##// END OF EJS Templates
2.0.1.1...
paul -
r168:8af347acc664 patch rev 2
parent child
Show More
@@ -1,11 +1,12
1 1 syntax: glob
2 2 *.pdf
3 3 *~
4 4 *.o
5 *.gcno
5 6 *.zip
6 7 tests/*.err
7 8 doc
8 9 *.srec
9 10 FSW-qt/bin/fsw
10 11 src/LFR_basic-parameters
11 12
@@ -1,273 +1,273
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Thu Sep 25 11:05:34 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Tue Oct 7 15:14:40 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 13 DEFINES = -DSW_VERSION_N1=2 -DSW_VERSION_N2=0 -DSW_VERSION_N3=1 -DSW_VERSION_N4=1 -DLPP_DPU_DESTID -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_misc.c \
49 49 ../src/fsw_init.c \
50 50 ../src/fsw_globals.c \
51 51 ../src/fsw_spacewire.c \
52 52 ../src/tc_load_dump_parameters.c \
53 53 ../src/tm_lfr_tc_exe.c \
54 54 ../src/tc_acceptance.c \
55 55 ../src/processing/fsw_processing.c \
56 56 ../src/processing/avf0_prc0.c \
57 57 ../src/processing/avf1_prc1.c \
58 58 ../src/processing/avf2_prc2.c \
59 59 ../src/lfr_cpu_usage_report.c \
60 60 ../src/LFR_basic-parameters/basic_parameters.c
61 61 OBJECTS = obj/wf_handler.o \
62 62 obj/tc_handler.o \
63 63 obj/fsw_misc.o \
64 64 obj/fsw_init.o \
65 65 obj/fsw_globals.o \
66 66 obj/fsw_spacewire.o \
67 67 obj/tc_load_dump_parameters.o \
68 68 obj/tm_lfr_tc_exe.o \
69 69 obj/tc_acceptance.o \
70 70 obj/fsw_processing.o \
71 71 obj/avf0_prc0.o \
72 72 obj/avf1_prc1.o \
73 73 obj/avf2_prc2.o \
74 74 obj/lfr_cpu_usage_report.o \
75 75 obj/basic_parameters.o
76 76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
77 77 /usr/lib64/qt4/mkspecs/common/linux.conf \
78 78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
79 79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
80 80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
81 81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
82 82 /usr/lib64/qt4/mkspecs/qconfig.pri \
83 83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
84 84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
85 85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
86 86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
87 87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
88 88 sparc.pri \
89 89 /usr/lib64/qt4/mkspecs/features/release.prf \
90 90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
91 91 /usr/lib64/qt4/mkspecs/features/shared.prf \
92 92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
93 93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
94 94 /usr/lib64/qt4/mkspecs/features/resources.prf \
95 95 /usr/lib64/qt4/mkspecs/features/uic.prf \
96 96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
97 97 /usr/lib64/qt4/mkspecs/features/lex.prf \
98 98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
99 99 fsw-qt.pro
100 100 QMAKE_TARGET = fsw
101 101 DESTDIR = bin/
102 102 TARGET = bin/fsw
103 103
104 104 first: all
105 105 ####### Implicit rules
106 106
107 107 .SUFFIXES: .o .c .cpp .cc .cxx .C
108 108
109 109 .cpp.o:
110 110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111 111
112 112 .cc.o:
113 113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114 114
115 115 .cxx.o:
116 116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117 117
118 118 .C.o:
119 119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
120 120
121 121 .c.o:
122 122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
123 123
124 124 ####### Build rules
125 125
126 126 all: Makefile $(TARGET)
127 127
128 128 $(TARGET): $(OBJECTS)
129 129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
130 130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
131 131
132 132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
133 133 /usr/lib64/qt4/mkspecs/common/linux.conf \
134 134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
135 135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
136 136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
137 137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
138 138 /usr/lib64/qt4/mkspecs/qconfig.pri \
139 139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
140 140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
141 141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
142 142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
143 143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
144 144 sparc.pri \
145 145 /usr/lib64/qt4/mkspecs/features/release.prf \
146 146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
147 147 /usr/lib64/qt4/mkspecs/features/shared.prf \
148 148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
149 149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
150 150 /usr/lib64/qt4/mkspecs/features/resources.prf \
151 151 /usr/lib64/qt4/mkspecs/features/uic.prf \
152 152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
153 153 /usr/lib64/qt4/mkspecs/features/lex.prf \
154 154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
155 155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
156 156 /usr/lib64/qt4/mkspecs/common/unix.conf:
157 157 /usr/lib64/qt4/mkspecs/common/linux.conf:
158 158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
159 159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
160 160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
161 161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
162 162 /usr/lib64/qt4/mkspecs/qconfig.pri:
163 163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
164 164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
165 165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
166 166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
167 167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
168 168 sparc.pri:
169 169 /usr/lib64/qt4/mkspecs/features/release.prf:
170 170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
171 171 /usr/lib64/qt4/mkspecs/features/shared.prf:
172 172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
173 173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
174 174 /usr/lib64/qt4/mkspecs/features/resources.prf:
175 175 /usr/lib64/qt4/mkspecs/features/uic.prf:
176 176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
177 177 /usr/lib64/qt4/mkspecs/features/lex.prf:
178 178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
179 179 qmake: FORCE
180 180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
181 181
182 182 dist:
183 183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
184 184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
185 185
186 186
187 187 clean:compiler_clean
188 188 -$(DEL_FILE) $(OBJECTS)
189 189 -$(DEL_FILE) *~ core *.core
190 190
191 191
192 192 ####### Sub-libraries
193 193
194 194 distclean: clean
195 195 -$(DEL_FILE) $(TARGET)
196 196 -$(DEL_FILE) Makefile
197 197
198 198
199 199 grmon:
200 200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
201 201
202 202 check: first
203 203
204 204 compiler_rcc_make_all:
205 205 compiler_rcc_clean:
206 206 compiler_uic_make_all:
207 207 compiler_uic_clean:
208 208 compiler_image_collection_make_all: qmake_image_collection.cpp
209 209 compiler_image_collection_clean:
210 210 -$(DEL_FILE) qmake_image_collection.cpp
211 211 compiler_yacc_decl_make_all:
212 212 compiler_yacc_decl_clean:
213 213 compiler_yacc_impl_make_all:
214 214 compiler_yacc_impl_clean:
215 215 compiler_lex_make_all:
216 216 compiler_lex_clean:
217 217 compiler_clean:
218 218
219 219 ####### Compile
220 220
221 221 obj/wf_handler.o: ../src/wf_handler.c
222 222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
223 223
224 224 obj/tc_handler.o: ../src/tc_handler.c
225 225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
226 226
227 227 obj/fsw_misc.o: ../src/fsw_misc.c
228 228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
229 229
230 230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
231 231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
232 232
233 233 obj/fsw_globals.o: ../src/fsw_globals.c
234 234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
235 235
236 236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
237 237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
238 238
239 239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
240 240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
241 241
242 242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
243 243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
244 244
245 245 obj/tc_acceptance.o: ../src/tc_acceptance.c
246 246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
247 247
248 248 obj/fsw_processing.o: ../src/processing/fsw_processing.c
249 249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
250 250
251 251 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
252 252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
253 253
254 254 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
255 255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
256 256
257 257 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
258 258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
259 259
260 260 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
261 261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
262 262
263 263 obj/basic_parameters.o: ../src/LFR_basic-parameters/basic_parameters.c
264 264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/LFR_basic-parameters/basic_parameters.c
265 265
266 266 ####### Install
267 267
268 268 install: FORCE
269 269
270 270 uninstall: FORCE
271 271
272 272 FORCE:
273 273
@@ -1,100 +1,108
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 4 # lpp_dpu_destid
5 5 CONFIG += console verbose lpp_dpu_destid
6 6 CONFIG -= qt
7 7
8 8 include(./sparc.pri)
9 9
10 10 # flight software version
11 11 SWVERSION=-1-0
12 12 DEFINES += SW_VERSION_N1=2 # major
13 13 DEFINES += SW_VERSION_N2=0 # minor
14 14 DEFINES += SW_VERSION_N3=1 # patch
15 15 DEFINES += SW_VERSION_N4=1 # internal
16 16
17 # <GCOV>
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
19 #QMAKE_LFLAGS_RELEASE +=
20 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
21 # </GCOV>
22
23 # <CHANGE BEFORE FLIGHT>
17 24 contains( CONFIG, lpp_dpu_destid ) {
18 25 DEFINES += LPP_DPU_DESTID
19 26 }
27 # </CHANGE BEFORE FLIGHT>
20 28
21 29 contains( CONFIG, debug_tch ) {
22 30 DEFINES += DEBUG_TCH
23 31 }
24 32
25 33 contains( CONFIG, vhdl_dev ) {
26 34 DEFINES += VHDL_DEV
27 35 }
28 36
29 37 contains( CONFIG, verbose ) {
30 38 DEFINES += PRINT_MESSAGES_ON_CONSOLE
31 39 }
32 40
33 41 contains( CONFIG, debug_messages ) {
34 42 DEFINES += DEBUG_MESSAGES
35 43 }
36 44
37 45 contains( CONFIG, cpu_usage_report ) {
38 46 DEFINES += PRINT_TASK_STATISTICS
39 47 }
40 48
41 49 contains( CONFIG, stack_report ) {
42 50 DEFINES += PRINT_STACK_REPORT
43 51 }
44 52
45 53 contains( CONFIG, boot_messages ) {
46 54 DEFINES += BOOT_MESSAGES
47 55 }
48 56
49 57 #doxygen.target = doxygen
50 58 #doxygen.commands = doxygen ../doc/Doxyfile
51 59 #QMAKE_EXTRA_TARGETS += doxygen
52 60
53 61 TARGET = fsw
54 62
55 63 INCLUDEPATH += \
56 64 ../src \
57 65 ../header \
58 66 ../header/processing \
59 67 ../src/LFR_basic-parameters
60 68
61 69 SOURCES += \
62 70 ../src/wf_handler.c \
63 71 ../src/tc_handler.c \
64 72 ../src/fsw_misc.c \
65 73 ../src/fsw_init.c \
66 74 ../src/fsw_globals.c \
67 75 ../src/fsw_spacewire.c \
68 76 ../src/tc_load_dump_parameters.c \
69 77 ../src/tm_lfr_tc_exe.c \
70 78 ../src/tc_acceptance.c \
71 79 ../src/processing/fsw_processing.c \
72 80 ../src/processing/avf0_prc0.c \
73 81 ../src/processing/avf1_prc1.c \
74 82 ../src/processing/avf2_prc2.c \
75 83 ../src/lfr_cpu_usage_report.c \
76 84 ../src/LFR_basic-parameters/basic_parameters.c
77 85
78 86 HEADERS += \
79 87 ../header/wf_handler.h \
80 88 ../header/tc_handler.h \
81 89 ../header/grlib_regs.h \
82 90 ../header/fsw_params.h \
83 91 ../header/fsw_misc.h \
84 92 ../header/fsw_init.h \
85 93 ../header/ccsds_types.h \
86 94 ../header/fsw_spacewire.h \
