##// END OF EJS Templates
3.0.0.17
paul -
r268:95dc36087a62 R3a
parent child
Show More
@@ -1,1302 +1,1311
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 16 ring_node *current_ring_node_f0;
17 17 ring_node *ring_node_to_send_swf_f0;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 20 ring_node *current_ring_node_f1;
21 21 ring_node *ring_node_to_send_swf_f1;
22 22 ring_node *ring_node_to_send_cwf_f1;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 25 ring_node *current_ring_node_f2;
26 26 ring_node *ring_node_to_send_swf_f2;
27 27 ring_node *ring_node_to_send_cwf_f2;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 30 ring_node *current_ring_node_f3;
31 31 ring_node *ring_node_to_send_cwf_f3;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 43 ring_node ring_node_swf1_extracted;
44 44 ring_node ring_node_swf2_extracted;
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case 1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case 2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case 3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case 0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case 1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case 2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
146 146
147 147
148 148 switch(status)
149 149 {
150 150 case 1:
151 151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
152 152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
153 153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
154 154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
155 155 current_ring_node_f2 = current_ring_node_f2->next;
156 156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
157 157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
158 158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
159 159 }
160 160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
161 161 break;
162 162 case 2:
163 163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
164 164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
165 165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
166 166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
167 167 current_ring_node_f2 = current_ring_node_f2->next;
168 168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
169 169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
170 170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
171 171 }
172 172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
173 173 break;
174 174 default:
175 175 break;
176 176 }
177 177 }
178 178
179 179 inline void waveform_isr_normal_sbm1_sbm2( void )
180 180 {
181 181 rtems_status_code status;
182 182
183 183 //***
184 184 // F0
185 185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
186 186 {
187 187 swf0_ready_flag_f1 = true;
188 188 swf0_ready_flag_f2 = true;
189 189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
190 190 current_ring_node_f0 = current_ring_node_f0->next;
191 191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
192 192 {
193 193
194 194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
195 195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
196 196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
197 197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
198 198 }
199 199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
200 200 {
201 201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
202 202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
203 203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
204 204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
205 205 }
206 206 // send an event to the WFRM task for resynchro activities
207 207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
208 208 }
209 209
210 210 //***
211 211 // F1
212 212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
213 213 // (1) change the receiving buffer for the waveform picker
214 214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 215 current_ring_node_f1 = current_ring_node_f1->next;
216 216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
217 217 {
218 218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
222 222 }
223 223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
224 224 {
225 225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
229 229 }
230 230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 232 }
233 233
234 234 //***
235 235 // F2
236 236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
237 237 // (1) change the receiving buffer for the waveform picker
238 238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 240 current_ring_node_f2 = current_ring_node_f2->next;
241 241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
242 242 {
243 243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
247 247 }
248 248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
249 249 {
250 250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
254 254 }
255 255 // (2) send an event for the waveforms transmission
256 256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 257 }
258 258 }
259 259
260 260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 261 {
262 262 /** This is the interrupt sub routine called by the waveform picker core.
263 263 *
264 264 * This ISR launch different actions depending mainly on two pieces of information:
265 265 * 1. the values read in the registers of the waveform picker.
266 266 * 2. the current LFR mode.
