##// END OF EJS Templates
-O3 used for optimization...
paul -
r309:a80efd176164 R3_plus draft
parent child
Show More
@@ -1,14 +1,14
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (LFR_FSW)
3 3
4 4 if(NOT CMAKE_BUILD_TYPE)
5 5 set(CMAKE_BUILD_TYPE "Release" CACHE STRING
6 6 "Choose the type of build, options are: Debug Release RelWithDebInfo MinSizeRel." FORCE)
7 7 endif(NOT CMAKE_BUILD_TYPE)
8 8
9 9 set(LFR_BP_SRC ${CMAKE_CURRENT_SOURCE_DIR}/LFR_basic-parameters/basic_parameters.c)
10 10
11 11 SET(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/sparc/")
12 12
13 13 add_subdirectory(src)
14 add_subdirectory(timegen)
14 #add_subdirectory(timegen)
@@ -1,221 +1,221
1 1 #ifndef GSCMEMORY_HPP_
2 2 #define GSCMEMORY_HPP_
3 3
4 4 #ifndef LEON3
5 5 #define LEON3
6 6 #endif
7 7
8 8 #define REGS_ADDR_PLUGANDPLAY 0xFFFFF000
9 9 #define ASR16_REG_ADDRESS 0x90400040 // Ancillary State Register 16 = Register protection control register (FT only)
10 10
11 11 #define DEVICEID_LEON3 0x003
12 12 #define DEVICEID_LEON3FT 0x053
13 13 #define VENDORID_GAISLER 0x01
14 14
15 15 // CCR
16 16 #define POS_FT 19
17 17 //
18 18 #define POS_ITE 12
19 19 #define COUNTER_FIELD_ITE 0x00003000 // 0000 0000 0000 0000 0011 0000 0000 0000
20 20 #define COUNTER_MASK_ITE 0xffffcfff // 1111 1111 1111 1111 1100 1111 1111 1111
21 21 #define POS_IDE 10
22 22 #define COUNTER_FIELD_IDE 0x00000c00 // 0000 0000 0000 0000 0000 1100 0000 0000
23 23 #define COUNTER_MASK_IDE 0xfffff3ff // 1111 1111 1111 1111 1111 0011 1111 1111
24 24 //
25 25 #define POS_DTE 8
26 26 #define COUNTER_FIELD_DTE 0x00000300 // 0000 0000 0000 0000 0000 0011 0000 0000
27 27 #define COUNTER_MASK_DTE 0xfffffcff // 1111 1111 1111 1111 1111 1100 1111 1111
28 28 #define POS_DDE 6
29 29 #define COUNTER_FIELD_DDE 0x000000c0 // 0000 0000 0000 0000 0000 0000 1100 0000
30 30 #define COUNTER_MASK_DDE 0xffffff3f // 1111 1111 1111 1111 1111 1111 0011 1111
31 31
32 32 // ASR16
33 33 #define POS_FPFTID 30
34 34 #define POS_FPRF 27
35 35 #define POS_FDI 16 // FP RF protection enable/disable
36 36 #define POS_IUFTID 14
37 37 #define POS_IURF 11
38 38 #define POS_IDI 0 // IU RF protection enable/disable
39 39
40 40 #define COUNTER_FIELD_FPRF 0x38000000 // 0011 1000 0000 0000 0000 0000 0000 0000
41 41 #define COUNTER_MASK_FPRF 0xc7ffffff // 1100 0111 1111 1111 1111 1111 1111 1111
42 42
43 43 #define COUNTER_FIELD_IURF 0x00003800 // 0000 0000 0000 0000 0011 1000 0000 0000
44 44 #define COUNTER_MASK_IURF 0xffffc7ff // 1111 1111 1111 1111 1100 0111 1111 1111
45 45
46 46 volatile unsigned int *asr16Ptr = (volatile unsigned int *) ASR16_REG_ADDRESS;
47 47
48 48 static inline void flushCache()
49 49 {
50 50 /**
51 51 * Flush the data cache and the instruction cache.
52 52 *
53 53 * @param void
54 54 *
55 55 * @return void
56 56 */
57 57
58 58 asm("flush");
59 59 }
60 60
61 61 //***************************
62 62 // CCR Cache control register
63 63
64 64 static unsigned int CCR_getValue()
65 65 {
66 66 unsigned int cacheControlRegister = 0;
67 67 __asm__ __volatile__("lda [%%g0] 2, %0" : "=r"(cacheControlRegister) : );
68 68 return cacheControlRegister;
69 69 }
70 70
71 71 static void CCR_setValue(unsigned int cacheControlRegister)
72 72 {
73 73 __asm__ __volatile__("sta %0, [%%g0] 2" : : "r"(cacheControlRegister));
74 74 }
75 75
76 76 static void CCR_resetCacheControlRegister()
77 77 {
78 78 unsigned int cacheControlRegister;
79 79 cacheControlRegister = 0x00;
80 80 CCR_setValue(cacheControlRegister);
81 81 }
82 82
83 83 static void CCR_enableInstructionCache()
84 84 {
85 85 // [1:0] Instruction Cache state (ICS)
86 86 // Indicates the current data cache state according to the following: X0 = disabled, 01 = frozen, 11 = enabled.
87 87 unsigned int cacheControlRegister;
88 88 cacheControlRegister = CCR_getValue();
89 89 cacheControlRegister = (cacheControlRegister | 0x3);
90 90 CCR_setValue(cacheControlRegister);
91 91 }
92 92
93 93 static void CCR_enableDataCache()
94 94 {
95 95 // [3:2] Data Cache state (DCS)
96 96 // Indicates the current data cache state according to the following: X0 = disabled, 01 = frozen, 11 = enabled.
97 97 unsigned int cacheControlRegister;
98 98 cacheControlRegister = CCR_getValue();
99 99 cacheControlRegister = (cacheControlRegister | 0xc);
100 100 CCR_setValue(cacheControlRegister);
101 101 }
102 102
103 103 static void CCR_enableInstructionBurstFetch()
104 104 {
105 105 // [16] Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
106 106 unsigned int cacheControlRegister;
107 107 cacheControlRegister = CCR_getValue();
108 108 // set the bit IB to 1
109 109 cacheControlRegister = (cacheControlRegister | 0x10000);
110 110 CCR_setValue(cacheControlRegister);
111 111 }
112 112
113 113 void CCR_getInstructionAndDataErrorCounters( unsigned int* instructionErrorCounter, unsigned int* dataErrorCounter )
114 114 {
115 115 // [13:12] Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache.
116 116 // Only available if fault-tolerance is enabled (FT field in this register is non-zero).
117 117 // [11:10] Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache.
118 118 // Only available if fault-tolerance is enabled (FT field in this register is non-zero).
119 119
120 120 unsigned int cacheControlRegister;
121 121 unsigned int iTE;
122 122 unsigned int iDE;
123 123 unsigned int dTE;
124 124 unsigned int dDE;
125 125
126 126 cacheControlRegister = CCR_getValue();
127 127 iTE = (cacheControlRegister & COUNTER_FIELD_ITE) >> POS_ITE;
128 128 iDE = (cacheControlRegister & COUNTER_FIELD_IDE) >> POS_IDE;
129 129 dTE = (cacheControlRegister & COUNTER_FIELD_DTE) >> POS_DTE;
130 130 dDE = (cacheControlRegister & COUNTER_FIELD_DDE) >> POS_DDE;
131 131
132 132 *instructionErrorCounter = iTE + iDE;
133 133 *dataErrorCounter = dTE + dDE;
134 134
135 135 // reset counters
136 136 cacheControlRegister = cacheControlRegister
137 137 & COUNTER_FIELD_ITE
138 138 & COUNTER_FIELD_IDE
139 139 & COUNTER_FIELD_DTE
140 140 & COUNTER_FIELD_DDE;
141 141
142 142 CCR_setValue(cacheControlRegister);
143 143 }
144 144
145 145 //*******************************************
146 146 // ASR16 Register protection control register
147 147
148 148 static void ASR16_resetRegisterProtectionControlRegister()
149 149 {
150 150 *asr16Ptr = 0x00;
151 151 }
152 152
153 153 void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int* fprfErrorCounter, unsigned int* iurfErrorCounter)
154 154 {
155 155 /** This function is used to retrieve the integer unit register file error counter and the floating point unit
156 156 * register file error counter
157 157 *
158 158 * @return void
159 159 *
160 160 * [29:27] FP RF error counter - Number of detected parity errors in the FP register file.
161 161 * [13:11] IU RF error counter - Number of detected parity errors in the IU register file.
