##// END OF EJS Templates
partial recoding of reaction wheel filtering
paul -
r329:95a6df42a7d2 R3++ draft
parent child
Show More
@@ -1,117 +1,117
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15 #define NB_BINS_TO_REMOVE 3
16 16 #define FI_INTERVAL_COEFF 0.285
17 17 #define BIN_MIN 0
18 18 #define BIN_MAX 127
19 19 #define DELTAF_F0 96.
20 20 #define DELTAF_F1 16.
21 21 #define DELTAF_F2 1.
22 22
23 23 #define BIT_RW1_F1 0x80
24 24 #define BIT_RW1_F2 0x40
25 25 #define BIT_RW2_F1 0x20
26 26 #define BIT_RW2_F2 0x10
27 27 #define BIT_RW3_F1 0x08
28 28 #define BIT_RW3_F2 0x04
29 29 #define BIT_RW4_F1 0x02
30 30 #define BIT_RW4_F2 0x01
31 31
32 32 #define WHEEL_1 1
33 33 #define WHEEL_2 2
34 34 #define WHEEL_3 3
35 35 #define WHEEL_4 4
36 36 #define FREQ_1 1
37 37 #define FREQ_2 2
38 38 #define FREQ_3 3
39 39 #define FREQ_4 4
40 40 #define FLAG_OFFSET_WHEELS_1_3 8
41 41 #define FLAG_OFFSET_WHEELS_2_4 4
42 42
43 43 #define FLAG_NAN 0 // Not A NUMBER
44 44 #define FLAG_IAN 1 // Is A Number
45 45
46 46 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
47 47
48 48 extern unsigned short sequenceCounterParameterDump;
49 49 extern unsigned short sequenceCounters_TM_DUMP[];
50 50 extern float k_coeff_intercalib_f0_norm[ ];
51 51 extern float k_coeff_intercalib_f0_sbm[ ];
52 52 extern float k_coeff_intercalib_f1_norm[ ];
53 53 extern float k_coeff_intercalib_f1_sbm[ ];
54 54 extern float k_coeff_intercalib_f2[ ];
55 55 extern fbins_masks_t fbins_masks;
56 56
57 57 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
58 58 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
59 59 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
60 60 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
61 61 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
62 62 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
63 63 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
64 64 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
65 65 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
66 66 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
67 67
68 68 // NORMAL
69 69 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
70 70 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
71 71 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
72 72 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
73 73 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
74 74 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
75 75 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
76 76
77 77 // BURST
78 78 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
79 79 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
80 80
81 81 // SBM1
82 82 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
83 83 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
84 84
85 85 // SBM2
86 86 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
87 87 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
88 88
89 89 // TC_LFR_UPDATE_INFO
90 90 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
91 91 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
92 92 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
93 93 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value );
94 94 void set_hk_lfr_sc_rw_f_flags( void );
95 95 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
96 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag );
96 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float k );
97 97 void build_sy_lfr_rw_mask( unsigned int channel );
98 98 void build_sy_lfr_rw_masks();
99 99 void merge_fbins_masks( void );
100 100
101 101 // FBINS_MASK
102 102 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
103 103
104 104 // TC_LFR_LOAD_PARS_FILTER_PAR
105 105 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
106 106
107 107 // KCOEFFICIENTS
108 108 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
109 109 void copyFloatByChar( unsigned char *destination, unsigned char *source );
110 110 void floatToChar( float value, unsigned char* ptr);
111 111
112 112 void init_parameter_dump( void );
113 113 void init_kcoefficients_dump( void );
114 114 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
115 115 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
116 116
117 117 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,959 +1,958
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link]
39 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 40 #ifdef PRINT_STACK_REPORT
41 41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 42 #endif
43 43
44 44 #include <rtems/confdefs.h>
45 45
46 46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 47 #ifdef RTEMS_DRVMGR_STARTUP
48 48 #ifdef LEON3
49 49 /* Add Timer and UART Driver */
50 50
51 51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 53 #endif
54 54
55 55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 57 #endif
58 58
59 59 #endif
60 60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 61
62 62 #include <drvmgr/drvmgr_confdefs.h>
63 63 #endif
64 64
65 65 #include "fsw_init.h"
66 66 #include "fsw_config.c"
67 67 #include "GscMemoryLPP.hpp"
68 68
69 69 void initCache()
70 70 {
71 71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 72 // These should only be read and written using 32-bit LDA/STA instructions.
73 73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 74 // The table below shows the register addresses:
75 75 // 0x00 Cache control register
76 76 // 0x04 Reserved
77 77 // 0x08 Instruction cache configuration register
78 78 // 0x0C Data cache configuration register
79 79
80 80 // Cache Control Register Leon3 / Leon3FT
81 81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 82 // RFT PS TB DS FD FI FT ST IB
83 83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 85
86 86 unsigned int cacheControlRegister;
87 87
88 88 CCR_resetCacheControlRegister();
89 89 ASR16_resetRegisterProtectionControlRegister();
90 90
91 91 cacheControlRegister = CCR_getValue();
92 92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 94
95 95 CCR_enableInstructionCache(); // ICS bits
96 96 CCR_enableDataCache(); // DCS bits
97 97 CCR_enableInstructionBurstFetch(); // IB bit
98 98
99 99 faultTolerantScheme();
100 100
101 101 cacheControlRegister = CCR_getValue();
102 102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 104
105 105 PRINTF("\n");
106 106 }
107 107
108 108 rtems_task Init( rtems_task_argument ignored )
109 109 {
110 110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 111 *
112 112 * @param unused is the starting argument of the RTEMS task
113 113 *
114 114 * The INIT task create and run all other RTEMS tasks.
115 115 *
116 116 */
117 117
118 118 //***********
119 119 // INIT CACHE
120 120
121 121 unsigned char *vhdlVersion;
122 122
123 123 reset_lfr();
124 124
125 125 reset_local_time();
126 126
127 127 rtems_cpu_usage_reset();
128 128
129 129 rtems_status_code status;
130 130 rtems_status_code status_spw;
131 131 rtems_isr_entry old_isr_handler;
132 132
133 133 old_isr_handler = NULL;
134 134
135 135 // UART settings
136 136 enable_apbuart_transmitter();
137 137 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
138 138
139 139 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
140 140
141 141
142 142 PRINTF("\n\n\n\n\n")
143 143
144 144 initCache();
145 145
146 146 PRINTF("*************************\n")
147 147 PRINTF("** LFR Flight Software **\n")
148 148
149 149 PRINTF1("** %d-", SW_VERSION_N1)
150 150 PRINTF1("%d-" , SW_VERSION_N2)
151 151 PRINTF1("%d-" , SW_VERSION_N3)
152 152 PRINTF1("%d **\n", SW_VERSION_N4)
153 153
154 154 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
155 155 PRINTF("** VHDL **\n")
156 156 PRINTF1("** %d-", vhdlVersion[1])
157 157 PRINTF1("%d-" , vhdlVersion[2])
158 158 PRINTF1("%d **\n", vhdlVersion[3])
159 159 PRINTF("*************************\n")
160 160 PRINTF("\n\n")
161 161
162 162 init_parameter_dump();
163 163 init_kcoefficients_dump();
164 164 init_local_mode_parameters();
165 165 init_housekeeping_parameters();
166 166 init_k_coefficients_prc0();
167 167 init_k_coefficients_prc1();
168 168 init_k_coefficients_prc2();
169 169 pa_bia_status_info = INIT_CHAR;
170 cp_rpw_sc_rw_f_flags = INIT_CHAR;
171 170
172 171 // initialize all reaction wheels frequencies to NaN
173 172 rw_f.cp_rpw_sc_rw1_f1 = NAN;
174 173 rw_f.cp_rpw_sc_rw1_f2 = NAN;
175 174 rw_f.cp_rpw_sc_rw1_f3 = NAN;
176 175 rw_f.cp_rpw_sc_rw1_f4 = NAN;
177 176 rw_f.cp_rpw_sc_rw2_f1 = NAN;
178 177 rw_f.cp_rpw_sc_rw2_f2 = NAN;
179 178 rw_f.cp_rpw_sc_rw2_f3 = NAN;
180 179 rw_f.cp_rpw_sc_rw2_f4 = NAN;
181 180 rw_f.cp_rpw_sc_rw3_f1 = NAN;
182 181 rw_f.cp_rpw_sc_rw3_f2 = NAN;
183 182 rw_f.cp_rpw_sc_rw3_f3 = NAN;
184 183 rw_f.cp_rpw_sc_rw3_f4 = NAN;
185 184 rw_f.cp_rpw_sc_rw4_f1 = NAN;
186 185 rw_f.cp_rpw_sc_rw4_f2 = NAN;
187 186 rw_f.cp_rpw_sc_rw4_f3 = NAN;
188 187 rw_f.cp_rpw_sc_rw4_f4 = NAN;
189 188
190 189 cp_rpw_sc_rw1_rw2_f_flags = INIT_CHAR;
191 190 cp_rpw_sc_rw3_rw4_f_flags = INIT_CHAR;
192 191
193 192 // initialize filtering parameters
194 193 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
195 194 filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
196 195 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
197 196 filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
198 197 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
199 198 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
200 199 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
201 200
202 201 // waveform picker initialization
203 202 WFP_init_rings();
204 203 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
205 204 WFP_reset_current_ring_nodes();
206 205 reset_waveform_picker_regs();
207 206
208 207 // spectral matrices initialization
209 208 SM_init_rings(); // initialize spectral matrices rings
210 209 SM_reset_current_ring_nodes();
211 210 reset_spectral_matrix_regs();
212 211
213 212 // configure calibration
214 213 configureCalibration( false ); // true means interleaved mode, false is for normal mode
215 214
216 215 updateLFRCurrentMode( LFR_MODE_STANDBY );
217 216
218 217 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
219 218
220 219 create_names(); // create all names
221 220
222 221 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
223 222 if (status != RTEMS_SUCCESSFUL)
224 223 {
225 224 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
226 225 }
227 226
228 227 status = create_message_queues(); // create message queues
229 228 if (status != RTEMS_SUCCESSFUL)
230 229 {
231 230 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
232 231 }
233 232
234 233 status = create_all_tasks(); // create all tasks
235 234 if (status != RTEMS_SUCCESSFUL)
236 235 {
237 236 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
238 237 }
