##// END OF EJS Templates
the first desynchro state is not counted in the hk_lfr_time_not_synchro counter
paul -
r252:8fb8ea5be030 R3a
parent child
Show More
@@ -1,745 +1,745
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 // WATCHDOG
83 83
84 84 rtems_isr watchdog_isr( rtems_vector_number vector )
85 85 {
86 86 rtems_status_code status_code;
87 87
88 88 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
89 89 }
90 90
91 91 void watchdog_configure(void)
92 92 {
93 93 /** This function configure the watchdog.
94 94 *
95 95 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
96 96 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
97 97 *
98 98 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
99 99 *
100 100 */
101 101
102 102 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
103 103
104 104 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
105 105
106 106 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
107 107 }
108 108
109 109 void watchdog_stop(void)
110 110 {
111 111 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
112 112 timer_stop( TIMER_WATCHDOG );
113 113 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
114 114 }
115 115
116 116 void watchdog_reload(void)
117 117 {
118 118 /** This function reloads the watchdog timer counter with the timer reload value.
119 119 *
120 120 * @param void
121 121 *
122 122 * @return void
123 123 *
124 124 */
125 125
126 126 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
127 127 }
128 128
129 129 void watchdog_start(void)
130 130 {
131 131 /** This function starts the watchdog timer.
132 132 *
133 133 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
134 134 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
135 135 *
136 136 */
137 137
138 138 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
139 139
140 140 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
141 141 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
142 142 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
143 143 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
144 144
145 145 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
146 146
147 147 }
148 148
149 149 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
150 150 {
151 151 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
152 152
153 153 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
154 154
155 155 return 0;
156 156 }
157 157
158 158 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 159 {
160 160 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 161
162 162 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
163 163
164 164 return 0;
165 165 }
166 166
167 167 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 168 {
169 169 /** This function sets the scaler reload register of the apbuart module
170 170 *
171 171 * @param regs is the address of the apbuart registers in memory
172 172 * @param value is the value that will be stored in the scaler register
173 173 *
174 174 * The value shall be set by the software to get data on the serial interface.
175 175 *
176 176 */
177 177
178 178 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 179
180 180 apbuart_regs->scaler = value;
181 181 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
182 182 }
183 183
184 184 //************
185 185 // RTEMS TASKS
186 186
187 187 rtems_task load_task(rtems_task_argument argument)
188 188 {
189 189 BOOT_PRINTF("in LOAD *** \n")
190 190
191 191 rtems_status_code status;
192 192 unsigned int i;
193 193 unsigned int j;
194 194 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
195 195 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
196 196
197 197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
198 198
199 199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
200 200 if( status != RTEMS_SUCCESSFUL ) {
201 201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
202 202 }
203 203
204 204 i = 0;
205 205 j = 0;
206 206
207 207 watchdog_configure();
208 208
209 209 watchdog_start();
210 210
211 211 while(1){
212 212 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
213 213 watchdog_reload();
214 214 i = i + 1;
215 215 if ( i == 10 )
216 216 {
217 217 i = 0;
218 218 j = j + 1;
219 219 PRINTF1("%d\n", j)
220 220 }
221 221 #ifdef DEBUG_WATCHDOG
222 222 if (j == 3 )
223 223 {
224 224 status = rtems_task_delete(RTEMS_SELF);
225 225 }
226 226 #endif
227 227 }
228 228 }
229 229
230 230 rtems_task hous_task(rtems_task_argument argument)
231 231 {
232 232 rtems_status_code status;
233 233 rtems_status_code spare_status;
234 234 rtems_id queue_id;
235 235 rtems_rate_monotonic_period_status period_status;
236 236
237 237 status = get_message_queue_id_send( &queue_id );
238 238 if (status != RTEMS_SUCCESSFUL)
239 239 {
240 240 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
241 241 }
242 242
243 243 BOOT_PRINTF("in HOUS ***\n")
244 244
245 245 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
246 246 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
247 247 if( status != RTEMS_SUCCESSFUL ) {
248 248 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
249 249 }
250 250 }
251 251
252 252 status = rtems_rate_monotonic_cancel(HK_id);
253 253 if( status != RTEMS_SUCCESSFUL ) {
254 254 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
255 255 }
256 256 else {
257 257 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
258 258 }
259 259
260 260 // startup phase
261 261 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
262 262 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
263 263 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
264 264 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
265 265 {
266 266 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
267 267 {
268 268 break; // break if LFR is synchronized
269 269 }
270 270 else
271 271 {
272 272 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 273 // sched_yield();
274 274 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
275 275 }
276 276 }
277 277 status = rtems_rate_monotonic_cancel(HK_id);
278 278 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
279 279
280 280 set_hk_lfr_reset_cause( POWER_ON );
281 281
282 282 while(1){ // launch the rate monotonic task
283 283 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
284 284 if ( status != RTEMS_SUCCESSFUL ) {
285 285 PRINTF1( "in HOUS *** ERR period: %d\n", status);
286 286 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
287 287 }
288 288 else {
289 289 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
