##// END OF EJS Templates
minor updates on documentation
paul -
r240:8d5977010643 R3
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 721463c11a484e6a3439e16c99f8bd27720b9265 header/lfr_common_headers
2 ff85ce82cd9845f180cb578272717bcb76b62cb5 header/lfr_common_headers
@@ -1,77 +1,78
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7 #include <grlib_regs.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "lfr_cpu_usage_report.h"
12 12
13 13 enum lfr_reset_cause_t{
14 14 UNKNOWN_CAUSE,
15 15 POWER_ON,
16 16 TC_RESET,
17 17 WATCHDOG,
18 18 ERROR_RESET,
19 19 UNEXP_RESET
20 20 };
21 21
22 22 extern gptimer_regs_t *gptimer_regs;
23 23
24 24 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
25 25
26 26 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
27 27 rtems_id HK_id; // id of the HK rate monotonic period
28 28
29 29 void timer_configure( unsigned char timer, unsigned int clock_divider,
30 30 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
31 31 void timer_start( unsigned char timer );
32 32 void timer_stop( unsigned char timer );
33 33 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
34 34
35 35 // WATCHDOG
36 36 rtems_isr watchdog_isr( rtems_vector_number vector );
37 37 void watchdog_configure(void);
38 38 void watchdog_stop(void);
39 39 void watchdog_start(void);
40 40
41 41 // SERIAL LINK
42 42 int send_console_outputs_on_apbuart_port( void );
43 43 int enable_apbuart_transmitter( void );
44 44 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
45 45
46 46 // RTEMS TASKS
47 47 rtems_task load_task( rtems_task_argument argument );
48 48 rtems_task hous_task( rtems_task_argument argument );
49 49 rtems_task dumb_task( rtems_task_argument unused );
50 50
51 51 void init_housekeeping_parameters( void );
52 52 void increment_seq_counter(unsigned short *packetSequenceControl);
53 53 void getTime( unsigned char *time);
54 54 unsigned long long int getTimeAsUnsignedLongLongInt( );
55 55 void send_dumb_hk( void );
56 56 void get_temperatures( unsigned char *temperatures );
57 57 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
58 58 void get_cpu_load( unsigned char *resource_statistics );
59 59 void set_hk_lfr_sc_potential_flag( bool state );
60 60 void set_hk_lfr_mag_fields_flag( bool state );
61 61 void set_hk_lfr_calib_enable( bool state );
62 62 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
63 void hk_lfr_le_me_he_update();
63 64
64 65 extern int sched_yield( void );
65 66 extern void rtems_cpu_usage_reset();
66 67 extern ring_node *current_ring_node_f3;
67 68 extern ring_node *ring_node_to_send_cwf_f3;
68 69 extern ring_node waveform_ring_f3[];
69 70 extern unsigned short sequenceCounterHK;
70 71
71 72 extern unsigned char hk_lfr_q_sd_fifo_size_max;
72 73 extern unsigned char hk_lfr_q_rv_fifo_size_max;
73 74 extern unsigned char hk_lfr_q_p0_fifo_size_max;
74 75 extern unsigned char hk_lfr_q_p1_fifo_size_max;
75 76 extern unsigned char hk_lfr_q_p2_fifo_size_max;
76 77
77 78 #endif // FSW_MISC_H_INCLUDED
@@ -1,51 +1,50
1 1 #ifndef FSW_SPACEWIRE_H_INCLUDED
2 2 #define FSW_SPACEWIRE_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6
7 7 #include <fcntl.h> // for O_RDWR
8 8 #include <unistd.h> // for the read call
9 9 #include <sys/ioctl.h> // for the ioctl call
10 10 #include <errno.h>
11 11
12 12 #include "fsw_params.h"
13 13 #include "tc_handler.h"
14 14 #include "fsw_init.h"
15 15
16 16 extern spw_stats spacewire_stats;
17 17 extern spw_stats spacewire_stats_backup;
18 18
19 19 // RTEMS TASK
20 20 rtems_task spiq_task( rtems_task_argument argument );
21 21 rtems_task recv_task( rtems_task_argument unused );
22 22 rtems_task send_task( rtems_task_argument argument );
23 23 rtems_task wtdg_task( rtems_task_argument argument );
24 24
25 25 int spacewire_open_link( void );
26 26 int spacewire_start_link( int fd );
27 27 int spacewire_stop_and_start_link( int fd );
28 28 int spacewire_configure_link(int fd );
29 29 int spacewire_reset_link( void );
30 30 void spacewire_set_NP( unsigned char val, unsigned int regAddr ); // No Port force
31 31 void spacewire_set_RE( unsigned char val, unsigned int regAddr ); // RMAP Enable
32 32 void spacewire_compute_stats_offsets( void );
33 33 void spacewire_update_statistics( void );
34 34
35 35 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header );
36 36 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header );
37 37 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header );
38 38 int spw_send_waveform_CWF( ring_node *ring_node_to_send, Header_TM_LFR_SCIENCE_CWF_t *header );
39 39 int spw_send_waveform_SWF( ring_node *ring_node_to_send, Header_TM_LFR_SCIENCE_SWF_t *header );
40 40 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send, Header_TM_LFR_SCIENCE_CWF_t *header );
41 41 void spw_send_asm_f0( ring_node *ring_node_to_send, Header_TM_LFR_SCIENCE_ASM_t *header );
42 42 void spw_send_asm_f1( ring_node *ring_node_to_send, Header_TM_LFR_SCIENCE_ASM_t *header );
43 43 void spw_send_asm_f2( ring_node *ring_node_to_send, Header_TM_LFR_SCIENCE_ASM_t *header );
44 44 void spw_send_k_dump( ring_node *ring_node_to_send );
45 45
46 46 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc );
47 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data );
48 47
49 48 void (*grspw_timecode_callback) ( void *pDev, void *regs, int minor, unsigned int tc );
50 49
51 50 #endif // FSW_SPACEWIRE_H_INCLUDED
@@ -1,77 +1,80
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 13 #include "lfr_cpu_usage_report.h"
14 14
15 extern unsigned int lastValidTransitionDate;
16
15 17 //****
16 18 // ISR
17 19 rtems_isr commutation_isr1( rtems_vector_number vector );
18 20 rtems_isr commutation_isr2( rtems_vector_number vector );
19 21
20 22 //***********
21 23 // RTEMS TASK
22 24 rtems_task actn_task( rtems_task_argument unused );
23 25
24 26 //***********
25 27 // TC ACTIONS
26 28 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
27 29 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
28 30 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
29 31 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
30 32 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
31 33 int action_update_time( ccsdsTelecommandPacket_t *TC);
32 34
33 35 // mode transition
34 36 int check_mode_value( unsigned char requestedMode );
35 37 int check_mode_transition( unsigned char requestedMode );
38 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
36 39 int check_transition_date( unsigned int transitionCoarseTime );
37 40 int stop_spectral_matrices( void );
38 41 int stop_current_mode( void );
39 42 int enter_mode_standby( void );
40 43 int enter_mode_normal( unsigned int transitionCoarseTime );
41 44 int enter_mode_burst( unsigned int transitionCoarseTime );
42 45 int enter_mode_sbm1( unsigned int transitionCoarseTime );
43 46 int enter_mode_sbm2( unsigned int transitionCoarseTime );
44 47 int restart_science_tasks( unsigned char lfrRequestedMode );
45 48 int restart_asm_tasks(unsigned char lfrRequestedMode );
46 49 int suspend_science_tasks(void);
47 50 int suspend_asm_tasks( void );
48 51 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
49 52 void launch_spectral_matrix( void );
50 53 void set_sm_irq_onNewMatrix( unsigned char value );
51 54 void set_sm_irq_onError( unsigned char value );
52 55
53 56 // other functions
54 57 void updateLFRCurrentMode();
55 58 void set_lfr_soft_reset( unsigned char value );
56 59 void reset_lfr( void );
57 60 // CALIBRATION
58 61 void setCalibrationPrescaler( unsigned int prescaler );
59 62 void setCalibrationDivisor( unsigned int divisionFactor );
60 63 void setCalibrationData( void );
61 64 void setCalibrationReload( bool state);
62 65 void setCalibrationEnable( bool state );
63 66 void setCalibrationInterleaved( bool state );
64 67 void setCalibration( bool state );
65 68 void configureCalibration( bool interleaved );
66 69 //
67 70 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
68 71 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
69 72 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
70 73
71 74 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
72 75 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
73 76
74 77 #endif // TC_HANDLER_H_INCLUDED
75 78
76 79
77 80
@@ -1,79 +1,80
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23 #include "fsw_params_wf_handler.h"
24 24
25 25 // RTEMS GLOBAL VARIABLES
26 26 rtems_name misc_name[5];
27 27 rtems_name Task_name[20]; /* array of task names */
28 28 rtems_id Task_id[20]; /* array of task ids */
29 29 int fdSPW = 0;
30 30 int fdUART = 0;
31 31 unsigned char lfrCurrentMode;
32 32 unsigned char pa_bia_status_info;
33 33
34 34 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
35 35 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
36 36 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
37 37 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
38 38 // F0 F1 F2 F3
39 39 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
40 40 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
41 41 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
42 42 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
43 43
44 44 //***********************************
45 45 // SPECTRAL MATRICES GLOBAL VARIABLES
46 46
47 47 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
48 48 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
49 49 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
50 50 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
51 51
52 52 // APB CONFIGURATION REGISTERS
53 53 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
54 54 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
55 55 waveform_picker_regs_0_1_18_t *waveform_picker_regs = (waveform_picker_regs_0_1_18_t*) REGS_ADDR_WAVEFORM_PICKER;
56 56 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
57 57
58 58 // MODE PARAMETERS
59 59 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
60 60 struct param_local_str param_local;
61 unsigned int lastValidTransitionDate;
61 62
62 63 // HK PACKETS
63 64 Packet_TM_LFR_HK_t housekeeping_packet;
64 65 // message queues occupancy
65 66 unsigned char hk_lfr_q_sd_fifo_size_max;
66 67 unsigned char hk_lfr_q_rv_fifo_size_max;
67 68 unsigned char hk_lfr_q_p0_fifo_size_max;
68 69 unsigned char hk_lfr_q_p1_fifo_size_max;
69 70 unsigned char hk_lfr_q_p2_fifo_size_max;
70 71 // sequence counters are incremented by APID (PID + CAT) and destination ID
71 72 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
72 73 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
73 74 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
74 75 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID];
75 76 unsigned short sequenceCounterHK;
76 77 spw_stats spacewire_stats;
77 78 spw_stats spacewire_stats_backup;
78 79
79 80
@@ -1,864 +1,865
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
39 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 40 #ifdef PRINT_STACK_REPORT
41 41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 42 #endif
43 43
44 44 #include <rtems/confdefs.h>
45 45
46 46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 47 #ifdef RTEMS_DRVMGR_STARTUP
48 48 #ifdef LEON3
49 49 /* Add Timer and UART Driver */
50 50 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
51 51 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
52 52 #endif
53 53 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
54 54 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
55 55 #endif
56 56 #endif
57 57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
58 58 #include <drvmgr/drvmgr_confdefs.h>
59 59 #endif
60 60
61 61 #include "fsw_init.h"
62 62 #include "fsw_config.c"
63 63 #include "GscMemoryLPP.hpp"
64 64
65 65 void initCache()
66 66 {
67 67 unsigned int cacheControlRegister;
68 68
69 69 cacheControlRegister = getCacheControlRegister();
70 70 PRINTF1("(0) cacheControlRegister = %x\n", cacheControlRegister)
71 71
72 72 resetCacheControlRegister();
73 73
74 74 enableInstructionCache();
75 75 enableDataCache();
76 76 enableInstructionBurstFetch();
77 77
78 78 cacheControlRegister = getCacheControlRegister();
79 79 PRINTF1("(1) cacheControlRegister = %x\n", cacheControlRegister)
80 80 }
81 81
82 82 rtems_task Init( rtems_task_argument ignored )
83 83 {
84 84 /** This is the RTEMS INIT taks, it is the first task launched by the system.
85 85 *
86 86 * @param unused is the starting argument of the RTEMS task
87 87 *
88 88 * The INIT task create and run all other RTEMS tasks.
89 89 *
90 90 */
91 91
92 92 //***********
93 93 // INIT CACHE
94 94
95 95 unsigned char *vhdlVersion;
96 96
97 97 reset_lfr();
98 98
99 99 reset_local_time();
100 100
101 101 rtems_cpu_usage_reset();
102 102
103 103 rtems_status_code status;
104 104 rtems_status_code status_spw;
105 105 rtems_isr_entry old_isr_handler;
106 106
107 107 // UART settings
108 108 send_console_outputs_on_apbuart_port();
109 109 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
110 110 enable_apbuart_transmitter();
111 111
112 112 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
113 113
114 114
115 115 PRINTF("\n\n\n\n\n")
116 116
117 117 initCache();
118 118
119 119 PRINTF("*************************\n")
120 120 PRINTF("** LFR Flight Software **\n")
121 121 PRINTF1("** %d.", SW_VERSION_N1)
122 122 PRINTF1("%d." , SW_VERSION_N2)
123 123 PRINTF1("%d." , SW_VERSION_N3)
124 124 PRINTF1("%d **\n", SW_VERSION_N4)
125 125
126 126 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
127 127 PRINTF("** VHDL **\n")
128 128 PRINTF1("** %d.", vhdlVersion[1])
129 129 PRINTF1("%d." , vhdlVersion[2])
130 130 PRINTF1("%d **\n", vhdlVersion[3])
131 131 PRINTF("*************************\n")
132 132 PRINTF("\n\n")
133 133
134 134 init_parameter_dump();
135 135 init_kcoefficients_dump();
136 136 init_local_mode_parameters();
137 137 init_housekeeping_parameters();
138 138 init_k_coefficients_prc0();
139 139 init_k_coefficients_prc1();
140 140 init_k_coefficients_prc2();
141 141 pa_bia_status_info = 0x00;
142 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
142 143
143 144 // waveform picker initialization
144 145 WFP_init_rings(); LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
145 146 WFP_reset_current_ring_nodes();
146 147 reset_waveform_picker_regs();
147 148
148 149 // spectral matrices initialization
149 150 SM_init_rings(); // initialize spectral matrices rings
150 151 SM_reset_current_ring_nodes();
151 152 reset_spectral_matrix_regs();
152 153
153 154 // configure calibration
154 155 configureCalibration( false ); // true means interleaved mode, false is for normal mode
155 156
156 157 updateLFRCurrentMode();
157 158
158 159 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
159 160
160 161 create_names(); // create all names
161 162
162 163 status = create_message_queues(); // create message queues
163 164 if (status != RTEMS_SUCCESSFUL)
164 165 {
165 166 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
166 167 }
167 168
168 169 status = create_all_tasks(); // create all tasks
169 170 if (status != RTEMS_SUCCESSFUL)
170 171 {
171 172 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
172 173 }
173 174
174 175 // **************************
175 176 // <SPACEWIRE INITIALIZATION>
176 177 grspw_timecode_callback = &timecode_irq_handler;
177 178
178 179 status_spw = spacewire_open_link(); // (1) open the link
179 180 if ( status_spw != RTEMS_SUCCESSFUL )
180 181 {
181 182 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
182 183 }
183 184
184 185 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
185 186 {
186 187 status_spw = spacewire_configure_link( fdSPW );
187 188 if ( status_spw != RTEMS_SUCCESSFUL )
188 189 {
189 190 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
190 191 }
191 192 }
192 193
193 194 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
194 195 {
195 196 status_spw = spacewire_start_link( fdSPW );
196 197 if ( status_spw != RTEMS_SUCCESSFUL )
197 198 {
198 199 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
199 200 }
200 201 }
201 202 // </SPACEWIRE INITIALIZATION>
202 203 // ***************************
203 204
204 205 status = start_all_tasks(); // start all tasks
205 206 if (status != RTEMS_SUCCESSFUL)
206 207 {
207 208 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
208 209 }
209 210
210 211 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
211 212 status = start_recv_send_tasks();
212 213 if ( status != RTEMS_SUCCESSFUL )
213 214 {
214 215 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
215 216 }
216 217
217 218 // suspend science tasks, they will be restarted later depending on the mode
218 219 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
219 220 if (status != RTEMS_SUCCESSFUL)
220 221 {
221 222 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
222 223 }
223 224
224 225 // configure IRQ handling for the waveform picker unit
225 226 status = rtems_interrupt_catch( waveforms_isr,
226 227 IRQ_SPARC_WAVEFORM_PICKER,
227 228 &old_isr_handler) ;
228 229 // configure IRQ handling for the spectral matrices unit
229 230 status = rtems_interrupt_catch( spectral_matrices_isr,
230 231 IRQ_SPARC_SPECTRAL_MATRIX,
231 232 &old_isr_handler) ;
232 233
233 234 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
234 235 if ( status_spw != RTEMS_SUCCESSFUL )
235 236 {
236 237 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
237 238 if ( status != RTEMS_SUCCESSFUL ) {
238 239 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
239 240 }
240 241 }
241 242
242 243 BOOT_PRINTF("delete INIT\n")
243 244
244 245 set_hk_lfr_sc_potential_flag( true );
245 246
246 247 status = rtems_task_delete(RTEMS_SELF);
247 248
248 249 }
249 250
250 251 void init_local_mode_parameters( void )
251 252 {
252 253 /** This function initialize the param_local global variable with default values.