239 238
240 239 // **************************
241 240 // <SPACEWIRE INITIALIZATION>
242 241 status_spw = spacewire_open_link(); // (1) open the link
243 242 if ( status_spw != RTEMS_SUCCESSFUL )
244 243 {
245 244 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
246 245 }
247 246
248 247 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
249 248 {
250 249 status_spw = spacewire_configure_link( fdSPW );
251 250 if ( status_spw != RTEMS_SUCCESSFUL )
252 251 {
253 252 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
254 253 }
255 254 }
256 255
257 256 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
258 257 {
259 258 status_spw = spacewire_start_link( fdSPW );
260 259 if ( status_spw != RTEMS_SUCCESSFUL )
261 260 {
262 261 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
263 262 }
264 263 }
265 264 // </SPACEWIRE INITIALIZATION>
266 265 // ***************************
267 266
268 267 status = start_all_tasks(); // start all tasks
269 268 if (status != RTEMS_SUCCESSFUL)
270 269 {
271 270 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
272 271 }
273 272
274 273 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
275 274 status = start_recv_send_tasks();
276 275 if ( status != RTEMS_SUCCESSFUL )
277 276 {
278 277 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
279 278 }
280 279
281 280 // suspend science tasks, they will be restarted later depending on the mode
282 281 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
283 282 if (status != RTEMS_SUCCESSFUL)
284 283 {
285 284 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
286 285 }
287 286
288 287 // configure IRQ handling for the waveform picker unit
289 288 status = rtems_interrupt_catch( waveforms_isr,
290 289 IRQ_SPARC_WAVEFORM_PICKER,
291 290 &old_isr_handler) ;
292 291 // configure IRQ handling for the spectral matrices unit
293 292 status = rtems_interrupt_catch( spectral_matrices_isr,
294 293 IRQ_SPARC_SPECTRAL_MATRIX,
295 294 &old_isr_handler) ;
296 295
297 296 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
298 297 if ( status_spw != RTEMS_SUCCESSFUL )
299 298 {
300 299 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
301 300 if ( status != RTEMS_SUCCESSFUL ) {
302 301 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
303 302 }
304 303 }
305 304
306 305 BOOT_PRINTF("delete INIT\n")
307 306
308 307 set_hk_lfr_sc_potential_flag( true );
309 308
310 309 // start the timer to detect a missing spacewire timecode
311 310 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
312 311 // if a tickout is generated, the timer is restarted
313 312 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
314 313
315 314 grspw_timecode_callback = &timecode_irq_handler;
316 315
317 316 status = rtems_task_delete(RTEMS_SELF);
318 317
319 318 }
320 319
321 320 void init_local_mode_parameters( void )
322 321 {
323 322 /** This function initialize the param_local global variable with default values.
324 323 *
325 324 */
326 325
327 326 unsigned int i;
328 327
329 328 // LOCAL PARAMETERS
330 329
331 330 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
332 331 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
333 332
334 333 // init sequence counters
335 334
336 335 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
337 336 {
338 337 sequenceCounters_TC_EXE[i] = INIT_CHAR;
339 338 sequenceCounters_TM_DUMP[i] = INIT_CHAR;
340 339 }
341 340 sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR;
342 341 sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR;
343 342 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT;
344 343 }
345 344
346 345 void reset_local_time( void )
347 346 {
348 347 time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000
349 348 }
350 349
351 350 void create_names( void ) // create all names for tasks and queues
352 351 {
353 352 /** This function creates all RTEMS names used in the software for tasks and queues.
354 353 *
355 354 * @return RTEMS directive status codes:
356 355 * - RTEMS_SUCCESSFUL - successful completion
357 356 *
358 357 */
359 358
360 359 // task names
361 360 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
362 361 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
363 362 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
364 363 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
365 364 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
366 365 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
367 366 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
368 367 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
369 368 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
370 369 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
371 370 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
372 371 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
373 372 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
374 373 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
375 374 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
376 375 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
377 376 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
378 377 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
379 378 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
380 379
381 380 // rate monotonic period names
382 381 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
383 382
384 383 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
385 384 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
386 385 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
387 386 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
388 387 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
389 388
390 389 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
391 390 }
392 391
393 392 int create_all_tasks( void ) // create all tasks which run in the software
394 393 {
395 394 /** This function creates all RTEMS tasks used in the software.
396 395 *
397 396 * @return RTEMS directive status codes:
398 397 * - RTEMS_SUCCESSFUL - task created successfully
399 398 * - RTEMS_INVALID_ADDRESS - id is NULL
400 399 * - RTEMS_INVALID_NAME - invalid task name
401 400 * - RTEMS_INVALID_PRIORITY - invalid task priority
402 401 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
403 402 * - RTEMS_TOO_MANY - too many tasks created
404 403 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
405 404 * - RTEMS_TOO_MANY - too many global objects
406 405 *
407 406 */
408 407
409 408 rtems_status_code status;
410 409
411 410 //**********
412 411 // SPACEWIRE
413 412 // RECV
414 413 status = rtems_task_create(
415 414 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
416 415 RTEMS_DEFAULT_MODES,
417 416 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
418 417 );
419 418 if (status == RTEMS_SUCCESSFUL) // SEND
420 419 {
421 420 status = rtems_task_create(
422 421 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
423 422 RTEMS_DEFAULT_MODES,
424 423 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
425 424 );
426 425 }
427 426 if (status == RTEMS_SUCCESSFUL) // LINK
428 427 {
429 428 status = rtems_task_create(
430 429 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
431 430 RTEMS_DEFAULT_MODES,
432 431 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
433 432 );
434 433 }
435 434 if (status == RTEMS_SUCCESSFUL) // ACTN
436 435 {
437 436 status = rtems_task_create(
438 437 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
439 438 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
440 439 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
441 440 );
442 441 }
443 442 if (status == RTEMS_SUCCESSFUL) // SPIQ
444 443 {
445 444 status = rtems_task_create(
446 445 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
447 446 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
448 447 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
449 448 );
450 449 }
451 450
452 451 //******************
453 452 // SPECTRAL MATRICES
454 453 if (status == RTEMS_SUCCESSFUL) // AVF0
455 454 {
456 455 status = rtems_task_create(
457 456 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
458 457 RTEMS_DEFAULT_MODES,
459 458 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
460 459 );
461 460 }
462 461 if (status == RTEMS_SUCCESSFUL) // PRC0
463 462 {
464 463 status = rtems_task_create(
465 464 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
466 465 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
467 466 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
468 467 );
469 468 }
470 469 if (status == RTEMS_SUCCESSFUL) // AVF1
471 470 {
472 471 status = rtems_task_create(
473 472 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
474 473 RTEMS_DEFAULT_MODES,
475 474 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
476 475 );
477 476 }
478 477 if (status == RTEMS_SUCCESSFUL) // PRC1
479 478 {
480 479 status = rtems_task_create(
481 480 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
482 481 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
483 482 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
484 483 );
485 484 }
486 485 if (status == RTEMS_SUCCESSFUL) // AVF2
487 486 {
488 487 status = rtems_task_create(
489 488 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
490 489 RTEMS_DEFAULT_MODES,
491 490 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
492 491 );
493 492 }
494 493 if (status == RTEMS_SUCCESSFUL) // PRC2
495 494 {
496 495 status = rtems_task_create(
497 496 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
498 497 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
499 498 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
500 499 );
501 500 }
502 501
503 502 //****************
504 503 // WAVEFORM PICKER
505 504 if (status == RTEMS_SUCCESSFUL) // WFRM
506 505 {
507 506 status = rtems_task_create(
508 507 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
509 508 RTEMS_DEFAULT_MODES,
510 509 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
511 510 );
512 511 }
513 512 if (status == RTEMS_SUCCESSFUL) // CWF3
514 513 {
515 514 status = rtems_task_create(
516 515 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
517 516 RTEMS_DEFAULT_MODES,
518 517 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
519 518 );
520 519 }
521 520 if (status == RTEMS_SUCCESSFUL) // CWF2
522 521 {
523 522 status = rtems_task_create(
524 523 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
525 524 RTEMS_DEFAULT_MODES,
526 525 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
527 526 );
528 527 }
529 528 if (status == RTEMS_SUCCESSFUL) // CWF1
530 529 {
531 530 status = rtems_task_create(
532 531 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
533 532 RTEMS_DEFAULT_MODES,