290 290 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
291 291 increment_seq_counter( &sequenceCounterHK );
292 292
293 293 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
294 294 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
295 295 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
296 296 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
297 297 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
298 298 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
299 299
300 300 spacewire_update_statistics();
301 301
302 302 hk_lfr_le_me_he_update();
303 303
304 304 set_hk_lfr_time_not_synchro();
305 305
306 306 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
307 307 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
308 308 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
309 309 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
310 310 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
311 311
312 312 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
313 313 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
314 314 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
315 315 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
316 316 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
317 317
318 318 // SEND PACKET
319 319 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
320 320 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
321 321 if (status != RTEMS_SUCCESSFUL) {
322 322 PRINTF1("in HOUS *** ERR send: %d\n", status)
323 323 }
324 324 }
325 325 }
326 326
327 327 PRINTF("in HOUS *** deleting task\n")
328 328
329 329 status = rtems_task_delete( RTEMS_SELF ); // should not return
330 330
331 331 return;
332 332 }
333 333
334 334 rtems_task dumb_task( rtems_task_argument unused )
335 335 {
336 336 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
337 337 *
338 338 * @param unused is the starting argument of the RTEMS task
339 339 *
340 340 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
341 341 *
342 342 */
343 343
344 344 unsigned int i;
345 345 unsigned int intEventOut;
346 346 unsigned int coarse_time = 0;
347 347 unsigned int fine_time = 0;
348 348 rtems_event_set event_out;
349 349
350 350 char *DumbMessages[14] = {"in DUMB *** default", // RTEMS_EVENT_0
351 351 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
352 352 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
353 353 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
354 354 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
355 355 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
356 356 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
357 357 "ready for dump", // RTEMS_EVENT_7
358 358 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
359 359 "tick", // RTEMS_EVENT_9
360 360 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
361 361 "VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
362 362 "WATCHDOG timer", // RTEMS_EVENT_12
363 363 "TIMECODE timer" // RTEMS_EVENT_13
364 364 };
365 365
366 366 BOOT_PRINTF("in DUMB *** \n")
367 367
368 368 while(1){
369 369 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
370 370 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
371 371 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13,
372 372 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
373 373 intEventOut = (unsigned int) event_out;
374 374 for ( i=0; i<32; i++)
375 375 {
376 376 if ( ((intEventOut >> i) & 0x0001) != 0)
377 377 {
378 378 coarse_time = time_management_regs->coarse_time;
379 379 fine_time = time_management_regs->fine_time;
380 380 if (i==12)
381 381 {
382 382 PRINTF1("%s\n", DumbMessages[12])
383 383 }
384 384 if (i==13)
385 385 {
386 386 PRINTF1("%s\n", DumbMessages[13])
387 387 }
388 388 }
389 389 }
390 390 }
391 391 }
392 392
393 393 //*****************************
394 394 // init housekeeping parameters
395 395
396 396 void init_housekeeping_parameters( void )
397 397 {
398 398 /** This function initialize the housekeeping_packet global variable with default values.
399 399 *
400 400 */
401 401
402 402 unsigned int i = 0;
403 403 unsigned char *parameters;
404 404 unsigned char sizeOfHK;
405 405
406 406 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
407 407
408 408 parameters = (unsigned char*) &housekeeping_packet;
409 409
410 410 for(i = 0; i< sizeOfHK; i++)
411 411 {
412 412 parameters[i] = 0x00;
413 413 }
414 414
415 415 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
416 416 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
417 417 housekeeping_packet.reserved = DEFAULT_RESERVED;
418 418 housekeeping_packet.userApplication = CCSDS_USER_APP;
419 419 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
420 420 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
421 421 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
422 422 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
423 423 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
424 424 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
425 425 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
426 426 housekeeping_packet.serviceType = TM_TYPE_HK;
427 427 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
428 428 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
429 429 housekeeping_packet.sid = SID_HK;
430 430
431 431 // init status word
432 432 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
433 433 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
434 434 // init software version
435 435 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
436 436 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
437 437 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
438 438 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
439 439 // init fpga version
440 440 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
441 441 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
442 442 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
443 443 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
444 444
445 445 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
446 446 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
447 447 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
448 448 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
449 449 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
450 450 }
451 451
452 452 void increment_seq_counter( unsigned short *packetSequenceControl )
453 453 {
454 454 /** This function increment the sequence counter passes in argument.
