@@ -1,305 +1,305
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 2.8.0, 2013-10-27T14:25:30. -->
3 <!-- Written by QtCreator 2.8.0, 2013-11-04T07:04:49. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QString" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QString" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">System</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">1</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
63 63 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
64 64 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
67 67 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
69 69 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
70 70 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
71 71 </valuemap>
72 72 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
73 73 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
74 74 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
77 77 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
78 78 <value type="QString">-w</value>
79 79 <value type="QString">-r</value>
80 80 </valuelist>
81 81 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
82 82 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w -j 4</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
84 84 </valuemap>
85 85 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
86 86 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
89 89 </valuemap>
90 90 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
92 92 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
93 93 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
96 96 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
97 97 <value type="QString">-w</value>
98 98 <value type="QString">-r</value>
99 99 </valuelist>
100 100 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
101 101 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
103 103 </valuemap>
104 104 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
105 105 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
108 108 </valuemap>
109 109 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
110 110 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
111 111 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
112 112 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Release</value>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
115 115 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
116 116 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
118 118 </valuemap>
119 119 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.1">
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
122 122 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
126 126 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
127 127 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
128 128 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
129 129 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
130 130 </valuemap>
131 131 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
132 132 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
133 133 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
134 134 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
135 135 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
136 136 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
137 137 <value type="QString">-w</value>
138 138 <value type="QString">-r</value>
139 139 </valuelist>
140 140 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
141 141 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w </value>
142 142 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
143 143 </valuemap>
144 144 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
145 145 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
146 146 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
147 147 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
148 148 </valuemap>
149 149 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
150 150 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
151 151 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
152 152 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
153 153 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
154 154 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
155 155 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
156 156 <value type="QString">-w</value>
157 157 <value type="QString">-r</value>
158 158 </valuelist>
159 159 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
160 160 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
161 161 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
162 162 </valuemap>
163 163 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
164 164 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
165 165 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
166 166 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
167 167 </valuemap>
168 168 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
169 169 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
170 170 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Debug</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
174 174 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">2</value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
177 177 </valuemap>
178 178 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">2</value>
179 179 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
180 180 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
181 181 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
182 182 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
183 183 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
184 184 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
187 187 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">No deployment</value>
188 188 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
189 189 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
190 190 </valuemap>
191 191 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
192 192 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
193 193 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
194 194 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
195 195 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
196 196 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
197 197 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
198 198 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
199 199 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
200 200 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
201 201 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
202 202 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
203 203 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
204 204 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
205 205 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
206 206 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
207 207 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
208 208 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
209 209 <value type="int">0</value>
210 210 <value type="int">1</value>
211 211 <value type="int">2</value>
212 212 <value type="int">3</value>
213 213 <value type="int">4</value>
214 214 <value type="int">5</value>
215 215 <value type="int">6</value>
216 216 <value type="int">7</value>
217 217 <value type="int">8</value>
218 218 <value type="int">9</value>
219 219 <value type="int">10</value>
220 220 <value type="int">11</value>
221 221 <value type="int">12</value>
222 222 <value type="int">13</value>
223 223 <value type="int">14</value>
224 224 </valuelist>
225 225 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
226 226 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
228 228 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
229 229 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
230 230 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
231 231 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
232 232 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
233 233 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
234 234 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
235 235 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
236 236 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
237 237 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
238 238 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
239 239 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
240 240 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">false</value>
241 241 </valuemap>
242 242 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.1">
243 243 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
244 244 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
245 245 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
246 246 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
247 247 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
248 248 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
249 249 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
250 250 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
251 251 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
252 252 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
253 253 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
254 254 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
255 255 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
256 256 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
257 257 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
258 258 <value type="int">0</value>
259 259 <value type="int">1</value>
260 260 <value type="int">2</value>
261 261 <value type="int">3</value>
262 262 <value type="int">4</value>
263 263 <value type="int">5</value>
264 264 <value type="int">6</value>
265 265 <value type="int">7</value>
266 266 <value type="int">8</value>
267 267 <value type="int">9</value>
268 268 <value type="int">10</value>
269 269 <value type="int">11</value>
270 270 <value type="int">12</value>
271 271 <value type="int">13</value>
272 272 <value type="int">14</value>
273 273 </valuelist>
274 274 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
275 275 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
276 276 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Arguments"></value>
277 277 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Executable">doxygen</value>
278 278 <value type="bool" key="ProjectExplorer.CustomExecutableRunConfiguration.UseTerminal">true</value>
279 279 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.WorkingDirectory">/opt/DEV_PLE/doc</value>
280 280 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Run doxygen</value>
281 281 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
282 282 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.CustomExecutableRunConfiguration</value>
283 283 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
284 284 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
285 285 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
286 286 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
287 287 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
288 288 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
289 289 </valuemap>
290 290 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">2</value>
291 291 </valuemap>
292 292 </data>
293 293 <data>
294 294 <variable>ProjectExplorer.Project.TargetCount</variable>
295 295 <value type="int">1</value>
296 296 </data>
297 297 <data>
298 298 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
299 299 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
300 300 </data>
301 301 <data>
302 302 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
303 303 <value type="int">14</value>
304 304 </data>
305 305 </qtcreator>
@@ -1,641 +1,643
1 1 #ifndef CCSDS_TYPES_H_INCLUDED
2 2 #define CCSDS_TYPES_H_INCLUDED
3 3
4 4 #define CCSDS_PROTOCOLE_EXTRA_BYTES 4
5 5 #define CCSDS_TELEMETRY_HEADER_LENGTH 16+4
6 6 #define CCSDS_TM_PKT_MAX_SIZE 4412
7 7 #define CCSDS_TELECOMMAND_HEADER_LENGTH 10+4
8 8 #define CCSDS_TC_PKT_MAX_SIZE 256
9 9 #define CCSDS_TC_PKT_MIN_SIZE 16
10 10 #define CCSDS_TC_TM_PACKET_OFFSET 7
11 11 #define CCSDS_PROCESS_ID 76
12 12 #define CCSDS_PACKET_CATEGORY 12
13 13 #define CCSDS_NODE_ADDRESS 0xfe
14 14 #define CCSDS_USER_APP 0x00
15 15
16 16 #define DEFAULT_SPARE1_PUSVERSION_SPARE2 0x10
17 17 #define DEFAULT_RESERVED 0x00
18 18 #define DEFAULT_HKBIA 0x1e // 0001 1110
19 19
20 20 // PACKET ID
21 21 #define TM_PACKET_ID_TC_EXE 0x0cc1 // PID 76 CAT 1
22 22 #define TM_PACKET_ID_HK 0x0cc4 // PID 76 CAT 4
23 23 #define TM_PACKET_ID_PARAMETER_DUMP 0x0cc9 // PID 76 CAT 9
24 24 #define TM_PACKET_ID_SCIENCE_NORMAL_BURST 0x0ccc // PID 76 CAT 12
25 25 #define TM_PACKET_ID_SCIENCE_SBM1_SBM2 0x0cfc // PID 79 CAT 12
26 26 #define TM_PACKET_PID_DEFAULT 76
27 27 #define TM_PACKET_PID_BURST_SBM1_SBM2 79
28 28 #define TM_PACKET_CAT_TC_EXE 1
29 29 #define TM_PACKET_CAT_HK 4
30 30 #define TM_PACKET_CAT_PARAMETER_DUMP 9
31 31 #define TM_PACKET_CAT_SCIENCE 12
32 32
33 33 // PACKET SEQUENCE CONTROL
34 34 #define TM_PACKET_SEQ_CTRL_CONTINUATION 0x00 // [0000 0000]
35 35 #define TM_PACKET_SEQ_CTRL_FIRST 0x40 // [0100 0000]
36 36 #define TM_PACKET_SEQ_CTRL_LAST 0x80 // [1000 0000]
37 37 #define TM_PACKET_SEQ_CTRL_STANDALONE 0xc0 // [1100 0000]
38 38 #define TM_PACKET_SEQ_CNT_DEFAULT 0x00 // [0000 0000]
39 39
40 40 // DESTINATION ID
41 41 #define TM_DESTINATION_ID_GROUND 0
42 42 #define TM_DESTINATION_ID_MISSION_TIMELINE 110
43 43 #define TM_DESTINATION_ID_TC_SEQUENCES 111
44 44 #define TM_DESTINATION_ID_RECOVERY_ACTION_COMMAND 112
45 45 #define TM_DESTINATION_ID_BACKUP_MISSION_TIMELINE 113
46 46 #define TM_DESTINATION_ID_DIRECT_CMD 120
47 47 #define TM_DESTINATION_ID_SPARE_GRD_SRC1 121
48 48 #define TM_DESTINATION_ID_SPARE_GRD_SRC2 122
49 49 #define TM_DESTINATION_ID_OBCP 15
50 50 #define TM_DESTINATION_ID_SYSTEM_CONTROL 14
51 51 #define TM_DESTINATION_ID_AOCS 11
52 52
53 53 #define CCSDS_DESTINATION_ID 0x01
54 54 #define CCSDS_PROTOCOLE_ID 0x02
55 55 #define CCSDS_RESERVED 0x00
56 56 #define CCSDS_USER_APP 0x00
57 57
58 58 #define SIZE_TM_LFR_TC_EXE_NOT_IMPLEMENTED 24
59 59 #define SIZE_TM_LFR_TC_EXE_CORRUPTED 32
60 60 #define SIZE_HK_PARAMETERS 112
61 61
62 62 // TC TYPES
63 63 #define TC_TYPE_GEN 181
64 64 #define TC_TYPE_TIME 9
65 65
66 66 // TC SUBTYPES
67 67 #define TC_SUBTYPE_RESET 1
68 68 #define TC_SUBTYPE_LOAD_COMM 11
69 69 #define TC_SUBTYPE_LOAD_NORM 13
70 70 #define TC_SUBTYPE_LOAD_BURST 19
71 71 #define TC_SUBTYPE_LOAD_SBM1 25
72 72 #define TC_SUBTYPE_LOAD_SBM2 27
73 73 #define TC_SUBTYPE_DUMP 31
74 74 #define TC_SUBTYPE_ENTER 41
75 75 #define TC_SUBTYPE_UPDT_INFO 51
76 76 #define TC_SUBTYPE_EN_CAL 61
77 77 #define TC_SUBTYPE_DIS_CAL 63
78 78 #define TC_SUBTYPE_UPDT_TIME 129
79 79
80 80 // TC LEN
81 81 #define TC_LEN_RESET 12
82 82 #define TC_LEN_LOAD_COMM 14
83 83 #define TC_LEN_LOAD_NORM 20
84 84 #define TC_LEN_LOAD_BURST 14
85 85 #define TC_LEN_LOAD_SBM1 14
86 86 #define TC_LEN_LOAD_SBM2 14
87 87 #define TC_LEN_DUMP 12
88 88 #define TC_LEN_ENTER 20
89 89 #define TC_LEN_UPDT_INFO 48
90 90 #define TC_LEN_EN_CAL 12
91 91 #define TC_LEN_DIS_CAL 12
92 92 #define TC_LEN_UPDT_TIME 18
93 93
94 94 // TM TYPES
95 95 #define TM_TYPE_TC_EXE 1
96 96 #define TM_TYPE_HK 3
97 97 #define TM_TYPE_PARAMETER_DUMP 3
98 98 #define TM_TYPE_LFR_SCIENCE 21
99 99
100 100 // TM SUBTYPES
101 101 #define TM_SUBTYPE_EXE_OK 7
102 102 #define TM_SUBTYPE_EXE_NOK 8
103 103 #define TM_SUBTYPE_HK 25
104 104 #define TM_SUBTYPE_PARAMETER_DUMP 25
105 105 #define TM_SUBTYPE_SCIENCE 3
106 106 #define TM_SUBTYPE_LFR_SCIENCE 3
107 107
108 108 // FAILURE CODES
109 109 #define ILLEGAL_APID 0
110 #define WRONG_LEN_PACKET 1
110 #define WRONG_LEN_PKT 1
111 111 #define INCOR_CHECKSUM 2
112 112 #define ILL_TYPE 3
113 113 #define ILL_SUBTYPE 4
114 #define WRONG_APP_DATA 5 // 0x00 0x05
115 //
116 #define CCSDS_TM_VALID 7
114 #define WRONG_APP_DATA 5 // 0x00 0x05
117 115 #define TC_NOT_EXE 42000 // 0xa4 0x10
116 #define WRONG_SRC_ID 42001 // 0xa4 0x11
118 117 #define FUNCT_NOT_IMPL 42002 // 0xa4 0x12
119 118 #define FAIL_DETECTED 42003 // 0xa4 0x13
119 #define NOT_ALLOWED 42004 // 0xa4 0x14
120 120 #define CORRUPTED 42005 // 0xa4 0x15
121 #define CCSDS_TM_VALID 7
121 122
123 // TC SID
122 124 #define SID_TC_DEFAULT 0 // the default SID for TC sent to the LFR
123 125 #define SID_TC_GROUND 0
124 126 #define SID_TC_MISSION_TIMELINE 110
125 127 #define SID_TC_TC_SEQUENCES 111
126 128 #define SID_TC_RECOVERY_ACTION_CMD 112
127 129 #define SID_TC_BACKUP_MISSION_TIMELINE 113
128 130 #define SID_TC_DIRECT_CMD 120
129 131 #define SID_TC_SPARE_GRD_SRC1 121
130 132 #define SID_TC_SPARE_GRD_SRC2 122
131 133 #define SID_TC_OBCP 15
132 134 #define SID_TC_SYSTEM_CONTROL 14
133 135 #define SID_TC_AOCS 11
134 136 #define SID_TC_RPW_INTERNAL 254
135 137
136 138 // TM SID
137 139 #define SID_HK 1
138 140 #define SID_PARAMETER_DUMP 10
139 141
140 142 #define SID_NORM_SWF_F0 3
141 143 #define SID_NORM_SWF_F1 4
142 144 #define SID_NORM_SWF_F2 5
143 145 #define SID_NORM_CWF_F3 1
144 146 #define SID_BURST_CWF_F2 2
145 147 #define SID_SBM1_CWF_F1 24
146 148 #define SID_SBM2_CWF_F2 25
147 149 #define SID_NORM_ASM_F0 11
148 150 #define SID_NORM_ASM_F1 12
149 151 #define SID_NORM_ASM_F2 13
150 152 #define SID_NORM_BP1_F0 14
151 153 #define SID_NORM_BP1_F1 15
152 154 #define SID_NORM_BP1_F2 16
153 155 #define SID_NORM_BP2_F0 19
154 156 #define SID_NORM_BP2_F1 20
155 157 #define SID_NORM_BP2_F2 21
156 158 #define SID_BURST_BP1_F0 17
157 159 #define SID_BURST_BP2_F0 22
158 160 #define SID_BURST_BP1_F1 18
159 161 #define SID_BURST_BP2_F1 23
160 162 #define SID_SBM1_BP1_F0 28
161 163 #define SID_SBM1_BP2_F0 31
162 164 #define SID_SBM2_BP1_F0 29
163 165 #define SID_SBM2_BP2_F0 32
164 166 #define SID_SBM2_BP1_F1 30
165 167 #define SID_SBM2_BP2_F1 33
166 168
167 169 // LENGTH (BYTES)
168 170 #define LENGTH_TM_LFR_TC_EXE_MAX 32
169 171 #define LENGTH_TM_LFR_HK 126
170 172
171 173 // HEADER_LENGTH
172 174 #define TM_HEADER_LEN 16
173 175 #define HEADER_LENGTH_TM_LFR_SCIENCE_ASM 28
174 176 // PACKET_LENGTH
175 177 #define PACKET_LENGTH_TC_EXE_SUCCESS (20 - CCSDS_TC_TM_PACKET_OFFSET)
176 178 #define PACKET_LENGTH_TC_EXE_INCONSISTENT (26 - CCSDS_TC_TM_PACKET_OFFSET)
177 179 #define PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE (26 - CCSDS_TC_TM_PACKET_OFFSET)
178 180 #define PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED (24 - CCSDS_TC_TM_PACKET_OFFSET)
179 181 #define PACKET_LENGTH_TC_EXE_ERROR (24 - CCSDS_TC_TM_PACKET_OFFSET)
180 182 #define PACKET_LENGTH_TC_EXE_CORRUPTED (32 - CCSDS_TC_TM_PACKET_OFFSET)
181 183 #define PACKET_LENGTH_HK (126 - CCSDS_TC_TM_PACKET_OFFSET)
182 184 #define PACKET_LENGTH_PARAMETER_DUMP (34 - CCSDS_TC_TM_PACKET_OFFSET)
183 185 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM (TOTAL_SIZE_SM + HEADER_LENGTH_TM_LFR_SCIENCE_ASM - CCSDS_TC_TM_PACKET_OFFSET)
184 186
185 187 #define SPARE1_PUSVERSION_SPARE2 0x10
186 188
187 189 #define LEN_TM_LFR_HK 130 // 126 + 4
188 190 #define LEN_TM_LFR_TC_EXE_NOT_IMP 28 // 24 + 4
189 191
190 192 #define TM_LEN_SCI_SWF_340 4101 // 340 * 12 + 10 + 12 - 1
191 193 #define TM_LEN_SCI_SWF_8 117 // 8 * 12 + 10 + 12 - 1
192 194 #define TM_LEN_SCI_CWF_340 4099 // 340 * 12 + 10 + 10 - 1
193 195 #define TM_LEN_SCI_CWF_8 115 // 8 * 12 + 10 + 10 - 1
194 196 #define TM_LEN_SCI_CWF3_LIGHT_340 2059 // 340 * 6 + 10 + 10 - 1
195 197 #define TM_LEN_SCI_CWF3_LIGHT_8 67 // 8 * 6 + 10 + 10 - 1
196 198 #define DEFAULT_PKTCNT 0x07
197 199 #define BLK_NR_340 0x0154
198 200 #define BLK_NR_8 0x0008
199 201
200 202 enum TM_TYPE{
201 203 TM_LFR_TC_EXE_OK,
202 204 TM_LFR_TC_EXE_ERR,
203 205 TM_LFR_HK,
204 206 TM_LFR_SCI,
205 207 TM_LFR_SCI_SBM,
206 208 TM_LFR_PAR_DUMP
207 209 };
208 210
209 211 struct TMHeader_str
210 212 {
211 213 volatile unsigned char targetLogicalAddress;
212 214 volatile unsigned char protocolIdentifier;
213 215 volatile unsigned char reserved;
214 216 volatile unsigned char userApplication;
215 217 volatile unsigned char packetID[2];
216 218 volatile unsigned char packetSequenceControl[2];
217 219 volatile unsigned char packetLength[2];
218 220 // DATA FIELD HEADER
219 221 volatile unsigned char spare1_pusVersion_spare2;
220 222 volatile unsigned char serviceType;
221 223 volatile unsigned char serviceSubType;
222 224 volatile unsigned char destinationID;
223 225 volatile unsigned char time[6];
224 226 };
225 227 typedef struct TMHeader_str TMHeader_t;
226 228
227 229 struct Packet_TM_LFR_TC_EXE_str
228 230 {
229 231 volatile unsigned char targetLogicalAddress;
230 232 volatile unsigned char protocolIdentifier;
231 233 volatile unsigned char reserved;
232 234 volatile unsigned char userApplication;
233 235 volatile unsigned char packetID[2];
234 236 volatile unsigned char packetSequenceControl[2];
235 237 volatile unsigned char packetLength[2];
236 238 // DATA FIELD HEADER
237 239 volatile unsigned char spare1_pusVersion_spare2;
238 240 volatile unsigned char serviceType;
239 241 volatile unsigned char serviceSubType;
240 242 volatile unsigned char destinationID;
241 243 volatile unsigned char time[6];
242 244 volatile unsigned char data[LENGTH_TM_LFR_TC_EXE_MAX - 10 + 1];
243 245 };
244 246 typedef struct Packet_TM_LFR_TC_EXE_str Packet_TM_LFR_TC_EXE_t;
245 247
246 248 struct Packet_TM_LFR_TC_EXE_SUCCESS_str
247 249 {
248 250 volatile unsigned char targetLogicalAddress;
249 251 volatile unsigned char protocolIdentifier;
250 252 volatile unsigned char reserved;
251 253 volatile unsigned char userApplication;
252 254 // PACKET HEADER
253 255 volatile unsigned char packetID[2];
254 256 volatile unsigned char packetSequenceControl[2];
255 257 volatile unsigned char packetLength[2];
256 258 // DATA FIELD HEADER
257 259 volatile unsigned char spare1_pusVersion_spare2;
258 260 volatile unsigned char serviceType;
259 261 volatile unsigned char serviceSubType;
260 262 volatile unsigned char destinationID;
261 263 volatile unsigned char time[6];
262 264 //
263 265 volatile unsigned char telecommand_pkt_id[2];
264 266 volatile unsigned char pkt_seq_control[2];
265 267 };
266 268 typedef struct Packet_TM_LFR_TC_EXE_SUCCESS_str Packet_TM_LFR_TC_EXE_SUCCESS_t;
267 269
268 270 struct Packet_TM_LFR_TC_EXE_INCONSISTENT_str
269 271 {
270 272 volatile unsigned char targetLogicalAddress;
271 273 volatile unsigned char protocolIdentifier;
272 274 volatile unsigned char reserved;
273 275 volatile unsigned char userApplication;
274 276 // PACKET HEADER
275 277 volatile unsigned char packetID[2];
276 278 volatile unsigned char packetSequenceControl[2];
277 279 volatile unsigned char packetLength[2];
278 280 // DATA FIELD HEADER
279 281 volatile unsigned char spare1_pusVersion_spare2;