534 533 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
535 534 );
536 535 }
537 536 if (status == RTEMS_SUCCESSFUL) // SWBD
538 537 {
539 538 status = rtems_task_create(
540 539 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
541 540 RTEMS_DEFAULT_MODES,
542 541 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
543 542 );
544 543 }
545 544
546 545 //*****
547 546 // MISC
548 547 if (status == RTEMS_SUCCESSFUL) // LOAD
549 548 {
550 549 status = rtems_task_create(
551 550 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
552 551 RTEMS_DEFAULT_MODES,
553 552 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
554 553 );
555 554 }
556 555 if (status == RTEMS_SUCCESSFUL) // DUMB
557 556 {
558 557 status = rtems_task_create(
559 558 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
560 559 RTEMS_DEFAULT_MODES,
561 560 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
562 561 );
563 562 }
564 563 if (status == RTEMS_SUCCESSFUL) // HOUS
565 564 {
566 565 status = rtems_task_create(
567 566 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
568 567 RTEMS_DEFAULT_MODES,
569 568 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
570 569 );
571 570 }
572 571
573 572 return status;
574 573 }
575 574
576 575 int start_recv_send_tasks( void )
577 576 {
578 577 rtems_status_code status;
579 578
580 579 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
581 580 if (status!=RTEMS_SUCCESSFUL) {
582 581 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
583 582 }
584 583
585 584 if (status == RTEMS_SUCCESSFUL) // SEND
586 585 {
587 586 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
588 587 if (status!=RTEMS_SUCCESSFUL) {
589 588 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
590 589 }
591 590 }
592 591
593 592 return status;
594 593 }
595 594
596 595 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
597 596 {
598 597 /** This function starts all RTEMS tasks used in the software.
599 598 *
600 599 * @return RTEMS directive status codes:
601 600 * - RTEMS_SUCCESSFUL - ask started successfully
602 601 * - RTEMS_INVALID_ADDRESS - invalid task entry point
603 602 * - RTEMS_INVALID_ID - invalid task id
604 603 * - RTEMS_INCORRECT_STATE - task not in the dormant state
605 604 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
606 605 *
607 606 */
608 607 // starts all the tasks fot eh flight software
609 608
610 609 rtems_status_code status;
611 610
612 611 //**********
613 612 // SPACEWIRE
614 613 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
615 614 if (status!=RTEMS_SUCCESSFUL) {
616 615 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
617 616 }
618 617
619 618 if (status == RTEMS_SUCCESSFUL) // LINK
620 619 {
621 620 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
622 621 if (status!=RTEMS_SUCCESSFUL) {
623 622 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
624 623 }
625 624 }
626 625
627 626 if (status == RTEMS_SUCCESSFUL) // ACTN
628 627 {
629 628 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
630 629 if (status!=RTEMS_SUCCESSFUL) {
631 630 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
632 631 }
633 632 }
634 633
635 634 //******************
636 635 // SPECTRAL MATRICES
637 636 if (status == RTEMS_SUCCESSFUL) // AVF0
638 637 {
639 638 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
640 639 if (status!=RTEMS_SUCCESSFUL) {
641 640 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
642 641 }
643 642 }
644 643 if (status == RTEMS_SUCCESSFUL) // PRC0
645 644 {
646 645 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
647 646 if (status!=RTEMS_SUCCESSFUL) {
648 647 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
649 648 }
650 649 }
651 650 if (status == RTEMS_SUCCESSFUL) // AVF1
652 651 {
653 652 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
654 653 if (status!=RTEMS_SUCCESSFUL) {
655 654 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
656 655 }
657 656 }
658 657 if (status == RTEMS_SUCCESSFUL) // PRC1
659 658 {
660 659 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
661 660 if (status!=RTEMS_SUCCESSFUL) {
662 661 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
663 662 }
664 663 }
665 664 if (status == RTEMS_SUCCESSFUL) // AVF2
666 665 {
667 666 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
668 667 if (status!=RTEMS_SUCCESSFUL) {
669 668 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
670 669 }
671 670 }
672 671 if (status == RTEMS_SUCCESSFUL) // PRC2
673 672 {
674 673 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
675 674 if (status!=RTEMS_SUCCESSFUL) {
676 675 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
677 676 }
678 677 }
679 678
680 679 //****************
681 680 // WAVEFORM PICKER
682 681 if (status == RTEMS_SUCCESSFUL) // WFRM
683 682 {
684 683 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
685 684 if (status!=RTEMS_SUCCESSFUL) {
686 685 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
687 686 }
688 687 }
689 688 if (status == RTEMS_SUCCESSFUL) // CWF3
690 689 {
691 690 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
692 691 if (status!=RTEMS_SUCCESSFUL) {
693 692 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
694 693 }
695 694 }
696 695 if (status == RTEMS_SUCCESSFUL) // CWF2
697 696 {
698 697 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
699 698 if (status!=RTEMS_SUCCESSFUL) {
700 699 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
701 700 }
702 701 }
703 702 if (status == RTEMS_SUCCESSFUL) // CWF1
704 703 {
705 704 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
706 705 if (status!=RTEMS_SUCCESSFUL) {
707 706 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
708 707 }
709 708 }
710 709 if (status == RTEMS_SUCCESSFUL) // SWBD
711 710 {
712 711 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
713 712 if (status!=RTEMS_SUCCESSFUL) {
714 713 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
715 714 }
716 715 }
717 716
718 717 //*****
719 718 // MISC
720 719 if (status == RTEMS_SUCCESSFUL) // HOUS
721 720 {
722 721 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
723 722 if (status!=RTEMS_SUCCESSFUL) {
724 723 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
725 724 }
726 725 }
727 726 if (status == RTEMS_SUCCESSFUL) // DUMB
728 727 {
729 728 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
730 729 if (status!=RTEMS_SUCCESSFUL) {
731 730 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
732 731 }
733 732 }
734 733 if (status == RTEMS_SUCCESSFUL) // LOAD
735 734 {
736 735 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
737 736 if (status!=RTEMS_SUCCESSFUL) {
738 737 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
739 738 }
740 739 }
741 740
742 741 return status;
743 742 }
744 743
745 744 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
746 745 {
747 746 rtems_status_code status_recv;
748 747 rtems_status_code status_send;
749 748 rtems_status_code status_q_p0;
750 749 rtems_status_code status_q_p1;
751 750 rtems_status_code status_q_p2;
752 751 rtems_status_code ret;
753 752 rtems_id queue_id;
754 753
755 754 ret = RTEMS_SUCCESSFUL;
756 755 queue_id = RTEMS_ID_NONE;
757 756
758 757 //****************************************
759 758 // create the queue for handling valid TCs
760 759 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
761 760 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
762 761 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
763 762 if ( status_recv != RTEMS_SUCCESSFUL ) {
764 763 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
765 764 }
766 765
767 766 //************************************************
768 767 // create the queue for handling TM packet sending
769 768 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
770 769 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
771 770 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
772 771 if ( status_send != RTEMS_SUCCESSFUL ) {
773 772 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
774 773 }
775 774
776 775 //*****************************************************************************
777 776 // create the queue for handling averaged spectral matrices for processing @ f0
778 777 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
779 778 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
780 779 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
781 780 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
782 781 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
783 782 }
784 783
785 784 //*****************************************************************************
786 785 // create the queue for handling averaged spectral matrices for processing @ f1
787 786 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
788 787 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
789 788 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
790 789 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
791 790 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
792 791 }
793 792
794 793 //*****************************************************************************
795 794 // create the queue for handling averaged spectral matrices for processing @ f2
796 795 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
797 796 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
798 797 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
799 798 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
800 799 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
801 800 }
802 801
803 802 if ( status_recv != RTEMS_SUCCESSFUL )
804 803 {
805 804 ret = status_recv;
806 805 }
807 806 else if( status_send != RTEMS_SUCCESSFUL )
808 807 {
809 808 ret = status_send;
810 809 }
811 810 else if( status_q_p0 != RTEMS_SUCCESSFUL )
812 811 {
813 812 ret = status_q_p0;
814 813 }
815 814 else if( status_q_p1 != RTEMS_SUCCESSFUL )
816 815 {
817 816 ret = status_q_p1;
818 817 }
819 818 else
820 819 {
821 820 ret = status_q_p2;
822 821 }
823 822
824 823 return ret;
825 824 }
826 825
827 826 rtems_status_code create_timecode_timer( void )
828 827 {
829 828 rtems_status_code status;
830 829
831 830 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
832 831
833 832 if ( status != RTEMS_SUCCESSFUL )
834 833 {
835 834 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
836 835 }
837 836 else
838 837 {
839 838 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
840 839 }
841 840
842 841 return status;
843 842 }
844 843
845 844 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
846 845 {
847 846 rtems_status_code status;
848 847 rtems_name queue_name;
849 848
850 849 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
851 850
852 851 status = rtems_message_queue_ident( queue_name, 0, queue_id );
853 852
854 853 return status;