162 162 *
163 163 */
164 164
165 165 unsigned int asr16;
166 166
167 167 asr16 = *asr16Ptr;
168 168 *fprfErrorCounter = ( asr16 & COUNTER_FIELD_FPRF ) >> POS_FPRF;
169 169 *iurfErrorCounter = ( asr16 & COUNTER_FIELD_IURF ) >> POS_IURF;
170 170
171 171 // reset the counter to 0
172 172 asr16 = asr16
173 173 & COUNTER_MASK_FPRF
174 174 & COUNTER_FIELD_IURF;
175 175
176 176 *asr16Ptr = asr16;
177 177 }
178 178
179 179 static void faultTolerantScheme()
180 180 {
181 181 // [20:19] FT scheme (FT) - “00” = no FT, “01” = 4-bit checking implemented
182 182 unsigned int cacheControlRegister;
183 183 unsigned int *plugAndPlayRegister;
184 184 unsigned int vendorId;
185 185 unsigned int deviceId;
186 186
187 187 plugAndPlayRegister = (unsigned int*) REGS_ADDR_PLUGANDPLAY;
188 188 vendorId = ( (*plugAndPlayRegister) & 0xff000000 ) >> 24;
189 189 deviceId = ( (*plugAndPlayRegister) & 0x00fff000 ) >> 12;
190 190
191 191 cacheControlRegister = CCR_getValue();
192 192
193 193 if( (vendorId == VENDORID_GAISLER) & (deviceId ==DEVICEID_LEON3FT) )
194 194 {
195 195 PRINTF("in faultTolerantScheme *** Leon3FT detected\n");
196 196 PRINTF2(" *** vendorID = 0x%x, deviceId = 0x%x\n", vendorId, deviceId);
197 197 PRINTF1("ASR16 IU RF protection, bit 0 (IDI) is: 0x%x (0 => protection enabled)\n",
198 198 (*asr16Ptr >> POS_IDI) & 1);
199 199 PRINTF1("ASR16 FP RF protection, bit 16 (FDI) is: 0x%x (0 => protection enabled)\n",
200 200 (*asr16Ptr >> POS_FDI) & 1);
201 201 PRINTF1("ASR16 IU FT ID bits [15:14] is: 0x%x (2 => 8-bit parity without restart)\n",
202 202 (*asr16Ptr >> POS_IUFTID) & 0x3);
203 203 PRINTF1("ASR16 FP FT ID bits [31:30] is: 0x%x (1 => 4-bit parity with restart)\n",
204 204 (*asr16Ptr >> POS_FPFTID) & 0x03);
205 205 PRINTF1("CCR FT bits [20:19] are: 0x%x (1 => 4-bit parity with restart)\n",
206 206 (cacheControlRegister >> POS_FT) & 0x3 );
207 207
208 208 // CCR The FFT bits are just read, the FT scheme is set to “01” = 4-bit checking implemented by default
209 209
210 210 // ASR16 Ancillary State Register configuration (Register protection control register)
211 211 // IU RF protection is set by default, bit 0 IDI = 0
212 212 // FP RF protection is set by default, bit 16 FDI = 0
213 213 }
214 214 else
215 215 {
216 PRINTF("in faultTolerantScheme *** not a Leon3FT not detected\n");
216 PRINTF("in faultTolerantScheme *** Leon3FT not detected\n");
217 217 PRINTF2(" *** vendorID = 0x%x, deviceId = 0x%x\n", vendorId, deviceId);
218 218 }
219 219 }
220 220
221 221 #endif /* GSCMEMORY_HPP_ */
@@ -1,14 +1,14
1 1 # LOAD FSW USING LINK 1
2 2 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
3 3
4 dsu3plugin0.openFile("/home/pleroy/DEV/DEV_PLE/FSW-qt/bin/fsw")
4 dsu3plugin0.openFile("/home/pleroy/DEV/DEV_PLE/build-DEV_PLE-Desktop-Default/src/fsw")
5 5 #dsu3plugin0.openFile("/opt/LFR/LFR-FSW/2.0.2.3/fsw")
6 6 dsu3plugin0.loadFile()
7 7
8 8 dsu3plugin0.run()
9 9
10 10 # START SENDING TIMECODES AT 1 Hz
11 11 #SpwPlugin0.StarDundeeStartTimecodes( 1 )
12 12
13 13 # it is possible to change the time code frequency
14 14 #RMAPPlugin0.changeTimecodeFrequency(2)
@@ -1,8 +1,9
1 1 set(CMAKE_SYSTEM_NAME rtems)
2 2
3 3 set(CMAKE_C_COMPILER /opt/rtems-4.10/bin/sparc-rtems-gcc)
4 4 set(CMAKE_CXX_COMPILER /opt/rtems-4.10/bin/sparc-rtems-g++)
5 5 set(CMAKE_LINKER /opt/rtems-4.10/bin/sparc-rtems-g++)
6 6 SET(CMAKE_EXE_LINKER_FLAGS "-static")
7 set(CMAKE_C_FLAGS_RELEASE "-O3")
7 8 set(CMAKE_C_LINK_EXECUTABLE "<CMAKE_LINKER> <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
8 9 include_directories("/opt/rtems-4.10/sparc-rtems/leon3/lib/include")
@@ -1,105 +1,105
1 1 cmake_minimum_required (VERSION 2.6)
2 project (FSW)
2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5
6 6 include_directories("../header"
7 7 "../header/lfr_common_headers"
8 8 "../header/processing"
9 9 "../LFR_basic-parameters"
10 10 "../src")
11 11
12 12 set(SOURCES wf_handler.c
13 13 tc_handler.c
14 14 fsw_misc.c
15 15 fsw_init.c
16 16 fsw_globals.c
17 17 fsw_spacewire.c
18 18 tc_load_dump_parameters.c
19 19 tm_lfr_tc_exe.c
20 20 tc_acceptance.c
21 21 processing/fsw_processing.c
22 22 processing/avf0_prc0.c
23 23 processing/avf1_prc1.c
24 24 processing/avf2_prc2.c
25 25 lfr_cpu_usage_report.c
26 26 ${LFR_BP_SRC}
27 27 ../header/wf_handler.h
28 28 ../header/tc_handler.h
29 29 ../header/grlib_regs.h
30 30 ../header/fsw_misc.h
31 31 ../header/fsw_init.h
32 32 ../header/fsw_spacewire.h
33 33 ../header/tc_load_dump_parameters.h
34 34 ../header/tm_lfr_tc_exe.h
35 35 ../header/tc_acceptance.h
36 36 ../header/processing/fsw_processing.h
37 37 ../header/processing/avf0_prc0.h
38 38 ../header/processing/avf1_prc1.h
39 39 ../header/processing/avf2_prc2.h
40 40 ../header/fsw_params_wf_handler.h
41 41 ../header/lfr_cpu_usage_report.h
42 42 ../header/lfr_common_headers/ccsds_types.h
43 43 ../header/lfr_common_headers/fsw_params.h
44 44 ../header/lfr_common_headers/fsw_params_nb_bytes.h
45 45 ../header/lfr_common_headers/fsw_params_processing.h
46 46 ../header/lfr_common_headers/tm_byte_positions.h
47 47 ../LFR_basic-parameters/basic_parameters.h
48 48 ../LFR_basic-parameters/basic_parameters_params.h
49 49 ../header/GscMemoryLPP.hpp
50 50 )
51 51
52 52
53 53 option(FSW_verbose "Enable verbose LFR" ON)
54 54 option(FSW_boot_messages "Enable LFR boot messages" ON)
55 55 option(FSW_debug_messages "Enable LFR debug messages" ON)
56 56 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
57 57 option(FSW_stack_report "Enable LFR stack report" OFF)
58 58 option(FSW_vhdl_dev "?" OFF)
59 59 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
60 60 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
61 61 option(FSW_debug_tch "?" OFF)
62 62
63 63 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
64 64 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
65 65 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
66 66 set(SW_VERSION_N4 "4" CACHE STRING "Choose N4 FSW Version." FORCE)
67 67
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 add_executable(FSW ${SOURCES})
105 add_executable(fsw ${SOURCES})
@@ -1,939 +1,938
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link]
39 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 40 #ifdef PRINT_STACK_REPORT
41 41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 42 #endif
43 43
44 44 #include <rtems/confdefs.h>
45 45
46 46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 47 #ifdef RTEMS_DRVMGR_STARTUP
48 48 #ifdef LEON3
49 49 /* Add Timer and UART Driver */
50 50
51 51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 53 #endif
54 54
55 55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 57 #endif
58 58
59 59 #endif
60 60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 61
62 62 #include <drvmgr/drvmgr_confdefs.h>
63 63 #endif
64 64
65 65 #include "fsw_init.h"
66 66 #include "fsw_config.c"
67 67 #include "GscMemoryLPP.hpp"
68 68
69 69 void initCache()
70 70 {
71 71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 72 // These should only be read and written using 32-bit LDA/STA instructions.
73 73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 74 // The table below shows the register addresses:
75 75 // 0x00 Cache control register
76 76 // 0x04 Reserved
77 77 // 0x08 Instruction cache configuration register
78 78 // 0x0C Data cache configuration register
79 79
80 80 // Cache Control Register Leon3 / Leon3FT
81 81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 82 // RFT PS TB DS FD FI FT ST IB
83 83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 85
86 86 unsigned int cacheControlRegister;
87 87
88 88 CCR_resetCacheControlRegister();
89 89 ASR16_resetRegisterProtectionControlRegister();
90 90
91 91 cacheControlRegister = CCR_getValue();
92 92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 94
95 95 CCR_enableInstructionCache(); // ICS bits
96 96 CCR_enableDataCache(); // DCS bits
97 97 CCR_enableInstructionBurstFetch(); // IB bit
98 98
99 99 faultTolerantScheme();
100 100
101 101 cacheControlRegister = CCR_getValue();
102 102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 104
105 105 PRINTF("\n");
106 106 }
107 107
108 108 rtems_task Init( rtems_task_argument ignored )
109 109 {
110 110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 111 *
112 112 * @param unused is the starting argument of the RTEMS task
113 113 *
114 114 * The INIT task create and run all other RTEMS tasks.