87 95 ../header/tc_load_dump_parameters.h \
88 96 ../header/tm_lfr_tc_exe.h \
89 97 ../header/tc_acceptance.h \
90 98 ../header/fsw_params_nb_bytes.h \
91 99 ../header/fsw_params_processing.h \
92 100 ../header/processing/fsw_processing.h \
93 101 ../header/processing/avf0_prc0.h \
94 102 ../header/processing/avf1_prc1.h \
95 103 ../header/processing/avf2_prc2.h \
96 104 ../header/fsw_params_wf_handler.h \
97 105 ../header/lfr_cpu_usage_report.h \
98 106 ../src/LFR_basic-parameters/basic_parameters.h \
99 107 ../src/LFR_basic-parameters/basic_parameters_params.h
100 108
@@ -1,208 +1,208
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.2.0, 2014-09-25T16:02:43. -->
3 <!-- Written by QtCreator 3.2.0, 2014-10-06T16:01:42. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>EnvironmentId</variable>
7 7 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.ActiveTarget</variable>
11 11 <value type="int">0</value>
12 12 </data>
13 13 <data>
14 14 <variable>ProjectExplorer.Project.EditorSettings</variable>
15 15 <valuemap type="QVariantMap">
16 16 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
17 17 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
18 18 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
19 19 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
20 20 <value type="QString" key="language">Cpp</value>
21 21 <valuemap type="QVariantMap" key="value">
22 22 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
23 23 </valuemap>
24 24 </valuemap>
25 25 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
26 26 <value type="QString" key="language">QmlJS</value>
27 27 <valuemap type="QVariantMap" key="value">
28 28 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
29 29 </valuemap>
30 30 </valuemap>
31 31 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
32 32 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
33 33 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
34 34 <value type="int" key="EditorConfiguration.IndentSize">4</value>
35 35 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
36 36 <value type="int" key="EditorConfiguration.MarginColumn">80</value>
37 37 <value type="bool" key="EditorConfiguration.MouseHiding">true</value>
38 38 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
39 39 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
40 40 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
41 41 <value type="bool" key="EditorConfiguration.ShowMargin">false</value>
42 42 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
43 43 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
44 44 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
45 45 <value type="int" key="EditorConfiguration.TabSize">8</value>
46 46 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
47 47 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
48 48 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
49 49 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
50 50 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
51 51 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
52 52 </valuemap>
53 53 </data>
54 54 <data>
55 55 <variable>ProjectExplorer.Project.PluginSettings</variable>
56 56 <valuemap type="QVariantMap"/>
57 57 </data>
58 58 <data>
59 59 <variable>ProjectExplorer.Project.Target.0</variable>
60 60 <valuemap type="QVariantMap">
61 61 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
62 62 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
63 63 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
64 64 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
65 65 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
66 66 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
67 67 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
68 68 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
69 69 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
70 70 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
71 71 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
72 72 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
73 73 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
74 74 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
75 75 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
76 76 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
77 77 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
78 78 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
79 79 </valuemap>
80 80 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
81 81 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
82 82 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
83 83 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
84 84 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
85 85 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
86 86 <value type="QString">-w</value>
87 87 <value type="QString">-r</value>
88 88 </valuelist>
89 89 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
90 90 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
91 91 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
92 92 </valuemap>
93 93 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
97 97 </valuemap>
98 98 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
99 99 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
100 100 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
101 101 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
102 102 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
103 103 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
104 104 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
105 105 <value type="QString">-w</value>
106 106 <value type="QString">-r</value>
107 107 </valuelist>
108 108 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
109 109 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
110 110 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
111 111 </valuemap>
112 112 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
116 116 </valuemap>
117 117 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
118 118 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
119 119 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
120 120 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
121 121 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
122 122 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
123 123 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
124 124 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
125 125 </valuemap>
126 126 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
127 127 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
128 128 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
129 129 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
131 131 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
132 132 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
133 133 </valuemap>
134 134 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
135 135 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
136 136 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
137 137 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
138 138 </valuemap>
139 139 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
140 140 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
141 141 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
142 142 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
143 143 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
144 144 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
145 145 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
146 146 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
147 147 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
148 148 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
149 149 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
150 150 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
151 151 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
152 152 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
153 153 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
154 154 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
155 155 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
156 156 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
157 157 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
158 158 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
159 159 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
160 160 <value type="int">0</value>
161 161 <value type="int">1</value>
162 162 <value type="int">2</value>
163 163 <value type="int">3</value>
164 164 <value type="int">4</value>
165 165 <value type="int">5</value>
166 166 <value type="int">6</value>
167 167 <value type="int">7</value>
168 168 <value type="int">8</value>
169 169 <value type="int">9</value>
170 170 <value type="int">10</value>
171 171 <value type="int">11</value>
172 172 <value type="int">12</value>
173 173 <value type="int">13</value>
174 174 <value type="int">14</value>
175 175 </valuelist>
176 176 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
177 177 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
178 178 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
179 179 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
180 180 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
181 181 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
182 182 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
183 183 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
184 184 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
185 185 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
186 186 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
187 187 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
188 188 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
189 189 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
190 190 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
191 191 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
192 192 </valuemap>
193 193 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
194 194 </valuemap>
195 195 </data>
196 196 <data>
197 197 <variable>ProjectExplorer.Project.TargetCount</variable>
198 198 <value type="int">1</value>
199 199 </data>
200 200 <data>
201 201 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
202 202 <value type="int">16</value>
203 203 </data>
204 204 <data>
205 205 <variable>Version</variable>
206 206 <value type="int">16</value>
207 207 </data>
208 208 </qtcreator>
@@ -1,255 +1,256
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 21 //************************
22 22 // flight software version
23 23 // this parameters is handled by the Qt project options
24 24
25 25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 28 #define TIME_OFFSET 2
29 29 #define TIME_OFFSET_IN_BYTES 8
30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
30 //#define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 31 #define NB_BYTES_SWF_BLK (2 * 6)
32 32 #define NB_WORDS_SWF_BLK 3
33 33 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
34 //#define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 35 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 36 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 37 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 38 #define NB_RING_NODES_F3 3 // AT LEAST 3
39 39
40 40 //**********
41 41 // LFR MODES
42 42 #define LFR_MODE_STANDBY 0
43 43 #define LFR_MODE_NORMAL 1
44 44 #define LFR_MODE_BURST 2
45 45 #define LFR_MODE_SBM1 3
46 46 #define LFR_MODE_SBM2 4
47 47
48 48 #define TDS_MODE_LFM 5
49 49 #define TDS_MODE_STANDBY 0
50 50 #define TDS_MODE_NORMAL 1
51 51 #define TDS_MODE_BURST 2
52 52 #define TDS_MODE_SBM1 3
53 53 #define TDS_MODE_SBM2 4
54 54
55 55 #define THR_MODE_STANDBY 0
56 56 #define THR_MODE_NORMAL 1
57 57 #define THR_MODE_BURST 2
58 58
