##// END OF EJS Templates
-O3 used for optimization...
paul -
r309:a80efd176164 R3_plus draft
parent child
Show More
@@ -1,14 +1,14
1 cmake_minimum_required (VERSION 2.6)
1 cmake_minimum_required (VERSION 2.6)
2 project (LFR_FSW)
2 project (LFR_FSW)
3
3
4 if(NOT CMAKE_BUILD_TYPE)
4 if(NOT CMAKE_BUILD_TYPE)
5 set(CMAKE_BUILD_TYPE "Release" CACHE STRING
5 set(CMAKE_BUILD_TYPE "Release" CACHE STRING
6 "Choose the type of build, options are: Debug Release RelWithDebInfo MinSizeRel." FORCE)
6 "Choose the type of build, options are: Debug Release RelWithDebInfo MinSizeRel." FORCE)
7 endif(NOT CMAKE_BUILD_TYPE)
7 endif(NOT CMAKE_BUILD_TYPE)
8
8
9 set(LFR_BP_SRC ${CMAKE_CURRENT_SOURCE_DIR}/LFR_basic-parameters/basic_parameters.c)
9 set(LFR_BP_SRC ${CMAKE_CURRENT_SOURCE_DIR}/LFR_basic-parameters/basic_parameters.c)
10
10
11 SET(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/sparc/")
11 SET(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/sparc/")
12
12
13 add_subdirectory(src)
13 add_subdirectory(src)
14 add_subdirectory(timegen)
14 #add_subdirectory(timegen)
@@ -1,221 +1,221
1 #ifndef GSCMEMORY_HPP_
1 #ifndef GSCMEMORY_HPP_
2 #define GSCMEMORY_HPP_
2 #define GSCMEMORY_HPP_
3
3
4 #ifndef LEON3
4 #ifndef LEON3
5 #define LEON3
5 #define LEON3
6 #endif
6 #endif
7
7
8 #define REGS_ADDR_PLUGANDPLAY 0xFFFFF000
8 #define REGS_ADDR_PLUGANDPLAY 0xFFFFF000
9 #define ASR16_REG_ADDRESS 0x90400040 // Ancillary State Register 16 = Register protection control register (FT only)
9 #define ASR16_REG_ADDRESS 0x90400040 // Ancillary State Register 16 = Register protection control register (FT only)
10
10
11 #define DEVICEID_LEON3 0x003
11 #define DEVICEID_LEON3 0x003
12 #define DEVICEID_LEON3FT 0x053
12 #define DEVICEID_LEON3FT 0x053
13 #define VENDORID_GAISLER 0x01
13 #define VENDORID_GAISLER 0x01
14
14
15 // CCR
15 // CCR
16 #define POS_FT 19
16 #define POS_FT 19
17 //
17 //
18 #define POS_ITE 12
18 #define POS_ITE 12
19 #define COUNTER_FIELD_ITE 0x00003000 // 0000 0000 0000 0000 0011 0000 0000 0000
19 #define COUNTER_FIELD_ITE 0x00003000 // 0000 0000 0000 0000 0011 0000 0000 0000
20 #define COUNTER_MASK_ITE 0xffffcfff // 1111 1111 1111 1111 1100 1111 1111 1111
20 #define COUNTER_MASK_ITE 0xffffcfff // 1111 1111 1111 1111 1100 1111 1111 1111
21 #define POS_IDE 10
21 #define POS_IDE 10
22 #define COUNTER_FIELD_IDE 0x00000c00 // 0000 0000 0000 0000 0000 1100 0000 0000
22 #define COUNTER_FIELD_IDE 0x00000c00 // 0000 0000 0000 0000 0000 1100 0000 0000
23 #define COUNTER_MASK_IDE 0xfffff3ff // 1111 1111 1111 1111 1111 0011 1111 1111
23 #define COUNTER_MASK_IDE 0xfffff3ff // 1111 1111 1111 1111 1111 0011 1111 1111
24 //
24 //
25 #define POS_DTE 8
25 #define POS_DTE 8
26 #define COUNTER_FIELD_DTE 0x00000300 // 0000 0000 0000 0000 0000 0011 0000 0000
26 #define COUNTER_FIELD_DTE 0x00000300 // 0000 0000 0000 0000 0000 0011 0000 0000
27 #define COUNTER_MASK_DTE 0xfffffcff // 1111 1111 1111 1111 1111 1100 1111 1111
27 #define COUNTER_MASK_DTE 0xfffffcff // 1111 1111 1111 1111 1111 1100 1111 1111
28 #define POS_DDE 6
28 #define POS_DDE 6
29 #define COUNTER_FIELD_DDE 0x000000c0 // 0000 0000 0000 0000 0000 0000 1100 0000
29 #define COUNTER_FIELD_DDE 0x000000c0 // 0000 0000 0000 0000 0000 0000 1100 0000
30 #define COUNTER_MASK_DDE 0xffffff3f // 1111 1111 1111 1111 1111 1111 0011 1111
30 #define COUNTER_MASK_DDE 0xffffff3f // 1111 1111 1111 1111 1111 1111 0011 1111
31
31
32 // ASR16
32 // ASR16
33 #define POS_FPFTID 30
33 #define POS_FPFTID 30
34 #define POS_FPRF 27
34 #define POS_FPRF 27
35 #define POS_FDI 16 // FP RF protection enable/disable
35 #define POS_FDI 16 // FP RF protection enable/disable
36 #define POS_IUFTID 14
36 #define POS_IUFTID 14
37 #define POS_IURF 11
37 #define POS_IURF 11
38 #define POS_IDI 0 // IU RF protection enable/disable
38 #define POS_IDI 0 // IU RF protection enable/disable
39
39
40 #define COUNTER_FIELD_FPRF 0x38000000 // 0011 1000 0000 0000 0000 0000 0000 0000
40 #define COUNTER_FIELD_FPRF 0x38000000 // 0011 1000 0000 0000 0000 0000 0000 0000
41 #define COUNTER_MASK_FPRF 0xc7ffffff // 1100 0111 1111 1111 1111 1111 1111 1111
41 #define COUNTER_MASK_FPRF 0xc7ffffff // 1100 0111 1111 1111 1111 1111 1111 1111
42
42
43 #define COUNTER_FIELD_IURF 0x00003800 // 0000 0000 0000 0000 0011 1000 0000 0000
43 #define COUNTER_FIELD_IURF 0x00003800 // 0000 0000 0000 0000 0011 1000 0000 0000
44 #define COUNTER_MASK_IURF 0xffffc7ff // 1111 1111 1111 1111 1100 0111 1111 1111
44 #define COUNTER_MASK_IURF 0xffffc7ff // 1111 1111 1111 1111 1100 0111 1111 1111
45
45
46 volatile unsigned int *asr16Ptr = (volatile unsigned int *) ASR16_REG_ADDRESS;
46 volatile unsigned int *asr16Ptr = (volatile unsigned int *) ASR16_REG_ADDRESS;
47
47
48 static inline void flushCache()
48 static inline void flushCache()
49 {
49 {
50 /**
50 /**
51 * Flush the data cache and the instruction cache.
51 * Flush the data cache and the instruction cache.
52 *
52 *
53 * @param void
53 * @param void
54 *
54 *
55 * @return void
55 * @return void
56 */
56 */
57
57
58 asm("flush");
58 asm("flush");
59 }
59 }
60
60
61 //***************************
61 //***************************
62 // CCR Cache control register
62 // CCR Cache control register
63
63
64 static unsigned int CCR_getValue()
64 static unsigned int CCR_getValue()
65 {
65 {
66 unsigned int cacheControlRegister = 0;
66 unsigned int cacheControlRegister = 0;
67 __asm__ __volatile__("lda [%%g0] 2, %0" : "=r"(cacheControlRegister) : );
67 __asm__ __volatile__("lda [%%g0] 2, %0" : "=r"(cacheControlRegister) : );
68 return cacheControlRegister;
68 return cacheControlRegister;
69 }
69 }
70
70
71 static void CCR_setValue(unsigned int cacheControlRegister)
71 static void CCR_setValue(unsigned int cacheControlRegister)
72 {
72 {
73 __asm__ __volatile__("sta %0, [%%g0] 2" : : "r"(cacheControlRegister));
73 __asm__ __volatile__("sta %0, [%%g0] 2" : : "r"(cacheControlRegister));
74 }
74 }
75
75
76 static void CCR_resetCacheControlRegister()
76 static void CCR_resetCacheControlRegister()
77 {
77 {
78 unsigned int cacheControlRegister;
78 unsigned int cacheControlRegister;
79 cacheControlRegister = 0x00;
79 cacheControlRegister = 0x00;
80 CCR_setValue(cacheControlRegister);
80 CCR_setValue(cacheControlRegister);
81 }
81 }
82
82
83 static void CCR_enableInstructionCache()
83 static void CCR_enableInstructionCache()
84 {
84 {
85 // [1:0] Instruction Cache state (ICS)
85 // [1:0] Instruction Cache state (ICS)
86 // Indicates the current data cache state according to the following: X0 = disabled, 01 = frozen, 11 = enabled.
86 // Indicates the current data cache state according to the following: X0 = disabled, 01 = frozen, 11 = enabled.
87 unsigned int cacheControlRegister;
87 unsigned int cacheControlRegister;
88 cacheControlRegister = CCR_getValue();
88 cacheControlRegister = CCR_getValue();
89 cacheControlRegister = (cacheControlRegister | 0x3);
89 cacheControlRegister = (cacheControlRegister | 0x3);
90 CCR_setValue(cacheControlRegister);
90 CCR_setValue(cacheControlRegister);
91 }
91 }
92
92
93 static void CCR_enableDataCache()
93 static void CCR_enableDataCache()
94 {
94 {
95 // [3:2] Data Cache state (DCS)
95 // [3:2] Data Cache state (DCS)
96 // Indicates the current data cache state according to the following: X0 = disabled, 01 = frozen, 11 = enabled.
96 // Indicates the current data cache state according to the following: X0 = disabled, 01 = frozen, 11 = enabled.
97 unsigned int cacheControlRegister;
97 unsigned int cacheControlRegister;
98 cacheControlRegister = CCR_getValue();
98 cacheControlRegister = CCR_getValue();
99 cacheControlRegister = (cacheControlRegister | 0xc);
99 cacheControlRegister = (cacheControlRegister | 0xc);
100 CCR_setValue(cacheControlRegister);
100 CCR_setValue(cacheControlRegister);
101 }
101 }
102
102
103 static void CCR_enableInstructionBurstFetch()
103 static void CCR_enableInstructionBurstFetch()
104 {
104 {
105 // [16] Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
105 // [16] Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
106 unsigned int cacheControlRegister;
106 unsigned int cacheControlRegister;
107 cacheControlRegister = CCR_getValue();
107 cacheControlRegister = CCR_getValue();
108 // set the bit IB to 1
108 // set the bit IB to 1
109 cacheControlRegister = (cacheControlRegister | 0x10000);
109 cacheControlRegister = (cacheControlRegister | 0x10000);
110 CCR_setValue(cacheControlRegister);
110 CCR_setValue(cacheControlRegister);
111 }
111 }
112
112
113 void CCR_getInstructionAndDataErrorCounters( unsigned int* instructionErrorCounter, unsigned int* dataErrorCounter )
113 void CCR_getInstructionAndDataErrorCounters( unsigned int* instructionErrorCounter, unsigned int* dataErrorCounter )
114 {
114 {
115 // [13:12] Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache.
115 // [13:12] Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache.
116 // Only available if fault-tolerance is enabled (FT field in this register is non-zero).
116 // Only available if fault-tolerance is enabled (FT field in this register is non-zero).
117 // [11:10] Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache.
117 // [11:10] Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache.
118 // Only available if fault-tolerance is enabled (FT field in this register is non-zero).
118 // Only available if fault-tolerance is enabled (FT field in this register is non-zero).
119
119
120 unsigned int cacheControlRegister;
120 unsigned int cacheControlRegister;
121 unsigned int iTE;
121 unsigned int iTE;
122 unsigned int iDE;
122 unsigned int iDE;
123 unsigned int dTE;
123 unsigned int dTE;
124 unsigned int dDE;
124 unsigned int dDE;
125
125
126 cacheControlRegister = CCR_getValue();
126 cacheControlRegister = CCR_getValue();
127 iTE = (cacheControlRegister & COUNTER_FIELD_ITE) >> POS_ITE;
127 iTE = (cacheControlRegister & COUNTER_FIELD_ITE) >> POS_ITE;
128 iDE = (cacheControlRegister & COUNTER_FIELD_IDE) >> POS_IDE;
128 iDE = (cacheControlRegister & COUNTER_FIELD_IDE) >> POS_IDE;
129 dTE = (cacheControlRegister & COUNTER_FIELD_DTE) >> POS_DTE;
129 dTE = (cacheControlRegister & COUNTER_FIELD_DTE) >> POS_DTE;
130 dDE = (cacheControlRegister & COUNTER_FIELD_DDE) >> POS_DDE;
130 dDE = (cacheControlRegister & COUNTER_FIELD_DDE) >> POS_DDE;
131
131
132 *instructionErrorCounter = iTE + iDE;
132 *instructionErrorCounter = iTE + iDE;
133 *dataErrorCounter = dTE + dDE;
133 *dataErrorCounter = dTE + dDE;
134
134
135 // reset counters
135 // reset counters
136 cacheControlRegister = cacheControlRegister
136 cacheControlRegister = cacheControlRegister
137 & COUNTER_FIELD_ITE
137 & COUNTER_FIELD_ITE
138 & COUNTER_FIELD_IDE
138 & COUNTER_FIELD_IDE
139 & COUNTER_FIELD_DTE
139 & COUNTER_FIELD_DTE
140 & COUNTER_FIELD_DDE;
140 & COUNTER_FIELD_DDE;
141
141
142 CCR_setValue(cacheControlRegister);
142 CCR_setValue(cacheControlRegister);
143 }
143 }
144
144
145 //*******************************************
145 //*******************************************
146 // ASR16 Register protection control register
146 // ASR16 Register protection control register
147
147
148 static void ASR16_resetRegisterProtectionControlRegister()
148 static void ASR16_resetRegisterProtectionControlRegister()
149 {
149 {
150 *asr16Ptr = 0x00;
150 *asr16Ptr = 0x00;
151 }
151 }
152
152
153 void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int* fprfErrorCounter, unsigned int* iurfErrorCounter)
153 void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int* fprfErrorCounter, unsigned int* iurfErrorCounter)
154 {
154 {
155 /** This function is used to retrieve the integer unit register file error counter and the floating point unit
155 /** This function is used to retrieve the integer unit register file error counter and the floating point unit
156 * register file error counter
156 * register file error counter
157 *
157 *
158 * @return void
158 * @return void
159 *
159 *
160 * [29:27] FP RF error counter - Number of detected parity errors in the FP register file.
160 * [29:27] FP RF error counter - Number of detected parity errors in the FP register file.
161 * [13:11] IU RF error counter - Number of detected parity errors in the IU register file.
161 * [13:11] IU RF error counter - Number of detected parity errors in the IU register file.