253 254 *
254 255 */
255 256
256 257 unsigned int i;
257 258
258 259 // LOCAL PARAMETERS
259 260
260 261 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
261 262 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
262 263 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
263 264
264 265 // init sequence counters
265 266
266 267 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
267 268 {
268 269 sequenceCounters_TC_EXE[i] = 0x00;
269 270 sequenceCounters_TM_DUMP[i] = 0x00;
270 271 }
271 272 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
272 273 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
273 274 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
274 275 }
275 276
276 277 void reset_local_time( void )
277 278 {
278 279 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
279 280 }
280 281
281 282 void create_names( void ) // create all names for tasks and queues
282 283 {
283 284 /** This function creates all RTEMS names used in the software for tasks and queues.
284 285 *
285 286 * @return RTEMS directive status codes:
286 287 * - RTEMS_SUCCESSFUL - successful completion
287 288 *
288 289 */
289 290
290 291 // task names
291 292 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
292 293 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
293 294 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
294 295 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
295 296 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
296 297 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
297 298 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
298 299 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
299 300 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
300 301 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
301 302 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
302 303 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
303 304 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
304 305 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
305 306 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
306 307 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
307 308 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
308 309 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
309 310 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
310 311
311 312 // rate monotonic period names
312 313 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
313 314
314 315 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
315 316 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
316 317 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
317 318 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
318 319 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
319 320 }
320 321
321 322 int create_all_tasks( void ) // create all tasks which run in the software
322 323 {
323 324 /** This function creates all RTEMS tasks used in the software.
324 325 *
325 326 * @return RTEMS directive status codes:
326 327 * - RTEMS_SUCCESSFUL - task created successfully
327 328 * - RTEMS_INVALID_ADDRESS - id is NULL
328 329 * - RTEMS_INVALID_NAME - invalid task name
329 330 * - RTEMS_INVALID_PRIORITY - invalid task priority
330 331 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
331 332 * - RTEMS_TOO_MANY - too many tasks created
332 333 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
333 334 * - RTEMS_TOO_MANY - too many global objects
334 335 *
335 336 */
336 337
337 338 rtems_status_code status;
338 339
339 340 //**********
340 341 // SPACEWIRE
341 342 // RECV
342 343 status = rtems_task_create(
343 344 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
344 345 RTEMS_DEFAULT_MODES,
345 346 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
346 347 );
347 348 if (status == RTEMS_SUCCESSFUL) // SEND
348 349 {
349 350 status = rtems_task_create(
350 351 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
351 352 RTEMS_DEFAULT_MODES,
352 353 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
353 354 );
354 355 }
355 356 if (status == RTEMS_SUCCESSFUL) // WTDG
356 357 {
357 358 status = rtems_task_create(
358 359 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
359 360 RTEMS_DEFAULT_MODES,
360 361 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
361 362 );
362 363 }
363 364 if (status == RTEMS_SUCCESSFUL) // ACTN
364 365 {
365 366 status = rtems_task_create(
366 367 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
367 368 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
368 369 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
369 370 );
370 371 }
371 372 if (status == RTEMS_SUCCESSFUL) // SPIQ
372 373 {
373 374 status = rtems_task_create(
374 375 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
375 376 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
376 377 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
377 378 );
378 379 }
379 380
380 381 //******************
381 382 // SPECTRAL MATRICES
382 383 if (status == RTEMS_SUCCESSFUL) // AVF0
383 384 {
384 385 status = rtems_task_create(
385 386 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
386 387 RTEMS_DEFAULT_MODES,
387 388 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
388 389 );
389 390 }
390 391 if (status == RTEMS_SUCCESSFUL) // PRC0
391 392 {
392 393 status = rtems_task_create(
393 394 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
394 395 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
395 396 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
396 397 );
397 398 }
398 399 if (status == RTEMS_SUCCESSFUL) // AVF1
399 400 {
400 401 status = rtems_task_create(
401 402 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
402 403 RTEMS_DEFAULT_MODES,
403 404 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
404 405 );
405 406 }
406 407 if (status == RTEMS_SUCCESSFUL) // PRC1
407 408 {
408 409 status = rtems_task_create(
409 410 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
410 411 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
411 412 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
412 413 );
413 414 }
414 415 if (status == RTEMS_SUCCESSFUL) // AVF2
415 416 {
416 417 status = rtems_task_create(
417 418 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
418 419 RTEMS_DEFAULT_MODES,
419 420 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
420 421 );
421 422 }
422 423 if (status == RTEMS_SUCCESSFUL) // PRC2
423 424 {
424 425 status = rtems_task_create(
425 426 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
426 427 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
427 428 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
428 429 );
429 430 }
430 431
431 432 //****************
432 433 // WAVEFORM PICKER
433 434 if (status == RTEMS_SUCCESSFUL) // WFRM
434 435 {
435 436 status = rtems_task_create(
436 437 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
437 438 RTEMS_DEFAULT_MODES,
438 439 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
439 440 );
440 441 }
441 442 if (status == RTEMS_SUCCESSFUL) // CWF3
442 443 {
443 444 status = rtems_task_create(
444 445 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
445 446 RTEMS_DEFAULT_MODES,
446 447 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
447 448 );
448 449 }
449 450 if (status == RTEMS_SUCCESSFUL) // CWF2
450 451 {
451 452 status = rtems_task_create(
452 453 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
453 454 RTEMS_DEFAULT_MODES,
454 455 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
455 456 );
456 457 }
457 458 if (status == RTEMS_SUCCESSFUL) // CWF1
458 459 {
459 460 status = rtems_task_create(
460 461 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
461 462 RTEMS_DEFAULT_MODES,
462 463 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
463 464 );
464 465 }
465 466 if (status == RTEMS_SUCCESSFUL) // SWBD
466 467 {
467 468 status = rtems_task_create(
468 469 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
469 470 RTEMS_DEFAULT_MODES,
470 471 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
471 472 );
472 473 }
473 474
474 475 //*****
475 476 // MISC
476 477 if (status == RTEMS_SUCCESSFUL) // LOAD
477 478 {
478 479 status = rtems_task_create(
479 480 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
480 481 RTEMS_DEFAULT_MODES,
481 482 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
482 483 );
483 484 }
484 485 if (status == RTEMS_SUCCESSFUL) // DUMB
485 486 {
486 487 status = rtems_task_create(
487 488 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
488 489 RTEMS_DEFAULT_MODES,
489 490 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
490 491 );
491 492 }
492 493 if (status == RTEMS_SUCCESSFUL) // HOUS
493 494 {
494 495 status = rtems_task_create(
495 496 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
496 497 RTEMS_DEFAULT_MODES,
497 498 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
498 499 );
499 500 }
500 501
501 502 return status;
502 503 }
503 504
504 505 int start_recv_send_tasks( void )
505 506 {
506 507 rtems_status_code status;
507 508
508 509 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
509 510 if (status!=RTEMS_SUCCESSFUL) {
510 511 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
511 512 }
512 513
513 514 if (status == RTEMS_SUCCESSFUL) // SEND
514 515 {
515 516 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
516 517 if (status!=RTEMS_SUCCESSFUL) {
517 518 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
518 519 }
519 520 }
520 521
521 522 return status;
522 523 }
523 524
524 525 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
525 526 {
526 527 /** This function starts all RTEMS tasks used in the software.
527 528 *
528 529 * @return RTEMS directive status codes:
529 530 * - RTEMS_SUCCESSFUL - ask started successfully
530 531 * - RTEMS_INVALID_ADDRESS - invalid task entry point
531 532 * - RTEMS_INVALID_ID - invalid task id
532 533 * - RTEMS_INCORRECT_STATE - task not in the dormant state
533 534 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
534 535 *
535 536 */
536 537 // starts all the tasks fot eh flight software
537 538
538 539 rtems_status_code status;
539 540
540 541 //**********
541 542 // SPACEWIRE
542 543 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
543 544 if (status!=RTEMS_SUCCESSFUL) {
544 545 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
545 546 }
546 547
547 548 if (status == RTEMS_SUCCESSFUL) // WTDG
548 549 {
549 550 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
550 551 if (status!=RTEMS_SUCCESSFUL) {
551 552 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
552 553 }
553 554 }
554 555
555 556 if (status == RTEMS_SUCCESSFUL) // ACTN
556 557 {
557 558 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
558 559 if (status!=RTEMS_SUCCESSFUL) {
559 560 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
560 561 }
561 562 }
562 563
563 564 //******************
564 565 // SPECTRAL MATRICES
565 566 if (status == RTEMS_SUCCESSFUL) // AVF0
566 567 {
567 568 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
568 569 if (status!=RTEMS_SUCCESSFUL) {
569 570 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
570 571 }
571 572 }
572 573 if (status == RTEMS_SUCCESSFUL) // PRC0
573 574 {
574 575 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
575 576 if (status!=RTEMS_SUCCESSFUL) {
576 577 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
577 578 }
578 579 }
579 580 if (status == RTEMS_SUCCESSFUL) // AVF1
580 581 {
581 582 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
582 583 if (status!=RTEMS_SUCCESSFUL) {
583 584 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
584 585 }
585 586 }
586 587 if (status == RTEMS_SUCCESSFUL) // PRC1
587 588 {
588 589 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
589 590 if (status!=RTEMS_SUCCESSFUL) {
590 591 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
591 592 }
592 593 }
593 594 if (status == RTEMS_SUCCESSFUL) // AVF2
594 595 {
595 596 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
596 597 if (status!=RTEMS_SUCCESSFUL) {
597 598 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
598 599 }
599 600 }
600 601 if (status == RTEMS_SUCCESSFUL) // PRC2
601 602 {
602 603 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
603 604 if (status!=RTEMS_SUCCESSFUL) {
604 605 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
605 606 }
606 607 }
607 608
608 609 //****************
609 610 // WAVEFORM PICKER
610 611 if (status == RTEMS_SUCCESSFUL) // WFRM
611 612 {
612 613 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
613 614 if (status!=RTEMS_SUCCESSFUL) {
614 615 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
615 616 }
616 617 }
617 618 if (status == RTEMS_SUCCESSFUL) // CWF3
618 619 {
619 620 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
620 621 if (status!=RTEMS_SUCCESSFUL) {
621 622 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
622 623 }
623 624 }
624 625 if (status == RTEMS_SUCCESSFUL) // CWF2
625 626 {
626 627 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
627 628 if (status!=RTEMS_SUCCESSFUL) {
628 629 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
629 630 }
630 631 }
631 632 if (status == RTEMS_SUCCESSFUL) // CWF1
632 633 {
633 634 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
634 635 if (status!=RTEMS_SUCCESSFUL) {
635 636 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
636 637 }
637 638 }
638 639 if (status == RTEMS_SUCCESSFUL) // SWBD
639 640 {
640 641 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
641 642 if (status!=RTEMS_SUCCESSFUL) {
642 643 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
643 644 }
644 645 }
645 646
646 647 //*****
647 648 // MISC
648 649 if (status == RTEMS_SUCCESSFUL) // HOUS
649 650 {
650 651 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
651 652 if (status!=RTEMS_SUCCESSFUL) {
652 653 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
653 654 }
654 655 }
655 656 if (status == RTEMS_SUCCESSFUL) // DUMB
656 657 {
657 658 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
658 659 if (status!=RTEMS_SUCCESSFUL) {
659 660 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
660 661 }
661 662 }
662 663 if (status == RTEMS_SUCCESSFUL) // LOAD
663 664 {
664 665 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
665 666 if (status!=RTEMS_SUCCESSFUL) {
666 667 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
667 668 }
668 669 }
669 670
670 671 return status;
671 672 }
672 673
673 674 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
674 675 {
675 676 rtems_status_code status_recv;
676 677 rtems_status_code status_send;
677 678 rtems_status_code status_q_p0;
678 679 rtems_status_code status_q_p1;
679 680 rtems_status_code status_q_p2;
680 681 rtems_status_code ret;
681 682 rtems_id queue_id;
682 683
683 684 //****************************************
684 685 // create the queue for handling valid TCs
685 686 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
686 687 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
687 688 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
688 689 if ( status_recv != RTEMS_SUCCESSFUL ) {
689 690 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
690 691 }
691 692
692 693 //************************************************
693 694 // create the queue for handling TM packet sending
694 695 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
695 696 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
696 697 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
697 698 if ( status_send != RTEMS_SUCCESSFUL ) {
698 699 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
699 700 }
700 701
701 702 //*****************************************************************************
702 703 // create the queue for handling averaged spectral matrices for processing @ f0
703 704 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
704 705 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
705 706 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
706 707 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
707 708 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
708 709 }
709 710
710 711 //*****************************************************************************
711 712 // create the queue for handling averaged spectral matrices for processing @ f1
712 713 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
713 714 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
714 715 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
715 716 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
716 717 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
717 718 }
718 719
719 720 //*****************************************************************************
720 721 // create the queue for handling averaged spectral matrices for processing @ f2
721 722 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
722 723 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
723 724 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
724 725 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
725 726 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
726 727 }
727 728
728 729 if ( status_recv != RTEMS_SUCCESSFUL )
729 730 {
730 731 ret = status_recv;
731 732 }
732 733 else if( status_send != RTEMS_SUCCESSFUL )
733 734 {
734 735 ret = status_send;
735 736 }
736 737 else if( status_q_p0 != RTEMS_SUCCESSFUL )
737 738 {
738 739 ret = status_q_p0;
739 740 }
740 741 else if( status_q_p1 != RTEMS_SUCCESSFUL )
741 742 {
742 743 ret = status_q_p1;
743 744 }
744 745 else
745 746 {
746 747 ret = status_q_p2;
747 748 }
748 749
749 750 return ret;
750 751 }
751 752
752 753 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
753 754 {
754 755 rtems_status_code status;
755 756 rtems_name queue_name;
756 757
757 758 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
758 759
759 760 status = rtems_message_queue_ident( queue_name, 0, queue_id );
760 761
761 762 return status;
762 763 }
763 764
764 765 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
765 766 {
766 767 rtems_status_code status;
767 768 rtems_name queue_name;
768 769
769 770 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
770 771
771 772 status = rtems_message_queue_ident( queue_name, 0, queue_id );
772 773
773 774 return status;
774 775 }
775 776
776 777 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
777 778 {
778 779 rtems_status_code status;
779 780 rtems_name queue_name;
780 781
781 782 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
782 783
783 784 status = rtems_message_queue_ident( queue_name, 0, queue_id );
784 785
785 786 return status;
786 787 }
787 788
788 789 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
789 790 {
790 791 rtems_status_code status;
791 792 rtems_name queue_name;
792 793
793 794 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
794 795
795 796 status = rtems_message_queue_ident( queue_name, 0, queue_id );
796 797
797 798 return status;
798 799 }
799 800
800 801 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
801 802 {
802 803 rtems_status_code status;
803 804 rtems_name queue_name;
804 805
805 806 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
806 807
807 808 status = rtems_message_queue_ident( queue_name, 0, queue_id );
808 809
809 810 return status;
810 811 }
811 812
812 813 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
813 814 {
814 815 u_int32_t count;
815 816 rtems_status_code status;
816 817
817 818 status = rtems_message_queue_get_number_pending( queue_id, &count );
818 819
819 820 count = count + 1;
820 821
821 822 if (status != RTEMS_SUCCESSFUL)
822 823 {
823 824 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
824 825 }
825 826 else
826 827 {
827 828 if (count > *fifo_size_max)
828 829 {
829 830 *fifo_size_max = count;
830 831 }
831 832 }
832 833 }
833 834
834 835 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
835 836 {
836 837 unsigned char i;
837 838
838 839 //***************
839 840 // BUFFER ADDRESS
840 841 for(i=0; i<nbNodes; i++)
841 842 {
842 843 ring[i].coarseTime = 0xffffffff;
843 844 ring[i].fineTime = 0xffffffff;
844 845 ring[i].sid = 0x00;
845 846 ring[i].status = 0x00;
846 847 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
847 848 }
848 849
849 850 //*****
850 851 // NEXT
851 852 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
852 853 for(i=0; i<nbNodes-1; i++)
853 854 {
854 855 ring[i].next = (ring_node*) &ring[ i + 1 ];
855 856 }
856 857
857 858 //*********
858 859 // PREVIOUS
859 860 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
860 861 for(i=1; i<nbNodes; i++)
861 862 {
862 863 ring[i].previous = (ring_node*) &ring[ i - 1 ];
863 864 }
864 865 }
@@ -1,652 +1,698
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 // WATCHDOG
83 83
84 84 rtems_isr watchdog_isr( rtems_vector_number vector )
85 85 {
86 86 rtems_status_code status_code;
87 87
88 88 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
89 89 }
90 90
91 91 void watchdog_configure(void)
92 92 {
93 93 /** This function configure the watchdog.