280 282 volatile unsigned char serviceType;
281 283 volatile unsigned char serviceSubType;
282 284 volatile unsigned char destinationID;
283 285 volatile unsigned char time[6];
284 286 //
285 287 volatile unsigned char tc_failure_code[2];
286 288 volatile unsigned char telecommand_pkt_id[2];
287 289 volatile unsigned char pkt_seq_control[2];
288 290 volatile unsigned char tc_service;
289 291 volatile unsigned char tc_subtype;
290 292 volatile unsigned char byte_position;
291 293 volatile unsigned char rcv_value;
292 294 };
293 295 typedef struct Packet_TM_LFR_TC_EXE_INCONSISTENT_str Packet_TM_LFR_TC_EXE_INCONSISTENT_t;
294 296
295 297 struct Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_str
296 298 {
297 299 volatile unsigned char targetLogicalAddress;
298 300 volatile unsigned char protocolIdentifier;
299 301 volatile unsigned char reserved;
300 302 volatile unsigned char userApplication;
301 303 // PACKET HEADER
302 304 volatile unsigned char packetID[2];
303 305 volatile unsigned char packetSequenceControl[2];
304 306 volatile unsigned char packetLength[2];
305 307 // DATA FIELD HEADER
306 308 volatile unsigned char spare1_pusVersion_spare2;
307 309 volatile unsigned char serviceType;
308 310 volatile unsigned char serviceSubType;
309 311 volatile unsigned char destinationID;
310 312 volatile unsigned char time[6];
311 313 //
312 314 volatile unsigned char tc_failure_code[2];
313 315 volatile unsigned char telecommand_pkt_id[2];
314 316 volatile unsigned char pkt_seq_control[2];
315 317 volatile unsigned char tc_service;
316 318 volatile unsigned char tc_subtype;
317 319 volatile unsigned char lfr_status_word[2];
318 320 };
319 321 typedef struct Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_str Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t;
320 322
321 323 struct Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_str
322 324 {
323 325 volatile unsigned char targetLogicalAddress;
324 326 volatile unsigned char protocolIdentifier;
325 327 volatile unsigned char reserved;
326 328 volatile unsigned char userApplication;
327 329 // PACKET HEADER
328 330 volatile unsigned char packetID[2];
329 331 volatile unsigned char packetSequenceControl[2];
330 332 volatile unsigned char packetLength[2];
331 333 // DATA FIELD HEADER
332 334 volatile unsigned char spare1_pusVersion_spare2;
333 335 volatile unsigned char serviceType;
334 336 volatile unsigned char serviceSubType;
335 337 volatile unsigned char destinationID;
336 338 volatile unsigned char time[6];
337 339 //
338 340 volatile unsigned char tc_failure_code[2];
339 341 volatile unsigned char telecommand_pkt_id[2];
340 342 volatile unsigned char pkt_seq_control[2];
341 343 volatile unsigned char tc_service;
342 344 volatile unsigned char tc_subtype;
343 345 };
344 346 typedef struct Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_str Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t;
345 347
346 348 struct Packet_TM_LFR_TC_EXE_ERROR_str
347 349 {
348 350 volatile unsigned char targetLogicalAddress;
349 351 volatile unsigned char protocolIdentifier;
350 352 volatile unsigned char reserved;
351 353 volatile unsigned char userApplication;
352 354 // PACKET HEADER
353 355 volatile unsigned char packetID[2];
354 356 volatile unsigned char packetSequenceControl[2];
355 357 volatile unsigned char packetLength[2];
356 358 // DATA FIELD HEADER
357 359 volatile unsigned char spare1_pusVersion_spare2;
358 360 volatile unsigned char serviceType;
359 361 volatile unsigned char serviceSubType;
360 362 volatile unsigned char destinationID;
361 363 volatile unsigned char time[6];
362 364 //
363 365 volatile unsigned char tc_failure_code[2];
364 366 volatile unsigned char telecommand_pkt_id[2];
365 367 volatile unsigned char pkt_seq_control[2];
366 368 volatile unsigned char tc_service;
367 369 volatile unsigned char tc_subtype;
368 370 };
369 371 typedef struct Packet_TM_LFR_TC_EXE_ERROR_str Packet_TM_LFR_TC_EXE_ERROR_t;
370 372
371 373 struct Packet_TM_LFR_TC_EXE_CORRUPTED_str
372 374 {
373 375 volatile unsigned char targetLogicalAddress;
374 376 volatile unsigned char protocolIdentifier;
375 377 volatile unsigned char reserved;
376 378 volatile unsigned char userApplication;
377 379 // PACKET HEADER
378 380 volatile unsigned char packetID[2];
379 381 volatile unsigned char packetSequenceControl[2];
380 382 volatile unsigned char packetLength[2];
381 383 // DATA FIELD HEADER
382 384 volatile unsigned char spare1_pusVersion_spare2;
383 385 volatile unsigned char serviceType;
384 386 volatile unsigned char serviceSubType;
385 387 volatile unsigned char destinationID;
386 388 volatile unsigned char time[6];
387 389 //
388 390 volatile unsigned char tc_failure_code[2];
389 391 volatile unsigned char telecommand_pkt_id[2];
390 392 volatile unsigned char pkt_seq_control[2];
391 393 volatile unsigned char tc_service;
392 394 volatile unsigned char tc_subtype;
393 395 volatile unsigned char pkt_len_rcv_value[2];
394 396 volatile unsigned char pkt_datafieldsize_cnt[2];
395 397 volatile unsigned char rcv_crc[2];
396 398 volatile unsigned char computed_crc[2];
397 399 };
398 400 typedef struct Packet_TM_LFR_TC_EXE_CORRUPTED_str Packet_TM_LFR_TC_EXE_CORRUPTED_t;
399 401
400 402 struct Header_TM_LFR_SCIENCE_SWF_str
401 403 {
402 404 volatile unsigned char targetLogicalAddress;
403 405 volatile unsigned char protocolIdentifier;
404 406 volatile unsigned char reserved;
405 407 volatile unsigned char userApplication;
406 408 volatile unsigned char packetID[2];
407 409 volatile unsigned char packetSequenceControl[2];
408 410 volatile unsigned char packetLength[2];
409 411 // DATA FIELD HEADER
410 412 volatile unsigned char spare1_pusVersion_spare2;
411 413 volatile unsigned char serviceType;
412 414 volatile unsigned char serviceSubType;
413 415 volatile unsigned char destinationID;
414 416 volatile unsigned char time[6];
415 417 // AUXILIARY HEADER
416 418 volatile unsigned char sid;
417 419 volatile unsigned char hkBIA;
418 420 volatile unsigned char pktCnt;
419 421 volatile unsigned char pktNr;
420 422 volatile unsigned char acquisitionTime[6];
421 423 volatile unsigned char blkNr[2];
422 424 };
423 425 typedef struct Header_TM_LFR_SCIENCE_SWF_str Header_TM_LFR_SCIENCE_SWF_t;
424 426
425 427 struct Header_TM_LFR_SCIENCE_CWF_str
426 428 {
427 429 volatile unsigned char targetLogicalAddress;
428 430 volatile unsigned char protocolIdentifier;
429 431 volatile unsigned char reserved;
430 432 volatile unsigned char userApplication;
431 433 volatile unsigned char packetID[2];
432 434 volatile unsigned char packetSequenceControl[2];
433 435 volatile unsigned char packetLength[2];
434 436 // DATA FIELD HEADER
435 437 volatile unsigned char spare1_pusVersion_spare2;
436 438 volatile unsigned char serviceType;
437 439 volatile unsigned char serviceSubType;
438 440 volatile unsigned char destinationID;
439 441 volatile unsigned char time[6];
440 442 // AUXILIARY DATA HEADER
441 443 volatile unsigned char sid;
442 444 volatile unsigned char hkBIA;
443 445 volatile unsigned char acquisitionTime[6];
444 446 volatile unsigned char blkNr[2];
445 447 };
446 448 typedef struct Header_TM_LFR_SCIENCE_CWF_str Header_TM_LFR_SCIENCE_CWF_t;
447 449
448 450 struct Header_TM_LFR_SCIENCE_ASM_str
449 451 {
450 452 volatile unsigned char targetLogicalAddress;
451 453 volatile unsigned char protocolIdentifier;
452 454 volatile unsigned char reserved;
453 455 volatile unsigned char userApplication;
454 456 volatile unsigned char packetID[2];
455 457 volatile unsigned char packetSequenceControl[2];
456 458 volatile unsigned char packetLength[2];
457 459 // DATA FIELD HEADER
458 460 volatile unsigned char spare1_pusVersion_spare2;
459 461 volatile unsigned char serviceType;
460 462 volatile unsigned char serviceSubType;
461 463 volatile unsigned char destinationID;
462 464 volatile unsigned char time[6];
463 465 // AUXILIARY HEADER
464 466 volatile unsigned char sid;
465 467 volatile unsigned char biaStatusInfo;
466 468 volatile unsigned char cntASM;
467 469 volatile unsigned char nrASM;
468 470 volatile unsigned char acquisitionTime[6];
469 471 volatile unsigned char blkNr[2];
470 472 };
471 473 typedef struct Header_TM_LFR_SCIENCE_ASM_str Header_TM_LFR_SCIENCE_ASM_t;
472 474
473 475 struct ccsdsTelecommandPacket_str
474 476 {
475 477 //unsigned char targetLogicalAddress; // removed by the grspw module
476 478 volatile unsigned char protocolIdentifier;
477 479 volatile unsigned char reserved;
478 480 volatile unsigned char userApplication;
479 481 volatile unsigned char packetID[2];
480 482 volatile unsigned char packetSequenceControl[2];
481 483 volatile unsigned char packetLength[2];
482 484 // DATA FIELD HEADER
483 485 volatile unsigned char headerFlag_pusVersion_Ack;
484 486 volatile unsigned char serviceType;
485 487 volatile unsigned char serviceSubType;
486 488 volatile unsigned char sourceID;
487 489 volatile unsigned char dataAndCRC[CCSDS_TC_PKT_MAX_SIZE-10];
488 490 };
489 491 typedef struct ccsdsTelecommandPacket_str ccsdsTelecommandPacket_t;
490 492
491 493 struct Packet_TM_LFR_HK_str
492 494 {
493 495 volatile unsigned char targetLogicalAddress;
494 496 volatile unsigned char protocolIdentifier;
495 497 volatile unsigned char reserved;
496 498 volatile unsigned char userApplication;
497 499 volatile unsigned char packetID[2];
498 500 volatile unsigned char packetSequenceControl[2];
499 501 volatile unsigned char packetLength[2];
500 502 volatile unsigned char spare1_pusVersion_spare2;
501 503 volatile unsigned char serviceType;
502 504 volatile unsigned char serviceSubType;
503 505 volatile unsigned char destinationID;
504 506 volatile unsigned char time[6];
505 507 volatile unsigned char sid;
506 508
507 509 //**************
508 510 // HK PARAMETERS
509 511 unsigned char lfr_status_word[2];
510 512 unsigned char lfr_sw_version[4];
511 513 // tc statistics
512 514 unsigned char hk_lfr_update_info_tc_cnt[2];
513 515 unsigned char hk_lfr_update_time_tc_cnt[2];
514 516 unsigned char hk_dpu_exe_tc_lfr_cnt[2];
515 517 unsigned char hk_dpu_rej_tc_lfr_cnt[2];
516 518 unsigned char hk_lfr_last_exe_tc_id[2];
517 519 unsigned char hk_lfr_last_exe_tc_type[2];
518 520 unsigned char hk_lfr_last_exe_tc_subtype[2];
519 521 unsigned char hk_lfr_last_exe_tc_time[6];
520 522 unsigned char hk_lfr_last_rej_tc_id[2];
521 523 unsigned char hk_lfr_last_rej_tc_type[2];
522 524 unsigned char hk_lfr_last_rej_tc_subtype[2];
523 525 unsigned char hk_lfr_last_rej_tc_time[6];
524 526 // anomaly statistics
525 527 unsigned char hk_lfr_le_cnt[2];
526 528 unsigned char hk_lfr_me_cnt[2];
527 529 unsigned char hk_lfr_he_cnt[2];
528 530 unsigned char hk_lfr_last_er_rid[2];
529 531 unsigned char hk_lfr_last_er_code;
530 532 unsigned char hk_lfr_last_er_time[6];
531 533 // vhdl_blk_status
532 534 unsigned char hk_lfr_vhdl_aa_sm;
533 535 unsigned char hk_lfr_vhdl_fft_sr;
534 536 unsigned char hk_lfr_vhdl_cic_hk;
535 537 unsigned char hk_lfr_vhdl_iir_cal;
536 538 // spacewire_if_statistics
537 539 unsigned char hk_lfr_dpu_spw_pkt_rcv_cnt[2];
538 540 unsigned char hk_lfr_dpu_spw_pkt_sent_cnt[2];
539 541 unsigned char hk_lfr_dpu_spw_tick_out_cnt;
540 542 unsigned char hk_lfr_dpu_spw_last_timc;
541 543 // ahb error statistics
542 544 unsigned int hk_lfr_last_fail_addr;
543 545 // temperatures
544 546 unsigned char hk_lfr_temp_scm[2];
545 547 unsigned char hk_lfr_temp_pcb[2];
546 548 unsigned char hk_lfr_temp_fpga[2];
547 549 // error counters
548 550 unsigned char hk_lfr_dpu_spw_parity;
549 551 unsigned char hk_lfr_dpu_spw_disconnect;
550 552 unsigned char hk_lfr_dpu_spw_escape;
551 553 unsigned char hk_lfr_dpu_spw_credit;
552 554 unsigned char hk_lfr_dpu_spw_write_sync;
553 555 unsigned char hk_lfr_dpu_spw_rx_ahb;
554 556 unsigned char hk_lfr_dpu_spw_tx_ahb;
555 557 unsigned char hk_lfr_dpu_spw_header_crc;
556 558 unsigned char hk_lfr_dpu_spw_data_crc;
557 559 unsigned char hk_lfr_dpu_spw_early_eop;
558 560 unsigned char hk_lfr_dpu_spw_invalid_addr;
559 561 unsigned char hk_lfr_dpu_spw_eep;
560 562 unsigned char hk_lfr_dpu_spw_rx_too_big;
561 563 // timecode
562 564 unsigned char hk_lfr_timecode_erroneous;
563 565 unsigned char hk_lfr_timecode_missing;
564 566 unsigned char hk_lfr_timecode_invalid;
565 567 // time
566 568 unsigned char hk_lfr_time_timecode_it;
567 569 unsigned char hk_lfr_time_not_synchro;
568 570 unsigned char hk_lfr_time_timecode_ctr;
569 571 // hk_lfr_buffer_dpu_
570 572 unsigned char hk_lfr_buffer_dpu_tc_fifo;
571 573 unsigned char hk_lfr_buffer_dpu_tm_fifo;
572 574 // hk_lfr_ahb_
573 575 unsigned char hk_lfr_ahb_correctable;
574 576 unsigned char hk_lfr_ahb_uncorrectable;
575 577 unsigned char hk_lfr_ahb_fails_trans;
576 578 // hk_lfr_adc_
577 579 unsigned char hk_lfr_adc_failure;
578 580 unsigned char hk_lfr_adc_timeout;
579 581 unsigned char hk_lfr_toomany_err;
580 582 // hk_lfr_cpu_
581 583 unsigned char hk_lfr_cpu_write_err;
582 584 unsigned char hk_lfr_cpu_ins_access_err;
583 585 unsigned char hk_lfr_cpu_illegal_ins;
584 586 unsigned char hk_lfr_cpu_privilegied_ins;
585 587 unsigned char hk_lfr_cpu_register_hw;
586 588 unsigned char hk_lfr_cpu_not_aligned;
587 589 unsigned char hk_lfr_cpu_data_exception;
588 590 unsigned char hk_lfr_cpu_div_exception;
589 591 unsigned char hk_lfr_cpu_arith_overflow;
590 592 };
591 593 typedef struct Packet_TM_LFR_HK_str Packet_TM_LFR_HK_t;
592 594
593 595 struct Packet_TM_LFR_PARAMETER_DUMP_str
594 596 {
595 597 volatile unsigned char targetLogicalAddress;
596 598 volatile unsigned char protocolIdentifier;
597 599 volatile unsigned char reserved;
598 600 volatile unsigned char userApplication;
599 601 volatile unsigned char packetID[2];
600 602 volatile unsigned char packetSequenceControl[2];
601 603 volatile unsigned char packetLength[2];
602 604 // DATA FIELD HEADER
603 605 volatile unsigned char spare1_pusVersion_spare2;
604 606 volatile unsigned char serviceType;
605 607 volatile unsigned char serviceSubType;
606 608 volatile unsigned char destinationID;
607 609 volatile unsigned char time[6];
608 610 volatile unsigned char sid;
609 611
610 612 //******************
611 613 // COMMON PARAMETERS
612 614 volatile unsigned char unused0;
613 615 volatile unsigned char bw_sp0_sp1_r0_r1;
614 616
615 617 //******************
616 618 // NORMAL PARAMETERS
617 619 volatile unsigned char sy_lfr_n_swf_l[2];
618 620 volatile unsigned char sy_lfr_n_swf_p[2];
619 621 volatile unsigned char sy_lfr_n_asm_p[2];
620 622 volatile unsigned char sy_lfr_n_bp_p0;
621 623 volatile unsigned char sy_lfr_n_bp_p1;
622 624
623 625 //*****************
624 626 // BURST PARAMETERS
625 627 volatile unsigned char sy_lfr_b_bp_p0;
626 628 volatile unsigned char sy_lfr_b_bp_p1;
627 629
628 630 //****************
629 631 // SBM1 PARAMETERS
630 632 volatile unsigned char sy_lfr_s1_bp_p0;
631 633 volatile unsigned char sy_lfr_s1_bp_p1;
632 634
633 635 //****************
634 636 // SBM2 PARAMETERS
635 637 volatile unsigned char sy_lfr_s2_bp_p0;
636 638 volatile unsigned char sy_lfr_s2_bp_p1;
637 639 };
638 640 typedef struct Packet_TM_LFR_PARAMETER_DUMP_str Packet_TM_LFR_PARAMETER_DUMP_t;
639 641
640 642
641 643 #endif // CCSDS_TYPES_H_INCLUDED
@@ -1,74 +1,93
1 1 #ifndef GRLIB_REGS_H_INCLUDED
2 2 #define GRLIB_REGS_H_INCLUDED
3 3
4 4 #define NB_GPTIMER 3
5 5
6 6 struct apbuart_regs_str{
7 7 volatile unsigned int data;
8 8 volatile unsigned int status;
9 9 volatile unsigned int ctrl;
10 10 volatile unsigned int scaler;
11 11 volatile unsigned int fifoDebug;
12 12 };
13 13
14 14 struct ahbuart_regs_str{
15 15 volatile unsigned int unused;
16 16 volatile unsigned int status;
17 17 volatile unsigned int ctrl;
18 18 volatile unsigned int scaler;
19 19 };
20 20
21 21 struct timer_regs_str
22 22 {
23 23 volatile unsigned int counter;
24 24 volatile unsigned int reload;
25 25 volatile unsigned int ctrl;
26 26 volatile unsigned int unused;
27 27 };
28 28 typedef struct timer_regs_str timer_regs_t;
29 29
30 30 struct gptimer_regs_str
31 31 {
32 32 volatile unsigned int scaler_value;
33 33 volatile unsigned int scaler_reload;
34 34 volatile unsigned int conf;
35 35 volatile unsigned int unused0;
36 36 timer_regs_t timer[NB_GPTIMER];
37 37 };
38 38 typedef struct gptimer_regs_str gptimer_regs_t;
39 39
40 40 struct time_management_regs_str{
41 41 volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time
42 42 volatile int coarse_time_load;
43 43 volatile int coarse_time;
44 44 volatile int fine_time;
45 45 };
46 46 typedef struct time_management_regs_str time_management_regs_t;
47 47
48 48 struct waveform_picker_regs_str{
49 49 volatile int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
50 50 volatile int burst_enable; // 0x04 01 *** burst f2, f1, f0 enable f3, f2, f1, f0
51 51 volatile int addr_data_f0; // 0x08 10 ***
52 52 volatile int addr_data_f1; // 0x0c 11 ***
53 53 volatile int addr_data_f2; // 0x10 100 ***
54 54 volatile int addr_data_f3; // 0x14 101 ***
55 55 volatile int status; // 0x18 110 ***
56 56 volatile int delta_snapshot; // 0x1c 111 ***
57 57 volatile int delta_f2_f1; // 0x20 0000 ***
58 58 volatile int delta_f2_f0; // 0x24 0001 ***
59 59 volatile int nb_burst_available;// 0x28 0010 ***
60 60 volatile int nb_snapshot_param; // 0x2c 0011 ***
61 61 };
62 62 typedef struct waveform_picker_regs_str waveform_picker_regs_t;
63 63
64 struct waveform_picker_regs_str_alt{
65 volatile int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
66 volatile int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
67 volatile int addr_data_f0; // 0x08
68 volatile int addr_data_f1; // 0x0c
69 volatile int addr_data_f2; // 0x10
70 volatile int addr_data_f3; // 0x14
71 volatile int status; // 0x18
72 volatile int delta_snapshot; // 0x1c
73 volatile int delta_f0; // 0x20
74 volatile int delta_f0_2;
75 volatile int delta_f1;
76 volatile int delta_f2;
77 volatile int nb_data_by_buffer;
78 volatile int snapshot_param;
79 volatile int start_date;
80 };
81 typedef struct waveform_picker_regs_str_alt waveform_picker_regs_t_alt;
82
64 83 struct spectral_matrix_regs_str{
65 84 volatile int config;
66 85 volatile int status;
67 86 volatile int matrixF0_Address0;
68 87 volatile int matrixFO_Address1;
69 88 volatile int matrixF1_Address;
70 89 volatile int matrixF2_Address;
71 90 };
72 91 typedef struct spectral_matrix_regs_str spectral_matrix_regs_t;
73 92
74 93 #endif // GRLIB_REGS_H_INCLUDED
@@ -1,80 +1,81
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10
11 11 #define pi 3.1415
12 12
13 13 extern int fdSPW;
14 14 extern volatile int wf_snap_f0[ ];
15 15 //
16 16 extern volatile int wf_snap_f1[ ];
17 17 extern volatile int wf_snap_f1_bis[ ];
18 18 extern volatile int wf_snap_f1_norm[ ];
19 19 //
20 20 extern volatile int wf_snap_f2[ ];
21 21 extern volatile int wf_snap_f2_bis[ ];
22 22 extern volatile int wf_snap_f2_norm[ ];
23 23 //
24 24 extern volatile int wf_cont_f3[ ];
25 25 extern volatile int wf_cont_f3_bis[ ];
26 26 extern char wf_cont_f3_light[ ];
27 27 extern waveform_picker_regs_t *waveform_picker_regs;
28 extern waveform_picker_regs_t_alt *waveform_picker_regs_alt;
28 29 extern time_management_regs_t *time_management_regs;
29 30 extern Packet_TM_LFR_HK_t housekeeping_packet;
30 31 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
31 32 extern struct param_local_str param_local;
32 33
33 34 extern rtems_name misc_name[5];
34 35 extern rtems_name Task_name[20]; /* array of task ids */
35 36 extern rtems_id Task_id[20]; /* array of task ids */
36 37
37 38 extern unsigned char lfrCurrentMode;
38 39
39 40 rtems_isr waveforms_isr( rtems_vector_number vector );
40 41 rtems_isr waveforms_simulator_isr( rtems_vector_number vector );
41 42 rtems_task wfrm_task( rtems_task_argument argument );
42 43 rtems_task cwf3_task( rtems_task_argument argument );
43 44 rtems_task cwf2_task( rtems_task_argument argument );
44 45 rtems_task cwf1_task( rtems_task_argument argument );
45 46
46 47 //******************
47 48 // general functions
48 49 void init_waveforms( void );
49 50 //
50 51 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
51 52 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
52 53 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
53 54 //
54 55 void reset_waveforms( void );
55 56 //
56 57 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
57 58 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
58 59 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
59 60 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
60 61 //
61 62 rtems_id get_pkts_queue_id( void );
62 63
63 64 //**************
64 65 // wfp registers
65 66 void set_wfp_data_shaping();
66 67 char set_wfp_delta_snapshot();
67 68 void set_wfp_burst_enable_register( unsigned char mode);
68 69 void reset_wfp_burst_enable();
69 70 void reset_wfp_status();
70 71 void reset_waveform_picker_regs();
71 72
72 73 //*****************
73 74 // local parameters
74 75 void set_local_sbm1_nb_cwf_max();
75 76 void set_local_sbm2_nb_cwf_max();
76 77 void set_local_nb_interrupt_f0_MAX();
77 78 void reset_local_sbm1_nb_cwf_sent();
78 79 void reset_local_sbm2_nb_cwf_sent();
79 80
80 81 #endif // WF_HANDLER_H_INCLUDED
@@ -1,89 +1,90
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23
24 24 // RTEMS GLOBAL VARIABLES
25 25 rtems_name misc_name[5];
26 26 rtems_id misc_id[5];
27 27 rtems_name Task_name[20]; /* array of task names */
28 28 rtems_id Task_id[20]; /* array of task ids */
29 29 unsigned int maxCount;
30 30 int fdSPW = 0;
31 31 int fdUART = 0;
32 32 unsigned char lfrCurrentMode;
33 33
34 34 // APB CONFIGURATION REGISTERS
35 35 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
36 36 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
37 37 #ifdef GSA
38 38 #else
39 39 waveform_picker_regs_t *waveform_picker_regs = (waveform_picker_regs_t*) REGS_ADDR_WAVEFORM_PICKER;
40 waveform_picker_regs_t_alt *waveform_picker_regs_alt = (waveform_picker_regs_t_alt*) REGS_ADDR_WAVEFORM_PICKER;
40 41 #endif
41 42 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
42 43
43 44 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes
44 45 volatile int wf_snap_f0[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
45 46 //
46 47 volatile int wf_snap_f1[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
47 48 volatile int wf_snap_f1_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
48 49 volatile int wf_snap_f1_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
49 50 //
50 51 volatile int wf_snap_f2[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
51 52 volatile int wf_snap_f2_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
52 53 volatile int wf_snap_f2_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
53 54 //
54 55 volatile int wf_cont_f3[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
55 56 volatile int wf_cont_f3_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
56 57 char wf_cont_f3_light[ NB_SAMPLES_PER_SNAPSHOT * NB_BYTES_CWF3_LIGHT_BLK ];