162 *
162 *
163 */
163 */
164
164
165 unsigned int asr16;
165 unsigned int asr16;
166
166
167 asr16 = *asr16Ptr;
167 asr16 = *asr16Ptr;
168 *fprfErrorCounter = ( asr16 & COUNTER_FIELD_FPRF ) >> POS_FPRF;
168 *fprfErrorCounter = ( asr16 & COUNTER_FIELD_FPRF ) >> POS_FPRF;
169 *iurfErrorCounter = ( asr16 & COUNTER_FIELD_IURF ) >> POS_IURF;
169 *iurfErrorCounter = ( asr16 & COUNTER_FIELD_IURF ) >> POS_IURF;
170
170
171 // reset the counter to 0
171 // reset the counter to 0
172 asr16 = asr16
172 asr16 = asr16
173 & COUNTER_MASK_FPRF
173 & COUNTER_MASK_FPRF
174 & COUNTER_FIELD_IURF;
174 & COUNTER_FIELD_IURF;
175
175
176 *asr16Ptr = asr16;
176 *asr16Ptr = asr16;
177 }
177 }
178
178
179 static void faultTolerantScheme()
179 static void faultTolerantScheme()
180 {
180 {
181 // [20:19] FT scheme (FT) - “00” = no FT, “01” = 4-bit checking implemented
181 // [20:19] FT scheme (FT) - “00” = no FT, “01” = 4-bit checking implemented
182 unsigned int cacheControlRegister;
182 unsigned int cacheControlRegister;
183 unsigned int *plugAndPlayRegister;
183 unsigned int *plugAndPlayRegister;
184 unsigned int vendorId;
184 unsigned int vendorId;
185 unsigned int deviceId;
185 unsigned int deviceId;
186
186
187 plugAndPlayRegister = (unsigned int*) REGS_ADDR_PLUGANDPLAY;
187 plugAndPlayRegister = (unsigned int*) REGS_ADDR_PLUGANDPLAY;
188 vendorId = ( (*plugAndPlayRegister) & 0xff000000 ) >> 24;
188 vendorId = ( (*plugAndPlayRegister) & 0xff000000 ) >> 24;
189 deviceId = ( (*plugAndPlayRegister) & 0x00fff000 ) >> 12;
189 deviceId = ( (*plugAndPlayRegister) & 0x00fff000 ) >> 12;
190
190
191 cacheControlRegister = CCR_getValue();
191 cacheControlRegister = CCR_getValue();
192
192
193 if( (vendorId == VENDORID_GAISLER) & (deviceId ==DEVICEID_LEON3FT) )
193 if( (vendorId == VENDORID_GAISLER) & (deviceId ==DEVICEID_LEON3FT) )
194 {
194 {
195 PRINTF("in faultTolerantScheme *** Leon3FT detected\n");
195 PRINTF("in faultTolerantScheme *** Leon3FT detected\n");
196 PRINTF2(" *** vendorID = 0x%x, deviceId = 0x%x\n", vendorId, deviceId);
196 PRINTF2(" *** vendorID = 0x%x, deviceId = 0x%x\n", vendorId, deviceId);
197 PRINTF1("ASR16 IU RF protection, bit 0 (IDI) is: 0x%x (0 => protection enabled)\n",
197 PRINTF1("ASR16 IU RF protection, bit 0 (IDI) is: 0x%x (0 => protection enabled)\n",
198 (*asr16Ptr >> POS_IDI) & 1);
198 (*asr16Ptr >> POS_IDI) & 1);
199 PRINTF1("ASR16 FP RF protection, bit 16 (FDI) is: 0x%x (0 => protection enabled)\n",
199 PRINTF1("ASR16 FP RF protection, bit 16 (FDI) is: 0x%x (0 => protection enabled)\n",
200 (*asr16Ptr >> POS_FDI) & 1);
200 (*asr16Ptr >> POS_FDI) & 1);
201 PRINTF1("ASR16 IU FT ID bits [15:14] is: 0x%x (2 => 8-bit parity without restart)\n",
201 PRINTF1("ASR16 IU FT ID bits [15:14] is: 0x%x (2 => 8-bit parity without restart)\n",
202 (*asr16Ptr >> POS_IUFTID) & 0x3);
202 (*asr16Ptr >> POS_IUFTID) & 0x3);
203 PRINTF1("ASR16 FP FT ID bits [31:30] is: 0x%x (1 => 4-bit parity with restart)\n",
203 PRINTF1("ASR16 FP FT ID bits [31:30] is: 0x%x (1 => 4-bit parity with restart)\n",
204 (*asr16Ptr >> POS_FPFTID) & 0x03);
204 (*asr16Ptr >> POS_FPFTID) & 0x03);
205 PRINTF1("CCR FT bits [20:19] are: 0x%x (1 => 4-bit parity with restart)\n",
205 PRINTF1("CCR FT bits [20:19] are: 0x%x (1 => 4-bit parity with restart)\n",
206 (cacheControlRegister >> POS_FT) & 0x3 );
206 (cacheControlRegister >> POS_FT) & 0x3 );
207
207
208 // CCR The FFT bits are just read, the FT scheme is set to “01” = 4-bit checking implemented by default
208 // CCR The FFT bits are just read, the FT scheme is set to “01” = 4-bit checking implemented by default
209
209
210 // ASR16 Ancillary State Register configuration (Register protection control register)
210 // ASR16 Ancillary State Register configuration (Register protection control register)
211 // IU RF protection is set by default, bit 0 IDI = 0
211 // IU RF protection is set by default, bit 0 IDI = 0
212 // FP RF protection is set by default, bit 16 FDI = 0
212 // FP RF protection is set by default, bit 16 FDI = 0
213 }
213 }
214 else
214 else
215 {
215 {
216 PRINTF("in faultTolerantScheme *** not a Leon3FT not detected\n");
216 PRINTF("in faultTolerantScheme *** Leon3FT not detected\n");
217 PRINTF2(" *** vendorID = 0x%x, deviceId = 0x%x\n", vendorId, deviceId);
217 PRINTF2(" *** vendorID = 0x%x, deviceId = 0x%x\n", vendorId, deviceId);
218 }
218 }
219 }
219 }
220
220
221 #endif /* GSCMEMORY_HPP_ */
221 #endif /* GSCMEMORY_HPP_ */
@@ -1,14 +1,14
1 # LOAD FSW USING LINK 1
1 # LOAD FSW USING LINK 1
2 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
2 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
3
3
4 dsu3plugin0.openFile("/home/pleroy/DEV/DEV_PLE/FSW-qt/bin/fsw")
4 dsu3plugin0.openFile("/home/pleroy/DEV/DEV_PLE/build-DEV_PLE-Desktop-Default/src/fsw")
5 #dsu3plugin0.openFile("/opt/LFR/LFR-FSW/2.0.2.3/fsw")
5 #dsu3plugin0.openFile("/opt/LFR/LFR-FSW/2.0.2.3/fsw")
6 dsu3plugin0.loadFile()
6 dsu3plugin0.loadFile()
7
7
8 dsu3plugin0.run()
8 dsu3plugin0.run()
9
9
10 # START SENDING TIMECODES AT 1 Hz
10 # START SENDING TIMECODES AT 1 Hz
11 #SpwPlugin0.StarDundeeStartTimecodes( 1 )
11 #SpwPlugin0.StarDundeeStartTimecodes( 1 )
12
12
13 # it is possible to change the time code frequency
13 # it is possible to change the time code frequency
14 #RMAPPlugin0.changeTimecodeFrequency(2)
14 #RMAPPlugin0.changeTimecodeFrequency(2)
@@ -1,8 +1,9
1 set(CMAKE_SYSTEM_NAME rtems)
1 set(CMAKE_SYSTEM_NAME rtems)
2
2
3 set(CMAKE_C_COMPILER /opt/rtems-4.10/bin/sparc-rtems-gcc)
3 set(CMAKE_C_COMPILER /opt/rtems-4.10/bin/sparc-rtems-gcc)
4 set(CMAKE_CXX_COMPILER /opt/rtems-4.10/bin/sparc-rtems-g++)
4 set(CMAKE_CXX_COMPILER /opt/rtems-4.10/bin/sparc-rtems-g++)
5 set(CMAKE_LINKER /opt/rtems-4.10/bin/sparc-rtems-g++)
5 set(CMAKE_LINKER /opt/rtems-4.10/bin/sparc-rtems-g++)
6 SET(CMAKE_EXE_LINKER_FLAGS "-static")
6 SET(CMAKE_EXE_LINKER_FLAGS "-static")
7 set(CMAKE_C_FLAGS_RELEASE "-O3")
7 set(CMAKE_C_LINK_EXECUTABLE "<CMAKE_LINKER> <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
8 set(CMAKE_C_LINK_EXECUTABLE "<CMAKE_LINKER> <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
8 include_directories("/opt/rtems-4.10/sparc-rtems/leon3/lib/include")
9 include_directories("/opt/rtems-4.10/sparc-rtems/leon3/lib/include")
@@ -1,105 +1,105
1 cmake_minimum_required (VERSION 2.6)
1 cmake_minimum_required (VERSION 2.6)
2 project (FSW)
2 project (fsw)
3
3
4 include(sparc-rtems)
4 include(sparc-rtems)
5
5
6 include_directories("../header"
6 include_directories("../header"
7 "../header/lfr_common_headers"
7 "../header/lfr_common_headers"
8 "../header/processing"
8 "../header/processing"
9 "../LFR_basic-parameters"
9 "../LFR_basic-parameters"
10 "../src")
10 "../src")
11
11
12 set(SOURCES wf_handler.c
12 set(SOURCES wf_handler.c
13 tc_handler.c
13 tc_handler.c
14 fsw_misc.c
14 fsw_misc.c
15 fsw_init.c
15 fsw_init.c
16 fsw_globals.c
16 fsw_globals.c
17 fsw_spacewire.c
17 fsw_spacewire.c
18 tc_load_dump_parameters.c
18 tc_load_dump_parameters.c
19 tm_lfr_tc_exe.c
19 tm_lfr_tc_exe.c
20 tc_acceptance.c
20 tc_acceptance.c
21 processing/fsw_processing.c
21 processing/fsw_processing.c
22 processing/avf0_prc0.c
22 processing/avf0_prc0.c
23 processing/avf1_prc1.c
23 processing/avf1_prc1.c
24 processing/avf2_prc2.c
24 processing/avf2_prc2.c
25 lfr_cpu_usage_report.c
25 lfr_cpu_usage_report.c
26 ${LFR_BP_SRC}
26 ${LFR_BP_SRC}
27 ../header/wf_handler.h
27 ../header/wf_handler.h
28 ../header/tc_handler.h
28 ../header/tc_handler.h
29 ../header/grlib_regs.h
29 ../header/grlib_regs.h
30 ../header/fsw_misc.h
30 ../header/fsw_misc.h
31 ../header/fsw_init.h
31 ../header/fsw_init.h
32 ../header/fsw_spacewire.h
32 ../header/fsw_spacewire.h
33 ../header/tc_load_dump_parameters.h
33 ../header/tc_load_dump_parameters.h
34 ../header/tm_lfr_tc_exe.h
34 ../header/tm_lfr_tc_exe.h
35 ../header/tc_acceptance.h
35 ../header/tc_acceptance.h
36 ../header/processing/fsw_processing.h
36 ../header/processing/fsw_processing.h
37 ../header/processing/avf0_prc0.h
37 ../header/processing/avf0_prc0.h
38 ../header/processing/avf1_prc1.h
38 ../header/processing/avf1_prc1.h
39 ../header/processing/avf2_prc2.h
39 ../header/processing/avf2_prc2.h
40 ../header/fsw_params_wf_handler.h
40 ../header/fsw_params_wf_handler.h
41 ../header/lfr_cpu_usage_report.h
41 ../header/lfr_cpu_usage_report.h
42 ../header/lfr_common_headers/ccsds_types.h
42 ../header/lfr_common_headers/ccsds_types.h
43 ../header/lfr_common_headers/fsw_params.h
43 ../header/lfr_common_headers/fsw_params.h
44 ../header/lfr_common_headers/fsw_params_nb_bytes.h
44 ../header/lfr_common_headers/fsw_params_nb_bytes.h
45 ../header/lfr_common_headers/fsw_params_processing.h
45 ../header/lfr_common_headers/fsw_params_processing.h
46 ../header/lfr_common_headers/tm_byte_positions.h
46 ../header/lfr_common_headers/tm_byte_positions.h
47 ../LFR_basic-parameters/basic_parameters.h
47 ../LFR_basic-parameters/basic_parameters.h
48 ../LFR_basic-parameters/basic_parameters_params.h
48 ../LFR_basic-parameters/basic_parameters_params.h
49 ../header/GscMemoryLPP.hpp
49 ../header/GscMemoryLPP.hpp
50 )
50 )
51
51
52
52
53 option(FSW_verbose "Enable verbose LFR" ON)
53 option(FSW_verbose "Enable verbose LFR" ON)
54 option(FSW_boot_messages "Enable LFR boot messages" ON)
54 option(FSW_boot_messages "Enable LFR boot messages" ON)
55 option(FSW_debug_messages "Enable LFR debug messages" ON)
55 option(FSW_debug_messages "Enable LFR debug messages" ON)
56 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
56 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
57 option(FSW_stack_report "Enable LFR stack report" OFF)
57 option(FSW_stack_report "Enable LFR stack report" OFF)
58 option(FSW_vhdl_dev "?" OFF)
58 option(FSW_vhdl_dev "?" OFF)
59 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
59 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
60 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
60 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
61 option(FSW_debug_tch "?" OFF)
61 option(FSW_debug_tch "?" OFF)
62
62
63 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
63 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
64 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
64 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
65 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
65 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
66 set(SW_VERSION_N4 "4" CACHE STRING "Choose N4 FSW Version." FORCE)
66 set(SW_VERSION_N4 "4" CACHE STRING "Choose N4 FSW Version." FORCE)
67
67
68
68
69 if(FSW_verbose)
69 if(FSW_verbose)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 endif()
71 endif()
72 if(FSW_boot_messages)
72 if(FSW_boot_messages)
73 add_definitions(-DBOOT_MESSAGES)
73 add_definitions(-DBOOT_MESSAGES)
74 endif()
74 endif()
75 if(FSW_debug_messages)
75 if(FSW_debug_messages)
76 add_definitions(-DDEBUG_MESSAGES)
76 add_definitions(-DDEBUG_MESSAGES)
77 endif()
77 endif()
78 if(FSW_cpu_usage_report)
78 if(FSW_cpu_usage_report)
79 add_definitions(-DPRINT_TASK_STATISTICS)
79 add_definitions(-DPRINT_TASK_STATISTICS)
80 endif()
80 endif()
81 if(FSW_stack_report)
81 if(FSW_stack_report)
82 add_definitions(-DPRINT_STACK_REPORT)
82 add_definitions(-DPRINT_STACK_REPORT)
83 endif()
83 endif()
84 if(FSW_vhdl_dev)
84 if(FSW_vhdl_dev)
85 add_definitions(-DVHDL_DEV)
85 add_definitions(-DVHDL_DEV)
86 endif()
86 endif()
87 if(FSW_lpp_dpu_destid)
87 if(FSW_lpp_dpu_destid)
88 add_definitions(-DLPP_DPU_DESTID)
88 add_definitions(-DLPP_DPU_DESTID)
89 endif()
89 endif()
90 if(FSW_debug_watchdog)
90 if(FSW_debug_watchdog)
91 add_definitions(-DDEBUG_WATCHDOG)
91 add_definitions(-DDEBUG_WATCHDOG)
92 endif()
92 endif()
93 if(FSW_debug_tch)
93 if(FSW_debug_tch)
94 add_definitions(-DDEBUG_TCH)
94 add_definitions(-DDEBUG_TCH)
95 endif()
95 endif()
96
96
97 add_definitions(-DMSB_FIRST_TCH)
97 add_definitions(-DMSB_FIRST_TCH)
98
98
99 add_definitions(-DSWVERSION=-1-0)
99 add_definitions(-DSWVERSION=-1-0)
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104
104
105 add_executable(FSW ${SOURCES})
105 add_executable(fsw ${SOURCES})
@@ -1,939 +1,938
1 /** This is the RTEMS initialization module.
1 /** This is the RTEMS initialization module.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * This module contains two very different information:
6 * This module contains two very different information:
7 * - specific instructions to configure the compilation of the RTEMS executive
7 * - specific instructions to configure the compilation of the RTEMS executive
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 *
9 *
10 */
10 */
11
11
12 //*************************
12 //*************************
13 // GPL reminder to be added
13 // GPL reminder to be added
14 //*************************
14 //*************************
15
15
16 #include <rtems.h>
16 #include <rtems.h>
17
17
18 /* configuration information */
18 /* configuration information */
19
19
20 #define CONFIGURE_INIT
20 #define CONFIGURE_INIT
21
21
22 #include <bsp.h> /* for device driver prototypes */
22 #include <bsp.h> /* for device driver prototypes */
23
23
24 /* configuration information */
24 /* configuration information */
25
25
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28
28
29 #define CONFIGURE_MAXIMUM_TASKS 20
29 #define CONFIGURE_MAXIMUM_TASKS 20
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 #define CONFIGURE_MAXIMUM_PERIODS 5
37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link]
38 #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link]
39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 #ifdef PRINT_STACK_REPORT
40 #ifdef PRINT_STACK_REPORT
41 #define CONFIGURE_STACK_CHECKER_ENABLED
41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 #endif
42 #endif
43
43
44 #include <rtems/confdefs.h>
44 #include <rtems/confdefs.h>
45
45
46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 #ifdef RTEMS_DRVMGR_STARTUP
47 #ifdef RTEMS_DRVMGR_STARTUP
48 #ifdef LEON3
48 #ifdef LEON3
49 /* Add Timer and UART Driver */
49 /* Add Timer and UART Driver */
50
50
51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 #endif
53 #endif
54
54
55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 #endif
57 #endif
58
58
59 #endif
59 #endif
60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61
61
62 #include <drvmgr/drvmgr_confdefs.h>
62 #include <drvmgr/drvmgr_confdefs.h>
63 #endif
63 #endif
64
64
65 #include "fsw_init.h"
65 #include "fsw_init.h"
66 #include "fsw_config.c"
66 #include "fsw_config.c"
67 #include "GscMemoryLPP.hpp"
67 #include "GscMemoryLPP.hpp"
68
68
69 void initCache()
69 void initCache()
70 {
70 {
71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 // These should only be read and written using 32-bit LDA/STA instructions.
72 // These should only be read and written using 32-bit LDA/STA instructions.
73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 // The table below shows the register addresses:
74 // The table below shows the register addresses:
75 // 0x00 Cache control register
75 // 0x00 Cache control register
76 // 0x04 Reserved
76 // 0x04 Reserved
77 // 0x08 Instruction cache configuration register
77 // 0x08 Instruction cache configuration register
78 // 0x0C Data cache configuration register
78 // 0x0C Data cache configuration register
79
79
80 // Cache Control Register Leon3 / Leon3FT
80 // Cache Control Register Leon3 / Leon3FT
81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 // RFT PS TB DS FD FI FT ST IB
82 // RFT PS TB DS FD FI FT ST IB
83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85
85
86 unsigned int cacheControlRegister;
86 unsigned int cacheControlRegister;
87
87
88 CCR_resetCacheControlRegister();
88 CCR_resetCacheControlRegister();
89 ASR16_resetRegisterProtectionControlRegister();
89 ASR16_resetRegisterProtectionControlRegister();
90
90
91 cacheControlRegister = CCR_getValue();
91 cacheControlRegister = CCR_getValue();
92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94
94
95 CCR_enableInstructionCache(); // ICS bits
95 CCR_enableInstructionCache(); // ICS bits
96 CCR_enableDataCache(); // DCS bits
96 CCR_enableDataCache(); // DCS bits
97 CCR_enableInstructionBurstFetch(); // IB bit
97 CCR_enableInstructionBurstFetch(); // IB bit
98
98
99 faultTolerantScheme();
99 faultTolerantScheme();
100
100
101 cacheControlRegister = CCR_getValue();
101 cacheControlRegister = CCR_getValue();
102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104
104
105 PRINTF("\n");
105 PRINTF("\n");
106 }
106 }
107
107
108 rtems_task Init( rtems_task_argument ignored )
108 rtems_task Init( rtems_task_argument ignored )
109 {
109 {
110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 *
111 *
112 * @param unused is the starting argument of the RTEMS task
112 * @param unused is the starting argument of the RTEMS task
113 *
113 *
114 * The INIT task create and run all other RTEMS tasks.