94 94 *
95 95 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
96 96 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
97 97 *
98 98 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
99 99 *
100 100 */
101 101
102 102 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
103 103
104 104 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
105 105
106 106 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
107 107 }
108 108
109 109 void watchdog_stop(void)
110 110 {
111 111 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
112 112 timer_stop( TIMER_WATCHDOG );
113 113 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
114 114 }
115 115
116 116 void watchdog_reload(void)
117 117 {
118 118 /** This function reloads the watchdog timer counter with the timer reload value.
119 119 *
120 120 *
121 121 */
122 122
123 123 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
124 124 }
125 125
126 126 void watchdog_start(void)
127 127 {
128 128 /** This function starts the watchdog timer.
129 129 *
130 130 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
131 131 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
132 132 *
133 133 */
134 134
135 135 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
136 136
137 137 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
138 138 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
139 139 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
140 140 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
141 141
142 142 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
143 143
144 144 }
145 145
146 146 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
147 147 {
148 148 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
149 149
150 150 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
151 151
152 152 return 0;
153 153 }
154 154
155 155 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
156 156 {
157 157 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
158 158
159 159 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
160 160
161 161 return 0;
162 162 }
163 163
164 164 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
165 165 {
166 166 /** This function sets the scaler reload register of the apbuart module
167 167 *
168 168 * @param regs is the address of the apbuart registers in memory
169 169 * @param value is the value that will be stored in the scaler register
170 170 *
171 171 * The value shall be set by the software to get data on the serial interface.
172 172 *
173 173 */
174 174
175 175 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
176 176
177 177 apbuart_regs->scaler = value;
178 178 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
179 179 }
180 180
181 181 //************
182 182 // RTEMS TASKS
183 183
184 184 rtems_task load_task(rtems_task_argument argument)
185 185 {
186 186 BOOT_PRINTF("in LOAD *** \n")
187 187
188 188 rtems_status_code status;
189 189 unsigned int i;
190 190 unsigned int j;
191 191 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
192 192 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
193 193
194 194 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
195 195
196 196 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
197 197 if( status != RTEMS_SUCCESSFUL ) {
198 198 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
199 199 }
200 200
201 201 i = 0;
202 202 j = 0;
203 203
204 204 watchdog_configure();
205 205
206 206 watchdog_start();
207 207
208 208 while(1){
209 209 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
210 210 watchdog_reload();
211 211 i = i + 1;
212 212 if ( i == 10 )
213 213 {
214 214 i = 0;
215 215 j = j + 1;
216 216 PRINTF1("%d\n", j)
217 217 }
218 218 if (j == 3 )
219 219 {
220 220 status = rtems_task_delete(RTEMS_SELF);
221 221 }
222 222 }
223 223 }
224 224
225 225 rtems_task hous_task(rtems_task_argument argument)
226 226 {
227 227 rtems_status_code status;
228 228 rtems_status_code spare_status;
229 229 rtems_id queue_id;
230 230 rtems_rate_monotonic_period_status period_status;
231 231
232 232 status = get_message_queue_id_send( &queue_id );
233 233 if (status != RTEMS_SUCCESSFUL)
234 234 {
235 235 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
236 236 }
237 237
238 238 BOOT_PRINTF("in HOUS ***\n")
239 239
240 240 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
241 241 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
242 242 if( status != RTEMS_SUCCESSFUL ) {
243 243 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
244 244 }
245 245 }
246 246
247 247 status = rtems_rate_monotonic_cancel(HK_id);
248 248 if( status != RTEMS_SUCCESSFUL ) {
249 249 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
250 250 }
251 251 else {
252 252 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
253 253 }
254 254
255 255 // startup phase
256 256 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
257 257 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
258 258 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
259 259 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
260 260 {
261 261 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
262 262 {
263 263 break; // break if LFR is synchronized
264 264 }
265 265 else
266 266 {
267 267 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
268 268 // sched_yield();
269 269 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
270 270 }
271 271 }
272 272 status = rtems_rate_monotonic_cancel(HK_id);
273 273 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 274
275 275 set_hk_lfr_reset_cause( POWER_ON );
276 276
277 277 while(1){ // launch the rate monotonic task
278 278 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
279 279 if ( status != RTEMS_SUCCESSFUL ) {
280 280 PRINTF1( "in HOUS *** ERR period: %d\n", status);
281 281 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
282 282 }
283 283 else {
284 284 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
285 285 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
286 286 increment_seq_counter( &sequenceCounterHK );
287 287
288 288 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
289 289 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
290 290 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
291 291 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
292 292 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
293 293 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
294 294
295 295 spacewire_update_statistics();
296 296
297 hk_lfr_le_me_he_update();
298
297 299 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
298 300 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
299 301 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
300 302 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
301 303 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
302 304
303 305 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
304 306 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
305 307 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
306 308 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
307 309 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
308 310
309 311 // SEND PACKET
310 312 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
311 313 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
312 314 if (status != RTEMS_SUCCESSFUL) {
313 315 PRINTF1("in HOUS *** ERR send: %d\n", status)
314 316 }
315 317 }
316 318 }
317 319
318 320 PRINTF("in HOUS *** deleting task\n")
319 321
320 322 status = rtems_task_delete( RTEMS_SELF ); // should not return
321 323
322 324 return;
323 325 }
324 326
325 327 rtems_task dumb_task( rtems_task_argument unused )
326 328 {
327 329 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
328 330 *
329 331 * @param unused is the starting argument of the RTEMS task
330 332 *
331 333 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
332 334 *
333 335 */
334 336
335 337 unsigned int i;
336 338 unsigned int intEventOut;
337 339 unsigned int coarse_time = 0;
338 340 unsigned int fine_time = 0;
339 341 rtems_event_set event_out;
340 342
341 343 char *DumbMessages[13] = {"in DUMB *** default", // RTEMS_EVENT_0
342 344 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
343 345 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
344 346 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
345 347 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
346 348 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
347 349 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
348 350 "ready for dump", // RTEMS_EVENT_7
349 351 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
350 352 "tick", // RTEMS_EVENT_9
351 353 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
352 354 "VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
353 355 "WATCHDOG timer" // RTEMS_EVENT_12
354 356 };
355 357
356 358 BOOT_PRINTF("in DUMB *** \n")
357 359
358 360 while(1){
359 361 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
360 362 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
361 363 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12,
362 364 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
363 365 intEventOut = (unsigned int) event_out;
364 366 for ( i=0; i<32; i++)
365 367 {
366 368 if ( ((intEventOut >> i) & 0x0001) != 0)
367 369 {
368 370 coarse_time = time_management_regs->coarse_time;
369 371 fine_time = time_management_regs->fine_time;
370 372 if (i==12)
371 373 {
372 374 PRINTF1("%s\n", DumbMessages[12])
373 375 }
374 376 }
375 377 }
376 378 }
377 379 }
378 380
379 381 //*****************************
380 382 // init housekeeping parameters
381 383
382 384 void init_housekeeping_parameters( void )
383 385 {
384 386 /** This function initialize the housekeeping_packet global variable with default values.
385 387 *
386 388 */
387 389
388 390 unsigned int i = 0;
389 391 unsigned char *parameters;
390 392 unsigned char sizeOfHK;
391 393
392 394 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
393 395
394 396 parameters = (unsigned char*) &housekeeping_packet;
395 397
396 398 for(i = 0; i< sizeOfHK; i++)
397 399 {
398 400 parameters[i] = 0x00;
399 401 }
400 402
401 403 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
402 404 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
403 405 housekeeping_packet.reserved = DEFAULT_RESERVED;
404 406 housekeeping_packet.userApplication = CCSDS_USER_APP;
405 407 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
406 408 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
407 409 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
408 410 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
409 411 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
410 412 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
411 413 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
412 414 housekeeping_packet.serviceType = TM_TYPE_HK;
413 415 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
414 416 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
415 417 housekeeping_packet.sid = SID_HK;
416 418
417 419 // init status word
418 420 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
419 421 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
420 422 // init software version
421 423 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
422 424 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
423 425 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
424 426 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
425 427 // init fpga version
426 428 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
427 429 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
428 430 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
429 431 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
430 432
431 433 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
432 434 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
433 435 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
434 436 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
435 437 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
436 438 }
437 439
438 440 void increment_seq_counter( unsigned short *packetSequenceControl )
439 441 {
440 442 /** This function increment the sequence counter passes in argument.
441 443 *
442 444 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
443 445 *
444 446 */
445 447
446 448 unsigned short segmentation_grouping_flag;
447 449 unsigned short sequence_cnt;
448 450
449 451 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
450 452 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
451 453
452 454 if ( sequence_cnt < SEQ_CNT_MAX)
453 455 {
454 456 sequence_cnt = sequence_cnt + 1;
455 457 }
456 458 else
457 459 {
458 460 sequence_cnt = 0;
459 461 }
460 462
461 463 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
462 464 }
463 465
464 466 void getTime( unsigned char *time)
465 467 {
466 468 /** This function write the current local time in the time buffer passed in argument.
467 469 *
468 470 */
469 471
470 472 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
471 473 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
472 474 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
473 475 time[3] = (unsigned char) (time_management_regs->coarse_time);
474 476 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
475 477 time[5] = (unsigned char) (time_management_regs->fine_time);
476 478 }
477 479
478 480 unsigned long long int getTimeAsUnsignedLongLongInt( )
479 481 {
480 482 /** This function write the current local time in the time buffer passed in argument.
481 483 *
482 484 */
483 485 unsigned long long int time;
484 486
485 487 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
486 488 + time_management_regs->fine_time;
487 489
488 490 return time;
489 491 }
490 492
491 493 void send_dumb_hk( void )
492 494 {
493 495 Packet_TM_LFR_HK_t dummy_hk_packet;
494 496 unsigned char *parameters;
495 497 unsigned int i;
496 498 rtems_id queue_id;
497 499
498 500 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
499 501 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
500 502 dummy_hk_packet.reserved = DEFAULT_RESERVED;
501 503 dummy_hk_packet.userApplication = CCSDS_USER_APP;
502 504 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
503 505 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
504 506 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
505 507 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
506 508 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
507 509 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
508 510 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
509 511 dummy_hk_packet.serviceType = TM_TYPE_HK;
510 512 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
511 513 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
512 514 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
513 515 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
514 516 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
515 517 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
516 518 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
517 519 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
518 520 dummy_hk_packet.sid = SID_HK;
519 521
520 522 // init status word
521 523 dummy_hk_packet.lfr_status_word[0] = 0xff;
522 524 dummy_hk_packet.lfr_status_word[1] = 0xff;
523 525 // init software version
524 526 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
525 527 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
526 528 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
527 529 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
528 530 // init fpga version
529 531 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
530 532 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
531 533 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
532 534 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
533 535
534 536 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
535 537
536 538 for (i=0; i<100; i++)
537 539 {
538 540 parameters[i] = 0xff;
539 541 }
540 542
541 543 get_message_queue_id_send( &queue_id );
542 544
543 545 rtems_message_queue_send( queue_id, &dummy_hk_packet,
544 546 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
545 547 }
546 548
547 549 void get_temperatures( unsigned char *temperatures )
548 550 {
549 551 unsigned char* temp_scm_ptr;
550 552 unsigned char* temp_pcb_ptr;
551 553 unsigned char* temp_fpga_ptr;
552 554
553 555 // SEL1 SEL0
554 556 // 0 0 => PCB
555 557 // 0 1 => FPGA
556 558 // 1 0 => SCM
557 559
558 560 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
559 561 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
560 562 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
561 563
562 564 temperatures[0] = temp_scm_ptr[2];
563 565 temperatures[1] = temp_scm_ptr[3];
564 566 temperatures[2] = temp_pcb_ptr[2];
565 567 temperatures[3] = temp_pcb_ptr[3];
566 568 temperatures[4] = temp_fpga_ptr[2];
567 569 temperatures[5] = temp_fpga_ptr[3];
568 570 }
569 571
570 572 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
571 573 {
572 574 unsigned char* v_ptr;
573 575 unsigned char* e1_ptr;
574 576 unsigned char* e2_ptr;
575 577
576 578 v_ptr = (unsigned char *) &waveform_picker_regs->v;
577 579 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
578 580 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
579 581
580 582 spacecraft_potential[0] = v_ptr[2];
581 583 spacecraft_potential[1] = v_ptr[3];
582 584 spacecraft_potential[2] = e1_ptr[2];
583 585 spacecraft_potential[3] = e1_ptr[3];
584 586 spacecraft_potential[4] = e2_ptr[2];
585 587 spacecraft_potential[5] = e2_ptr[3];
586 588 }
587 589
588 590 void get_cpu_load( unsigned char *resource_statistics )
589 591 {
590 592 unsigned char cpu_load;
591 593
592 594 cpu_load = lfr_rtems_cpu_usage_report();
593 595
594 596 // HK_LFR_CPU_LOAD
595 597 resource_statistics[0] = cpu_load;
596 598
597 599 // HK_LFR_CPU_LOAD_MAX
598 600 if (cpu_load > resource_statistics[1])
599 601 {
600 602 resource_statistics[1] = cpu_load;
601 603 }
602 604
603 605 // CPU_LOAD_AVE
604 606 resource_statistics[2] = 0;
605 607
606 608 #ifndef PRINT_TASK_STATISTICS
607 609 rtems_cpu_usage_reset();
608 610 #endif
609 611
610 612 }
611 613
612 614 void set_hk_lfr_sc_potential_flag( bool state )
613 615 {
614 616 if (state == true)
615 617 {
616 618 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
617 619 }
618 620 else
619 621 {
620 622 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
621 623 }
622 624 }
623 625
624 626 void set_hk_lfr_mag_fields_flag( bool state )
625 627 {
626 628 if (state == true)
627 629 {
628 630 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x20; // [0010 0000]
629 631 }
630 632 else
631 633 {
632 634 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xd7; // [1101 1111]
633 635 }
634 636 }
635 637
636 638 void set_hk_lfr_calib_enable( bool state )
637 639 {
638 640 if (state == true)
639 641 {
640 642 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
641 643 }
642 644 else
643 645 {
644 646 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
645 647 }
646 648 }
647 649
648 650 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
649 651 {
650 652 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
651 653 | (lfr_reset_cause & 0x07 ); // [0000 0111]
652 654 }
655
656 void hk_lfr_le_me_he_update()
657 {
658 unsigned int hk_lfr_le_cnt;
659 unsigned int hk_lfr_me_cnt;
660 unsigned int hk_lfr_he_cnt;
661
662 hk_lfr_le_cnt = 0;
663 hk_lfr_me_cnt = 0;
664 hk_lfr_he_cnt = 0;
665
666 //update the low severity error counter
667 hk_lfr_le_cnt =
668 housekeeping_packet.hk_lfr_dpu_spw_parity
669 + housekeeping_packet.hk_lfr_dpu_spw_disconnect
670 + housekeeping_packet.hk_lfr_dpu_spw_escape
671 + housekeeping_packet.hk_lfr_dpu_spw_credit
672 + housekeeping_packet.hk_lfr_dpu_spw_write_sync
673 + housekeeping_packet.hk_lfr_dpu_spw_rx_ahb
674 + housekeeping_packet.hk_lfr_dpu_spw_tx_ahb
675 + housekeeping_packet.hk_lfr_time_timecode_ctr;
676
677 //update the medium severity error counter
678 hk_lfr_me_cnt =
679 housekeeping_packet.hk_lfr_dpu_spw_early_eop
680 + housekeeping_packet.hk_lfr_dpu_spw_invalid_addr
681 + housekeeping_packet.hk_lfr_dpu_spw_eep
682 + housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
683
684 //update the high severity error counter
685 hk_lfr_he_cnt = 0;
686
687 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
688 // LE
689 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((hk_lfr_le_cnt & 0xff00) >> 8);
690 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (hk_lfr_le_cnt & 0x00ff);
691 // ME
692 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((hk_lfr_me_cnt & 0xff00) >> 8);
693 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (hk_lfr_me_cnt & 0x00ff);
694 // HE
695 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & 0xff00) >> 8);
696 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & 0x00ff);
697
698 }
@@ -1,1308 +1,1295
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //*****************
20 20 // waveform headers
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
24 24
25 25 //***********
26 26 // RTEMS TASK
27 27 rtems_task spiq_task(rtems_task_argument unused)
28 28 {
29 29 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
30 30 *
31 31 * @param unused is the starting argument of the RTEMS task
32 32 *
33 33 */
34 34
35 35 rtems_event_set event_out;
36 36 rtems_status_code status;
37 37 int linkStatus;
38 38
39 39 BOOT_PRINTF("in SPIQ *** \n")
40 40
41 41 while(true){
42 42 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
43 43 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
44 44
45 45 // [0] SUSPEND RECV AND SEND TASKS
46 46 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
47 47 if ( status != RTEMS_SUCCESSFUL ) {
48 48 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
49 49 }
50 50 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
51 51 if ( status != RTEMS_SUCCESSFUL ) {
52 52 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
53 53 }
54 54
55 55 // [1] CHECK THE LINK
56 56 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
57 57 if ( linkStatus != 5) {
58 58 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
59 59 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
60 60 }
61 61
62 62 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
63 63 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
64 64 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
65 65 {
66 66 spacewire_compute_stats_offsets();
67 67 status = spacewire_reset_link( );
68 68 }
69 69 else // [2.b] in run state, start the link
70 70 {
71 71 status = spacewire_stop_and_start_link( fdSPW ); // start the link
72 72 if ( status != RTEMS_SUCCESSFUL)
73 73 {
74 74 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
75 75 }
76 76 }
77 77
78 78 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
79 79 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
80 80 {
81 81 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
82 82 if ( status != RTEMS_SUCCESSFUL ) {
83 83 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
84 84 }
85 85 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
86 86 if ( status != RTEMS_SUCCESSFUL ) {
87 87 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
88 88 }
89 89 }
90 90 else // [3.b] the link is not in run state, go in STANDBY mode
91 91 {
92 92 status = enter_mode_standby();
93 93 if ( status != RTEMS_SUCCESSFUL ) {
94 94 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
95 95 }
96 96 // wake the WTDG task up to wait for the link recovery
97 97 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
98 98 status = rtems_task_suspend( RTEMS_SELF );
99 99 }
100 100 }
101 101 }
102 102
103 103 rtems_task recv_task( rtems_task_argument unused )
104 104 {
105 105 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
106 106 *
107 107 * @param unused is the starting argument of the RTEMS task
108 108 *
109 109 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
110 110 * 1. It reads the incoming data.