57 58
58 59 // SPECTRAL MATRICES GLOBAL VARIABLES
59 60 volatile int spec_mat_f0_0[ SM_HEADER + TOTAL_SIZE_SM ];
60 61 volatile int spec_mat_f0_1[ SM_HEADER + TOTAL_SIZE_SM ];
61 62 volatile int spec_mat_f0_a[ SM_HEADER + TOTAL_SIZE_SM ];
62 63 volatile int spec_mat_f0_b[ SM_HEADER + TOTAL_SIZE_SM ];
63 64 volatile int spec_mat_f0_c[ SM_HEADER + TOTAL_SIZE_SM ];
64 65 volatile int spec_mat_f0_d[ SM_HEADER + TOTAL_SIZE_SM ];
65 66 volatile int spec_mat_f0_e[ SM_HEADER + TOTAL_SIZE_SM ];
66 67 volatile int spec_mat_f0_f[ SM_HEADER + TOTAL_SIZE_SM ];
67 68 volatile int spec_mat_f0_g[ SM_HEADER + TOTAL_SIZE_SM ];
68 69 volatile int spec_mat_f0_h[ SM_HEADER + TOTAL_SIZE_SM ];
69 70 volatile int spec_mat_f0_0_bis[ SM_HEADER + TOTAL_SIZE_SM ];
70 71 volatile int spec_mat_f0_1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
71 72 //
72 73 volatile int spec_mat_f1[ SM_HEADER + TOTAL_SIZE_SM ];
73 74 volatile int spec_mat_f1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
74 75 //
75 76 volatile int spec_mat_f2[ SM_HEADER + TOTAL_SIZE_SM ];
76 77 volatile int spec_mat_f2_bis[ SM_HEADER + TOTAL_SIZE_SM ];
77 78
78 79 // MODE PARAMETERS
79 80 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
80 81 struct param_local_str param_local;
81 82
82 83 // HK PACKETS
83 84 Packet_TM_LFR_HK_t housekeeping_packet;
84 85 // sequence counters are incremented by APID (PID + CAT) and destination ID
85 86 unsigned short sequenceCounters[SEQ_CNT_NB_PID][SEQ_CNT_NB_CAT][SEQ_CNT_NB_DEST_ID];
86 87 spw_stats spacewire_stats;
87 88 spw_stats spacewire_stats_backup;
88 89
89 90
@@ -1,596 +1,590
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73
74 74 rtems_status_code status;
75 75 rtems_status_code status_spw;
76 76 rtems_isr_entry old_isr_handler;
77 77
78 78 BOOT_PRINTF("\n\n\n\n\n")
79 79 BOOT_PRINTF("***************************\n")
80 80 BOOT_PRINTF("** START Flight Software **\n")
81 81 BOOT_PRINTF("***************************\n")
82 82 BOOT_PRINTF("\n\n")
83 83
84 84 //send_console_outputs_on_apbuart_port();
85 85 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
86 86
87 87 init_parameter_dump();
88 88 init_local_mode_parameters();
89 89 init_housekeeping_parameters();
90 90
91 91 updateLFRCurrentMode();
92 92
93 93 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
94 94
95 95 create_names(); // create all names
96 96
97 97 status = create_message_queues(); // create message queues
98 98 if (status != RTEMS_SUCCESSFUL)
99 99 {
100 100 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
101 101 }
102 102
103 103 status = create_all_tasks(); // create all tasks
104 104 if (status != RTEMS_SUCCESSFUL)
105 105 {
106 106 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
107 107 }
108 108
109 109 // **************************
110 110 // <SPACEWIRE INITIALIZATION>
111 111 grspw_timecode_callback = &timecode_irq_handler;
112 112
113 113 status_spw = spacewire_open_link(); // (1) open the link
114 114 if ( status_spw != RTEMS_SUCCESSFUL )
115 115 {
116 116 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
117 117 }
118 118
119 119 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
120 120 {
121 121 status_spw = spacewire_configure_link( fdSPW );
122 122 if ( status_spw != RTEMS_SUCCESSFUL )
123 123 {
124 124 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
125 125 }
126 126 }
127 127
128 128 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
129 129 {
130 130 status_spw = spacewire_start_link( fdSPW );
131 131 if ( status_spw != RTEMS_SUCCESSFUL )
132 132 {
133 133 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
134 134 }
135 135 }
136 136 // </SPACEWIRE INITIALIZATION>
137 137 // ***************************
138 138
139 139 status = start_all_tasks(); // start all tasks
140 140 if (status != RTEMS_SUCCESSFUL)
141 141 {
142 142 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
143 143 }
144 144
145 145 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
146 146 status = start_recv_send_tasks();
147 147 if ( status != RTEMS_SUCCESSFUL )
148 148 {
149 149 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
150 150 }
151 151
152 152 // suspend science tasks. they will be restarted later depending on the mode
153 153 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
154 154 if (status != RTEMS_SUCCESSFUL)
155 155 {
156 156 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
157 157 }
158 158
159 status = stop_current_mode(); // go in STANDBY mode
160 if (status != RTEMS_SUCCESSFUL)
161 {
162 PRINTF1("in INIT *** ERR in stop_current_mode, code %d", status)
163 }
164
165 159 #ifdef GSA
166 160 // mask IRQ lines
167 161 LEON_Mask_interrupt( IRQ_SM );
168 162 LEON_Mask_interrupt( IRQ_WF );
169 163 // Spectral Matrices simulator
170 164 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
171 165 IRQ_SPARC_SM, spectral_matrices_isr );
172 166 // WaveForms
173 167 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR, CLKDIV_WF_SIMULATOR,
174 168 IRQ_SPARC_WF, waveforms_simulator_isr );
175 169 #else
176 170 // configure IRQ handling for the waveform picker unit
177 171 status = rtems_interrupt_catch( waveforms_isr,
178 172 IRQ_SPARC_WAVEFORM_PICKER,
179 173 &old_isr_handler) ;
180 174 #endif
181 175
182 176 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
183 177 if ( status_spw != RTEMS_SUCCESSFUL )
184 178 {
185 179 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
186 180 if ( status != RTEMS_SUCCESSFUL ) {
187 181 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
188 182 }
189 183 }
190 184
191 185 BOOT_PRINTF("delete INIT\n")
192 186
193 187 status = rtems_task_delete(RTEMS_SELF);
194 188
195 189 }
196 190
197 191 void init_local_mode_parameters( void )
198 192 {
199 193 /** This function initialize the param_local global variable with default values.
200 194 *
201 195 */
202 196
203 197 unsigned int i;
204 198 unsigned int j;
205 199 unsigned int k;
206 200
207 201 // LOCAL PARAMETERS
208 202 set_local_sbm1_nb_cwf_max();
209 203 set_local_sbm2_nb_cwf_max();
210 204 set_local_nb_interrupt_f0_MAX();
211 205
212 206 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
213 207 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
214 208 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
215 209
216 210 reset_local_sbm1_nb_cwf_sent();
217 211 reset_local_sbm2_nb_cwf_sent();
218 212
219 213 // init sequence counters
220 214 for (i = 0; i<SEQ_CNT_NB_PID; i++)
221 215 {
222 216 for(j = 0; j<SEQ_CNT_NB_CAT; j++)
223 217 {
224 218 for(k = 0; k<SEQ_CNT_NB_DEST_ID; k++)
225 219 {
226 220 sequenceCounters[i][j][k] = 0x00;
227 221 }
228 222 }
229 223 }
230 224 }
231 225
232 226 void create_names( void ) // create all names for tasks and queues
233 227 {
234 228 /** This function creates all RTEMS names used in the software for tasks and queues.
235 229 *
236 230 * @return RTEMS directive status codes:
237 231 * - RTEMS_SUCCESSFUL - successful completion
238 232 *
239 233 */
240 234
241 235 // task names
242 236 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
243 237 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
244 238 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
245 239 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
246 240 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
247 241 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
248 242 Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
249 243 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
250 244 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
251 245 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
252 246 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
253 247 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
254 248 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
255 249 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
256 250 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
257 251 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
258 252
259 253 // rate monotonic period names
260 254 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
261 255
262 256 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
263 257 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
264 258 }
265 259
266 260 int create_all_tasks( void ) // create all tasks which run in the software
267 261 {
268 262 /** This function creates all RTEMS tasks used in the software.
269 263 *
270 264 * @return RTEMS directive status codes:
271 265 * - RTEMS_SUCCESSFUL - task created successfully
272 266 * - RTEMS_INVALID_ADDRESS - id is NULL
273 267 * - RTEMS_INVALID_NAME - invalid task name
274 268 * - RTEMS_INVALID_PRIORITY - invalid task priority
275 269 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
276 270 * - RTEMS_TOO_MANY - too many tasks created
277 271 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
278 272 * - RTEMS_TOO_MANY - too many global objects
279 273 *
280 274 */
281 275
282 276 rtems_status_code status;
283 277
284 278 // RECV
285 279 status = rtems_task_create(
286 280 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
287 281 RTEMS_DEFAULT_MODES,
288 282 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
289 283 );
290 284
291 285 if (status == RTEMS_SUCCESSFUL) // ACTN
292 286 {
293 287 status = rtems_task_create(
294 288 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
295 289 RTEMS_DEFAULT_MODES,
296 290 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
297 291 );
298 292 }
299 293 if (status == RTEMS_SUCCESSFUL) // SPIQ
300 294 {
301 295 status = rtems_task_create(
302 296 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
303 297 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
304 298 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
305 299 );
306 300 }
307 301 if (status == RTEMS_SUCCESSFUL) // SMIQ
308 302 {
309 303 status = rtems_task_create(
310 304 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
311 305 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
312 306 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
313 307 );
314 308 }
315 309 if (status == RTEMS_SUCCESSFUL) // STAT
316 310 {
317 311 status = rtems_task_create(
318 312 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
319 313 RTEMS_DEFAULT_MODES,
320 314 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
321 315 );
322 316 }
323 317 if (status == RTEMS_SUCCESSFUL) // AVF0
324 318 {
325 319 status = rtems_task_create(
326 320 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
327 321 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
328 322 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
329 323 );
330 324 }
331 325 if (status == RTEMS_SUCCESSFUL) // BPF0
332 326 {
333 327 status = rtems_task_create(
334 328 Task_name[TASKID_BPF0], TASK_PRIORITY_BPF0, RTEMS_MINIMUM_STACK_SIZE,
335 329 RTEMS_DEFAULT_MODES,
336 330 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_BPF0]
337 331 );
338 332 }
339 333 if (status == RTEMS_SUCCESSFUL) // WFRM
340 334 {
341 335 status = rtems_task_create(
342 336 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
343 337 RTEMS_DEFAULT_MODES,
344 338 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
345 339 );
346 340 }
347 341 if (status == RTEMS_SUCCESSFUL) // DUMB
348 342 {
349 343 status = rtems_task_create(
350 344 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
351 345 RTEMS_DEFAULT_MODES,
352 346 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
353 347 );
354 348 }
355 349 if (status == RTEMS_SUCCESSFUL) // HOUS
356 350 {
357 351 status = rtems_task_create(
358 352 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
359 353 RTEMS_DEFAULT_MODES,
360 354 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
361 355 );
362 356 }
363 357 if (status == RTEMS_SUCCESSFUL) // MATR
364 358 {
365 359 status = rtems_task_create(
366 360 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
367 361 RTEMS_DEFAULT_MODES,
368 362 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
369 363 );
370 364 }
371 365 if (status == RTEMS_SUCCESSFUL) // CWF3
372 366 {
373 367 status = rtems_task_create(
374 368 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
375 369 RTEMS_DEFAULT_MODES,
376 370 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF3]
377 371 );
378 372 }
379 373 if (status == RTEMS_SUCCESSFUL) // CWF2
380 374 {
381 375 status = rtems_task_create(
382 376 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
383 377 RTEMS_DEFAULT_MODES,
384 378 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF2]
385 379 );
386 380 }
387 381 if (status == RTEMS_SUCCESSFUL) // CWF1
388 382 {
389 383 status = rtems_task_create(
390 384 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
391 385 RTEMS_DEFAULT_MODES,
392 386 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF1]
393 387 );
394 388 }
395 389 if (status == RTEMS_SUCCESSFUL) // SEND
396 390 {
397 391 status = rtems_task_create(
398 392 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
399 393 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
400 394 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
401 395 );
402 396 }
403 397 if (status == RTEMS_SUCCESSFUL) // WTDG
404 398 {
405 399 status = rtems_task_create(
406 400 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
407 401 RTEMS_DEFAULT_MODES,
408 402 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
409 403 );
410 404 }
411 405
412 406 return status;
413 407 }
414 408
415 409 int start_recv_send_tasks( void )
416 410 {
417 411 rtems_status_code status;
418 412
419 413 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
420 414 if (status!=RTEMS_SUCCESSFUL) {
421 415 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
422 416 }
423 417
424 418 if (status == RTEMS_SUCCESSFUL) // SEND
425 419 {
426 420 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
427 421 if (status!=RTEMS_SUCCESSFUL) {
428 422 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
429 423 }
430 424 }
431 425
432 426 return status;
433 427 }
434 428
435 429 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
436 430 {
437 431 /** This function starts all RTEMS tasks used in the software.
438 432 *
439 433 * @return RTEMS directive status codes:
440 434 * - RTEMS_SUCCESSFUL - ask started successfully
441 435 * - RTEMS_INVALID_ADDRESS - invalid task entry point
442 436 * - RTEMS_INVALID_ID - invalid task id
443 437 * - RTEMS_INCORRECT_STATE - task not in the dormant state
444 438 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
445 439 *
446 440 */
447 441 // starts all the tasks fot eh flight software
448 442
449 443 rtems_status_code status;
450 444
451 445 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
452 446 if (status!=RTEMS_SUCCESSFUL) {
453 447 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
454 448 }
455 449
456 450 if (status == RTEMS_SUCCESSFUL) // WTDG
457 451 {
458 452 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
459 453 if (status!=RTEMS_SUCCESSFUL) {
460 454 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
461 455 }
462 456 }
463 457
464 458 if (status == RTEMS_SUCCESSFUL) // SMIQ
465 459 {
466 460 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
467 461 if (status!=RTEMS_SUCCESSFUL) {
468 462 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
469 463 }
470 464 }
471 465
472 466 if (status == RTEMS_SUCCESSFUL) // ACTN
473 467 {
474 468 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
475 469 if (status!=RTEMS_SUCCESSFUL) {
476 470 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
477 471 }
478 472 }
479 473
480 474 if (status == RTEMS_SUCCESSFUL) // STAT
481 475 {
482 476 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
483 477 if (status!=RTEMS_SUCCESSFUL) {
484 478 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
485 479 }
486 480 }
487 481
488 482 if (status == RTEMS_SUCCESSFUL) // AVF0
489 483 {
490 484 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
491 485 if (status!=RTEMS_SUCCESSFUL) {
492 486 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
493 487 }
494 488 }
495 489
496 490 if (status == RTEMS_SUCCESSFUL) // BPF0
497 491 {
498 492 status = rtems_task_start( Task_id[TASKID_BPF0], bpf0_task, 1 );
499 493 if (status!=RTEMS_SUCCESSFUL) {
500 494 BOOT_PRINTF("in INIT *** Error starting TASK_BPF0\n")
501 495 }
502 496 }
503 497
504 498 if (status == RTEMS_SUCCESSFUL) // WFRM
505 499 {
506 500 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
507 501 if (status!=RTEMS_SUCCESSFUL) {
508 502 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
509 503 }
510 504 }
511 505
512 506 if (status == RTEMS_SUCCESSFUL) // DUMB
513 507 {
514 508 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
515 509 if (status!=RTEMS_SUCCESSFUL) {
516 510 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
517 511 }
518 512 }
519 513
520 514 if (status == RTEMS_SUCCESSFUL) // HOUS
521 515 {
522 516 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
523 517 if (status!=RTEMS_SUCCESSFUL) {
524 518 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
525 519 }
526 520 }
527 521
528 522 if (status == RTEMS_SUCCESSFUL) // MATR
529 523 {
530 524 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
531 525 if (status!=RTEMS_SUCCESSFUL) {
532 526 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
533 527 }
534 528 }
535 529
536 530 if (status == RTEMS_SUCCESSFUL) // CWF3
537 531 {
538 532 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
539 533 if (status!=RTEMS_SUCCESSFUL) {
540 534 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
541 535 }
542 536 }
543 537
544 538 if (status == RTEMS_SUCCESSFUL) // CWF2
545 539 {
546 540 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
547 541 if (status!=RTEMS_SUCCESSFUL) {
548 542 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
549 543 }
550 544 }
551 545
552 546 if (status == RTEMS_SUCCESSFUL) // CWF1
553 547 {
554 548 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
555 549 if (status!=RTEMS_SUCCESSFUL) {
556 550 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
557 551 }
558 552 }
559 553 return status;
560 554 }
561 555
562 556 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
563 557 {
564 558 rtems_status_code status_recv;
565 559 rtems_status_code status_send;
566 560 rtems_status_code ret;
567 561 rtems_id queue_id;
568 562
569 563 // create the queue for handling valid TCs
570 564 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
571 565 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
572 566 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
573 567 if ( status_recv != RTEMS_SUCCESSFUL ) {
574 568 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
575 569 }
576 570
577 571 // create the queue for handling TM packet sending
578 572 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
579 573 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
580 574 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
581 575 if ( status_send != RTEMS_SUCCESSFUL ) {
582 576 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
583 577 }
584 578
585 579 if ( status_recv != RTEMS_SUCCESSFUL )
586 580 {
587 581 ret = status_recv;
588 582 }
589 583 else
590 584 {
591 585 ret = status_send;
592 586 }
593 587
594 588 return ret;
595 589 }
596 590
@@ -1,293 +1,292
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 char *DumbMessages[6] = {"in DUMB *** default", // RTEMS_EVENT_0
11 11 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
12 12 "in DUMB *** waveforms_isr", // RTEMS_EVENT_2
13 13 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
14 14 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
15 15 "in DUMB *** waveforms_simulator_isr" // RTEMS_EVENT_5
16 16 };
17 17
18 18 int configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
19 19 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
20 20 {
21 21 /** This function configures a GPTIMER timer instantiated in the VHDL design.
22 22 *
23 23 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
24 24 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
25 25 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
26 26 * @param interrupt_level is the interrupt level that the timer drives.
27 27 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
28 28 *
29 29 * @return
30 30 *
31 31 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
32 32 *
33 33 */
34 34
35 35 rtems_status_code status;
36 36 rtems_isr_entry old_isr_handler;
37 37
38 38 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
39 39 if (status!=RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
42 42 }
43 43
44 44 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
45 45
46 46 return 1;
47 47 }
48 48
49 49 int timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
50 50 {
51 51 /** This function starts a GPTIMER timer.
52 52 *
53 53 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
54 54 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
55 55 *
56 56 * @return 1
57 57 *
58 58 */
59 59
60 60 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
61 61 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
62 62 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
63 63 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
65 65
66 66 return 1;
67 67 }
68 68
69 69 int timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
70 70 {
71 71 /** This function stops a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 *
76 76 * @return 1
77 77 *
78 78 */
79 79
80 80 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
81 81 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
82 82 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
83 83
84 84 return 1;
85 85 }
86 86
87 87 int timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
88 88 {
89 89 /** This function sets the clock divider of a GPTIMER timer.
90 90 *
91 91 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
92 92 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
93 93 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
94 94 *
95 95 * @return 1
96 96 *
97 97 */
98 98
99 99 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
100 100
101 101 return 1;
102 102 }
103 103
104 104 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
105 105 {
106 106 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
107 107
108 108 apbuart_regs->ctrl = apbuart_regs->ctrl & APBUART_CTRL_REG_MASK_DB;
109 109 PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
110 110
111 111 return 0;
112 112 }
113 113
114 114 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
115 115 {
116 116 /** This function sets the scaler reload register of the apbuart module
117 117 *
118 118 * @param regs is the address of the apbuart registers in memory
119 119 * @param value is the value that will be stored in the scaler register
120 120 *
121 121 * The value shall be set by the software to get data on the serial interface.