114 * The INIT task create and run all other RTEMS tasks.
115 *
115 *
116 */
116 */
117
117
118 //***********
118 //***********
119 // INIT CACHE
119 // INIT CACHE
120
120
121 unsigned char *vhdlVersion;
121 unsigned char *vhdlVersion;
122
122
123 reset_lfr();
123 reset_lfr();
124
124
125 reset_local_time();
125 reset_local_time();
126
126
127 rtems_cpu_usage_reset();
127 rtems_cpu_usage_reset();
128
128
129 rtems_status_code status;
129 rtems_status_code status;
130 rtems_status_code status_spw;
130 rtems_status_code status_spw;
131 rtems_isr_entry old_isr_handler;
131 rtems_isr_entry old_isr_handler;
132
132
133 // UART settings
133 // UART settings
134 enable_apbuart_transmitter();
134 enable_apbuart_transmitter();
135 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
135 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
136
136
137 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
137 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
138
138
139
139
140 PRINTF("\n\n\n\n\n")
140 PRINTF("\n\n\n\n\n")
141
141
142 initCache();
142 initCache();
143
143
144 PRINTF("*************************\n")
144 PRINTF("*************************\n")
145 PRINTF("** LFR Flight Software **\n")
145 PRINTF("** LFR Flight Software **\n")
146
146
147 PRINTF1("** %d-", SW_VERSION_N1)
147 PRINTF1("** %d-", SW_VERSION_N1)
148 PRINTF1("%d-" , SW_VERSION_N2)
148 PRINTF1("%d-" , SW_VERSION_N2)
149 PRINTF1("%d-" , SW_VERSION_N3)
149 PRINTF1("%d-" , SW_VERSION_N3)
150 PRINTF1("%d **\n", SW_VERSION_N4)
150 PRINTF1("%d **\n", SW_VERSION_N4)
151
151
152 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
152 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
153 PRINTF("** VHDL **\n")
153 PRINTF("** VHDL **\n")
154 PRINTF1("** %d.", vhdlVersion[1])
154 PRINTF1("** %d.", vhdlVersion[1])
155 PRINTF1("%d." , vhdlVersion[2])
155 PRINTF1("%d." , vhdlVersion[2])
156 PRINTF1("%d **\n", vhdlVersion[3])
156 PRINTF1("%d **\n", vhdlVersion[3])
157 PRINTF("*************************\n")
157 PRINTF("*************************\n")
158 PRINTF("\n\n")
158 PRINTF("\n\n")
159
159
160 init_parameter_dump();
160 init_parameter_dump();
161 init_kcoefficients_dump();
161 init_kcoefficients_dump();
162 init_local_mode_parameters();
162 init_local_mode_parameters();
163 init_housekeeping_parameters();
163 init_housekeeping_parameters();
164 init_k_coefficients_prc0();
164 init_k_coefficients_prc0();
165 init_k_coefficients_prc1();
165 init_k_coefficients_prc1();
166 init_k_coefficients_prc2();
166 init_k_coefficients_prc2();
167 pa_bia_status_info = 0x00;
167 pa_bia_status_info = 0x00;
168 cp_rpw_sc_rw_f_flags = 0x00;
168 cp_rpw_sc_rw_f_flags = 0x00;
169 cp_rpw_sc_rw1_f1 = 0.0;
169 cp_rpw_sc_rw1_f1 = 0.0;
170 cp_rpw_sc_rw1_f2 = 0.0;
170 cp_rpw_sc_rw1_f2 = 0.0;
171 cp_rpw_sc_rw2_f1 = 0.0;
171 cp_rpw_sc_rw2_f1 = 0.0;
172 cp_rpw_sc_rw2_f2 = 0.0;
172 cp_rpw_sc_rw2_f2 = 0.0;
173 cp_rpw_sc_rw3_f1 = 0.0;
173 cp_rpw_sc_rw3_f1 = 0.0;
174 cp_rpw_sc_rw3_f2 = 0.0;
174 cp_rpw_sc_rw3_f2 = 0.0;
175 cp_rpw_sc_rw4_f1 = 0.0;
175 cp_rpw_sc_rw4_f1 = 0.0;
176 cp_rpw_sc_rw4_f2 = 0.0;
176 cp_rpw_sc_rw4_f2 = 0.0;
177 // initialize filtering parameters
177 // initialize filtering parameters
178 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
178 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
179 filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
179 filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
180 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
180 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
181 filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
181 filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
182 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
182 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
183 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
183 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
184 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
184 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
185
185
186 // waveform picker initialization
186 // waveform picker initialization
187 WFP_init_rings();
187 WFP_init_rings();
188 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
188 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
189 WFP_reset_current_ring_nodes();
189 WFP_reset_current_ring_nodes();
190 reset_waveform_picker_regs();
190 reset_waveform_picker_regs();
191
191
192 // spectral matrices initialization
192 // spectral matrices initialization
193 SM_init_rings(); // initialize spectral matrices rings
193 SM_init_rings(); // initialize spectral matrices rings
194 SM_reset_current_ring_nodes();
194 SM_reset_current_ring_nodes();
195 reset_spectral_matrix_regs();
195 reset_spectral_matrix_regs();
196
196
197 // configure calibration
197 // configure calibration
198 configureCalibration( false ); // true means interleaved mode, false is for normal mode
198 configureCalibration( false ); // true means interleaved mode, false is for normal mode
199
199
200 updateLFRCurrentMode( LFR_MODE_STANDBY );
200 updateLFRCurrentMode( LFR_MODE_STANDBY );
201
201
202 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
202 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
203
203
204 create_names(); // create all names
204 create_names(); // create all names
205
205
206 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
206 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
207 if (status != RTEMS_SUCCESSFUL)
207 if (status != RTEMS_SUCCESSFUL)
208 {
208 {
209 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
209 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
210 }
210 }
211
211
212 status = create_message_queues(); // create message queues
212 status = create_message_queues(); // create message queues
213 if (status != RTEMS_SUCCESSFUL)
213 if (status != RTEMS_SUCCESSFUL)
214 {
214 {
215 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
215 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
216 }
216 }
217
217
218 status = create_all_tasks(); // create all tasks
218 status = create_all_tasks(); // create all tasks
219 if (status != RTEMS_SUCCESSFUL)
219 if (status != RTEMS_SUCCESSFUL)
220 {
220 {
221 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
221 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
222 }
222 }
223
223
224 // **************************
224 // **************************
225 // <SPACEWIRE INITIALIZATION>
225 // <SPACEWIRE INITIALIZATION>
226 status_spw = spacewire_open_link(); // (1) open the link
226 status_spw = spacewire_open_link(); // (1) open the link
227 if ( status_spw != RTEMS_SUCCESSFUL )
227 if ( status_spw != RTEMS_SUCCESSFUL )
228 {
228 {
229 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
229 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
230 }
230 }
231
231
232 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
232 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
233 {
233 {
234 status_spw = spacewire_configure_link( fdSPW );
234 status_spw = spacewire_configure_link( fdSPW );
235 if ( status_spw != RTEMS_SUCCESSFUL )
235 if ( status_spw != RTEMS_SUCCESSFUL )
236 {
236 {
237 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
237 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
238 }
238 }
239 }
239 }
240
240
241 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
241 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
242 {
242 {
243 status_spw = spacewire_start_link( fdSPW );
243 status_spw = spacewire_start_link( fdSPW );
244 if ( status_spw != RTEMS_SUCCESSFUL )
244 if ( status_spw != RTEMS_SUCCESSFUL )
245 {
245 {
246 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
246 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
247 }
247 }
248 }
248 }
249 // </SPACEWIRE INITIALIZATION>
249 // </SPACEWIRE INITIALIZATION>
250 // ***************************
250 // ***************************
251
251
252 status = start_all_tasks(); // start all tasks
252 status = start_all_tasks(); // start all tasks
253 if (status != RTEMS_SUCCESSFUL)
253 if (status != RTEMS_SUCCESSFUL)
254 {
254 {
255 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
255 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
256 }
256 }
257
257
258 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
258 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
259 status = start_recv_send_tasks();
259 status = start_recv_send_tasks();
260 if ( status != RTEMS_SUCCESSFUL )
260 if ( status != RTEMS_SUCCESSFUL )
261 {
261 {
262 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
262 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
263 }
263 }
264
264
265 // suspend science tasks, they will be restarted later depending on the mode
265 // suspend science tasks, they will be restarted later depending on the mode
266 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
266 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
267 if (status != RTEMS_SUCCESSFUL)
267 if (status != RTEMS_SUCCESSFUL)
268 {
268 {
269 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
269 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
270 }
270 }
271
271
272 // configure IRQ handling for the waveform picker unit
272 // configure IRQ handling for the waveform picker unit
273 status = rtems_interrupt_catch( waveforms_isr,
273 status = rtems_interrupt_catch( waveforms_isr,
274 IRQ_SPARC_WAVEFORM_PICKER,
274 IRQ_SPARC_WAVEFORM_PICKER,
275 &old_isr_handler) ;
275 &old_isr_handler) ;
276 // configure IRQ handling for the spectral matrices unit
276 // configure IRQ handling for the spectral matrices unit
277 status = rtems_interrupt_catch( spectral_matrices_isr,
277 status = rtems_interrupt_catch( spectral_matrices_isr,
278 IRQ_SPARC_SPECTRAL_MATRIX,
278 IRQ_SPARC_SPECTRAL_MATRIX,
279 &old_isr_handler) ;
279 &old_isr_handler) ;
280
280
281 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
281 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
282 if ( status_spw != RTEMS_SUCCESSFUL )
282 if ( status_spw != RTEMS_SUCCESSFUL )
283 {
283 {
284 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
284 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
285 if ( status != RTEMS_SUCCESSFUL ) {
285 if ( status != RTEMS_SUCCESSFUL ) {
286 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
286 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
287 }
287 }
288 }
288 }
289
289
290 BOOT_PRINTF("delete INIT\n")
290 BOOT_PRINTF("delete INIT\n")
291
291
292 set_hk_lfr_sc_potential_flag( true );
292 set_hk_lfr_sc_potential_flag( true );
293
293
294 // start the timer to detect a missing spacewire timecode
294 // start the timer to detect a missing spacewire timecode
295 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
295 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
296 // if a tickout is generated, the timer is restarted
296 // if a tickout is generated, the timer is restarted
297 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
297 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
298
298
299 grspw_timecode_callback = &timecode_irq_handler;
299 grspw_timecode_callback = &timecode_irq_handler;
300
300
301 status = rtems_task_delete(RTEMS_SELF);
301 status = rtems_task_delete(RTEMS_SELF);
302
302
303 }
303 }
304
304
305 void init_local_mode_parameters( void )
305 void init_local_mode_parameters( void )
306 {
306 {
307 /** This function initialize the param_local global variable with default values.
307 /** This function initialize the param_local global variable with default values.
308 *
308 *
309 */
309 */
310
310
311 unsigned int i;
311 unsigned int i;
312
312
313 // LOCAL PARAMETERS
313 // LOCAL PARAMETERS
314
314
315 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
315 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
316 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
316 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
317 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
318
317
319 // init sequence counters
318 // init sequence counters
320
319
321 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
320 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
322 {
321 {
323 sequenceCounters_TC_EXE[i] = 0x00;
322 sequenceCounters_TC_EXE[i] = 0x00;
324 sequenceCounters_TM_DUMP[i] = 0x00;
323 sequenceCounters_TM_DUMP[i] = 0x00;
325 }
324 }
326 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
325 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
327 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
326 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
328 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
327 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
329 }
328 }
330
329
331 void reset_local_time( void )
330 void reset_local_time( void )
332 {
331 {
333 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
332 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
334 }
333 }
335
334
336 void create_names( void ) // create all names for tasks and queues
335 void create_names( void ) // create all names for tasks and queues
337 {
336 {
338 /** This function creates all RTEMS names used in the software for tasks and queues.
337 /** This function creates all RTEMS names used in the software for tasks and queues.
339 *
338 *
340 * @return RTEMS directive status codes:
339 * @return RTEMS directive status codes:
341 * - RTEMS_SUCCESSFUL - successful completion
340 * - RTEMS_SUCCESSFUL - successful completion
342 *
341 *
343 */
342 */
344
343
345 // task names
344 // task names
346 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
345 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
347 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
346 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
348 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
347 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
349 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
348 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
350 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
349 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
351 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
350 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
352 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
351 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
353 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
352 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
354 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
353 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
355 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
354 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
356 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
355 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
357 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
356 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
358 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
357 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
359 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
358 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
360 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
359 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
361 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
360 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
362 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
361 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
363 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
362 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
364 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
363 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
365
364
366 // rate monotonic period names
365 // rate monotonic period names
367 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
366 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
368
367
369 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
368 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
370 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
369 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
371 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
370 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
372 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
371 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
373 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
372 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
374
373
375 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
374 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
376 }
375 }
377
376
378 int create_all_tasks( void ) // create all tasks which run in the software
377 int create_all_tasks( void ) // create all tasks which run in the software
379 {
378 {
380 /** This function creates all RTEMS tasks used in the software.
379 /** This function creates all RTEMS tasks used in the software.