111 111 * 2. Launches the acceptance procedure.
112 112 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
113 113 *
114 114 */
115 115
116 116 int len;
117 117 ccsdsTelecommandPacket_t currentTC;
118 118 unsigned char computed_CRC[ 2 ];
119 119 unsigned char currentTC_LEN_RCV[ 2 ];
120 120 unsigned char destinationID;
121 121 unsigned int estimatedPacketLength;
122 122 unsigned int parserCode;
123 123 rtems_status_code status;
124 124 rtems_id queue_recv_id;
125 125 rtems_id queue_send_id;
126 126
127 127 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
128 128
129 129 status = get_message_queue_id_recv( &queue_recv_id );
130 130 if (status != RTEMS_SUCCESSFUL)
131 131 {
132 132 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
133 133 }
134 134
135 135 status = get_message_queue_id_send( &queue_send_id );
136 136 if (status != RTEMS_SUCCESSFUL)
137 137 {
138 138 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
139 139 }
140 140
141 141 BOOT_PRINTF("in RECV *** \n")
142 142
143 143 while(1)
144 144 {
145 145 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
146 146 if (len == -1){ // error during the read call
147 147 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
148 148 }
149 149 else {
150 150 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
151 151 PRINTF("in RECV *** packet lenght too short\n")
152 152 }
153 153 else {
154 154 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
155 155 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
156 156 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
157 157 // CHECK THE TC
158 158 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
159 159 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
160 160 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
161 161 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
162 162 || (parserCode == WRONG_SRC_ID) )
163 163 { // send TM_LFR_TC_EXE_CORRUPTED
164 164 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
165 165 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
166 166 &&
167 167 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
168 168 )
169 169 {
170 170 if ( parserCode == WRONG_SRC_ID )
171 171 {
172 172 destinationID = SID_TC_GROUND;
173 173 }
174 174 else
175 175 {
176 176 destinationID = currentTC.sourceID;
177 177 }
178 178 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
179 179 computed_CRC, currentTC_LEN_RCV,
180 180 destinationID );
181 181 }
182 182 }
183 183 else
184 184 { // send valid TC to the action launcher
185 185 status = rtems_message_queue_send( queue_recv_id, &currentTC,
186 186 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
187 187 }
188 188 }
189 189 }
190 190
191 191 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
192 192
193 193 }
194 194 }
195 195
196 196 rtems_task send_task( rtems_task_argument argument)
197 197 {
198 198 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
199 199 *
200 200 * @param unused is the starting argument of the RTEMS task
201 201 *
202 202 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
203 203 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
204 204 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
205 205 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
206 206 * data it contains.
207 207 *
208 208 */
209 209
210 210 rtems_status_code status; // RTEMS status code
211 211 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
212 212 ring_node *incomingRingNodePtr;
213 213 int ring_node_address;
214 214 char *charPtr;
215 215 spw_ioctl_pkt_send *spw_ioctl_send;
216 216 size_t size; // size of the incoming TC packet
217 217 rtems_id queue_send_id;
218 218 unsigned int sid;
219 219 unsigned char sidAsUnsignedChar;
220 220 unsigned char type;
221 221
222 222 incomingRingNodePtr = NULL;
223 223 ring_node_address = 0;
224 224 charPtr = (char *) &ring_node_address;
225 225 sid = 0;
226 226 sidAsUnsignedChar = 0;
227 227
228 228 init_header_cwf( &headerCWF );
229 229 init_header_swf( &headerSWF );
230 230 init_header_asm( &headerASM );
231 231
232 232 status = get_message_queue_id_send( &queue_send_id );
233 233 if (status != RTEMS_SUCCESSFUL)
234 234 {
235 235 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
236 236 }
237 237
238 238 BOOT_PRINTF("in SEND *** \n")
239 239
240 240 while(1)
241 241 {
242 242 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
243 243 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
244 244
245 245 if (status!=RTEMS_SUCCESSFUL)
246 246 {
247 247 PRINTF1("in SEND *** (1) ERR = %d\n", status)
248 248 }
249 249 else
250 250 {
251 251 if ( size == sizeof(ring_node*) )
252 252 {
253 253 charPtr[0] = incomingData[0];
254 254 charPtr[1] = incomingData[1];
255 255 charPtr[2] = incomingData[2];
256 256 charPtr[3] = incomingData[3];
257 257 incomingRingNodePtr = (ring_node*) ring_node_address;
258 258 sid = incomingRingNodePtr->sid;
259 259 if ( (sid==SID_NORM_CWF_LONG_F3)
260 260 || (sid==SID_BURST_CWF_F2 )
261 261 || (sid==SID_SBM1_CWF_F1 )
262 262 || (sid==SID_SBM2_CWF_F2 ))
263 263 {
264 264 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
265 265 }
266 266 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
267 267 {
268 268 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
269 269 }
270 270 else if ( (sid==SID_NORM_CWF_F3) )
271 271 {
272 272 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
273 273 }
274 274 else if (sid==SID_NORM_ASM_F0)
275 275 {
276 276 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
277 277 }
278 278 else if (sid==SID_NORM_ASM_F1)
279 279 {
280 280 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
281 281 }
282 282 else if (sid==SID_NORM_ASM_F2)
283 283 {
284 284 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
285 285 }
286 286 else if ( sid==TM_CODE_K_DUMP )
287 287 {
288 288 spw_send_k_dump( incomingRingNodePtr );
289 289 }
290 290 else
291 291 {
292 292 PRINTF1("unexpected sid = %d\n", sid);
293 293 }
294 294 }
295 295 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
296 296 {
297 297 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
298 298 sid = sidAsUnsignedChar;
299 299 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
300 300 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
301 301 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
302 302 {
303 303 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
304 304 }
305 305
306 306 status = write( fdSPW, incomingData, size );
307 307 if (status == -1){
308 308 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
309 309 }
310 310 }
311 311 else // the incoming message is a spw_ioctl_pkt_send structure
312 312 {
313 313 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
314 314 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
315 315 if (status == -1){
316 316 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
317 317 }
318 318 }
319 319 }
320 320
321 321 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
322 322
323 323 }
324 324 }
325 325
326 326 rtems_task wtdg_task( rtems_task_argument argument )
327 327 {
328 328 rtems_event_set event_out;
329 329 rtems_status_code status;
330 330 int linkStatus;
331 331
332 332 BOOT_PRINTF("in WTDG ***\n")
333 333
334 334 while(1)
335 335 {
336 336 // wait for an RTEMS_EVENT
337 337 rtems_event_receive( RTEMS_EVENT_0,
338 338 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
339 339 PRINTF("in WTDG *** wait for the link\n")
340 340 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
341 341 while( linkStatus != 5) // wait for the link
342 342 {
343 343 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
344 344 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
345 345 }
346 346
347 347 status = spacewire_stop_and_start_link( fdSPW );
348 348
349 349 if (status != RTEMS_SUCCESSFUL)
350 350 {
351 351 PRINTF1("in WTDG *** ERR link not started %d\n", status)
352 352 }
353 353 else
354 354 {
355 355 PRINTF("in WTDG *** OK link started\n")
356 356 }
357 357
358 358 // restart the SPIQ task
359 359 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
360 360 if ( status != RTEMS_SUCCESSFUL ) {
361 361 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
362 362 }
363 363
364 364 // restart RECV and SEND
365 365 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
366 366 if ( status != RTEMS_SUCCESSFUL ) {
367 367 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
368 368 }
369 369 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
370 370 if ( status != RTEMS_SUCCESSFUL ) {
371 371 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
372 372 }
373 373 }
374 374 }
375 375
376 376 //****************
377 377 // OTHER FUNCTIONS
378 378 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
379 379 {
380 380 /** This function opens the SpaceWire link.
381 381 *
382 382 * @return a valid file descriptor in case of success, -1 in case of a failure
383 383 *
384 384 */
385 385 rtems_status_code status;
386 386
387 387 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
388 388 if ( fdSPW < 0 ) {
389 389 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
390 390 }
391 391 else
392 392 {
393 393 status = RTEMS_SUCCESSFUL;
394 394 }
395 395
396 396 return status;
397 397 }
398 398
399 399 int spacewire_start_link( int fd )
400 400 {
401 401 rtems_status_code status;
402 402
403 403 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
404 404 // -1 default hardcoded driver timeout
405 405
406 406 return status;
407 407 }
408 408
409 409 int spacewire_stop_and_start_link( int fd )
410 410 {
411 411 rtems_status_code status;
412 412
413 413 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
414 414 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
415 415 // -1 default hardcoded driver timeout
416 416
417 417 return status;
418 418 }
419 419
420 420 int spacewire_configure_link( int fd )
421 421 {
422 422 /** This function configures the SpaceWire link.
423 423 *
424 424 * @return GR-RTEMS-DRIVER directive status codes:
425 425 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
426 426 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
427 427 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
428 428 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
429 429 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
430 430 * - 5 EIO - Error when writing to grswp hardware registers.
431 431 * - 2 ENOENT - No such file or directory
432 432 */
433 433
434 434 rtems_status_code status;
435 435
436 436 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
437 437 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
438 438
439 439 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
440 440 if (status!=RTEMS_SUCCESSFUL) {
441 441 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
442 442 }
443 443 //
444 444 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
445 445 if (status!=RTEMS_SUCCESSFUL) {
446 446 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
447 447 }
448 448 //
449 449 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
450 450 if (status!=RTEMS_SUCCESSFUL) {
451 451 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
452 452 }
453 453 //
454 454 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
455 455 if (status!=RTEMS_SUCCESSFUL) {
456 456 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
457 457 }
458 458 //
459 459 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
460 460 if (status!=RTEMS_SUCCESSFUL) {
461 461 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
462 462 }
463 463 //
464 464 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
465 465 if (status!=RTEMS_SUCCESSFUL) {
466 466 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
467 467 }
468 468 //
469 469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
470 470 if (status!=RTEMS_SUCCESSFUL) {
471 471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
472 472 }
473 473
474 474 return status;
475 475 }
476 476
477 477 int spacewire_reset_link( void )
478 478 {
479 479 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
480 480 *
481 481 * @return RTEMS directive status code:
482 482 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
483 483 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
484 484 *
485 485 */
486 486
487 487 rtems_status_code status_spw;
488 488 rtems_status_code status;
489 489 int i;
490 490
491 491 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
492 492 {
493 493 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
494 494
495 495 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
496 496
497 497 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
498 498
499 499 status_spw = spacewire_stop_and_start_link( fdSPW );
500 500 if ( status_spw != RTEMS_SUCCESSFUL )
501 501 {
502 502 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
503 503 }
504 504
505 505 if ( status_spw == RTEMS_SUCCESSFUL)
506 506 {
507 507 break;
508 508 }
509 509 }
510 510
511 511 return status_spw;
512 512 }
513 513
514 514 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
515 515 {
516 516 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
517 517 *
518 518 * @param val is the value, 0 or 1, used to set the value of the NP bit.
519 519 * @param regAddr is the address of the GRSPW control register.
520 520 *
521 521 * NP is the bit 20 of the GRSPW control register.
522 522 *
523 523 */
524 524
525 525 unsigned int *spwptr = (unsigned int*) regAddr;
526 526
527 527 if (val == 1) {
528 528 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
529 529 }
530 530 if (val== 0) {
531 531 *spwptr = *spwptr & 0xffdfffff;
532 532 }
533 533 }
534 534
535 535 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
536 536 {
537 537 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
538 538 *
539 539 * @param val is the value, 0 or 1, used to set the value of the RE bit.
540 540 * @param regAddr is the address of the GRSPW control register.
541 541 *
542 542 * RE is the bit 16 of the GRSPW control register.
543 543 *
544 544 */
545 545
546 546 unsigned int *spwptr = (unsigned int*) regAddr;
547 547
548 548 if (val == 1)
549 549 {
550 550 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
551 551 }
552 552 if (val== 0)
553 553 {
554 554 *spwptr = *spwptr & 0xfffdffff;
555 555 }
556 556 }
557 557
558 558 void spacewire_compute_stats_offsets( void )
559 559 {
560 560 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
561 561 *
562 562 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
563 563 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
564 564 * during the open systel call).