115 115 *
116 116 */
117 117
118 118 //***********
119 119 // INIT CACHE
120 120
121 121 unsigned char *vhdlVersion;
122 122
123 123 reset_lfr();
124 124
125 125 reset_local_time();
126 126
127 127 rtems_cpu_usage_reset();
128 128
129 129 rtems_status_code status;
130 130 rtems_status_code status_spw;
131 131 rtems_isr_entry old_isr_handler;
132 132
133 133 // UART settings
134 134 enable_apbuart_transmitter();
135 135 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
136 136
137 137 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
138 138
139 139
140 140 PRINTF("\n\n\n\n\n")
141 141
142 142 initCache();
143 143
144 144 PRINTF("*************************\n")
145 145 PRINTF("** LFR Flight Software **\n")
146 146
147 147 PRINTF1("** %d-", SW_VERSION_N1)
148 148 PRINTF1("%d-" , SW_VERSION_N2)
149 149 PRINTF1("%d-" , SW_VERSION_N3)
150 150 PRINTF1("%d **\n", SW_VERSION_N4)
151 151
152 152 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
153 153 PRINTF("** VHDL **\n")
154 154 PRINTF1("** %d.", vhdlVersion[1])
155 155 PRINTF1("%d." , vhdlVersion[2])
156 156 PRINTF1("%d **\n", vhdlVersion[3])
157 157 PRINTF("*************************\n")
158 158 PRINTF("\n\n")
159 159
160 160 init_parameter_dump();
161 161 init_kcoefficients_dump();
162 162 init_local_mode_parameters();
163 163 init_housekeeping_parameters();
164 164 init_k_coefficients_prc0();
165 165 init_k_coefficients_prc1();
166 166 init_k_coefficients_prc2();
167 167 pa_bia_status_info = 0x00;
168 168 cp_rpw_sc_rw_f_flags = 0x00;
169 169 cp_rpw_sc_rw1_f1 = 0.0;
170 170 cp_rpw_sc_rw1_f2 = 0.0;
171 171 cp_rpw_sc_rw2_f1 = 0.0;
172 172 cp_rpw_sc_rw2_f2 = 0.0;
173 173 cp_rpw_sc_rw3_f1 = 0.0;
174 174 cp_rpw_sc_rw3_f2 = 0.0;
175 175 cp_rpw_sc_rw4_f1 = 0.0;
176 176 cp_rpw_sc_rw4_f2 = 0.0;
177 177 // initialize filtering parameters
178 178 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
179 179 filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
180 180 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
181 181 filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
182 182 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
183 183 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
184 184 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
185 185
186 186 // waveform picker initialization
187 187 WFP_init_rings();
188 188 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
189 189 WFP_reset_current_ring_nodes();
190 190 reset_waveform_picker_regs();
191 191
192 192 // spectral matrices initialization
193 193 SM_init_rings(); // initialize spectral matrices rings
194 194 SM_reset_current_ring_nodes();
195 195 reset_spectral_matrix_regs();
196 196
197 197 // configure calibration
198 198 configureCalibration( false ); // true means interleaved mode, false is for normal mode
199 199
200 200 updateLFRCurrentMode( LFR_MODE_STANDBY );
201 201
202 202 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
203 203
204 204 create_names(); // create all names
205 205
206 206 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
207 207 if (status != RTEMS_SUCCESSFUL)
208 208 {
209 209 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
210 210 }
211 211
212 212 status = create_message_queues(); // create message queues
213 213 if (status != RTEMS_SUCCESSFUL)
214 214 {
215 215 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
216 216 }
217 217
218 218 status = create_all_tasks(); // create all tasks
219 219 if (status != RTEMS_SUCCESSFUL)
220 220 {
221 221 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
222 222 }
223 223
224 224 // **************************
225 225 // <SPACEWIRE INITIALIZATION>
226 226 status_spw = spacewire_open_link(); // (1) open the link
227 227 if ( status_spw != RTEMS_SUCCESSFUL )
228 228 {
229 229 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
230 230 }
231 231
232 232 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
233 233 {
234 234 status_spw = spacewire_configure_link( fdSPW );
235 235 if ( status_spw != RTEMS_SUCCESSFUL )
236 236 {
237 237 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
238 238 }
239 239 }
240 240
241 241 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
242 242 {
243 243 status_spw = spacewire_start_link( fdSPW );
244 244 if ( status_spw != RTEMS_SUCCESSFUL )
245 245 {
246 246 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
247 247 }
248 248 }
249 249 // </SPACEWIRE INITIALIZATION>
250 250 // ***************************
251 251
252 252 status = start_all_tasks(); // start all tasks
253 253 if (status != RTEMS_SUCCESSFUL)
254 254 {
255 255 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
256 256 }
257 257
258 258 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
259 259 status = start_recv_send_tasks();
260 260 if ( status != RTEMS_SUCCESSFUL )
261 261 {
262 262 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
263 263 }
264 264
265 265 // suspend science tasks, they will be restarted later depending on the mode
266 266 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
267 267 if (status != RTEMS_SUCCESSFUL)
268 268 {
269 269 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
270 270 }
271 271
272 272 // configure IRQ handling for the waveform picker unit
273 273 status = rtems_interrupt_catch( waveforms_isr,
274 274 IRQ_SPARC_WAVEFORM_PICKER,
275 275 &old_isr_handler) ;
276 276 // configure IRQ handling for the spectral matrices unit
277 277 status = rtems_interrupt_catch( spectral_matrices_isr,
278 278 IRQ_SPARC_SPECTRAL_MATRIX,
279 279 &old_isr_handler) ;
280 280
281 281 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
282 282 if ( status_spw != RTEMS_SUCCESSFUL )
283 283 {
284 284 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
285 285 if ( status != RTEMS_SUCCESSFUL ) {
286 286 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
287 287 }
288 288 }
289 289
290 290 BOOT_PRINTF("delete INIT\n")
291 291
292 292 set_hk_lfr_sc_potential_flag( true );
293 293
294 294 // start the timer to detect a missing spacewire timecode
295 295 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
296 296 // if a tickout is generated, the timer is restarted
297 297 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
298 298
299 299 grspw_timecode_callback = &timecode_irq_handler;
300 300
301 301 status = rtems_task_delete(RTEMS_SELF);
302 302
303 303 }
304 304
305 305 void init_local_mode_parameters( void )
306 306 {
307 307 /** This function initialize the param_local global variable with default values.
308 308 *
309 309 */
310 310
311 311 unsigned int i;
312 312
313 313 // LOCAL PARAMETERS
314 314
315 315 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
316 316 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
317 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
318 317
319 318 // init sequence counters
320 319
321 320 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
322 321 {
323 322 sequenceCounters_TC_EXE[i] = 0x00;
324 323 sequenceCounters_TM_DUMP[i] = 0x00;
325 324 }
326 325 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
327 326 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
328 327 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
329 328 }
330 329
331 330 void reset_local_time( void )
332 331 {
333 332 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
334 333 }
335 334
336 335 void create_names( void ) // create all names for tasks and queues
337 336 {
338 337 /** This function creates all RTEMS names used in the software for tasks and queues.
339 338 *
340 339 * @return RTEMS directive status codes:
341 340 * - RTEMS_SUCCESSFUL - successful completion
342 341 *
343 342 */
344 343
345 344 // task names
346 345 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
347 346 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
348 347 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
349 348 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
350 349 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
351 350 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
352 351 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
353 352 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
354 353 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
355 354 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
356 355 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
357 356 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
358 357 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
359 358 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
360 359 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
361 360 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
362 361 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
363 362 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
364 363 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
365 364
366 365 // rate monotonic period names
367 366 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
368 367
369 368 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
370 369 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
371 370 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
372 371 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
373 372 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
374 373
375 374 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
376 375 }
377 376
378 377 int create_all_tasks( void ) // create all tasks which run in the software
379 378 {
380 379 /** This function creates all RTEMS tasks used in the software.
381 380 *
382 381 * @return RTEMS directive status codes:
383 382 * - RTEMS_SUCCESSFUL - task created successfully
384 383 * - RTEMS_INVALID_ADDRESS - id is NULL
385 384 * - RTEMS_INVALID_NAME - invalid task name
386 385 * - RTEMS_INVALID_PRIORITY - invalid task priority
387 386 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
388 387 * - RTEMS_TOO_MANY - too many tasks created
389 388 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
390 389 * - RTEMS_TOO_MANY - too many global objects
391 390 *
392 391 */
393 392
394 393 rtems_status_code status;
395 394
396 395 //**********
397 396 // SPACEWIRE
398 397 // RECV
399 398 status = rtems_task_create(
400 399 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
401 400 RTEMS_DEFAULT_MODES,
402 401 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
403 402 );
404 403 if (status == RTEMS_SUCCESSFUL) // SEND
405 404 {
406 405 status = rtems_task_create(
407 406 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
408 407 RTEMS_DEFAULT_MODES,
409 408 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
410 409 );
411 410 }
412 411 if (status == RTEMS_SUCCESSFUL) // LINK
413 412 {
414 413 status = rtems_task_create(
415 414 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
416 415 RTEMS_DEFAULT_MODES,
417 416 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
418 417 );
419 418 }
420 419 if (status == RTEMS_SUCCESSFUL) // ACTN
421 420 {
422 421 status = rtems_task_create(
423 422 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
424 423 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
425 424 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
426 425 );
427 426 }
428 427 if (status == RTEMS_SUCCESSFUL) // SPIQ
429 428 {
430 429 status = rtems_task_create(
431 430 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
432 431 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
433 432 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
434 433 );
435 434 }
436 435
437 436 //******************
438 437 // SPECTRAL MATRICES
439 438 if (status == RTEMS_SUCCESSFUL) // AVF0
440 439 {
441 440 status = rtems_task_create(
442 441 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
443 442 RTEMS_DEFAULT_MODES,
444 443 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
445 444 );
446 445 }
447 446 if (status == RTEMS_SUCCESSFUL) // PRC0
448 447 {
449 448 status = rtems_task_create(
450 449 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
451 450 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
452 451 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
453 452 );
454 453 }
455 454 if (status == RTEMS_SUCCESSFUL) // AVF1
456 455 {
457 456 status = rtems_task_create(
458 457 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
459 458 RTEMS_DEFAULT_MODES,
460 459 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
461 460 );
462 461 }
463 462 if (status == RTEMS_SUCCESSFUL) // PRC1
464 463 {
465 464 status = rtems_task_create(
466 465 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
467 466 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
468 467 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
469 468 );
470 469 }
471 470 if (status == RTEMS_SUCCESSFUL) // AVF2
472 471 {
473 472 status = rtems_task_create(
474 473 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
475 474 RTEMS_DEFAULT_MODES,
476 475 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
477 476 );
478 477 }
479 478 if (status == RTEMS_SUCCESSFUL) // PRC2
480 479 {
481 480 status = rtems_task_create(
482 481 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
483 482 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
484 483 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
485 484 );
486 485 }
487 486
488 487 //****************
489 488 // WAVEFORM PICKER
490 489 if (status == RTEMS_SUCCESSFUL) // WFRM
491 490 {
492 491 status = rtems_task_create(
493 492 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
494 493 RTEMS_DEFAULT_MODES,
495 494 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
496 495 );
497 496 }
498 497 if (status == RTEMS_SUCCESSFUL) // CWF3
499 498 {
500 499 status = rtems_task_create(
501 500 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
502 501 RTEMS_DEFAULT_MODES,
503 502 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
504 503 );
505 504 }
506 505 if (status == RTEMS_SUCCESSFUL) // CWF2
507 506 {
508 507 status = rtems_task_create(
509 508 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
510 509 RTEMS_DEFAULT_MODES,
511 510 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
512 511 );
513 512 }
514 513 if (status == RTEMS_SUCCESSFUL) // CWF1
515 514 {
516 515 status = rtems_task_create(
517 516 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
518 517 RTEMS_DEFAULT_MODES,
519 518 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
520 519 );
521 520 }
522 521 if (status == RTEMS_SUCCESSFUL) // SWBD
523 522 {
524 523 status = rtems_task_create(
525 524 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
526 525 RTEMS_DEFAULT_MODES,
527 526 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
528 527 );
529 528 }
530 529
531 530 //*****
532 531 // MISC
533 532 if (status == RTEMS_SUCCESSFUL) // LOAD
534 533 {
535 534 status = rtems_task_create(
536 535 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
537 536 RTEMS_DEFAULT_MODES,
538 537 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
539 538 );
540 539 }
541 540 if (status == RTEMS_SUCCESSFUL) // DUMB
542 541 {
543 542 status = rtems_task_create(
544 543 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
545 544 RTEMS_DEFAULT_MODES,
546 545 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
547 546 );
548 547 }
549 548 if (status == RTEMS_SUCCESSFUL) // HOUS
550 549 {
551 550 status = rtems_task_create(
552 551 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
553 552 RTEMS_DEFAULT_MODES,
554 553 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
555 554 );
556 555 }
557 556
558 557 return status;
559 558 }
560 559
561 560 int start_recv_send_tasks( void )
562 561 {
563 562 rtems_status_code status;
564 563
565 564 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
566 565 if (status!=RTEMS_SUCCESSFUL) {
567 566 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
568 567 }
569 568
570 569 if (status == RTEMS_SUCCESSFUL) // SEND
571 570 {
572 571 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
573 572 if (status!=RTEMS_SUCCESSFUL) {
574 573 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
575 574 }
576 575 }
577 576
578 577 return status;
579 578 }
580 579
581 580 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
582 581 {
583 582 /** This function starts all RTEMS tasks used in the software.