855 854 }
856 855
857 856 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
858 857 {
859 858 rtems_status_code status;
860 859 rtems_name queue_name;
861 860
862 861 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
863 862
864 863 status = rtems_message_queue_ident( queue_name, 0, queue_id );
865 864
866 865 return status;
867 866 }
868 867
869 868 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
870 869 {
871 870 rtems_status_code status;
872 871 rtems_name queue_name;
873 872
874 873 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
875 874
876 875 status = rtems_message_queue_ident( queue_name, 0, queue_id );
877 876
878 877 return status;
879 878 }
880 879
881 880 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
882 881 {
883 882 rtems_status_code status;
884 883 rtems_name queue_name;
885 884
886 885 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
887 886
888 887 status = rtems_message_queue_ident( queue_name, 0, queue_id );
889 888
890 889 return status;
891 890 }
892 891
893 892 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
894 893 {
895 894 rtems_status_code status;
896 895 rtems_name queue_name;
897 896
898 897 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
899 898
900 899 status = rtems_message_queue_ident( queue_name, 0, queue_id );
901 900
902 901 return status;
903 902 }
904 903
905 904 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
906 905 {
907 906 u_int32_t count;
908 907 rtems_status_code status;
909 908
910 909 count = 0;
911 910
912 911 status = rtems_message_queue_get_number_pending( queue_id, &count );
913 912
914 913 count = count + 1;
915 914
916 915 if (status != RTEMS_SUCCESSFUL)
917 916 {
918 917 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
919 918 }
920 919 else
921 920 {
922 921 if (count > *fifo_size_max)
923 922 {
924 923 *fifo_size_max = count;
925 924 }
926 925 }
927 926 }
928 927
929 928 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
930 929 {
931 930 unsigned char i;
932 931
933 932 //***************
934 933 // BUFFER ADDRESS
935 934 for(i=0; i<nbNodes; i++)
936 935 {
937 936 ring[i].coarseTime = INT32_ALL_F;
938 937 ring[i].fineTime = INT32_ALL_F;
939 938 ring[i].sid = INIT_CHAR;
940 939 ring[i].status = INIT_CHAR;
941 940 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
942 941 }
943 942
944 943 //*****
945 944 // NEXT
946 945 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
947 946 for(i=0; i<nbNodes-1; i++)
948 947 {
949 948 ring[i].next = (ring_node*) &ring[ i + 1 ];
950 949 }
951 950
952 951 //*********
953 952 // PREVIOUS
954 953 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
955 954 for(i=1; i<nbNodes; i++)
956 955 {
957 956 ring[i].previous = (ring_node*) &ring[ i - 1 ];
958 957 }
959 958 }
@@ -1,1780 +1,1782
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327 unsigned char k;
328 328
329 329 flag = LFR_DEFAULT;
330 330 k = INIT_CHAR;
331 331
332 332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
333 333
334 334 if (flag == LFR_SUCCESSFUL)
335 335 {
336 336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
345 345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
346 346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
349 349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
350 350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
351 351
352 352 //****************************
353 353 // store PAS filter parameters
354 354 // sy_lfr_pas_filter_enabled
355 355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
356 356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
357 357 // sy_lfr_pas_filter_modulus
358 358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
359 359 // sy_lfr_pas_filter_tbad
360 360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
361 361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
362 362 // sy_lfr_pas_filter_offset
363 363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
364 364 // sy_lfr_pas_filter_shift
365 365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
366 366 parameter_dump_packet.sy_lfr_pas_filter_shift );
367 367
368 368 //****************************************************
369 369 // store the parameter sy_lfr_sc_rw_delta_f as a float
370 370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
371 371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
372 372
373 373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
374 374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
375 375 {
376 376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
377 377 }
378 378
379 379 //***********************************************
380 380 // store the parameter sy_lfr_rw.._k.. as a float
381 381 // rw1_k
382 382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
383 383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
384 384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
385 385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
386 386 // rw2_k
387 387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
388 388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
389 389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
390 390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
391 391 // rw3_k
392 392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
393 393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
394 394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
395 395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
396 396 // rw4_k
397 397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
398 398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
399 399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
400 400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
401 401
402 402 }
403 403
404 404 return flag;
405 405 }
406 406
407 407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
408 408 {
409 409 /** This function updates the LFR registers with the incoming sbm2 parameters.
410 410 *
411 411 * @param TC points to the TeleCommand packet that is being processed
412 412 * @param queue_id is the id of the queue which handles TM related to this execution step
413 413 *
414 414 */
415 415
416 416 unsigned int address;
417 417 rtems_status_code status;
418 418 unsigned int freq;
419 419 unsigned int bin;
420 420 unsigned int coeff;
421 421 unsigned char *kCoeffPtr;
422 422 unsigned char *kCoeffDumpPtr;
423 423
424 424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
425 425 // F0 => 11 bins
426 426 // F1 => 13 bins
427 427 // F2 => 12 bins
428 428 // 36 bins to dump in two packets (30 bins max per packet)
429 429
430 430 //*********
431 431 // PACKET 1
432 432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
433 433 kcoefficients_dump_1.destinationID = TC->sourceID;
434 434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
435 435 for( freq = 0;
436 436 freq < NB_BINS_COMPRESSED_SM_F0;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
440 440 bin = freq;
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
442 442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 for( freq = NB_BINS_COMPRESSED_SM_F0;
452 452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
453 453 freq++ )
454 454 {
455 455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
456 456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
457 457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
458 458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
459 459 {
460 460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
461 461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
462 462 ]; // 2 for the kcoeff_frequency
463 463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
464 464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
465 465 }
466 466 }
467 467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
468 468 freq < KCOEFF_BLK_NR_PKT1 ;
469 469 freq++ )
470 470 {
471 471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
472 472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
473 473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
474 474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
475 475 {
476 476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
477 477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
478 478 ]; // 2 for the kcoeff_frequency
479 479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
480 480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
481 481 }
482 482 }
483 483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
484 484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
485 485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
486 486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
487 487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
489 489 // SEND DATA
490 490 kcoefficient_node_1.status = 1;
491 491 address = (unsigned int) &kcoefficient_node_1;
492 492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
493 493 if (status != RTEMS_SUCCESSFUL) {
494 494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
495 495 }
496 496
497 497 //********
498 498 // PACKET 2
499 499 // 6 F2 bins
500 500 kcoefficients_dump_2.destinationID = TC->sourceID;
501 501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
502 502 for( freq = 0;
503 503 freq < KCOEFF_BLK_NR_PKT2;
504 504 freq++ )
505 505 {
506 506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
507 507 bin = freq + KCOEFF_BLK_NR_PKT2;
508 508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
509 509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
510 510 {
511 511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
512 512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
513 513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
514 514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
515 515 }
516 516 }
517 517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
518 518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
519 519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
520 520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
521 521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
522 522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
523 523 // SEND DATA
524 524 kcoefficient_node_2.status = 1;
525 525 address = (unsigned int) &kcoefficient_node_2;
526 526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
527 527 if (status != RTEMS_SUCCESSFUL) {
528 528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
529 529 }
530 530
531 531 return status;
532 532 }
533 533
534 534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
535 535 {
536 536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
537 537 *
538 538 * @param queue_id is the id of the queue which handles TM related to this execution step.