59 59 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
60 60 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
61 61 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
62 62 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
63 63 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
64 64 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
65 65 #define RTEMS_EVENT_NORM_BP1_F0 RTEMS_EVENT_6
66 66 #define RTEMS_EVENT_NORM_BP2_F0 RTEMS_EVENT_7
67 67 #define RTEMS_EVENT_NORM_ASM_F0 RTEMS_EVENT_8 // ASM only in NORM mode
68 68 #define RTEMS_EVENT_NORM_BP1_F1 RTEMS_EVENT_9
69 69 #define RTEMS_EVENT_NORM_BP2_F1 RTEMS_EVENT_10
70 70 #define RTEMS_EVENT_NORM_ASM_F1 RTEMS_EVENT_11 // ASM only in NORM mode
71 71 #define RTEMS_EVENT_NORM_BP1_F2 RTEMS_EVENT_12
72 72 #define RTEMS_EVENT_NORM_BP2_F2 RTEMS_EVENT_13
73 73 #define RTEMS_EVENT_NORM_ASM_F2 RTEMS_EVENT_14 // ASM only in NORM mode
74 74 #define RTEMS_EVENT_SBM_BP1_F0 RTEMS_EVENT_15
75 75 #define RTEMS_EVENT_SBM_BP2_F0 RTEMS_EVENT_16
76 76 #define RTEMS_EVENT_SBM_BP1_F1 RTEMS_EVENT_17
77 77 #define RTEMS_EVENT_SBM_BP2_F1 RTEMS_EVENT_18
78 78 #define RTEMS_EVENT_BURST_BP1_F0 RTEMS_EVENT_19
79 79 #define RTEMS_EVENT_BURST_BP2_F0 RTEMS_EVENT_20
80 80 #define RTEMS_EVENT_BURST_BP1_F1 RTEMS_EVENT_21
81 81 #define RTEMS_EVENT_BURST_BP2_F1 RTEMS_EVENT_22
82 82
83 83 //****************************
84 84 // LFR DEFAULT MODE PARAMETERS
85 85 // COMMON
86 86 #define DEFAULT_SY_LFR_COMMON0 0x00
87 87 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
88 88 // NORM
89 89 #define DFLT_SY_LFR_N_SWF_L 2048 // nb sample
90 90 #define DFLT_SY_LFR_N_SWF_P 300 // sec
91 91 #define DFLT_SY_LFR_N_ASM_P 3600 // sec
92 92 #define DFLT_SY_LFR_N_BP_P0 4 // sec
93 93 #define DFLT_SY_LFR_N_BP_P1 20 // sec
94 94 #define DFLT_SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
95 95 #define MIN_DELTA_SNAPSHOT 16 // sec
96 96 // BURST
97 97 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
98 98 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
99 99 // SBM1
100 100 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
101 101 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
102 102 // SBM2
103 103 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
104 104 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
105 105 // ADDITIONAL PARAMETERS
106 106 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
107 107 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
108 108 // STATUS WORD
109 109 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
110 110 #define DEFAULT_STATUS_WORD_BYTE1 0x00
111 111 //
112 112 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
113 113 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
114 114 //****************************
115 115
116 116 //*****************************
117 117 // APB REGISTERS BASE ADDRESSES
118 118 #define REGS_ADDR_APBUART 0x80000100
119 119 #define REGS_ADDR_GPTIMER 0x80000300
120 120 #define REGS_ADDR_GRSPW 0x80000500
121 121 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
122 122 #define REGS_ADDR_GRGPIO 0x80000b00
123 123
124 124 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
125 125 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f50
126 126 #define REGS_ADDR_VHDL_VERSION 0x80000ff0
127 127
128 128 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
129 129 #define APBUART_CTRL_REG_MASK_TE 0x00000002
130 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
130 // scaler value = system_clock_frequency / ( baud_rate * 8 ) - 1
131 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400
131 132
132 133 //**********
133 134 // IRQ LINES
134 135 #define IRQ_SM_SIMULATOR 9
135 136 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
136 137 #define IRQ_WAVEFORM_PICKER 14
137 138 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
138 139 #define IRQ_SPECTRAL_MATRIX 6
139 140 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
140 141
141 142 //*****
142 143 // TIME
143 144 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
144 145 #define TIMER_SM_SIMULATOR 1
145 146 #define HK_PERIOD 100 // 100 * 10ms => 1s
146 147 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
147 148 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
148 149
149 150 //**********
150 151 // LPP CODES
151 152 #define LFR_SUCCESSFUL 0
152 153 #define LFR_DEFAULT 1
153 154 #define LFR_EXE_ERROR 2
154 155
155 156 //******
156 157 // RTEMS
157 158 #define TASKID_RECV 1
158 159 #define TASKID_ACTN 2
159 160 #define TASKID_SPIQ 3
160 161 #define TASKID_STAT 4
161 162 #define TASKID_AVF0 5
162 163 #define TASKID_SWBD 6
163 164 #define TASKID_WFRM 7
164 165 #define TASKID_DUMB 8
165 166 #define TASKID_HOUS 9
166 167 #define TASKID_PRC0 10
167 168 #define TASKID_CWF3 11
168 169 #define TASKID_CWF2 12
169 170 #define TASKID_CWF1 13
170 171 #define TASKID_SEND 14
171 172 #define TASKID_WTDG 15
172 173 #define TASKID_AVF1 16
173 174 #define TASKID_PRC1 17
174 175 #define TASKID_AVF2 18
175 176 #define TASKID_PRC2 19
176 177
177 178 #define TASK_PRIORITY_SPIQ 5
178 179 #define TASK_PRIORITY_WTDG 20
179 180 #define TASK_PRIORITY_HOUS 30
180 181 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
181 182 #define TASK_PRIORITY_CWF2 35 //
182 183 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
183 184 #define TASK_PRIORITY_WFRM 40
184 185 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
185 186 #define TASK_PRIORITY_SEND 45
186 187 #define TASK_PRIORITY_RECV 50
187 188 #define TASK_PRIORITY_ACTN 50
188 189 #define TASK_PRIORITY_AVF0 60
189 190 #define TASK_PRIORITY_AVF1 70
190 191 #define TASK_PRIORITY_PRC0 100
191 192 #define TASK_PRIORITY_PRC1 100
192 193 #define TASK_PRIORITY_AVF2 110
193 194 #define TASK_PRIORITY_PRC2 110
194 195 #define TASK_PRIORITY_STAT 200
195 196 #define TASK_PRIORITY_DUMB 200
196 197
197 198 #define MSG_QUEUE_COUNT_RECV 10
198 199 #define MSG_QUEUE_COUNT_SEND 50
199 200 #define MSG_QUEUE_COUNT_PRC0 10
200 201 #define MSG_QUEUE_COUNT_PRC1 10
201 202 #define MSG_QUEUE_COUNT_PRC2 5
202 203 #define MSG_QUEUE_SIZE_SEND 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
203 204 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
204 205 #define MSG_QUEUE_SIZE_PRC0 20 // two pointers and one rtems_event + 2 integers
205 206 #define MSG_QUEUE_SIZE_PRC1 20 // two pointers and one rtems_event + 2 integers
206 207 #define MSG_QUEUE_SIZE_PRC2 20 // two pointers and one rtems_event + 2 integers
207 208
208 209 #define QUEUE_RECV 0
209 210 #define QUEUE_SEND 1
210 211 #define QUEUE_PRC0 2
211 212 #define QUEUE_PRC1 3
212 213 #define QUEUE_PRC2 4
213 214
214 215 //*******
215 216 // MACROS
216 217 #ifdef PRINT_MESSAGES_ON_CONSOLE
217 218 #define PRINTF(x) printf(x);
218 219 #define PRINTF1(x,y) printf(x,y);
219 220 #define PRINTF2(x,y,z) printf(x,y,z);
220 221 #else
221 222 #define PRINTF(x) ;
222 223 #define PRINTF1(x,y) ;
223 224 #define PRINTF2(x,y,z) ;
224 225 #endif
225 226
226 227 #ifdef BOOT_MESSAGES
227 228 #define BOOT_PRINTF(x) printf(x);
228 229 #define BOOT_PRINTF1(x,y) printf(x,y);
229 230 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
230 231 #else
231 232 #define BOOT_PRINTF(x) ;
232 233 #define BOOT_PRINTF1(x,y) ;
233 234 #define BOOT_PRINTF2(x,y,z) ;
234 235 #endif
235 236
236 237 #ifdef DEBUG_MESSAGES
237 238 #define DEBUG_PRINTF(x) printf(x);
238 239 #define DEBUG_PRINTF1(x,y) printf(x,y);
239 240 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
240 241 #else
241 242 #define DEBUG_PRINTF(x) ;
242 243 #define DEBUG_PRINTF1(x,y) ;
243 244 #define DEBUG_PRINTF2(x,y,z) ;
244 245 #endif
245 246
246 247 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
247 248
248 249 struct param_local_str{
249 250 unsigned int local_sbm1_nb_cwf_sent;
250 251 unsigned int local_sbm1_nb_cwf_max;
251 252 unsigned int local_sbm2_nb_cwf_sent;
252 253 unsigned int local_sbm2_nb_cwf_max;
253 254 };
254 255
255 256 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,92 +1,92
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "fsw_misc.h"
12 12 #include "fsw_params_wf_handler.h"
13 13
14 14 #define pi 3.1415
15 15
16 16 extern int fdSPW;
17 17
18 18 //*****************
19 19 // waveform buffers
20 20 extern volatile int wf_snap_f0[ ];
21 21 extern volatile int wf_snap_f1[ ];
22 22 extern volatile int wf_snap_f2[ ];
23 23 extern volatile int wf_cont_f3[ ];
24 24 extern char wf_cont_f3_light[ ];
25 25
26 26 extern waveform_picker_regs_new_t *waveform_picker_regs;
27 27 extern time_management_regs_t *time_management_regs;
28 28 extern Packet_TM_LFR_HK_t housekeeping_packet;
29 29 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
30 30 extern struct param_local_str param_local;
31 31
32 32 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
33 33 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
34 34
35 35 extern rtems_id Task_id[20]; /* array of task ids */
36 36
37 37 extern unsigned char lfrCurrentMode;
38 38
39 39 //**********
40 40 // RTEMS_ISR
41 41 void reset_extractSWF( void );
42 42 rtems_isr waveforms_isr( rtems_vector_number vector );
43 43
44 44 //***********
45 45 // RTEMS_TASK
46 46 rtems_task wfrm_task( rtems_task_argument argument );
47 47 rtems_task cwf3_task( rtems_task_argument argument );
48 48 rtems_task cwf2_task( rtems_task_argument argument );
49 49 rtems_task cwf1_task( rtems_task_argument argument );
50 50 rtems_task swbd_task( rtems_task_argument argument );
51 51
52 52 //******************
53 53 // general functions
54 54 void WFP_init_rings( void );
55 55 void init_waveform_ring( ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] );
56 56 void WFP_reset_current_ring_nodes( void );
57 57 //
58 58 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
59 59 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
60 60 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
61 61 //
62 62 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
63 63 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
64 64 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
65 65 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
66 66 //
67 67 void compute_acquisition_time(unsigned int coarseTime, unsigned int fineTime,
68 68 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char *acquisitionTime );
69 69 void build_snapshot_from_ring(ring_node *ring_node_to_send , unsigned char frequencyChannel );
70 void build_acquisition_time( unsigned long long int * acquisitionTimeAslong, ring_node *current_ring_node );
70 void snapshot_resynchronization( unsigned char *timePtr );
71 71 //
72 72 rtems_id get_pkts_queue_id( void );
73 73
74 74 //**************
75 75 // wfp registers
76 76 // RESET
77 77 void reset_wfp_burst_enable( void );
78 78 void reset_wfp_status(void);
79 79 void reset_waveform_picker_regs( void );
80 80 // SET
81 81 void set_wfp_data_shaping(void);
82 82 void set_wfp_burst_enable_register( unsigned char mode );
83 83 void set_wfp_delta_snapshot( void );
84 84 void set_wfp_delta_f0_f0_2( void );
85 85 void set_wfp_delta_f1( void );
86 86 void set_wfp_delta_f2( void );
87 87
88 88 //*****************
89 89 // local parameters
90 90 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
91 91
92 92 #endif // WF_HANDLER_H_INCLUDED
@@ -1,947 +1,949
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 printf("this is the end!!!\n");
149 exit(0);
148 150 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 151 return LFR_DEFAULT;
150 152 }
151 153
152 154 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 155 {
154 156 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 157 *
156 158 * @param TC points to the TeleCommand packet that is being processed
157 159 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 160 *
159 161 */
160 162
161 163 rtems_status_code status;
162 164 unsigned char requestedMode;
163 165 unsigned int *transitionCoarseTime_ptr;
164 166 unsigned int transitionCoarseTime;
165 167 unsigned char * bytePosPtr;