584 583 *
585 584 * @return RTEMS directive status codes:
586 585 * - RTEMS_SUCCESSFUL - ask started successfully
587 586 * - RTEMS_INVALID_ADDRESS - invalid task entry point
588 587 * - RTEMS_INVALID_ID - invalid task id
589 588 * - RTEMS_INCORRECT_STATE - task not in the dormant state
590 589 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
591 590 *
592 591 */
593 592 // starts all the tasks fot eh flight software
594 593
595 594 rtems_status_code status;
596 595
597 596 //**********
598 597 // SPACEWIRE
599 598 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
600 599 if (status!=RTEMS_SUCCESSFUL) {
601 600 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
602 601 }
603 602
604 603 if (status == RTEMS_SUCCESSFUL) // LINK
605 604 {
606 605 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
607 606 if (status!=RTEMS_SUCCESSFUL) {
608 607 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
609 608 }
610 609 }
611 610
612 611 if (status == RTEMS_SUCCESSFUL) // ACTN
613 612 {
614 613 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
615 614 if (status!=RTEMS_SUCCESSFUL) {
616 615 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
617 616 }
618 617 }
619 618
620 619 //******************
621 620 // SPECTRAL MATRICES
622 621 if (status == RTEMS_SUCCESSFUL) // AVF0
623 622 {
624 623 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
625 624 if (status!=RTEMS_SUCCESSFUL) {
626 625 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
627 626 }
628 627 }
629 628 if (status == RTEMS_SUCCESSFUL) // PRC0
630 629 {
631 630 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
632 631 if (status!=RTEMS_SUCCESSFUL) {
633 632 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
634 633 }
635 634 }
636 635 if (status == RTEMS_SUCCESSFUL) // AVF1
637 636 {
638 637 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
639 638 if (status!=RTEMS_SUCCESSFUL) {
640 639 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
641 640 }
642 641 }
643 642 if (status == RTEMS_SUCCESSFUL) // PRC1
644 643 {
645 644 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
646 645 if (status!=RTEMS_SUCCESSFUL) {
647 646 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
648 647 }
649 648 }
650 649 if (status == RTEMS_SUCCESSFUL) // AVF2
651 650 {
652 651 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
653 652 if (status!=RTEMS_SUCCESSFUL) {
654 653 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
655 654 }
656 655 }
657 656 if (status == RTEMS_SUCCESSFUL) // PRC2
658 657 {
659 658 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
660 659 if (status!=RTEMS_SUCCESSFUL) {
661 660 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
662 661 }
663 662 }
664 663
665 664 //****************
666 665 // WAVEFORM PICKER
667 666 if (status == RTEMS_SUCCESSFUL) // WFRM
668 667 {
669 668 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
670 669 if (status!=RTEMS_SUCCESSFUL) {
671 670 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
672 671 }
673 672 }
674 673 if (status == RTEMS_SUCCESSFUL) // CWF3
675 674 {
676 675 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
677 676 if (status!=RTEMS_SUCCESSFUL) {
678 677 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
679 678 }
680 679 }
681 680 if (status == RTEMS_SUCCESSFUL) // CWF2
682 681 {
683 682 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
684 683 if (status!=RTEMS_SUCCESSFUL) {
685 684 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
686 685 }
687 686 }
688 687 if (status == RTEMS_SUCCESSFUL) // CWF1
689 688 {
690 689 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
691 690 if (status!=RTEMS_SUCCESSFUL) {
692 691 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
693 692 }
694 693 }
695 694 if (status == RTEMS_SUCCESSFUL) // SWBD
696 695 {
697 696 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
698 697 if (status!=RTEMS_SUCCESSFUL) {
699 698 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
700 699 }
701 700 }
702 701
703 702 //*****
704 703 // MISC
705 704 if (status == RTEMS_SUCCESSFUL) // HOUS
706 705 {
707 706 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
708 707 if (status!=RTEMS_SUCCESSFUL) {
709 708 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
710 709 }
711 710 }
712 711 if (status == RTEMS_SUCCESSFUL) // DUMB
713 712 {
714 713 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
715 714 if (status!=RTEMS_SUCCESSFUL) {
716 715 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
717 716 }
718 717 }
719 718 if (status == RTEMS_SUCCESSFUL) // LOAD
720 719 {
721 720 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
722 721 if (status!=RTEMS_SUCCESSFUL) {
723 722 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
724 723 }
725 724 }
726 725
727 726 return status;
728 727 }
729 728
730 729 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
731 730 {
732 731 rtems_status_code status_recv;
733 732 rtems_status_code status_send;
734 733 rtems_status_code status_q_p0;
735 734 rtems_status_code status_q_p1;
736 735 rtems_status_code status_q_p2;
737 736 rtems_status_code ret;
738 737 rtems_id queue_id;
739 738
740 739 //****************************************
741 740 // create the queue for handling valid TCs
742 741 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
743 742 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
744 743 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
745 744 if ( status_recv != RTEMS_SUCCESSFUL ) {
746 745 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
747 746 }
748 747
749 748 //************************************************
750 749 // create the queue for handling TM packet sending
751 750 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
752 751 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
753 752 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
754 753 if ( status_send != RTEMS_SUCCESSFUL ) {
755 754 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
756 755 }
757 756
758 757 //*****************************************************************************
759 758 // create the queue for handling averaged spectral matrices for processing @ f0
760 759 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
761 760 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
762 761 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
763 762 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
764 763 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
765 764 }
766 765
767 766 //*****************************************************************************
768 767 // create the queue for handling averaged spectral matrices for processing @ f1
769 768 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
770 769 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
771 770 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
772 771 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
773 772 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
774 773 }
775 774
776 775 //*****************************************************************************
777 776 // create the queue for handling averaged spectral matrices for processing @ f2
778 777 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
779 778 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
780 779 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
781 780 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
782 781 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
783 782 }
784 783
785 784 if ( status_recv != RTEMS_SUCCESSFUL )
786 785 {
787 786 ret = status_recv;
788 787 }
789 788 else if( status_send != RTEMS_SUCCESSFUL )
790 789 {
791 790 ret = status_send;
792 791 }
793 792 else if( status_q_p0 != RTEMS_SUCCESSFUL )
794 793 {
795 794 ret = status_q_p0;
796 795 }
797 796 else if( status_q_p1 != RTEMS_SUCCESSFUL )
798 797 {
799 798 ret = status_q_p1;
800 799 }
801 800 else
802 801 {
803 802 ret = status_q_p2;
804 803 }
805 804
806 805 return ret;
807 806 }
808 807
809 808 rtems_status_code create_timecode_timer( void )
810 809 {
811 810 rtems_status_code status;
812 811
813 812 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
814 813
815 814 if ( status != RTEMS_SUCCESSFUL )
816 815 {
817 816 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
818 817 }
819 818 else
820 819 {
821 820 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
822 821 }
823 822
824 823 return status;
825 824 }
826 825
827 826 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
828 827 {
829 828 rtems_status_code status;
830 829 rtems_name queue_name;
831 830
832 831 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
833 832
834 833 status = rtems_message_queue_ident( queue_name, 0, queue_id );
835 834
836 835 return status;
837 836 }
838 837
839 838 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
840 839 {
841 840 rtems_status_code status;
842 841 rtems_name queue_name;
843 842
844 843 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
845 844
846 845 status = rtems_message_queue_ident( queue_name, 0, queue_id );
847 846
848 847 return status;
849 848 }
850 849
851 850 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
852 851 {
853 852 rtems_status_code status;
854 853 rtems_name queue_name;
855 854
856 855 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
857 856
858 857 status = rtems_message_queue_ident( queue_name, 0, queue_id );
859 858
860 859 return status;
861 860 }
862 861
863 862 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
864 863 {
865 864 rtems_status_code status;
866 865 rtems_name queue_name;
867 866
868 867 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
869 868
870 869 status = rtems_message_queue_ident( queue_name, 0, queue_id );
871 870
872 871 return status;
873 872 }
874 873
875 874 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
876 875 {
877 876 rtems_status_code status;
878 877 rtems_name queue_name;
879 878
880 879 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
881 880
882 881 status = rtems_message_queue_ident( queue_name, 0, queue_id );
883 882
884 883 return status;
885 884 }
886 885
887 886 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
888 887 {
889 888 u_int32_t count;
890 889 rtems_status_code status;
891 890
892 891 status = rtems_message_queue_get_number_pending( queue_id, &count );
893 892
894 893 count = count + 1;
895 894
896 895 if (status != RTEMS_SUCCESSFUL)
897 896 {
898 897 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
899 898 }
900 899 else
901 900 {
902 901 if (count > *fifo_size_max)
903 902 {
904 903 *fifo_size_max = count;
905 904 }
906 905 }
907 906 }
908 907
909 908 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
910 909 {
911 910 unsigned char i;
912 911
913 912 //***************
914 913 // BUFFER ADDRESS
915 914 for(i=0; i<nbNodes; i++)
916 915 {
917 916 ring[i].coarseTime = 0xffffffff;
918 917 ring[i].fineTime = 0xffffffff;
919 918 ring[i].sid = 0x00;
920 919 ring[i].status = 0x00;
921 920 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
922 921 }
923 922
924 923 //*****
925 924 // NEXT
926 925 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
927 926 for(i=0; i<nbNodes-1; i++)
928 927 {
929 928 ring[i].next = (ring_node*) &ring[ i + 1 ];
930 929 }
931 930
932 931 //*********
933 932 // PREVIOUS
934 933 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
935 934 for(i=1; i<nbNodes; i++)
936 935 {
937 936 ring[i].previous = (ring_node*) &ring[ i - 1 ];
938 937 }
939 938 }
@@ -1,1628 +1,1628
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 19 ring_node kcoefficient_node_1;
20 20 ring_node kcoefficient_node_2;
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 193 if (aux > FLOAT_EQUAL_ZERO)
194 194 {
195 195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 196 flag = LFR_DEFAULT;
197 197 }
198 198 }
199 199
200 200 // SET THE PARAMETERS
201 201 if (flag == LFR_SUCCESSFUL)
202 202 {
203 203 flag = set_sy_lfr_s1_bp_p0( TC );
204 204 flag = set_sy_lfr_s1_bp_p1( TC );
205 205 }
206 206
207 207 return flag;
208 208 }
209 209
210 210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 211 {
212 212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 216 *
217 217 */
218 218
219 219 int flag;
220 220 rtems_status_code status;
221 221 unsigned char sy_lfr_s2_bp_p0;
222 222 unsigned char sy_lfr_s2_bp_p1;
223 223 float aux;
224 224
225 225 flag = LFR_SUCCESSFUL;
226 226
227 227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 229 flag = LFR_DEFAULT;
230 230 }
231 231
232 232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 234
235 235 // sy_lfr_s2_bp_p0
236 236 if (flag == LFR_SUCCESSFUL)
237 237 {
238 238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 239 {
240 240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 241 flag = WRONG_APP_DATA;
242 242 }
243 243 }
244 244 // sy_lfr_s2_bp_p1
245 245 if (flag == LFR_SUCCESSFUL)
246 246 {
247 247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 248 {
249 249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 250 flag = WRONG_APP_DATA;
251 251 }
252 252 }
253 253 //******************************************************************
254 254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 255 if (flag == LFR_SUCCESSFUL)
256 256 {
257 257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 260 if (aux > FLOAT_EQUAL_ZERO)
261 261 {
262 262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 263 flag = LFR_DEFAULT;
264 264 }
265 265 }
266 266
267 267 // SET THE PARAMETERS
268 268 if (flag == LFR_SUCCESSFUL)
269 269 {
270 270 flag = set_sy_lfr_s2_bp_p0( TC );
271 271 flag = set_sy_lfr_s2_bp_p1( TC );
272 272 }
273 273
274 274 return flag;
275 275 }
276 276
277 277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 278 {
279 279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 280 *
281 281 * @param TC points to the TeleCommand packet that is being processed
282 282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 283 *
284 284 */
285 285
286 286 int flag;
287 287
288 288 flag = LFR_DEFAULT;
289 289
290 290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 291
292 292 return flag;
293 293 }
294 294
295 295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 296 {
297 297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 298 *
299 299 * @param TC points to the TeleCommand packet that is being processed
300 300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 301 *
302 302 */
303 303
304 304 int flag;
305 305
306 306 flag = LFR_DEFAULT;
307 307
308 308 flag = set_sy_lfr_fbins( TC );
309 309
310 310 return flag;
311 311 }
312 312
313 313 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 314 {
315 315 /** This function updates the LFR registers with the incoming sbm2 parameters.