267 267 *
268 268 */
269 269
270 270 // STATUS
271 271 // new error error buffer full
272 272 // 15 14 13 12 11 10 9 8
273 273 // f3 f2 f1 f0 f3 f2 f1 f0
274 274 //
275 275 // ready buffer
276 276 // 7 6 5 4 3 2 1 0
277 277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278 278
279 279 rtems_status_code spare_status;
280 280
281 281 waveforms_isr_f3();
282 282
283 283 //*************************************************
284 284 // copy the status bits in the housekeeping packets
285 285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
287 287
288 288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
289 289 {
290 290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 291 }
292 292
293 293 switch(lfrCurrentMode)
294 294 {
295 295 //********
296 296 // STANDBY
297 297 case LFR_MODE_STANDBY:
298 298 break;
299 299 //**************************
300 300 // LFR NORMAL, SBM1 and SBM2
301 301 case LFR_MODE_NORMAL:
302 302 case LFR_MODE_SBM1:
303 303 case LFR_MODE_SBM2:
304 304 waveform_isr_normal_sbm1_sbm2();
305 305 break;
306 306 //******
307 307 // BURST
308 308 case LFR_MODE_BURST:
309 309 waveforms_isr_burst();
310 310 break;
311 311 //********
312 312 // DEFAULT
313 313 default:
314 314 break;
315 315 }
316 316 }
317 317
318 318 //************
319 319 // RTEMS TASKS
320 320
321 321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 322 {
323 323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 324 *
325 325 * @param unused is the starting argument of the RTEMS task
326 326 *
327 327 * The following data packets are sent by this task:
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 331 *
332 332 */
333 333
334 334 rtems_event_set event_out;
335 335 rtems_id queue_id;
336 336 rtems_status_code status;
337 337 ring_node *ring_node_swf1_extracted_ptr;
338 338 ring_node *ring_node_swf2_extracted_ptr;
339 339
340 340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
341 341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
342 342
343 343 status = get_message_queue_id_send( &queue_id );
344 344 if (status != RTEMS_SUCCESSFUL)
345 345 {
346 346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
347 347 }
348 348
349 349 BOOT_PRINTF("in WFRM ***\n");
350 350
351 351 while(1){
352 352 // wait for an RTEMS_EVENT
353 353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
354 354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
355 355
356 356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
357 357 {
358 358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
359 359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
360 360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
361 361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
362 362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
363 363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
364 364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
365 365 }
366 366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
367 367 {
368 368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
369 369 }
370 370 }
371 371 }
372 372
373 373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
374 374 {
375 375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
376 376 *
377 377 * @param unused is the starting argument of the RTEMS task
378 378 *
379 379 * The following data packet is sent by this task:
380 380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
381 381 *
382 382 */
383 383
384 384 rtems_event_set event_out;
385 385 rtems_id queue_id;
386 386 rtems_status_code status;
387 387 ring_node ring_node_cwf3_light;
388 388 ring_node *ring_node_to_send_cwf;
389 389
390 390 status = get_message_queue_id_send( &queue_id );
391 391 if (status != RTEMS_SUCCESSFUL)
392 392 {
393 393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
394 394 }
395 395
396 396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
397 397
398 398 // init the ring_node_cwf3_light structure
399 399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
400 400 ring_node_cwf3_light.coarseTime = 0x00;
401 401 ring_node_cwf3_light.fineTime = 0x00;
402 402 ring_node_cwf3_light.next = NULL;
403 403 ring_node_cwf3_light.previous = NULL;
404 404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
405 405 ring_node_cwf3_light.status = 0x00;
406 406
407 407 BOOT_PRINTF("in CWF3 ***\n")
408 408
409 409 while(1){
410 410 // wait for an RTEMS_EVENT
411 411 rtems_event_receive( RTEMS_EVENT_0,
412 412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
413 413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
414 414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
415 415 {
416 416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
417 417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
418 418 {
419 419 PRINTF("send CWF_LONG_F3\n")
420 420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
421 421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
422 422 }
423 423 else
424 424 {
425 425 PRINTF("send CWF_F3 (light)\n")
426 426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
427 427 }
428 428
429 429 }
430 430 else
431 431 {
432 432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
433 433 }
434 434 }
435 435 }
436 436
437 437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
438 438 {
439 439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
440 440 *
441 441 * @param unused is the starting argument of the RTEMS task
442 442 *
443 443 * The following data packet is sent by this function:
444 444 * - TM_LFR_SCIENCE_BURST_CWF_F2
445 445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
446 446 *
447 447 */
448 448
449 449 rtems_event_set event_out;
450 450 rtems_id queue_id;
451 451 rtems_status_code status;
452 452 ring_node *ring_node_to_send;
453 453 unsigned long long int acquisitionTimeF0_asLong;
454 454
455 455 acquisitionTimeF0_asLong = 0x00;
456 456
457 457 status = get_message_queue_id_send( &queue_id );
458 458 if (status != RTEMS_SUCCESSFUL)
459 459 {
460 460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
461 461 }
462 462
463 463 BOOT_PRINTF("in CWF2 ***\n")
464 464
465 465 while(1){
466 466 // wait for an RTEMS_EVENT// send the snapshot when built