122 122 *
123 123 */
124 124
125 125 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
126 126
127 127 apbuart_regs->scaler = value;
128 128 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
129 129 }
130 130
131 131 //************
132 132 // RTEMS TASKS
133 133
134 134 rtems_task stat_task(rtems_task_argument argument)
135 135 {
136 136 int i;
137 137 int j;
138 138 i = 0;
139 139 j = 0;
140 140 BOOT_PRINTF("in STAT *** \n")
141 141 while(1){
142 142 rtems_task_wake_after(1000);
143 143 PRINTF1("%d\n", j)
144 144 if (i == CPU_USAGE_REPORT_PERIOD) {
145 145 // #ifdef PRINT_TASK_STATISTICS
146 146 // rtems_cpu_usage_report();
147 147 // rtems_cpu_usage_reset();
148 148 // #endif
149 149 i = 0;
150 150 }
151 151 else i++;
152 152 j++;
153 153 }
154 154 }
155 155
156 156 rtems_task hous_task(rtems_task_argument argument)
157 157 {
158 158 rtems_status_code status;
159 159 rtems_id queue_id;
160 160
161 161 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id );
162 162 if (status != RTEMS_SUCCESSFUL)
163 163 {
164 164 PRINTF1("in HOUS *** ERR %d\n", status)
165 165 }
166 166
167 167 BOOT_PRINTF("in HOUS ***\n")
168 168
169 169 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
170 170 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
171 171 if( status != RTEMS_SUCCESSFUL ) {
172 172 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
173 173 }
174 174 }
175 175
176 176 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
177 177 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
178 178 housekeeping_packet.reserved = DEFAULT_RESERVED;
179 179 housekeeping_packet.userApplication = CCSDS_USER_APP;
180 180 housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
181 181 housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
182 182 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
183 183 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
184 184 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
185 185 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
186 186 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
187 187 housekeeping_packet.serviceType = TM_TYPE_HK;
188 188 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
189 189 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
190 190
191 191 status = rtems_rate_monotonic_cancel(HK_id);
192 192 if( status != RTEMS_SUCCESSFUL ) {
193 193 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
194 194 }
195 195 else {
196 196 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
197 197 }
198 198
199 199 while(1){ // launch the rate monotonic task
200 200 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
201 201 if ( status != RTEMS_SUCCESSFUL ) {
202 202 PRINTF1( "in HOUS *** ERR period: %d\n", status);
203 203 }
204 204 else {
205 205 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
206 206 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
207 207 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
208 208 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
209 209 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
210 210 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
211 211 housekeeping_packet.sid = SID_HK;
212 212
213 213 spacewire_update_statistics();
214 214
215 215 // SEND PACKET
216 216 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
217 217 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
218 218 if (status != RTEMS_SUCCESSFUL) {
219 219 PRINTF1("in HOUS *** ERR send: %d\n", status)
220 220 }
221 221 }
222 222 }
223 223
224 224 PRINTF("in HOUS *** deleting task\n")
225 225
226 226 status = rtems_task_delete( RTEMS_SELF ); // should not return
227 227 printf( "rtems_task_delete returned with status of %d.\n", status );
228 228 return;
229 229 }
230 230
231 231 rtems_task dumb_task( rtems_task_argument unused )
232 232 {
233 233 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
234 234 *
235 235 * @param unused is the starting argument of the RTEMS task
236 236 *
237 237 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
238 238 *
239 239 */
240 240
241 241 unsigned int i;
242 242 unsigned int intEventOut;
243 243 unsigned int coarse_time = 0;
244 244 unsigned int fine_time = 0;
245 245 rtems_event_set event_out;
246 246
247 247 BOOT_PRINTF("in DUMB *** \n")
248 248
249 249 while(1){
250 250 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | RTEMS_EVENT_4 | RTEMS_EVENT_5,
251 251 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
252 252 intEventOut = (unsigned int) event_out;
253 253 for ( i=0; i<32; i++)
254 254 {
255 255 if ( ((intEventOut >> i) & 0x0001) != 0)
256 256 {
257 257 coarse_time = time_management_regs->coarse_time;
258 258 fine_time = time_management_regs->fine_time;
259 259 printf("in DUMB *** time = coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
260 260 }
261 261 }
262 262 }
263 263 }
264 264
265 265 //*****************************
266 266 // init housekeeping parameters
267 267
268 268 void init_housekeeping_parameters( void )
269 269 {
270 270 /** This function initialize the housekeeping_packet global variable with default values.
271 271 *
272 272 */
273 273
274 274 unsigned int i = 0;
275 275 char *parameters;
276 276
277 277 parameters = (char*) &housekeeping_packet.lfr_status_word;
278 278 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
279 279 {
280 280 parameters[i] = 0x00;
281 281 }
282 282 // init status word
283 283 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
284 284 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
285 285 // init software version
286 286 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
287 287 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
288 288 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
289 289 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
290 290
291 updateLFRCurrentMode();
292 291 }
293 292
@@ -1,590 +1,602
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 char *lstates[6] = {"Error-reset",
17 17 "Error-wait",
18 18 "Ready",
19 19 "Started",
20 20 "Connecting",
21 21 "Run"
22 22 };
23 23
24 24 //***********
25 25 // RTEMS TASK
26 26 rtems_task spiq_task(rtems_task_argument unused)
27 27 {
28 28 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
29 29 *
30 30 * @param unused is the starting argument of the RTEMS task
31 31 *
32 32 */
33 33
34 34 rtems_event_set event_out;
35 35 rtems_status_code status;
36 36 int linkStatus;
37 37
38 38 BOOT_PRINTF("in SPIQ *** \n")
39 39
40 40 while(true){
41 41 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
42 42 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
43 43
44 // [0] SUSPEND RECV ADN SEND TASKS
44 // [0] SUSPEND RECV AND SEND TASKS
45 45 rtems_task_suspend( Task_id[ TASKID_RECV ] );
46 46 rtems_task_suspend( Task_id[ TASKID_SEND ] );
47 47
48 48 // [1] CHECK THE LINK
49 49 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
50 50 if ( linkStatus != 5) {
51 51 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
52 52 rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
53 53 }
54 54
55 55 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
56 56 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
57 57 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
58 58 {
59 59 spacewire_compute_stats_offsets();
60 60 status = spacewire_reset_link( );
61 61 }
62 62 else // [2.b] in run state, start the link
63 63 {
64 64 status = spacewire_stop_start_link( fdSPW ); // start the link
65 65 if ( status != RTEMS_SUCCESSFUL)
66 66 {
67 67 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
68 68 }
69 69 }
70 70
71 71 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
72 72 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
73 73 {
74 74 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
75 75 if ( status != RTEMS_SUCCESSFUL ) {
76 76 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
77 77 }
78 78 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
79 79 if ( status != RTEMS_SUCCESSFUL ) {
80 80 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
81 81 }
82 82 }
83 83 else // [3.b] the link is not in run state, go in STANDBY mode
84 84 {
85 status = enter_mode( LFR_MODE_STANDBY, NULL ); // enter the STANDBY mode
85 status = stop_current_mode();
86 86 if ( status != RTEMS_SUCCESSFUL ) {
87 PRINTF1("in SPIQ *** ERR enter_mode *** code %d\n", status)
87 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
88 }
89 status = enter_standby_mode();
90 if ( status != RTEMS_SUCCESSFUL ) {
91 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
88 92 }
89 93 // wake the WTDG task up to wait for the link recovery
90 94 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
91 95 rtems_task_suspend( RTEMS_SELF );
92 96 }
93 97 }
94 98 }
95 99
96 100 rtems_task recv_task( rtems_task_argument unused )
97 101 {
98 102 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
99 103 *
100 104 * @param unused is the starting argument of the RTEMS task
101 105 *
102 106 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
103 107 * 1. It reads the incoming data.
104 108 * 2. Launches the acceptance procedure.
105 109 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
106 110 *
107 111 */
108 112
109 113 int len;
110 114 ccsdsTelecommandPacket_t currentTC;
111 115 unsigned char computed_CRC[ 2 ];
112 116 unsigned char currentTC_LEN_RCV[ 2 ];
113 117 unsigned int currentTC_LEN_RCV_AsUnsignedInt;
114 118 unsigned int parserCode;
115 119 rtems_status_code status;
116 120 rtems_id queue_recv_id;
117 121 rtems_id queue_send_id;
118 122
119 123 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
120 124
121 125 status = rtems_message_queue_ident( misc_name[QUEUE_RECV], 0, &queue_recv_id );
122 126 if (status != RTEMS_SUCCESSFUL)
123 127 {
124 128 PRINTF1("in RECV *** ERR getting QUEUE_RECV id, %d\n", status)
125 129 }
126 130
127 131 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_send_id );
128 132 if (status != RTEMS_SUCCESSFUL)
129 133 {
130 134 PRINTF1("in RECV *** ERR getting QUEUE_SEND id, %d\n", status)
131 135 }
132 136
133 137 BOOT_PRINTF("in RECV *** \n")
134 138
135 139 while(1)
136 140 {
137 141 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
138 142 if (len == -1){ // error during the read call
139 143 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
140 144 }
141 145 else {
142 146 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
143 147 PRINTF("in RECV *** packet lenght too short\n")
144 148 }
145 149 else {
146 150 currentTC_LEN_RCV_AsUnsignedInt = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
147 151 currentTC_LEN_RCV[ 0 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt >> 8);
148 152 currentTC_LEN_RCV[ 1 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt );
149 153 // CHECK THE TC
150 154 parserCode = tc_parser( &currentTC, currentTC_LEN_RCV_AsUnsignedInt, computed_CRC ) ;
151 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PACKET) || (parserCode == INCOR_CHECKSUM)
152 | (parserCode == ILL_TYPE) || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA) )
155 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
156 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
157 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
158 || (parserCode == WRONG_SRC_ID) )
153 159 { // send TM_LFR_TC_EXE_CORRUPTED
154 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id, computed_CRC, currentTC_LEN_RCV );
160 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
161 &&
162 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
163 )
164 {
165 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id, computed_CRC, currentTC_LEN_RCV );
166 }
155 167 }
156 168 else
157 169 { // send valid TC to the action launcher
158 170 status = rtems_message_queue_send( queue_recv_id, &currentTC,
159 171 currentTC_LEN_RCV_AsUnsignedInt + CCSDS_TC_TM_PACKET_OFFSET + 3);
160 172 }
161 173 }
162 174 }
163 175 }
164 176 }
165 177
166 178 rtems_task send_task( rtems_task_argument argument)
167 179 {
168 180 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
169 181 *
170 182 * @param unused is the starting argument of the RTEMS task
171 183 *
172 184 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
173 185 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
174 186 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
175 187 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
176 188 * data it contains.
177 189 *
178 190 */
179 191
180 192 rtems_status_code status; // RTEMS status code
181 193 char incomingData[ACTION_MSG_PKTS_MAX_SIZE]; // incoming data buffer
182 194 spw_ioctl_pkt_send *spw_ioctl_send;
183 195 size_t size; // size of the incoming TC packet
184 196 u_int32_t count;
185 197 rtems_id queue_id;
186 198
187 199 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id );
188 200 if (status != RTEMS_SUCCESSFUL)
189 201 {
190 202 PRINTF1("in SEND *** ERR getting queue id, %d\n", status)
191 203 }
192 204
193 205 BOOT_PRINTF("in SEND *** \n")
194 206
195 207 while(1)
196 208 {
197 209 status = rtems_message_queue_receive( queue_id, incomingData, &size,
198 210 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
199 211
200 212 if (status!=RTEMS_SUCCESSFUL)
201 213 {
202 214 PRINTF1("in SEND *** (1) ERR = %d\n", status)
203 215 }
204 216 else
205 217 {
206 218 if ( incomingData[0] == CCSDS_DESTINATION_ID) // the incoming message is a ccsds packet
207 219 {
208 220 status = write( fdSPW, incomingData, size );
209 221 if (status == -1){
210 222 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
211 223 }
212 224 }
213 225 else // the incoming message is a spw_ioctl_pkt_send structure
214 226 {
215 227 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
216 228 if (spw_ioctl_send->hlen == 0)
217 229 {
218 230 status = write( fdSPW, spw_ioctl_send->data, spw_ioctl_send->dlen );
219 231 if (status == -1){
220 232 PRINTF2("in SEND *** (2.b) ERRNO = %d, dlen = %d\n", errno, spw_ioctl_send->dlen)
221 233 }
222 234 }
223 235 else
224 236 {
225 237 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
226 238 if (status == -1){
227 239 PRINTF2("in SEND *** (2.c) ERRNO = %d, dlen = %d\n", errno, spw_ioctl_send->dlen)
228 240 PRINTF1(" hlen = %d\n", spw_ioctl_send->hlen)
229 241 }
230 242 }
231 243 }
232 244 }
233 245
234 246 status = rtems_message_queue_get_number_pending( queue_id, &count );
235 247 if (status != RTEMS_SUCCESSFUL)
236 248 {
237 249 PRINTF1("in SEND *** (3) ERR = %d\n", status)
238 250 }
239 251 else
240 252 {
241 253 if (count > maxCount)
242 254 {
243 255 maxCount = count;
244 256 }
245 257 }
246 258 }
247 259 }
248 260
249 261 rtems_task wtdg_task( rtems_task_argument argument )
250 262 {
251 263 rtems_event_set event_out;
252 264 rtems_status_code status;
253 265 int linkStatus;
254 266
255 267 BOOT_PRINTF("in WTDG ***\n")
256 268
257 269 while(1)
258 270 {
259 271 // wait for an RTEMS_EVENT
260 272 rtems_event_receive( RTEMS_EVENT_0,
261 273 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
262 274 PRINTF("in WTDG *** wait for the link\n")
263 275 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
264 276 while( linkStatus != 5) // wait for the link
265 277 {
266 278 rtems_task_wake_after( 10 );
267 279 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
268 280 }
269 281
270 282 status = spacewire_stop_start_link( fdSPW );
271 283
272 284 if (status != RTEMS_SUCCESSFUL)
273 285 {
274 286 PRINTF1("in WTDG *** ERR link not started %d\n", status)
275 287 }
276 288 else
277 289 {
278 290 PRINTF("in WTDG *** OK link started\n")
279 291 }
280 292
281 293 // restart the SPIQ task
282 294 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
283 295 if ( status != RTEMS_SUCCESSFUL ) {
284 296 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
285 297 }
286 298
287 299 // restart RECV and SEND
288 300 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
289 301 if ( status != RTEMS_SUCCESSFUL ) {
290 302 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
291 303 }
292 304 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
293 305 if ( status != RTEMS_SUCCESSFUL ) {
294 306 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
295 307 }
296 308 }
297 309 }
298 310
299 311 //****************
300 312 // OTHER FUNCTIONS
301 313 int spacewire_open_link( void )
302 314 {
303 315 /** This function opens the SpaceWire link.
304 316 *
305 317 * @return a valid file descriptor in case of success, -1 in case of a failure
306 318 *
307 319 */
308 320 rtems_status_code status;
309 321
310 322 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
311 323 if ( fdSPW < 0 ) {
312 324 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
313 325 }
314 326 else
315 327 {
316 328 status = RTEMS_SUCCESSFUL;
317 329 }
318 330
319 331 return status;
320 332 }
321 333
322 334 int spacewire_start_link( int fd )
323 335 {
324 336 rtems_status_code status;
325 337
326 338 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
327 339 // -1 default hardcoded driver timeout
328 340
329 341 return status;
330 342 }
331 343
332 344 int spacewire_stop_start_link( int fd )
333 345 {
334 346 rtems_status_code status;
335 347
336 348 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
337 349 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
338 350 // -1 default hardcoded driver timeout
339 351
340 352 return status;
341 353 }
342 354
343 355 int spacewire_configure_link( int fd )
344 356 {
345 357 /** This function configures the SpaceWire link.
346 358 *
347 359 * @return GR-RTEMS-DRIVER directive status codes:
348 360 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
349 361 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
350 362 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
351 363 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
352 364 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
353 365 * - 5 EIO - Error when writing to grswp hardware registers.
354 366 * - 2 ENOENT - No such file or directory
355 367 */
356 368
357 369 rtems_status_code status;
358 370
359 371 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
360 372 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
361 373
362 374 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
363 375 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
364 376 //
365 377 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
366 378 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
367 379 //
368 380 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
369 381 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
370 382 //
371 383 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
372 384 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
373 385 //
374 386 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
375 387 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
376 388 //
377 389 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
378 390 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
379 391 //
380 392 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
381 393 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
382 394
383 395 return status;
384 396 }
385 397
386 398 int spacewire_reset_link( void )
387 399 {
388 400 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
389 401 *
390 402 * @return RTEMS directive status code:
391 403 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
392 404 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
393 405 *
394 406 */
395 407
396 408 rtems_status_code status_spw;
397 409 int i;
398 410
399 411 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
400 412 {
401 413 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
402 414
403 415 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
404 416
405 417 status_spw = spacewire_stop_start_link( fdSPW );
406 418 if ( status_spw != RTEMS_SUCCESSFUL )
407 419 {
408 420 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
409 421 }
410 422
411 423 if ( status_spw == RTEMS_SUCCESSFUL)
412 424 {
413 425 break;
414 426 }
415 427 }
416 428
417 429 return status_spw;
418 430 }
419 431
420 432 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
421 433 {
422 434 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
423 435 *
424 436 * @param val is the value, 0 or 1, used to set the value of the NP bit.
425 437 * @param regAddr is the address of the GRSPW control register.
426 438 *
427 439 * NP is the bit 20 of the GRSPW control register.
428 440 *
429 441 */
430 442
431 443 unsigned int *spwptr = (unsigned int*) regAddr;
432 444
433 445 if (val == 1) {
434 446 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
435 447 }
436 448 if (val== 0) {
437 449 *spwptr = *spwptr & 0xffdfffff;
438 450 }
439 451 }
440 452
441 453 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
442 454 {
443 455 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
444 456 *
445 457 * @param val is the value, 0 or 1, used to set the value of the RE bit.
446 458 * @param regAddr is the address of the GRSPW control register.
447 459 *
448 460 * RE is the bit 16 of the GRSPW control register.
449 461 *
450 462 */
451 463
452 464 unsigned int *spwptr = (unsigned int*) regAddr;
453 465
454 466 if (val == 1)
455 467 {
456 468 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
457 469 }
458 470 if (val== 0)
459 471 {
460 472 *spwptr = *spwptr & 0xfffdffff;
461 473 }
462 474 }
463 475
464 476 void spacewire_compute_stats_offsets( void )
465 477 {
466 478 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
467 479 *
468 480 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
469 481 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
470 482 * during the open systel call).
471 483 *
472 484 */
473 485
474 486 spw_stats spacewire_stats_grspw;
475 487 rtems_status_code status;
476 488
477 489 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
478 490
479 491 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
480 492 + spacewire_stats.packets_received;
481 493 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
482 494 + spacewire_stats.packets_sent;
483 495 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
484 496 + spacewire_stats.parity_err;
485 497 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
486 498 + spacewire_stats.disconnect_err;
487 499 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
488 500 + spacewire_stats.escape_err;
489 501 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
490 502 + spacewire_stats.credit_err;
491 503 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
492 504 + spacewire_stats.write_sync_err;
493 505 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
494 506 + spacewire_stats.rx_rmap_header_crc_err;
495 507 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
496 508 + spacewire_stats.rx_rmap_data_crc_err;
497 509 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
498 510 + spacewire_stats.early_ep;
499 511 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
500 512 + spacewire_stats.invalid_address;
501 513 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
502 514 + spacewire_stats.rx_eep_err;
503 515 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
504 516 + spacewire_stats.rx_truncated;
505 517 }
506 518
507 519 void spacewire_update_statistics( void )
508 520 {
509 521 rtems_status_code status;
510 522 spw_stats spacewire_stats_grspw;
511 523
512 524 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
513 525
514 526 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
515 527 + spacewire_stats_grspw.packets_received;
516 528 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
517 529 + spacewire_stats_grspw.packets_sent;
518 530 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
519 531 + spacewire_stats_grspw.parity_err;
520 532 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
521 533 + spacewire_stats_grspw.disconnect_err;
522 534 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
523 535 + spacewire_stats_grspw.escape_err;
524 536 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
525 537 + spacewire_stats_grspw.credit_err;
526 538 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
527 539 + spacewire_stats_grspw.write_sync_err;
528 540 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
529 541 + spacewire_stats_grspw.rx_rmap_header_crc_err;
530 542 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
531 543 + spacewire_stats_grspw.rx_rmap_data_crc_err;
532 544 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
533 545 + spacewire_stats_grspw.early_ep;
534 546 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
535 547 + spacewire_stats_grspw.invalid_address;
536 548 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
537 549 + spacewire_stats_grspw.rx_eep_err;
538 550 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
539 551 + spacewire_stats_grspw.rx_truncated;
540 552 //spacewire_stats.tx_link_err;
541 553
542 554 //****************************
543 555 // DPU_SPACEWIRE_IF_STATISTICS
544 556 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
545 557 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
546 558 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
547 559 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
548 560 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
549 561 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
550 562
551 563 //******************************************
552 564 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
553 565 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
554 566 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
555 567 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
556 568 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
557 569 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
558 570 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb;
559 571 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb;
560 572 housekeeping_packet.hk_lfr_dpu_spw_header_crc = (unsigned char) spacewire_stats.rx_rmap_header_crc_err;
561 573 housekeeping_packet.hk_lfr_dpu_spw_data_crc = (unsigned char) spacewire_stats.rx_rmap_data_crc_err;
562 574
563 575 //*********************************************
564 576 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
565 577 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
566 578 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
567 579 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
568 580 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
569 581
570 582 }
571 583
572 584 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
573 585 {
574 586 //if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_1 ) != RTEMS_SUCCESSFUL) {
575 587 // printf("In timecode_irq_handler *** Error sending event to DUMB\n");
576 588 //}
577 589 }
578 590
579 591 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
580 592 {
581 593 int linkStatus;
582 594 rtems_status_code status;
583 595
584 596 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
585 597
586 598 if ( linkStatus == 5) {
587 599 PRINTF("in spacewire_reset_link *** link is running\n")
588 600 status = RTEMS_SUCCESSFUL;
589 601 }
590 602 }
@@ -1,414 +1,415
1 1 /** Functions related to TeleCommand acceptance.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands parsing.\n
7 7 *
8 8 */
9 9
10 10 #include "tc_acceptance.h"
11 11
12 12 unsigned int lookUpTableForCRC[256];
13 13
14 14 //**********************
15 15 // GENERAL USE FUNCTIONS
16 16 unsigned int Crc_opt( unsigned char D, unsigned int Chk)
17 17 {
18 18 /** This function generate the CRC for one byte and returns the value of the new syndrome.
19 19 *
20 20 * @param D is the current byte of data.
21 21 * @param Chk is the current syndrom value.
22 *
22 23 * @return the value of the new syndrome on two bytes.
23 24 *
24 25 */
25 26
26 27 return(((Chk << 8) & 0xff00)^lookUpTableForCRC [(((Chk >> 8)^D) & 0x00ff)]);
27 28 }
28 29
29 30 void initLookUpTableForCRC( void )
30 31 {
31 32 /** This function is used to initiates the look-up table for fast CRC computation.
32 33 *
33 34 * The global table lookUpTableForCRC[256] is initiated.
34 35 *
35 36 */
36 37
37 38 unsigned int i;
38 39 unsigned int tmp;
39 40
40 41 for (i=0; i<256; i++)
41 42 {
42 43 tmp = 0;
43 44 if((i & 1) != 0) {
44 45 tmp = tmp ^ 0x1021;
45 46 }
46 47 if((i & 2) != 0) {
47 48 tmp = tmp ^ 0x2042;
48 49 }
49 50 if((i & 4) != 0) {
50 51 tmp = tmp ^ 0x4084;
51 52 }
52 53 if((i & 8) != 0) {
53 54 tmp = tmp ^ 0x8108;
54 55 }
55 56 if((i & 16) != 0) {
56 57 tmp = tmp ^ 0x1231;
57 58 }
58 59 if((i & 32) != 0) {
59 60 tmp = tmp ^ 0x2462;
60 61 }
61 62 if((i & 64) != 0) {
62 63 tmp = tmp ^ 0x48c4;
63 64 }
64 65 if((i & 128) != 0) {
65 66 tmp = tmp ^ 0x9188;
66 67 }
67 68 lookUpTableForCRC[i] = tmp;
68 69 }
69 70 }
70 71
71 72 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
72 73 {
73 74 /** This function calculates a two bytes Cyclic Redundancy Code.
74 75 *
75 76 * @param data points to a buffer containing the data on which to compute the CRC.
76 77 * @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
77 78 * @param sizeOfData is the number of bytes of *data* used to compute the CRC.