316 316 *
317 317 * @param TC points to the TeleCommand packet that is being processed
318 318 * @param queue_id is the id of the queue which handles TM related to this execution step
319 319 *
320 320 */
321 321
322 322 int flag;
323 323
324 324 flag = LFR_DEFAULT;
325 325
326 326 flag = check_sy_lfr_filter_parameters( TC, queue_id );
327 327
328 328 if (flag == LFR_SUCCESSFUL)
329 329 {
330 330 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
331 331 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
332 332 parameter_dump_packet.sy_lfr_pas_filter_tbad[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 0 ];
333 333 parameter_dump_packet.sy_lfr_pas_filter_tbad[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 1 ];
334 334 parameter_dump_packet.sy_lfr_pas_filter_tbad[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 2 ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_tbad[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 3 ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_shift[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 0 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_shift[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 1 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_shift[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 2 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_shift[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 3 ];
341 341 parameter_dump_packet.sy_lfr_sc_rw_delta_f[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 0 ];
342 342 parameter_dump_packet.sy_lfr_sc_rw_delta_f[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 1 ];
343 343 parameter_dump_packet.sy_lfr_sc_rw_delta_f[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 2 ];
344 344 parameter_dump_packet.sy_lfr_sc_rw_delta_f[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 3 ];
345 345
346 346 //****************************
347 347 // store PAS filter parameters
348 348 // sy_lfr_pas_filter_enabled
349 349 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
350 350 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & 0x01 );
351 351 // sy_lfr_pas_filter_modulus
352 352 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
353 353 // sy_lfr_pas_filter_tbad
354 354 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
355 355 parameter_dump_packet.sy_lfr_pas_filter_tbad );
356 356 // sy_lfr_pas_filter_offset
357 357 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
358 358 // sy_lfr_pas_filter_shift
359 359 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
360 360 parameter_dump_packet.sy_lfr_pas_filter_shift );
361 361
362 362 //****************************************************
363 363 // store the parameter sy_lfr_sc_rw_delta_f as a float
364 364 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
365 365 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
366 366 }
367 367
368 368 return flag;
369 369 }
370 370
371 371 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
372 372 {
373 373 /** This function updates the LFR registers with the incoming sbm2 parameters.
374 374 *
375 375 * @param TC points to the TeleCommand packet that is being processed
376 376 * @param queue_id is the id of the queue which handles TM related to this execution step
377 377 *
378 378 */
379 379
380 380 unsigned int address;
381 381 rtems_status_code status;
382 382 unsigned int freq;
383 383 unsigned int bin;
384 384 unsigned int coeff;
385 385 unsigned char *kCoeffPtr;
386 386 unsigned char *kCoeffDumpPtr;
387 387
388 388 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
389 389 // F0 => 11 bins
390 390 // F1 => 13 bins
391 391 // F2 => 12 bins
392 392 // 36 bins to dump in two packets (30 bins max per packet)
393 393
394 394 //*********
395 395 // PACKET 1
396 396 // 11 F0 bins, 13 F1 bins and 6 F2 bins
397 397 kcoefficients_dump_1.destinationID = TC->sourceID;
398 398 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
399 399 for( freq=0;
400 400 freq<NB_BINS_COMPRESSED_SM_F0;
401 401 freq++ )
402 402 {
403 403 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
404 404 bin = freq;
405 405 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
406 406 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
407 407 {
408 408 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
409 409 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
410 410 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
411 411 }
412 412 }
413 413 for( freq=NB_BINS_COMPRESSED_SM_F0;
414 414 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
415 415 freq++ )
416 416 {
417 417 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
418 418 bin = freq - NB_BINS_COMPRESSED_SM_F0;
419 419 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
420 420 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
421 421 {
422 422 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
423 423 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
424 424 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
425 425 }
426 426 }
427 427 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
428 428 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
429 429 freq++ )
430 430 {
431 431 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
432 432 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
433 433 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
434 434 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
435 435 {
436 436 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
437 437 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
438 438 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
439 439 }
440 440 }
441 441 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
442 442 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
443 443 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
444 444 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
445 445 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
446 446 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
447 447 // SEND DATA
448 448 kcoefficient_node_1.status = 1;
449 449 address = (unsigned int) &kcoefficient_node_1;
450 450 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
451 451 if (status != RTEMS_SUCCESSFUL) {
452 452 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
453 453 }
454 454
455 455 //********
456 456 // PACKET 2
457 457 // 6 F2 bins
458 458 kcoefficients_dump_2.destinationID = TC->sourceID;
459 459 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
460 460 for( freq=0; freq<6; freq++ )
461 461 {
462 462 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
463 463 bin = freq + 6;
464 464 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
465 465 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
466 466 {
467 467 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
468 468 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
469 469 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
470 470 }
471 471 }
472 472 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
473 473 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
474 474 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
475 475 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
476 476 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
477 477 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
478 478 // SEND DATA
479 479 kcoefficient_node_2.status = 1;
480 480 address = (unsigned int) &kcoefficient_node_2;
481 481 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
482 482 if (status != RTEMS_SUCCESSFUL) {
483 483 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
484 484 }
485 485
486 486 return status;
487 487 }
488 488
489 489 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 490 {
491 491 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
492 492 *
493 493 * @param queue_id is the id of the queue which handles TM related to this execution step.