539 539 *
540 540 * @return RTEMS directive status codes:
541 541 * - RTEMS_SUCCESSFUL - message sent successfully
542 542 * - RTEMS_INVALID_ID - invalid queue id
543 543 * - RTEMS_INVALID_SIZE - invalid message size
544 544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
545 545 * - RTEMS_UNSATISFIED - out of message buffers
546 546 * - RTEMS_TOO_MANY - queue s limit has been reached
547 547 *
548 548 */
549 549
550 550 int status;
551 551
552 552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
553 553 parameter_dump_packet.destinationID = TC->sourceID;
554 554
555 555 // UPDATE TIME
556 556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
557 557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
558 558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
559 559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
560 560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
561 561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
562 562 // SEND DATA
563 563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
564 564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
565 565 if (status != RTEMS_SUCCESSFUL) {
566 566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
567 567 }
568 568
569 569 return status;
570 570 }
571 571
572 572 //***********************
573 573 // NORMAL MODE PARAMETERS
574 574
575 575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
576 576 {
577 577 unsigned char msb;
578 578 unsigned char lsb;
579 579 int flag;
580 580 float aux;
581 581 rtems_status_code status;
582 582
583 583 unsigned int sy_lfr_n_swf_l;
584 584 unsigned int sy_lfr_n_swf_p;
585 585 unsigned int sy_lfr_n_asm_p;
586 586 unsigned char sy_lfr_n_bp_p0;
587 587 unsigned char sy_lfr_n_bp_p1;
588 588 unsigned char sy_lfr_n_cwf_long_f3;
589 589
590 590 flag = LFR_SUCCESSFUL;
591 591
592 592 //***************
593 593 // get parameters
594 594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
595 595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
596 596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
597 597
598 598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
599 599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
600 600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
601 601
602 602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
603 603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
604 604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
605 605
606 606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
607 607
608 608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
609 609
610 610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
611 611
612 612 //******************
613 613 // check consistency
614 614 // sy_lfr_n_swf_l
615 615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
616 616 {
617 617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
618 618 flag = WRONG_APP_DATA;
619 619 }
620 620 // sy_lfr_n_swf_p
621 621 if (flag == LFR_SUCCESSFUL)
622 622 {
623 623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
624 624 {
625 625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
626 626 flag = WRONG_APP_DATA;
627 627 }
628 628 }
629 629 // sy_lfr_n_bp_p0
630 630 if (flag == LFR_SUCCESSFUL)
631 631 {
632 632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
633 633 {
634 634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
635 635 flag = WRONG_APP_DATA;
636 636 }
637 637 }
638 638 // sy_lfr_n_asm_p
639 639 if (flag == LFR_SUCCESSFUL)
640 640 {
641 641 if (sy_lfr_n_asm_p == 0)
642 642 {
643 643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
644 644 flag = WRONG_APP_DATA;
645 645 }
646 646 }
647 647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
648 648 if (flag == LFR_SUCCESSFUL)
649 649 {
650 650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
651 651 if (aux > FLOAT_EQUAL_ZERO)
652 652 {
653 653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
654 654 flag = WRONG_APP_DATA;
655 655 }
656 656 }
657 657 // sy_lfr_n_bp_p1
658 658 if (flag == LFR_SUCCESSFUL)
659 659 {
660 660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
661 661 {
662 662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
663 663 flag = WRONG_APP_DATA;
664 664 }
665 665 }
666 666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
667 667 if (flag == LFR_SUCCESSFUL)
668 668 {
669 669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
670 670 if (aux > FLOAT_EQUAL_ZERO)
671 671 {
672 672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
673 673 flag = LFR_DEFAULT;
674 674 }
675 675 }
676 676 // sy_lfr_n_cwf_long_f3
677 677
678 678 return flag;
679 679 }
680 680
681 681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
682 682 {
683 683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
684 684 *
685 685 * @param TC points to the TeleCommand packet that is being processed
686 686 * @param queue_id is the id of the queue which handles TM related to this execution step
687 687 *
688 688 */
689 689
690 690 int result;
691 691
692 692 result = LFR_SUCCESSFUL;
693 693
694 694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
695 695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
696 696
697 697 return result;
698 698 }
699 699
700 700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
701 701 {
702 702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
703 703 *
704 704 * @param TC points to the TeleCommand packet that is being processed
705 705 * @param queue_id is the id of the queue which handles TM related to this execution step
706 706 *
707 707 */
708 708
709 709 int result;
710 710
711 711 result = LFR_SUCCESSFUL;
712 712
713 713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
714 714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
715 715
716 716 return result;
717 717 }
718 718
719 719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
720 720 {
721 721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
722 722 *
723 723 * @param TC points to the TeleCommand packet that is being processed
724 724 * @param queue_id is the id of the queue which handles TM related to this execution step
725 725 *
726 726 */
727 727
728 728 int result;
729 729
730 730 result = LFR_SUCCESSFUL;
731 731
732 732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
733 733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
734 734
735 735 return result;
736 736 }
737 737
738 738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
739 739 {
740 740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
741 741 *
742 742 * @param TC points to the TeleCommand packet that is being processed
743 743 * @param queue_id is the id of the queue which handles TM related to this execution step
744 744 *
745 745 */
746 746
747 747 int status;
748 748
749 749 status = LFR_SUCCESSFUL;
750 750
751 751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
752 752
753 753 return status;
754 754 }
755 755
756 756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
757 757 {
758 758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
759 759 *
760 760 * @param TC points to the TeleCommand packet that is being processed
761 761 * @param queue_id is the id of the queue which handles TM related to this execution step
762 762 *
763 763 */
764 764
765 765 int status;
766 766
767 767 status = LFR_SUCCESSFUL;
768 768
769 769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
770 770
771 771 return status;
772 772 }
773 773
774 774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
775 775 {
776 776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
777 777 *
778 778 * @param TC points to the TeleCommand packet that is being processed
779 779 * @param queue_id is the id of the queue which handles TM related to this execution step
780 780 *
781 781 */
782 782
783 783 int status;
784 784
785 785 status = LFR_SUCCESSFUL;
786 786
787 787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
788 788
789 789 return status;
790 790 }
791 791
792 792 //**********************
793 793 // BURST MODE PARAMETERS
794 794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
795 795 {
796 796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
797 797 *
798 798 * @param TC points to the TeleCommand packet that is being processed
799 799 * @param queue_id is the id of the queue which handles TM related to this execution step
800 800 *
801 801 */
802 802
803 803 int status;
804 804
805 805 status = LFR_SUCCESSFUL;
806 806
807 807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
808 808
809 809 return status;
810 810 }
811 811
812 812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
813 813 {
814 814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
815 815 *
816 816 * @param TC points to the TeleCommand packet that is being processed
817 817 * @param queue_id is the id of the queue which handles TM related to this execution step
818 818 *
819 819 */
820 820
821 821 int status;
822 822
823 823 status = LFR_SUCCESSFUL;
824 824
825 825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
826 826
827 827 return status;
828 828 }
829 829
830 830 //*********************
831 831 // SBM1 MODE PARAMETERS
832 832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
833 833 {
834 834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
835 835 *
836 836 * @param TC points to the TeleCommand packet that is being processed
837 837 * @param queue_id is the id of the queue which handles TM related to this execution step
838 838 *
839 839 */
840 840
841 841 int status;
842 842
843 843 status = LFR_SUCCESSFUL;
844 844
845 845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
846 846
847 847 return status;
848 848 }
849 849
850 850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
851 851 {
852 852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
853 853 *
854 854 * @param TC points to the TeleCommand packet that is being processed
855 855 * @param queue_id is the id of the queue which handles TM related to this execution step
856 856 *
857 857 */
858 858
859 859 int status;
860 860
861 861 status = LFR_SUCCESSFUL;
862 862
863 863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
864 864
865 865 return status;
866 866 }
867 867
868 868 //*********************
869 869 // SBM2 MODE PARAMETERS
870 870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
871 871 {
872 872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
873 873 *
874 874 * @param TC points to the TeleCommand packet that is being processed
875 875 * @param queue_id is the id of the queue which handles TM related to this execution step
876 876 *
877 877 */
878 878
879 879 int status;
880 880
881 881 status = LFR_SUCCESSFUL;
882 882
883 883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
884 884
885 885 return status;
886 886 }
887 887
888 888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
889 889 {
890 890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
891 891 *
892 892 * @param TC points to the TeleCommand packet that is being processed
893 893 * @param queue_id is the id of the queue which handles TM related to this execution step
894 894 *
895 895 */
896 896
897 897 int status;
898 898
899 899 status = LFR_SUCCESSFUL;
900 900
901 901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
902 902
903 903 return status;
904 904 }
905 905
906 906 //*******************
907 907 // TC_LFR_UPDATE_INFO
908 908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
909 909 {
910 910 unsigned int status;
911 911
912 912 status = LFR_DEFAULT;
913 913
914 914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
915 915 || (mode == LFR_MODE_BURST)
916 916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
917 917 {
918 918 status = LFR_SUCCESSFUL;
919 919 }
920 920 else
921 921 {
922 922 status = LFR_DEFAULT;