166 168
167 169 bytePosPtr = (unsigned char *) &TC->packetID;
168 170
169 171 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 172 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 173 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 174
173 175 status = check_mode_value( requestedMode );
174 176
175 177 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 178 {
177 179 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 180 }
179 181 else // the mode value is consistent, check the transition
180 182 {
181 183 status = check_mode_transition(requestedMode);
182 184 if (status != LFR_SUCCESSFUL)
183 185 {
184 186 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 187 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 188 }
187 189 }
188 190
189 191 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 192 {
191 193 status = check_transition_date( transitionCoarseTime );
192 194 if (status != LFR_SUCCESSFUL)
193 195 {
194 196 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 197 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 198 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 199 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 200 }
199 201 }
200 202
201 203 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 204 {
203 205 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 206 status = enter_mode( requestedMode, transitionCoarseTime );
205 207 }
206 208
207 209 return status;
208 210 }
209 211
210 212 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 213 {
212 214 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 215 *
214 216 * @param TC points to the TeleCommand packet that is being processed
215 217 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 218 *
217 219 * @return LFR directive status code:
218 220 * - LFR_DEFAULT
219 221 * - LFR_SUCCESSFUL
220 222 *
221 223 */
222 224
223 225 unsigned int val;
224 226 int result;
225 227 unsigned int status;
226 228 unsigned char mode;
227 229 unsigned char * bytePosPtr;
228 230
229 231 bytePosPtr = (unsigned char *) &TC->packetID;
230 232
231 233 // check LFR mode
232 234 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 235 status = check_update_info_hk_lfr_mode( mode );
234 236 if (status == LFR_SUCCESSFUL) // check TDS mode
235 237 {
236 238 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 239 status = check_update_info_hk_tds_mode( mode );
238 240 }
239 241 if (status == LFR_SUCCESSFUL) // check THR mode
240 242 {
241 243 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 244 status = check_update_info_hk_thr_mode( mode );
243 245 }
244 246 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 247 {
246 248 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 249 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 250 val++;
249 251 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 252 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 253 }
252 254
253 255 result = status;
254 256
255 257 return result;
256 258 }
257 259
258 260 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 261 {
260 262 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 263 *
262 264 * @param TC points to the TeleCommand packet that is being processed
263 265 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 266 *
265 267 */
266 268
267 269 int result;
268 270 unsigned char lfrMode;
269 271
270 272 result = LFR_DEFAULT;
271 273 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 274
273 275 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 276 result = LFR_DEFAULT;
275 277
276 278 return result;
277 279 }
278 280
279 281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 282 {
281 283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 284 *
283 285 * @param TC points to the TeleCommand packet that is being processed
284 286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 287 *
286 288 */
287 289
288 290 int result;
289 291 unsigned char lfrMode;
290 292
291 293 result = LFR_DEFAULT;
292 294 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 295
294 296 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 297 result = LFR_DEFAULT;
296 298
297 299 return result;
298 300 }
299 301
300 302 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 303 {
302 304 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 305 *
304 306 * @param TC points to the TeleCommand packet that is being processed
305 307 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 308 *
307 309 * @return LFR_SUCCESSFUL
308 310 *
309 311 */
310 312
311 313 unsigned int val;
312 314
313 315 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 316 + (TC->dataAndCRC[1] << 16)
315 317 + (TC->dataAndCRC[2] << 8)
316 318 + TC->dataAndCRC[3];
317 319
318 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
319 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
320 322 val++;
321 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
322 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
323 325
324 326 return LFR_SUCCESSFUL;
325 327 }
326 328
327 329 //*******************
328 330 // ENTERING THE MODES
329 331 int check_mode_value( unsigned char requestedMode )
330 332 {
331 333 int status;
332 334
333 335 if ( (requestedMode != LFR_MODE_STANDBY)
334 336 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
335 337 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
336 338 {
337 339 status = LFR_DEFAULT;
338 340 }
339 341 else
340 342 {
341 343 status = LFR_SUCCESSFUL;
342 344 }
343 345
344 346 return status;
345 347 }
346 348
347 349 int check_mode_transition( unsigned char requestedMode )
348 350 {
349 351 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
350 352 *
351 353 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
352 354 *
353 355 * @return LFR directive status codes:
354 356 * - LFR_SUCCESSFUL - the transition is authorized
355 357 * - LFR_DEFAULT - the transition is not authorized
356 358 *
357 359 */
358 360
359 361 int status;
360 362
361 363 switch (requestedMode)
362 364 {
363 365 case LFR_MODE_STANDBY:
364 366 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
365 367 status = LFR_DEFAULT;
366 368 }
367 369 else
368 370 {
369 371 status = LFR_SUCCESSFUL;
370 372 }
371 373 break;
372 374 case LFR_MODE_NORMAL:
373 375 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
374 376 status = LFR_DEFAULT;
375 377 }
376 378 else {
377 379 status = LFR_SUCCESSFUL;
378 380 }
379 381 break;
380 382 case LFR_MODE_BURST:
381 383 if ( lfrCurrentMode == LFR_MODE_BURST ) {
382 384 status = LFR_DEFAULT;
383 385 }
384 386 else {
385 387 status = LFR_SUCCESSFUL;
386 388 }
387 389 break;
388 390 case LFR_MODE_SBM1:
389 391 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
390 392 status = LFR_DEFAULT;
391 393 }
392 394 else {
393 395 status = LFR_SUCCESSFUL;
394 396 }
395 397 break;
396 398 case LFR_MODE_SBM2:
397 399 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
398 400 status = LFR_DEFAULT;
399 401 }
400 402 else {
401 403 status = LFR_SUCCESSFUL;
402 404 }
403 405 break;
404 406 default:
405 407 status = LFR_DEFAULT;
406 408 break;
407 409 }
408 410
409 411 return status;
410 412 }
411 413
412 414 int check_transition_date( unsigned int transitionCoarseTime )
413 415 {
414 416 int status;
415 417 unsigned int localCoarseTime;
416 418 unsigned int deltaCoarseTime;
417 419
418 420 status = LFR_SUCCESSFUL;
419 421
420 422 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
421 423 {
422 424 status = LFR_SUCCESSFUL;
423 425 }
424 426 else
425 427 {
426 428 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
427 429
428 430 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
429 431 {
430 432 status = LFR_DEFAULT;
431 433 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
432 434 }
433 435
434 436 if (status == LFR_SUCCESSFUL)
435 437 {
436 438 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
437 439 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
438 440 {
439 441 status = LFR_DEFAULT;
440 442 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
441 443 }
442 444 }
443 445 }
444 446
445 447 return status;
446 448 }
447 449
448 450 int stop_current_mode( void )
449 451 {
450 452 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
451 453 *
452 454 * @return RTEMS directive status codes:
453 455 * - RTEMS_SUCCESSFUL - task restarted successfully
454 456 * - RTEMS_INVALID_ID - task id invalid
455 457 * - RTEMS_ALREADY_SUSPENDED - task already suspended
456 458 *
457 459 */
458 460
459 461 rtems_status_code status;
460 462
461 463 status = RTEMS_SUCCESSFUL;
462 464
463 465 // (1) mask interruptions
464 466 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
465 467 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
466 468
467 469 // (2) clear interruptions
468 470 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
469 471 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
470 472
471 473 // (3) reset waveform picker registers
472 474 reset_wfp_burst_enable(); // reset burst and enable bits
473 475 reset_wfp_status(); // reset all the status bits
474 476
475 477 // (4) reset spectral matrices registers
476 478 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
477 479 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
478 480 reset_extractSWF(); // reset the extractSWF flag to false
479 481
480 482 // <Spectral Matrices simulator>
481 483 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
482 484 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
483 485 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
484 486 // </Spectral Matrices simulator>
485 487
486 488 // suspend several tasks
487 489 if (lfrCurrentMode != LFR_MODE_STANDBY) {
488 490 status = suspend_science_tasks();
489 491 }
490 492
491 493 if (status != RTEMS_SUCCESSFUL)
492 494 {
493 495 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
494 496 }
495 497
496 498 return status;
497 499 }
498 500
499 501 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
500 502 {
501 503 /** This function is launched after a mode transition validation.
502 504 *
503 505 * @param mode is the mode in which LFR will be put.
504 506 *
505 507 * @return RTEMS directive status codes:
506 508 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
507 509 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
508 510 *
509 511 */
510 512
511 513 rtems_status_code status;
512 514
513 515 //**********************
514 516 // STOP THE CURRENT MODE
515 517 status = stop_current_mode();
516 518 if (status != RTEMS_SUCCESSFUL)
517 519 {
518 520 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
519 521 }
520 522
521 523 //*************************
522 524 // ENTER THE REQUESTED MODE
523 525 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
524 526 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
525 527 {
526 528 #ifdef PRINT_TASK_STATISTICS
527 529 rtems_cpu_usage_reset();
528 530 maxCount = 0;
529 531 #endif
530 532 status = restart_science_tasks( mode );
531 533 launch_waveform_picker( mode, transitionCoarseTime );
532 534 launch_spectral_matrix( );
533 535 // launch_spectral_matrix_simu( );
534 536 }
535 537 else if ( mode == LFR_MODE_STANDBY )
536 538 {
537 539 #ifdef PRINT_TASK_STATISTICS
538 540 rtems_cpu_usage_report();
539 541 #endif
540 542
541 543 #ifdef PRINT_STACK_REPORT
542 544 PRINTF("stack report selected\n")
543 545 rtems_stack_checker_report_usage();
544 546 #endif
545 547 PRINTF1("maxCount = %d\n", maxCount)
546 548 }
547 549 else
548 550 {
549 551 status = RTEMS_UNSATISFIED;
550 552 }
551 553
552 554 if (status != RTEMS_SUCCESSFUL)
553 555 {
554 556 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
555 557 status = RTEMS_UNSATISFIED;
556 558 }
557 559
558 560 return status;
559 561 }
560 562
561 563 int restart_science_tasks(unsigned char lfrRequestedMode )
562 564 {
563 565 /** This function is used to restart all science tasks.