381 *
380 *
382 * @return RTEMS directive status codes:
381 * @return RTEMS directive status codes:
383 * - RTEMS_SUCCESSFUL - task created successfully
382 * - RTEMS_SUCCESSFUL - task created successfully
384 * - RTEMS_INVALID_ADDRESS - id is NULL
383 * - RTEMS_INVALID_ADDRESS - id is NULL
385 * - RTEMS_INVALID_NAME - invalid task name
384 * - RTEMS_INVALID_NAME - invalid task name
386 * - RTEMS_INVALID_PRIORITY - invalid task priority
385 * - RTEMS_INVALID_PRIORITY - invalid task priority
387 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
386 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
388 * - RTEMS_TOO_MANY - too many tasks created
387 * - RTEMS_TOO_MANY - too many tasks created
389 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
388 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
390 * - RTEMS_TOO_MANY - too many global objects
389 * - RTEMS_TOO_MANY - too many global objects
391 *
390 *
392 */
391 */
393
392
394 rtems_status_code status;
393 rtems_status_code status;
395
394
396 //**********
395 //**********
397 // SPACEWIRE
396 // SPACEWIRE
398 // RECV
397 // RECV
399 status = rtems_task_create(
398 status = rtems_task_create(
400 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
399 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
401 RTEMS_DEFAULT_MODES,
400 RTEMS_DEFAULT_MODES,
402 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
401 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
403 );
402 );
404 if (status == RTEMS_SUCCESSFUL) // SEND
403 if (status == RTEMS_SUCCESSFUL) // SEND
405 {
404 {
406 status = rtems_task_create(
405 status = rtems_task_create(
407 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
406 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
408 RTEMS_DEFAULT_MODES,
407 RTEMS_DEFAULT_MODES,
409 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
408 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
410 );
409 );
411 }
410 }
412 if (status == RTEMS_SUCCESSFUL) // LINK
411 if (status == RTEMS_SUCCESSFUL) // LINK
413 {
412 {
414 status = rtems_task_create(
413 status = rtems_task_create(
415 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
414 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
416 RTEMS_DEFAULT_MODES,
415 RTEMS_DEFAULT_MODES,
417 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
416 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
418 );
417 );
419 }
418 }
420 if (status == RTEMS_SUCCESSFUL) // ACTN
419 if (status == RTEMS_SUCCESSFUL) // ACTN
421 {
420 {
422 status = rtems_task_create(
421 status = rtems_task_create(
423 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
422 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
424 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
423 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
425 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
424 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
426 );
425 );
427 }
426 }
428 if (status == RTEMS_SUCCESSFUL) // SPIQ
427 if (status == RTEMS_SUCCESSFUL) // SPIQ
429 {
428 {
430 status = rtems_task_create(
429 status = rtems_task_create(
431 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
430 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
432 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
431 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
433 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
432 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
434 );
433 );
435 }
434 }
436
435
437 //******************
436 //******************
438 // SPECTRAL MATRICES
437 // SPECTRAL MATRICES
439 if (status == RTEMS_SUCCESSFUL) // AVF0
438 if (status == RTEMS_SUCCESSFUL) // AVF0
440 {
439 {
441 status = rtems_task_create(
440 status = rtems_task_create(
442 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
441 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
443 RTEMS_DEFAULT_MODES,
442 RTEMS_DEFAULT_MODES,
444 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
443 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
445 );
444 );
446 }
445 }
447 if (status == RTEMS_SUCCESSFUL) // PRC0
446 if (status == RTEMS_SUCCESSFUL) // PRC0
448 {
447 {
449 status = rtems_task_create(
448 status = rtems_task_create(
450 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
449 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
451 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
450 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
452 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
451 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
453 );
452 );
454 }
453 }
455 if (status == RTEMS_SUCCESSFUL) // AVF1
454 if (status == RTEMS_SUCCESSFUL) // AVF1
456 {
455 {
457 status = rtems_task_create(
456 status = rtems_task_create(
458 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
457 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
459 RTEMS_DEFAULT_MODES,
458 RTEMS_DEFAULT_MODES,
460 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
459 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
461 );
460 );
462 }
461 }
463 if (status == RTEMS_SUCCESSFUL) // PRC1
462 if (status == RTEMS_SUCCESSFUL) // PRC1
464 {
463 {
465 status = rtems_task_create(
464 status = rtems_task_create(
466 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
465 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
467 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
466 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
468 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
467 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
469 );
468 );
470 }
469 }
471 if (status == RTEMS_SUCCESSFUL) // AVF2
470 if (status == RTEMS_SUCCESSFUL) // AVF2
472 {
471 {
473 status = rtems_task_create(
472 status = rtems_task_create(
474 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
473 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
475 RTEMS_DEFAULT_MODES,
474 RTEMS_DEFAULT_MODES,
476 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
475 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
477 );
476 );
478 }
477 }
479 if (status == RTEMS_SUCCESSFUL) // PRC2
478 if (status == RTEMS_SUCCESSFUL) // PRC2
480 {
479 {
481 status = rtems_task_create(
480 status = rtems_task_create(
482 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
481 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
483 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
482 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
484 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
483 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
485 );
484 );
486 }
485 }
487
486
488 //****************
487 //****************
489 // WAVEFORM PICKER
488 // WAVEFORM PICKER
490 if (status == RTEMS_SUCCESSFUL) // WFRM
489 if (status == RTEMS_SUCCESSFUL) // WFRM
491 {
490 {
492 status = rtems_task_create(
491 status = rtems_task_create(
493 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
492 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
494 RTEMS_DEFAULT_MODES,
493 RTEMS_DEFAULT_MODES,
495 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
494 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
496 );
495 );
497 }
496 }
498 if (status == RTEMS_SUCCESSFUL) // CWF3
497 if (status == RTEMS_SUCCESSFUL) // CWF3
499 {
498 {
500 status = rtems_task_create(
499 status = rtems_task_create(
501 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
500 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
502 RTEMS_DEFAULT_MODES,
501 RTEMS_DEFAULT_MODES,
503 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
502 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
504 );
503 );
505 }
504 }
506 if (status == RTEMS_SUCCESSFUL) // CWF2
505 if (status == RTEMS_SUCCESSFUL) // CWF2
507 {
506 {
508 status = rtems_task_create(
507 status = rtems_task_create(
509 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
508 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
510 RTEMS_DEFAULT_MODES,
509 RTEMS_DEFAULT_MODES,
511 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
510 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
512 );
511 );
513 }
512 }
514 if (status == RTEMS_SUCCESSFUL) // CWF1
513 if (status == RTEMS_SUCCESSFUL) // CWF1
515 {
514 {
516 status = rtems_task_create(
515 status = rtems_task_create(
517 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
516 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
518 RTEMS_DEFAULT_MODES,
517 RTEMS_DEFAULT_MODES,
519 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
518 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
520 );
519 );
521 }
520 }
522 if (status == RTEMS_SUCCESSFUL) // SWBD
521 if (status == RTEMS_SUCCESSFUL) // SWBD
523 {
522 {
524 status = rtems_task_create(
523 status = rtems_task_create(
525 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
524 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
526 RTEMS_DEFAULT_MODES,
525 RTEMS_DEFAULT_MODES,
527 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
526 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
528 );
527 );
529 }
528 }
530
529
531 //*****
530 //*****
532 // MISC
531 // MISC
533 if (status == RTEMS_SUCCESSFUL) // LOAD
532 if (status == RTEMS_SUCCESSFUL) // LOAD
534 {
533 {
535 status = rtems_task_create(
534 status = rtems_task_create(
536 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
535 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
537 RTEMS_DEFAULT_MODES,
536 RTEMS_DEFAULT_MODES,
538 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
537 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
539 );
538 );
540 }
539 }
541 if (status == RTEMS_SUCCESSFUL) // DUMB
540 if (status == RTEMS_SUCCESSFUL) // DUMB
542 {
541 {
543 status = rtems_task_create(
542 status = rtems_task_create(
544 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
543 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
545 RTEMS_DEFAULT_MODES,
544 RTEMS_DEFAULT_MODES,
546 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
545 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
547 );
546 );
548 }
547 }
549 if (status == RTEMS_SUCCESSFUL) // HOUS
548 if (status == RTEMS_SUCCESSFUL) // HOUS
550 {
549 {
551 status = rtems_task_create(
550 status = rtems_task_create(
552 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
551 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
553 RTEMS_DEFAULT_MODES,
552 RTEMS_DEFAULT_MODES,
554 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
553 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
555 );
554 );
556 }
555 }
557
556
558 return status;
557 return status;
559 }
558 }
560
559
561 int start_recv_send_tasks( void )
560 int start_recv_send_tasks( void )
562 {
561 {
563 rtems_status_code status;
562 rtems_status_code status;
564
563
565 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
564 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
566 if (status!=RTEMS_SUCCESSFUL) {
565 if (status!=RTEMS_SUCCESSFUL) {
567 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
566 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
568 }
567 }
569
568
570 if (status == RTEMS_SUCCESSFUL) // SEND
569 if (status == RTEMS_SUCCESSFUL) // SEND
571 {
570 {
572 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
571 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
573 if (status!=RTEMS_SUCCESSFUL) {
572 if (status!=RTEMS_SUCCESSFUL) {
574 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
573 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
575 }
574 }
576 }
575 }
577
576
578 return status;
577 return status;
579 }
578 }
580
579
581 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
580 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
582 {
581 {
583 /** This function starts all RTEMS tasks used in the software.
582 /** This function starts all RTEMS tasks used in the software.
584 *
583 *
585 * @return RTEMS directive status codes:
584 * @return RTEMS directive status codes:
586 * - RTEMS_SUCCESSFUL - ask started successfully
585 * - RTEMS_SUCCESSFUL - ask started successfully
587 * - RTEMS_INVALID_ADDRESS - invalid task entry point
586 * - RTEMS_INVALID_ADDRESS - invalid task entry point
588 * - RTEMS_INVALID_ID - invalid task id
587 * - RTEMS_INVALID_ID - invalid task id
589 * - RTEMS_INCORRECT_STATE - task not in the dormant state
588 * - RTEMS_INCORRECT_STATE - task not in the dormant state
590 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
589 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
591 *
590 *
592 */
591 */
593 // starts all the tasks fot eh flight software
592 // starts all the tasks fot eh flight software
594
593
595 rtems_status_code status;
594 rtems_status_code status;
596
595
597 //**********
596 //**********
598 // SPACEWIRE
597 // SPACEWIRE
599 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
598 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
600 if (status!=RTEMS_SUCCESSFUL) {
599 if (status!=RTEMS_SUCCESSFUL) {
601 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
600 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
602 }
601 }
603
602
604 if (status == RTEMS_SUCCESSFUL) // LINK
603 if (status == RTEMS_SUCCESSFUL) // LINK
605 {
604 {
606 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
605 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
607 if (status!=RTEMS_SUCCESSFUL) {
606 if (status!=RTEMS_SUCCESSFUL) {
608 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
607 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
609 }
608 }
610 }
609 }
611
610
612 if (status == RTEMS_SUCCESSFUL) // ACTN
611 if (status == RTEMS_SUCCESSFUL) // ACTN
613 {
612 {
614 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
613 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
615 if (status!=RTEMS_SUCCESSFUL) {
614 if (status!=RTEMS_SUCCESSFUL) {
616 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
615 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
617 }
616 }
618 }
617 }
619
618
620 //******************
619 //******************
621 // SPECTRAL MATRICES
620 // SPECTRAL MATRICES
622 if (status == RTEMS_SUCCESSFUL) // AVF0
621 if (status == RTEMS_SUCCESSFUL) // AVF0
623 {
622 {
624 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
623 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
625 if (status!=RTEMS_SUCCESSFUL) {
624 if (status!=RTEMS_SUCCESSFUL) {
626 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
625 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
627 }
626 }
628 }
627 }
629 if (status == RTEMS_SUCCESSFUL) // PRC0
628 if (status == RTEMS_SUCCESSFUL) // PRC0
630 {
629 {
631 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
630 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
632 if (status!=RTEMS_SUCCESSFUL) {
631 if (status!=RTEMS_SUCCESSFUL) {
633 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
632 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
634 }
633 }
635 }
634 }
636 if (status == RTEMS_SUCCESSFUL) // AVF1
635 if (status == RTEMS_SUCCESSFUL) // AVF1
637 {
636 {
638 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
637 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
639 if (status!=RTEMS_SUCCESSFUL) {
638 if (status!=RTEMS_SUCCESSFUL) {
640 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
639 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
641 }
640 }
642 }
641 }
643 if (status == RTEMS_SUCCESSFUL) // PRC1
642 if (status == RTEMS_SUCCESSFUL) // PRC1
644 {
643 {
645 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
644 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
646 if (status!=RTEMS_SUCCESSFUL) {
645 if (status!=RTEMS_SUCCESSFUL) {
647 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
646 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
648 }
647 }
649 }
648 }
650 if (status == RTEMS_SUCCESSFUL) // AVF2
649 if (status == RTEMS_SUCCESSFUL) // AVF2
651 {
650 {
652 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
651 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
653 if (status!=RTEMS_SUCCESSFUL) {
652 if (status!=RTEMS_SUCCESSFUL) {
654 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
653 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
655 }
654 }
656 }
655 }
657 if (status == RTEMS_SUCCESSFUL) // PRC2
656 if (status == RTEMS_SUCCESSFUL) // PRC2
658 {
657 {
659 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
658 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
660 if (status!=RTEMS_SUCCESSFUL) {
659 if (status!=RTEMS_SUCCESSFUL) {
661 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
660 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
662 }
661 }
663 }
662 }
664
663
665 //****************
664 //****************
666 // WAVEFORM PICKER
665 // WAVEFORM PICKER
667 if (status == RTEMS_SUCCESSFUL) // WFRM
666 if (status == RTEMS_SUCCESSFUL) // WFRM
668 {
667 {
669 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
668 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
670 if (status!=RTEMS_SUCCESSFUL) {
669 if (status!=RTEMS_SUCCESSFUL) {
671 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
670 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
672 }
671 }
673 }
672 }
674 if (status == RTEMS_SUCCESSFUL) // CWF3
673 if (status == RTEMS_SUCCESSFUL) // CWF3
675 {
674 {
676 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
675 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
677 if (status!=RTEMS_SUCCESSFUL) {
676 if (status!=RTEMS_SUCCESSFUL) {
678 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
677 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
679 }
678 }
680 }
679 }
681 if (status == RTEMS_SUCCESSFUL) // CWF2
680 if (status == RTEMS_SUCCESSFUL) // CWF2
682 {
681 {
683 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
682 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
684 if (status!=RTEMS_SUCCESSFUL) {
683 if (status!=RTEMS_SUCCESSFUL) {
685 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
684 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
686 }
685 }
687 }
686 }
688 if (status == RTEMS_SUCCESSFUL) // CWF1
687 if (status == RTEMS_SUCCESSFUL) // CWF1
689 {
688 {
690 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
689 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
691 if (status!=RTEMS_SUCCESSFUL) {
690 if (status!=RTEMS_SUCCESSFUL) {
692 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
691 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
693 }
692 }
694 }
693 }
695 if (status == RTEMS_SUCCESSFUL) // SWBD
694 if (status == RTEMS_SUCCESSFUL) // SWBD
696 {
695 {
697 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
696 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
698 if (status!=RTEMS_SUCCESSFUL) {
697 if (status!=RTEMS_SUCCESSFUL) {
699 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
698 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
700 }
699 }
701 }
700 }
702
701
703 //*****
702 //*****
704 // MISC
703 // MISC
705 if (status == RTEMS_SUCCESSFUL) // HOUS
704 if (status == RTEMS_SUCCESSFUL) // HOUS
706 {
705 {
707 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
706 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
708 if (status!=RTEMS_SUCCESSFUL) {
707 if (status!=RTEMS_SUCCESSFUL) {
709 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
708 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
710 }
709 }
711 }
710 }
712 if (status == RTEMS_SUCCESSFUL) // DUMB
711 if (status == RTEMS_SUCCESSFUL) // DUMB
713 {
712 {
714 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
713 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
715 if (status!=RTEMS_SUCCESSFUL) {
714 if (status!=RTEMS_SUCCESSFUL) {
716 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
715 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
717 }
716 }
718 }
717 }
719 if (status == RTEMS_SUCCESSFUL) // LOAD
718 if (status == RTEMS_SUCCESSFUL) // LOAD
720 {
719 {
721 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
720 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
722 if (status!=RTEMS_SUCCESSFUL) {
721 if (status!=RTEMS_SUCCESSFUL) {
723 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
722 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
724 }
723 }
725 }
724 }
726
725
727 return status;
726 return status;
728 }
727 }
729
728
730 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
729 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
731 {
730 {
732 rtems_status_code status_recv;
731 rtems_status_code status_recv;
733 rtems_status_code status_send;
732 rtems_status_code status_send;
734 rtems_status_code status_q_p0;
733 rtems_status_code status_q_p0;
735 rtems_status_code status_q_p1;
734 rtems_status_code status_q_p1;
736 rtems_status_code status_q_p2;
735 rtems_status_code status_q_p2;
737 rtems_status_code ret;
736 rtems_status_code ret;
738 rtems_id queue_id;
737 rtems_id queue_id;
739
738
740 //****************************************
739 //****************************************
741 // create the queue for handling valid TCs
740 // create the queue for handling valid TCs
742 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
741 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
743 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
742 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
744 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
743 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
745 if ( status_recv != RTEMS_SUCCESSFUL ) {
744 if ( status_recv != RTEMS_SUCCESSFUL ) {
746 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
745 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
747 }
746 }
748
747
749 //************************************************
748 //************************************************
750 // create the queue for handling TM packet sending
749 // create the queue for handling TM packet sending
751 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
750 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
752 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
751 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
753 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
752 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
754 if ( status_send != RTEMS_SUCCESSFUL ) {
753 if ( status_send != RTEMS_SUCCESSFUL ) {
755 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
754 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
756 }
755 }
757
756
758 //*****************************************************************************
757 //*****************************************************************************
759 // create the queue for handling averaged spectral matrices for processing @ f0
758 // create the queue for handling averaged spectral matrices for processing @ f0
760 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
759 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
761 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
760 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
762 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
761 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
763 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
762 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
764 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
763 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
765 }
764 }
766
765
767 //*****************************************************************************
766 //*****************************************************************************
768 // create the queue for handling averaged spectral matrices for processing @ f1
767 // create the queue for handling averaged spectral matrices for processing @ f1
769 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
768 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
770 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
769 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
771 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
770 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
772 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
771 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
773 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
772 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
774 }
773 }
775
774
776 //*****************************************************************************
775 //*****************************************************************************
777 // create the queue for handling averaged spectral matrices for processing @ f2
776 // create the queue for handling averaged spectral matrices for processing @ f2
778 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
777 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
779 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
778 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
780 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
779 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
781 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
780 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
782 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
781 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
783 }
782 }
784
783
785 if ( status_recv != RTEMS_SUCCESSFUL )
784 if ( status_recv != RTEMS_SUCCESSFUL )
786 {
785 {
787 ret = status_recv;
786 ret = status_recv;
788 }
787 }
789 else if( status_send != RTEMS_SUCCESSFUL )
788 else if( status_send != RTEMS_SUCCESSFUL )
790 {
789 {
791 ret = status_send;
790 ret = status_send;
792 }
791 }
793 else if( status_q_p0 != RTEMS_SUCCESSFUL )
792 else if( status_q_p0 != RTEMS_SUCCESSFUL )
794 {
793 {
795 ret = status_q_p0;
794 ret = status_q_p0;
796 }
795 }
797 else if( status_q_p1 != RTEMS_SUCCESSFUL )