494 494 *
495 495 * @return RTEMS directive status codes:
496 496 * - RTEMS_SUCCESSFUL - message sent successfully
497 497 * - RTEMS_INVALID_ID - invalid queue id
498 498 * - RTEMS_INVALID_SIZE - invalid message size
499 499 * - RTEMS_INVALID_ADDRESS - buffer is NULL
500 500 * - RTEMS_UNSATISFIED - out of message buffers
501 501 * - RTEMS_TOO_MANY - queue s limit has been reached
502 502 *
503 503 */
504 504
505 505 int status;
506 506
507 507 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
508 508 parameter_dump_packet.destinationID = TC->sourceID;
509 509
510 510 // UPDATE TIME
511 511 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
512 512 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
513 513 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
514 514 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
515 515 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
516 516 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
517 517 // SEND DATA
518 518 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
519 519 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
520 520 if (status != RTEMS_SUCCESSFUL) {
521 521 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
522 522 }
523 523
524 524 return status;
525 525 }
526 526
527 527 //***********************
528 528 // NORMAL MODE PARAMETERS
529 529
530 530 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
531 531 {
532 532 unsigned char msb;
533 533 unsigned char lsb;
534 534 int flag;
535 535 float aux;
536 536 rtems_status_code status;
537 537
538 538 unsigned int sy_lfr_n_swf_l;
539 539 unsigned int sy_lfr_n_swf_p;
540 540 unsigned int sy_lfr_n_asm_p;
541 541 unsigned char sy_lfr_n_bp_p0;
542 542 unsigned char sy_lfr_n_bp_p1;
543 543 unsigned char sy_lfr_n_cwf_long_f3;
544 544
545 545 flag = LFR_SUCCESSFUL;
546 546
547 547 //***************
548 548 // get parameters
549 549 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
550 550 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
551 551 sy_lfr_n_swf_l = msb * 256 + lsb;
552 552
553 553 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
554 554 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
555 555 sy_lfr_n_swf_p = msb * 256 + lsb;
556 556
557 557 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
558 558 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
559 559 sy_lfr_n_asm_p = msb * 256 + lsb;
560 560
561 561 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
562 562
563 563 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
564 564
565 565 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
566 566
567 567 //******************
568 568 // check consistency
569 569 // sy_lfr_n_swf_l
570 570 if (sy_lfr_n_swf_l != 2048)
571 571 {
572 572 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
573 573 flag = WRONG_APP_DATA;
574 574 }
575 575 // sy_lfr_n_swf_p
576 576 if (flag == LFR_SUCCESSFUL)
577 577 {
578 578 if ( sy_lfr_n_swf_p < 22 )
579 579 {
580 580 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
581 581 flag = WRONG_APP_DATA;
582 582 }
583 583 }
584 584 // sy_lfr_n_bp_p0
585 585 if (flag == LFR_SUCCESSFUL)
586 586 {
587 587 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
588 588 {
589 589 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
590 590 flag = WRONG_APP_DATA;
591 591 }
592 592 }
593 593 // sy_lfr_n_asm_p
594 594 if (flag == LFR_SUCCESSFUL)
595 595 {
596 596 if (sy_lfr_n_asm_p == 0)
597 597 {
598 598 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
599 599 flag = WRONG_APP_DATA;
600 600 }
601 601 }
602 602 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
603 603 if (flag == LFR_SUCCESSFUL)
604 604 {
605 605 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
606 606 if (aux > FLOAT_EQUAL_ZERO)
607 607 {
608 608 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
609 609 flag = WRONG_APP_DATA;
610 610 }
611 611 }
612 612 // sy_lfr_n_bp_p1
613 613 if (flag == LFR_SUCCESSFUL)
614 614 {
615 615 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
616 616 {
617 617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
618 618 flag = WRONG_APP_DATA;
619 619 }
620 620 }
621 621 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
622 622 if (flag == LFR_SUCCESSFUL)
623 623 {
624 624 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
625 625 if (aux > FLOAT_EQUAL_ZERO)
626 626 {
627 627 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
628 628 flag = LFR_DEFAULT;
629 629 }
630 630 }
631 631 // sy_lfr_n_cwf_long_f3
632 632
633 633 return flag;
634 634 }
635 635
636 636 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
637 637 {
638 638 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
639 639 *
640 640 * @param TC points to the TeleCommand packet that is being processed
641 641 * @param queue_id is the id of the queue which handles TM related to this execution step
642 642 *
643 643 */
644 644
645 645 int result;
646 646
647 647 result = LFR_SUCCESSFUL;
648 648
649 649 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
650 650 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
651 651
652 652 return result;
653 653 }
654 654
655 655 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
656 656 {
657 657 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
658 658 *
659 659 * @param TC points to the TeleCommand packet that is being processed
660 660 * @param queue_id is the id of the queue which handles TM related to this execution step
661 661 *
662 662 */
663 663
664 664 int result;
665 665
666 666 result = LFR_SUCCESSFUL;
667 667
668 668 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
669 669 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
670 670
671 671 return result;
672 672 }
673 673
674 674 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
675 675 {
676 676 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
677 677 *
678 678 * @param TC points to the TeleCommand packet that is being processed
679 679 * @param queue_id is the id of the queue which handles TM related to this execution step
680 680 *
681 681 */
682 682
683 683 int result;
684 684
685 685 result = LFR_SUCCESSFUL;
686 686
687 687 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
688 688 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
689 689
690 690 return result;
691 691 }
692 692
693 693 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
694 694 {
695 695 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
696 696 *
697 697 * @param TC points to the TeleCommand packet that is being processed
698 698 * @param queue_id is the id of the queue which handles TM related to this execution step
699 699 *
700 700 */
701 701
702 702 int status;
703 703
704 704 status = LFR_SUCCESSFUL;
705 705
706 706 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
707 707
708 708 return status;
709 709 }
710 710
711 711 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
712 712 {
713 713 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
714 714 *
715 715 * @param TC points to the TeleCommand packet that is being processed
716 716 * @param queue_id is the id of the queue which handles TM related to this execution step
717 717 *
718 718 */
719 719
720 720 int status;
721 721
722 722 status = LFR_SUCCESSFUL;
723 723
724 724 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
725 725
726 726 return status;
727 727 }
728 728
729 729 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
730 730 {
731 731 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
732 732 *
733 733 * @param TC points to the TeleCommand packet that is being processed
734 734 * @param queue_id is the id of the queue which handles TM related to this execution step
735 735 *
736 736 */
737 737
738 738 int status;
739 739
740 740 status = LFR_SUCCESSFUL;
741 741
742 742 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
743 743
744 744 return status;
745 745 }
746 746
747 747 //**********************
748 748 // BURST MODE PARAMETERS
749 749 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
750 750 {
751 751 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
752 752 *
753 753 * @param TC points to the TeleCommand packet that is being processed
754 754 * @param queue_id is the id of the queue which handles TM related to this execution step
755 755 *
756 756 */
757 757
758 758 int status;
759 759
760 760 status = LFR_SUCCESSFUL;
761 761
762 762 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
763 763
764 764 return status;
765 765 }
766 766
767 767 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
768 768 {
769 769 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
770 770 *
771 771 * @param TC points to the TeleCommand packet that is being processed
772 772 * @param queue_id is the id of the queue which handles TM related to this execution step
773 773 *
774 774 */
775 775
776 776 int status;
777 777
778 778 status = LFR_SUCCESSFUL;
779 779
780 780 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
781 781
782 782 return status;
783 783 }
784 784
785 785 //*********************
786 786 // SBM1 MODE PARAMETERS
787 787 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
788 788 {
789 789 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
790 790 *
791 791 * @param TC points to the TeleCommand packet that is being processed
792 792 * @param queue_id is the id of the queue which handles TM related to this execution step
793 793 *
794 794 */
795 795
796 796 int status;
797 797
798 798 status = LFR_SUCCESSFUL;
799 799
800 800 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
801 801
802 802 return status;
803 803 }
804 804
805 805 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
806 806 {
807 807 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
808 808 *
809 809 * @param TC points to the TeleCommand packet that is being processed
810 810 * @param queue_id is the id of the queue which handles TM related to this execution step
811 811 *
812 812 */
813 813
814 814 int status;
815 815
816 816 status = LFR_SUCCESSFUL;
817 817
818 818 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
819 819
820 820 return status;
821 821 }
822 822
823 823 //*********************
824 824 // SBM2 MODE PARAMETERS
825 825 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
826 826 {
827 827 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
828 828 *
829 829 * @param TC points to the TeleCommand packet that is being processed
830 830 * @param queue_id is the id of the queue which handles TM related to this execution step
831 831 *
832 832 */
833 833
834 834 int status;
835 835
836 836 status = LFR_SUCCESSFUL;
837 837
838 838 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
839 839
840 840 return status;
841 841 }
842 842
843 843 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
844 844 {
845 845 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
846 846 *
847 847 * @param TC points to the TeleCommand packet that is being processed
848 848 * @param queue_id is the id of the queue which handles TM related to this execution step
849 849 *
850 850 */
851 851
852 852 int status;
853 853
854 854 status = LFR_SUCCESSFUL;
855 855
856 856 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
857 857
858 858 return status;
859 859 }
860 860
861 861 //*******************
862 862 // TC_LFR_UPDATE_INFO
863 863 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
864 864 {
865 865 unsigned int status;
866 866
867 867 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
868 868 || (mode == LFR_MODE_BURST)
869 869 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
870 870 {
871 871 status = LFR_SUCCESSFUL;
872 872 }
873 873 else
874 874 {
875 875 status = LFR_DEFAULT;
876 876 }
877 877
878 878 return status;
879 879 }
880 880
881 881 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
882 882 {
883 883 unsigned int status;
884 884
885 885 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
886 886 || (mode == TDS_MODE_BURST)
887 887 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
888 888 || (mode == TDS_MODE_LFM))
889 889 {
890 890 status = LFR_SUCCESSFUL;
891 891 }
892 892 else
893 893 {
894 894 status = LFR_DEFAULT;
895 895 }
896 896
897 897 return status;
898 898 }
899 899
900 900 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
901 901 {
902 902 unsigned int status;
903 903
904 904 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
905 905 || (mode == THR_MODE_BURST))
906 906 {
907 907 status = LFR_SUCCESSFUL;
908 908 }
909 909 else
910 910 {
911 911 status = LFR_DEFAULT;
912 912 }
913 913
914 914 return status;
915 915 }
916 916
917 917 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