564 566 *
565 567 * @return RTEMS directive status codes:
566 568 * - RTEMS_SUCCESSFUL - task restarted successfully
567 569 * - RTEMS_INVALID_ID - task id invalid
568 570 * - RTEMS_INCORRECT_STATE - task never started
569 571 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
570 572 *
571 573 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
572 574 *
573 575 */
574 576
575 577 rtems_status_code status[10];
576 578 rtems_status_code ret;
577 579
578 580 ret = RTEMS_SUCCESSFUL;
579 581
580 582 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
581 583 if (status[0] != RTEMS_SUCCESSFUL)
582 584 {
583 585 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
584 586 }
585 587
586 588 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
587 589 if (status[1] != RTEMS_SUCCESSFUL)
588 590 {
589 591 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
590 592 }
591 593
592 594 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
593 595 if (status[2] != RTEMS_SUCCESSFUL)
594 596 {
595 597 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
596 598 }
597 599
598 600 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
599 601 if (status[3] != RTEMS_SUCCESSFUL)
600 602 {
601 603 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
602 604 }
603 605
604 606 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
605 607 if (status[4] != RTEMS_SUCCESSFUL)
606 608 {
607 609 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
608 610 }
609 611
610 612 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
611 613 if (status[5] != RTEMS_SUCCESSFUL)
612 614 {
613 615 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
614 616 }
615 617
616 618 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
617 619 if (status[6] != RTEMS_SUCCESSFUL)
618 620 {
619 621 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
620 622 }
621 623
622 624 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
623 625 if (status[7] != RTEMS_SUCCESSFUL)
624 626 {
625 627 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
626 628 }
627 629
628 630 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
629 631 if (status[8] != RTEMS_SUCCESSFUL)
630 632 {
631 633 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
632 634 }
633 635
634 636 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
635 637 if (status[9] != RTEMS_SUCCESSFUL)
636 638 {
637 639 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
638 640 }
639 641
640 642 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
641 643 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
642 644 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
643 645 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
644 646 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
645 647 {
646 648 ret = RTEMS_UNSATISFIED;
647 649 }
648 650
649 651 return ret;
650 652 }
651 653
652 654 int suspend_science_tasks()
653 655 {
654 656 /** This function suspends the science tasks.
655 657 *
656 658 * @return RTEMS directive status codes:
657 659 * - RTEMS_SUCCESSFUL - task restarted successfully
658 660 * - RTEMS_INVALID_ID - task id invalid
659 661 * - RTEMS_ALREADY_SUSPENDED - task already suspended
660 662 *
661 663 */
662 664
663 665 rtems_status_code status;
664 666
665 667 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
666 668 if (status != RTEMS_SUCCESSFUL)
667 669 {
668 670 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
669 671 }
670 672 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
671 673 {
672 674 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
673 675 if (status != RTEMS_SUCCESSFUL)
674 676 {
675 677 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
676 678 }
677 679 }
678 680 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
679 681 {
680 682 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
681 683 if (status != RTEMS_SUCCESSFUL)
682 684 {
683 685 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
684 686 }
685 687 }
686 688 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
687 689 {
688 690 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
689 691 if (status != RTEMS_SUCCESSFUL)
690 692 {
691 693 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
692 694 }
693 695 }
694 696 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
695 697 {
696 698 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
697 699 if (status != RTEMS_SUCCESSFUL)
698 700 {
699 701 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
700 702 }
701 703 }
702 704 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
703 705 {
704 706 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
705 707 if (status != RTEMS_SUCCESSFUL)
706 708 {
707 709 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
708 710 }
709 711 }
710 712 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
711 713 {
712 714 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
713 715 if (status != RTEMS_SUCCESSFUL)
714 716 {
715 717 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
716 718 }
717 719 }
718 720 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
719 721 {
720 722 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
721 723 if (status != RTEMS_SUCCESSFUL)
722 724 {
723 725 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
724 726 }
725 727 }
726 728 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
727 729 {
728 730 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
729 731 if (status != RTEMS_SUCCESSFUL)
730 732 {
731 733 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
732 734 }
733 735 }
734 736 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
735 737 {
736 738 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
737 739 if (status != RTEMS_SUCCESSFUL)
738 740 {
739 741 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
740 742 }
741 743 }
742 744
743 745 return status;
744 746 }
745 747
746 748 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
747 749 {
748 750 WFP_reset_current_ring_nodes();
749 751 reset_waveform_picker_regs();
750 752 set_wfp_burst_enable_register( mode );
751 753
752 754 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
753 755 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
754 756
755 757 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
756 758 if (transitionCoarseTime == 0)
757 759 {
758 760 waveform_picker_regs->start_date = time_management_regs->coarse_time;
759 761 }
760 762 else
761 763 {
762 764 waveform_picker_regs->start_date = transitionCoarseTime;
763 765 }
764 766
765 767 PRINTF1("commutation coarse time = %d\n", transitionCoarseTime)
766 768 }
767 769
768 770 void launch_spectral_matrix( void )
769 771 {
770 772 SM_reset_current_ring_nodes();
771 773 reset_spectral_matrix_regs();
772 774 reset_nb_sm();
773 775
774 776 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
775 777 grgpio_regs->io_port_direction_register =
776 778 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
777 779 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
778 780 set_irq_on_new_ready_matrix( 1 );
779 781 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
780 782 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
781 783 set_run_matrix_spectral( 1 );
782 784 }
783 785
784 786 void launch_spectral_matrix_simu( void )
785 787 {
786 788 SM_reset_current_ring_nodes();
787 789 reset_spectral_matrix_regs();
788 790 reset_nb_sm();
789 791
790 792 // Spectral Matrices simulator
791 793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
792 794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
793 795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
794 796 }
795 797
796 798 void set_irq_on_new_ready_matrix( unsigned char value )
797 799 {
798 800 if (value == 1)
799 801 {
800 802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
801 803 }
802 804 else
803 805 {
804 806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
805 807 }
806 808 }
807 809
808 810 void set_run_matrix_spectral( unsigned char value )
809 811 {
810 812 if (value == 1)
811 813 {
812 814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
813 815 }
814 816 else
815 817 {
816 818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
817 819 }
818 820 }
819 821
820 822 //****************
821 823 // CLOSING ACTIONS
822 824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
823 825 {
824 826 /** This function is used to update the HK packets statistics after a successful TC execution.
825 827 *
826 828 * @param TC points to the TC being processed
827 829 * @param time is the time used to date the TC execution
828 830 *
829 831 */
830 832
831 833 unsigned int val;
832 834
833 835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
834 836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
835 837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
836 838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
837 839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
838 840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
839 841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
840 842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
841 843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
842 844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
843 845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
844 846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
845 847
846 848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
847 849 val++;
848 850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
849 851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
850 852 }
851 853
852 854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
853 855 {
854 856 /** This function is used to update the HK packets statistics after a TC rejection.
855 857 *
856 858 * @param TC points to the TC being processed
857 859 * @param time is the time used to date the TC rejection
858 860 *
859 861 */
860 862
861 863 unsigned int val;
862 864
863 865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
864 866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
865 867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
866 868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
867 869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
868 870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
869 871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
870 872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
871 873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
872 874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
873 875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
874 876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
875 877
876 878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
877 879 val++;
878 880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
879 881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
880 882 }
881 883
882 884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
883 885 {
884 886 /** This function is the last step of the TC execution workflow.
885 887 *
886 888 * @param TC points to the TC being processed
887 889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
888 890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
889 891 * @param time is the time used to date the TC execution
890 892 *
891 893 */
892 894
893 895 unsigned char requestedMode;
894 896
895 897 if (result == LFR_SUCCESSFUL)
896 898 {
897 899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
898 900 &
899 901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
900 902 )
901 903 {
902 904 send_tm_lfr_tc_exe_success( TC, queue_id );
903 905 }
904 906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
905 907 {
906 908 //**********************************
907 909 // UPDATE THE LFRMODE LOCAL VARIABLE
908 910 requestedMode = TC->dataAndCRC[1];
909 911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
910 912 updateLFRCurrentMode();
911 913 }
912 914 }
913 915 else if (result == LFR_EXE_ERROR)
914 916 {
915 917 send_tm_lfr_tc_exe_error( TC, queue_id );
916 918 }
917 919 }
918 920
919 921 //***************************
920 922 // Interrupt Service Routines
921 923 rtems_isr commutation_isr1( rtems_vector_number vector )
922 924 {
923 925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
924 926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
925 927 }
926 928 }
927 929
928 930 rtems_isr commutation_isr2( rtems_vector_number vector )
929 931 {
930 932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
931 933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
932 934 }
933 935 }
934 936
935 937 //****************
936 938 // OTHER FUNCTIONS
937 939 void updateLFRCurrentMode()
938 940 {
939 941 /** This function updates the value of the global variable lfrCurrentMode.
940 942 *
941 943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
942 944 *
943 945 */
944 946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
945 947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
946 948 }
947 949
@@ -1,1323 +1,1367
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 31 ring_node *current_ring_node_f0;
32 32 ring_node *ring_node_to_send_swf_f0;
33 33 ring_node *current_ring_node_f1;
34 34 ring_node *ring_node_to_send_swf_f1;
35 35 ring_node *ring_node_to_send_cwf_f1;
36 36 ring_node *current_ring_node_f2;
37 37 ring_node *ring_node_to_send_swf_f2;
38 38 ring_node *ring_node_to_send_cwf_f2;
39 39 ring_node *current_ring_node_f3;
40 40 ring_node *ring_node_to_send_cwf_f3;
41 41
42 42 bool extractSWF = false;
43 43 bool swf_f0_ready = false;
44 44 bool swf_f1_ready = false;
45 45 bool swf_f2_ready = false;
46 46
47 47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48 48
49 49 //*********************
50 50 // Interrupt SubRoutine
51 51
52 52 void reset_extractSWF( void )
53 53 {
54 54 extractSWF = false;
55 55 swf_f0_ready = false;
56 56 swf_f1_ready = false;
57 57 swf_f2_ready = false;
58 58 }
59 59
60 60 rtems_isr waveforms_isr( rtems_vector_number vector )
61 61 {
62 62 /** This is the interrupt sub routine called by the waveform picker core.
63 63 *
64 64 * This ISR launch different actions depending mainly on two pieces of information:
65 65 * 1. the values read in the registers of the waveform picker.
66 66 * 2. the current LFR mode.