923 923 }
924 924
925 925 return status;
926 926 }
927 927
928 928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
929 929 {
930 930 unsigned int status;
931 931
932 932 status = LFR_DEFAULT;
933 933
934 934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
935 935 || (mode == TDS_MODE_BURST)
936 936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
937 937 || (mode == TDS_MODE_LFM))
938 938 {
939 939 status = LFR_SUCCESSFUL;
940 940 }
941 941 else
942 942 {
943 943 status = LFR_DEFAULT;
944 944 }
945 945
946 946 return status;
947 947 }
948 948
949 949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
950 950 {
951 951 unsigned int status;
952 952
953 953 status = LFR_DEFAULT;
954 954
955 955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
956 956 || (mode == THR_MODE_BURST))
957 957 {
958 958 status = LFR_SUCCESSFUL;
959 959 }
960 960 else
961 961 {
962 962 status = LFR_DEFAULT;
963 963 }
964 964
965 965 return status;
966 966 }
967 967
968 968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
969 969 {
970 970 unsigned char flag;
971 971 unsigned char flagPosInByte;
972 972 unsigned char newFlag;
973 973 unsigned char flagMask;
974 974
975 975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
976 976 if (isnan(value))
977 977 {
978 978 flag = FLAG_NAN;
979 979 }
980 980 else
981 981 {
982 982 flag = FLAG_IAN;
983 983 }
984 984
985 985 switch(wheel)
986 986 {
987 987 case WHEEL_1:
988 988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
989 989 flagMask = ~(1 << flagPosInByte);
990 990 newFlag = flag << flagPosInByte;
991 991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
992 992 break;
993 993 case WHEEL_2:
994 994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
995 995 flagMask = ~(1 << flagPosInByte);
996 996 newFlag = flag << flagPosInByte;
997 997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
998 998 break;
999 999 case WHEEL_3:
1000 1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1001 1001 flagMask = ~(1 << flagPosInByte);
1002 1002 newFlag = flag << flagPosInByte;
1003 1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1004 1004 break;
1005 1005 case WHEEL_4:
1006 1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1007 1007 flagMask = ~(1 << flagPosInByte);
1008 1008 newFlag = flag << flagPosInByte;
1009 1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1010 1010 break;
1011 1011 default:
1012 1012 break;
1013 1013 }
1014 1014 }
1015 1015
1016 1016 void set_hk_lfr_sc_rw_f_flags( void )
1017 1017 {
1018 1018 // RW1
1019 1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1020 1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1021 1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1022 1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1023 1023
1024 1024 // RW2
1025 1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1026 1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1027 1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1028 1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1029 1029
1030 1030 // RW3
1031 1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1032 1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1033 1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1034 1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1035 1035
1036 1036 // RW4
1037 1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1038 1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1039 1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1040 1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1041 1041 }
1042 1042
1043 1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1044 1044 {
1045 1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1046 1046 *
1047 1047 * @param TC points to the TeleCommand packet that is being processed
1048 1048 *
1049 1049 */
1050 1050
1051 1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1052 1052
1053 1053 bytePosPtr = (unsigned char *) &TC->packetID;
1054 1054
1055 1055 // rw1_f
1056 1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1057 1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1058 1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1059 1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1060 1060
1061 1061 // rw2_f
1062 1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1063 1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1064 1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1065 1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1066 1066
1067 1067 // rw3_f
1068 1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1069 1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1070 1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1071 1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1072 1072
1073 1073 // rw4_f
1074 1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1075 1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1076 1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1077 1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1078 1078
1079 1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1080 1080
1081 1081 }
1082 1082
1083 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
1083 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float k )
1084 1084 {
1085 1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1086 1086 *
1087 1087 * @param fbins_mask
1088 1088 * @param rw_f is the reaction wheel frequency to filter
1089 1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1090 1090 * @param flag [true] filtering enabled [false] filtering disabled
1091 1091 *
1092 1092 * @return void
1093 1093 *
1094 1094 */
1095 1095
1096 1096 float f_RW_min;
1097 1097 float f_RW_MAX;
1098 1098 float fi_min;
1099 1099 float fi_MAX;
1100 1100 float fi;
1101 1101 float deltaBelow;
1102 1102 float deltaAbove;
1103 1103 int binBelow;
1104 1104 int binAbove;
1105 1105 int closestBin;
1106 1106 unsigned int whichByte;
1107 1107 int selectedByte;
1108 1108 int bin;
1109 1109 int binToRemove[NB_BINS_TO_REMOVE];
1110 int k;
1110 int i;
1111 1111
1112 1112 closestBin = 0;
1113 1113 whichByte = 0;
1114 1114 bin = 0;
1115 1115
1116 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1116 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1117 1117 {
1118 binToRemove[k] = -1;
1119 }
1120
1121 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1122 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1123 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1124
1125 // compute the index of the frequency bin immediately below rw_f
1126 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1127 deltaBelow = rw_f - binBelow * deltaFreq;
1128
1129 // compute the index of the frequency bin immediately above rw_f
1130 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1131 deltaAbove = binAbove * deltaFreq - rw_f;
1132
1133 // search the closest bin
1134 if (deltaAbove > deltaBelow)
1135 {
1136 closestBin = binBelow;
1137 }
1138 else
1139 {
1140 closestBin = binAbove;
1118 binToRemove[i] = -1;
1141 1119 }
1142 1120
1143 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1144 fi = closestBin * deltaFreq;
1145 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1146 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1147
1148 //**************************************************************************************
1149 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1150 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1151 //**************************************************************************************
1152
1153 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1154 // => remove f_(i), f_(i-1) and f_(i+1)
1155 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1121 if (!isnan(rw_f))
1156 1122 {
1157 binToRemove[0] = (closestBin - 1) - 1;
1158 binToRemove[1] = (closestBin) - 1;
1159 binToRemove[2] = (closestBin + 1) - 1;
1160 }
1161 // 2. ELSE
1162 // => remove the two f_(i) which are around f_RW
1163 else
1164 {
1165 binToRemove[0] = (binBelow) - 1;
1166 binToRemove[1] = (binAbove) - 1;
1167 binToRemove[2] = (-1);
1168 }
1123
1124 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1125 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1126 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1127
1128 // compute the index of the frequency bin immediately below rw_f
1129 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1130 deltaBelow = rw_f - binBelow * deltaFreq;
1131
1132 // compute the index of the frequency bin immediately above rw_f
1133 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1134 deltaAbove = binAbove * deltaFreq - rw_f;
1135
1136 // search the closest bin
1137 if (deltaAbove > deltaBelow)
1138 {
1139 closestBin = binBelow;
1140 }
1141 else
1142 {
1143 closestBin = binAbove;
1144 }
1145
1146 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1147 fi = closestBin * deltaFreq;
1148 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1149 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1169 1150
1170 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1171 {
1172 bin = binToRemove[k];
1173 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1151 //**************************************************************************************
1152 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1153 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1154 //**************************************************************************************
1155
1156 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1157 // => remove f_(i), f_(i-1) and f_(i+1)
1158 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1174 1159 {
1175 if (flag == 1)
1160 binToRemove[0] = (closestBin - 1) - 1;
1161 binToRemove[1] = (closestBin) - 1;
1162 binToRemove[2] = (closestBin + 1) - 1;
1163 }
1164 // 2. ELSE
1165 // => remove the two f_(i) which are around f_RW
1166 else
1167 {
1168 binToRemove[0] = (binBelow) - 1;
1169 binToRemove[1] = (binAbove) - 1;
1170 binToRemove[2] = (-1);
1171 }
1172
1173 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1174 {
1175 bin = binToRemove[i];
1176 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1176 1177 {
1178
1177 1179 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1178 1180 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1179 1181 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1180 1182 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1181 1183 }
1182 1184 }
1183 1185 }
1184 1186 }
1185 1187
1186 1188 void build_sy_lfr_rw_mask( unsigned int channel )
1187 1189 {
1188 1190 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1189 1191 unsigned char *maskPtr;
1190 1192 double deltaF;
1191 1193 unsigned k;
1192 1194
1193 1195 k = 0;
1194 1196
1195 1197 maskPtr = NULL;
1196 1198 deltaF = DELTAF_F2;
1197 1199
1198 1200 switch (channel)
1199 1201 {
1200 1202 case CHANNELF0:
1201 1203 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1202 1204 deltaF = DELTAF_F0;
1203 1205 break;
1204 1206 case CHANNELF1:
1205 1207 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1206 1208 deltaF = DELTAF_F1;
1207 1209 break;
1208 1210 case CHANNELF2:
1209 1211 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1210 1212 deltaF = DELTAF_F2;
1211 1213 break;
1212 1214 default:
1213 1215 break;
1214 1216 }
1215 1217
1216 1218 for (k = 0; k < BYTES_PER_MASK; k++)
1217 1219 {
1218 1220 local_rw_fbins_mask[k] = INT8_ALL_F;
1219 1221 }
1220 1222
1221 1223 // RW1
1222 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_7) >> SHIFT_7_BITS ); // [1000 0000]
1223 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_6) >> SHIFT_6_BITS ); // [0100 0000]
1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_5) >> SHIFT_5_BITS ); // [0010 0000]
1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_4) >> SHIFT_4_BITS ); // [0001 0000]