796 else if( status_q_p1 != RTEMS_SUCCESSFUL )
798 {
797 {
799 ret = status_q_p1;
798 ret = status_q_p1;
800 }
799 }
801 else
800 else
802 {
801 {
803 ret = status_q_p2;
802 ret = status_q_p2;
804 }
803 }
805
804
806 return ret;
805 return ret;
807 }
806 }
808
807
809 rtems_status_code create_timecode_timer( void )
808 rtems_status_code create_timecode_timer( void )
810 {
809 {
811 rtems_status_code status;
810 rtems_status_code status;
812
811
813 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
812 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
814
813
815 if ( status != RTEMS_SUCCESSFUL )
814 if ( status != RTEMS_SUCCESSFUL )
816 {
815 {
817 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
816 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
818 }
817 }
819 else
818 else
820 {
819 {
821 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
820 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
822 }
821 }
823
822
824 return status;
823 return status;
825 }
824 }
826
825
827 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
826 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
828 {
827 {
829 rtems_status_code status;
828 rtems_status_code status;
830 rtems_name queue_name;
829 rtems_name queue_name;
831
830
832 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
831 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
833
832
834 status = rtems_message_queue_ident( queue_name, 0, queue_id );
833 status = rtems_message_queue_ident( queue_name, 0, queue_id );
835
834
836 return status;
835 return status;
837 }
836 }
838
837
839 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
838 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
840 {
839 {
841 rtems_status_code status;
840 rtems_status_code status;
842 rtems_name queue_name;
841 rtems_name queue_name;
843
842
844 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
843 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
845
844
846 status = rtems_message_queue_ident( queue_name, 0, queue_id );
845 status = rtems_message_queue_ident( queue_name, 0, queue_id );
847
846
848 return status;
847 return status;
849 }
848 }
850
849
851 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
850 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
852 {
851 {
853 rtems_status_code status;
852 rtems_status_code status;
854 rtems_name queue_name;
853 rtems_name queue_name;
855
854
856 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
855 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
857
856
858 status = rtems_message_queue_ident( queue_name, 0, queue_id );
857 status = rtems_message_queue_ident( queue_name, 0, queue_id );
859
858
860 return status;
859 return status;
861 }
860 }
862
861
863 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
862 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
864 {
863 {
865 rtems_status_code status;
864 rtems_status_code status;
866 rtems_name queue_name;
865 rtems_name queue_name;
867
866
868 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
867 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
869
868
870 status = rtems_message_queue_ident( queue_name, 0, queue_id );
869 status = rtems_message_queue_ident( queue_name, 0, queue_id );
871
870
872 return status;
871 return status;
873 }
872 }
874
873
875 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
874 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
876 {
875 {
877 rtems_status_code status;
876 rtems_status_code status;
878 rtems_name queue_name;
877 rtems_name queue_name;
879
878
880 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
879 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
881
880
882 status = rtems_message_queue_ident( queue_name, 0, queue_id );
881 status = rtems_message_queue_ident( queue_name, 0, queue_id );
883
882
884 return status;
883 return status;
885 }
884 }
886
885
887 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
886 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
888 {
887 {
889 u_int32_t count;
888 u_int32_t count;
890 rtems_status_code status;
889 rtems_status_code status;
891
890
892 status = rtems_message_queue_get_number_pending( queue_id, &count );
891 status = rtems_message_queue_get_number_pending( queue_id, &count );
893
892
894 count = count + 1;
893 count = count + 1;
895
894
896 if (status != RTEMS_SUCCESSFUL)
895 if (status != RTEMS_SUCCESSFUL)
897 {
896 {
898 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
897 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
899 }
898 }
900 else
899 else
901 {
900 {
902 if (count > *fifo_size_max)
901 if (count > *fifo_size_max)
903 {
902 {
904 *fifo_size_max = count;
903 *fifo_size_max = count;
905 }
904 }
906 }
905 }
907 }
906 }
908
907
909 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
908 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
910 {
909 {
911 unsigned char i;
910 unsigned char i;
912
911
913 //***************
912 //***************
914 // BUFFER ADDRESS
913 // BUFFER ADDRESS
915 for(i=0; i<nbNodes; i++)
914 for(i=0; i<nbNodes; i++)
916 {
915 {
917 ring[i].coarseTime = 0xffffffff;
916 ring[i].coarseTime = 0xffffffff;
918 ring[i].fineTime = 0xffffffff;
917 ring[i].fineTime = 0xffffffff;
919 ring[i].sid = 0x00;
918 ring[i].sid = 0x00;
920 ring[i].status = 0x00;
919 ring[i].status = 0x00;
921 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
920 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
922 }
921 }
923
922
924 //*****
923 //*****
925 // NEXT
924 // NEXT
926 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
925 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
927 for(i=0; i<nbNodes-1; i++)
926 for(i=0; i<nbNodes-1; i++)
928 {
927 {
929 ring[i].next = (ring_node*) &ring[ i + 1 ];
928 ring[i].next = (ring_node*) &ring[ i + 1 ];
930 }
929 }
931
930
932 //*********
931 //*********
933 // PREVIOUS
932 // PREVIOUS
934 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
933 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
935 for(i=1; i<nbNodes; i++)
934 for(i=1; i<nbNodes; i++)
936 {
935 {
937 ring[i].previous = (ring_node*) &ring[ i - 1 ];
936 ring[i].previous = (ring_node*) &ring[ i - 1 ];
938 }
937 }
939 }
938 }
@@ -1,1628 +1,1628
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 ring_node kcoefficient_node_1;
19 ring_node kcoefficient_node_1;
20 ring_node kcoefficient_node_2;
20 ring_node kcoefficient_node_2;
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_normal_par_consistency( TC, queue_id );
61 flag = check_normal_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET THE PARAMETERS
135 // SET THE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 if (aux > FLOAT_EQUAL_ZERO)
193 if (aux > FLOAT_EQUAL_ZERO)
194 {
194 {
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 flag = LFR_DEFAULT;
196 flag = LFR_DEFAULT;
197 }
197 }
198 }
198 }
199
199
200 // SET THE PARAMETERS
200 // SET THE PARAMETERS
201 if (flag == LFR_SUCCESSFUL)
201 if (flag == LFR_SUCCESSFUL)
202 {
202 {
203 flag = set_sy_lfr_s1_bp_p0( TC );
203 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
205 }
205 }
206
206
207 return flag;
207 return flag;
208 }
208 }
209
209
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 {
211 {
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 *
213 *
214 * @param TC points to the TeleCommand packet that is being processed
214 * @param TC points to the TeleCommand packet that is being processed
215 * @param queue_id is the id of the queue which handles TM related to this execution step
215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 *
216 *
217 */
217 */
218
218
219 int flag;
219 int flag;
220 rtems_status_code status;
220 rtems_status_code status;
221 unsigned char sy_lfr_s2_bp_p0;
221 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p1;
222 unsigned char sy_lfr_s2_bp_p1;
223 float aux;
223 float aux;
224
224
225 flag = LFR_SUCCESSFUL;
225 flag = LFR_SUCCESSFUL;
226
226
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 flag = LFR_DEFAULT;
229 flag = LFR_DEFAULT;
230 }
230 }
231
231
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234
234
235 // sy_lfr_s2_bp_p0
235 // sy_lfr_s2_bp_p0
236 if (flag == LFR_SUCCESSFUL)
236 if (flag == LFR_SUCCESSFUL)
237 {
237 {
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 {
239 {
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 flag = WRONG_APP_DATA;
241 flag = WRONG_APP_DATA;
242 }
242 }
243 }
243 }
244 // sy_lfr_s2_bp_p1
244 // sy_lfr_s2_bp_p1
245 if (flag == LFR_SUCCESSFUL)
245 if (flag == LFR_SUCCESSFUL)
246 {
246 {
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 {
248 {
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 flag = WRONG_APP_DATA;
250 flag = WRONG_APP_DATA;
251 }
251 }
252 }
252 }
253 //******************************************************************
253 //******************************************************************
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 if (flag == LFR_SUCCESSFUL)
255 if (flag == LFR_SUCCESSFUL)
256 {
256 {
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 if (aux > FLOAT_EQUAL_ZERO)
260 if (aux > FLOAT_EQUAL_ZERO)
261 {
261 {
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 flag = LFR_DEFAULT;
263 flag = LFR_DEFAULT;
264 }
264 }
265 }
265 }
266
266
267 // SET THE PARAMETERS
267 // SET THE PARAMETERS
268 if (flag == LFR_SUCCESSFUL)
268 if (flag == LFR_SUCCESSFUL)
269 {
269 {
270 flag = set_sy_lfr_s2_bp_p0( TC );
270 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
272 }
272 }
273
273
274 return flag;
274 return flag;
275 }
275 }
276
276
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 {
278 {
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 *
280 *
281 * @param TC points to the TeleCommand packet that is being processed
281 * @param TC points to the TeleCommand packet that is being processed
282 * @param queue_id is the id of the queue which handles TM related to this execution step
282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 *
283 *
284 */
284 */
285
285
286 int flag;
286 int flag;
287
287
288 flag = LFR_DEFAULT;
288 flag = LFR_DEFAULT;
289
289
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291
291
292 return flag;
292 return flag;
293 }
293 }
294
294
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 {
296 {
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 *
298 *
299 * @param TC points to the TeleCommand packet that is being processed
299 * @param TC points to the TeleCommand packet that is being processed
300 * @param queue_id is the id of the queue which handles TM related to this execution step
300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 *
301 *
302 */
302 */
303
303
304 int flag;
304 int flag;
305
305
306 flag = LFR_DEFAULT;
306 flag = LFR_DEFAULT;
307
307
308 flag = set_sy_lfr_fbins( TC );
308 flag = set_sy_lfr_fbins( TC );
309
309
310 return flag;
310 return flag;
311 }
311 }
312
312
313 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
313 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 {
314 {
315 /** This function updates the LFR registers with the incoming sbm2 parameters.
315 /** This function updates the LFR registers with the incoming sbm2 parameters.
316 *
316 *
317 * @param TC points to the TeleCommand packet that is being processed
317 * @param TC points to the TeleCommand packet that is being processed
318 * @param queue_id is the id of the queue which handles TM related to this execution step
318 * @param queue_id is the id of the queue which handles TM related to this execution step
319 *
319 *
320 */
320 */
321
321
322 int flag;
322 int flag;
323
323
324 flag = LFR_DEFAULT;
324 flag = LFR_DEFAULT;
325
325
326 flag = check_sy_lfr_filter_parameters( TC, queue_id );
326 flag = check_sy_lfr_filter_parameters( TC, queue_id );
327
327
328 if (flag == LFR_SUCCESSFUL)
328 if (flag == LFR_SUCCESSFUL)
329 {
329 {
330 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
330 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
331 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
331 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
332 parameter_dump_packet.sy_lfr_pas_filter_tbad[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 0 ];
332 parameter_dump_packet.sy_lfr_pas_filter_tbad[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 0 ];
333 parameter_dump_packet.sy_lfr_pas_filter_tbad[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 1 ];
333 parameter_dump_packet.sy_lfr_pas_filter_tbad[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 1 ];
334 parameter_dump_packet.sy_lfr_pas_filter_tbad[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 2 ];
334 parameter_dump_packet.sy_lfr_pas_filter_tbad[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 2 ];
335 parameter_dump_packet.sy_lfr_pas_filter_tbad[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 3 ];
335 parameter_dump_packet.sy_lfr_pas_filter_tbad[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 3 ];
336 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
336 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
337 parameter_dump_packet.sy_lfr_pas_filter_shift[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 0 ];
337 parameter_dump_packet.sy_lfr_pas_filter_shift[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 0 ];
338 parameter_dump_packet.sy_lfr_pas_filter_shift[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 1 ];
338 parameter_dump_packet.sy_lfr_pas_filter_shift[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 1 ];
339 parameter_dump_packet.sy_lfr_pas_filter_shift[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 2 ];
339 parameter_dump_packet.sy_lfr_pas_filter_shift[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 2 ];
340 parameter_dump_packet.sy_lfr_pas_filter_shift[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 3 ];
340 parameter_dump_packet.sy_lfr_pas_filter_shift[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 3 ];
341 parameter_dump_packet.sy_lfr_sc_rw_delta_f[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 0 ];
341 parameter_dump_packet.sy_lfr_sc_rw_delta_f[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 0 ];
342 parameter_dump_packet.sy_lfr_sc_rw_delta_f[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 1 ];
342 parameter_dump_packet.sy_lfr_sc_rw_delta_f[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 1 ];
343 parameter_dump_packet.sy_lfr_sc_rw_delta_f[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 2 ];
343 parameter_dump_packet.sy_lfr_sc_rw_delta_f[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 2 ];
344 parameter_dump_packet.sy_lfr_sc_rw_delta_f[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 3 ];
344 parameter_dump_packet.sy_lfr_sc_rw_delta_f[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 3 ];
345
345
346 //****************************
346 //****************************
347 // store PAS filter parameters
347 // store PAS filter parameters
348 // sy_lfr_pas_filter_enabled
348 // sy_lfr_pas_filter_enabled
349 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
349 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
350 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & 0x01 );
350 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & 0x01 );
351 // sy_lfr_pas_filter_modulus
351 // sy_lfr_pas_filter_modulus
352 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
352 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
353 // sy_lfr_pas_filter_tbad
353 // sy_lfr_pas_filter_tbad
354 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
354 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
355 parameter_dump_packet.sy_lfr_pas_filter_tbad );
355 parameter_dump_packet.sy_lfr_pas_filter_tbad );
356 // sy_lfr_pas_filter_offset
356 // sy_lfr_pas_filter_offset
357 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
357 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
358 // sy_lfr_pas_filter_shift
358 // sy_lfr_pas_filter_shift
359 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
359 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
360 parameter_dump_packet.sy_lfr_pas_filter_shift );
360 parameter_dump_packet.sy_lfr_pas_filter_shift );
361
361
362 //****************************************************
362 //****************************************************
363 // store the parameter sy_lfr_sc_rw_delta_f as a float
363 // store the parameter sy_lfr_sc_rw_delta_f as a float
364 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
364 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
365 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
365 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
366 }
366 }
367
367
368 return flag;
368 return flag;
369 }
369 }
370
370
371 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
371 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
372 {
372 {
373 /** This function updates the LFR registers with the incoming sbm2 parameters.
373 /** This function updates the LFR registers with the incoming sbm2 parameters.
374 *
374 *
375 * @param TC points to the TeleCommand packet that is being processed
375 * @param TC points to the TeleCommand packet that is being processed
376 * @param queue_id is the id of the queue which handles TM related to this execution step
376 * @param queue_id is the id of the queue which handles TM related to this execution step
377 *
377 *
378 */
378 */
379
379
380 unsigned int address;
380 unsigned int address;
381 rtems_status_code status;
381 rtems_status_code status;
382 unsigned int freq;
382 unsigned int freq;
383 unsigned int bin;
383 unsigned int bin;
384 unsigned int coeff;
384 unsigned int coeff;
385 unsigned char *kCoeffPtr;
385 unsigned char *kCoeffPtr;
386 unsigned char *kCoeffDumpPtr;
386 unsigned char *kCoeffDumpPtr;
387
387
388 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
388 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
389 // F0 => 11 bins
389 // F0 => 11 bins
390 // F1 => 13 bins
390 // F1 => 13 bins
391 // F2 => 12 bins
391 // F2 => 12 bins
392 // 36 bins to dump in two packets (30 bins max per packet)
392 // 36 bins to dump in two packets (30 bins max per packet)
393
393
394 //*********
394 //*********
395 // PACKET 1
395 // PACKET 1
396 // 11 F0 bins, 13 F1 bins and 6 F2 bins
396 // 11 F0 bins, 13 F1 bins and 6 F2 bins
397 kcoefficients_dump_1.destinationID = TC->sourceID;
397 kcoefficients_dump_1.destinationID = TC->sourceID;
398 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
398 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
399 for( freq=0;
399 for( freq=0;
400 freq<NB_BINS_COMPRESSED_SM_F0;
400 freq<NB_BINS_COMPRESSED_SM_F0;
401 freq++ )
401 freq++ )
402 {
402 {
403 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
403 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
404 bin = freq;
404 bin = freq;
405 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
405 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
406 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
406 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
407 {
407 {
408 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
408 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
409 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
409 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
410 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
410 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
411 }
411 }
412 }
412 }
413 for( freq=NB_BINS_COMPRESSED_SM_F0;
413 for( freq=NB_BINS_COMPRESSED_SM_F0;
414 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
414 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
415 freq++ )
415 freq++ )
416 {
416 {
417 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
417 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
418 bin = freq - NB_BINS_COMPRESSED_SM_F0;
418 bin = freq - NB_BINS_COMPRESSED_SM_F0;
419 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
419 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
420 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
420 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
421 {
421 {
422 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
422 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
423 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
423 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
424 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
424 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
425 }
425 }
426 }
426 }
427 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
427 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
428 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
428 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
429 freq++ )
429 freq++ )
430 {
430 {
431 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
431 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
432 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
432 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
433 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
433 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
434 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
434 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
435 {
435 {
436 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
436 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
437 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
437 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
438 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
438 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
439 }
439 }
440 }
440 }
441 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
441 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
442 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
442 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
443 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
443 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
444 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
444 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
445 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
445 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
446 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
446 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
447 // SEND DATA
447 // SEND DATA
448 kcoefficient_node_1.status = 1;
448 kcoefficient_node_1.status = 1;
449 address = (unsigned int) &kcoefficient_node_1;
449 address = (unsigned int) &kcoefficient_node_1;
450 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
450 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
451 if (status != RTEMS_SUCCESSFUL) {
451 if (status != RTEMS_SUCCESSFUL) {
452 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
452 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
453 }
453 }
454
454
455 //********
455 //********
456 // PACKET 2
456 // PACKET 2
457 // 6 F2 bins
457 // 6 F2 bins
458 kcoefficients_dump_2.destinationID = TC->sourceID;
458 kcoefficients_dump_2.destinationID = TC->sourceID;
459 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
459 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
460 for( freq=0; freq<6; freq++ )
460 for( freq=0; freq<6; freq++ )
461 {
461 {
462 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
462 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
463 bin = freq + 6;
463 bin = freq + 6;
464 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
464 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
465 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
465 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
466 {
466 {
467 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
467 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
468 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
468 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
469 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
469 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
470 }
470 }
471 }
471 }
472 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
472 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
473 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
473 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
474 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
474 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
475 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
475 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
476 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
476 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
477 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
477 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
478 // SEND DATA
478 // SEND DATA
479 kcoefficient_node_2.status = 1;
479 kcoefficient_node_2.status = 1;
480 address = (unsigned int) &kcoefficient_node_2;
480 address = (unsigned int) &kcoefficient_node_2;
481 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
481 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
482 if (status != RTEMS_SUCCESSFUL) {
482 if (status != RTEMS_SUCCESSFUL) {
483 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
483 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
484 }
484 }
485
485
486 return status;
486 return status;
487 }
487 }
488
488
489 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
489 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 {
490 {
491 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
491 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
492 *
492 *
493 * @param queue_id is the id of the queue which handles TM related to this execution step.
493 * @param queue_id is the id of the queue which handles TM related to this execution step.