565 565 *
566 566 */
567 567
568 568 spw_stats spacewire_stats_grspw;
569 569 rtems_status_code status;
570 570
571 571 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
572 572
573 573 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
574 574 + spacewire_stats.packets_received;
575 575 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
576 576 + spacewire_stats.packets_sent;
577 577 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
578 578 + spacewire_stats.parity_err;
579 579 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
580 580 + spacewire_stats.disconnect_err;
581 581 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
582 582 + spacewire_stats.escape_err;
583 583 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
584 584 + spacewire_stats.credit_err;
585 585 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
586 586 + spacewire_stats.write_sync_err;
587 587 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
588 588 + spacewire_stats.rx_rmap_header_crc_err;
589 589 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
590 590 + spacewire_stats.rx_rmap_data_crc_err;
591 591 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
592 592 + spacewire_stats.early_ep;
593 593 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
594 594 + spacewire_stats.invalid_address;
595 595 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
596 596 + spacewire_stats.rx_eep_err;
597 597 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
598 598 + spacewire_stats.rx_truncated;
599 599 }
600 600
601 601 void spacewire_update_statistics( void )
602 602 {
603 603 rtems_status_code status;
604 604 spw_stats spacewire_stats_grspw;
605 605
606 606 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
607 607
608 608 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
609 609 + spacewire_stats_grspw.packets_received;
610 610 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
611 611 + spacewire_stats_grspw.packets_sent;
612 612 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
613 613 + spacewire_stats_grspw.parity_err;
614 614 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
615 615 + spacewire_stats_grspw.disconnect_err;
616 616 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
617 617 + spacewire_stats_grspw.escape_err;
618 618 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
619 619 + spacewire_stats_grspw.credit_err;
620 620 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
621 621 + spacewire_stats_grspw.write_sync_err;
622 622 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
623 623 + spacewire_stats_grspw.rx_rmap_header_crc_err;
624 624 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
625 625 + spacewire_stats_grspw.rx_rmap_data_crc_err;
626 626 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
627 627 + spacewire_stats_grspw.early_ep;
628 628 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
629 629 + spacewire_stats_grspw.invalid_address;
630 630 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
631 631 + spacewire_stats_grspw.rx_eep_err;
632 632 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
633 633 + spacewire_stats_grspw.rx_truncated;
634 634 //spacewire_stats.tx_link_err;
635 635
636 636 //****************************
637 637 // DPU_SPACEWIRE_IF_STATISTICS
638 638 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
639 639 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
640 640 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
641 641 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
642 642 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
643 643 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
644 644
645 645 //******************************************
646 646 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
647 647 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
648 648 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
649 649 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
650 650 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
651 651 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
652 652
653 653 //*********************************************
654 654 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
655 655 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
656 656 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
657 657 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
658 658 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
659 659 }
660 660
661 661 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
662 662 {
663 663 // a valid timecode has been received, write it in the HK report
664 664 unsigned int *grspwPtr;
665 665 unsigned char timecodeCtr;
666 666 unsigned char updateTimeCtr;
667 667
668 668 grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
669 669
670 670 housekeeping_packet.hk_lfr_dpu_spw_last_timc = (unsigned char) (grspwPtr[0] & 0xff); // [1111 1111]
671 671 timecodeCtr = (unsigned char) (grspwPtr[0] & 0x3f); // [0011 1111]
672 672 updateTimeCtr = time_management_regs->coarse_time_load & 0x3f; // [0011 1111]
673 673
674 674 // update the number of valid timecodes that have been received
675 675 if (housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt == 255)
676 676 {
677 677 housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt = 0;
678 678 }
679 679 else
680 680 {
681 681 housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt = housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt + 1;
682 682 }
683 683
684 684 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
685 685 if (timecodeCtr != updateTimeCtr)
686 686 {
687 687 if (housekeeping_packet.hk_lfr_time_timecode_ctr == 255)
688 688 {
689 689 housekeeping_packet.hk_lfr_time_timecode_ctr = 0;
690 690 }
691 691 else
692 692 {
693 693 housekeeping_packet.hk_lfr_time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr + 1;
694 694 }
695 695 }
696 696 }
697 697
698 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
699 {
700 int linkStatus;
701 rtems_status_code status;
702
703 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
704
705 if ( linkStatus == 5) {
706 PRINTF("in spacewire_reset_link *** link is running\n")
707 status = RTEMS_SUCCESSFUL;
708 }
709 }
710
711 698 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
712 699 {
713 700 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
714 701 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
715 702 header->reserved = DEFAULT_RESERVED;
716 703 header->userApplication = CCSDS_USER_APP;
717 704 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
718 705 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
719 706 header->packetLength[0] = 0x00;
720 707 header->packetLength[1] = 0x00;
721 708 // DATA FIELD HEADER
722 709 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
723 710 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
724 711 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
725 712 header->destinationID = TM_DESTINATION_ID_GROUND;
726 713 header->time[0] = 0x00;
727 714 header->time[0] = 0x00;
728 715 header->time[0] = 0x00;
729 716 header->time[0] = 0x00;
730 717 header->time[0] = 0x00;
731 718 header->time[0] = 0x00;
732 719 // AUXILIARY DATA HEADER
733 720 header->sid = 0x00;
734 721 header->hkBIA = DEFAULT_HKBIA;
735 722 header->blkNr[0] = 0x00;
736 723 header->blkNr[1] = 0x00;
737 724 }
738 725
739 726 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
740 727 {
741 728 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
742 729 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
743 730 header->reserved = DEFAULT_RESERVED;
744 731 header->userApplication = CCSDS_USER_APP;
745 732 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
746 733 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
747 734 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
748 735 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
749 736 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
750 737 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
751 738 // DATA FIELD HEADER
752 739 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
753 740 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
754 741 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
755 742 header->destinationID = TM_DESTINATION_ID_GROUND;
756 743 header->time[0] = 0x00;
757 744 header->time[0] = 0x00;
758 745 header->time[0] = 0x00;
759 746 header->time[0] = 0x00;
760 747 header->time[0] = 0x00;
761 748 header->time[0] = 0x00;
762 749 // AUXILIARY DATA HEADER
763 750 header->sid = 0x00;
764 751 header->hkBIA = DEFAULT_HKBIA;
765 752 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
766 753 header->pktNr = 0x00;
767 754 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
768 755 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
769 756 }
770 757
771 758 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
772 759 {
773 760 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
774 761 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
775 762 header->reserved = DEFAULT_RESERVED;
776 763 header->userApplication = CCSDS_USER_APP;
777 764 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
778 765 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
779 766 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
780 767 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
781 768 header->packetLength[0] = 0x00;
782 769 header->packetLength[1] = 0x00;
783 770 // DATA FIELD HEADER
784 771 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
785 772 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
786 773 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
787 774 header->destinationID = TM_DESTINATION_ID_GROUND;
788 775 header->time[0] = 0x00;
789 776 header->time[0] = 0x00;
790 777 header->time[0] = 0x00;
791 778 header->time[0] = 0x00;
792 779 header->time[0] = 0x00;
793 780 header->time[0] = 0x00;
794 781 // AUXILIARY DATA HEADER
795 782 header->sid = 0x00;
796 783 header->biaStatusInfo = 0x00;
797 784 header->pa_lfr_pkt_cnt_asm = 0x00;
798 785 header->pa_lfr_pkt_nr_asm = 0x00;
799 786 header->pa_lfr_asm_blk_nr[0] = 0x00;
800 787 header->pa_lfr_asm_blk_nr[1] = 0x00;
801 788 }
802 789
803 790 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
804 791 Header_TM_LFR_SCIENCE_CWF_t *header )
805 792 {
806 793 /** This function sends CWF CCSDS packets (F2, F1 or F0).
807 794 *
808 795 * @param waveform points to the buffer containing the data that will be send.
809 796 * @param sid is the source identifier of the data that will be sent.
810 797 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
811 798 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
812 799 * contain information to setup the transmission of the data packets.
813 800 *
814 801 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
815 802 *
816 803 */
817 804
818 805 unsigned int i;
819 806 int ret;
820 807 unsigned int coarseTime;
821 808 unsigned int fineTime;
822 809 rtems_status_code status;
823 810 spw_ioctl_pkt_send spw_ioctl_send_CWF;
824 811 int *dataPtr;
825 812 unsigned char sid;
826 813
827 814 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
828 815 spw_ioctl_send_CWF.options = 0;
829 816
830 817 ret = LFR_DEFAULT;
831 818 sid = (unsigned char) ring_node_to_send->sid;
832 819
833 820 coarseTime = ring_node_to_send->coarseTime;
834 821 fineTime = ring_node_to_send->fineTime;
835 822 dataPtr = (int*) ring_node_to_send->buffer_address;
836 823
837 824 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
838 825 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
839 826 header->hkBIA = pa_bia_status_info;
840 827 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
841 828 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
842 829 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
843 830
844 831 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
845 832 {
846 833 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
847 834 spw_ioctl_send_CWF.hdr = (char*) header;
848 835 // BUILD THE DATA
849 836 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
850 837
851 838 // SET PACKET SEQUENCE CONTROL
852 839 increment_seq_counter_source_id( header->packetSequenceControl, sid );
853 840
854 841 // SET SID
855 842 header->sid = sid;
856 843
857 844 // SET PACKET TIME
858 845 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
859 846 //
860 847 header->time[0] = header->acquisitionTime[0];
861 848 header->time[1] = header->acquisitionTime[1];
862 849 header->time[2] = header->acquisitionTime[2];
863 850 header->time[3] = header->acquisitionTime[3];
864 851 header->time[4] = header->acquisitionTime[4];
865 852 header->time[5] = header->acquisitionTime[5];
866 853
867 854 // SET PACKET ID
868 855 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
869 856 {
870 857 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
871 858 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
872 859 }
873 860 else
874 861 {
875 862 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
876 863 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
877 864 }
878 865
879 866 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
880 867 if (status != RTEMS_SUCCESSFUL) {
881 868 ret = LFR_DEFAULT;
882 869 }
883 870 }
884 871
885 872 return ret;
886 873 }
887 874
888 875 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
889 876 Header_TM_LFR_SCIENCE_SWF_t *header )
890 877 {
891 878 /** This function sends SWF CCSDS packets (F2, F1 or F0).
892 879 *
893 880 * @param waveform points to the buffer containing the data that will be send.
894 881 * @param sid is the source identifier of the data that will be sent.
895 882 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
896 883 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
897 884 * contain information to setup the transmission of the data packets.
898 885 *
899 886 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
900 887 *
901 888 */
902 889
903 890 unsigned int i;
904 891 int ret;
905 892 unsigned int coarseTime;
906 893 unsigned int fineTime;
907 894 rtems_status_code status;
908 895 spw_ioctl_pkt_send spw_ioctl_send_SWF;
909 896 int *dataPtr;
910 897 unsigned char sid;
911 898
912 899 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
913 900 spw_ioctl_send_SWF.options = 0;
914 901
915 902 ret = LFR_DEFAULT;
916 903
917 904 coarseTime = ring_node_to_send->coarseTime;
918 905 fineTime = ring_node_to_send->fineTime;
919 906 dataPtr = (int*) ring_node_to_send->buffer_address;
920 907 sid = ring_node_to_send->sid;
921 908
922 909 header->hkBIA = pa_bia_status_info;
923 910 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
924 911
925 912 for (i=0; i<7; i++) // send waveform
926 913 {
927 914 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
928 915 spw_ioctl_send_SWF.hdr = (char*) header;
929 916
930 917 // SET PACKET SEQUENCE CONTROL
931 918 increment_seq_counter_source_id( header->packetSequenceControl, sid );
932 919
933 920 // SET PACKET LENGTH AND BLKNR
934 921 if (i == 6)
935 922 {
936 923 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
937 924 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
938 925 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
939 926 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
940 927 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
941 928 }
942 929 else
943 930 {
944 931 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
945 932 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
946 933 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
947 934 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
948 935 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
949 936 }
950 937
951 938 // SET PACKET TIME
952 939 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
953 940 //
954 941 header->time[0] = header->acquisitionTime[0];
955 942 header->time[1] = header->acquisitionTime[1];
956 943 header->time[2] = header->acquisitionTime[2];
957 944 header->time[3] = header->acquisitionTime[3];
958 945 header->time[4] = header->acquisitionTime[4];
959 946 header->time[5] = header->acquisitionTime[5];
960 947
961 948 // SET SID
962 949 header->sid = sid;
963 950
964 951 // SET PKTNR
965 952 header->pktNr = i+1; // PKT_NR
966 953
967 954 // SEND PACKET
968 955 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
969 956 if (status != RTEMS_SUCCESSFUL) {
970 957 ret = LFR_DEFAULT;
971 958 }
972 959 }
973 960
974 961 return ret;
975 962 }
976 963
977 964 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
978 965 Header_TM_LFR_SCIENCE_CWF_t *header )
979 966 {
980 967 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
981 968 *
982 969 * @param waveform points to the buffer containing the data that will be send.
983 970 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
984 971 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
985 972 * contain information to setup the transmission of the data packets.
986 973 *
987 974 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
988 975 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
989 976 *
990 977 */
991 978
992 979 unsigned int i;
993 980 int ret;
994 981 unsigned int coarseTime;
995 982 unsigned int fineTime;
996 983 rtems_status_code status;
997 984 spw_ioctl_pkt_send spw_ioctl_send_CWF;
998 985 char *dataPtr;
999 986 unsigned char sid;
1000 987
1001 988 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1002 989 spw_ioctl_send_CWF.options = 0;
1003 990
1004 991 ret = LFR_DEFAULT;
1005 992 sid = ring_node_to_send->sid;
1006 993
1007 994 coarseTime = ring_node_to_send->coarseTime;
1008 995 fineTime = ring_node_to_send->fineTime;
1009 996 dataPtr = (char*) ring_node_to_send->buffer_address;
1010 997
1011 998 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
1012 999 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1013 1000 header->hkBIA = pa_bia_status_info;
1014 1001 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1015 1002 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
1016 1003 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1017 1004
1018 1005 //*********************
1019 1006 // SEND CWF3_light DATA
1020 1007 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1021 1008 {
1022 1009 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1023 1010 spw_ioctl_send_CWF.hdr = (char*) header;
1024 1011 // BUILD THE DATA
1025 1012 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1026 1013
1027 1014 // SET PACKET SEQUENCE COUNTER
1028 1015 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1029 1016
1030 1017 // SET SID
1031 1018 header->sid = sid;
1032 1019
1033 1020 // SET PACKET TIME
1034 1021 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1035 1022 //
1036 1023 header->time[0] = header->acquisitionTime[0];
1037 1024 header->time[1] = header->acquisitionTime[1];
1038 1025 header->time[2] = header->acquisitionTime[2];
1039 1026 header->time[3] = header->acquisitionTime[3];
1040 1027 header->time[4] = header->acquisitionTime[4];
1041 1028 header->time[5] = header->acquisitionTime[5];
1042 1029
1043 1030 // SET PACKET ID
1044 1031 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1045 1032 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1046 1033
1047 1034 // SEND PACKET
1048 1035 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1049 1036 if (status != RTEMS_SUCCESSFUL) {
1050 1037 ret = LFR_DEFAULT;
1051 1038 }
1052 1039 }
1053 1040
1054 1041 return ret;
1055 1042 }
1056 1043
1057 1044 void spw_send_asm_f0( ring_node *ring_node_to_send,
1058 1045 Header_TM_LFR_SCIENCE_ASM_t *header )
1059 1046 {
1060 1047 unsigned int i;
1061 1048 unsigned int length = 0;
1062 1049 rtems_status_code status;
1063 1050 unsigned int sid;
1064 1051 float *spectral_matrix;
1065 1052 int coarseTime;
1066 1053 int fineTime;
1067 1054 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1068 1055
1069 1056 sid = ring_node_to_send->sid;
1070 1057 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1071 1058 coarseTime = ring_node_to_send->coarseTime;
1072 1059 fineTime = ring_node_to_send->fineTime;
1073 1060
1074 1061 header->biaStatusInfo = pa_bia_status_info;
1075 1062 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1076 1063
1077 1064 for (i=0; i<3; i++)
1078 1065 {
1079 1066 if ((i==0) || (i==1))
1080 1067 {
1081 1068 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1082 1069 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1083 1070 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1084 1071 ];
1085 1072 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1086 1073 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1087 1074 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> 8 ); // BLK_NR MSB
1088 1075 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1089 1076 }
1090 1077 else
1091 1078 {
1092 1079 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1093 1080 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1094 1081 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1095 1082 ];
1096 1083 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1097 1084 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1098 1085 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> 8 ); // BLK_NR MSB
1099 1086 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1100 1087 }
1101 1088
1102 1089 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1103 1090 spw_ioctl_send_ASM.hdr = (char *) header;
1104 1091 spw_ioctl_send_ASM.options = 0;
1105 1092
1106 1093 // (2) BUILD THE HEADER
1107 1094 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1108 1095 header->packetLength[0] = (unsigned char) (length>>8);
1109 1096 header->packetLength[1] = (unsigned char) (length);
1110 1097 header->sid = (unsigned char) sid; // SID
1111 1098 header->pa_lfr_pkt_cnt_asm = 3;
1112 1099 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1113 1100
1114 1101 // (3) SET PACKET TIME
1115 1102 header->time[0] = (unsigned char) (coarseTime>>24);
1116 1103 header->time[1] = (unsigned char) (coarseTime>>16);
1117 1104 header->time[2] = (unsigned char) (coarseTime>>8);
1118 1105 header->time[3] = (unsigned char) (coarseTime);