78 79 *
79 80 * The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
80 81 *
81 82 */
82 83
83 84 unsigned int Chk;
84 85 int j;
85 86 Chk = 0xffff; // reset the syndrom to all ones
86 87 for (j=0; j<sizeOfData; j++) {
87 88 Chk = Crc_opt(data[j], Chk);
88 89 }
89 90 crcAsTwoBytes[0] = (unsigned char) (Chk >> 8);
90 91 crcAsTwoBytes[1] = (unsigned char) (Chk & 0x00ff);
91 92 }
92 93
93 94 //*********************
94 95 // ACCEPTANCE FUNCTIONS
95 96 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int TC_LEN_RCV, unsigned char *computed_CRC)
96 97 {
97 98 /** This function parses TeleCommands.
98 99 *
99 100 * @param TC points to the TeleCommand that will be parsed.
100 101 * @param TC_LEN_RCV is the received packet length.
101 102 *
102 103 * @return Status code of the parsing.
103 104 *
104 105 * The parsing checks:
105 106 * - process id
106 107 * - category
107 108 * - length: a global check is performed and a per subtype check also
108 109 * - type
109 110 * - subtype
110 111 * - crc
111 112 *
112 113 */
113 114
114 115 int status;
115 116 unsigned char pid;
116 117 unsigned char category;
117 118 unsigned int length;
118 119 unsigned char packetType;
119 120 unsigned char packetSubtype;
120 121 unsigned char sid;
121 122
122 123 status = CCSDS_TM_VALID;
123 124
124 125 // APID check *** APID on 2 bytes
125 126 pid = ((TCPacket->packetID[0] & 0x07)<<4) + ( (TCPacket->packetID[1]>>4) & 0x0f ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
126 127 category = (TCPacket->packetID[1] & 0x0f); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
127 128 length = (TCPacket->packetLength[0] * 256) + TCPacket->packetLength[1];
128 129 packetType = TCPacket->serviceType;
129 130 packetSubtype = TCPacket->serviceSubType;
130 131 sid = TCPacket->sourceID;
131 132
132 133 if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
133 134 {
134 135 status = ILLEGAL_APID;
135 136 }
136 137 if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
137 138 {
138 139 if ( category != CCSDS_PACKET_CATEGORY )
139 140 {
140 141 status = ILLEGAL_APID;
141 142 }
142 143 }
143 144 if (status == CCSDS_TM_VALID) // CHECK THE PACKET LENGTH FIELD AND THE ACTUAL LENGTH COMPLIANCE
144 145 {
145 146 if (length != TC_LEN_RCV ) {
146 status = WRONG_LEN_PACKET;
147 status = WRONG_LEN_PKT;
147 148 }
148 149 }
149 150 if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
150 151 {
151 152 if ( length >= CCSDS_TC_PKT_MAX_SIZE ) {
152 status = WRONG_LEN_PACKET;
153 status = WRONG_LEN_PKT;
153 154 }
154 155 }
155 156 if (status == CCSDS_TM_VALID) // CHECK THE TYPE
156 157 {
157 158 status = tc_check_type( packetType );
158 159 }
159 160 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
160 161 {
161 162 status = tc_check_subtype( packetSubtype );
162 163 }
163 164 if (status == CCSDS_TM_VALID) // CHECK THE SID
164 165 {
165 166 status = tc_check_sid( sid );
166 167 }
167 168 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
168 169 {
169 170 status = tc_check_length( packetSubtype, length );
170 171 }
171 172 if (status == CCSDS_TM_VALID ) // CHECK CRC
172 173 {
173 174 status = tc_check_crc( TCPacket, length, computed_CRC );
174 175 }
175 176
176 177 return status;
177 178 }
178 179
179 180 int tc_check_type( unsigned char packetType )
180 181 {
181 182 /** This function checks that the type of a TeleCommand is valid.
182 183 *
183 184 * @param packetType is the type to check.
184 185 *
185 186 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
186 187 *
187 188 */
188 189
189 190 int status;
190 191
191 192 if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
192 193 {
193 194 status = CCSDS_TM_VALID;
194 195 }
195 196 else
196 197 {
197 198 status = ILL_TYPE;
198 199 }
199 200
200 201 return status;
201 202 }
202 203
203 204 int tc_check_subtype( unsigned char packetSubType )
204 205 {
205 206 /** This function checks that the subtype of a TeleCommand is valid.
206 207 *
207 208 * @param packetSubType is the subtype to check.
208 209 *
209 210 * @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
210 211 *
211 212 */
212 213
213 214 int status;
214 215
215 216 if ( (packetSubType == TC_SUBTYPE_RESET)
216 217 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
217 218 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
218 219 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
219 220 || (packetSubType == TC_SUBTYPE_DUMP)
220 221 || (packetSubType == TC_SUBTYPE_ENTER)
221 222 || (packetSubType == TC_SUBTYPE_UPDT_INFO) || (packetSubType == TC_SUBTYPE_UPDT_TIME)
222 223 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL) )
223 224 {
224 225 status = CCSDS_TM_VALID;
225 226 }
226 227 else
227 228 {
228 status = ILL_TYPE;
229 status = ILL_SUBTYPE;
229 230 }
230 231
231 232 return status;
232 233 }
233 234
234 235 int tc_check_sid( unsigned char sid )
235 236 {
236 237 /** This function checks that the sid of a TeleCommand is valid.
237 238 *
238 239 * @param sid is the sid to check.
239 240 *
240 241 * @return Status code CCSDS_TM_VALID or CORRUPTED.
241 242 *
242 243 */
243 244
244 245 int status;
245 246
246 247 if ( (sid == SID_TC_GROUND)
247 248 || (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
248 249 || (sid == SID_TC_BACKUP_MISSION_TIMELINE)
249 250 || (sid == SID_TC_DIRECT_CMD) || (sid == SID_TC_SPARE_GRD_SRC1) || (sid == SID_TC_SPARE_GRD_SRC2)
250 251 || (sid == SID_TC_OBCP) || (sid == SID_TC_SYSTEM_CONTROL) || (sid == SID_TC_AOCS)
251 252 || (sid == SID_TC_RPW_INTERNAL))
252 253 {
253 254 status = CCSDS_TM_VALID;
254 255 }
255 256 else
256 257 {
257 status = CORRUPTED;
258 status = WRONG_SRC_ID;
258 259 }
259 260
260 261 return status;
261 262 }
262 263
263 264 int tc_check_length( unsigned char packetSubType, unsigned int length )
264 265 {
265 266 /** This function checks that the subtype and the length are compliant.
266 267 *
267 268 * @param packetSubType is the subtype to check.
268 269 * @param length is the length to check.
269 270 *
270 271 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
271 272 *
272 273 */
273 274
274 275 int status;
275 276
276 277 status = LFR_SUCCESSFUL;
277 278
278 279 switch(packetSubType)
279 280 {
280 281 case TC_SUBTYPE_RESET:
281 282 if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
282 status = WRONG_LEN_PACKET;
283 status = WRONG_LEN_PKT;
283 284 }
284 285 else {
285 286 status = CCSDS_TM_VALID;
286 287 }
287 288 break;
288 289 case TC_SUBTYPE_LOAD_COMM:
289 290 if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
290 status = WRONG_LEN_PACKET;
291 status = WRONG_LEN_PKT;
291 292 }
292 293 else {
293 294 status = CCSDS_TM_VALID;
294 295 }
295 296 break;
296 297 case TC_SUBTYPE_LOAD_NORM:
297 298 if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
298 status = WRONG_LEN_PACKET;
299 status = WRONG_LEN_PKT;
299 300 }
300 301 else {
301 302 status = CCSDS_TM_VALID;
302 303 }
303 304 break;
304 305 case TC_SUBTYPE_LOAD_BURST:
305 306 if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
306 status = WRONG_LEN_PACKET;
307 status = WRONG_LEN_PKT;
307 308 }
308 309 else {
309 310 status = CCSDS_TM_VALID;
310 311 }
311 312 break;
312 313 case TC_SUBTYPE_LOAD_SBM1:
313 314 if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
314 status = WRONG_LEN_PACKET;
315 status = WRONG_LEN_PKT;
315 316 }
316 317 else {
317 318 status = CCSDS_TM_VALID;
318 319 }
319 320 break;
320 321 case TC_SUBTYPE_LOAD_SBM2:
321 322 if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
322 status = WRONG_LEN_PACKET;
323 status = WRONG_LEN_PKT;
323 324 }
324 325 else {
325 326 status = CCSDS_TM_VALID;
326 327 }
327 328 break;
328 329 case TC_SUBTYPE_DUMP:
329 330 if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
330 status = WRONG_LEN_PACKET;
331 status = WRONG_LEN_PKT;
331 332 }
332 333 else {
333 334 status = CCSDS_TM_VALID;
334 335 }
335 336 break;
336 337 case TC_SUBTYPE_ENTER:
337 338 if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
338 status = WRONG_LEN_PACKET;
339 status = WRONG_LEN_PKT;
339 340 }
340 341 else {
341 342 status = CCSDS_TM_VALID;
342 343 }
343 344 break;
344 345 case TC_SUBTYPE_UPDT_INFO:
345 346 if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
346 status = WRONG_LEN_PACKET;
347 status = WRONG_LEN_PKT;
347 348 }
348 349 else {
349 350 status = CCSDS_TM_VALID;
350 351 }
351 352 break;
352 353 case TC_SUBTYPE_EN_CAL:
353 354 if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
354 status = WRONG_LEN_PACKET;
355 status = WRONG_LEN_PKT;
355 356 }
356 357 else {
357 358 status = CCSDS_TM_VALID;
358 359 }
359 360 break;
360 361 case TC_SUBTYPE_DIS_CAL:
361 362 if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
362 status = WRONG_LEN_PACKET;
363 status = WRONG_LEN_PKT;
363 364 }
364 365 else {
365 366 status = CCSDS_TM_VALID;
366 367 }
367 368 break;
368 369 case TC_SUBTYPE_UPDT_TIME:
369 370 if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
370 status = WRONG_LEN_PACKET;
371 status = WRONG_LEN_PKT;
371 372 }
372 373 else {
373 374 status = CCSDS_TM_VALID;
374 375 }
375 376 break;
376 377 default: // if the subtype is not a legal value, return ILL_SUBTYPE
377 378 status = ILL_SUBTYPE;
378 379 break ;
379 380 }
380 381
381 382 return status;
382 383 }
383 384
384 385 int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length, unsigned char *computed_CRC )
385 386 {
386 387 /** This function checks the CRC validity of the corresponding TeleCommand packet.
387 388 *
388 389 * @param TCPacket points to the TeleCommand packet to check.
389 390 * @param length is the length of the TC packet.
390 391 *
391 392 * @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
392 393 *
393 394 */
394 395
395 396 int status;
396 397 unsigned char * CCSDSContent;
397 398
398 399 CCSDSContent = (unsigned char*) TCPacket->packetID;
399 400 GetCRCAsTwoBytes(CCSDSContent, computed_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - 2); // 2 CRC bytes removed from the calculation of the CRC
400 401 if (computed_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -2]) {
401 402 status = INCOR_CHECKSUM;
402 403 }
403 404 else if (computed_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
404 405 status = INCOR_CHECKSUM;
405 406 }
406 407 else {
407 408 status = CCSDS_TM_VALID;
408 409 }
409 410
410 411 return status;
411 412 }
412 413
413 414
414 415
@@ -1,770 +1,768
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 rtems_id queue_rcv_id;
35 35 rtems_id queue_snd_id;
36 36
37 37 status = rtems_message_queue_ident( misc_name[QUEUE_RECV], 0, &queue_rcv_id );
38 38 if (status != RTEMS_SUCCESSFUL)
39 39 {
40 40 PRINTF1("in ACTN *** ERR getting queue_rcv_id %d\n", status)
41 41 }
42 42
43 43 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_snd_id );
44 44 if (status != RTEMS_SUCCESSFUL)
45 45 {
46 46 PRINTF1("in ACTN *** ERR getting queue_snd_id %d\n", status)
47 47 }
48 48
49 49 result = LFR_SUCCESSFUL;
50 50 subtype = 0; // subtype of the current TC packet
51 51
52 52 BOOT_PRINTF("in ACTN *** \n")
53 53
54 54 while(1)
55 55 {
56 56 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
57 57 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
58 58 if (status!=RTEMS_SUCCESSFUL) PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
59 59 else
60 60 {
61 61 subtype = TC.serviceSubType;
62 62 switch(subtype)
63 63 {
64 64 case TC_SUBTYPE_RESET:
65 65 result = action_reset( &TC, queue_snd_id );
66 66 close_action( &TC, result, queue_snd_id );
67 67 break;
68 68 //
69 69 case TC_SUBTYPE_LOAD_COMM:
70 70 result = action_load_common_par( &TC );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_NORM:
75 75 result = action_load_normal_par( &TC, queue_snd_id );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_BURST:
80 80 result = action_load_burst_par( &TC, queue_snd_id );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_SBM1:
85 85 result = action_load_sbm1_par( &TC, queue_snd_id );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM2:
90 90 result = action_load_sbm2_par( &TC, queue_snd_id );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_DUMP:
95 95 result = action_dump_par( queue_snd_id );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_ENTER:
100 100 result = action_enter_mode( &TC, queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_UPDT_INFO:
105 105 result = action_update_info( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_EN_CAL:
110 110 result = action_enable_calibration( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_DIS_CAL:
115 115 result = action_disable_calibration( &TC, queue_snd_id );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_UPDT_TIME:
120 120 result = action_update_time( &TC );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 default:
125 125 break;
126 126 }
127 127 }
128 128 }
129 129 }
130 130
131 131 //***********
132 132 // TC ACTIONS
133 133
134 134 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
135 135 {
136 136 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
137 137 *
138 138 * @param TC points to the TeleCommand packet that is being processed
139 139 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
140 140 *
141 141 */
142 142
143 143 send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
144 144 return LFR_DEFAULT;
145 145 }
146 146
147 147 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
148 148 {
149 149 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
150 150 *
151 151 * @param TC points to the TeleCommand packet that is being processed
152 152 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
153 153 *
154 154 */
155 155
156 156 rtems_status_code status;
157 157 unsigned char requestedMode;
158 158
159 159 requestedMode = TC->dataAndCRC[1];
160 160
161 161 if ( (requestedMode != LFR_MODE_STANDBY)
162 162 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
163 163 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
164 164 {
165 165 status = RTEMS_UNSATISFIED;
166 166 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode );
167 167 }
168 168 else
169 169 {
170 170 printf("try to enter mode %d\n", requestedMode);
171 171
172 172 #ifdef PRINT_TASK_STATISTICS
173 173 if (requestedMode != LFR_MODE_STANDBY)
174 174 {
175 175 rtems_cpu_usage_reset();
176 176 maxCount = 0;
177 177 }
178 178 #endif
179 179
180 180 status = transition_validation(requestedMode);
181 181
182 182 if ( status == LFR_SUCCESSFUL ) {
183 183 if ( lfrCurrentMode != LFR_MODE_STANDBY)
184 184 {
185 185 status = stop_current_mode();
186 186 }
187 187 if (status != RTEMS_SUCCESSFUL)
188 188 {
189 189 PRINTF("ERR *** in action_enter *** stop_current_mode\n")
190 190 }
191 191 status = enter_mode(requestedMode, TC);
192 192 }
193 193 else
194 194 {
195 195 PRINTF("ERR *** in action_enter *** transition rejected\n")
196 196 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
197 197 }
198 198 }
199 199
200 200 return status;
201 201 }
202 202
203 203 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
204 204 {
205 205 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
206 206 *
207 207 * @param TC points to the TeleCommand packet that is being processed
208 208 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
209 209 *
210 210 * @return LFR directive status code:
211 211 * - LFR_DEFAULT
212 212 * - LFR_SUCCESSFUL
213 213 *
214 214 */
215 215
216 216 unsigned int val;
217 217 int result;
218 218
219 219 result = LFR_DEFAULT;
220 220
221 221 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
222 222 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
223 223 val++;
224 224 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
225 225 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
226 226
227 227 return result;
228 228 }
229 229
230 230 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
231 231 {
232 232 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
233 233 *
234 234 * @param TC points to the TeleCommand packet that is being processed
235 235 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
236 236 *
237 237 */
238 238
239 239 int result;
240 240 unsigned char lfrMode;
241 241
242 242 result = LFR_DEFAULT;
243 243 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
244 244
245 if ( (lfrMode == LFR_MODE_STANDBY) | (lfrMode == LFR_MODE_BURST) | (lfrMode == LFR_MODE_SBM2) ) {
245 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
246 246 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
247 247 result = LFR_DEFAULT;
248 248 }
249 249 else {
250 250 send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
251 251 result = LFR_DEFAULT;
252 252 }
253 253 return result;
254 254 }
255 255
256 256 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
257 257 {
258 258 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
259 259 *
260 260 * @param TC points to the TeleCommand packet that is being processed
261 261 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
262 262 *
263 263 */
264 264
265 265 int result;
266 266 unsigned char lfrMode;
267 267
268 268 result = LFR_DEFAULT;
269 269 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
270 270
271 if ( (lfrMode == LFR_MODE_STANDBY) | (lfrMode == LFR_MODE_BURST) | (lfrMode == LFR_MODE_SBM2) ) {
271 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
272 272 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
273 273 result = LFR_DEFAULT;
274 274 }
275 275 else {
276 276 send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
277 277 result = LFR_DEFAULT;
278 278 }
279 279 return result;
280 280 }
281 281
282 282 int action_update_time(ccsdsTelecommandPacket_t *TC)
283 283 {
284 284 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
285 285 *
286 286 * @param TC points to the TeleCommand packet that is being processed
287 287 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
288 288 *
289 289 * @return LFR_SUCCESSFUL
290 290 *
291 291 */
292 292
293 293 unsigned int val;
294 294
295 295 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
296 296 + (TC->dataAndCRC[1] << 16)
297 297 + (TC->dataAndCRC[2] << 8)
298 298 + TC->dataAndCRC[3];
299 299 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
300 300 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
301 301 val++;
302 302 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
303 303 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
304 304 time_management_regs->ctrl = time_management_regs->ctrl | 1;
305 305
306 306 return LFR_SUCCESSFUL;
307 307 }
308 308
309 309 //*******************
310 310 // ENTERING THE MODES
311 311
312 312 int transition_validation(unsigned char requestedMode)
313 313 {
314 314 int status;
315 315
316 316 switch (requestedMode)
317 317 {
318 318 case LFR_MODE_STANDBY:
319 319 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
320 320 status = LFR_DEFAULT;
321 321 }
322 322 else
323 323 {
324 324 status = LFR_SUCCESSFUL;
325 325 }
326 326 break;
327 327 case LFR_MODE_NORMAL:
328 328 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
329 329 status = LFR_DEFAULT;
330 330 }
331 331 else {
332 332 status = LFR_SUCCESSFUL;
333 333 }
334 334 break;
335 335 case LFR_MODE_BURST:
336 336 if ( lfrCurrentMode == LFR_MODE_BURST ) {
337 337 status = LFR_DEFAULT;
338 338 }
339 339 else {
340 340 status = LFR_SUCCESSFUL;
341 341 }
342 342 break;
343 343 case LFR_MODE_SBM1:
344 344 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
345 345 status = LFR_DEFAULT;
346 346 }
347 347 else {
348 348 status = LFR_SUCCESSFUL;
349 349 }
350 350 break;
351 351 case LFR_MODE_SBM2:
352 352 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
353 353 status = LFR_DEFAULT;
354 354 }
355 355 else {
356 356 status = LFR_SUCCESSFUL;
357 357 }
358 358 break;
359 359 default:
360 360 status = LFR_DEFAULT;
361 361 break;
362 362 }
363 363
364 364 return status;
365 365 }
366 366
367 367 int stop_current_mode()
368 368 {
369 369 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
370 370 *
371 371 * @return RTEMS directive status codes:
372 372 * - RTEMS_SUCCESSFUL - task restarted successfully
373 373 * - RTEMS_INVALID_ID - task id invalid
374 374 * - RTEMS_ALREADY_SUSPENDED - task already suspended
375 375 *
376 376 */
377 377
378 378 rtems_status_code status;
379 379
380 380 status = RTEMS_SUCCESSFUL;
381 381
382 382 #ifdef GSA
383 383 LEON_Mask_interrupt( IRQ_WF ); // mask waveform interrupt (coming from the timer VHDL IP)
384 384 LEON_Clear_interrupt( IRQ_WF ); // clear waveform interrupt (coming from the timer VHDL IP)
385 385 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR );
386 386 #else
387 387 // mask interruptions
388 388 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
389 389 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
390 390 // reset registers
391 391 reset_wfp_burst_enable(); // reset burst and enable bits
392 392 reset_wfp_status(); // reset all the status bits
393 393 // creal interruptions
394 394 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
395 395 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectarl matrix interrupt
396 396 #endif
397 397 //**********************
398 398 // suspend several tasks
399 399 if (lfrCurrentMode != LFR_MODE_STANDBY) {
400 400 status = suspend_science_tasks();
401 401 }
402 402
403 403 if (status != RTEMS_SUCCESSFUL)
404 404 {
405 405 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
406 406 }
407 407
408 408 return status;
409 409 }
410 410
411 411 int enter_mode(unsigned char mode, ccsdsTelecommandPacket_t *TC )
412 412 {
413 413 rtems_status_code status;
414 414
415 415 status = RTEMS_UNSATISFIED;
416 416
417 417 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
418 lfrCurrentMode = mode;
418 updateLFRCurrentMode();
419 419
420 420 switch(mode){
421 421 case LFR_MODE_STANDBY:
422 status = enter_standby_mode( TC );
422 status = enter_standby_mode( );
423 423 break;
424 424 case LFR_MODE_NORMAL:
425 status = enter_normal_mode( TC );
425 status = enter_normal_mode( );
426 426 break;
427 427 case LFR_MODE_BURST:
428 status = enter_burst_mode( TC );
428 status = enter_burst_mode( );
429 429 break;
430 430 case LFR_MODE_SBM1:
431 status = enter_sbm1_mode( TC );
431 status = enter_sbm1_mode( );
432 432 break;
433 433 case LFR_MODE_SBM2:
434 status = enter_sbm2_mode( TC );
434 status = enter_sbm2_mode( );
435 435 break;
436 436 default:
437 437 status = RTEMS_UNSATISFIED;
438 438 }
439 439
440 440 if (status != RTEMS_SUCCESSFUL)
441 441 {
442 442 PRINTF("in enter_mode *** ERR\n")
443 443 status = RTEMS_UNSATISFIED;
444 444 }
445 445
446 446 return status;
447 447 }
448 448
449 449 int enter_standby_mode()
450 450 {
451 reset_waveform_picker_regs();
452
453 451 PRINTF1("maxCount = %d\n", maxCount)
454 452
455 453 #ifdef PRINT_TASK_STATISTICS
456 454 rtems_cpu_usage_report();
457 455 #endif
458 456
459 457 #ifdef PRINT_STACK_REPORT
460 458 rtems_stack_checker_report_usage();
461 459 #endif
462 460
463 461 return LFR_SUCCESSFUL;
464 462 }
465 463
466 464 int enter_normal_mode()
467 465 {
468 466 rtems_status_code status;
469 467
470 468 status = restart_science_tasks();
471 469
472 470 #ifdef GSA
473 471 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR );
474 472 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
475 473 LEON_Clear_interrupt( IRQ_WF );
476 474 LEON_Unmask_interrupt( IRQ_WF );
477 475 //
478 476 set_local_nb_interrupt_f0_MAX();
479 477 LEON_Clear_interrupt( IRQ_SM ); // the IRQ_SM seems to be incompatible with the IRQ_WF on the xilinx board
480 478 LEON_Unmask_interrupt( IRQ_SM );
481 479 #else
482 480 //****************
483 481 // waveform picker
484 482 reset_waveform_picker_regs();
485 483 set_wfp_burst_enable_register(LFR_MODE_NORMAL);
486 484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
487 485 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
488 486 //****************
489 487 // spectral matrix
490 488 #endif
491 489
492 490 return status;
493 491 }
494 492
495 493 int enter_burst_mode()
496 494 {
497 495 rtems_status_code status;
498 496
499 497 status = restart_science_tasks();
500 498
501 499 #ifdef GSA
502 500 LEON_Unmask_interrupt( IRQ_SM );
503 501 #else
504 502 reset_waveform_picker_regs();
505 503 set_wfp_burst_enable_register(LFR_MODE_BURST);
506 504 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
507 505 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
508 506 #endif
509 507
510 508 return status;
511 509 }
512 510
513 511 int enter_sbm1_mode()
514 512 {
515 513 rtems_status_code status;
516 514
517 515 status = restart_science_tasks();
518 516
519 517 set_local_sbm1_nb_cwf_max();
520 518
521 519 reset_local_sbm1_nb_cwf_sent();
522 520
523 521 #ifdef GSA
524 522 LEON_Unmask_interrupt( IRQ_SM );
525 523 #else
526 524 reset_waveform_picker_regs();
527 525 set_wfp_burst_enable_register(LFR_MODE_SBM1);
528 526 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
529 527 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
530 528 // SM simulation
531 529 // timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
532 530 // LEON_Clear_interrupt( IRQ_SM ); // the IRQ_SM seems to be incompatible with the IRQ_WF on the xilinx board
533 531 // LEON_Unmask_interrupt( IRQ_SM );
534 532 #endif
535 533
536 534 return status;
537 535 }
538 536
539 537 int enter_sbm2_mode()
540 538 {
541 539 rtems_status_code status;
542 540
543 541 status = restart_science_tasks();
544 542
545 543 set_local_sbm2_nb_cwf_max();
546 544
547 545 reset_local_sbm2_nb_cwf_sent();
548 546
549 547 #ifdef GSA
550 548 LEON_Unmask_interrupt( IRQ_SM );
551 549 #else
552 550 reset_waveform_picker_regs();
553 551 set_wfp_burst_enable_register(LFR_MODE_SBM2);
554 552 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
555 553 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
556 554 #endif
557 555
558 556 return status;
559 557 }
560 558
561 559 int restart_science_tasks()
562 560 {
563 561 rtems_status_code status[6];
564 562 rtems_status_code ret;
565 563
566 564 ret = RTEMS_SUCCESSFUL;
567 565
568 566 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
569 567 if (status[0] != RTEMS_SUCCESSFUL)
570 568 {
571 569 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
572 570 }
573 571
574 572 status[1] = rtems_task_restart( Task_id[TASKID_BPF0],1 );
575 573 if (status[1] != RTEMS_SUCCESSFUL)
576 574 {
577 575 PRINTF1("in restart_science_task *** 1 ERR %d\n", status[1])
578 576 }
579 577
580 578 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
581 579 if (status[2] != RTEMS_SUCCESSFUL)
582 580 {
583 581 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
584 582 }
585 583
586 584 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
587 585 if (status[3] != RTEMS_SUCCESSFUL)
588 586 {
589 587 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
590 588 }
591 589
592 590 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
593 591 if (status[4] != RTEMS_SUCCESSFUL)
594 592 {
595 593 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
596 594 }
597 595
598 596 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
599 597 if (status[5] != RTEMS_SUCCESSFUL)
600 598 {
601 599 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
602 600 }
603 601
604 602 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
605 603 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
606 604 {
607 605 ret = RTEMS_UNSATISFIED;
608 606 }
609 607
610 608 return ret;
611 609 }
612 610
613 611 int suspend_science_tasks()
614 612 {
615 613 /** This function suspends the science tasks.