467 467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
468 468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
469 469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
470 470 ring_node_to_send = getRingNodeToSendCWF( 2 );
471 471 if (event_out == RTEMS_EVENT_MODE_BURST)
472 472 {
473 473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
474 474 }
475 475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
476 476 {
477 477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
478 478 {
479 479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
480 480 }
481 481 // launch snapshot extraction if needed
482 482 if (extractSWF2 == true)
483 483 {
484 484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
485 485 // extract the snapshot
486 486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
487 487 &ring_node_swf2_extracted, swf2_extracted );
488 488 extractSWF2 = false;
489 489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
490 490 }
491 491 if (swf0_ready_flag_f2 == true)
492 492 {
493 493 extractSWF2 = true;
494 494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
495 495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
496 496 swf0_ready_flag_f2 = false;
497 497 }
498 498 }
499 499 }
500 500 }
501 501
502 502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
503 503 {
504 504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
505 505 *
506 506 * @param unused is the starting argument of the RTEMS task
507 507 *
508 508 * The following data packet is sent by this function:
509 509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
510 510 *
511 511 */
512 512
513 513 rtems_event_set event_out;
514 514 rtems_id queue_id;
515 515 rtems_status_code status;
516 516
517 517 ring_node *ring_node_to_send_cwf;
518 518
519 519 status = get_message_queue_id_send( &queue_id );
520 520 if (status != RTEMS_SUCCESSFUL)
521 521 {
522 522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
523 523 }
524 524
525 525 BOOT_PRINTF("in CWF1 ***\n");
526 526
527 527 while(1){
528 528 // wait for an RTEMS_EVENT
529 529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
530 530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
531 531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
532 532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
533 533 if (lfrCurrentMode == LFR_MODE_SBM1)
534 534 {
535 535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
536 536 if (status != 0)
537 537 {
538 538 PRINTF("cwf sending failed\n")
539 539 }
540 540 }
541 541 // launch snapshot extraction if needed
542 542 if (extractSWF1 == true)
543 543 {
544 544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
545 545 // launch the snapshot extraction
546 546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
547 547 extractSWF1 = false;
548 548 }
549 549 if (swf0_ready_flag_f1 == true)
550 550 {
551 551 extractSWF1 = true;
552 552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
553 553 }
554 554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
555 555 {
556 556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
557 557 swf1_ready = false;
558 558 swf2_ready = false;
559 559 }
560 560 }
561 561 }
562 562
563 563 rtems_task swbd_task(rtems_task_argument argument)
564 564 {
565 565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
566 566 *
567 567 * @param unused is the starting argument of the RTEMS task
568 568 *
569 569 */
570 570
571 571 rtems_event_set event_out;
572 572 unsigned long long int acquisitionTimeF0_asLong;
573 573
574 574 acquisitionTimeF0_asLong = 0x00;
575 575
576 576 BOOT_PRINTF("in SWBD ***\n")
577 577
578 578 while(1){
579 579 // wait for an RTEMS_EVENT
580 580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
581 581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
583 583 {
584 584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
585 585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
586 586 &ring_node_swf1_extracted, swf1_extracted );
587 587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
588 588 }
589 589 else
590 590 {
591 591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
592 592 }
593 593 }
594 594 }
595 595
596 596 //******************
597 597 // general functions
598 598
599 599 void WFP_init_rings( void )
600 600 {
601 601 // F0 RING
602 602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
603 603 // F1 RING
604 604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
605 605 // F2 RING
606 606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
607 607 // F3 RING
608 608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
609 609
610 610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
611 611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
612 612
613 613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
614 614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
615 615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
616 616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
617 617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
618 618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
619 619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
620 620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
621 621
622 622 }
623 623
624 624 void WFP_reset_current_ring_nodes( void )
625 625 {
626 626 current_ring_node_f0 = waveform_ring_f0[0].next;
627 627 current_ring_node_f1 = waveform_ring_f1[0].next;
628 628 current_ring_node_f2 = waveform_ring_f2[0].next;
629 629 current_ring_node_f3 = waveform_ring_f3[0].next;
630 630
631 631 ring_node_to_send_swf_f0 = waveform_ring_f0;
632 632 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 633 ring_node_to_send_swf_f2 = waveform_ring_f2;
634 634
635 635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
636 636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
637 637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
638 638 }
639 639
640 640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
641 641 {
642 642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
643 643 *
644 644 * @param waveform points to the buffer containing the data that will be send.