494 *
494 *
495 * @return RTEMS directive status codes:
495 * @return RTEMS directive status codes:
496 * - RTEMS_SUCCESSFUL - message sent successfully
496 * - RTEMS_SUCCESSFUL - message sent successfully
497 * - RTEMS_INVALID_ID - invalid queue id
497 * - RTEMS_INVALID_ID - invalid queue id
498 * - RTEMS_INVALID_SIZE - invalid message size
498 * - RTEMS_INVALID_SIZE - invalid message size
499 * - RTEMS_INVALID_ADDRESS - buffer is NULL
499 * - RTEMS_INVALID_ADDRESS - buffer is NULL
500 * - RTEMS_UNSATISFIED - out of message buffers
500 * - RTEMS_UNSATISFIED - out of message buffers
501 * - RTEMS_TOO_MANY - queue s limit has been reached
501 * - RTEMS_TOO_MANY - queue s limit has been reached
502 *
502 *
503 */
503 */
504
504
505 int status;
505 int status;
506
506
507 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
507 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
508 parameter_dump_packet.destinationID = TC->sourceID;
508 parameter_dump_packet.destinationID = TC->sourceID;
509
509
510 // UPDATE TIME
510 // UPDATE TIME
511 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
511 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
512 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
512 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
513 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
513 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
514 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
514 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
515 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
515 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
516 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
516 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
517 // SEND DATA
517 // SEND DATA
518 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
518 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
519 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
519 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
520 if (status != RTEMS_SUCCESSFUL) {
520 if (status != RTEMS_SUCCESSFUL) {
521 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
521 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
522 }
522 }
523
523
524 return status;
524 return status;
525 }
525 }
526
526
527 //***********************
527 //***********************
528 // NORMAL MODE PARAMETERS
528 // NORMAL MODE PARAMETERS
529
529
530 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
530 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
531 {
531 {
532 unsigned char msb;
532 unsigned char msb;
533 unsigned char lsb;
533 unsigned char lsb;
534 int flag;
534 int flag;
535 float aux;
535 float aux;
536 rtems_status_code status;
536 rtems_status_code status;
537
537
538 unsigned int sy_lfr_n_swf_l;
538 unsigned int sy_lfr_n_swf_l;
539 unsigned int sy_lfr_n_swf_p;
539 unsigned int sy_lfr_n_swf_p;
540 unsigned int sy_lfr_n_asm_p;
540 unsigned int sy_lfr_n_asm_p;
541 unsigned char sy_lfr_n_bp_p0;
541 unsigned char sy_lfr_n_bp_p0;
542 unsigned char sy_lfr_n_bp_p1;
542 unsigned char sy_lfr_n_bp_p1;
543 unsigned char sy_lfr_n_cwf_long_f3;
543 unsigned char sy_lfr_n_cwf_long_f3;
544
544
545 flag = LFR_SUCCESSFUL;
545 flag = LFR_SUCCESSFUL;
546
546
547 //***************
547 //***************
548 // get parameters
548 // get parameters
549 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
549 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
550 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
550 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
551 sy_lfr_n_swf_l = msb * 256 + lsb;
551 sy_lfr_n_swf_l = msb * 256 + lsb;
552
552
553 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
553 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
554 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
554 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
555 sy_lfr_n_swf_p = msb * 256 + lsb;
555 sy_lfr_n_swf_p = msb * 256 + lsb;
556
556
557 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
557 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
558 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
558 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
559 sy_lfr_n_asm_p = msb * 256 + lsb;
559 sy_lfr_n_asm_p = msb * 256 + lsb;
560
560
561 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
561 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
562
562
563 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
563 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
564
564
565 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
565 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
566
566
567 //******************
567 //******************
568 // check consistency
568 // check consistency
569 // sy_lfr_n_swf_l
569 // sy_lfr_n_swf_l
570 if (sy_lfr_n_swf_l != 2048)
570 if (sy_lfr_n_swf_l != 2048)
571 {
571 {
572 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
572 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
573 flag = WRONG_APP_DATA;
573 flag = WRONG_APP_DATA;
574 }
574 }
575 // sy_lfr_n_swf_p
575 // sy_lfr_n_swf_p
576 if (flag == LFR_SUCCESSFUL)
576 if (flag == LFR_SUCCESSFUL)
577 {
577 {
578 if ( sy_lfr_n_swf_p < 22 )
578 if ( sy_lfr_n_swf_p < 22 )
579 {
579 {
580 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
580 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
581 flag = WRONG_APP_DATA;
581 flag = WRONG_APP_DATA;
582 }
582 }
583 }
583 }
584 // sy_lfr_n_bp_p0
584 // sy_lfr_n_bp_p0
585 if (flag == LFR_SUCCESSFUL)
585 if (flag == LFR_SUCCESSFUL)
586 {
586 {
587 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
587 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
588 {
588 {
589 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
589 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
590 flag = WRONG_APP_DATA;
590 flag = WRONG_APP_DATA;
591 }
591 }
592 }
592 }
593 // sy_lfr_n_asm_p
593 // sy_lfr_n_asm_p
594 if (flag == LFR_SUCCESSFUL)
594 if (flag == LFR_SUCCESSFUL)
595 {
595 {
596 if (sy_lfr_n_asm_p == 0)
596 if (sy_lfr_n_asm_p == 0)
597 {
597 {
598 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
598 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
599 flag = WRONG_APP_DATA;
599 flag = WRONG_APP_DATA;
600 }
600 }
601 }
601 }
602 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
602 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
603 if (flag == LFR_SUCCESSFUL)
603 if (flag == LFR_SUCCESSFUL)
604 {
604 {
605 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
605 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
606 if (aux > FLOAT_EQUAL_ZERO)
606 if (aux > FLOAT_EQUAL_ZERO)
607 {
607 {
608 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
608 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
609 flag = WRONG_APP_DATA;
609 flag = WRONG_APP_DATA;
610 }
610 }
611 }
611 }
612 // sy_lfr_n_bp_p1
612 // sy_lfr_n_bp_p1
613 if (flag == LFR_SUCCESSFUL)
613 if (flag == LFR_SUCCESSFUL)
614 {
614 {
615 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
615 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
616 {
616 {
617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
618 flag = WRONG_APP_DATA;
618 flag = WRONG_APP_DATA;
619 }
619 }
620 }
620 }
621 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
621 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
622 if (flag == LFR_SUCCESSFUL)
622 if (flag == LFR_SUCCESSFUL)
623 {
623 {
624 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
624 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
625 if (aux > FLOAT_EQUAL_ZERO)
625 if (aux > FLOAT_EQUAL_ZERO)
626 {
626 {
627 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
627 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
628 flag = LFR_DEFAULT;
628 flag = LFR_DEFAULT;
629 }
629 }
630 }
630 }
631 // sy_lfr_n_cwf_long_f3
631 // sy_lfr_n_cwf_long_f3
632
632
633 return flag;
633 return flag;
634 }
634 }
635
635
636 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
636 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
637 {
637 {
638 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
638 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
639 *
639 *
640 * @param TC points to the TeleCommand packet that is being processed
640 * @param TC points to the TeleCommand packet that is being processed
641 * @param queue_id is the id of the queue which handles TM related to this execution step
641 * @param queue_id is the id of the queue which handles TM related to this execution step
642 *
642 *
643 */
643 */
644
644
645 int result;
645 int result;
646
646
647 result = LFR_SUCCESSFUL;
647 result = LFR_SUCCESSFUL;
648
648
649 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
649 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
650 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
650 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
651
651
652 return result;
652 return result;
653 }
653 }
654
654
655 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
655 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
656 {
656 {
657 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
657 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
658 *
658 *
659 * @param TC points to the TeleCommand packet that is being processed
659 * @param TC points to the TeleCommand packet that is being processed
660 * @param queue_id is the id of the queue which handles TM related to this execution step
660 * @param queue_id is the id of the queue which handles TM related to this execution step
661 *
661 *
662 */
662 */
663
663
664 int result;
664 int result;
665
665
666 result = LFR_SUCCESSFUL;
666 result = LFR_SUCCESSFUL;
667
667
668 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
668 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
669 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
669 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
670
670
671 return result;
671 return result;
672 }
672 }
673
673
674 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
674 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
675 {
675 {
676 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
676 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
677 *
677 *
678 * @param TC points to the TeleCommand packet that is being processed
678 * @param TC points to the TeleCommand packet that is being processed
679 * @param queue_id is the id of the queue which handles TM related to this execution step
679 * @param queue_id is the id of the queue which handles TM related to this execution step
680 *
680 *
681 */
681 */
682
682
683 int result;
683 int result;
684
684
685 result = LFR_SUCCESSFUL;
685 result = LFR_SUCCESSFUL;
686
686
687 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
687 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
688 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
688 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
689
689
690 return result;
690 return result;
691 }
691 }
692
692
693 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
693 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
694 {
694 {
695 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
695 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
696 *
696 *
697 * @param TC points to the TeleCommand packet that is being processed
697 * @param TC points to the TeleCommand packet that is being processed
698 * @param queue_id is the id of the queue which handles TM related to this execution step
698 * @param queue_id is the id of the queue which handles TM related to this execution step
699 *
699 *
700 */
700 */
701
701
702 int status;
702 int status;
703
703
704 status = LFR_SUCCESSFUL;
704 status = LFR_SUCCESSFUL;
705
705
706 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
706 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
707
707
708 return status;
708 return status;
709 }
709 }
710
710
711 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
711 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
712 {
712 {
713 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
713 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
714 *
714 *
715 * @param TC points to the TeleCommand packet that is being processed
715 * @param TC points to the TeleCommand packet that is being processed
716 * @param queue_id is the id of the queue which handles TM related to this execution step
716 * @param queue_id is the id of the queue which handles TM related to this execution step
717 *
717 *
718 */
718 */
719
719
720 int status;
720 int status;
721
721
722 status = LFR_SUCCESSFUL;
722 status = LFR_SUCCESSFUL;
723
723
724 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
724 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
725
725
726 return status;
726 return status;
727 }
727 }
728
728
729 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
729 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
730 {
730 {
731 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
731 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
732 *
732 *
733 * @param TC points to the TeleCommand packet that is being processed
733 * @param TC points to the TeleCommand packet that is being processed
734 * @param queue_id is the id of the queue which handles TM related to this execution step
734 * @param queue_id is the id of the queue which handles TM related to this execution step
735 *
735 *
736 */
736 */
737
737
738 int status;
738 int status;
739
739
740 status = LFR_SUCCESSFUL;
740 status = LFR_SUCCESSFUL;
741
741
742 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
742 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
743
743
744 return status;
744 return status;
745 }
745 }
746
746
747 //**********************
747 //**********************
748 // BURST MODE PARAMETERS
748 // BURST MODE PARAMETERS
749 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
749 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
750 {
750 {
751 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
751 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
752 *
752 *
753 * @param TC points to the TeleCommand packet that is being processed
753 * @param TC points to the TeleCommand packet that is being processed
754 * @param queue_id is the id of the queue which handles TM related to this execution step
754 * @param queue_id is the id of the queue which handles TM related to this execution step
755 *
755 *
756 */
756 */
757
757
758 int status;
758 int status;
759
759
760 status = LFR_SUCCESSFUL;
760 status = LFR_SUCCESSFUL;
761
761
762 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
762 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
763
763
764 return status;
764 return status;
765 }
765 }
766
766
767 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
767 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
768 {
768 {
769 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
769 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
770 *
770 *
771 * @param TC points to the TeleCommand packet that is being processed
771 * @param TC points to the TeleCommand packet that is being processed
772 * @param queue_id is the id of the queue which handles TM related to this execution step
772 * @param queue_id is the id of the queue which handles TM related to this execution step
773 *
773 *
774 */
774 */
775
775
776 int status;
776 int status;
777
777
778 status = LFR_SUCCESSFUL;
778 status = LFR_SUCCESSFUL;
779
779
780 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
780 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
781
781
782 return status;
782 return status;
783 }
783 }
784
784
785 //*********************
785 //*********************
786 // SBM1 MODE PARAMETERS
786 // SBM1 MODE PARAMETERS
787 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
787 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
788 {
788 {
789 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
789 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
790 *
790 *
791 * @param TC points to the TeleCommand packet that is being processed
791 * @param TC points to the TeleCommand packet that is being processed
792 * @param queue_id is the id of the queue which handles TM related to this execution step
792 * @param queue_id is the id of the queue which handles TM related to this execution step
793 *
793 *
794 */
794 */
795
795
796 int status;
796 int status;
797
797
798 status = LFR_SUCCESSFUL;
798 status = LFR_SUCCESSFUL;
799
799
800 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
800 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
801
801
802 return status;
802 return status;
803 }
803 }
804
804
805 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
805 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
806 {
806 {
807 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
807 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
808 *
808 *
809 * @param TC points to the TeleCommand packet that is being processed
809 * @param TC points to the TeleCommand packet that is being processed
810 * @param queue_id is the id of the queue which handles TM related to this execution step
810 * @param queue_id is the id of the queue which handles TM related to this execution step
811 *
811 *
812 */
812 */
813
813
814 int status;
814 int status;
815
815
816 status = LFR_SUCCESSFUL;
816 status = LFR_SUCCESSFUL;
817
817
818 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
818 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
819
819
820 return status;
820 return status;
821 }
821 }
822
822
823 //*********************
823 //*********************
824 // SBM2 MODE PARAMETERS
824 // SBM2 MODE PARAMETERS
825 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
825 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
826 {
826 {
827 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
827 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
828 *
828 *
829 * @param TC points to the TeleCommand packet that is being processed
829 * @param TC points to the TeleCommand packet that is being processed
830 * @param queue_id is the id of the queue which handles TM related to this execution step
830 * @param queue_id is the id of the queue which handles TM related to this execution step
831 *
831 *
832 */
832 */
833
833
834 int status;
834 int status;
835
835
836 status = LFR_SUCCESSFUL;
836 status = LFR_SUCCESSFUL;
837
837
838 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
838 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
839
839
840 return status;
840 return status;
841 }
841 }
842
842
843 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
843 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
844 {
844 {
845 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
845 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
846 *
846 *
847 * @param TC points to the TeleCommand packet that is being processed
847 * @param TC points to the TeleCommand packet that is being processed
848 * @param queue_id is the id of the queue which handles TM related to this execution step
848 * @param queue_id is the id of the queue which handles TM related to this execution step
849 *
849 *
850 */
850 */
851
851
852 int status;
852 int status;
853
853
854 status = LFR_SUCCESSFUL;
854 status = LFR_SUCCESSFUL;
855
855
856 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
856 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
857
857
858 return status;
858 return status;
859 }
859 }
860
860
861 //*******************
861 //*******************
862 // TC_LFR_UPDATE_INFO
862 // TC_LFR_UPDATE_INFO
863 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
863 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
864 {
864 {
865 unsigned int status;
865 unsigned int status;
866
866
867 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
867 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
868 || (mode == LFR_MODE_BURST)
868 || (mode == LFR_MODE_BURST)
869 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
869 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
870 {
870 {
871 status = LFR_SUCCESSFUL;
871 status = LFR_SUCCESSFUL;
872 }
872 }
873 else
873 else
874 {
874 {
875 status = LFR_DEFAULT;
875 status = LFR_DEFAULT;
876 }
876 }
877
877
878 return status;
878 return status;
879 }
879 }
880
880
881 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
881 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
882 {
882 {
883 unsigned int status;
883 unsigned int status;
884
884
885 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
885 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
886 || (mode == TDS_MODE_BURST)
886 || (mode == TDS_MODE_BURST)
887 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
887 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
888 || (mode == TDS_MODE_LFM))
888 || (mode == TDS_MODE_LFM))
889 {
889 {
890 status = LFR_SUCCESSFUL;
890 status = LFR_SUCCESSFUL;
891 }
891 }
892 else
892 else
893 {
893 {
894 status = LFR_DEFAULT;
894 status = LFR_DEFAULT;
895 }
895 }
896
896
897 return status;
897 return status;
898 }
898 }
899
899
900 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
900 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
901 {
901 {
902 unsigned int status;
902 unsigned int status;
903
903
904 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
904 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
905 || (mode == THR_MODE_BURST))
905 || (mode == THR_MODE_BURST))
906 {
906 {
907 status = LFR_SUCCESSFUL;
907 status = LFR_SUCCESSFUL;
908 }
908 }
909 else
909 else
910 {
910 {
911 status = LFR_DEFAULT;
911 status = LFR_DEFAULT;
912 }
912 }
913
913
914 return status;
914 return status;
915 }
915 }
916
916