616 614 *
617 615 * @return RTEMS directive status codes:
618 616 * - RTEMS_SUCCESSFUL - task restarted successfully
619 617 * - RTEMS_INVALID_ID - task id invalid
620 618 * - RTEMS_ALREADY_SUSPENDED - task already suspended
621 619 *
622 620 */
623 621
624 622 rtems_status_code status;
625 623
626 624 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
627 625 if (status != RTEMS_SUCCESSFUL)
628 626 {
629 627 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
630 628 }
631 629
632 630 if (status == RTEMS_SUCCESSFUL) // suspend BPF0
633 631 {
634 632 status = rtems_task_suspend( Task_id[TASKID_BPF0] );
635 633 if (status != RTEMS_SUCCESSFUL)
636 634 {
637 635 PRINTF1("in suspend_science_task *** BPF0 ERR %d\n", status)
638 636 }
639 637 }
640 638
641 639 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
642 640 {
643 641 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
644 642 if (status != RTEMS_SUCCESSFUL)
645 643 {
646 644 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
647 645 }
648 646 }
649 647
650 648 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
651 649 {
652 650 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
653 651 if (status != RTEMS_SUCCESSFUL)
654 652 {
655 653 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
656 654 }
657 655 }
658 656
659 657 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
660 658 {
661 659 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
662 660 if (status != RTEMS_SUCCESSFUL)
663 661 {
664 662 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
665 663 }
666 664 }
667 665
668 666 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
669 667 {
670 668 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
671 669 if (status != RTEMS_SUCCESSFUL)
672 670 {
673 671 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
674 672 }
675 673 }
676 674
677 675 return status;
678 676 }
679 677
680 678 //****************
681 679 // CLOSING ACTIONS
682 680 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC)
683 681 {
684 682 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
685 683 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
686 684 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
687 685 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
688 686 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
689 687 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
690 688 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
691 689 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
692 690 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
693 691 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
694 692 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
695 693 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
696 694 }
697 695
698 696 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC)
699 697 {
700 698 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
701 699 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
702 700 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
703 701 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
704 702 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
705 703 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
706 704 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
707 705 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
708 706 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
709 707 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
710 708 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
711 709 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
712 710 }
713 711
714 712 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id)
715 713 {
716 714 unsigned int val = 0;
717 715 if (result == LFR_SUCCESSFUL)
718 716 {
719 717 if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
720 718 &&
721 719 !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
722 720 )
723 721 {
724 722 send_tm_lfr_tc_exe_success( TC, queue_id );
725 723 }
726 724 update_last_TC_exe( TC );
727 725 val = housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[0] * 256 + housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[1];
728 726 val++;
729 727 housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[0] = (unsigned char) (val >> 8);
730 728 housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[1] = (unsigned char) (val);
731 729 }
732 730 else
733 731 {
734 732 update_last_TC_rej( TC );
735 733 val = housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[0] * 256 + housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[1];
736 734 val++;
737 735 housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[0] = (unsigned char) (val >> 8);
738 736 housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[1] = (unsigned char) (val);
739 737 }
740 738 }
741 739
742 740 //***************************
743 741 // Interrupt Service Routines
744 742 rtems_isr commutation_isr1( rtems_vector_number vector )
745 743 {
746 744 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
747 745 printf("In commutation_isr1 *** Error sending event to DUMB\n");
748 746 }
749 747 }
750 748
751 749 rtems_isr commutation_isr2( rtems_vector_number vector )
752 750 {
753 751 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
754 752 printf("In commutation_isr2 *** Error sending event to DUMB\n");
755 753 }
756 754 }
757 755
758 756 //****************
759 757 // OTHER FUNCTIONS
760 758 void updateLFRCurrentMode()
761 759 {
762 760 /** This function updates the value of the global variable lfrCurrentMode.
763 761 *
764 762 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
765 763 *
766 764 */
767 765 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
768 766 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
769 767 }
770 768
@@ -1,448 +1,448
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 28 set_wfp_data_shaping(parameter_dump_packet.bw_sp0_sp1_r0_r1);
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43
44 44 flag = LFR_SUCCESSFUL;
45 45 result = LFR_SUCCESSFUL;
46 46
47 47 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
48 48 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
49 49 flag = LFR_DEFAULT;
50 50 }
51 51
52 52 //***************
53 53 // sy_lfr_n_swf_l
54 54 if (flag == LFR_SUCCESSFUL)
55 55 {
56 56 result = set_sy_lfr_n_swf_l( TC, queue_id );
57 57 if (result != LFR_SUCCESSFUL)
58 58 {
59 59 flag = LFR_DEFAULT;
60 60 }
61 61 }
62 62
63 63 //***************
64 64 // sy_lfr_n_swf_p
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_p( TC, queue_id );
68 68 if (result != LFR_SUCCESSFUL)
69 69 {
70 70 flag = LFR_DEFAULT;
71 71 }
72 72 }
73 73
74 74 //***************
75 75 // SY_LFR_N_ASM_P
76 76 if (flag == LFR_SUCCESSFUL)
77 77 {
78 78 result = set_sy_lfr_n_asm_p( TC, queue_id );
79 79 if (result != LFR_SUCCESSFUL)
80 80 {
81 81 flag = LFR_DEFAULT;
82 82 }
83 83 }
84 84
85 85 //***************
86 86 // SY_LFR_N_BP_P0
87 87 if (flag == LFR_SUCCESSFUL)
88 88 {
89 89 result = set_sy_lfr_n_bp_p0( TC, queue_id );
90 90 if (result != LFR_SUCCESSFUL)
91 91 {
92 92 flag = LFR_DEFAULT;
93 93 }
94 94 }
95 95
96 96 //***************
97 97 // sy_lfr_n_bp_p1
98 98 if (flag == LFR_SUCCESSFUL)
99 99 {
100 100 result = set_sy_lfr_n_bp_p1( TC, queue_id );
101 101 if (result != LFR_SUCCESSFUL)
102 102 {
103 103 flag = LFR_DEFAULT;
104 104 }
105 105 }
106 106
107 107 return result;
108 108 }
109 109
110 110 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
111 111 {
112 112 /** This function updates the LFR registers with the incoming burst parameters.
113 113 *
114 114 * @param TC points to the TeleCommand packet that is being processed
115 115 * @param queue_id is the id of the queue which handles TM related to this execution step
116 116 *
117 117 */
118 118
119 119 int result;
120 120 unsigned char lfrMode;
121 121
122 122 result = LFR_DEFAULT;
123 123 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
124 124
125 125 if ( lfrMode == LFR_MODE_BURST ) {
126 126 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
127 127 result = LFR_DEFAULT;
128 128 }
129 129 else {
130 130 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[0];
131 131 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[1];
132 132
133 133 result = LFR_SUCCESSFUL;
134 134 }
135 135
136 136 return result;
137 137 }
138 138
139 139 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
140 140 {
141 141 /** This function updates the LFR registers with the incoming sbm1 parameters.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM related to this execution step
145 145 *
146 146 */
147 147 int result;
148 148 unsigned char lfrMode;
149 149
150 150 result = LFR_DEFAULT;
151 151 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
152 152
153 if ( lfrMode == LFR_MODE_SBM1 ) {
153 if ( (lfrMode == LFR_MODE_SBM1) || (lfrMode == LFR_MODE_SBM2) ) {
154 154 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
155 155 result = LFR_DEFAULT;
156 156 }
157 157 else {
158 158 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[0];
159 159 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[1];
160 160
161 161 result = LFR_SUCCESSFUL;
162 162 }
163 163
164 164 return result;
165 165 }
166 166
167 167 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
168 168 {
169 169 /** This function updates the LFR registers with the incoming sbm2 parameters.
170 170 *
171 171 * @param TC points to the TeleCommand packet that is being processed
172 172 * @param queue_id is the id of the queue which handles TM related to this execution step
173 173 *
174 174 */
175 175
176 176 int result;
177 177 unsigned char lfrMode;
178 178
179 179 result = LFR_DEFAULT;
180 180 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
181 181
182 if ( lfrMode == LFR_MODE_SBM2 ) {
182 if ( (lfrMode == LFR_MODE_SBM2) || (lfrMode == LFR_MODE_SBM2) ) {
183 183 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
184 184 result = LFR_DEFAULT;
185 185 }
186 186 else {
187 187 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[0];
188 188 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[1];
189 189
190 190 result = LFR_SUCCESSFUL;
191 191 }
192 192
193 193 return result;
194 194 }
195 195
196 196 int action_dump_par( rtems_id queue_id )
197 197 {
198 198 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
199 199 *
200 200 * @param queue_id is the id of the queue which handles TM related to this execution step.
201 201 *
202 202 * @return RTEMS directive status codes:
203 203 * - RTEMS_SUCCESSFUL - message sent successfully
204 204 * - RTEMS_INVALID_ID - invalid queue id
205 205 * - RTEMS_INVALID_SIZE - invalid message size
206 206 * - RTEMS_INVALID_ADDRESS - buffer is NULL
207 207 * - RTEMS_UNSATISFIED - out of message buffers
208 208 * - RTEMS_TOO_MANY - queue s limit has been reached
209 209 *
210 210 */
211 211
212 212 int status;
213 213
214 214 // UPDATE TIME
215 215 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
216 216 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
217 217 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
218 218 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
219 219 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
220 220 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
221 221 // SEND DATA
222 222 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
223 223 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
224 224 if (status != RTEMS_SUCCESSFUL) {
225 225 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
226 226 }
227 227
228 228 return status;
229 229 }
230 230
231 231 //***********************
232 232 // NORMAL MODE PARAMETERS
233 233
234 234 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
235 235 {
236 236 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
237 237 *
238 238 * @param TC points to the TeleCommand packet that is being processed
239 239 * @param queue_id is the id of the queue which handles TM related to this execution step
240 240 *
241 241 */
242 242
243 243 unsigned int tmp;
244 244 int result;
245 245 unsigned char msb;
246 246 unsigned char lsb;
247 247
248 248 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L ];
249 249 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L+1 ];
250 250
251 251 tmp = ( unsigned int ) floor(
252 252 ( ( msb*256 ) + lsb ) / 16
253 253 ) * 16;
254 254
255 255 if ( (tmp < 16) || (tmp > 2048) ) // the snapshot period is a multiple of 16
256 256 { // 2048 is the maximum limit due to the size of the buffers
257 257 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_L+10, lsb );
258 258 result = WRONG_APP_DATA;
259 259 }
260 260 else if (tmp != 2048)
261 261 {
262 262 send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
263 263 result = FUNCT_NOT_IMPL;
264 264 }
265 265 else
266 266 {
267 267 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (tmp >> 8);
268 268 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (tmp );
269 269 result = LFR_SUCCESSFUL;
270 270 }
271 271
272 272 return result;
273 273 }
274 274
275 275 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
276 276 {
277 277 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
278 278 *
279 279 * @param TC points to the TeleCommand packet that is being processed
280 280 * @param queue_id is the id of the queue which handles TM related to this execution step
281 281 *
282 282 */
283 283
284 284 unsigned int tmp;
285 285 int result;
286 286 unsigned char msb;
287 287 unsigned char lsb;
288 288
289 289 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P ];
290 290 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P+1 ];
291 291
292 292 tmp = ( unsigned int ) floor(
293 293 ( ( msb*256 ) + lsb ) / 8
294 294 ) * 8;
295 295
296 296 if ( (tmp < 16) || (tmp > 65528) )
297 297 {
298 298 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_P+10, lsb );
299 299 result = WRONG_APP_DATA;
300 300 }
301 301 else
302 302 {
303 303 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (tmp >> 8);
304 304 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (tmp );
305 305 result = LFR_SUCCESSFUL;
306 306 }
307 307
308 308 return result;
309 309 }
310 310
311 311 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
312 312 {
313 313 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
314 314 *
315 315 * @param TC points to the TeleCommand packet that is being processed
316 316 * @param queue_id is the id of the queue which handles TM related to this execution step
317 317 *
318 318 */
319 319
320 320 int result;
321 321 unsigned char msb;
322 322 unsigned char lsb;
323 323
324 324 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P ];
325 325 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P+1 ];
326 326
327 327 parameter_dump_packet.sy_lfr_n_asm_p[0] = msb;
328 328 parameter_dump_packet.sy_lfr_n_asm_p[1] = lsb;
329 329 result = LFR_SUCCESSFUL;
330 330
331 331 return result;
332 332 }
333 333
334 334 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
335 335 {
336 336 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
337 337 *
338 338 * @param TC points to the TeleCommand packet that is being processed
339 339 * @param queue_id is the id of the queue which handles TM related to this execution step
340 340 *
341 341 */
342 342
343 343 int status;
344 344
345 345 status = LFR_SUCCESSFUL;
346 346
347 347 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P0 ];
348 348
349 349 return status;
350 350 }
351 351
352 352 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
353 353 {
354 354 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
355 355 *
356 356 * @param TC points to the TeleCommand packet that is being processed
357 357 * @param queue_id is the id of the queue which handles TM related to this execution step
358 358 *
359 359 */
360 360
361 361 int status;
362 362
363 363 status = LFR_SUCCESSFUL;
364 364
365 365 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P1 ];
366 366
367 367 return status;
368 368 }
369 369
370 370 //**********************
371 371 // BURST MODE PARAMETERS
372 372
373 373 //*********************
374 374 // SBM1 MODE PARAMETERS
375 375
376 376 //*********************
377 377 // SBM2 MODE PARAMETERS
378 378
379 379 //**********
380 380 // init dump
381 381
382 382 void init_parameter_dump( void )
383 383 {
384 384 /** This function initialize the parameter_dump_packet global variable with default values.
385 385 *
386 386 */
387 387
388 388 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
389 389 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
390 390 parameter_dump_packet.reserved = CCSDS_RESERVED;
391 391 parameter_dump_packet.userApplication = CCSDS_USER_APP;
392 392 parameter_dump_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_PARAMETER_DUMP >> 8);
393 393 parameter_dump_packet.packetID[1] = (unsigned char) TM_PACKET_ID_PARAMETER_DUMP;
394 394 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
395 395 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
396 396 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
397 397 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
398 398 // DATA FIELD HEADER
399 399 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
400 400 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
401 401 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
402 402 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
403 403 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
404 404 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
405 405 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
406 406 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
407 407 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
408 408 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
409 409 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
410 410
411 411 //******************
412 412 // COMMON PARAMETERS
413 413 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
414 414 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
415 415
416 416 //******************
417 417 // NORMAL PARAMETERS
418 418 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
419 419 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
420 420 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
421 421 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
422 422 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
423 423 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
424 424 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
425 425 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
426 426
427 427 //*****************
428 428 // BURST PARAMETERS
429 429 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
430 430 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
431 431
432 432 //****************
433 433 // SBM1 PARAMETERS
434 434 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
435 435 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
436 436
437 437 //****************
438 438 // SBM2 PARAMETERS
439 439 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
440 440 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
441 441 }
442 442
443 443
444 444
445 445
446 446
447 447
448 448
@@ -1,419 +1,419
1 1 /** Functions to send TM packets related to TC parsing and execution.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to send appropriate TM packets after parsing and execution:
7 7 * - TM_LFR_TC_EXE_SUCCESS
8 8 * - TM_LFR_TC_EXE_INCONSISTENT
9 9 * - TM_LFR_TC_EXE_NOT_EXECUTABLE
10 10 * - TM_LFR_TC_EXE_NOT_IMPLEMENTED
11 11 * - TM_LFR_TC_EXE_ERROR
12 12 * - TM_LFR_TC_EXE_CORRUPTED
13 13 *
14 14 */
15 15
16 16 #include "tm_lfr_tc_exe.h"
17 17
18 18 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
19 19 {
20 20 /** This function sends a TM_LFR_TC_EXE_SUCCESS packet in the dedicated RTEMS message queue.
21 21 *
22 22 * @param TC points to the TeleCommand packet that is being processed
23 23 * @param queue_id is the id of the queue which handles TM
24 24 *
25 25 * @return RTEMS directive status code:
26 26 * - RTEMS_SUCCESSFUL - message sent successfully
27 27 * - RTEMS_INVALID_ID - invalid queue id
28 28 * - RTEMS_INVALID_SIZE - invalid message size
29 29 * - RTEMS_INVALID_ADDRESS - buffer is NULL
30 30 * - RTEMS_UNSATISFIED - out of message buffers
31 31 * - RTEMS_TOO_MANY - queue s limit has been reached
32 32 *
33 33 */
34 34
35 35 rtems_status_code status;
36 36 Packet_TM_LFR_TC_EXE_SUCCESS_t TM;
37 37 unsigned char messageSize;
38 38
39 39 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
40 40 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
41 41 TM.reserved = DEFAULT_RESERVED;
42 42 TM.userApplication = CCSDS_USER_APP;
43 43 // PACKET HEADER
44 44 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
45 45 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
46 46 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
47 47 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
48 48 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS >> 8);
49 49 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS );
50 50 // DATA FIELD HEADER
51 51 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
52 52 TM.serviceType = TM_TYPE_TC_EXE;
53 53 TM.serviceSubType = TM_SUBTYPE_EXE_OK;
54 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
54 TM.destinationID = TC->sourceID;
55 55 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
56 56 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
57 57 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
58 58 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
59 59 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
60 60 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
61 61 //
62 62 TM.telecommand_pkt_id[0] = TC->packetID[0];
63 63 TM.telecommand_pkt_id[1] = TC->packetID[1];
64 64 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
65 65 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
66 66
67 67 messageSize = PACKET_LENGTH_TC_EXE_SUCCESS + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
68 68
69 69 // SEND DATA
70 70 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
71 71 if (status != RTEMS_SUCCESSFUL) {
72 72 PRINTF("in send_tm_lfr_tc_exe_success *** ERR\n")
73 73 }
74 74
75 75 return status;
76 76 }
77 77
78 78 int send_tm_lfr_tc_exe_inconsistent( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
79 79 unsigned char byte_position, unsigned char rcv_value )
80 80 {
81 81 /** This function sends a TM_LFR_TC_EXE_INCONSISTENT packet in the dedicated RTEMS message queue.