1119 1106 header->time[4] = (unsigned char) (fineTime>>8);
1120 1107 header->time[5] = (unsigned char) (fineTime);
1121 1108 //
1122 1109 header->acquisitionTime[0] = header->time[0];
1123 1110 header->acquisitionTime[1] = header->time[1];
1124 1111 header->acquisitionTime[2] = header->time[2];
1125 1112 header->acquisitionTime[3] = header->time[3];
1126 1113 header->acquisitionTime[4] = header->time[4];
1127 1114 header->acquisitionTime[5] = header->time[5];
1128 1115
1129 1116 // (4) SEND PACKET
1130 1117 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1131 1118 if (status != RTEMS_SUCCESSFUL) {
1132 1119 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1133 1120 }
1134 1121 }
1135 1122 }
1136 1123
1137 1124 void spw_send_asm_f1( ring_node *ring_node_to_send,
1138 1125 Header_TM_LFR_SCIENCE_ASM_t *header )
1139 1126 {
1140 1127 unsigned int i;
1141 1128 unsigned int length = 0;
1142 1129 rtems_status_code status;
1143 1130 unsigned int sid;
1144 1131 float *spectral_matrix;
1145 1132 int coarseTime;
1146 1133 int fineTime;
1147 1134 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1148 1135
1149 1136 sid = ring_node_to_send->sid;
1150 1137 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1151 1138 coarseTime = ring_node_to_send->coarseTime;
1152 1139 fineTime = ring_node_to_send->fineTime;
1153 1140
1154 1141 header->biaStatusInfo = pa_bia_status_info;
1155 1142 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1156 1143
1157 1144 for (i=0; i<3; i++)
1158 1145 {
1159 1146 if ((i==0) || (i==1))
1160 1147 {
1161 1148 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1162 1149 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1163 1150 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1164 1151 ];
1165 1152 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1166 1153 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1167 1154 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> 8 ); // BLK_NR MSB
1168 1155 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1169 1156 }
1170 1157 else
1171 1158 {
1172 1159 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1173 1160 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1174 1161 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1175 1162 ];
1176 1163 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1177 1164 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1178 1165 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> 8 ); // BLK_NR MSB
1179 1166 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1180 1167 }
1181 1168
1182 1169 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1183 1170 spw_ioctl_send_ASM.hdr = (char *) header;
1184 1171 spw_ioctl_send_ASM.options = 0;
1185 1172
1186 1173 // (2) BUILD THE HEADER
1187 1174 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1188 1175 header->packetLength[0] = (unsigned char) (length>>8);
1189 1176 header->packetLength[1] = (unsigned char) (length);
1190 1177 header->sid = (unsigned char) sid; // SID
1191 1178 header->pa_lfr_pkt_cnt_asm = 3;
1192 1179 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1193 1180
1194 1181 // (3) SET PACKET TIME
1195 1182 header->time[0] = (unsigned char) (coarseTime>>24);
1196 1183 header->time[1] = (unsigned char) (coarseTime>>16);
1197 1184 header->time[2] = (unsigned char) (coarseTime>>8);
1198 1185 header->time[3] = (unsigned char) (coarseTime);
1199 1186 header->time[4] = (unsigned char) (fineTime>>8);
1200 1187 header->time[5] = (unsigned char) (fineTime);
1201 1188 //
1202 1189 header->acquisitionTime[0] = header->time[0];
1203 1190 header->acquisitionTime[1] = header->time[1];
1204 1191 header->acquisitionTime[2] = header->time[2];
1205 1192 header->acquisitionTime[3] = header->time[3];
1206 1193 header->acquisitionTime[4] = header->time[4];
1207 1194 header->acquisitionTime[5] = header->time[5];
1208 1195
1209 1196 // (4) SEND PACKET
1210 1197 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1211 1198 if (status != RTEMS_SUCCESSFUL) {
1212 1199 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1213 1200 }
1214 1201 }
1215 1202 }
1216 1203
1217 1204 void spw_send_asm_f2( ring_node *ring_node_to_send,
1218 1205 Header_TM_LFR_SCIENCE_ASM_t *header )
1219 1206 {
1220 1207 unsigned int i;
1221 1208 unsigned int length = 0;
1222 1209 rtems_status_code status;
1223 1210 unsigned int sid;
1224 1211 float *spectral_matrix;
1225 1212 int coarseTime;
1226 1213 int fineTime;
1227 1214 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1228 1215
1229 1216 sid = ring_node_to_send->sid;
1230 1217 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1231 1218 coarseTime = ring_node_to_send->coarseTime;
1232 1219 fineTime = ring_node_to_send->fineTime;
1233 1220
1234 1221 header->biaStatusInfo = pa_bia_status_info;
1235 1222 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1236 1223
1237 1224 for (i=0; i<3; i++)
1238 1225 {
1239 1226
1240 1227 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1241 1228 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1242 1229 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1243 1230 ];
1244 1231 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1245 1232 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1246 1233 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1247 1234 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1248 1235
1249 1236 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1250 1237 spw_ioctl_send_ASM.hdr = (char *) header;
1251 1238 spw_ioctl_send_ASM.options = 0;
1252 1239
1253 1240 // (2) BUILD THE HEADER
1254 1241 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1255 1242 header->packetLength[0] = (unsigned char) (length>>8);
1256 1243 header->packetLength[1] = (unsigned char) (length);
1257 1244 header->sid = (unsigned char) sid; // SID
1258 1245 header->pa_lfr_pkt_cnt_asm = 3;
1259 1246 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1260 1247
1261 1248 // (3) SET PACKET TIME
1262 1249 header->time[0] = (unsigned char) (coarseTime>>24);
1263 1250 header->time[1] = (unsigned char) (coarseTime>>16);
1264 1251 header->time[2] = (unsigned char) (coarseTime>>8);
1265 1252 header->time[3] = (unsigned char) (coarseTime);
1266 1253 header->time[4] = (unsigned char) (fineTime>>8);
1267 1254 header->time[5] = (unsigned char) (fineTime);
1268 1255 //
1269 1256 header->acquisitionTime[0] = header->time[0];
1270 1257 header->acquisitionTime[1] = header->time[1];
1271 1258 header->acquisitionTime[2] = header->time[2];
1272 1259 header->acquisitionTime[3] = header->time[3];
1273 1260 header->acquisitionTime[4] = header->time[4];
1274 1261 header->acquisitionTime[5] = header->time[5];
1275 1262
1276 1263 // (4) SEND PACKET
1277 1264 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1278 1265 if (status != RTEMS_SUCCESSFUL) {
1279 1266 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1280 1267 }
1281 1268 }
1282 1269 }
1283 1270
1284 1271 void spw_send_k_dump( ring_node *ring_node_to_send )
1285 1272 {
1286 1273 rtems_status_code status;
1287 1274 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1288 1275 unsigned int packetLength;
1289 1276 unsigned int size;
1290 1277
1291 1278 PRINTF("spw_send_k_dump\n")
1292 1279
1293 1280 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1294 1281
1295 1282 packetLength = kcoefficients_dump->packetLength[0] * 256 + kcoefficients_dump->packetLength[1];
1296 1283
1297 1284 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1298 1285
1299 1286 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1300 1287
1301 1288 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1302 1289
1303 1290 if (status == -1){
1304 1291 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1305 1292 }
1306 1293
1307 1294 ring_node_to_send->status = 0x00;
1308 1295 }
@@ -1,1519 +1,1604
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14 #include "math.h"
15 15
16 16 //***********
17 17 // RTEMS TASK
18 18
19 19 rtems_task actn_task( rtems_task_argument unused )
20 20 {
21 21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 22 *
23 23 * @param unused is the starting argument of the RTEMS task
24 24 *
25 25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 26 * on the incoming TeleCommand.
27 27 *
28 28 */
29 29
30 30 int result;
31 31 rtems_status_code status; // RTEMS status code
32 32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 33 size_t size; // size of the incoming TC packet
34 34 unsigned char subtype; // subtype of the current TC packet
35 35 unsigned char time[6];
36 36 rtems_id queue_rcv_id;
37 37 rtems_id queue_snd_id;
38 38
39 39 status = get_message_queue_id_recv( &queue_rcv_id );
40 40 if (status != RTEMS_SUCCESSFUL)
41 41 {
42 42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 43 }
44 44
45 45 status = get_message_queue_id_send( &queue_snd_id );
46 46 if (status != RTEMS_SUCCESSFUL)
47 47 {
48 48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 49 }
50 50
51 51 result = LFR_SUCCESSFUL;
52 52 subtype = 0; // subtype of the current TC packet
53 53
54 54 BOOT_PRINTF("in ACTN *** \n")
55 55
56 56 while(1)
57 57 {
58 58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 60 getTime( time ); // set time to the current time
61 61 if (status!=RTEMS_SUCCESSFUL)
62 62 {
63 63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 64 }
65 65 else
66 66 {
67 67 subtype = TC.serviceSubType;
68 68 switch(subtype)
69 69 {
70 70 case TC_SUBTYPE_RESET:
71 71 result = action_reset( &TC, queue_snd_id, time );
72 72 close_action( &TC, result, queue_snd_id );
73 73 break;
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 case TC_SUBTYPE_LOAD_NORM:
79 79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 80 close_action( &TC, result, queue_snd_id );
81 81 break;
82 82 case TC_SUBTYPE_LOAD_BURST:
83 83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 84 close_action( &TC, result, queue_snd_id );
85 85 break;
86 86 case TC_SUBTYPE_LOAD_SBM1:
87 87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 88 close_action( &TC, result, queue_snd_id );
89 89 break;
90 90 case TC_SUBTYPE_LOAD_SBM2:
91 91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 92 close_action( &TC, result, queue_snd_id );
93 93 break;
94 94 case TC_SUBTYPE_DUMP:
95 95 result = action_dump_par( &TC, queue_snd_id );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 case TC_SUBTYPE_ENTER:
99 99 result = action_enter_mode( &TC, queue_snd_id );
100 100 close_action( &TC, result, queue_snd_id );
101 101 break;
102 102 case TC_SUBTYPE_UPDT_INFO:
103 103 result = action_update_info( &TC, queue_snd_id );
104 104 close_action( &TC, result, queue_snd_id );
105 105 break;
106 106 case TC_SUBTYPE_EN_CAL:
107 107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 108 close_action( &TC, result, queue_snd_id );
109 109 break;
110 110 case TC_SUBTYPE_DIS_CAL:
111 111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 112 close_action( &TC, result, queue_snd_id );
113 113 break;
114 114 case TC_SUBTYPE_LOAD_K:
115 115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 case TC_SUBTYPE_DUMP_K:
119 119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 120 close_action( &TC, result, queue_snd_id );
121 121 break;
122 122 case TC_SUBTYPE_LOAD_FBINS:
123 123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 124 close_action( &TC, result, queue_snd_id );
125 125 break;
126 126 case TC_SUBTYPE_UPDT_TIME:
127 127 result = action_update_time( &TC );
128 128 close_action( &TC, result, queue_snd_id );
129 129 break;
130 130 default:
131 131 break;
132 132 }
133 133 }
134 134 }
135 135 }
136 136
137 137 //***********
138 138 // TC ACTIONS
139 139
140 140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 141 {
142 142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 143 *
144 144 * @param TC points to the TeleCommand packet that is being processed
145 145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 146 *
147 147 */
148 148
149 149 PRINTF("this is the end!!!\n")
150 150 exit(0);
151 151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 152 return LFR_DEFAULT;
153 153 }
154 154
155 155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 156 {
157 157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 158 *
159 159 * @param TC points to the TeleCommand packet that is being processed
160 160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 161 *
162 162 */
163 163
164 164 rtems_status_code status;
165 165 unsigned char requestedMode;
166 166 unsigned int *transitionCoarseTime_ptr;
167 167 unsigned int transitionCoarseTime;
168 168 unsigned char * bytePosPtr;
169 169
170 170 bytePosPtr = (unsigned char *) &TC->packetID;
171 171
172 172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175 175
176 176 status = check_mode_value( requestedMode );
177 177
178 178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 179 {
180 180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 181 }
182
182 183 else // the mode value is valid, check the transition
183 184 {
184 185 status = check_mode_transition(requestedMode);
185 186 if (status != LFR_SUCCESSFUL)
186 187 {
187 188 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 189 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 190 }
190 191 }
191 192
192 193 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
193 194 {
194 195 status = check_transition_date( transitionCoarseTime );
195 196 if (status != LFR_SUCCESSFUL)
196 197 {
197 198 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 199 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 200 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 201 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 202 }
202 203 }
203 204
204 205 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 206 {
206 207 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 208
209
210
208 211 switch(requestedMode)
209 212 {
210 213 case LFR_MODE_STANDBY:
211 214 status = enter_mode_standby();
212 215 break;
213 216 case LFR_MODE_NORMAL:
214 217 status = enter_mode_normal( transitionCoarseTime );
215 218 break;
216 219 case LFR_MODE_BURST:
217 220 status = enter_mode_burst( transitionCoarseTime );
218 221 break;
219 222 case LFR_MODE_SBM1:
220 223 status = enter_mode_sbm1( transitionCoarseTime );
221 224 break;
222 225 case LFR_MODE_SBM2:
223 226 status = enter_mode_sbm2( transitionCoarseTime );
224 227 break;
225 228 default:
226 229 break;
227 230 }
228 231 }
229 232
230 233 return status;
231 234 }
232 235
233 236 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
234 237 {
235 238 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
236 239 *
237 240 * @param TC points to the TeleCommand packet that is being processed
238 241 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
239 242 *
240 243 * @return LFR directive status code:
241 244 * - LFR_DEFAULT
242 245 * - LFR_SUCCESSFUL
243 246 *
244 247 */
245 248
246 249 unsigned int val;
247 250 int result;
248 251 unsigned int status;
249 252 unsigned char mode;
250 253 unsigned char * bytePosPtr;
251 254
252 255 bytePosPtr = (unsigned char *) &TC->packetID;
253 256
254 257 // check LFR mode
255 258 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
256 259 status = check_update_info_hk_lfr_mode( mode );
257 260 if (status == LFR_SUCCESSFUL) // check TDS mode
258 261 {
259 262 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
260 263 status = check_update_info_hk_tds_mode( mode );
261 264 }
262 265 if (status == LFR_SUCCESSFUL) // check THR mode
263 266 {
264 267 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
265 268 status = check_update_info_hk_thr_mode( mode );
266 269 }
267 270 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
268 271 {
269 272 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
270 273 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
271 274 val++;
272 275 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
273 276 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
274 277 }
275 278
276 279 // pa_bia_status_info
277 280 // => pa_bia_mode_mux_set 3 bits
278 281 // => pa_bia_mode_hv_enabled 1 bit
279 282 // => pa_bia_mode_bias1_enabled 1 bit
280 283 // => pa_bia_mode_bias2_enabled 1 bit
281 284 // => pa_bia_mode_bias3_enabled 1 bit
282 285 // => pa_bia_on_off (cp_dpu_bias_on_off)
283 286 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
284 287 pa_bia_status_info = pa_bia_status_info
285 288 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
286 289
287 290 result = status;
288 291
289 292 return result;
290 293 }
291 294
292 295 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
293 296 {
294 297 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
295 298 *
296 299 * @param TC points to the TeleCommand packet that is being processed
297 300 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
298 301 *
299 302 */
300 303
301 304 int result;
302 305
303 306 result = LFR_DEFAULT;
304 307
305 308 setCalibration( true );
306 309
307 310 result = LFR_SUCCESSFUL;
308 311
309 312 return result;
310 313 }
311 314
312 315 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
313 316 {
314 317 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
315 318 *
316 319 * @param TC points to the TeleCommand packet that is being processed
317 320 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
318 321 *
319 322 */
320 323
321 324 int result;
322 325
323 326 result = LFR_DEFAULT;
324 327
325 328 setCalibration( false );
326 329
327 330 result = LFR_SUCCESSFUL;
328 331
329 332 return result;
330 333 }
331 334
332 335 int action_update_time(ccsdsTelecommandPacket_t *TC)
333 336 {
334 337 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
335 338 *
336 339 * @param TC points to the TeleCommand packet that is being processed
337 340 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
338 341 *
339 342 * @return LFR_SUCCESSFUL
340 343 *
341 344 */
342 345
343 346 unsigned int val;
344 347
345 348 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
346 349 + (TC->dataAndCRC[1] << 16)
347 350 + (TC->dataAndCRC[2] << 8)
348 351 + TC->dataAndCRC[3];
349 352
350 353 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
351 354 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
352 355 val++;
353 356 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
354 357 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
355 358
356 359 return LFR_SUCCESSFUL;
357 360 }
358 361
359 362 //*******************
360 363 // ENTERING THE MODES
361 364 int check_mode_value( unsigned char requestedMode )
362 365 {
363 366 int status;
364 367
365 368 if ( (requestedMode != LFR_MODE_STANDBY)
366 369 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
367 370 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
368 371 {
369 372 status = LFR_DEFAULT;
370 373 }
371 374 else
372 375 {
373 376 status = LFR_SUCCESSFUL;
374 377 }
375 378
376 379 return status;
377 380 }
378 381
379 382 int check_mode_transition( unsigned char requestedMode )
380 383 {
381 384 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
382 385 *
383 386 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
384 387 *
385 388 * @return LFR directive status codes:
386 389 * - LFR_SUCCESSFUL - the transition is authorized
387 390 * - LFR_DEFAULT - the transition is not authorized
388 391 *
389 392 */
390 393
391 394 int status;
392 395
393 396 switch (requestedMode)
394 397 {
395 398 case LFR_MODE_STANDBY:
396 399 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
397 400 status = LFR_DEFAULT;
398 401 }
399 402 else
400 403 {
401 404 status = LFR_SUCCESSFUL;
402 405 }
403 406 break;
404 407 case LFR_MODE_NORMAL:
405 408 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
406 409 status = LFR_DEFAULT;
407 410 }
408 411 else {
409 412 status = LFR_SUCCESSFUL;
410 413 }
411 414 break;
412 415 case LFR_MODE_BURST:
413 416 if ( lfrCurrentMode == LFR_MODE_BURST ) {
414 417 status = LFR_DEFAULT;
415 418 }
416 419 else {
417 420 status = LFR_SUCCESSFUL;
418 421 }
419 422 break;
420 423 case LFR_MODE_SBM1:
421 424 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
422 425 status = LFR_DEFAULT;
423 426 }
424 427 else {
425 428 status = LFR_SUCCESSFUL;
426 429 }
427 430 break;
428 431 case LFR_MODE_SBM2:
429 432 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
430 433 status = LFR_DEFAULT;
431 434 }
432 435 else {
433 436 status = LFR_SUCCESSFUL;
434 437 }
435 438 break;
436 439 default:
437 440 status = LFR_DEFAULT;
438 441 break;
439 442 }
440 443
441 444 return status;
442 445 }
443 446
447 void update_last_valid_transition_date(unsigned int transitionCoarseTime)
448 {
449 lastValidTransitionDate = transitionCoarseTime;
450 }
451
444 452 int check_transition_date( unsigned int transitionCoarseTime )
445 453 {
446 454 int status;
447 455 unsigned int localCoarseTime;
448 456 unsigned int deltaCoarseTime;
449 457
450 458 status = LFR_SUCCESSFUL;
451 459
452 460 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
453 461 {
454 462 status = LFR_SUCCESSFUL;
455 463 }
456 464 else
457 465 {
458 466 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
459 467
460 468 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
461 469
462 470 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
463 471 {
464 472 status = LFR_DEFAULT;
465 473 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
466 474 }
467 475
468 476 if (status == LFR_SUCCESSFUL)
469 477 {
470 478 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
471 479 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
472 480 {
473 481 status = LFR_DEFAULT;
474 482 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
475 483 }
476 484 }
477 485 }
478 486
479 487 return status;
480 488 }
481 489
482 490 int restart_asm_activities( unsigned char lfrRequestedMode )
483 491 {
484 492 rtems_status_code status;
485 493
486 494 status = stop_spectral_matrices();
487 495
488 496 status = restart_asm_tasks( lfrRequestedMode );
489 497
490 498 launch_spectral_matrix();
491 499
492 500 return status;
493 501 }
494 502
495 503 int stop_spectral_matrices( void )
496 504 {
497 505 /** This function stops and restarts the current mode average spectral matrices activities.