645 645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
646 646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
647 647 * contain information to setup the transmission of the data packets.
648 648 *
649 649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
650 650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
651 651 *
652 652 */
653 653
654 654 unsigned int i;
655 655 int ret;
656 656 rtems_status_code status;
657 657
658 658 char *sample;
659 659 int *dataPtr;
660 660
661 661 ret = LFR_DEFAULT;
662 662
663 663 dataPtr = (int*) ring_node_to_send->buffer_address;
664 664
665 665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
666 666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
667 667
668 668 //**********************
669 669 // BUILD CWF3_light DATA
670 670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
671 671 {
672 672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
673 673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
674 674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
675 675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
676 676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
677 677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
678 678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
679 679 }
680 680
681 681 // SEND PACKET
682 682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
683 683 if (status != RTEMS_SUCCESSFUL) {
684 684 ret = LFR_DEFAULT;
685 685 }
686 686
687 687 return ret;
688 688 }
689 689
690 690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
691 691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
692 692 {
693 693 unsigned long long int acquisitionTimeAsLong;
694 694 unsigned char localAcquisitionTime[6];
695 695 double deltaT;
696 696
697 697 deltaT = 0.;
698 698
699 699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
700 700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
701 701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
702 702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
703 703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
704 704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
705 705
706 706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
707 707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
708 708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
709 709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
710 710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
711 711 + ( (unsigned long long int) localAcquisitionTime[5] );
712 712
713 713 switch( sid )
714 714 {
715 715 case SID_NORM_SWF_F0:
716 716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
717 717 break;
718 718
719 719 case SID_NORM_SWF_F1:
720 720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
721 721 break;
722 722
723 723 case SID_NORM_SWF_F2:
724 724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
725 725 break;
726 726
727 727 case SID_SBM1_CWF_F1:
728 728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
729 729 break;
730 730
731 731 case SID_SBM2_CWF_F2:
732 732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
733 733 break;
734 734
735 735 case SID_BURST_CWF_F2:
736 736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
737 737 break;
738 738
739 739 case SID_NORM_CWF_F3:
740 740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
741 741 break;
742 742
743 743 case SID_NORM_CWF_LONG_F3:
744 744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
745 745 break;
746 746
747 747 default:
748 748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
749 749 deltaT = 0.;
750 750 break;
751 751 }
752 752
753 753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
754 754 //
755 755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
756 756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
757 757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
758 758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
759 759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
760 760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
761 761
762 762 }
763 763
764 764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
765 765 unsigned char frequencyChannel,
766 766 unsigned long long int acquisitionTimeF0_asLong,
767 767 ring_node *ring_node_swf_extracted,
768 768 int *swf_extracted)
769 769 {
770 770 unsigned int i;
771 771 unsigned long long int centerTime_asLong;
772 772 unsigned long long int acquisitionTime_asLong;
773 773 unsigned long long int bufferAcquisitionTime_asLong;
774 774 unsigned char *ptr1;
775 775 unsigned char *ptr2;
776 776 unsigned char *timeCharPtr;
777 777 unsigned char nb_ring_nodes;
778 778 unsigned long long int frequency_asLong;
779 779 unsigned long long int nbTicksPerSample_asLong;
780 780 unsigned long long int nbSamplesPart1_asLong;
781 781 unsigned long long int sampleOffset_asLong;
782 782