918 918 {
919 919 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
920 920 *
921 921 * @param TC points to the TeleCommand packet that is being processed
922 922 *
923 923 */
924 924
925 925 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
926 926
927 927 bytePosPtr = (unsigned char *) &TC->packetID;
928 928
929 929 // cp_rpw_sc_rw1_f1
930 930 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
931 931 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
932 932
933 933 // cp_rpw_sc_rw1_f2
934 934 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
935 935 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
936 936
937 937 // cp_rpw_sc_rw2_f1
938 938 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
939 939 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
940 940
941 941 // cp_rpw_sc_rw2_f2
942 942 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
943 943 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
944 944
945 945 // cp_rpw_sc_rw3_f1
946 946 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
947 947 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
948 948
949 949 // cp_rpw_sc_rw3_f2
950 950 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
951 951 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
952 952
953 953 // cp_rpw_sc_rw4_f1
954 954 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
955 955 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
956 956
957 957 // cp_rpw_sc_rw4_f2
958 958 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
959 959 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
960 960 }
961 961
962 962 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
963 963 {
964 964 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
965 965 *
966 966 * @param fbins_mask
967 967 * @param rw_f is the reaction wheel frequency to filter
968 968 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
969 969 * @param flag [true] filtering enabled [false] filtering disabled
970 970 *
971 971 * @return void
972 972 *
973 973 */
974 974
975 975 float f_RW_min;
976 976 float f_RW_MAX;
977 977 float fi_min;
978 978 float fi_MAX;
979 979 float fi;
980 980 float deltaBelow;
981 981 float deltaAbove;
982 982 int binBelow;
983 983 int binAbove;
984 984 int closestBin;
985 985 unsigned int whichByte;
986 986 int selectedByte;
987 987 int bin;
988 988 int binToRemove[3];
989 989 int k;
990 990
991 991 whichByte = 0;
992 992 bin = 0;
993 993
994 994 binToRemove[0] = -1;
995 995 binToRemove[1] = -1;
996 996 binToRemove[2] = -1;
997 997
998 998 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
999 999 f_RW_min = rw_f - filterPar.sy_lfr_sc_rw_delta_f / 2.;
1000 1000 f_RW_MAX = rw_f + filterPar.sy_lfr_sc_rw_delta_f / 2.;
1001 1001
1002 1002 // compute the index of the frequency bin immediately below rw_f
1003 1003 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1004 1004 deltaBelow = rw_f - binBelow * deltaFreq;
1005 1005
1006 1006 // compute the index of the frequency bin immediately above rw_f
1007 1007 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1008 1008 deltaAbove = binAbove * deltaFreq - rw_f;
1009 1009
1010 1010 // search the closest bin
1011 1011 if (deltaAbove > deltaBelow)
1012 1012 {
1013 1013 closestBin = binBelow;
1014 1014 }
1015 1015 else
1016 1016 {
1017 1017 closestBin = binAbove;
1018 1018 }
1019 1019
1020 1020 // compute the fi interval [fi - Delta_f * 0.285, fi + Delta_f * 0.285]
1021 1021 fi = closestBin * deltaFreq;
1022 1022
1023 1023 fi_min = fi - (deltaFreq * 0.285);
1024 1024 if ( fi_min < 0 )
1025 1025 {
1026 1026 fi_min = 0;
1027 1027 }
1028 1028 else if ( fi_min > (deltaFreq*127) )
1029 1029 {
1030 1030 fi_min = -1;
1031 1031 }
1032 1032
1033 1033 fi_MAX = fi + (deltaFreq * 0.285);
1034 1034 if ( fi_MAX > (deltaFreq*127) )
1035 1035 {
1036 1036 fi_MAX = -1;
1037 1037 }
1038 1038
1039 1039 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1040 1040 // => remove f_(i), f_(i-1) and f_(i+1)
1041 1041 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1042 1042 {
1043 1043 binToRemove[0] = closestBin - 1;
1044 1044 binToRemove[1] = closestBin;
1045 1045 binToRemove[2] = closestBin + 1;
1046 1046 }
1047 1047 // 2. ELSE
1048 1048 // => remove the two f_(i) which are around f_RW
1049 1049 else
1050 1050 {
1051 1051 binToRemove[0] = binBelow;
1052 1052 binToRemove[1] = binAbove;
1053 1053 binToRemove[2] = -1;
1054 1054 }
1055 1055
1056 1056 for (k = 0; k <= 3; k++)
1057 1057 {
1058 1058 bin = binToRemove[k];
1059 1059 if ( (bin >= 0) && (bin <= 127) )
1060 1060 {
1061 1061 if (flag == 1)
1062 1062 {
1063 1063 whichByte = (bin >> 3); // division by 8
1064 1064 selectedByte = ( 1 << (bin - (whichByte * 8)) );
1065 1065 fbins_mask[15 - whichByte] = fbins_mask[15 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1066 1066 }
1067 1067 }
1068 1068 }
1069 1069 }
1070 1070
1071 1071 void build_sy_lfr_rw_mask( unsigned int channel )
1072 1072 {
1073 1073 unsigned char local_rw_fbins_mask[16];
1074 1074 unsigned char *maskPtr;
1075 1075 double deltaF;
1076 1076 unsigned k;
1077 1077
1078 1078 k = 0;
1079 1079
1080 1080 maskPtr = NULL;
1081 1081 deltaF = 1.;
1082 1082
1083 1083 switch (channel)
1084 1084 {
1085 1085 case 0:
1086 1086 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1087 1087 deltaF = 96.;
1088 1088 break;
1089 1089 case 1:
1090 1090 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1091 1091 deltaF = 16.;
1092 1092 break;
1093 1093 case 2:
1094 1094 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1095 1095 deltaF = 1.;
1096 1096 break;
1097 1097 default:
1098 1098 break;
1099 1099 }
1100 1100
1101 1101 for (k = 0; k < 16; k++)
1102 1102 {
1103 1103 local_rw_fbins_mask[k] = 0xff;
1104 1104 }
1105 1105
1106 1106 // RW1 F1
1107 1107 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x80) >> 7 ); // [1000 0000]
1108 1108
1109 1109 // RW1 F2
1110 1110 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x40) >> 6 ); // [0100 0000]
1111 1111
1112 1112 // RW2 F1
1113 1113 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x20) >> 5 ); // [0010 0000]
1114 1114
1115 1115 // RW2 F2
1116 1116 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x10) >> 4 ); // [0001 0000]
1117 1117
1118 1118 // RW3 F1
1119 1119 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x08) >> 3 ); // [0000 1000]
1120 1120
1121 1121 // RW3 F2
1122 1122 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x04) >> 2 ); // [0000 0100]
1123 1123
1124 1124 // RW4 F1
1125 1125 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x02) >> 1 ); // [0000 0010]
1126 1126
1127 1127 // RW4 F2
1128 1128 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x01) ); // [0000 0001]
1129 1129
1130 1130 // update the value of the fbins related to reaction wheels frequency filtering
1131 1131 if (maskPtr != NULL)
1132 1132 {
1133 1133 for (k = 0; k < 16; k++)
1134 1134 {
1135 1135 maskPtr[k] = local_rw_fbins_mask[k];
1136 1136 }
1137 1137 }
1138 1138 }
1139 1139
1140 1140 void build_sy_lfr_rw_masks( void )
1141 1141 {
1142 1142 build_sy_lfr_rw_mask( 0 );
1143 1143 build_sy_lfr_rw_mask( 1 );
1144 1144 build_sy_lfr_rw_mask( 2 );
1145 1145
1146 1146 merge_fbins_masks();
1147 1147 }
1148 1148
1149 1149 void merge_fbins_masks( void )
1150 1150 {
1151 1151 unsigned char k;
1152 1152
1153 1153 unsigned char *fbins_f0;
1154 1154 unsigned char *fbins_f1;
1155 1155 unsigned char *fbins_f2;
1156 1156 unsigned char *rw_mask_f0;
1157 1157 unsigned char *rw_mask_f1;
1158 1158 unsigned char *rw_mask_f2;
1159 1159
1160 1160 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1161 1161 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1162 1162 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1163 1163 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1164 1164 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1165 1165 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1166 1166
1167 1167 for( k=0; k < 16; k++ )
1168 1168 {
1169 1169 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1170 1170 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1171 1171 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1172 1172 }
1173 1173 }
1174 1174
1175 1175 //***********
1176 1176 // FBINS MASK
1177 1177
1178 1178 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1179 1179 {
1180 1180 int status;
1181 1181 unsigned int k;
1182 1182 unsigned char *fbins_mask_dump;
1183 1183 unsigned char *fbins_mask_TC;
1184 1184
1185 1185 status = LFR_SUCCESSFUL;
1186 1186
1187 1187 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1188 1188 fbins_mask_TC = TC->dataAndCRC;
1189 1189
1190 1190 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1191 1191 {
1192 1192 fbins_mask_dump[k] = fbins_mask_TC[k];
1193 1193 }
1194 1194
1195 1195 return status;
1196 1196 }
1197 1197
1198 1198 //***************************
1199 1199 // TC_LFR_LOAD_PAS_FILTER_PAR
1200 1200
1201 1201 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1202 1202 {
1203 1203 int flag;
1204 1204 rtems_status_code status;
1205 1205
1206 1206 unsigned char sy_lfr_pas_filter_enabled;
1207 1207 unsigned char sy_lfr_pas_filter_modulus;
1208 1208 float sy_lfr_pas_filter_tbad;
1209 1209 unsigned char sy_lfr_pas_filter_offset;
1210 1210 float sy_lfr_pas_filter_shift;
1211 1211 float sy_lfr_sc_rw_delta_f;
1212 1212 char *parPtr;
1213 1213
1214 1214 flag = LFR_SUCCESSFUL;
1215 1215 sy_lfr_pas_filter_tbad = 0.0;
1216 1216 sy_lfr_pas_filter_shift = 0.0;
1217 1217 sy_lfr_sc_rw_delta_f = 0.0;
1218 1218 parPtr = NULL;
1219 1219
1220 1220 //***************
1221 1221 // get parameters
1222 1222 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & 0x01; // [0000 0001]
1223 1223 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1224 1224 copyFloatByChar(
1225 1225 (unsigned char*) &sy_lfr_pas_filter_tbad,
1226 1226 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1227 1227 );
1228 1228 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1229 1229 copyFloatByChar(
1230 1230 (unsigned char*) &sy_lfr_pas_filter_shift,
1231 1231 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1232 1232 );
1233 1233 copyFloatByChar(
1234 1234 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1235 1235 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1236 1236 );
1237 1237
1238 1238 //******************
1239 1239 // CHECK CONSISTENCY
1240 1240
1241 1241 //**************************
1242 1242 // sy_lfr_pas_filter_enabled
1243 1243 // nothing to check, value is 0 or 1
1244 1244
1245 1245 //**************************
1246 1246 // sy_lfr_pas_filter_modulus
1247 1247 if ( (sy_lfr_pas_filter_modulus < 4) || (sy_lfr_pas_filter_modulus > 8) )
1248 1248 {
1249 1249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS+10, sy_lfr_pas_filter_modulus );
1250 1250 flag = WRONG_APP_DATA;
1251 1251 }
1252 1252
1253 1253 //***********************
1254 1254 // sy_lfr_pas_filter_tbad
1255 1255 if ( (sy_lfr_pas_filter_tbad < 0.0) || (sy_lfr_pas_filter_tbad > 4.0) )
1256 1256 {
1257 1257 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1258 1258 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD+10, parPtr[3] );
1259 1259 flag = WRONG_APP_DATA;
1260 1260 }
1261 1261
1262 1262 //*************************
1263 1263 // sy_lfr_pas_filter_offset
1264 1264 if (flag == LFR_SUCCESSFUL)
1265 1265 {
1266 1266 if ( (sy_lfr_pas_filter_offset < 0) || (sy_lfr_pas_filter_offset > 7) )
1267 1267 {
1268 1268 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET+10, sy_lfr_pas_filter_offset );
1269 1269 flag = WRONG_APP_DATA;
1270 1270 }
1271 1271 }
1272 1272
1273 1273 //************************
1274 1274 // sy_lfr_pas_filter_shift
1275 1275 if ( (sy_lfr_pas_filter_shift < 0.0) || (sy_lfr_pas_filter_shift > 1.0) )
1276 1276 {
1277 1277 parPtr = (char*) &sy_lfr_pas_filter_shift;
1278 1278 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT+10, parPtr[3] );
1279 1279 flag = WRONG_APP_DATA;
1280 1280 }
1281 1281
1282 1282 //*********************
1283 1283 // sy_lfr_sc_rw_delta_f
1284 1284 // nothing to check, no default value in the ICD
1285 1285
1286 1286 return flag;
1287 1287 }
1288 1288
1289 1289 //**************
1290 1290 // KCOEFFICIENTS
1291 1291 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1292 1292 {
1293 1293 unsigned int kcoeff;
1294 1294 unsigned short sy_lfr_kcoeff_frequency;
1295 1295 unsigned short bin;
1296 1296 unsigned short *freqPtr;
1297 1297 float *kcoeffPtr_norm;
1298 1298 float *kcoeffPtr_sbm;
1299 1299 int status;
1300 1300 unsigned char *kcoeffLoadPtr;
1301 1301 unsigned char *kcoeffNormPtr;
1302 1302 unsigned char *kcoeffSbmPtr_a;
1303 1303 unsigned char *kcoeffSbmPtr_b;
1304 1304
1305 1305 status = LFR_SUCCESSFUL;