82 82 *
83 83 * @param TC points to the TeleCommand packet that is being processed
84 84 * @param queue_id is the id of the queue which handles TM
85 85 * @param byte_position is the byte position of the MSB of the parameter that has been seen as inconsistent
86 86 * @param rcv_value is the value of the LSB of the parameter that has been deteced as inconsistent
87 87 *
88 88 * @return RTEMS directive status code:
89 89 * - RTEMS_SUCCESSFUL - message sent successfully
90 90 * - RTEMS_INVALID_ID - invalid queue id
91 91 * - RTEMS_INVALID_SIZE - invalid message size
92 92 * - RTEMS_INVALID_ADDRESS - buffer is NULL
93 93 * - RTEMS_UNSATISFIED - out of message buffers
94 94 * - RTEMS_TOO_MANY - queue s limit has been reached
95 95 *
96 96 */
97 97
98 98 rtems_status_code status;
99 99 Packet_TM_LFR_TC_EXE_INCONSISTENT_t TM;
100 100 unsigned char messageSize;
101 101
102 102 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
103 103 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
104 104 TM.reserved = DEFAULT_RESERVED;
105 105 TM.userApplication = CCSDS_USER_APP;
106 106 // PACKET HEADER
107 107 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
108 108 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
109 109 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
110 110 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
111 111 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT >> 8);
112 112 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT );
113 113 // DATA FIELD HEADER
114 114 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
115 115 TM.serviceType = TM_TYPE_TC_EXE;
116 116 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
117 117 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
118 118 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
119 119 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
120 120 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
121 121 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
122 122 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
123 123 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
124 124 //
125 125 TM.tc_failure_code[0] = (char) (WRONG_APP_DATA >> 8);
126 126 TM.tc_failure_code[1] = (char) (WRONG_APP_DATA );
127 127 TM.telecommand_pkt_id[0] = TC->packetID[0];
128 128 TM.telecommand_pkt_id[1] = TC->packetID[1];
129 129 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
130 130 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
131 131 TM.tc_service = TC->serviceType; // type of the rejected TC
132 132 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
133 133 TM.byte_position = byte_position;
134 134 TM.rcv_value = rcv_value;
135 135
136 136 messageSize = PACKET_LENGTH_TC_EXE_INCONSISTENT + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
137 137
138 138 // SEND DATA
139 139 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
140 140 if (status != RTEMS_SUCCESSFUL) {
141 141 PRINTF("in send_tm_lfr_tc_exe_inconsistent *** ERR\n")
142 142 }
143 143
144 144 return status;
145 145 }
146 146
147 147 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
148 148 {
149 149 /** This function sends a TM_LFR_TC_EXE_NOT_EXECUTABLE packet in the dedicated RTEMS message queue.
150 150 *
151 151 * @param TC points to the TeleCommand packet that is being processed
152 152 * @param queue_id is the id of the queue which handles TM
153 153 *
154 154 * @return RTEMS directive status code:
155 155 * - RTEMS_SUCCESSFUL - message sent successfully
156 156 * - RTEMS_INVALID_ID - invalid queue id
157 157 * - RTEMS_INVALID_SIZE - invalid message size
158 158 * - RTEMS_INVALID_ADDRESS - buffer is NULL
159 159 * - RTEMS_UNSATISFIED - out of message buffers
160 160 * - RTEMS_TOO_MANY - queue s limit has been reached
161 161 *
162 162 */
163 163
164 164 rtems_status_code status;
165 165 Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t TM;
166 166 unsigned char messageSize;
167 167
168 168 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
169 169 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
170 170 TM.reserved = DEFAULT_RESERVED;
171 171 TM.userApplication = CCSDS_USER_APP;
172 172 // PACKET HEADER
173 173 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
174 174 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
175 175 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
176 176 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
177 177 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE >> 8);
178 178 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE );
179 179 // DATA FIELD HEADER
180 180 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
181 181 TM.serviceType = TM_TYPE_TC_EXE;
182 182 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
183 183 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
184 184 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
185 185 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
186 186 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
187 187 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
188 188 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
189 189 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
190 190 //
191 191 TM.tc_failure_code[0] = (char) (TC_NOT_EXE >> 8);
192 192 TM.tc_failure_code[1] = (char) (TC_NOT_EXE );
193 193 TM.telecommand_pkt_id[0] = TC->packetID[0];
194 194 TM.telecommand_pkt_id[1] = TC->packetID[1];
195 195 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
196 196 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
197 197 TM.tc_service = TC->serviceType; // type of the rejected TC
198 198 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
199 199 TM.lfr_status_word[0] = housekeeping_packet.lfr_status_word[0];
200 200 TM.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1];
201 201
202 202 messageSize = PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
203 203
204 204 // SEND DATA
205 205 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
206 206 if (status != RTEMS_SUCCESSFUL) {
207 207 PRINTF("in send_tm_lfr_tc_exe_not_executable *** ERR\n")
208 208 }
209 209
210 210 return status;
211 211 }
212 212
213 213 int send_tm_lfr_tc_exe_not_implemented( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
214 214 {
215 215 /** This function sends a TM_LFR_TC_EXE_NOT_IMPLEMENTED packet in the dedicated RTEMS message queue.
216 216 *
217 217 * @param TC points to the TeleCommand packet that is being processed
218 218 * @param queue_id is the id of the queue which handles TM
219 219 *
220 220 * @return RTEMS directive status code:
221 221 * - RTEMS_SUCCESSFUL - message sent successfully
222 222 * - RTEMS_INVALID_ID - invalid queue id
223 223 * - RTEMS_INVALID_SIZE - invalid message size
224 224 * - RTEMS_INVALID_ADDRESS - buffer is NULL
225 225 * - RTEMS_UNSATISFIED - out of message buffers
226 226 * - RTEMS_TOO_MANY - queue s limit has been reached
227 227 *
228 228 */
229 229
230 230 rtems_status_code status;
231 231 Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t TM;
232 232 unsigned char messageSize;
233 233
234 234 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
235 235 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
236 236 TM.reserved = DEFAULT_RESERVED;
237 237 TM.userApplication = CCSDS_USER_APP;
238 238 // PACKET HEADER
239 239 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
240 240 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
241 241 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
242 242 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
243 243 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED >> 8);
244 244 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED );
245 245 // DATA FIELD HEADER
246 246 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
247 247 TM.serviceType = TM_TYPE_TC_EXE;
248 248 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
249 249 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
250 250 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
251 251 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
252 252 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
253 253 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
254 254 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
255 255 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
256 256 //
257 257 TM.tc_failure_code[0] = (char) (FUNCT_NOT_IMPL >> 8);
258 258 TM.tc_failure_code[1] = (char) (FUNCT_NOT_IMPL );
259 259 TM.telecommand_pkt_id[0] = TC->packetID[0];
260 260 TM.telecommand_pkt_id[1] = TC->packetID[1];
261 261 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
262 262 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
263 263 TM.tc_service = TC->serviceType; // type of the rejected TC
264 264 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
265 265
266 266 messageSize = PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
267 267
268 268 // SEND DATA
269 269 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
270 270 if (status != RTEMS_SUCCESSFUL) {
271 271 PRINTF("in send_tm_lfr_tc_exe_not_implemented *** ERR\n")
272 272 }
273 273
274 274 return status;
275 275 }
276 276
277 277 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
278 278 {
279 279 /** This function sends a TM_LFR_TC_EXE_ERROR packet in the dedicated RTEMS message queue.
280 280 *
281 281 * @param TC points to the TeleCommand packet that is being processed
282 282 * @param queue_id is the id of the queue which handles TM
283 283 *
284 284 * @return RTEMS directive status code:
285 285 * - RTEMS_SUCCESSFUL - message sent successfully
286 286 * - RTEMS_INVALID_ID - invalid queue id
287 287 * - RTEMS_INVALID_SIZE - invalid message size
288 288 * - RTEMS_INVALID_ADDRESS - buffer is NULL
289 289 * - RTEMS_UNSATISFIED - out of message buffers
290 290 * - RTEMS_TOO_MANY - queue s limit has been reached
291 291 *
292 292 */
293 293
294 294 rtems_status_code status;
295 295 Packet_TM_LFR_TC_EXE_ERROR_t TM;
296 296 unsigned char messageSize;
297 297
298 298 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
299 299 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
300 300 TM.reserved = DEFAULT_RESERVED;
301 301 TM.userApplication = CCSDS_USER_APP;
302 302 // PACKET HEADER
303 303 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
304 304 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
305 305 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
306 306 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
307 307 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR >> 8);
308 308 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR );
309 309 // DATA FIELD HEADER
310 310 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
311 311 TM.serviceType = TM_TYPE_TC_EXE;
312 312 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
313 313 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
314 314 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
315 315 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
316 316 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
317 317 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
318 318 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
319 319 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
320 320 //
321 321 TM.tc_failure_code[0] = (char) (FAIL_DETECTED >> 8);
322 322 TM.tc_failure_code[1] = (char) (FAIL_DETECTED );
323 323 TM.telecommand_pkt_id[0] = TC->packetID[0];
324 324 TM.telecommand_pkt_id[1] = TC->packetID[1];
325 325 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
326 326 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
327 327 TM.tc_service = TC->serviceType; // type of the rejected TC
328 328 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
329 329
330 330 messageSize = PACKET_LENGTH_TC_EXE_ERROR + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
331 331
332 332 // SEND DATA
333 333 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
334 334 if (status != RTEMS_SUCCESSFUL) {
335 335 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
336 336 }
337 337
338 338 return status;
339 339 }
340 340
341 341 int send_tm_lfr_tc_exe_corrupted(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
342 342 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV )
343 343 {
344 344 /** This function sends a TM_LFR_TC_EXE_CORRUPTED packet in the dedicated RTEMS message queue.
345 345 *
346 346 * @param TC points to the TeleCommand packet that is being processed
347 347 * @param queue_id is the id of the queue which handles TM
348 348 * @param computed_CRC points to a buffer of two bytes containing the CRC computed during the parsing of the TeleCommand
349 349 * @param currentTC_LEN_RCV points to a buffer of two bytes containing a packet size field computed on the received data
350 350 *
351 351 * @return RTEMS directive status code:
352 352 * - RTEMS_SUCCESSFUL - message sent successfully
353 353 * - RTEMS_INVALID_ID - invalid queue id
354 354 * - RTEMS_INVALID_SIZE - invalid message size
355 355 * - RTEMS_INVALID_ADDRESS - buffer is NULL
356 356 * - RTEMS_UNSATISFIED - out of message buffers
357 357 * - RTEMS_TOO_MANY - queue s limit has been reached
358 358 *
359 359 */
360 360
361 361 rtems_status_code status;
362 362 Packet_TM_LFR_TC_EXE_CORRUPTED_t TM;
363 363 unsigned char messageSize;
364 364 unsigned int packetLength;
365 365 unsigned char *packetDataField;
366 366
367 367 packetLength = (TC->packetLength[0] * 256) + TC->packetLength[1]; // compute the packet length parameter
368 368 packetDataField = (unsigned char *) &TC->headerFlag_pusVersion_Ack; // get the beginning of the data field
369 369
370 370 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
371 371 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
372 372 TM.reserved = DEFAULT_RESERVED;
373 373 TM.userApplication = CCSDS_USER_APP;
374 374 // PACKET HEADER
375 375 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
376 376 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
377 377 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
378 378 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
379 379 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED >> 8);
380 380 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED );
381 381 // DATA FIELD HEADER
382 382 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
383 383 TM.serviceType = TM_TYPE_TC_EXE;
384 384 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
385 385 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
386 386 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
387 387 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
388 388 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
389 389 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
390 390 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
391 391 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
392 392 //
393 393 TM.tc_failure_code[0] = (unsigned char) (CORRUPTED >> 8);
394 394 TM.tc_failure_code[1] = (unsigned char) (CORRUPTED );
395 395 TM.telecommand_pkt_id[0] = TC->packetID[0];
396 396 TM.telecommand_pkt_id[1] = TC->packetID[1];
397 397 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
398 398 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
399 399 TM.tc_service = TC->serviceType; // type of the rejected TC
400 400 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
401 401 TM.pkt_len_rcv_value[0] = TC->packetLength[0];
402 402 TM.pkt_len_rcv_value[1] = TC->packetLength[1];
403 403 TM.pkt_datafieldsize_cnt[0] = currentTC_LEN_RCV[0];
404 404 TM.pkt_datafieldsize_cnt[1] = currentTC_LEN_RCV[1];
405 405 TM.rcv_crc[0] = packetDataField[ packetLength - 1 ];
406 406 TM.rcv_crc[1] = packetDataField[ packetLength ];
407 407 TM.computed_crc[0] = computed_CRC[0];
408 408 TM.computed_crc[1] = computed_CRC[1];
409 409
410 410 messageSize = PACKET_LENGTH_TC_EXE_CORRUPTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
411 411
412 412 // SEND DATA
413 413 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
414 414 if (status != RTEMS_SUCCESSFUL) {
415 415 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
416 416 }
417 417
418 418 return status;
419 419 }
@@ -1,1170 +1,1191
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 // SWF
13 13 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
14 14 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
16 16 // CWF
17 17 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
18 18 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
22 22
23 23 unsigned char doubleSendCWF1 = 0;
24 24 unsigned char doubleSendCWF2 = 0;
25 25
26 26 rtems_isr waveforms_isr( rtems_vector_number vector )
27 27 {
28 28 /** This is the interrupt sub routine called by the waveform picker core.
29 29 *
30 30 * This ISR launch different actions depending mainly on two pieces of information:
31 31 * 1. the values read in the registers of the waveform picker.
32 32 * 2. the current LFR mode.
33 33 *
34 34 */
35 35
36 36 #ifdef GSA
37 37 #else
38 38 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
39 39 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
40 40 { // in modes other than STANDBY and BURST, send the CWF_F3 data
41 41 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
42 42 // (1) change the receiving buffer for the waveform picker
43 43 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
44 44 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_bis);
45 45 }
46 46 else {
47 47 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3);
48 48 }
49 49 // (2) send an event for the waveforms transmission
50 50 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
51 51 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
52 52 }
53 53 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
54 54 }
55 55 }
56 56 #endif
57 57
58 58 switch(lfrCurrentMode)
59 59 {
60 60 //********
61 61 // STANDBY
62 62 case(LFR_MODE_STANDBY):
63 63 break;
64 64
65 65 //******
66 66 // NORMAL
67 67 case(LFR_MODE_NORMAL):
68 68 #ifdef GSA
69 69 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
70 70 #else
71 71 if ( (waveform_picker_regs->burst_enable & 0x7) == 0x0 ){ // if no channel is enable
72 72 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
73 73 }
74 74 else {
75 75 if ( (waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
76 76 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable & 0x08;
77 77 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
78 78 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
79 79 }
80 80 // waveform_picker_regs->status = waveform_picker_regs->status & 0x00;
81 81 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888;
82 82 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x07; // [0111] enable f2 f1 f0
83 83 }
84 84 }
85 85 #endif
86 86 break;
87 87
88 88 //******
89 89 // BURST
90 90 case(LFR_MODE_BURST):
91 91 #ifdef GSA
92 92 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
93 93 #else
94 94 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
95 95 // (1) change the receiving buffer for the waveform picker
96 96 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
97 97 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
98 98 }
99 99 else {
100 100 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
101 101 }
102 102 // (2) send an event for the waveforms transmission
103 103 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
104 104 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
105 105 }
106 106 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
107 107 }
108 108 #endif
109 109 break;
110 110
111 111 //*****
112 112 // SBM1
113 113 case(LFR_MODE_SBM1):
114 114 #ifdef GSA
115 115 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
116 116 #else
117 117 if ((waveform_picker_regs->status & 0x02) == 0x02){ // [0010] check the f1 full bit
118 118 // (1) change the receiving buffer for the waveform picker
119 119 if ( param_local.local_sbm1_nb_cwf_sent == (param_local.local_sbm1_nb_cwf_max-1) )
120 120 {
121 121 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_norm);
122 122 }
123 123 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1_norm )
124 124 {
125 125 doubleSendCWF1 = 1;
126 126 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
127 127 }
128 128 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1 ) {
129 129 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_bis);
130 130 }
131 131 else {
132 132 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
133 133 }
134 134 // (2) send an event for the waveforms transmission
135 135 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
136 136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 137 }
138 138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
139 139 }
140 140 if ( ( (waveform_picker_regs->status & 0x05) == 0x05 ) ) { // [0101] check the f2 and f0 full bit
141 141 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
142 142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
143 143 }
144 144 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
145 145 reset_local_sbm1_nb_cwf_sent();
146 146 }
147 147
148 148 #endif
149 149 break;
150 150
151 151 //*****
152 152 // SBM2
153 153 case(LFR_MODE_SBM2):
154 154 #ifdef GSA
155 155 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
156 156 #else
157 157 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
158 158 // (1) change the receiving buffer for the waveform picker
159 159 if ( param_local.local_sbm2_nb_cwf_sent == (param_local.local_sbm2_nb_cwf_max-1) )
160 160 {
161 161 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_norm);
162 162 }
163 163 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2_norm ) {
164 164 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
165 165 doubleSendCWF2 = 1;
166 166 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2_WFRM ) != RTEMS_SUCCESSFUL) {
167 167 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
168 168 }
169 169 reset_local_sbm2_nb_cwf_sent();
170 170 }
171 171 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2 ) {
172 172 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
173 173 }
174 174 else {
175 175 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
176 176 }
177 177 // (2) send an event for the waveforms transmission
178 178 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
179 179 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
180 180 }
181 181 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
182 182 }
183 183 if ( ( (waveform_picker_regs->status & 0x03) == 0x03 ) ) { // [0011] f3 f2 f1 f0, f1 and f0 are full
184 184 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
185 185 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
186 186 }
187 187 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
188 188 }
189 189 #endif
190 190 break;
191 191
192 192 //********
193 193 // DEFAULT
194 194 default:
195 195 break;
196 196 }
197 197 }
198 198
199 199 rtems_isr waveforms_simulator_isr( rtems_vector_number vector )
200 200 {
201 201 /** This is the interrupt sub routine called by the waveform picker simulator.
202 202 *
203 203 * This ISR is for debug purpose only.