498 506 *
499 507 * @return RTEMS directive status codes:
500 508 * - RTEMS_SUCCESSFUL - task restarted successfully
501 509 * - RTEMS_INVALID_ID - task id invalid
502 510 * - RTEMS_ALREADY_SUSPENDED - task already suspended
503 511 *
504 512 */
505 513
506 514 rtems_status_code status;
507 515
508 516 status = RTEMS_SUCCESSFUL;
509 517
510 518 // (1) mask interruptions
511 519 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
512 520
513 521 // (2) reset spectral matrices registers
514 522 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
515 523 reset_sm_status();
516 524
517 525 // (3) clear interruptions
518 526 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
519 527
520 528 // suspend several tasks
521 529 if (lfrCurrentMode != LFR_MODE_STANDBY) {
522 530 status = suspend_asm_tasks();
523 531 }
524 532
525 533 if (status != RTEMS_SUCCESSFUL)
526 534 {
527 535 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
528 536 }
529 537
530 538 return status;
531 539 }
532 540
533 541 int stop_current_mode( void )
534 542 {
535 543 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
536 544 *
537 545 * @return RTEMS directive status codes:
538 546 * - RTEMS_SUCCESSFUL - task restarted successfully
539 547 * - RTEMS_INVALID_ID - task id invalid
540 548 * - RTEMS_ALREADY_SUSPENDED - task already suspended
541 549 *
542 550 */
543 551
544 552 rtems_status_code status;
545 553
546 554 status = RTEMS_SUCCESSFUL;
547 555
548 556 // (1) mask interruptions
549 557 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
550 558 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
551 559
552 560 // (2) reset waveform picker registers
553 561 reset_wfp_burst_enable(); // reset burst and enable bits
554 562 reset_wfp_status(); // reset all the status bits
555 563
556 564 // (3) reset spectral matrices registers
557 565 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
558 566 reset_sm_status();
559 567
560 568 // reset lfr VHDL module
561 569 reset_lfr();
562 570
563 571 reset_extractSWF(); // reset the extractSWF flag to false
564 572
565 573 // (4) clear interruptions
566 574 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
567 575 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
568 576
569 577 // suspend several tasks
570 578 if (lfrCurrentMode != LFR_MODE_STANDBY) {
571 579 status = suspend_science_tasks();
572 580 }
573 581
574 582 if (status != RTEMS_SUCCESSFUL)
575 583 {
576 584 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
577 585 }
578 586
579 587 return status;
580 588 }
581 589
582 590 int enter_mode_standby()
583 591 {
592 /** This function is used to put LFR in the STANDBY mode.
593 *
594 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
595 *
596 * @return RTEMS directive status codes:
597 * - RTEMS_SUCCESSFUL - task restarted successfully
598 * - RTEMS_INVALID_ID - task id invalid
599 * - RTEMS_INCORRECT_STATE - task never started
600 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
601 *
602 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
603 * is immediate.
604 *
605 */
606
584 607 int status;
585 608
586 609 status = stop_current_mode(); // STOP THE CURRENT MODE
587 610
588 611 #ifdef PRINT_TASK_STATISTICS
589 612 rtems_cpu_usage_report();
590 613 #endif
591 614
592 615 #ifdef PRINT_STACK_REPORT
593 616 PRINTF("stack report selected\n")
594 617 rtems_stack_checker_report_usage();
595 618 #endif
596 619
597 620 return status;
598 621 }
599 622
600 623 int enter_mode_normal( unsigned int transitionCoarseTime )
601 624 {
625 /** This function is used to start the NORMAL mode.
626 *
627 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
628 *
629 * @return RTEMS directive status codes:
630 * - RTEMS_SUCCESSFUL - task restarted successfully
631 * - RTEMS_INVALID_ID - task id invalid
632 * - RTEMS_INCORRECT_STATE - task never started
633 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
634 *
635 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
636 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
637 *
638 */
639
602 640 int status;
603 641
604 642 #ifdef PRINT_TASK_STATISTICS
605 643 rtems_cpu_usage_reset();
606 644 #endif
607 645
608 646 status = RTEMS_UNSATISFIED;
609 647
610 648 switch( lfrCurrentMode )
611 649 {
612 650 case LFR_MODE_STANDBY:
613 651 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
614 652 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
615 653 {
616 654 launch_spectral_matrix( );
617 655 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
618 656 }
619 657 break;
620 658 case LFR_MODE_BURST:
621 659 status = stop_current_mode(); // stop the current mode
622 660 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
623 661 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
624 662 {
625 663 launch_spectral_matrix( );
626 664 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
627 665 }
628 666 break;
629 667 case LFR_MODE_SBM1:
630 restart_asm_activities( LFR_MODE_NORMAL );
631 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
668 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
669 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
632 670 break;
633 671 case LFR_MODE_SBM2:
634 restart_asm_activities( LFR_MODE_NORMAL );
635 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
672 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
673 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
636 674 break;
637 675 default:
638 676 break;
639 677 }
640 678
641 679 if (status != RTEMS_SUCCESSFUL)
642 680 {
643 681 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
644 682 status = RTEMS_UNSATISFIED;
645 683 }
646 684
647 685 return status;
648 686 }
649 687
650 688 int enter_mode_burst( unsigned int transitionCoarseTime )
651 689 {
690 /** This function is used to start the BURST mode.
691 *
692 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
693 *
694 * @return RTEMS directive status codes:
695 * - RTEMS_SUCCESSFUL - task restarted successfully
696 * - RTEMS_INVALID_ID - task id invalid
697 * - RTEMS_INCORRECT_STATE - task never started
698 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
699 *
700 * The way the BURST mode is started does not depend on the LFR current mode.
701 *
702 */
703
704
652 705 int status;
653 706
654 707 #ifdef PRINT_TASK_STATISTICS
655 708 rtems_cpu_usage_reset();
656 709 #endif
657 710
658 711 status = stop_current_mode(); // stop the current mode
659 712 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
660 713 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
661 714 {
662 715 launch_spectral_matrix( );
663 716 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
664 717 }
665 718
666 719 if (status != RTEMS_SUCCESSFUL)
667 720 {
668 721 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
669 722 status = RTEMS_UNSATISFIED;
670 723 }
671 724
672 725 return status;
673 726 }
674 727
675 728 int enter_mode_sbm1( unsigned int transitionCoarseTime )
676 729 {
730 /** This function is used to start the SBM1 mode.
731 *
732 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
733 *
734 * @return RTEMS directive status codes:
735 * - RTEMS_SUCCESSFUL - task restarted successfully
736 * - RTEMS_INVALID_ID - task id invalid
737 * - RTEMS_INCORRECT_STATE - task never started
738 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
739 *
740 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
741 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
742 * cases, the acquisition is completely restarted.
743 *
744 */
745
677 746 int status;
678 747
679 748 #ifdef PRINT_TASK_STATISTICS
680 749 rtems_cpu_usage_reset();
681 750 #endif
682 751
683 752 status = RTEMS_UNSATISFIED;
684 753
685 754 switch( lfrCurrentMode )
686 755 {
687 756 case LFR_MODE_STANDBY:
688 757 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
689 758 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
690 759 {
691 760 launch_spectral_matrix( );
692 761 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
693 762 }
694 763 break;
695 764 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
696 765 restart_asm_activities( LFR_MODE_SBM1 );
697 766 status = LFR_SUCCESSFUL;
698 767 break;
699 768 case LFR_MODE_BURST:
700 769 status = stop_current_mode(); // stop the current mode
701 770 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
702 771 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
703 772 {
704 773 launch_spectral_matrix( );
705 774 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
706 775 }
707 776 break;
708 777 case LFR_MODE_SBM2:
709 778 restart_asm_activities( LFR_MODE_SBM1 );
710 779 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
711 780 break;
712 781 default:
713 782 break;
714 783 }
715 784
716 785 if (status != RTEMS_SUCCESSFUL)
717 786 {
718 787 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status)
719 788 status = RTEMS_UNSATISFIED;
720 789 }
721 790
722 791 return status;
723 792 }
724 793
725 794 int enter_mode_sbm2( unsigned int transitionCoarseTime )
726 795 {
796 /** This function is used to start the SBM2 mode.
797 *
798 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
799 *
800 * @return RTEMS directive status codes:
801 * - RTEMS_SUCCESSFUL - task restarted successfully
802 * - RTEMS_INVALID_ID - task id invalid
803 * - RTEMS_INCORRECT_STATE - task never started
804 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
805 *
806 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
807 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
808 * cases, the acquisition is completely restarted.
809 *
810 */
811
727 812 int status;
728 813
729 814 #ifdef PRINT_TASK_STATISTICS
730 815 rtems_cpu_usage_reset();
731 816 #endif
732 817
733 818 status = RTEMS_UNSATISFIED;
734 819
735 820 switch( lfrCurrentMode )
736 821 {
737 822 case LFR_MODE_STANDBY:
738 823 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
739 824 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
740 825 {
741 826 launch_spectral_matrix( );
742 827 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
743 828 }
744 829 break;
745 830 case LFR_MODE_NORMAL:
746 831 restart_asm_activities( LFR_MODE_SBM2 );
747 832 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
748 833 break;
749 834 case LFR_MODE_BURST:
750 835 status = stop_current_mode(); // stop the current mode
751 836 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
752 837 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
753 838 {
754 839 launch_spectral_matrix( );
755 840 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
756 841 }
757 842 break;
758 843 case LFR_MODE_SBM1:
759 844 restart_asm_activities( LFR_MODE_SBM2 );
760 845 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
761 846 break;
762 847 default:
763 848 break;
764 849 }
765 850
766 851 if (status != RTEMS_SUCCESSFUL)
767 852 {
768 853 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
769 854 status = RTEMS_UNSATISFIED;
770 855 }
771 856
772 857 return status;
773 858 }
774 859
775 860 int restart_science_tasks( unsigned char lfrRequestedMode )
776 861 {
777 862 /** This function is used to restart all science tasks.
778 863 *
779 864 * @return RTEMS directive status codes:
780 865 * - RTEMS_SUCCESSFUL - task restarted successfully
781 866 * - RTEMS_INVALID_ID - task id invalid
782 867 * - RTEMS_INCORRECT_STATE - task never started
783 868 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
784 869 *
785 870 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
786 871 *
787 872 */
788 873
789 874 rtems_status_code status[10];
790 875 rtems_status_code ret;
791 876
792 877 ret = RTEMS_SUCCESSFUL;
793 878
794 879 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
795 880 if (status[0] != RTEMS_SUCCESSFUL)
796 881 {
797 882 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
798 883 }
799 884
800 885 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
801 886 if (status[1] != RTEMS_SUCCESSFUL)
802 887 {
803 888 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
804 889 }
805 890
806 891 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
807 892 if (status[2] != RTEMS_SUCCESSFUL)
808 893 {
809 894 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
810 895 }
811 896
812 897 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
813 898 if (status[3] != RTEMS_SUCCESSFUL)
814 899 {
815 900 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
816 901 }
817 902
818 903 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
819 904 if (status[4] != RTEMS_SUCCESSFUL)
820 905 {
821 906 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
822 907 }
823 908
824 909 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
825 910 if (status[5] != RTEMS_SUCCESSFUL)
826 911 {
827 912 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
828 913 }
829 914
830 915 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
831 916 if (status[6] != RTEMS_SUCCESSFUL)
832 917 {
833 918 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
834 919 }
835 920
836 921 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
837 922 if (status[7] != RTEMS_SUCCESSFUL)
838 923 {
839 924 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
840 925 }
841 926
842 927 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
843 928 if (status[8] != RTEMS_SUCCESSFUL)
844 929 {
845 930 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
846 931 }
847 932
848 933 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
849 934 if (status[9] != RTEMS_SUCCESSFUL)
850 935 {
851 936 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
852 937 }
853 938
854 939 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
855 940 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
856 941 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
857 942 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
858 943 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
859 944 {
860 945 ret = RTEMS_UNSATISFIED;
861 946 }
862 947
863 948 return ret;
864 949 }
865 950
866 951 int restart_asm_tasks( unsigned char lfrRequestedMode )
867 952 {
868 953 /** This function is used to restart average spectral matrices tasks.
869 954 *
870 955 * @return RTEMS directive status codes:
871 956 * - RTEMS_SUCCESSFUL - task restarted successfully
872 957 * - RTEMS_INVALID_ID - task id invalid
873 958 * - RTEMS_INCORRECT_STATE - task never started
874 959 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
875 960 *
876 961 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
877 962 *
878 963 */
879 964
880 965 rtems_status_code status[6];
881 966 rtems_status_code ret;
882 967
883 968 ret = RTEMS_SUCCESSFUL;
884 969
885 970 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
886 971 if (status[0] != RTEMS_SUCCESSFUL)
887 972 {
888 973 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
889 974 }
890 975
891 976 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
892 977 if (status[1] != RTEMS_SUCCESSFUL)
893 978 {
894 979 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
895 980 }
896 981
897 982 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
898 983 if (status[2] != RTEMS_SUCCESSFUL)
899 984 {
900 985 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
901 986 }
902 987
903 988 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
904 989 if (status[3] != RTEMS_SUCCESSFUL)
905 990 {
906 991 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
907 992 }
908 993
909 994 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
910 995 if (status[4] != RTEMS_SUCCESSFUL)
911 996 {
912 997 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
913 998 }
914 999
915 1000 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
916 1001 if (status[5] != RTEMS_SUCCESSFUL)
917 1002 {
918 1003 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
919 1004 }
920 1005
921 1006 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
922 1007 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
923 1008 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
924 1009 {
925 1010 ret = RTEMS_UNSATISFIED;
926 1011 }
927 1012
928 1013 return ret;
929 1014 }
930 1015
931 1016 int suspend_science_tasks( void )
932 1017 {
933 1018 /** This function suspends the science tasks.