783 783 unsigned int deltaT_F0;
784 784 unsigned int deltaT_F1;
785 785 unsigned long long int deltaT_F2;
786 786
787 787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
788 788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
789 789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
790 790 sampleOffset_asLong = 0x00;
791 791
792 792 // (1) get the f0 acquisition time => the value is passed in argument
793 793
794 794 // (2) compute the central reference time
795 795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
796 796
797 797 // (3) compute the acquisition time of the current snapshot
798 798 switch(frequencyChannel)
799 799 {
800 800 case 1: // 1 is for F1 = 4096 Hz
801 801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
802 802 nb_ring_nodes = NB_RING_NODES_F1;
803 803 frequency_asLong = 4096;
804 804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
805 805 break;
806 806 case 2: // 2 is for F2 = 256 Hz
807 807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
808 808 nb_ring_nodes = NB_RING_NODES_F2;
809 809 frequency_asLong = 256;
810 810 nbTicksPerSample_asLong = 256; // 65536 / 256;
811 811 break;
812 812 default:
813 813 acquisitionTime_asLong = centerTime_asLong;
814 814 frequency_asLong = 256;
815 815 nbTicksPerSample_asLong = 256;
816 816 break;
817 817 }
818 818
819 819 //****************************************************************************
820 820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
821 821 for (i=0; i<nb_ring_nodes; i++)
822 822 {
823 823 //PRINTF1("%d ... ", i);
824 824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
825 825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
826 826 {
827 827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
828 828 break;
829 829 }
830 830 ring_node_to_send = ring_node_to_send->previous;
831 831 }
832 832
833 833 // (5) compute the number of samples to take in the current buffer
834 834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
835 835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
836 836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
837 837
838 838 // (6) compute the final acquisition time
839 839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
840 840 sampleOffset_asLong * nbTicksPerSample_asLong;
841 841
842 842 // (7) copy the acquisition time at the beginning of the extrated snapshot
843 843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
844 844 // fine time
845 845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
846 846 ptr2[2] = ptr1[ 4 + 2 ];
847 847 ptr2[3] = ptr1[ 5 + 2 ];
848 848 // coarse time
849 849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
850 850 ptr2[0] = ptr1[ 0 + 2 ];
851 851 ptr2[1] = ptr1[ 1 + 2 ];
852 852 ptr2[2] = ptr1[ 2 + 2 ];
853 853 ptr2[3] = ptr1[ 3 + 2 ];
854 854
855 855 // re set the synchronization bit
856 856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
857 857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
858 858
859 859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
860 860 {
861 861 nbSamplesPart1_asLong = 0;
862 862 }
863 863 // copy the part 1 of the snapshot in the extracted buffer
864 864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
865 865 {
866 866 swf_extracted[i] =
867 867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
868 868 }
869 869 // copy the part 2 of the snapshot in the extracted buffer
870 870 ring_node_to_send = ring_node_to_send->next;
871 871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
872 872 {
873 873 swf_extracted[i] =
874 874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
875 875 }
876 876 }
877 877
878 878 double computeCorrection( unsigned char *timePtr )
879 879 {
880 880 unsigned long long int acquisitionTime;
881 881 unsigned long long int centerTime;
882 882 unsigned long long int previousTick;
883 883 unsigned long long int nextTick;
884 884 unsigned long long int deltaPreviousTick;
885 885 unsigned long long int deltaNextTick;
886 886 double deltaPrevious_ms;
887 887 double deltaNext_ms;
888 888 double correctionInF2;
889 889
890 890 // get acquisition time in fine time ticks
891 891 acquisitionTime = get_acquisition_time( timePtr );
892 892
893 893 // compute center time
894 894 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
895 895 previousTick = centerTime - (centerTime & 0xffff);
896 896 nextTick = previousTick + 65536;
897 897
898 898 deltaPreviousTick = centerTime - previousTick;
899 899 deltaNextTick = nextTick - centerTime;
900 900
901 901 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
902 902 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
903 903
904 904 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
905 905 // PRINTF2(" delta previous = %llu fine time ticks, delta next = %llu fine time ticks\n",
906 906 // deltaPreviousTick, deltaNextTick);
907 907
908 908 // which tick is the closest?