917 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
917 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
918 {
918 {
919 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
919 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
920 *
920 *
921 * @param TC points to the TeleCommand packet that is being processed
921 * @param TC points to the TeleCommand packet that is being processed
922 *
922 *
923 */
923 */
924
924
925 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
925 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
926
926
927 bytePosPtr = (unsigned char *) &TC->packetID;
927 bytePosPtr = (unsigned char *) &TC->packetID;
928
928
929 // cp_rpw_sc_rw1_f1
929 // cp_rpw_sc_rw1_f1
930 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
930 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
931 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
931 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
932
932
933 // cp_rpw_sc_rw1_f2
933 // cp_rpw_sc_rw1_f2
934 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
934 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
935 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
935 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
936
936
937 // cp_rpw_sc_rw2_f1
937 // cp_rpw_sc_rw2_f1
938 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
938 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
939 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
939 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
940
940
941 // cp_rpw_sc_rw2_f2
941 // cp_rpw_sc_rw2_f2
942 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
942 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
943 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
943 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
944
944
945 // cp_rpw_sc_rw3_f1
945 // cp_rpw_sc_rw3_f1
946 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
946 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
947 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
947 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
948
948
949 // cp_rpw_sc_rw3_f2
949 // cp_rpw_sc_rw3_f2
950 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
950 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
951 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
951 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
952
952
953 // cp_rpw_sc_rw4_f1
953 // cp_rpw_sc_rw4_f1
954 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
954 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
955 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
955 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
956
956
957 // cp_rpw_sc_rw4_f2
957 // cp_rpw_sc_rw4_f2
958 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
958 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
959 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
959 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
960 }
960 }
961
961
962 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
962 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
963 {
963 {
964 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
964 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
965 *
965 *
966 * @param fbins_mask
966 * @param fbins_mask
967 * @param rw_f is the reaction wheel frequency to filter
967 * @param rw_f is the reaction wheel frequency to filter
968 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
968 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
969 * @param flag [true] filtering enabled [false] filtering disabled
969 * @param flag [true] filtering enabled [false] filtering disabled
970 *
970 *
971 * @return void
971 * @return void
972 *
972 *
973 */
973 */
974
974
975 float f_RW_min;
975 float f_RW_min;
976 float f_RW_MAX;
976 float f_RW_MAX;
977 float fi_min;
977 float fi_min;
978 float fi_MAX;
978 float fi_MAX;
979 float fi;
979 float fi;
980 float deltaBelow;
980 float deltaBelow;
981 float deltaAbove;
981 float deltaAbove;
982 int binBelow;
982 int binBelow;
983 int binAbove;
983 int binAbove;
984 int closestBin;
984 int closestBin;
985 unsigned int whichByte;
985 unsigned int whichByte;
986 int selectedByte;
986 int selectedByte;
987 int bin;
987 int bin;
988 int binToRemove[3];
988 int binToRemove[3];
989 int k;
989 int k;
990
990
991 whichByte = 0;
991 whichByte = 0;
992 bin = 0;
992 bin = 0;
993
993
994 binToRemove[0] = -1;
994 binToRemove[0] = -1;
995 binToRemove[1] = -1;
995 binToRemove[1] = -1;
996 binToRemove[2] = -1;
996 binToRemove[2] = -1;
997
997
998 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
998 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
999 f_RW_min = rw_f - filterPar.sy_lfr_sc_rw_delta_f / 2.;
999 f_RW_min = rw_f - filterPar.sy_lfr_sc_rw_delta_f / 2.;
1000 f_RW_MAX = rw_f + filterPar.sy_lfr_sc_rw_delta_f / 2.;
1000 f_RW_MAX = rw_f + filterPar.sy_lfr_sc_rw_delta_f / 2.;
1001
1001
1002 // compute the index of the frequency bin immediately below rw_f
1002 // compute the index of the frequency bin immediately below rw_f
1003 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1003 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1004 deltaBelow = rw_f - binBelow * deltaFreq;
1004 deltaBelow = rw_f - binBelow * deltaFreq;
1005
1005
1006 // compute the index of the frequency bin immediately above rw_f
1006 // compute the index of the frequency bin immediately above rw_f
1007 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1007 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1008 deltaAbove = binAbove * deltaFreq - rw_f;
1008 deltaAbove = binAbove * deltaFreq - rw_f;
1009
1009
1010 // search the closest bin
1010 // search the closest bin
1011 if (deltaAbove > deltaBelow)
1011 if (deltaAbove > deltaBelow)
1012 {
1012 {
1013 closestBin = binBelow;
1013 closestBin = binBelow;
1014 }
1014 }
1015 else
1015 else
1016 {
1016 {
1017 closestBin = binAbove;
1017 closestBin = binAbove;
1018 }
1018 }
1019
1019
1020 // compute the fi interval [fi - Delta_f * 0.285, fi + Delta_f * 0.285]
1020 // compute the fi interval [fi - Delta_f * 0.285, fi + Delta_f * 0.285]
1021 fi = closestBin * deltaFreq;
1021 fi = closestBin * deltaFreq;
1022
1022
1023 fi_min = fi - (deltaFreq * 0.285);
1023 fi_min = fi - (deltaFreq * 0.285);
1024 if ( fi_min < 0 )
1024 if ( fi_min < 0 )
1025 {
1025 {
1026 fi_min = 0;
1026 fi_min = 0;
1027 }
1027 }
1028 else if ( fi_min > (deltaFreq*127) )
1028 else if ( fi_min > (deltaFreq*127) )
1029 {
1029 {
1030 fi_min = -1;
1030 fi_min = -1;
1031 }
1031 }
1032
1032
1033 fi_MAX = fi + (deltaFreq * 0.285);
1033 fi_MAX = fi + (deltaFreq * 0.285);
1034 if ( fi_MAX > (deltaFreq*127) )
1034 if ( fi_MAX > (deltaFreq*127) )
1035 {
1035 {
1036 fi_MAX = -1;
1036 fi_MAX = -1;
1037 }
1037 }
1038
1038
1039 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1039 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1040 // => remove f_(i), f_(i-1) and f_(i+1)
1040 // => remove f_(i), f_(i-1) and f_(i+1)
1041 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1041 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1042 {
1042 {
1043 binToRemove[0] = closestBin - 1;
1043 binToRemove[0] = closestBin - 1;
1044 binToRemove[1] = closestBin;
1044 binToRemove[1] = closestBin;
1045 binToRemove[2] = closestBin + 1;
1045 binToRemove[2] = closestBin + 1;
1046 }
1046 }
1047 // 2. ELSE
1047 // 2. ELSE
1048 // => remove the two f_(i) which are around f_RW
1048 // => remove the two f_(i) which are around f_RW
1049 else
1049 else
1050 {
1050 {
1051 binToRemove[0] = binBelow;
1051 binToRemove[0] = binBelow;
1052 binToRemove[1] = binAbove;
1052 binToRemove[1] = binAbove;
1053 binToRemove[2] = -1;
1053 binToRemove[2] = -1;
1054 }
1054 }
1055
1055
1056 for (k = 0; k <= 3; k++)
1056 for (k = 0; k <= 3; k++)
1057 {
1057 {
1058 bin = binToRemove[k];
1058 bin = binToRemove[k];
1059 if ( (bin >= 0) && (bin <= 127) )
1059 if ( (bin >= 0) && (bin <= 127) )
1060 {
1060 {
1061 if (flag == 1)
1061 if (flag == 1)
1062 {
1062 {
1063 whichByte = (bin >> 3); // division by 8
1063 whichByte = (bin >> 3); // division by 8
1064 selectedByte = ( 1 << (bin - (whichByte * 8)) );
1064 selectedByte = ( 1 << (bin - (whichByte * 8)) );
1065 fbins_mask[15 - whichByte] = fbins_mask[15 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1065 fbins_mask[15 - whichByte] = fbins_mask[15 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1066 }
1066 }
1067 }
1067 }
1068 }
1068 }
1069 }
1069 }
1070
1070
1071 void build_sy_lfr_rw_mask( unsigned int channel )
1071 void build_sy_lfr_rw_mask( unsigned int channel )
1072 {
1072 {
1073 unsigned char local_rw_fbins_mask[16];
1073 unsigned char local_rw_fbins_mask[16];
1074 unsigned char *maskPtr;
1074 unsigned char *maskPtr;
1075 double deltaF;
1075 double deltaF;
1076 unsigned k;
1076 unsigned k;
1077
1077
1078 k = 0;
1078 k = 0;
1079
1079
1080 maskPtr = NULL;
1080 maskPtr = NULL;
1081 deltaF = 1.;
1081 deltaF = 1.;
1082
1082
1083 switch (channel)
1083 switch (channel)
1084 {
1084 {
1085 case 0:
1085 case 0:
1086 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1086 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1087 deltaF = 96.;
1087 deltaF = 96.;
1088 break;
1088 break;
1089 case 1:
1089 case 1:
1090 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1090 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1091 deltaF = 16.;
1091 deltaF = 16.;
1092 break;
1092 break;
1093 case 2:
1093 case 2:
1094 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1094 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1095 deltaF = 1.;
1095 deltaF = 1.;
1096 break;
1096 break;
1097 default:
1097 default:
1098 break;
1098 break;
1099 }
1099 }
1100
1100
1101 for (k = 0; k < 16; k++)
1101 for (k = 0; k < 16; k++)
1102 {
1102 {
1103 local_rw_fbins_mask[k] = 0xff;
1103 local_rw_fbins_mask[k] = 0xff;
1104 }
1104 }
1105
1105
1106 // RW1 F1
1106 // RW1 F1
1107 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x80) >> 7 ); // [1000 0000]
1107 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x80) >> 7 ); // [1000 0000]
1108
1108
1109 // RW1 F2
1109 // RW1 F2
1110 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x40) >> 6 ); // [0100 0000]
1110 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x40) >> 6 ); // [0100 0000]
1111
1111
1112 // RW2 F1
1112 // RW2 F1
1113 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x20) >> 5 ); // [0010 0000]
1113 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x20) >> 5 ); // [0010 0000]
1114
1114
1115 // RW2 F2
1115 // RW2 F2
1116 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x10) >> 4 ); // [0001 0000]
1116 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x10) >> 4 ); // [0001 0000]
1117
1117
1118 // RW3 F1
1118 // RW3 F1
1119 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x08) >> 3 ); // [0000 1000]
1119 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x08) >> 3 ); // [0000 1000]
1120
1120
1121 // RW3 F2
1121 // RW3 F2
1122 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x04) >> 2 ); // [0000 0100]
1122 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x04) >> 2 ); // [0000 0100]
1123
1123
1124 // RW4 F1
1124 // RW4 F1
1125 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x02) >> 1 ); // [0000 0010]
1125 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x02) >> 1 ); // [0000 0010]
1126
1126
1127 // RW4 F2
1127 // RW4 F2
1128 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x01) ); // [0000 0001]
1128 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x01) ); // [0000 0001]
1129
1129
1130 // update the value of the fbins related to reaction wheels frequency filtering
1130 // update the value of the fbins related to reaction wheels frequency filtering
1131 if (maskPtr != NULL)
1131 if (maskPtr != NULL)
1132 {
1132 {
1133 for (k = 0; k < 16; k++)
1133 for (k = 0; k < 16; k++)
1134 {
1134 {
1135 maskPtr[k] = local_rw_fbins_mask[k];
1135 maskPtr[k] = local_rw_fbins_mask[k];
1136 }
1136 }
1137 }
1137 }
1138 }
1138 }
1139
1139
1140 void build_sy_lfr_rw_masks( void )
1140 void build_sy_lfr_rw_masks( void )
1141 {
1141 {
1142 build_sy_lfr_rw_mask( 0 );
1142 build_sy_lfr_rw_mask( 0 );
1143 build_sy_lfr_rw_mask( 1 );
1143 build_sy_lfr_rw_mask( 1 );
1144 build_sy_lfr_rw_mask( 2 );
1144 build_sy_lfr_rw_mask( 2 );
1145
1145
1146 merge_fbins_masks();
1146 merge_fbins_masks();
1147 }
1147 }
1148
1148
1149 void merge_fbins_masks( void )
1149 void merge_fbins_masks( void )
1150 {
1150 {
1151 unsigned char k;
1151 unsigned char k;
1152
1152
1153 unsigned char *fbins_f0;
1153 unsigned char *fbins_f0;
1154 unsigned char *fbins_f1;
1154 unsigned char *fbins_f1;
1155 unsigned char *fbins_f2;
1155 unsigned char *fbins_f2;
1156 unsigned char *rw_mask_f0;
1156 unsigned char *rw_mask_f0;
1157 unsigned char *rw_mask_f1;
1157 unsigned char *rw_mask_f1;
1158 unsigned char *rw_mask_f2;
1158 unsigned char *rw_mask_f2;
1159
1159
1160 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1160 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1161 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1161 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1162 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1162 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1163 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1163 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1164 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1164 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1165 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1165 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1166
1166
1167 for( k=0; k < 16; k++ )
1167 for( k=0; k < 16; k++ )
1168 {
1168 {
1169 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1169 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1170 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1170 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1171 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1171 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1172 }
1172 }
1173 }
1173 }
1174
1174
1175 //***********
1175 //***********
1176 // FBINS MASK
1176 // FBINS MASK
1177
1177
1178 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1178 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1179 {
1179 {
1180 int status;
1180 int status;
1181 unsigned int k;
1181 unsigned int k;
1182 unsigned char *fbins_mask_dump;
1182 unsigned char *fbins_mask_dump;
1183 unsigned char *fbins_mask_TC;
1183 unsigned char *fbins_mask_TC;
1184
1184
1185 status = LFR_SUCCESSFUL;
1185 status = LFR_SUCCESSFUL;
1186
1186
1187 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1187 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1188 fbins_mask_TC = TC->dataAndCRC;
1188 fbins_mask_TC = TC->dataAndCRC;
1189
1189
1190 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1190 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1191 {
1191 {
1192 fbins_mask_dump[k] = fbins_mask_TC[k];
1192 fbins_mask_dump[k] = fbins_mask_TC[k];
1193 }
1193 }
1194
1194
1195 return status;
1195 return status;
1196 }
1196 }
1197
1197
1198 //***************************
1198 //***************************
1199 // TC_LFR_LOAD_PAS_FILTER_PAR
1199 // TC_LFR_LOAD_PAS_FILTER_PAR
1200
1200
1201 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1201 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1202 {
1202 {
1203 int flag;
1203 int flag;
1204 rtems_status_code status;
1204 rtems_status_code status;
1205
1205
1206 unsigned char sy_lfr_pas_filter_enabled;
1206 unsigned char sy_lfr_pas_filter_enabled;
1207 unsigned char sy_lfr_pas_filter_modulus;
1207 unsigned char sy_lfr_pas_filter_modulus;
1208 float sy_lfr_pas_filter_tbad;
1208 float sy_lfr_pas_filter_tbad;
1209 unsigned char sy_lfr_pas_filter_offset;
1209 unsigned char sy_lfr_pas_filter_offset;
1210 float sy_lfr_pas_filter_shift;
1210 float sy_lfr_pas_filter_shift;
1211 float sy_lfr_sc_rw_delta_f;
1211 float sy_lfr_sc_rw_delta_f;
1212 char *parPtr;
1212 char *parPtr;
1213
1213
1214 flag = LFR_SUCCESSFUL;
1214 flag = LFR_SUCCESSFUL;
1215 sy_lfr_pas_filter_tbad = 0.0;
1215 sy_lfr_pas_filter_tbad = 0.0;
1216 sy_lfr_pas_filter_shift = 0.0;
1216 sy_lfr_pas_filter_shift = 0.0;
1217 sy_lfr_sc_rw_delta_f = 0.0;
1217 sy_lfr_sc_rw_delta_f = 0.0;
1218 parPtr = NULL;
1218 parPtr = NULL;
1219
1219
1220 //***************
1220 //***************
1221 // get parameters
1221 // get parameters
1222 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & 0x01; // [0000 0001]
1222 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & 0x01; // [0000 0001]
1223 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1223 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1224 copyFloatByChar(
1224 copyFloatByChar(
1225 (unsigned char*) &sy_lfr_pas_filter_tbad,
1225 (unsigned char*) &sy_lfr_pas_filter_tbad,
1226 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1226 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1227 );
1227 );
1228 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1228 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1229 copyFloatByChar(
1229 copyFloatByChar(
1230 (unsigned char*) &sy_lfr_pas_filter_shift,
1230 (unsigned char*) &sy_lfr_pas_filter_shift,
1231 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1231 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1232 );
1232 );
1233 copyFloatByChar(
1233 copyFloatByChar(
1234 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1234 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1235 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1235 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1236 );
1236 );
1237
1237
1238 //******************
1238 //******************
1239 // CHECK CONSISTENCY
1239 // CHECK CONSISTENCY
1240
1240
1241 //**************************
1241 //**************************
1242 // sy_lfr_pas_filter_enabled
1242 // sy_lfr_pas_filter_enabled
1243 // nothing to check, value is 0 or 1
1243 // nothing to check, value is 0 or 1
1244
1244
1245 //**************************
1245 //**************************
1246 // sy_lfr_pas_filter_modulus
1246 // sy_lfr_pas_filter_modulus
1247 if ( (sy_lfr_pas_filter_modulus < 4) || (sy_lfr_pas_filter_modulus > 8) )
1247 if ( (sy_lfr_pas_filter_modulus < 4) || (sy_lfr_pas_filter_modulus > 8) )
1248 {
1248 {
1249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS+10, sy_lfr_pas_filter_modulus );
1249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS+10, sy_lfr_pas_filter_modulus );
1250 flag = WRONG_APP_DATA;
1250 flag = WRONG_APP_DATA;
1251 }
1251 }
1252
1252
1253 //***********************
1253 //***********************
1254 // sy_lfr_pas_filter_tbad
1254 // sy_lfr_pas_filter_tbad
1255 if ( (sy_lfr_pas_filter_tbad < 0.0) || (sy_lfr_pas_filter_tbad > 4.0) )
1255 if ( (sy_lfr_pas_filter_tbad < 0.0) || (sy_lfr_pas_filter_tbad > 4.0) )
1256 {
1256 {
1257 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1257 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1258 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD+10, parPtr[3] );
1258 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD+10, parPtr[3] );
1259 flag = WRONG_APP_DATA;
1259 flag = WRONG_APP_DATA;
1260 }
1260 }
1261
1261
1262 //*************************
1262 //*************************
1263 // sy_lfr_pas_filter_offset
1263 // sy_lfr_pas_filter_offset
1264 if (flag == LFR_SUCCESSFUL)
1264 if (flag == LFR_SUCCESSFUL)
1265 {
1265 {
1266 if ( (sy_lfr_pas_filter_offset < 0) || (sy_lfr_pas_filter_offset > 7) )
1266 if ( (sy_lfr_pas_filter_offset < 0) || (sy_lfr_pas_filter_offset > 7) )
1267 {
1267 {
1268 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET+10, sy_lfr_pas_filter_offset );
1268 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET+10, sy_lfr_pas_filter_offset );
1269 flag = WRONG_APP_DATA;
1269 flag = WRONG_APP_DATA;
1270 }
1270 }
1271 }
1271 }
1272
1272
1273 //************************
1273 //************************
1274 // sy_lfr_pas_filter_shift
1274 // sy_lfr_pas_filter_shift
1275 if ( (sy_lfr_pas_filter_shift < 0.0) || (sy_lfr_pas_filter_shift > 1.0) )
1275 if ( (sy_lfr_pas_filter_shift < 0.0) || (sy_lfr_pas_filter_shift > 1.0) )
1276 {
1276 {
1277 parPtr = (char*) &sy_lfr_pas_filter_shift;
1277 parPtr = (char*) &sy_lfr_pas_filter_shift;
1278 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT+10, parPtr[3] );
1278 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT+10, parPtr[3] );
1279 flag = WRONG_APP_DATA;
1279 flag = WRONG_APP_DATA;
1280 }
1280 }
1281
1281
1282 //*********************
1282 //*********************
1283 // sy_lfr_sc_rw_delta_f
1283 // sy_lfr_sc_rw_delta_f
1284 // nothing to check, no default value in the ICD
1284 // nothing to check, no default value in the ICD
1285
1285
1286 return flag;
1286 return flag;
1287 }
1287 }
1288
1288
1289 //**************
1289 //**************
1290 // KCOEFFICIENTS
1290 // KCOEFFICIENTS
1291 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1291 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1292 {
1292 {
1293 unsigned int kcoeff;
1293 unsigned int kcoeff;
1294 unsigned short sy_lfr_kcoeff_frequency;
1294 unsigned short sy_lfr_kcoeff_frequency;
1295 unsigned short bin;
1295 unsigned short bin;
1296 unsigned short *freqPtr;
1296 unsigned short *freqPtr;
1297 float *kcoeffPtr_norm;
1297 float *kcoeffPtr_norm;
1298 float *kcoeffPtr_sbm;
1298 float *kcoeffPtr_sbm;
1299 int status;
1299 int status;
1300 unsigned char *kcoeffLoadPtr;
1300 unsigned char *kcoeffLoadPtr;
1301 unsigned char *kcoeffNormPtr;
1301 unsigned char *kcoeffNormPtr;
1302 unsigned char *kcoeffSbmPtr_a;
1302 unsigned char *kcoeffSbmPtr_a;
1303 unsigned char *kcoeffSbmPtr_b;
1303 unsigned char *kcoeffSbmPtr_b;
1304
1304
1305 status = LFR_SUCCESSFUL;
1305 status = LFR_SUCCESSFUL;
1306
1306
1307 kcoeffPtr_norm = NULL;