934 1019 *
935 1020 * @return RTEMS directive status codes:
936 1021 * - RTEMS_SUCCESSFUL - task restarted successfully
937 1022 * - RTEMS_INVALID_ID - task id invalid
938 1023 * - RTEMS_ALREADY_SUSPENDED - task already suspended
939 1024 *
940 1025 */
941 1026
942 1027 rtems_status_code status;
943 1028
944 1029 PRINTF("in suspend_science_tasks\n")
945 1030
946 1031 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
947 1032 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
948 1033 {
949 1034 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
950 1035 }
951 1036 else
952 1037 {
953 1038 status = RTEMS_SUCCESSFUL;
954 1039 }
955 1040 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
956 1041 {
957 1042 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
958 1043 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
959 1044 {
960 1045 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
961 1046 }
962 1047 else
963 1048 {
964 1049 status = RTEMS_SUCCESSFUL;
965 1050 }
966 1051 }
967 1052 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
968 1053 {
969 1054 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
970 1055 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
971 1056 {
972 1057 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
973 1058 }
974 1059 else
975 1060 {
976 1061 status = RTEMS_SUCCESSFUL;
977 1062 }
978 1063 }
979 1064 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
980 1065 {
981 1066 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
982 1067 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
983 1068 {
984 1069 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
985 1070 }
986 1071 else
987 1072 {
988 1073 status = RTEMS_SUCCESSFUL;
989 1074 }
990 1075 }
991 1076 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
992 1077 {
993 1078 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
994 1079 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
995 1080 {
996 1081 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
997 1082 }
998 1083 else
999 1084 {
1000 1085 status = RTEMS_SUCCESSFUL;
1001 1086 }
1002 1087 }
1003 1088 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1004 1089 {
1005 1090 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1006 1091 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1007 1092 {
1008 1093 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1009 1094 }
1010 1095 else
1011 1096 {
1012 1097 status = RTEMS_SUCCESSFUL;
1013 1098 }
1014 1099 }
1015 1100 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1016 1101 {
1017 1102 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1018 1103 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1019 1104 {
1020 1105 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1021 1106 }
1022 1107 else
1023 1108 {
1024 1109 status = RTEMS_SUCCESSFUL;
1025 1110 }
1026 1111 }
1027 1112 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1028 1113 {
1029 1114 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1030 1115 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1031 1116 {
1032 1117 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1033 1118 }
1034 1119 else
1035 1120 {
1036 1121 status = RTEMS_SUCCESSFUL;
1037 1122 }
1038 1123 }
1039 1124 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1040 1125 {
1041 1126 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1042 1127 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1043 1128 {
1044 1129 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1045 1130 }
1046 1131 else
1047 1132 {
1048 1133 status = RTEMS_SUCCESSFUL;
1049 1134 }
1050 1135 }
1051 1136 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1052 1137 {
1053 1138 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1054 1139 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1055 1140 {
1056 1141 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1057 1142 }
1058 1143 else
1059 1144 {
1060 1145 status = RTEMS_SUCCESSFUL;
1061 1146 }
1062 1147 }
1063 1148
1064 1149 return status;
1065 1150 }
1066 1151
1067 1152 int suspend_asm_tasks( void )
1068 1153 {
1069 1154 /** This function suspends the science tasks.
1070 1155 *
1071 1156 * @return RTEMS directive status codes:
1072 1157 * - RTEMS_SUCCESSFUL - task restarted successfully
1073 1158 * - RTEMS_INVALID_ID - task id invalid
1074 1159 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1075 1160 *
1076 1161 */
1077 1162
1078 1163 rtems_status_code status;
1079 1164
1080 1165 PRINTF("in suspend_science_tasks\n")
1081 1166
1082 1167 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1083 1168 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1084 1169 {
1085 1170 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1086 1171 }
1087 1172 else
1088 1173 {
1089 1174 status = RTEMS_SUCCESSFUL;
1090 1175 }
1091 1176
1092 1177 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1093 1178 {
1094 1179 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1095 1180 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1096 1181 {
1097 1182 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1098 1183 }
1099 1184 else
1100 1185 {
1101 1186 status = RTEMS_SUCCESSFUL;
1102 1187 }
1103 1188 }
1104 1189
1105 1190 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1106 1191 {
1107 1192 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1108 1193 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1109 1194 {
1110 1195 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1111 1196 }
1112 1197 else
1113 1198 {
1114 1199 status = RTEMS_SUCCESSFUL;
1115 1200 }
1116 1201 }
1117 1202
1118 1203 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1119 1204 {
1120 1205 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1121 1206 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1122 1207 {
1123 1208 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1124 1209 }
1125 1210 else
1126 1211 {
1127 1212 status = RTEMS_SUCCESSFUL;
1128 1213 }
1129 1214 }
1130 1215
1131 1216 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1132 1217 {
1133 1218 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1134 1219 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1135 1220 {
1136 1221 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1137 1222 }
1138 1223 else
1139 1224 {
1140 1225 status = RTEMS_SUCCESSFUL;
1141 1226 }
1142 1227 }
1143 1228
1144 1229 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1145 1230 {
1146 1231 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1147 1232 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1148 1233 {
1149 1234 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1150 1235 }
1151 1236 else
1152 1237 {
1153 1238 status = RTEMS_SUCCESSFUL;
1154 1239 }
1155 1240 }
1156 1241
1157 1242 return status;
1158 1243 }
1159 1244
1160 1245 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1161 1246 {
1162 1247 WFP_reset_current_ring_nodes();
1163 1248
1164 1249 reset_waveform_picker_regs();
1165 1250
1166 1251 set_wfp_burst_enable_register( mode );
1167 1252
1168 1253 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1169 1254 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1170 1255
1171 1256 if (transitionCoarseTime == 0)
1172 1257 {
1173 1258 waveform_picker_regs->start_date = time_management_regs->coarse_time;
1174 1259 }
1175 1260 else
1176 1261 {
1177 1262 waveform_picker_regs->start_date = transitionCoarseTime;
1178 1263 }
1179 1264
1180 1265 }
1181 1266
1182 1267 void launch_spectral_matrix( void )
1183 1268 {
1184 1269 SM_reset_current_ring_nodes();
1185 1270
1186 1271 reset_spectral_matrix_regs();
1187 1272
1188 1273 reset_nb_sm();
1189 1274
1190 1275 set_sm_irq_onNewMatrix( 1 );
1191 1276
1192 1277 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1193 1278 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1194 1279
1195 1280 }
1196 1281
1197 1282 void set_sm_irq_onNewMatrix( unsigned char value )
1198 1283 {
1199 1284 if (value == 1)
1200 1285 {
1201 1286 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1202 1287 }
1203 1288 else
1204 1289 {
1205 1290 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1206 1291 }
1207 1292 }
1208 1293
1209 1294 void set_sm_irq_onError( unsigned char value )
1210 1295 {
1211 1296 if (value == 1)
1212 1297 {
1213 1298 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1214 1299 }
1215 1300 else
1216 1301 {
1217 1302 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1218 1303 }
1219 1304 }
1220 1305
1221 1306 //*****************************
1222 1307 // CONFIGURE CALIBRATION SIGNAL
1223 1308 void setCalibrationPrescaler( unsigned int prescaler )
1224 1309 {
1225 1310 // prescaling of the master clock (25 MHz)
1226 1311 // master clock is divided by 2^prescaler
1227 1312 time_management_regs->calPrescaler = prescaler;
1228 1313 }
1229 1314
1230 1315 void setCalibrationDivisor( unsigned int divisionFactor )
1231 1316 {
1232 1317 // division of the prescaled clock by the division factor
1233 1318 time_management_regs->calDivisor = divisionFactor;
1234 1319 }
1235 1320
1236 1321 void setCalibrationData( void ){
1237 1322 unsigned int k;
1238 1323 unsigned short data;
1239 1324 float val;
1240 1325 float f0;
1241 1326 float f1;
1242 1327 float fs;
1243 1328 float Ts;
1244 1329 float scaleFactor;
1245 1330
1246 1331 f0 = 625;
1247 1332 f1 = 10000;
1248 1333 fs = 160256.410;
1249 1334 Ts = 1. / fs;
1250 1335 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1251 1336
1252 1337 time_management_regs->calDataPtr = 0x00;
1253 1338
1254 1339 // build the signal for the SCM calibration
1255 1340 for (k=0; k<256; k++)
1256 1341 {
1257 1342 val = sin( 2 * pi * f0 * k * Ts )
1258 1343 + sin( 2 * pi * f1 * k * Ts );
1259 1344 data = (unsigned short) ((val * scaleFactor) + 2048);
1260 1345 time_management_regs->calData = data & 0xfff;
1261 1346 }
1262 1347 }
1263 1348
1264 1349 void setCalibrationDataInterleaved( void ){
1265 1350 unsigned int k;
1266 1351 float val;
1267 1352 float f0;
1268 1353 float f1;
1269 1354 float fs;
1270 1355 float Ts;
1271 1356 unsigned short data[384];
1272 1357 unsigned char *dataPtr;
1273 1358
1274 1359 f0 = 625;
1275 1360 f1 = 10000;
1276 1361 fs = 240384.615;
1277 1362 Ts = 1. / fs;
1278 1363
1279 1364 time_management_regs->calDataPtr = 0x00;
1280 1365
1281 1366 // build the signal for the SCM calibration
1282 1367 for (k=0; k<384; k++)
1283 1368 {
1284 1369 val = sin( 2 * pi * f0 * k * Ts )
1285 1370 + sin( 2 * pi * f1 * k * Ts );
1286 1371 data[k] = (unsigned short) (val * 512 + 2048);
1287 1372 }
1288 1373
1289 1374 // write the signal in interleaved mode
1290 1375 for (k=0; k<128; k++)
1291 1376 {
1292 1377 dataPtr = (unsigned char*) &data[k*3 + 2];
1293 1378 time_management_regs->calData = (data[k*3] & 0xfff)
1294 1379 + ( (dataPtr[0] & 0x3f) << 12);
1295 1380 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1296 1381 + ( (dataPtr[1] & 0x3f) << 12);
1297 1382 }
1298 1383 }
1299 1384
1300 1385 void setCalibrationReload( bool state)
1301 1386 {
1302 1387 if (state == true)
1303 1388 {
1304 1389 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1305 1390 }
1306 1391 else
1307 1392 {
1308 1393 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1309 1394 }
1310 1395 }
1311 1396
1312 1397 void setCalibrationEnable( bool state )
1313 1398 {
1314 1399 // this bit drives the multiplexer
1315 1400 if (state == true)
1316 1401 {
1317 1402 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1318 1403 }
1319 1404 else
1320 1405 {
1321 1406 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1322 1407 }
1323 1408 }
1324 1409
1325 1410 void setCalibrationInterleaved( bool state )
1326 1411 {
1327 1412 // this bit drives the multiplexer
1328 1413 if (state == true)
1329 1414 {
1330 1415 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1331 1416 }
1332 1417 else
1333 1418 {
1334 1419 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1335 1420 }
1336 1421 }
1337 1422
1338 1423 void setCalibration( bool state )
1339 1424 {
1340 1425 if (state == true)
1341 1426 {
1342 1427 setCalibrationEnable( true );
1343 1428 setCalibrationReload( false );
1344 1429 set_hk_lfr_calib_enable( true );
1345 1430 }
1346 1431 else
1347 1432 {
1348 1433 setCalibrationEnable( false );
1349 1434 setCalibrationReload( true );
1350 1435 set_hk_lfr_calib_enable( false );
1351 1436 }
1352 1437 }
1353 1438
1354 1439 void configureCalibration( bool interleaved )
1355 1440 {
1356 1441 setCalibration( false );
1357 1442 if ( interleaved == true )
1358 1443 {
1359 1444 setCalibrationInterleaved( true );
1360 1445 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1361 1446 setCalibrationDivisor( 26 ); // => 240 384
1362 1447 setCalibrationDataInterleaved();
1363 1448 }
1364 1449 else
1365 1450 {
1366 1451 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1367 1452 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1368 1453 setCalibrationData();
1369 1454 }
1370 1455 }
1371 1456
1372 1457 //****************
1373 1458 // CLOSING ACTIONS
1374 1459 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1375 1460 {
1376 1461 /** This function is used to update the HK packets statistics after a successful TC execution.
1377 1462 *
1378 1463 * @param TC points to the TC being processed
1379 1464 * @param time is the time used to date the TC execution
1380 1465 *
1381 1466 */
1382 1467
1383 1468 unsigned int val;
1384 1469
1385 1470 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1386 1471 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1387 1472 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1388 1473 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1389 1474 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1390 1475 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1391 1476 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1392 1477 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1393 1478 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1394 1479 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1395 1480 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1396 1481 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1397 1482
1398 1483 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1399 1484 val++;
1400 1485 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1401 1486 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1402 1487 }
1403 1488
1404 1489 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1405 1490 {
1406 1491 /** This function is used to update the HK packets statistics after a TC rejection.
1407 1492 *
1408 1493 * @param TC points to the TC being processed
1409 1494 * @param time is the time used to date the TC rejection
1410 1495 *
1411 1496 */
1412 1497
1413 1498 unsigned int val;
1414 1499
1415 1500 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1416 1501 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1417 1502 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1418 1503 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1419 1504 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1420 1505 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1421 1506 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1422 1507 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1423 1508 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1424 1509 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1425 1510 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1426 1511 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1427 1512
1428 1513 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1429 1514 val++;
1430 1515 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1431 1516 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1432 1517 }
1433 1518
1434 1519 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1435 1520 {
1436 1521 /** This function is the last step of the TC execution workflow.
1437 1522 *
1438 1523 * @param TC points to the TC being processed
1439 1524 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1440 1525 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1441 1526 * @param time is the time used to date the TC execution
1442 1527 *
1443 1528 */
1444 1529
1445 1530 unsigned char requestedMode;
1446 1531
1447 1532 if (result == LFR_SUCCESSFUL)
1448 1533 {
1449 1534 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1450 1535 &
1451 1536 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1452 1537 )
1453 1538 {
1454 1539 send_tm_lfr_tc_exe_success( TC, queue_id );
1455 1540 }
1456 1541 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1457 1542 {
1458 1543 //**********************************
1459 1544 // UPDATE THE LFRMODE LOCAL VARIABLE
1460 1545 requestedMode = TC->dataAndCRC[1];
1461 1546 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1462 1547 updateLFRCurrentMode();
1463 1548 }
1464 1549 }
1465 1550 else if (result == LFR_EXE_ERROR)
1466 1551 {
1467 1552 send_tm_lfr_tc_exe_error( TC, queue_id );
1468 1553 }
1469 1554 }
1470 1555
1471 1556 //***************************
1472 1557 // Interrupt Service Routines
1473 1558 rtems_isr commutation_isr1( rtems_vector_number vector )
1474 1559 {
1475 1560 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1476 1561 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1477 1562 }
1478 1563 }
1479 1564
1480 1565 rtems_isr commutation_isr2( rtems_vector_number vector )
1481 1566 {
1482 1567 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1483 1568 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1484 1569 }
1485 1570 }
1486 1571
1487 1572 //****************
1488 1573 // OTHER FUNCTIONS
1489 1574 void updateLFRCurrentMode()
1490 1575 {
1491 1576 /** This function updates the value of the global variable lfrCurrentMode.
1492 1577 *
1493 1578 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1494 1579 *
1495 1580 */
1496 1581 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1497 1582 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1498 1583 }
1499 1584
1500 1585 void set_lfr_soft_reset( unsigned char value )
1501 1586 {
1502 1587 if (value == 1)
1503 1588 {
1504 1589 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1505 1590 }
1506 1591 else
1507 1592 {
1508 1593 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1509 1594 }
1510 1595 }
1511 1596
1512 1597 void reset_lfr( void )
1513 1598 {
1514 1599 set_lfr_soft_reset( 1 );
1515 1600
1516 1601 set_lfr_soft_reset( 0 );
1517 1602
1518 1603 set_hk_lfr_sc_potential_flag( true );
1519 1604 }
General Comments 0
You need to be logged in to leave comments. Login now