909 909 if (deltaPreviousTick > deltaNextTick)
910 910 {
911 911 // the snapshot center is just before the second => increase delta_snapshot
912 912 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
913 913 }
914 914 else
915 915 {
916 916 // the snapshot center is just after the second => decrease delta_snapshot
917 917 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
918 918 }
919 919
920 920 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
921 921
922 922 return correctionInF2;
923 923 }
924 924
925 925 void applyCorrection( double correction )
926 926 {
927 927 int correctionInt;
928 928
929 929 if (correction>=0.)
930 930 {
931 931 if ( correction > 0.5 )
932 932 {
933 933 correctionInt = 1;
934 934 }
935 935 else
936 936 {
937 937 correctionInt = floor(correction);
938 938 }
939 939 }
940 940 else
941 941 {
942 942 if ( correction < -0.5)
943 943 {
944 944 correctionInt = -1;
945 945 }
946 946 else
947 947 {
948 948 correctionInt = ceil(correction);
949 949 }
950 950 }
951 951 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
952 952 }
953 953
954 954 void snapshot_resynchronization( unsigned char *timePtr )
955 955 {
956 /** This function compute a correction to apply on delta_snapshot.
957 *
958 *
959 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
960 *
961 * @return void
962 *
963 */
964
956 965 static double correction = 0.;
957 966 static resynchro_state state = MEASURE;
958 967
959 968 int correctionInt;
960 969
961 970 correctionInt = 0;
962 971
963 972 switch (state)
964 973 {
965 974
966 975 case MEASURE:
967 976 // ********
968 977 PRINTF("MEASURE ===\n");
969 978 state = CORRECTION;
970 979 correction = computeCorrection( timePtr );
971 980 PRINTF1("MEASURE === correction = %.2f\n", correction );
972 981 applyCorrection( correction );
973 982 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
974 983 //****
975 984 break;
976 985
977 986 case CORRECTION:
978 987 //************
979 988 PRINTF("CORRECTION ===\n");
980 989 state = MEASURE;
981 990 computeCorrection( timePtr );
982 991 correction = -correction;
983 992 PRINTF1("CORRECTION === correction = %.2f\n", correction );
984 993 applyCorrection( correction );
985 994 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
986 995 //****
987 996 break;
988 997
989 998 default:
990 999 break;
991 1000
992 1001 }
993 1002 }
994 1003
995 1004 //**************
996 1005 // wfp registers
997 1006 void reset_wfp_burst_enable( void )
998 1007 {
999 1008 /** This function resets the waveform picker burst_enable register.
1000 1009 *
1001 1010 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1002 1011 *
1003 1012 */
1004 1013
1005 1014 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1006 1015 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1007 1016 }
1008 1017
1009 1018 void reset_wfp_status( void )
1010 1019 {
1011 1020 /** This function resets the waveform picker status register.
1012 1021 *
1013 1022 * All status bits are set to 0 [new_err full_err full].
1014 1023 *
1015 1024 */
1016 1025
1017 1026 waveform_picker_regs->status = 0xffff;
1018 1027 }
1019 1028
1020 1029 void reset_wfp_buffer_addresses( void )
1021 1030 {
1022 1031 // F0
1023 1032 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1024 1033 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1025 1034 // F1
1026 1035 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1027 1036 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1028 1037 // F2
1029 1038 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1030 1039 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1031 1040 // F3
1032 1041 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1033 1042 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1034 1043 }
1035 1044
1036 1045 void reset_waveform_picker_regs( void )
1037 1046 {
1038 1047 /** This function resets the waveform picker module registers.