67 67 *
68 68 */
69 69
70 70 rtems_status_code status;
71 71 rtems_status_code spare_status;
72 72
73 73 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
74 74 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
75 75 { // in modes other than STANDBY and BURST, send the CWF_F3 data
76 76 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
77 77 // (1) change the receiving buffer for the waveform picker
78 78 ring_node_to_send_cwf_f3 = current_ring_node_f3;
79 79 current_ring_node_f3 = current_ring_node_f3->next;
80 80 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
81 81 // (2) send an event for the waveforms transmission
82 82 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
83 83 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
84 84 }
85 85 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
86 86 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
87 87 }
88 88 }
89 89
90 90 switch(lfrCurrentMode)
91 91 {
92 92 //********
93 93 // STANDBY
94 94 case(LFR_MODE_STANDBY):
95 95 break;
96 96
97 97 //******
98 98 // NORMAL
99 99 case(LFR_MODE_NORMAL):
100 100 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
101 101 {
102 102 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
103 103 }
104 104 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
105 105 {
106 106 // change F0 ring node
107 107 ring_node_to_send_swf_f0 = current_ring_node_f0;
108 108 current_ring_node_f0 = current_ring_node_f0->next;
109 109 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
110 110 // change F1 ring node
111 111 ring_node_to_send_swf_f1 = current_ring_node_f1;
112 112 current_ring_node_f1 = current_ring_node_f1->next;
113 113 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
114 114 // change F2 ring node
115 115 ring_node_to_send_swf_f2 = current_ring_node_f2;
116 116 current_ring_node_f2 = current_ring_node_f2->next;
117 117 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
118 118 //
119 119 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
120 120 {
121 121 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
122 122 }
123 123 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
124 124 }
125 125 break;
126 126
127 127 //******
128 128 // BURST
129 129 case(LFR_MODE_BURST):
130 130 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
131 131 // (1) change the receiving buffer for the waveform picker
132 132 ring_node_to_send_cwf_f2 = current_ring_node_f2;
133 133 current_ring_node_f2 = current_ring_node_f2->next;
134 134 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
135 135 // (2) send an event for the waveforms transmission
136 136 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
137 137 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
138 138 }
139 139 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
140 140 }
141 141 break;
142 142
143 143 //*****
144 144 // SBM1
145 145 case(LFR_MODE_SBM1):
146 146 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
147 147 // (1) change the receiving buffer for the waveform picker
148 148 ring_node_to_send_cwf_f1 = current_ring_node_f1;
149 149 current_ring_node_f1 = current_ring_node_f1->next;
150 150 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
151 151 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
152 152 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
153 153 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
154 154 }
155 155 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
156 156 swf_f0_ready = true;
157 157 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
158 158 }
159 159 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
160 160 swf_f2_ready = true;
161 161 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
162 162 }
163 163 break;
164 164
165 165 //*****
166 166 // SBM2
167 167 case(LFR_MODE_SBM2):
168 168 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
169 169 // (1) change the receiving buffer for the waveform picker
170 170 ring_node_to_send_cwf_f2 = current_ring_node_f2;
171 171 current_ring_node_f2 = current_ring_node_f2->next;
172 172 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
173 173 // (2) send an event for the waveforms transmission
174 174 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
175 175 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
176 176 }
177 177 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
178 178 swf_f0_ready = true;
179 179 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
180 180 }
181 181 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
182 182 swf_f1_ready = true;
183 183 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
184 184 }
185 185 break;
186 186
187 187 //********
188 188 // DEFAULT
189 189 default:
190 190 break;
191 191 }
192 192 }
193 193
194 194 //************
195 195 // RTEMS TASKS
196 196
197 197 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
198 198 {
199 199 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
200 200 *
201 201 * @param unused is the starting argument of the RTEMS task
202 202 *
203 203 * The following data packets are sent by this task:
204 204 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
205 205 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
206 206 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
207 207 *
208 208 */
209 209
210 210 rtems_event_set event_out;
211 211 rtems_id queue_id;
212 212 rtems_status_code status;
213 bool resynchronisationEngaged;
214
215 resynchronisationEngaged = false;
213 216
214 217 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
215 218 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
216 219 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
217 220
218 221 status = get_message_queue_id_send( &queue_id );
219 222 if (status != RTEMS_SUCCESSFUL)
220 223 {
221 224 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
222 225 }
223 226
224 227 BOOT_PRINTF("in WFRM ***\n")
225 228
226 229 while(1){
227 230 // wait for an RTEMS_EVENT
228 231 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
229 232 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
230 233 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
234 if(resynchronisationEngaged == false)
235 { // engage resynchronisation
236 snapshot_resynchronization( (unsigned char *) ring_node_to_send_swf_f0->buffer_address);
237 resynchronisationEngaged = true;
238 }
239 else
240 { // reset delta_snapshot to the nominal value
241 PRINTF("no resynchronisation, reset delta_snapshot to the nominal value\n")
242 set_wfp_delta_snapshot();
243 resynchronisationEngaged = false;
244 }
245 //
246
231 247 if (event_out == RTEMS_EVENT_MODE_NORMAL)
232 248 {
233 249 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
234 250 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
235 251 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
236 252 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
237 253 }
238 254 if (event_out == RTEMS_EVENT_MODE_SBM1)
239 255 {
240 256 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
241 257 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
242 258 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
243 259 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
244 260 }
245 261 if (event_out == RTEMS_EVENT_MODE_SBM2)
246 262 {
247 263 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
248 264 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
249 265 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
250 266 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
251 267 }
252 268 }
253 269 }
254 270
255 271 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
256 272 {
257 273 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
258 274 *
259 275 * @param unused is the starting argument of the RTEMS task
260 276 *
261 277 * The following data packet is sent by this task:
262 278 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
263 279 *
264 280 */
265 281
266 282 rtems_event_set event_out;
267 283 rtems_id queue_id;
268 284 rtems_status_code status;
269 285
270 286 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
271 287 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
272 288
273 289 status = get_message_queue_id_send( &queue_id );
274 290 if (status != RTEMS_SUCCESSFUL)
275 291 {
276 292 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
277 293 }
278 294
279 295 BOOT_PRINTF("in CWF3 ***\n")
280 296
281 297 while(1){
282 298 // wait for an RTEMS_EVENT
283 299 rtems_event_receive( RTEMS_EVENT_0,
284 300 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
285 301 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
286 302 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
287 303 {
288 304 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
289 305 {
290 306 PRINTF("send CWF_LONG_F3\n")
291 307 send_waveform_CWF(
292 308 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
293 309 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
294 310 }
295 311 else
296 312 {
297 313 PRINTF("send CWF_F3 (light)\n")
298 314 send_waveform_CWF3_light(
299 315 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
300 316 headerCWF_F3_light, queue_id );
301 317 }
302 318
303 319 }
304 320 else
305 321 {
306 322 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
307 323 }
308 324 }
309 325 }
310 326
311 327 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
312 328 {
313 329 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
314 330 *
315 331 * @param unused is the starting argument of the RTEMS task
316 332 *
317 333 * The following data packet is sent by this function:
318 334 * - TM_LFR_SCIENCE_BURST_CWF_F2
319 335 * - TM_LFR_SCIENCE_SBM2_CWF_F2
320 336 *
321 337 */
322 338
323 339 rtems_event_set event_out;
324 340 rtems_id queue_id;
325 341 rtems_status_code status;
326 342
327 343 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
328 344 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
329 345
330 346 status = get_message_queue_id_send( &queue_id );
331 347 if (status != RTEMS_SUCCESSFUL)
332 348 {
333 349 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
334 350 }
335 351
336 352 BOOT_PRINTF("in CWF2 ***\n")
337 353
338 354 while(1){
339 355 // wait for an RTEMS_EVENT
340 356 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
341 357 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
342 358 if (event_out == RTEMS_EVENT_MODE_BURST)
343 359 {
344 360 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
345 361 }
346 362 if (event_out == RTEMS_EVENT_MODE_SBM2)
347 363 {
348 364 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
349 365 // launch snapshot extraction if needed
350 366 if (extractSWF == true)
351 367 {
352 368 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
353 369 // extract the snapshot
354 370 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
355 371 // send the snapshot when built
356 372 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
357 373 extractSWF = false;
358 374 }
359 375 if (swf_f0_ready && swf_f1_ready)
360 376 {
361 377 extractSWF = true;
362 378 swf_f0_ready = false;
363 379 swf_f1_ready = false;
364 380 }
365 381 }
366 382 }
367 383 }
368 384
369 385 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
370 386 {
371 387 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
372 388 *
373 389 * @param unused is the starting argument of the RTEMS task
374 390 *
375 391 * The following data packet is sent by this function:
376 392 * - TM_LFR_SCIENCE_SBM1_CWF_F1
377 393 *
378 394 */
379 395
380 396 rtems_event_set event_out;
381 397 rtems_id queue_id;
382 398 rtems_status_code status;
383 399
384 400 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
385 401
386 402 status = get_message_queue_id_send( &queue_id );
387 403 if (status != RTEMS_SUCCESSFUL)
388 404 {
389 405 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
390 406 }
391 407
392 408 BOOT_PRINTF("in CWF1 ***\n")
393 409
394 410 while(1){
395 411 // wait for an RTEMS_EVENT
396 412 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
397 413 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
398 414 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
399 415 // launch snapshot extraction if needed
400 416 if (extractSWF == true)
401 417 {
402 418 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
403 419 // launch the snapshot extraction
404 420 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
405 421 extractSWF = false;
406 422 }
407 423 if (swf_f0_ready == true)
408 424 {
409 425 extractSWF = true;
410 426 swf_f0_ready = false; // this step shall be executed only one time
411 427 }
412 428 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
413 429 {
414 430 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
415 431 swf_f1_ready = false;
416 432 swf_f2_ready = false;
417 433 }
418 434 }
419 435 }
420 436
421 437 rtems_task swbd_task(rtems_task_argument argument)
422 438 {
423 439 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
424 440 *
425 441 * @param unused is the starting argument of the RTEMS task
426 442 *
427 443 */
428 444
429 445 rtems_event_set event_out;
430 446
431 447 BOOT_PRINTF("in SWBD ***\n")
432 448
433 449 while(1){
434 450 // wait for an RTEMS_EVENT
435 451 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
436 452 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
437 453 if (event_out == RTEMS_EVENT_MODE_SBM1)
438 454 {