204 204 *
205 205 */
206 206
207 207 unsigned char lfrMode;
208 208 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
209 209
210 210 switch(lfrMode) {
211 211 case (LFR_MODE_STANDBY):
212 212 break;
213 213 case (LFR_MODE_NORMAL):
214 214 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
215 215 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_5 );
216 216 }
217 217 break;
218 218 case (LFR_MODE_BURST):
219 219 break;
220 220 case (LFR_MODE_SBM1):
221 221 break;
222 222 case (LFR_MODE_SBM2):
223 223 break;
224 224 }
225 225 }
226 226
227 227 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
228 228 {
229 229 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
230 230 *
231 231 * @param unused is the starting argument of the RTEMS task
232 232 *
233 233 * The following data packets are sent by this task:
234 234 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
235 235 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
236 236 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
237 237 *
238 238 */
239 239
240 240 rtems_event_set event_out;
241 241 rtems_id queue_id;
242 242
243 243 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
244 244 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
245 245 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
246 246
247 247 init_waveforms();
248 248
249 249 queue_id = get_pkts_queue_id();
250 250
251 251 BOOT_PRINTF("in WFRM ***\n")
252 252
253 253 while(1){
254 254 // wait for an RTEMS_EVENT
255 255 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
256 256 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
257 257 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
258 258
259 259 if (event_out == RTEMS_EVENT_MODE_NORMAL)
260 260 {
261 261 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
262 262 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
263 263 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
264 264 #ifdef GSA
265 265 waveform_picker_regs->status = waveform_picker_regs->status & 0xf888; // [1111 1000 1000 1000] f2, f1, f0 bits =0
266 266 #endif
267 267 }
268 268 else if (event_out == RTEMS_EVENT_MODE_SBM1)
269 269 {
270 270 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
271 271 send_waveform_SWF(wf_snap_f1_norm, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
272 272 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
273 273 #ifdef GSA
274 274 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2, f0 bits = 0
275 275 #endif
276 276 }
277 277 else if (event_out == RTEMS_EVENT_MODE_SBM2)
278 278 {
279 279 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
280 280 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
281 281 #ifdef GSA
282 282 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
283 283 #endif
284 284 }
285 285 else if (event_out == RTEMS_EVENT_MODE_SBM2_WFRM)
286 286 {
287 287 send_waveform_SWF(wf_snap_f2_norm, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
288 288 }
289 289 else
290 290 {
291 291 PRINTF("in WFRM *** unexpected event")
292 292 }
293 293
294 294
295 295 #ifdef GSA
296 296 // irq processed, reset the related register of the timer unit
297 297 gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl = gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl | 0x00000010;
298 298 // clear the interruption
299 299 LEON_Unmask_interrupt( IRQ_WF );
300 300 #endif
301 301 }
302 302 }
303 303
304 304 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
305 305 {
306 306 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
307 307 *
308 308 * @param unused is the starting argument of the RTEMS task
309 309 *
310 310 * The following data packet is sent by this task:
311 311 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
312 312 *
313 313 */
314 314
315 315 rtems_event_set event_out;
316 316 rtems_id queue_id;
317 317
318 318 init_header_continuous_wf_table( SID_NORM_CWF_F3, headerCWF_F3 );
319 319 init_header_continuous_wf3_light_table( headerCWF_F3_light );
320 320
321 321 queue_id = get_pkts_queue_id();
322 322
323 323 BOOT_PRINTF("in CWF3 ***\n")
324 324
325 325 while(1){
326 326 // wait for an RTEMS_EVENT
327 327 rtems_event_receive( RTEMS_EVENT_0,
328 328 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
329 329 PRINTF("send CWF F3 \n")
330 330 #ifdef GSA
331 331 #else
332 332 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
333 333 send_waveform_CWF3_light( wf_cont_f3_bis, headerCWF_F3_light, queue_id );
334 334 }
335 335 else {
336 336 send_waveform_CWF3_light( wf_cont_f3, headerCWF_F3_light, queue_id );
337 337 }
338 338 #endif
339 339 }
340 340 }
341 341
342 342 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
343 343 {
344 344 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
345 345 *
346 346 * @param unused is the starting argument of the RTEMS task
347 347 *
348 348 * The following data packet is sent by this function:
349 349 * - TM_LFR_SCIENCE_BURST_CWF_F2
350 350 * - TM_LFR_SCIENCE_SBM2_CWF_F2
351 351 *
352 352 */
353 353
354 354 rtems_event_set event_out;
355 355 rtems_id queue_id;
356 356
357 357 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
358 358 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
359 359
360 360 queue_id = get_pkts_queue_id();
361 361
362 362 BOOT_PRINTF("in CWF2 ***\n")
363 363
364 364 while(1){
365 365 // wait for an RTEMS_EVENT
366 366 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
367 367 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
368 368
369 369 if (event_out == RTEMS_EVENT_MODE_BURST)
370 370 {
371 371 // F2
372 372 #ifdef GSA
373 373 #else
374 374 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
375 375 send_waveform_CWF( wf_snap_f2_bis, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
376 376 }
377 377 else {
378 378 send_waveform_CWF( wf_snap_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
379 379 }
380 380 #endif
381 381 }
382 382
383 383 else if (event_out == RTEMS_EVENT_MODE_SBM2)
384 384 {
385 385 #ifdef GSA
386 386 #else
387 387 if (doubleSendCWF2 == 1)
388 388 {
389 389 doubleSendCWF2 = 0;
390 390 send_waveform_CWF( wf_snap_f2_norm, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
391 391 }
392 392 else if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
393 393 send_waveform_CWF( wf_snap_f2_bis, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
394 394 }
395 395 else {
396 396 send_waveform_CWF( wf_snap_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
397 397 }
398 398 param_local.local_sbm2_nb_cwf_sent ++;
399 399 #endif
400 400 }
401 401 else
402 402 {
403 403 PRINTF1("in CWF2 *** ERR mode = %d\n", lfrCurrentMode)
404 404 }
405 405 }
406 406 }
407 407
408 408 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
409 409 {
410 410 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
411 411 *
412 412 * @param unused is the starting argument of the RTEMS task
413 413 *
414 414 * The following data packet is sent by this function:
415 415 * - TM_LFR_SCIENCE_SBM1_CWF_F1
416 416 *
417 417 */
418 418
419 419 rtems_event_set event_out;
420 420 rtems_id queue_id;
421 421
422 422 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
423 423
424 424 queue_id = get_pkts_queue_id();
425 425
426 426 BOOT_PRINTF("in CWF1 ***\n")
427 427
428 428 while(1){
429 429 // wait for an RTEMS_EVENT
430 430 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
431 431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
432 432 if (event_out == RTEMS_EVENT_MODE_SBM1)
433 433 {
434 434 #ifdef GSA
435 435 #else
436 436 if (doubleSendCWF1 == 1)
437 437 {
438 438 doubleSendCWF1 = 0;
439 439 send_waveform_CWF( wf_snap_f1_norm, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
440 440 }
441 441 else if (waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1) {
442 442 send_waveform_CWF( wf_snap_f1_bis, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
443 443 }
444 444 else {
445 445 send_waveform_CWF( wf_snap_f1, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
446 446 }
447 447 param_local.local_sbm1_nb_cwf_sent ++;
448 448 #endif
449 449 }
450 450 else
451 451 {
452 452 PRINTF1("in CWF1 *** ERR mode = %d\n", lfrCurrentMode)
453 453 }
454 454 }
455 455 }
456 456
457 457 //******************
458 458 // general functions
459 459 void init_waveforms( void )
460 460 {
461 461 int i = 0;
462 462
463 463 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
464 464 {
465 465 //***
466 466 // F0
467 467 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
468 468 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
469 469 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
470 470
471 471 //***
472 472 // F1
473 473 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
474 474 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
475 475 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
476 476
477 477 //***
478 478 // F2
479 479 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
480 480 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
481 481 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
482 482
483 483 //***
484 484 // F3
485 485 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
486 486 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
487 487 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
488 488 }
489 489 }
490 490
491 491 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
492 492 {
493 493 unsigned char i;
494 494
495 495 for (i=0; i<7; i++)
496 496 {
497 497 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
498 498 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
499 499 headerSWF[ i ].reserved = DEFAULT_RESERVED;
500 500 headerSWF[ i ].userApplication = CCSDS_USER_APP;
501 501 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
502 502 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
503 503 if (i == 0)
504 504 {
505 505 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
506 506 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
507 507 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
508 508 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
509 509 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
510 510 }
511 511 else if (i == 6)
512 512 {
513 513 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
514 514 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_8 >> 8);
515 515 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_8 );
516 516 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
517 517 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
518 518 }
519 519 else
520 520 {
521 521 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
522 522 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
523 523 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
524 524 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
525 525 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
526 526 }
527 527 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
528 528 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
529 529 headerSWF[ i ].pktNr = i+1; // PKT_NR
530 530 // DATA FIELD HEADER
531 531 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
532 532 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
533 533 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
534 534 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
535 535 // AUXILIARY DATA HEADER
536 536 headerSWF[ i ].sid = sid;
537 537 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
538 538 headerSWF[ i ].time[0] = 0x00;
539 539 headerSWF[ i ].time[0] = 0x00;
540 540 headerSWF[ i ].time[0] = 0x00;
541 541 headerSWF[ i ].time[0] = 0x00;
542 542 headerSWF[ i ].time[0] = 0x00;
543 543 headerSWF[ i ].time[0] = 0x00;
544 544 }
545 545 return LFR_SUCCESSFUL;
546 546 }
547 547
548 548 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
549 549 {
550 550 unsigned int i;
551 551
552 552 for (i=0; i<7; i++)
553 553 {
554 554 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
555 555 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
556 556 headerCWF[ i ].reserved = DEFAULT_RESERVED;
557 557 headerCWF[ i ].userApplication = CCSDS_USER_APP;
558 558 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
559 559 {
560 560 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
561 561 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
562 562 }
563 563 else
564 564 {
565 565 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
566 566 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
567 567 }
568 568 if (i == 0)
569 569 {
570 570 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
571 571 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
572 572 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
573 573 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
574 574 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
575 575 }
576 576 else if (i == 6)
577 577 {
578 578 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
579 579 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
580 580 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
581 581 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
582 582 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
583 583 }
584 584 else
585 585 {
586 586 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
587 587 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
588 588 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
589 589 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
590 590 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
591 591 }
592 592 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
593 593 // PKT_CNT
594 594 // PKT_NR
595 595 // DATA FIELD HEADER
596 596 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
597 597 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
598 598 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
599 599 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
600 600 // AUXILIARY DATA HEADER
601 601 headerCWF[ i ].sid = sid;
602 602 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
603 603 headerCWF[ i ].time[0] = 0x00;
604 604 headerCWF[ i ].time[0] = 0x00;
605 605 headerCWF[ i ].time[0] = 0x00;
606 606 headerCWF[ i ].time[0] = 0x00;
607 607 headerCWF[ i ].time[0] = 0x00;
608 608 headerCWF[ i ].time[0] = 0x00;
609 609 }
610 610 return LFR_SUCCESSFUL;
611 611 }
612 612
613 613 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
614 614 {
615 615 unsigned int i;
616 616
617 617 for (i=0; i<7; i++)
618 618 {
619 619 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
620 620 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
621 621 headerCWF[ i ].reserved = DEFAULT_RESERVED;
622 622 headerCWF[ i ].userApplication = CCSDS_USER_APP;
623 623
624 624 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
625 625 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
626 626 if (i == 0)
627 627 {
628 628 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
629 629 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
630 630 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
631 631 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
632 632 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
633 633 }
634 634 else if (i == 6)
635 635 {
636 636 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
637 637 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
638 638 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
639 639 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
640 640 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
641 641 }
642 642 else
643 643 {
644 644 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
645 645 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
646 646 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
647 647 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
648 648 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
649 649 }
650 650 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
651 651 // DATA FIELD HEADER
652 652 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
653 653 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
654 654 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
655 655 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
656 656 // AUXILIARY DATA HEADER
657 657 headerCWF[ i ].sid = SID_NORM_CWF_F3;
658 658 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
659 659 headerCWF[ i ].time[0] = 0x00;
660 660 headerCWF[ i ].time[0] = 0x00;
661 661 headerCWF[ i ].time[0] = 0x00;
662 662 headerCWF[ i ].time[0] = 0x00;
663 663 headerCWF[ i ].time[0] = 0x00;
664 664 headerCWF[ i ].time[0] = 0x00;
665 665 }
666 666 return LFR_SUCCESSFUL;
667 667 }
668 668
669 669 void reset_waveforms( void )
670 670 {
671 671 int i = 0;
672 672
673 673 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
674 674 {
675 675 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x10002000;
676 676 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
677 677 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
678 678
679 679 //***
680 680 // F1
681 681 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x1000f000;
682 682 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0xf0001000;
683 683 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
684 684
685 685 //***
686 686 // F2
687 687 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x40008000;
688 688 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
689 689 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x10002000;
690 690
691 691 //***
692 692 // F3
693 693 /*wf_cont_f3[ i* NB_WORDS_SWF_BLK + 0 ] = build_value( i, i ); // v and 1
694 694 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 1 ] = build_value( i, i ); // e2 and b1
695 695 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 2 ] = build_value( i, i ); // b2 and b3*/
696 696 }
697 697 }
698 698
699 699 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
700 700 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
701 701 {
702 702 /** This function sends SWF CCSDS packets (F2, F1 or F0).
703 703 *
704 704 * @param waveform points to the buffer containing the data that will be send.
705 705 * @param sid is the source identifier of the data that will be sent.
706 706 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
707 707 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
708 708 * contain information to setup the transmission of the data packets.
709 709 *
710 710 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
711 711 *
712 712 */
713 713
714 714 unsigned int i;
715 715 int ret;
716 716 rtems_status_code status;
717 717 spw_ioctl_pkt_send spw_ioctl_send_SWF;
718 718
719 719 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
720 720 spw_ioctl_send_SWF.options = 0;
721 721
722 722 ret = LFR_DEFAULT;
723 723
724 724 for (i=0; i<7; i++) // send waveform
725 725 {
726 726 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
727 727 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
728 728 // BUILD THE DATA
729 729 if (i==6) {
730 730 spw_ioctl_send_SWF.dlen = 8 * NB_BYTES_SWF_BLK;
731 731 }
732 732 else {
733 733 spw_ioctl_send_SWF.dlen = 340 * NB_BYTES_SWF_BLK;
734 734 }
735 735 // SET PACKET TIME
736 736 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
737 737 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
738 738 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
739 739 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
740 740 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
741 741 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
742 742 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
743 743 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
744 744 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
745 745 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
746 746 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
747 747 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
748 748 // SEND PACKET
749 749 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
750 750 if (status != RTEMS_SUCCESSFUL) {
751 751 printf("%d-%d, ERR %d\n", sid, i, (int) status);
752 752 ret = LFR_DEFAULT;
753 753 }
754 754 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
755 755 }
756 756
757 757 return ret;
758 758 }
759 759
760 760 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
761 761 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
762 762 {
763 763 /** This function sends CWF CCSDS packets (F2, F1 or F0).
764 764 *
765 765 * @param waveform points to the buffer containing the data that will be send.
766 766 * @param sid is the source identifier of the data that will be sent.
767 767 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
768 768 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
769 769 * contain information to setup the transmission of the data packets.
770 770 *
771 771 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
772 772 *
773 773 */
774 774
775 775 unsigned int i;
776 776 int ret;
777 777 rtems_status_code status;
778 778 spw_ioctl_pkt_send spw_ioctl_send_CWF;
779 779
780 780 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
781 781 spw_ioctl_send_CWF.options = 0;
782 782
783 783 ret = LFR_DEFAULT;
784 784
785 785 for (i=0; i<7; i++) // send waveform
786 786 {
787 787 int coarseTime = 0x00;
788 788 int fineTime = 0x00;
789 789 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
790 790 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
791 791 // BUILD THE DATA
792 792 if (i==6) {
793 793 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
794 794 }
795 795 else {
796 796 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
797 797 }
798 798 // SET PACKET TIME
799 799 coarseTime = time_management_regs->coarse_time;
800 800 fineTime = time_management_regs->fine_time;
801 801 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
802 802 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
803 803 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
804 804 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
805 805 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
806 806 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
807 807 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
808 808 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
809 809 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
810 810 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
811 811 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
812 812 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
813 813 // SEND PACKET
814 814 if (sid == SID_NORM_CWF_F3)
815 815 {
816 816 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
817 817 if (status != RTEMS_SUCCESSFUL) {
818 818 printf("%d-%d, ERR %d\n", sid, i, (int) status);
819 819 ret = LFR_DEFAULT;
820 820 }
821 821 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
822 822 }
823 823 else
824 824 {
825 825 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
826 826 if (status != RTEMS_SUCCESSFUL) {
827 827 printf("%d-%d, ERR %d\n", sid, i, (int) status);
828 828 ret = LFR_DEFAULT;
829 829 }
830 830 }
831 831 }
832 832
833 833 return ret;
834 834 }
835 835
836 836 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
837 837 {
838 838 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
839 839 *
840 840 * @param waveform points to the buffer containing the data that will be send.
841 841 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
842 842 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
843 843 * contain information to setup the transmission of the data packets.
844 844 *
845 845 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
846 846 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
847 847 *
848 848 */
849 849
850 850 unsigned int i;
851 851 int ret;
852 852 rtems_status_code status;
853 853 spw_ioctl_pkt_send spw_ioctl_send_CWF;
854 854 char *sample;
855 855
856 856 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
857 857 spw_ioctl_send_CWF.options = 0;
858 858
859 859 ret = LFR_DEFAULT;
860 860
861 861 //**********************
862 862 // BUILD CWF3_light DATA
863 863 for ( i=0; i< 2048; i++)
864 864 {
865 865 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
866 866 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
867 867 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
868 868 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
869 869 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
870 870 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
871 871 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
872 872 }
873 873
874 874 //*********************
875 875 // SEND CWF3_light DATA
876 876
877 877 for (i=0; i<7; i++) // send waveform
878 878 {
879 879 int coarseTime = 0x00;
880 880 int fineTime = 0x00;
881 881 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
882 882 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
883 883 // BUILD THE DATA
884 884 if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
885 885 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
886 886 }
887 887 else {
888 888 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
889 889 }
890 890 // SET PACKET TIME
891 891 coarseTime = time_management_regs->coarse_time;
892 892 fineTime = time_management_regs->fine_time;
893 893 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
894 894 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
895 895 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
896 896 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
897 897 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
898 898 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
899 899 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
900 900 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
901 901 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
902 902 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
903 903 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
904 904 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
905 905 // SEND PACKET
906 906 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
907 907 if (status != RTEMS_SUCCESSFUL) {
908 908 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
909 909 ret = LFR_DEFAULT;
910 910 }
911 911 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
912 912 }
913 913
914 914 return ret;
915 915 }
916 916
917 917
918 918 //**************
919 919 // wfp registers
920 920 void set_wfp_data_shaping()
921 921 {
922 922 /** This function sets the data_shaping register of the waveform picker module.
923 923 *
924 924 * The value is read from one field of the parameter_dump_packet structure:\n
925 925 * bw_sp0_sp1_r0_r1
926 926 *
927 927 */
928 928
929 929 unsigned char data_shaping;
930 930
931 931 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
932 932 // waveform picker : [R1 R0 SP1 SP0 BW]
933 933
934 934 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
935 935
936 936 #ifdef GSA
937 937 #else
938 938 waveform_picker_regs->data_shaping =
939 939 ( (data_shaping & 0x10) >> 4 ) // BW
940 940 + ( (data_shaping & 0x08) >> 2 ) // SP0
941 941 + ( (data_shaping & 0x04) ) // SP1
942 942 + ( (data_shaping & 0x02) << 2 ) // R0
943 943 + ( (data_shaping & 0x01) << 4 ); // R1
944 944 #endif
945 945 }
946 946
947 947 char set_wfp_delta_snapshot()
948 948 {
949 949 /** This function sets the delta_snapshot register of the waveform picker module.
950 950 *
951 951 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
952 952 * - sy_lfr_n_swf_p[0]
953 953 * - sy_lfr_n_swf_p[1]
954 954 *
955 955 */
956 956
957 957 char ret;
958 958 unsigned int delta_snapshot;
959 959 unsigned int aux;
960 960
961 961 aux = 0;
962 962 ret = LFR_DEFAULT;
963 963
964 964 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
965 965 + parameter_dump_packet.sy_lfr_n_swf_p[1];
966 966
967 967 #ifdef GSA
968 968 #else
969 969 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
970 970 {
971 971 aux = MIN_DELTA_SNAPSHOT;
972 972 ret = LFR_DEFAULT;
973 973 }
974 974 else
975 975 {
976 976 aux = delta_snapshot ;
977 977 ret = LFR_SUCCESSFUL;
978 978 }
979 979 waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
980 980 #endif
981 981
982 982 return ret;
983 983 }
984 984
985 985 void set_wfp_burst_enable_register( unsigned char mode)
986 986 {
987 987 /** This function sets the waveform picker burst_enable register depending on the mode.
988 988 *
989 989 * @param mode is the LFR mode to launch.
990 990 *
991 991 * The burst bits shall be before the enable bits.
992 992 *
993 993 */
994 994
995 995 #ifdef GSA
996 996 #else
997 997 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
998 998 // the burst bits shall be set first, before the enable bits
999 999 switch(mode) {
1000 1000 case(LFR_MODE_NORMAL):
1001 1001 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enable
1002 1002 waveform_picker_regs->burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1003 1003 break;
1004 1004 case(LFR_MODE_BURST):
1005 1005 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1006 1006 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x04; // [0100] enable f2
1007 1007 break;
1008 1008 case(LFR_MODE_SBM1):
1009 1009 waveform_picker_regs->burst_enable = 0x20; // [0010 0000] f1 burst enabled
1010 1010 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1011 1011 break;
1012 1012 case(LFR_MODE_SBM2):
1013 1013 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1014 1014 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1015 1015 break;
1016 1016 default:
1017 1017 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1018 1018 break;
1019 1019 }
1020 1020 #endif
1021 1021 }
1022 1022
1023 1023 void reset_wfp_burst_enable()
1024 1024 {
1025 1025 /** This function resets the waveform picker burst_enable register.
1026 1026 *
1027 1027 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1028 1028 *
1029 1029 */
1030 1030
1031 1031 #ifdef GSA
1032 1032 #else
1033 1033 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1034 1034 #endif
1035 1035 }
1036 1036
1037 1037 void reset_wfp_status()
1038 1038 {
1039 1039 /** This function resets the waveform picker status register.
1040 1040 *
1041 1041 * All status bits are set to 0 [new_err full_err full].
1042 1042 *
1043 1043 */
1044 1044
1045 1045 #ifdef GSA
1046 1046 #else
1047 1047 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1048 1048 #endif
1049 1049 }
1050 1050
1051 1051 void reset_waveform_picker_regs()
1052 1052 {
1053 1053 /** This function resets the waveform picker module registers.
1054 1054 *
1055 1055 * The registers affected by this function are located at the following offset addresses:
1056 1056 * - 0x00 data_shaping
1057 1057 * - 0x04 burst_enable
1058 1058 * - 0x08 addr_data_f0
1059 1059 * - 0x0C addr_data_f1
1060 1060 * - 0x10 addr_data_f2
1061 1061 * - 0x14 addr_data_f3
1062 1062 * - 0x18 status
1063 1063 * - 0x1C delta_snapshot
1064 1064 * - 0x20 delta_f2_f1
1065 1065 * - 0x24 delta_f2_f0
1066 1066 * - 0x28 nb_burst
1067 1067 * - 0x2C nb_snapshot
1068 1068 *
1069 1069 */
1070 1070
1071 1071 #ifdef GSA
1072 1072 #else
1073 1073 reset_wfp_burst_enable();
1074 set_wfp_data_shaping();
1074 reset_wfp_status();
1075 // set buffer addresses
1075 1076 waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); //
1076 1077 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); //
1077 1078 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); //
1078 1079 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); //
1080 // set other parameters
1081 set_wfp_data_shaping();
1079 1082 set_wfp_delta_snapshot(); // time in seconds between two snapshots
1080 1083 waveform_picker_regs->delta_f2_f1 = 0xffff; // 0x16800 => 92160 (max 4 bytes)
1081 1084 waveform_picker_regs->delta_f2_f0 = 0x17c00; // 97 280 (max 5 bytes)
1082 1085 waveform_picker_regs->nb_burst_available = 0x180; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1083 1086 waveform_picker_regs->nb_snapshot_param = 0x7ff; // max 3 octets, 2048 - 1
1084 reset_wfp_status();
1085 1087 #endif
1086 1088 }
1087 1089
1090 void reset_waveform_picker_regs_alt()
1091 {
1092 waveform_picker_regs_alt->data_shaping = 0x01; // 0x00 00 *** R1 R0 SP1 SP0 BW
1093 waveform_picker_regs_alt->run_burst_enable = 0x00; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1094 waveform_picker_regs_alt->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1095 waveform_picker_regs_alt->addr_data_f1 = (int) (wf_snap_f1); // 0x0c
1096 waveform_picker_regs_alt->addr_data_f2 = (int) (wf_snap_f2); // 0x10
1097 waveform_picker_regs_alt->addr_data_f3 = (int) (wf_cont_f3); // 0x14
1098 waveform_picker_regs_alt->status = 0x00; // 0x18
1099 waveform_picker_regs_alt->delta_snapshot = 0x12800; // 0x1c
1100 waveform_picker_regs_alt->delta_f0 = 0x3f5; // 0x20 *** 1013
1101 waveform_picker_regs_alt->delta_f0_2 = 0x7; // 0x24 *** 7
1102 waveform_picker_regs_alt->delta_f1 = 0x3c0; // 0x28 *** 960
1103 waveform_picker_regs_alt->delta_f2 = 0x12200; // 0x2c *** 74240
1104 waveform_picker_regs_alt->nb_data_by_buffer = 0x1802; // 0x30 *** 2048 * 3 + 2
1105 waveform_picker_regs_alt->snapshot_param = 0x7ff; // 0x34 *** 2048 -1
1106 waveform_picker_regs_alt->start_date = 0x00;
1107 }
1108
1088 1109 //*****************
1089 1110 // local parameters
1090 1111 void set_local_sbm1_nb_cwf_max()
1091 1112 {
1092 1113 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1093 1114 *
1094 1115 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1095 1116 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.\n\n
1096 1117 * (2 snapshots of 2048 points per seconds) * (period of the NORM snashots) - 8 s (duration of the f2 snapshot)
1097 1118 *
1098 1119 */
1099 1120 param_local.local_sbm1_nb_cwf_max = 2 *
1100 1121 (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1101 1122 + parameter_dump_packet.sy_lfr_n_swf_p[1]) - 8; // 16 CWF1 parts during 1 SWF2
1102 1123 }
1103 1124
1104 1125 void set_local_sbm2_nb_cwf_max()
1105 1126 {
1106 1127 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1107 1128 *
1108 1129 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1109 1130 * This parameter is used to send CWF_F2 data as normal data when the SBM2 is active.\n\n
1110 1131 * (period of the NORM snashots) / (8 seconds per snapshot at f2 = 256 Hz)
1111 1132 *
1112 1133 */
1113 1134
1114 1135 param_local.local_sbm2_nb_cwf_max = (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1115 1136 + parameter_dump_packet.sy_lfr_n_swf_p[1]) / 8;
1116 1137 }
1117 1138
1118 1139 void set_local_nb_interrupt_f0_MAX()
1119 1140 {
1120 1141 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1121 1142 *
1122 1143 * This parameter is used for the SM validation only.\n
1123 1144 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1124 1145 * module before launching a basic processing.
1125 1146 *
1126 1147 */
1127 1148
1128 1149 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1129 1150 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1130 1151 }
1131 1152
1132 1153 void reset_local_sbm1_nb_cwf_sent()
1133 1154 {
1134 1155 /** This function resets the value of the sbm1_nb_cwf_sent local parameter.
1135 1156 *
1136 1157 * The sbm1_nb_cwf_sent parameter counts the number of CWF_F1 records that have been sent.\n
1137 1158 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.
1138 1159 *
1139 1160 */
1140 1161
1141 1162 param_local.local_sbm1_nb_cwf_sent = 0;
1142 1163 }
1143 1164
1144 1165 void reset_local_sbm2_nb_cwf_sent()
1145 1166 {
1146 1167 /** This function resets the value of the sbm2_nb_cwf_sent local parameter.
1147 1168 *
1148 1169 * The sbm2_nb_cwf_sent parameter counts the number of CWF_F2 records that have been sent.\n
1149 1170 * This parameter is used to send CWF_F2 data as normal data when the SBM2 mode is active.
1150 1171 *
1151 1172 */
1152 1173
1153 1174 param_local.local_sbm2_nb_cwf_sent = 0;
1154 1175 }
1155 1176
1156 1177 rtems_id get_pkts_queue_id( void )
1157 1178 {
1158 1179 rtems_id queue_id;
1159 1180 rtems_status_code status;
1160 1181 rtems_name queue_send_name;
1161 1182
1162 1183 queue_send_name = rtems_build_name( 'Q', '_', 'S', 'D' );
1163 1184
1164 1185 status = rtems_message_queue_ident( queue_send_name, 0, &queue_id );
1165 1186 if (status != RTEMS_SUCCESSFUL)
1166 1187 {
1167 1188 PRINTF1("in get_pkts_queue_id *** ERR %d\n", status)
1168 1189 }
1169 1190 return queue_id;
1170 1191 }
General Comments 0
You need to be logged in to leave comments. Login now