1307 kcoeffPtr_norm = NULL;
1308 kcoeffPtr_sbm = NULL;
1308 kcoeffPtr_sbm = NULL;
1309 bin = 0;
1309 bin = 0;
1310
1310
1311 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1311 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1312 sy_lfr_kcoeff_frequency = *freqPtr;
1312 sy_lfr_kcoeff_frequency = *freqPtr;
1313
1313
1314 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1314 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1315 {
1315 {
1316 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1316 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1317 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
1317 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
1318 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1318 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1319 status = LFR_DEFAULT;
1319 status = LFR_DEFAULT;
1320 }
1320 }
1321 else
1321 else
1322 {
1322 {
1323 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1323 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1324 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1324 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1325 {
1325 {
1326 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1326 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1327 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1327 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1328 bin = sy_lfr_kcoeff_frequency;
1328 bin = sy_lfr_kcoeff_frequency;
1329 }
1329 }
1330 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1330 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1331 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1331 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1332 {
1332 {
1333 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1333 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1334 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1334 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1335 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1335 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1336 }
1336 }
1337 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1337 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1338 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1338 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1339 {
1339 {
1340 kcoeffPtr_norm = k_coeff_intercalib_f2;
1340 kcoeffPtr_norm = k_coeff_intercalib_f2;
1341 kcoeffPtr_sbm = NULL;
1341 kcoeffPtr_sbm = NULL;
1342 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1342 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1343 }
1343 }
1344 }
1344 }
1345
1345
1346 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1346 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1347 {
1347 {
1348 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1348 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1349 {
1349 {
1350 // destination
1350 // destination
1351 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1351 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1352 // source
1352 // source
1353 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1353 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1354 // copy source to destination
1354 // copy source to destination
1355 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1355 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1356 }
1356 }
1357 }
1357 }
1358
1358
1359 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1359 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1360 {
1360 {
1361 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1361 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1362 {
1362 {
1363 // destination
1363 // destination
1364 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
1364 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
1365 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
1365 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
1366 // source
1366 // source
1367 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1367 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1368 // copy source to destination
1368 // copy source to destination
1369 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1369 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1370 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1370 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1371 }
1371 }
1372 }
1372 }
1373
1373
1374 // print_k_coeff();
1374 // print_k_coeff();
1375
1375
1376 return status;
1376 return status;
1377 }
1377 }
1378
1378
1379 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1379 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1380 {
1380 {
1381 destination[0] = source[0];
1381 destination[0] = source[0];
1382 destination[1] = source[1];
1382 destination[1] = source[1];
1383 destination[2] = source[2];
1383 destination[2] = source[2];
1384 destination[3] = source[3];
1384 destination[3] = source[3];
1385 }
1385 }
1386
1386
1387 void floatToChar( float value, unsigned char* ptr)
1387 void floatToChar( float value, unsigned char* ptr)
1388 {
1388 {
1389 unsigned char* valuePtr;
1389 unsigned char* valuePtr;
1390
1390
1391 valuePtr = (unsigned char*) &value;
1391 valuePtr = (unsigned char*) &value;
1392 ptr[0] = valuePtr[0];
1392 ptr[0] = valuePtr[0];
1393 ptr[1] = valuePtr[0];
1393 ptr[1] = valuePtr[1];
1394 ptr[2] = valuePtr[0];
1394 ptr[2] = valuePtr[2];
1395 ptr[3] = valuePtr[0];
1395 ptr[3] = valuePtr[3];
1396 }
1396 }
1397
1397
1398 //**********
1398 //**********
1399 // init dump
1399 // init dump
1400
1400
1401 void init_parameter_dump( void )
1401 void init_parameter_dump( void )
1402 {
1402 {
1403 /** This function initialize the parameter_dump_packet global variable with default values.
1403 /** This function initialize the parameter_dump_packet global variable with default values.
1404 *
1404 *
1405 */
1405 */
1406
1406
1407 unsigned int k;
1407 unsigned int k;
1408
1408
1409 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1409 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1410 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1410 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1411 parameter_dump_packet.reserved = CCSDS_RESERVED;
1411 parameter_dump_packet.reserved = CCSDS_RESERVED;
1412 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1412 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1413 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1413 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1414 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1414 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1415 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1415 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1416 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1416 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1417 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1417 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1418 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1418 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1419 // DATA FIELD HEADER
1419 // DATA FIELD HEADER
1420 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1420 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1421 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1421 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1422 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1422 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1423 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1423 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1424 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1424 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1425 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1425 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1426 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1426 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1427 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1427 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1428 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1428 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1429 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1429 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1430 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1430 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1431
1431
1432 //******************
1432 //******************
1433 // COMMON PARAMETERS
1433 // COMMON PARAMETERS
1434 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1434 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1435 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1435 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1436
1436
1437 //******************
1437 //******************
1438 // NORMAL PARAMETERS
1438 // NORMAL PARAMETERS
1439 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1439 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1440 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1440 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1441 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1441 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1442 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1442 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1443 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1443 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1444 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1444 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1445 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1445 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1446 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1446 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1447 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1447 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1448
1448
1449 //*****************
1449 //*****************
1450 // BURST PARAMETERS
1450 // BURST PARAMETERS
1451 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1451 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1452 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1452 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1453
1453
1454 //****************
1454 //****************
1455 // SBM1 PARAMETERS
1455 // SBM1 PARAMETERS
1456 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1456 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1457 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1457 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1458
1458
1459 //****************
1459 //****************
1460 // SBM2 PARAMETERS
1460 // SBM2 PARAMETERS
1461 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1461 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1462 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1462 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1463
1463
1464 //************
1464 //************
1465 // FBINS MASKS
1465 // FBINS MASKS
1466 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1466 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1467 {
1467 {
1468 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1468 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1469 }
1469 }
1470
1470
1471 // PAS FILTER PARAMETERS
1471 // PAS FILTER PARAMETERS
1472 parameter_dump_packet.pa_rpw_spare8_2 = 0x00;
1472 parameter_dump_packet.pa_rpw_spare8_2 = 0x00;
1473 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = 0x00;
1473 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = 0x00;
1474 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1474 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1475 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1475 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1476 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1476 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1477 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1477 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1478 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1478 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1479
1479
1480 // LFR_RW_MASK
1480 // LFR_RW_MASK
1481 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1481 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1482 {
1482 {
1483 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = 0xff;
1483 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = 0xff;
1484 }
1484 }
1485 }
1485 }
1486
1486
1487 void init_kcoefficients_dump( void )
1487 void init_kcoefficients_dump( void )
1488 {
1488 {
1489 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1489 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1490 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1490 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1491
1491
1492 kcoefficient_node_1.previous = NULL;
1492 kcoefficient_node_1.previous = NULL;
1493 kcoefficient_node_1.next = NULL;
1493 kcoefficient_node_1.next = NULL;
1494 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1494 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1495 kcoefficient_node_1.coarseTime = 0x00;
1495 kcoefficient_node_1.coarseTime = 0x00;
1496 kcoefficient_node_1.fineTime = 0x00;
1496 kcoefficient_node_1.fineTime = 0x00;
1497 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1497 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1498 kcoefficient_node_1.status = 0x00;
1498 kcoefficient_node_1.status = 0x00;
1499
1499
1500 kcoefficient_node_2.previous = NULL;
1500 kcoefficient_node_2.previous = NULL;
1501 kcoefficient_node_2.next = NULL;
1501 kcoefficient_node_2.next = NULL;
1502 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1502 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1503 kcoefficient_node_2.coarseTime = 0x00;
1503 kcoefficient_node_2.coarseTime = 0x00;
1504 kcoefficient_node_2.fineTime = 0x00;
1504 kcoefficient_node_2.fineTime = 0x00;
1505 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1505 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1506 kcoefficient_node_2.status = 0x00;
1506 kcoefficient_node_2.status = 0x00;
1507 }
1507 }
1508
1508
1509 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1509 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1510 {
1510 {
1511 unsigned int k;
1511 unsigned int k;
1512 unsigned int packetLength;
1512 unsigned int packetLength;
1513
1513
1514 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1514 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1515
1515
1516 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1516 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1517 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1517 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1518 kcoefficients_dump->reserved = CCSDS_RESERVED;
1518 kcoefficients_dump->reserved = CCSDS_RESERVED;
1519 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1519 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1520 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1520 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1521 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1521 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1522 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1522 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1523 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1523 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1524 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1524 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1525 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1525 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1526 // DATA FIELD HEADER
1526 // DATA FIELD HEADER
1527 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1527 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1528 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1528 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1529 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1529 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1530 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1530 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1531 kcoefficients_dump->time[0] = 0x00;
1531 kcoefficients_dump->time[0] = 0x00;
1532 kcoefficients_dump->time[1] = 0x00;
1532 kcoefficients_dump->time[1] = 0x00;
1533 kcoefficients_dump->time[2] = 0x00;
1533 kcoefficients_dump->time[2] = 0x00;
1534 kcoefficients_dump->time[3] = 0x00;
1534 kcoefficients_dump->time[3] = 0x00;
1535 kcoefficients_dump->time[4] = 0x00;
1535 kcoefficients_dump->time[4] = 0x00;
1536 kcoefficients_dump->time[5] = 0x00;
1536 kcoefficients_dump->time[5] = 0x00;
1537 kcoefficients_dump->sid = SID_K_DUMP;
1537 kcoefficients_dump->sid = SID_K_DUMP;
1538
1538
1539 kcoefficients_dump->pkt_cnt = 2;
1539 kcoefficients_dump->pkt_cnt = 2;
1540 kcoefficients_dump->pkt_nr = pkt_nr;
1540 kcoefficients_dump->pkt_nr = pkt_nr;
1541 kcoefficients_dump->blk_nr = blk_nr;
1541 kcoefficients_dump->blk_nr = blk_nr;
1542
1542
1543 //******************
1543 //******************
1544 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1544 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1545 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1545 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1546 for (k=0; k<3900; k++)
1546 for (k=0; k<3900; k++)
1547 {
1547 {
1548 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1548 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1549 }
1549 }
1550 }
1550 }
1551
1551
1552 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1552 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1553 {
1553 {
1554 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1554 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1555 *
1555 *
1556 * @param packet_sequence_control points to the packet sequence control which will be incremented
1556 * @param packet_sequence_control points to the packet sequence control which will be incremented
1557 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1557 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1558 *
1558 *
1559 * If the destination ID is not known, a dedicated counter is incremented.
1559 * If the destination ID is not known, a dedicated counter is incremented.
1560 *
1560 *
1561 */
1561 */
1562
1562
1563 unsigned short sequence_cnt;
1563 unsigned short sequence_cnt;
1564 unsigned short segmentation_grouping_flag;
1564 unsigned short segmentation_grouping_flag;
1565 unsigned short new_packet_sequence_control;
1565 unsigned short new_packet_sequence_control;
1566 unsigned char i;
1566 unsigned char i;
1567
1567
1568 switch (destination_id)
1568 switch (destination_id)
1569 {
1569 {
1570 case SID_TC_GROUND:
1570 case SID_TC_GROUND:
1571 i = GROUND;
1571 i = GROUND;
1572 break;
1572 break;
1573 case SID_TC_MISSION_TIMELINE:
1573 case SID_TC_MISSION_TIMELINE:
1574 i = MISSION_TIMELINE;
1574 i = MISSION_TIMELINE;
1575 break;
1575 break;
1576 case SID_TC_TC_SEQUENCES:
1576 case SID_TC_TC_SEQUENCES:
1577 i = TC_SEQUENCES;
1577 i = TC_SEQUENCES;
1578 break;
1578 break;
1579 case SID_TC_RECOVERY_ACTION_CMD:
1579 case SID_TC_RECOVERY_ACTION_CMD:
1580 i = RECOVERY_ACTION_CMD;
1580 i = RECOVERY_ACTION_CMD;
1581 break;
1581 break;
1582 case SID_TC_BACKUP_MISSION_TIMELINE:
1582 case SID_TC_BACKUP_MISSION_TIMELINE:
1583 i = BACKUP_MISSION_TIMELINE;
1583 i = BACKUP_MISSION_TIMELINE;
1584 break;
1584 break;
1585 case SID_TC_DIRECT_CMD:
1585 case SID_TC_DIRECT_CMD:
1586 i = DIRECT_CMD;
1586 i = DIRECT_CMD;
1587 break;
1587 break;
1588 case SID_TC_SPARE_GRD_SRC1:
1588 case SID_TC_SPARE_GRD_SRC1:
1589 i = SPARE_GRD_SRC1;
1589 i = SPARE_GRD_SRC1;
1590 break;
1590 break;
1591 case SID_TC_SPARE_GRD_SRC2:
1591 case SID_TC_SPARE_GRD_SRC2:
1592 i = SPARE_GRD_SRC2;
1592 i = SPARE_GRD_SRC2;
1593 break;
1593 break;
1594 case SID_TC_OBCP:
1594 case SID_TC_OBCP:
1595 i = OBCP;
1595 i = OBCP;
1596 break;
1596 break;
1597 case SID_TC_SYSTEM_CONTROL:
1597 case SID_TC_SYSTEM_CONTROL:
1598 i = SYSTEM_CONTROL;
1598 i = SYSTEM_CONTROL;
1599 break;
1599 break;
1600 case SID_TC_AOCS:
1600 case SID_TC_AOCS:
1601 i = AOCS;
1601 i = AOCS;
1602 break;
1602 break;
1603 case SID_TC_RPW_INTERNAL:
1603 case SID_TC_RPW_INTERNAL:
1604 i = RPW_INTERNAL;
1604 i = RPW_INTERNAL;
1605 break;
1605 break;
1606 default:
1606 default:
1607 i = GROUND;
1607 i = GROUND;
1608 break;
1608 break;
1609 }
1609 }
1610
1610
1611 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1611 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1612 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1612 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1613
1613
1614 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1614 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1615
1615
1616 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1616 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1617 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1617 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1618
1618
1619 // increment the sequence counter
1619 // increment the sequence counter
1620 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1620 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1621 {
1621 {
1622 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1622 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1623 }
1623 }
1624 else
1624 else
1625 {
1625 {
1626 sequenceCounters_TM_DUMP[ i ] = 0;
1626 sequenceCounters_TM_DUMP[ i ] = 0;
1627 }
1627 }
1628 }
1628 }
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
1 NO CONTENT: file was removed
NO CONTENT: file was removed
General Comments 0
You need to be logged in to leave comments. Login now