1039 1048 *
1040 1049 * The registers affected by this function are located at the following offset addresses:
1041 1050 * - 0x00 data_shaping
1042 1051 * - 0x04 run_burst_enable
1043 1052 * - 0x08 addr_data_f0
1044 1053 * - 0x0C addr_data_f1
1045 1054 * - 0x10 addr_data_f2
1046 1055 * - 0x14 addr_data_f3
1047 1056 * - 0x18 status
1048 1057 * - 0x1C delta_snapshot
1049 1058 * - 0x20 delta_f0
1050 1059 * - 0x24 delta_f0_2
1051 1060 * - 0x28 delta_f1 (obsolet parameter)
1052 1061 * - 0x2c delta_f2
1053 1062 * - 0x30 nb_data_by_buffer
1054 1063 * - 0x34 nb_snapshot_param
1055 1064 * - 0x38 start_date
1056 1065 * - 0x3c nb_word_in_buffer
1057 1066 *
1058 1067 */
1059 1068
1060 1069 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1061 1070
1062 1071 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1063 1072
1064 1073 reset_wfp_buffer_addresses();
1065 1074
1066 1075 reset_wfp_status(); // 0x18
1067 1076
1068 1077 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1069 1078
1070 1079 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1071 1080
1072 1081 //the parameter delta_f1 [0x28] is not used anymore
1073 1082
1074 1083 set_wfp_delta_f2(); // 0x2c
1075 1084
1076 1085 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1077 1086 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1078 1087 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1079 1088 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1080 1089 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1081 1090 // 2688 = 8 * 336
1082 1091 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1083 1092 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1084 1093 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1085 1094 //
1086 1095 // coarse time and fine time registers are not initialized, they are volatile
1087 1096 //
1088 1097 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1089 1098 }
1090 1099
1091 1100 void set_wfp_data_shaping( void )
1092 1101 {
1093 1102 /** This function sets the data_shaping register of the waveform picker module.
1094 1103 *
1095 1104 * The value is read from one field of the parameter_dump_packet structure:\n
1096 1105 * bw_sp0_sp1_r0_r1
1097 1106 *
1098 1107 */
1099 1108
1100 1109 unsigned char data_shaping;
1101 1110
1102 1111 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1103 1112 // waveform picker : [R1 R0 SP1 SP0 BW]
1104 1113
1105 1114 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1106 1115
1107 1116 waveform_picker_regs->data_shaping =
1108 1117 ( (data_shaping & 0x20) >> 5 ) // BW
1109 1118 + ( (data_shaping & 0x10) >> 3 ) // SP0
1110 1119 + ( (data_shaping & 0x08) >> 1 ) // SP1
1111 1120 + ( (data_shaping & 0x04) << 1 ) // R0
1112 1121 + ( (data_shaping & 0x02) << 3 ) // R1
1113 1122 + ( (data_shaping & 0x01) << 5 ); // R2
1114 1123 }
1115 1124
1116 1125 void set_wfp_burst_enable_register( unsigned char mode )
1117 1126 {
1118 1127 /** This function sets the waveform picker burst_enable register depending on the mode.
1119 1128 *
1120 1129 * @param mode is the LFR mode to launch.
1121 1130 *
1122 1131 * The burst bits shall be before the enable bits.
1123 1132 *
1124 1133 */
1125 1134
1126 1135 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1127 1136 // the burst bits shall be set first, before the enable bits
1128 1137 switch(mode) {
1129 1138 case LFR_MODE_NORMAL:
1130 1139 case LFR_MODE_SBM1:
1131 1140 case LFR_MODE_SBM2:
1132 1141 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1133 1142 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1134 1143 break;
1135 1144 case LFR_MODE_BURST:
1136 1145 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1137 1146 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1138 1147 break;
1139 1148 default:
1140 1149 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1141 1150 break;
1142 1151 }
1143 1152 }
1144 1153
1145 1154 void set_wfp_delta_snapshot( void )
1146 1155 {
1147 1156 /** This function sets the delta_snapshot register of the waveform picker module.