455 455 *
456 456 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
457 457 *
458 458 */
459 459
460 460 unsigned short segmentation_grouping_flag;
461 461 unsigned short sequence_cnt;
462 462
463 463 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
464 464 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
465 465
466 466 if ( sequence_cnt < SEQ_CNT_MAX)
467 467 {
468 468 sequence_cnt = sequence_cnt + 1;
469 469 }
470 470 else
471 471 {
472 472 sequence_cnt = 0;
473 473 }
474 474
475 475 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
476 476 }
477 477
478 478 void getTime( unsigned char *time)
479 479 {
480 480 /** This function write the current local time in the time buffer passed in argument.
481 481 *
482 482 */
483 483
484 484 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
485 485 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
486 486 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
487 487 time[3] = (unsigned char) (time_management_regs->coarse_time);
488 488 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
489 489 time[5] = (unsigned char) (time_management_regs->fine_time);
490 490 }
491 491
492 492 unsigned long long int getTimeAsUnsignedLongLongInt( )
493 493 {
494 494 /** This function write the current local time in the time buffer passed in argument.
495 495 *
496 496 */
497 497 unsigned long long int time;
498 498
499 499 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
500 500 + time_management_regs->fine_time;
501 501
502 502 return time;
503 503 }
504 504
505 505 void send_dumb_hk( void )
506 506 {
507 507 Packet_TM_LFR_HK_t dummy_hk_packet;
508 508 unsigned char *parameters;
509 509 unsigned int i;
510 510 rtems_id queue_id;
511 511
512 512 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
513 513 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
514 514 dummy_hk_packet.reserved = DEFAULT_RESERVED;
515 515 dummy_hk_packet.userApplication = CCSDS_USER_APP;
516 516 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
517 517 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
518 518 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
519 519 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
520 520 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
521 521 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
522 522 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
523 523 dummy_hk_packet.serviceType = TM_TYPE_HK;
524 524 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
525 525 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
526 526 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
527 527 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
528 528 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
529 529 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
530 530 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
531 531 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
532 532 dummy_hk_packet.sid = SID_HK;
533 533
534 534 // init status word
535 535 dummy_hk_packet.lfr_status_word[0] = 0xff;
536 536 dummy_hk_packet.lfr_status_word[1] = 0xff;
537 537 // init software version
538 538 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
539 539 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
540 540 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
541 541 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
542 542 // init fpga version
543 543 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
544 544 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
545 545 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
546 546 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
547 547
548 548 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
549 549
550 550 for (i=0; i<100; i++)
551 551 {
552 552 parameters[i] = 0xff;
553 553 }
554 554
555 555 get_message_queue_id_send( &queue_id );
556 556
557 557 rtems_message_queue_send( queue_id, &dummy_hk_packet,
558 558 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
559 559 }
560 560
561 561 void get_temperatures( unsigned char *temperatures )
562 562 {
563 563 unsigned char* temp_scm_ptr;
564 564 unsigned char* temp_pcb_ptr;
565 565 unsigned char* temp_fpga_ptr;
566 566
567 567 // SEL1 SEL0
568 568 // 0 0 => PCB
569 569 // 0 1 => FPGA
570 570 // 1 0 => SCM
571 571
572 572 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
573 573 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
574 574 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
575 575
576 576 temperatures[0] = temp_scm_ptr[2];
577 577 temperatures[1] = temp_scm_ptr[3];
578 578 temperatures[2] = temp_pcb_ptr[2];
579 579 temperatures[3] = temp_pcb_ptr[3];
580 580 temperatures[4] = temp_fpga_ptr[2];
581 581 temperatures[5] = temp_fpga_ptr[3];
582 582 }
583 583
584 584 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
585 585 {
586 586 unsigned char* v_ptr;
587 587 unsigned char* e1_ptr;
588 588 unsigned char* e2_ptr;
589 589
590 590 v_ptr = (unsigned char *) &waveform_picker_regs->v;