1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1226 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1227 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1226 1228
1227 // RW2
1228 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_3) >> SHIFT_3_BITS ); // [0000 1000]
1229 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_2) >> SHIFT_2_BITS ); // [0000 0100]
1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_1) >> SHIFT_1_BITS ); // [0000 0010]
1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & BIT_0) ); // [0000 0001]
1229 // RW2
1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1232 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1233 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1232 1234
1233 // RW3
1234 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_7) >> SHIFT_7_BITS ); // [1000 0000]
1235 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_6) >> SHIFT_6_BITS ); // [0100 0000]
1236 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_5) >> SHIFT_5_BITS ); // [0010 0000]
1237 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_4) >> SHIFT_4_BITS ); // [0001 0000]
1235 // RW3
1236 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1237 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1238 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1239 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1238 1240
1239 // RW4
1240 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_3) >> SHIFT_3_BITS ); // [0000 1000]
1241 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_2) >> SHIFT_2_BITS ); // [0000 0100]
1242 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_1) >> SHIFT_1_BITS ); // [0000 0010]
1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & BIT_0) ); // [0000 0001]
1241 // RW4
1242 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1244 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1245 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1244 1246
1245 1247 // update the value of the fbins related to reaction wheels frequency filtering
1246 1248 if (maskPtr != NULL)
1247 1249 {
1248 1250 for (k = 0; k < BYTES_PER_MASK; k++)
1249 1251 {
1250 1252 maskPtr[k] = local_rw_fbins_mask[k];
1251 1253 }
1252 1254 }
1253 1255 }
1254 1256
1255 1257 void build_sy_lfr_rw_masks( void )
1256 1258 {
1257 1259 build_sy_lfr_rw_mask( CHANNELF0 );
1258 1260 build_sy_lfr_rw_mask( CHANNELF1 );
1259 1261 build_sy_lfr_rw_mask( CHANNELF2 );
1260 1262 }
1261 1263
1262 1264 void merge_fbins_masks( void )
1263 1265 {
1264 1266 unsigned char k;
1265 1267
1266 1268 unsigned char *fbins_f0;
1267 1269 unsigned char *fbins_f1;
1268 1270 unsigned char *fbins_f2;
1269 1271 unsigned char *rw_mask_f0;
1270 1272 unsigned char *rw_mask_f1;
1271 1273 unsigned char *rw_mask_f2;
1272 1274
1273 1275 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1274 1276 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1275 1277 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1276 1278 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1277 1279 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1278 1280 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1279 1281
1280 1282 for( k=0; k < BYTES_PER_MASK; k++ )
1281 1283 {
1282 1284 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1283 1285 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1284 1286 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1285 1287 }
1286 1288 }
1287 1289
1288 1290 //***********
1289 1291 // FBINS MASK
1290 1292
1291 1293 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1292 1294 {
1293 1295 int status;
1294 1296 unsigned int k;
1295 1297 unsigned char *fbins_mask_dump;
1296 1298 unsigned char *fbins_mask_TC;
1297 1299
1298 1300 status = LFR_SUCCESSFUL;
1299 1301
1300 1302 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1301 1303 fbins_mask_TC = TC->dataAndCRC;
1302 1304
1303 1305 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1304 1306 {
1305 1307 fbins_mask_dump[k] = fbins_mask_TC[k];
1306 1308 }
1307 1309
1308 1310 return status;
1309 1311 }
1310 1312
1311 1313 //***************************
1312 1314 // TC_LFR_LOAD_PAS_FILTER_PAR
1313 1315
1314 1316 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1315 1317 {
1316 1318 int flag;
1317 1319 rtems_status_code status;
1318 1320
1319 1321 unsigned char sy_lfr_pas_filter_enabled;
1320 1322 unsigned char sy_lfr_pas_filter_modulus;
1321 1323 float sy_lfr_pas_filter_tbad;
1322 1324 unsigned char sy_lfr_pas_filter_offset;
1323 1325 float sy_lfr_pas_filter_shift;
1324 1326 float sy_lfr_sc_rw_delta_f;
1325 1327 char *parPtr;
1326 1328
1327 1329 flag = LFR_SUCCESSFUL;
1328 1330 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1329 1331 sy_lfr_pas_filter_shift = INIT_FLOAT;
1330 1332 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1331 1333 parPtr = NULL;
1332 1334
1333 1335 //***************
1334 1336 // get parameters
1335 1337 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1336 1338 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1337 1339 copyFloatByChar(
1338 1340 (unsigned char*) &sy_lfr_pas_filter_tbad,
1339 1341 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1340 1342 );
1341 1343 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1342 1344 copyFloatByChar(
1343 1345 (unsigned char*) &sy_lfr_pas_filter_shift,
1344 1346 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1345 1347 );
1346 1348 copyFloatByChar(
1347 1349 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1348 1350 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1349 1351 );
1350 1352
1351 1353 //******************
1352 1354 // CHECK CONSISTENCY
1353 1355
1354 1356 //**************************
1355 1357 // sy_lfr_pas_filter_enabled
1356 1358 // nothing to check, value is 0 or 1
1357 1359
1358 1360 //**************************
1359 1361 // sy_lfr_pas_filter_modulus
1360 1362 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1361 1363 {
1362 1364 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1363 1365 flag = WRONG_APP_DATA;
1364 1366 }
1365 1367
1366 1368 //***********************
1367 1369 // sy_lfr_pas_filter_tbad
1368 1370 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1369 1371 {
1370 1372 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1371 1373 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1372 1374 flag = WRONG_APP_DATA;
1373 1375 }
1374 1376
1375 1377 //*************************
1376 1378 // sy_lfr_pas_filter_offset
1377 1379 if (flag == LFR_SUCCESSFUL)
1378 1380 {
1379 1381 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1380 1382 {
1381 1383 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1382 1384 flag = WRONG_APP_DATA;
1383 1385 }
1384 1386 }
1385 1387
1386 1388 //************************
1387 1389 // sy_lfr_pas_filter_shift
1388 1390 if (flag == LFR_SUCCESSFUL)
1389 1391 {
1390 1392 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1391 1393 {
1392 1394 parPtr = (char*) &sy_lfr_pas_filter_shift;
1393 1395 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1394 1396 flag = WRONG_APP_DATA;
1395 1397 }
1396 1398 }
1397 1399
1398 1400 //*************************************
1399 1401 // check global coherency of the values
1400 1402 if (flag == LFR_SUCCESSFUL)
1401 1403 {
1402 1404 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1403 1405 {
1404 1406 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1405 1407 flag = WRONG_APP_DATA;
1406 1408 }
1407 1409 }
1408 1410
1409 1411 //*********************
1410 1412 // sy_lfr_sc_rw_delta_f
1411 1413 // nothing to check, no default value in the ICD
1412 1414
1413 1415 return flag;
1414 1416 }
1415 1417
1416 1418 //**************
1417 1419 // KCOEFFICIENTS
1418 1420 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1419 1421 {
1420 1422 unsigned int kcoeff;
1421 1423 unsigned short sy_lfr_kcoeff_frequency;
1422 1424 unsigned short bin;
1423 1425 unsigned short *freqPtr;
1424 1426 float *kcoeffPtr_norm;
1425 1427 float *kcoeffPtr_sbm;
1426 1428 int status;
1427 1429 unsigned char *kcoeffLoadPtr;
1428 1430 unsigned char *kcoeffNormPtr;
1429 1431 unsigned char *kcoeffSbmPtr_a;
1430 1432 unsigned char *kcoeffSbmPtr_b;
1431 1433
1432 1434 status = LFR_SUCCESSFUL;
1433 1435
1434 1436 kcoeffPtr_norm = NULL;
1435 1437 kcoeffPtr_sbm = NULL;
1436 1438 bin = 0;
1437 1439
1438 1440 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1439 1441 sy_lfr_kcoeff_frequency = *freqPtr;
1440 1442
1441 1443 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1442 1444 {
1443 1445 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1444 1446 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1445 1447 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1446 1448 status = LFR_DEFAULT;
1447 1449 }
1448 1450 else
1449 1451 {
1450 1452 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1451 1453 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1452 1454 {
1453 1455 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1454 1456 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1455 1457 bin = sy_lfr_kcoeff_frequency;
1456 1458 }
1457 1459 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1458 1460 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1459 1461 {
1460 1462 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1461 1463 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1462 1464 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1463 1465 }
1464 1466 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1465 1467 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1466 1468 {
1467 1469 kcoeffPtr_norm = k_coeff_intercalib_f2;
1468 1470 kcoeffPtr_sbm = NULL;
1469 1471 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1470 1472 }
1471 1473 }
1472 1474
1473 1475 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1474 1476 {
1475 1477 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1476 1478 {
1477 1479 // destination
1478 1480 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1479 1481 // source
1480 1482 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1481 1483 // copy source to destination
1482 1484 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1483 1485 }
1484 1486 }
1485 1487
1486 1488 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1487 1489 {
1488 1490 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1489 1491 {
1490 1492 // destination
1491 1493 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1492 1494 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1493 1495 // source
1494 1496 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1495 1497 // copy source to destination
1496 1498 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1497 1499 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1498 1500 }
1499 1501 }
1500 1502
1501 1503 // print_k_coeff();
1502 1504
1503 1505 return status;
1504 1506 }
1505 1507
1506 1508 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1507 1509 {
1508 1510 destination[BYTE_0] = source[BYTE_0];
1509 1511 destination[BYTE_1] = source[BYTE_1];
1510 1512 destination[BYTE_2] = source[BYTE_2];
1511 1513 destination[BYTE_3] = source[BYTE_3];
1512 1514 }
1513 1515
1514 1516 void floatToChar( float value, unsigned char* ptr)
1515 1517 {
1516 1518 unsigned char* valuePtr;
1517 1519
1518 1520 valuePtr = (unsigned char*) &value;
1519 1521 ptr[BYTE_0] = valuePtr[BYTE_0];
1520 1522 ptr[BYTE_1] = valuePtr[BYTE_1];
1521 1523 ptr[BYTE_2] = valuePtr[BYTE_2];
1522 1524 ptr[BYTE_3] = valuePtr[BYTE_3];
1523 1525 }
1524 1526
1525 1527 //**********
1526 1528 // init dump
1527 1529
1528 1530 void init_parameter_dump( void )
1529 1531 {
1530 1532 /** This function initialize the parameter_dump_packet global variable with default values.