439 455 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
440 456 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
441 457 }
442 458 else
443 459 {
444 460 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
445 461 }
446 462 }
447 463 }
448 464
449 465 //******************
450 466 // general functions
451 467
452 468 void WFP_init_rings( void )
453 469 {
454 470 // F0 RING
455 471 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
456 472 // F1 RING
457 473 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
458 474 // F2 RING
459 475 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
460 476 // F3 RING
461 477 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
462 478
463 479 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
464 480 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
465 481 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
466 482 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
467 483 }
468 484
469 485 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
470 486 {
471 487 unsigned char i;
472 488
473 489 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
474 490 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
475 491 waveform_ring[0].buffer_address = (int) &wfrm[0];
476 492
477 493 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
478 494 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
479 495 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
480 496
481 497 for(i=1; i<nbNodes-1; i++)
482 498 {
483 499 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
484 500 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
485 501 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
486 502 }
487 503 }
488 504
489 505 void WFP_reset_current_ring_nodes( void )
490 506 {
491 507 current_ring_node_f0 = waveform_ring_f0;
492 508 ring_node_to_send_swf_f0 = waveform_ring_f0;
493 509
494 510 current_ring_node_f1 = waveform_ring_f1;
495 511 ring_node_to_send_cwf_f1 = waveform_ring_f1;
496 512 ring_node_to_send_swf_f1 = waveform_ring_f1;
497 513
498 514 current_ring_node_f2 = waveform_ring_f2;
499 515 ring_node_to_send_cwf_f2 = waveform_ring_f2;
500 516 ring_node_to_send_swf_f2 = waveform_ring_f2;
501 517
502 518 current_ring_node_f3 = waveform_ring_f3;
503 519 ring_node_to_send_cwf_f3 = waveform_ring_f3;
504 520 }
505 521
506 522 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
507 523 {
508 524 unsigned char i;
509 525 int return_value;
510 526
511 527 return_value = LFR_SUCCESSFUL;
512 528
513 529 for (i=0; i<7; i++)
514 530 {
515 531 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
516 532 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
517 533 headerSWF[ i ].reserved = DEFAULT_RESERVED;
518 534 headerSWF[ i ].userApplication = CCSDS_USER_APP;
519 535 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
520 536 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
521 537 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
522 538 if (i == 6)
523 539 {
524 540 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
525 541 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
526 542 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
527 543 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
528 544 }
529 545 else
530 546 {
531 547 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
532 548 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
533 549 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
534 550 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
535 551 }
536 552 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
537 553 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
538 554 headerSWF[ i ].pktNr = i+1; // PKT_NR
539 555 // DATA FIELD HEADER
540 556 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
541 557 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
542 558 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
543 559 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
544 560 // AUXILIARY DATA HEADER
545 561 headerSWF[ i ].time[0] = 0x00;
546 562 headerSWF[ i ].time[0] = 0x00;
547 563 headerSWF[ i ].time[0] = 0x00;
548 564 headerSWF[ i ].time[0] = 0x00;
549 565 headerSWF[ i ].time[0] = 0x00;
550 566 headerSWF[ i ].time[0] = 0x00;
551 567 headerSWF[ i ].sid = sid;
552 568 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
553 569 }
554 570
555 571 return return_value;
556 572 }
557 573
558 574 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
559 575 {
560 576 unsigned int i;
561 577 int return_value;
562 578
563 579 return_value = LFR_SUCCESSFUL;
564 580
565 581 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
566 582 {
567 583 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
568 584 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
569 585 headerCWF[ i ].reserved = DEFAULT_RESERVED;
570 586 headerCWF[ i ].userApplication = CCSDS_USER_APP;
571 587 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
572 588 {
573 589 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
574 590 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
575 591 }
576 592 else
577 593 {
578 594 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
579 595 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
580 596 }
581 597 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
582 598 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
583 599 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
584 600 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
585 601 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
586 602 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
587 603 // DATA FIELD HEADER
588 604 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
589 605 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
590 606 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
591 607 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
592 608 // AUXILIARY DATA HEADER
593 609 headerCWF[ i ].sid = sid;
594 610 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
595 611 headerCWF[ i ].time[0] = 0x00;
596 612 headerCWF[ i ].time[0] = 0x00;
597 613 headerCWF[ i ].time[0] = 0x00;
598 614 headerCWF[ i ].time[0] = 0x00;
599 615 headerCWF[ i ].time[0] = 0x00;
600 616 headerCWF[ i ].time[0] = 0x00;
601 617 }
602 618
603 619 return return_value;
604 620 }
605 621
606 622 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
607 623 {
608 624 unsigned int i;
609 625 int return_value;
610 626
611 627 return_value = LFR_SUCCESSFUL;
612 628
613 629 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
614 630 {
615 631 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
616 632 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
617 633 headerCWF[ i ].reserved = DEFAULT_RESERVED;
618 634 headerCWF[ i ].userApplication = CCSDS_USER_APP;
619 635
620 636 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
621 637 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
622 638
623 639 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
624 640 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
625 641 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
626 642 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
627 643 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
628 644
629 645 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
630 646 // DATA FIELD HEADER
631 647 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
632 648 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
633 649 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
634 650 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
635 651 // AUXILIARY DATA HEADER
636 652 headerCWF[ i ].sid = SID_NORM_CWF_F3;
637 653 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
638 654 headerCWF[ i ].time[0] = 0x00;
639 655 headerCWF[ i ].time[0] = 0x00;
640 656 headerCWF[ i ].time[0] = 0x00;
641 657 headerCWF[ i ].time[0] = 0x00;
642 658 headerCWF[ i ].time[0] = 0x00;
643 659 headerCWF[ i ].time[0] = 0x00;
644 660 }
645 661
646 662 return return_value;
647 663 }
648 664
649 665 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
650 666 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
651 667 {
652 668 /** This function sends SWF CCSDS packets (F2, F1 or F0).
653 669 *
654 670 * @param waveform points to the buffer containing the data that will be send.
655 671 * @param sid is the source identifier of the data that will be sent.
656 672 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
657 673 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
658 674 * contain information to setup the transmission of the data packets.
659 675 *
660 676 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
661 677 *
662 678 */
663 679
664 680 unsigned int i;
665 681 int ret;
666 682 unsigned int coarseTime;
667 683 unsigned int fineTime;
668 684 rtems_status_code status;
669 685 spw_ioctl_pkt_send spw_ioctl_send_SWF;
670 686
671 687 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
672 688 spw_ioctl_send_SWF.options = 0;
673 689
674 690 ret = LFR_DEFAULT;
675 691
676 692 coarseTime = waveform[0];
677 693 fineTime = waveform[1];
678 694
679 695 for (i=0; i<7; i++) // send waveform
680 696 {
681 697 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
682 698 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
683 699 // BUILD THE DATA
684 700 if (i==6) {
685 701 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
686 702 }
687 703 else {
688 704 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
689 705 }
690 706 // SET PACKET SEQUENCE COUNTER
691 707 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
692 708 // SET PACKET TIME
693 709 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
694 710 //
695 711 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
696 712 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
697 713 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
698 714 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
699 715 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
700 716 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
701 717 // SEND PACKET
702 718 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
703 719 if (status != RTEMS_SUCCESSFUL) {
704 720 printf("%d-%d, ERR %d\n", sid, i, (int) status);
705 721 ret = LFR_DEFAULT;
706 722 }
707 723 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
708 724 }
709 725
710 726 return ret;
711 727 }
712 728
713 729 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
714 730 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
715 731 {
716 732 /** This function sends CWF CCSDS packets (F2, F1 or F0).
717 733 *
718 734 * @param waveform points to the buffer containing the data that will be send.
719 735 * @param sid is the source identifier of the data that will be sent.
720 736 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
721 737 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
722 738 * contain information to setup the transmission of the data packets.
723 739 *
724 740 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
725 741 *
726 742 */
727 743
728 744 unsigned int i;
729 745 int ret;
730 746 unsigned int coarseTime;
731 747 unsigned int fineTime;
732 748 rtems_status_code status;
733 749 spw_ioctl_pkt_send spw_ioctl_send_CWF;
734 750
735 751 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
736 752 spw_ioctl_send_CWF.options = 0;
737 753
738 754 ret = LFR_DEFAULT;
739 755
740 756 coarseTime = waveform[0];
741 757 fineTime = waveform[1];
742 758
743 759 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
744 760 {
745 761 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
746 762 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
747 763 // BUILD THE DATA
748 764 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
749 765 // SET PACKET SEQUENCE COUNTER
750 766 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
751 767 // SET PACKET TIME
752 768 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
753 769 //
754 770 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
755 771 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
756 772 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
757 773 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
758 774 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
759 775 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
760 776 // SEND PACKET
761 777 if (sid == SID_NORM_CWF_LONG_F3)
762 778 {
763 779 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
764 780 if (status != RTEMS_SUCCESSFUL) {
765 781 printf("%d-%d, ERR %d\n", sid, i, (int) status);
766 782 ret = LFR_DEFAULT;
767 783 }
768 784 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
769 785 }
770 786 else
771 787 {
772 788 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
773 789 if (status != RTEMS_SUCCESSFUL) {
774 790 printf("%d-%d, ERR %d\n", sid, i, (int) status);
775 791 ret = LFR_DEFAULT;
776 792 }
777 793 }
778 794 }
779 795
780 796 return ret;
781 797 }
782 798
783 799 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
784 800 {
785 801 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
786 802 *
787 803 * @param waveform points to the buffer containing the data that will be send.
788 804 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
789 805 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
790 806 * contain information to setup the transmission of the data packets.