591 591 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
592 592 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
593 593
594 594 spacecraft_potential[0] = v_ptr[2];
595 595 spacecraft_potential[1] = v_ptr[3];
596 596 spacecraft_potential[2] = e1_ptr[2];
597 597 spacecraft_potential[3] = e1_ptr[3];
598 598 spacecraft_potential[4] = e2_ptr[2];
599 599 spacecraft_potential[5] = e2_ptr[3];
600 600 }
601 601
602 602 void get_cpu_load( unsigned char *resource_statistics )
603 603 {
604 604 unsigned char cpu_load;
605 605
606 606 cpu_load = lfr_rtems_cpu_usage_report();
607 607
608 608 // HK_LFR_CPU_LOAD
609 609 resource_statistics[0] = cpu_load;
610 610
611 611 // HK_LFR_CPU_LOAD_MAX
612 612 if (cpu_load > resource_statistics[1])
613 613 {
614 614 resource_statistics[1] = cpu_load;
615 615 }
616 616
617 617 // CPU_LOAD_AVE
618 618 resource_statistics[2] = 0;
619 619
620 620 #ifndef PRINT_TASK_STATISTICS
621 621 rtems_cpu_usage_reset();
622 622 #endif
623 623
624 624 }
625 625
626 626 void set_hk_lfr_sc_potential_flag( bool state )
627 627 {
628 628 if (state == true)
629 629 {
630 630 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
631 631 }
632 632 else
633 633 {
634 634 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
635 635 }
636 636 }
637 637
638 638 void set_hk_lfr_mag_fields_flag( bool state )
639 639 {
640 640 if (state == true)
641 641 {
642 642 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x20; // [0010 0000]
643 643 }
644 644 else
645 645 {
646 646 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xd7; // [1101 1111]
647 647 }
648 648 }
649 649
650 650 void set_hk_lfr_calib_enable( bool state )
651 651 {
652 652 if (state == true)
653 653 {
654 654 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
655 655 }
656 656 else
657 657 {
658 658 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
659 659 }
660 660 }
661 661
662 662 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
663 663 {
664 664 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
665 665 | (lfr_reset_cause & 0x07 ); // [0000 0111]
666 666 }
667 667
668 668 void hk_lfr_le_me_he_update()
669 669 {
670 670 unsigned int hk_lfr_le_cnt;
671 671 unsigned int hk_lfr_me_cnt;
672 672 unsigned int hk_lfr_he_cnt;
673 673
674 674 hk_lfr_le_cnt = 0;
675 675 hk_lfr_me_cnt = 0;
676 676 hk_lfr_he_cnt = 0;
677 677
678 678 //update the low severity error counter
679 679 hk_lfr_le_cnt =
680 680 housekeeping_packet.hk_lfr_dpu_spw_parity
681 681 + housekeeping_packet.hk_lfr_dpu_spw_disconnect
682 682 + housekeeping_packet.hk_lfr_dpu_spw_escape
683 683 + housekeeping_packet.hk_lfr_dpu_spw_credit
684 684 + housekeeping_packet.hk_lfr_dpu_spw_write_sync
685 685 + housekeeping_packet.hk_lfr_dpu_spw_rx_ahb
686 686 + housekeeping_packet.hk_lfr_dpu_spw_tx_ahb
687 687 + housekeeping_packet.hk_lfr_timecode_erroneous
688 688 + housekeeping_packet.hk_lfr_timecode_missing
689 689 + housekeeping_packet.hk_lfr_timecode_invalid
690 690 + housekeeping_packet.hk_lfr_time_timecode_it
691 691 + housekeeping_packet.hk_lfr_time_not_synchro
692 692 + housekeeping_packet.hk_lfr_time_timecode_ctr;
693 693
694 694 //update the medium severity error counter
695 695 hk_lfr_me_cnt =
696 696 housekeeping_packet.hk_lfr_dpu_spw_early_eop
697 697 + housekeeping_packet.hk_lfr_dpu_spw_invalid_addr
698 698 + housekeeping_packet.hk_lfr_dpu_spw_eep
699 699 + housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
700 700
701 701 //update the high severity error counter
702 702 hk_lfr_he_cnt = 0;
703 703
704 704 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
705 705 // LE
706 706 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((hk_lfr_le_cnt & 0xff00) >> 8);
707 707 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (hk_lfr_le_cnt & 0x00ff);
708 708 // ME
709 709 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((hk_lfr_me_cnt & 0xff00) >> 8);
710 710 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (hk_lfr_me_cnt & 0x00ff);
711 711 // HE
712 712 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & 0xff00) >> 8);
713 713 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & 0x00ff);
714 714
715 715 }
716 716
717 717 void set_hk_lfr_time_not_synchro()
718 718 {
719 static unsigned char synchroLost = 0;
719 static unsigned char synchroLost = 1;
720 720 int synchronizationBit;
721 721
722 722 // get the synchronization bit
723 723 synchronizationBit = (time_management_regs->coarse_time & 0x80000000) >> 31; // 1000 0000 0000 0000
724 724
725 725 switch (synchronizationBit)
726 726 {
727 727 case 0:
728 728 if (synchroLost == 1)
729 729 {
730 730 synchroLost = 0;
731 731 }
732 732 break;
733 733 case 1:
734 734 if (synchroLost == 0 )
735 735 {
736 736 synchroLost = 1;
737 737 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
738 738 }
739 739 break;
740 740 default:
741 741 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
742 742 break;
743 743 }
744 744
745 745 }
General Comments 0
You need to be logged in to leave comments. Login now