1306 1306
1307 1307 kcoeffPtr_norm = NULL;
1308 1308 kcoeffPtr_sbm = NULL;
1309 1309 bin = 0;
1310 1310
1311 1311 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1312 1312 sy_lfr_kcoeff_frequency = *freqPtr;
1313 1313
1314 1314 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1315 1315 {
1316 1316 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1317 1317 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
1318 1318 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1319 1319 status = LFR_DEFAULT;
1320 1320 }
1321 1321 else
1322 1322 {
1323 1323 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1324 1324 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1325 1325 {
1326 1326 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1327 1327 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1328 1328 bin = sy_lfr_kcoeff_frequency;
1329 1329 }
1330 1330 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1331 1331 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1332 1332 {
1333 1333 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1334 1334 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1335 1335 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1336 1336 }
1337 1337 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1338 1338 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1339 1339 {
1340 1340 kcoeffPtr_norm = k_coeff_intercalib_f2;
1341 1341 kcoeffPtr_sbm = NULL;
1342 1342 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1343 1343 }
1344 1344 }
1345 1345
1346 1346 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1347 1347 {
1348 1348 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1349 1349 {
1350 1350 // destination
1351 1351 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1352 1352 // source
1353 1353 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1354 1354 // copy source to destination
1355 1355 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1356 1356 }
1357 1357 }
1358 1358
1359 1359 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1360 1360 {
1361 1361 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1362 1362 {
1363 1363 // destination
1364 1364 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
1365 1365 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
1366 1366 // source
1367 1367 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1368 1368 // copy source to destination
1369 1369 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1370 1370 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1371 1371 }
1372 1372 }
1373 1373
1374 1374 // print_k_coeff();
1375 1375
1376 1376 return status;
1377 1377 }
1378 1378
1379 1379 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1380 1380 {
1381 1381 destination[0] = source[0];
1382 1382 destination[1] = source[1];
1383 1383 destination[2] = source[2];
1384 1384 destination[3] = source[3];
1385 1385 }
1386 1386
1387 1387 void floatToChar( float value, unsigned char* ptr)
1388 1388 {
1389 1389 unsigned char* valuePtr;
1390 1390
1391 1391 valuePtr = (unsigned char*) &value;
1392 1392 ptr[0] = valuePtr[0];
1393 ptr[1] = valuePtr[0];
1394 ptr[2] = valuePtr[0];
1395 ptr[3] = valuePtr[0];
1393 ptr[1] = valuePtr[1];
1394 ptr[2] = valuePtr[2];
1395 ptr[3] = valuePtr[3];
1396 1396 }
1397 1397
1398 1398 //**********
1399 1399 // init dump
1400 1400
1401 1401 void init_parameter_dump( void )
1402 1402 {
1403 1403 /** This function initialize the parameter_dump_packet global variable with default values.
1404 1404 *
1405 1405 */
1406 1406
1407 1407 unsigned int k;
1408 1408
1409 1409 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1410 1410 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1411 1411 parameter_dump_packet.reserved = CCSDS_RESERVED;
1412 1412 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1413 1413 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1414 1414 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1415 1415 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1416 1416 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1417 1417 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1418 1418 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1419 1419 // DATA FIELD HEADER
1420 1420 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1421 1421 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1422 1422 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1423 1423 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1424 1424 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1425 1425 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1426 1426 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1427 1427 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1428 1428 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1429 1429 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1430 1430 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1431 1431
1432 1432 //******************
1433 1433 // COMMON PARAMETERS
1434 1434 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1435 1435 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1436 1436
1437 1437 //******************
1438 1438 // NORMAL PARAMETERS
1439 1439 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1440 1440 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1441 1441 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1442 1442 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1443 1443 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1444 1444 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1445 1445 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1446 1446 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1447 1447 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1448 1448
1449 1449 //*****************
1450 1450 // BURST PARAMETERS
1451 1451 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1452 1452 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1453 1453
1454 1454 //****************
1455 1455 // SBM1 PARAMETERS
1456 1456 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1457 1457 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1458 1458
1459 1459 //****************
1460 1460 // SBM2 PARAMETERS
1461 1461 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1462 1462 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1463 1463
1464 1464 //************
1465 1465 // FBINS MASKS
1466 1466 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1467 1467 {
1468 1468 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1469 1469 }
1470 1470
1471 1471 // PAS FILTER PARAMETERS
1472 1472 parameter_dump_packet.pa_rpw_spare8_2 = 0x00;
1473 1473 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = 0x00;
1474 1474 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1475 1475 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1476 1476 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1477 1477 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1478 1478 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1479 1479
1480 1480 // LFR_RW_MASK
1481 1481 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1482 1482 {
1483 1483 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = 0xff;
1484 1484 }
1485 1485 }
1486 1486
1487 1487 void init_kcoefficients_dump( void )
1488 1488 {
1489 1489 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1490 1490 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1491 1491
1492 1492 kcoefficient_node_1.previous = NULL;
1493 1493 kcoefficient_node_1.next = NULL;
1494 1494 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1495 1495 kcoefficient_node_1.coarseTime = 0x00;
1496 1496 kcoefficient_node_1.fineTime = 0x00;
1497 1497 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1498 1498 kcoefficient_node_1.status = 0x00;
1499 1499
1500 1500 kcoefficient_node_2.previous = NULL;
1501 1501 kcoefficient_node_2.next = NULL;
1502 1502 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1503 1503 kcoefficient_node_2.coarseTime = 0x00;
1504 1504 kcoefficient_node_2.fineTime = 0x00;
1505 1505 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1506 1506 kcoefficient_node_2.status = 0x00;
1507 1507 }
1508 1508
1509 1509 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1510 1510 {
1511 1511 unsigned int k;
1512 1512 unsigned int packetLength;
1513 1513
1514 1514 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1515 1515
1516 1516 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1517 1517 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1518 1518 kcoefficients_dump->reserved = CCSDS_RESERVED;
1519 1519 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1520 1520 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1521 1521 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1522 1522 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1523 1523 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1524 1524 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1525 1525 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1526 1526 // DATA FIELD HEADER
1527 1527 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1528 1528 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1529 1529 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1530 1530 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1531 1531 kcoefficients_dump->time[0] = 0x00;
1532 1532 kcoefficients_dump->time[1] = 0x00;
1533 1533 kcoefficients_dump->time[2] = 0x00;
1534 1534 kcoefficients_dump->time[3] = 0x00;
1535 1535 kcoefficients_dump->time[4] = 0x00;
1536 1536 kcoefficients_dump->time[5] = 0x00;
1537 1537 kcoefficients_dump->sid = SID_K_DUMP;
1538 1538
1539 1539 kcoefficients_dump->pkt_cnt = 2;
1540 1540 kcoefficients_dump->pkt_nr = pkt_nr;
1541 1541 kcoefficients_dump->blk_nr = blk_nr;
1542 1542
1543 1543 //******************
1544 1544 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1545 1545 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1546 1546 for (k=0; k<3900; k++)
1547 1547 {
1548 1548 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1549 1549 }
1550 1550 }
1551 1551
1552 1552 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1553 1553 {
1554 1554 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1555 1555 *
1556 1556 * @param packet_sequence_control points to the packet sequence control which will be incremented
1557 1557 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1558 1558 *
1559 1559 * If the destination ID is not known, a dedicated counter is incremented.
1560 1560 *
1561 1561 */
1562 1562
1563 1563 unsigned short sequence_cnt;
1564 1564 unsigned short segmentation_grouping_flag;
1565 1565 unsigned short new_packet_sequence_control;
1566 1566 unsigned char i;
1567 1567
1568 1568 switch (destination_id)
1569 1569 {
1570 1570 case SID_TC_GROUND:
1571 1571 i = GROUND;
1572 1572 break;
1573 1573 case SID_TC_MISSION_TIMELINE:
1574 1574 i = MISSION_TIMELINE;
1575 1575 break;
1576 1576 case SID_TC_TC_SEQUENCES:
1577 1577 i = TC_SEQUENCES;
1578 1578 break;
1579 1579 case SID_TC_RECOVERY_ACTION_CMD:
1580 1580 i = RECOVERY_ACTION_CMD;
1581 1581 break;
1582 1582 case SID_TC_BACKUP_MISSION_TIMELINE:
1583 1583 i = BACKUP_MISSION_TIMELINE;
1584 1584 break;
1585 1585 case SID_TC_DIRECT_CMD:
1586 1586 i = DIRECT_CMD;
1587 1587 break;
1588 1588 case SID_TC_SPARE_GRD_SRC1:
1589 1589 i = SPARE_GRD_SRC1;
1590 1590 break;
1591 1591 case SID_TC_SPARE_GRD_SRC2:
1592 1592 i = SPARE_GRD_SRC2;
1593 1593 break;
1594 1594 case SID_TC_OBCP:
1595 1595 i = OBCP;
1596 1596 break;
1597 1597 case SID_TC_SYSTEM_CONTROL:
1598 1598 i = SYSTEM_CONTROL;
1599 1599 break;
1600 1600 case SID_TC_AOCS:
1601 1601 i = AOCS;
1602 1602 break;
1603 1603 case SID_TC_RPW_INTERNAL:
1604 1604 i = RPW_INTERNAL;
1605 1605 break;
1606 1606 default:
1607 1607 i = GROUND;
1608 1608 break;
1609 1609 }
1610 1610
1611 1611 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1612 1612 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1613 1613
1614 1614 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1615 1615
1616 1616 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1617 1617 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1618 1618
1619 1619 // increment the sequence counter
1620 1620 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1621 1621 {
1622 1622 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1623 1623 }
1624 1624 else
1625 1625 {
1626 1626 sequenceCounters_TM_DUMP[ i ] = 0;
1627 1627 }
1628 1628 }
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
1 NO CONTENT: file was removed
General Comments 0
You need to be logged in to leave comments. Login now