1531 1533 *
1532 1534 */
1533 1535
1534 1536 unsigned int k;
1535 1537
1536 1538 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1537 1539 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1538 1540 parameter_dump_packet.reserved = CCSDS_RESERVED;
1539 1541 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1540 1542 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1541 1543 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1542 1544 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1543 1545 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1544 1546 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1545 1547 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1546 1548 // DATA FIELD HEADER
1547 1549 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1548 1550 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1549 1551 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1550 1552 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1551 1553 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1552 1554 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1553 1555 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1554 1556 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1555 1557 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1556 1558 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1557 1559 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1558 1560
1559 1561 //******************
1560 1562 // COMMON PARAMETERS
1561 1563 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1562 1564 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1563 1565
1564 1566 //******************
1565 1567 // NORMAL PARAMETERS
1566 1568 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1567 1569 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1568 1570 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1569 1571 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1570 1572 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1571 1573 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1572 1574 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1573 1575 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1574 1576 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1575 1577
1576 1578 //*****************
1577 1579 // BURST PARAMETERS
1578 1580 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1579 1581 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1580 1582
1581 1583 //****************
1582 1584 // SBM1 PARAMETERS
1583 1585 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1584 1586 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1585 1587
1586 1588 //****************
1587 1589 // SBM2 PARAMETERS
1588 1590 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1589 1591 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1590 1592
1591 1593 //************
1592 1594 // FBINS MASKS
1593 1595 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1594 1596 {
1595 1597 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1596 1598 }
1597 1599
1598 1600 // PAS FILTER PARAMETERS
1599 1601 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1600 1602 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1601 1603 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1602 1604 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1603 1605 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1604 1606 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1605 1607 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1606 1608
1607 1609 // RW1_K
1608 1610 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1609 1611 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1610 1612 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1611 1613 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1612 1614 // RW2_K
1613 1615 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1614 1616 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1615 1617 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1616 1618 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1617 1619 // RW3_K
1618 1620 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1619 1621 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1620 1622 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1621 1623 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1622 1624 // RW4_K
1623 1625 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1624 1626 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1625 1627 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1626 1628 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1627 1629
1628 1630 // LFR_RW_MASK
1629 1631 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1630 1632 {
1631 1633 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1632 1634 }
1633 1635
1634 1636 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1635 1637 merge_fbins_masks();
1636 1638 }
1637 1639
1638 1640 void init_kcoefficients_dump( void )
1639 1641 {
1640 1642 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1641 1643 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1642 1644
1643 1645 kcoefficient_node_1.previous = NULL;
1644 1646 kcoefficient_node_1.next = NULL;
1645 1647 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1646 1648 kcoefficient_node_1.coarseTime = INIT_CHAR;
1647 1649 kcoefficient_node_1.fineTime = INIT_CHAR;
1648 1650 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1649 1651 kcoefficient_node_1.status = INIT_CHAR;
1650 1652
1651 1653 kcoefficient_node_2.previous = NULL;
1652 1654 kcoefficient_node_2.next = NULL;
1653 1655 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1654 1656 kcoefficient_node_2.coarseTime = INIT_CHAR;
1655 1657 kcoefficient_node_2.fineTime = INIT_CHAR;
1656 1658 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1657 1659 kcoefficient_node_2.status = INIT_CHAR;
1658 1660 }
1659 1661
1660 1662 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1661 1663 {
1662 1664 unsigned int k;
1663 1665 unsigned int packetLength;
1664 1666
1665 1667 packetLength =
1666 1668 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1667 1669
1668 1670 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1669 1671 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1670 1672 kcoefficients_dump->reserved = CCSDS_RESERVED;
1671 1673 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1672 1674 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1673 1675 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1674 1676 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1675 1677 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1676 1678 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1677 1679 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1678 1680 // DATA FIELD HEADER
1679 1681 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1680 1682 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1681 1683 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1682 1684 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1683 1685 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1684 1686 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1685 1687 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1686 1688 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1687 1689 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1688 1690 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1689 1691 kcoefficients_dump->sid = SID_K_DUMP;
1690 1692
1691 1693 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1692 1694 kcoefficients_dump->pkt_nr = PKTNR_1;
1693 1695 kcoefficients_dump->blk_nr = blk_nr;
1694 1696
1695 1697 //******************
1696 1698 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1697 1699 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1698 1700 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1699 1701 {
1700 1702 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1701 1703 }
1702 1704 }
1703 1705
1704 1706 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1705 1707 {
1706 1708 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1707 1709 *
1708 1710 * @param packet_sequence_control points to the packet sequence control which will be incremented
1709 1711 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1710 1712 *
1711 1713 * If the destination ID is not known, a dedicated counter is incremented.
1712 1714 *
1713 1715 */
1714 1716
1715 1717 unsigned short sequence_cnt;
1716 1718 unsigned short segmentation_grouping_flag;
1717 1719 unsigned short new_packet_sequence_control;
1718 1720 unsigned char i;
1719 1721
1720 1722 switch (destination_id)
1721 1723 {
1722 1724 case SID_TC_GROUND:
1723 1725 i = GROUND;
1724 1726 break;
1725 1727 case SID_TC_MISSION_TIMELINE:
1726 1728 i = MISSION_TIMELINE;
1727 1729 break;
1728 1730 case SID_TC_TC_SEQUENCES:
1729 1731 i = TC_SEQUENCES;
1730 1732 break;
1731 1733 case SID_TC_RECOVERY_ACTION_CMD:
1732 1734 i = RECOVERY_ACTION_CMD;
1733 1735 break;
1734 1736 case SID_TC_BACKUP_MISSION_TIMELINE:
1735 1737 i = BACKUP_MISSION_TIMELINE;
1736 1738 break;
1737 1739 case SID_TC_DIRECT_CMD:
1738 1740 i = DIRECT_CMD;
1739 1741 break;
1740 1742 case SID_TC_SPARE_GRD_SRC1:
1741 1743 i = SPARE_GRD_SRC1;
1742 1744 break;
1743 1745 case SID_TC_SPARE_GRD_SRC2:
1744 1746 i = SPARE_GRD_SRC2;
1745 1747 break;
1746 1748 case SID_TC_OBCP:
1747 1749 i = OBCP;
1748 1750 break;
1749 1751 case SID_TC_SYSTEM_CONTROL:
1750 1752 i = SYSTEM_CONTROL;
1751 1753 break;
1752 1754 case SID_TC_AOCS:
1753 1755 i = AOCS;
1754 1756 break;
1755 1757 case SID_TC_RPW_INTERNAL:
1756 1758 i = RPW_INTERNAL;
1757 1759 break;
1758 1760 default:
1759 1761 i = GROUND;
1760 1762 break;
1761 1763 }
1762 1764
1763 1765 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1764 1766 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1765 1767
1766 1768 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1767 1769
1768 1770 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1769 1771 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1770 1772
1771 1773 // increment the sequence counter
1772 1774 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1773 1775 {
1774 1776 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1775 1777 }
1776 1778 else
1777 1779 {
1778 1780 sequenceCounters_TM_DUMP[ i ] = 0;
1779 1781 }
1780 1782 }
General Comments 0
You need to be logged in to leave comments. Login now