1148 1157 *
1149 1158 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1150 1159 * - sy_lfr_n_swf_p[0]
1151 1160 * - sy_lfr_n_swf_p[1]
1152 1161 *
1153 1162 */
1154 1163
1155 1164 unsigned int delta_snapshot;
1156 1165 unsigned int delta_snapshot_in_T2;
1157 1166
1158 1167 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1159 1168 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1160 1169
1161 1170 delta_snapshot_in_T2 = delta_snapshot * 256;
1162 1171 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1163 1172 }
1164 1173
1165 1174 void set_wfp_delta_f0_f0_2( void )
1166 1175 {
1167 1176 unsigned int delta_snapshot;
1168 1177 unsigned int nb_samples_per_snapshot;
1169 1178 float delta_f0_in_float;
1170 1179
1171 1180 delta_snapshot = waveform_picker_regs->delta_snapshot;
1172 1181 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1173 1182 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1174 1183
1175 1184 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1176 1185 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1177 1186 }
1178 1187
1179 1188 void set_wfp_delta_f1( void )
1180 1189 {
1181 1190 /** Sets the value of the delta_f1 parameter
1182 1191 *
1183 1192 * @param void
1184 1193 *
1185 1194 * @return void
1186 1195 *
1187 1196 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1188 1197 *
1189 1198 */
1190 1199
1191 1200 unsigned int delta_snapshot;
1192 1201 unsigned int nb_samples_per_snapshot;
1193 1202 float delta_f1_in_float;
1194 1203
1195 1204 delta_snapshot = waveform_picker_regs->delta_snapshot;
1196 1205 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1197 1206 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1198 1207
1199 1208 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1200 1209 }
1201 1210
1202 1211 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1203 1212 {
1204 1213 /** Sets the value of the delta_f2 parameter
1205 1214 *
1206 1215 * @param void
1207 1216 *
1208 1217 * @return void
1209 1218 *
1210 1219 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1211 1220 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1212 1221 *
1213 1222 */
1214 1223
1215 1224 unsigned int delta_snapshot;
1216 1225 unsigned int nb_samples_per_snapshot;
1217 1226
1218 1227 delta_snapshot = waveform_picker_regs->delta_snapshot;
1219 1228 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1220 1229
1221 1230 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1222 1231 }
1223 1232
1224 1233 //*****************
1225 1234 // local parameters
1226 1235
1227 1236 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1228 1237 {
1229 1238 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1230 1239 *
1231 1240 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1232 1241 * @param sid is the source identifier of the packet being updated.
1233 1242 *
1234 1243 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1235 1244 * The sequence counters shall wrap around from 2^14 to zero.
1236 1245 * The sequence counter shall start at zero at startup.
1237 1246 *
1238 1247 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1239 1248 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1240 1249 *
1241 1250 */
1242 1251
1243 1252 unsigned short *sequence_cnt;
1244 1253 unsigned short segmentation_grouping_flag;
1245 1254 unsigned short new_packet_sequence_control;
1246 1255 rtems_mode initial_mode_set;
1247 1256 rtems_mode current_mode_set;
1248 1257 rtems_status_code status;
1249 1258
1250 1259 //******************************************
1251 1260 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1252 1261 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1253 1262
1254 1263 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1255 1264 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1256 1265 || (sid == SID_BURST_CWF_F2)
1257 1266 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1258 1267 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1259 1268 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1260 1269 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1261 1270 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1262 1271 {
1263 1272 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1264 1273 }
1265 1274 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1266 1275 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1267 1276 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1268 1277 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1269 1278 {
1270 1279 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1271 1280 }
1272 1281 else
1273 1282 {
1274 1283 sequence_cnt = (unsigned short *) NULL;
1275 1284 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1276 1285 }
1277 1286
1278 1287 if (sequence_cnt != NULL)
1279 1288 {
1280 1289 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1281 1290 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1282 1291
1283 1292 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1284 1293
1285 1294 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1286 1295 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1287 1296
1288 1297 // increment the sequence counter
1289 1298 if ( *sequence_cnt < SEQ_CNT_MAX)
1290 1299 {
1291 1300 *sequence_cnt = *sequence_cnt + 1;
1292 1301 }
1293 1302 else
1294 1303 {
1295 1304 *sequence_cnt = 0;
1296 1305 }
1297 1306 }
1298 1307
1299 1308 //*************************************
1300 1309 // RESTORE THE MODE OF THE CALLING TASK
1301 1310 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1302 1311 }
General Comments 0
You need to be logged in to leave comments. Login now