791 807 *
792 808 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
793 809 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
794 810 *
795 811 */
796 812
797 813 unsigned int i;
798 814 int ret;
799 815 unsigned int coarseTime;
800 816 unsigned int fineTime;
801 817 rtems_status_code status;
802 818 spw_ioctl_pkt_send spw_ioctl_send_CWF;
803 819 char *sample;
804 820
805 821 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
806 822 spw_ioctl_send_CWF.options = 0;
807 823
808 824 ret = LFR_DEFAULT;
809 825
810 826 //**********************
811 827 // BUILD CWF3_light DATA
812 828 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
813 829 {
814 830 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
815 831 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
816 832 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
817 833 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
818 834 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
819 835 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
820 836 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
821 837 }
822 838
823 839 coarseTime = waveform[0];
824 840 fineTime = waveform[1];
825 841
826 842 //*********************
827 843 // SEND CWF3_light DATA
828 844 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
829 845 {
830 846 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
831 847 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
832 848 // BUILD THE DATA
833 849 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
834 850 // SET PACKET SEQUENCE COUNTER
835 851 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
836 852 // SET PACKET TIME
837 853 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
838 854 //
839 855 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
840 856 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
841 857 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
842 858 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
843 859 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
844 860 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
845 861 // SEND PACKET
846 862 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
847 863 if (status != RTEMS_SUCCESSFUL) {
848 864 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
849 865 ret = LFR_DEFAULT;
850 866 }
851 867 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
852 868 }
853 869
854 870 return ret;
855 871 }
856 872
857 873 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
858 874 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
859 875 {
860 876 unsigned long long int acquisitionTimeAsLong;
861 877 unsigned char localAcquisitionTime[6];
862 878 double deltaT;
863 879
864 880 deltaT = 0.;
865 881
866 882 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
867 883 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
868 884 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
869 885 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
870 886 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
871 887 localAcquisitionTime[5] = (unsigned char) ( fineTime );
872 888
873 889 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
874 890 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
875 891 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
876 892 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
877 893 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
878 894 + ( (unsigned long long int) localAcquisitionTime[5] );
879 895
880 896 switch( sid )
881 897 {
882 898 case SID_NORM_SWF_F0:
883 899 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
884 900 break;
885 901
886 902 case SID_NORM_SWF_F1:
887 903 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
888 904 break;
889 905
890 906 case SID_NORM_SWF_F2:
891 907 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
892 908 break;
893 909
894 910 case SID_SBM1_CWF_F1:
895 911 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
896 912 break;
897 913
898 914 case SID_SBM2_CWF_F2:
899 915 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
900 916 break;
901 917
902 918 case SID_BURST_CWF_F2:
903 919 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
904 920 break;
905 921
906 922 case SID_NORM_CWF_F3:
907 923 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
908 924 break;
909 925
910 926 case SID_NORM_CWF_LONG_F3:
911 927 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
912 928 break;
913 929
914 930 default:
915 931 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
916 932 deltaT = 0.;
917 933 break;
918 934 }
919 935
920 936 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
921 937 //
922 938 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
923 939 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
924 940 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
925 941 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
926 942 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
927 943 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
928 944
929 945 }
930 946
931 947 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
932 948 {
933 949 unsigned int i;
934 950 unsigned long long int centerTime_asLong;
935 951 unsigned long long int acquisitionTimeF0_asLong;
936 952 unsigned long long int acquisitionTime_asLong;
937 953 unsigned long long int bufferAcquisitionTime_asLong;
938 954 unsigned char *ptr1;
939 955 unsigned char *ptr2;
940 956 unsigned char *timeCharPtr;
941 957 unsigned char nb_ring_nodes;
942 958 unsigned long long int frequency_asLong;
943 959 unsigned long long int nbTicksPerSample_asLong;
944 960 unsigned long long int nbSamplesPart1_asLong;
945 961 unsigned long long int sampleOffset_asLong;
946 962
947 963 unsigned int deltaT_F0;
948 964 unsigned int deltaT_F1;
949 965 unsigned long long int deltaT_F2;
950 966
951 967 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
952 968 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
953 969 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
954 970 sampleOffset_asLong = 0x00;
955 971
956 972 // (1) get the f0 acquisition time
957 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
973 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) current_ring_node_f0->buffer_address );
958 974
959 975 // (2) compute the central reference time
960 976 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
961 977
962 978 // (3) compute the acquisition time of the current snapshot
963 979 switch(frequencyChannel)
964 980 {
965 981 case 1: // 1 is for F1 = 4096 Hz
966 982 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
967 983 nb_ring_nodes = NB_RING_NODES_F1;
968 984 frequency_asLong = 4096;
969 985 nbTicksPerSample_asLong = 16; // 65536 / 4096;
970 986 break;
971 987 case 2: // 2 is for F2 = 256 Hz
972 988 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
973 989 nb_ring_nodes = NB_RING_NODES_F2;
974 990 frequency_asLong = 256;
975 991 nbTicksPerSample_asLong = 256; // 65536 / 256;
976 992 break;
977 993 default:
978 994 acquisitionTime_asLong = centerTime_asLong;
979 995 frequency_asLong = 256;
980 996 nbTicksPerSample_asLong = 256;
981 997 break;
982 998 }
983 999
984 1000 //****************************************************************************
985 1001 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
986 1002 for (i=0; i<nb_ring_nodes; i++)
987 1003 {
988 1004 PRINTF1("%d ... ", i)
989 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1005 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) ring_node_to_send->buffer_address );
990 1006 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
991 1007 {
992 1008 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
993 1009 break;
994 1010 }
995 1011 ring_node_to_send = ring_node_to_send->previous;
996 1012 }
997 1013
998 1014 // (5) compute the number of samples to take in the current buffer
999 1015 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1000 1016 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1001 1017 PRINTF2("sampleOffset_asLong = %llx, nbSamplesPart1_asLong = %llx\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1002 1018
1003 1019 // (6) compute the final acquisition time
1004 1020 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1005 1021 sampleOffset_asLong * nbTicksPerSample_asLong;
1006 1022
1007 1023 // (7) copy the acquisition time at the beginning of the extrated snapshot
1008 1024 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1009 1025 ptr2 = (unsigned char*) wf_snap_extracted;
1010 1026 ptr2[0] = ptr1[ 0 + 2 ];
1011 1027 ptr2[1] = ptr1[ 1 + 2 ];
1012 1028 ptr2[2] = ptr1[ 2 + 2 ];
1013 1029 ptr2[3] = ptr1[ 3 + 2 ];
1014 1030 ptr2[6] = ptr1[ 4 + 2 ];
1015 1031 ptr2[7] = ptr1[ 5 + 2 ];
1016 1032
1017 1033 // re set the synchronization bit
1018 1034 timeCharPtr = (unsigned char*) ring_node_to_send->buffer_address;
1019 1035 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1020 1036
1021 1037 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1022 1038 {
1023 1039 nbSamplesPart1_asLong = 0;
1024 1040 }
1025 1041 // copy the part 1 of the snapshot in the extracted buffer
1026 1042 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1027 1043 {
1028 1044 wf_snap_extracted[i + TIME_OFFSET] =
1029 1045 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1030 1046 }
1031 1047 // copy the part 2 of the snapshot in the extracted buffer
1032 1048 ring_node_to_send = ring_node_to_send->next;
1033 1049 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1034 1050 {
1035 1051 wf_snap_extracted[i + TIME_OFFSET] =
1036 1052 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1037 1053 }
1038 1054 }
1039 1055
1040 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1056 void snapshot_resynchronization( unsigned char *timePtr )
1041 1057 {
1042 unsigned char *acquisitionTimeCharPtr;
1058 unsigned long long int acquisitionTime;
1059 unsigned long long int centerTime;
1060 unsigned long long int previousTick;
1061 unsigned long long int nextTick;
1062 unsigned long long int deltaPreviousTick;
1063 unsigned long long int deltaNextTick;
1064 unsigned int deltaTickInF2;
1065 double deltaPrevious;
1066 double deltaNext;
1043 1067
1044 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1068 acquisitionTime = get_acquisition_time( timePtr );
1069
1070 // compute center time
1071 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1072 previousTick = centerTime - (centerTime & 0xffff);
1073 nextTick = previousTick + 65536;
1045 1074
1046 *acquisitionTimeAslong = 0x00;
1047 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1048 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1049 + ( (unsigned long long int) acquisitionTimeCharPtr[2] << 24 )
1050 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 16 )
1051 + ( (unsigned long long int) acquisitionTimeCharPtr[6] << 8 )
1052 + ( (unsigned long long int) acquisitionTimeCharPtr[7] );
1075 deltaPreviousTick = centerTime - previousTick;
1076 deltaNextTick = nextTick - centerTime;
1077
1078 deltaPrevious = ((double) deltaPreviousTick) / 65536. * 1000.;
1079 deltaNext = ((double) deltaNextTick) / 65536. * 1000.;
1080
1081 printf("delta previous = %f ms, delta next = %f ms\n", deltaPrevious, deltaNext);
1082 printf("delta previous = %llu, delta next = %llu\n", deltaPreviousTick, deltaNextTick);
1083
1084 // which tick is the closest
1085 if (deltaPreviousTick > deltaNextTick)
1086 {
1087 deltaTickInF2 = floor( (deltaNext * 256. / 1000.) ); // the division by 2 is important here
1088 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + deltaTickInF2;
1089 printf("correction of = + %u\n", deltaTickInF2);
1090 }
1091 else
1092 {
1093 deltaTickInF2 = floor( (deltaPrevious * 256. / 1000.) ); // the division by 2 is important here
1094 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot - deltaTickInF2;
1095 printf("correction of = - %u\n", deltaTickInF2);
1096 }
1053 1097 }
1054 1098
1055 1099 //**************
1056 1100 // wfp registers
1057 1101 void reset_wfp_burst_enable(void)
1058 1102 {
1059 1103 /** This function resets the waveform picker burst_enable register.
1060 1104 *
1061 1105 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1062 1106 *
1063 1107 */
1064 1108
1065 1109 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1066 1110 }
1067 1111
1068 1112 void reset_wfp_status( void )
1069 1113 {
1070 1114 /** This function resets the waveform picker status register.
1071 1115 *
1072 1116 * All status bits are set to 0 [new_err full_err full].
1073 1117 *
1074 1118 */
1075 1119
1076 1120 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1077 1121 }
1078 1122
1079 1123 void reset_waveform_picker_regs(void)
1080 1124 {
1081 1125 /** This function resets the waveform picker module registers.
1082 1126 *
1083 1127 * The registers affected by this function are located at the following offset addresses:
1084 1128 * - 0x00 data_shaping
1085 1129 * - 0x04 run_burst_enable
1086 1130 * - 0x08 addr_data_f0
1087 1131 * - 0x0C addr_data_f1
1088 1132 * - 0x10 addr_data_f2
1089 1133 * - 0x14 addr_data_f3
1090 1134 * - 0x18 status
1091 1135 * - 0x1C delta_snapshot
1092 1136 * - 0x20 delta_f0
1093 1137 * - 0x24 delta_f0_2
1094 1138 * - 0x28 delta_f1
1095 1139 * - 0x2c delta_f2
1096 1140 * - 0x30 nb_data_by_buffer
1097 1141 * - 0x34 nb_snapshot_param
1098 1142 * - 0x38 start_date
1099 1143 * - 0x3c nb_word_in_buffer
1100 1144 *
1101 1145 */
1102 1146
1103 1147 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1104 1148 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1105 1149 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1106 1150 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1107 1151 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1108 1152 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1109 1153 reset_wfp_status(); // 0x18
1110 1154 //
1111 1155 set_wfp_delta_snapshot(); // 0x1c
1112 1156 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1113 1157 set_wfp_delta_f1(); // 0x28
1114 1158 set_wfp_delta_f2(); // 0x2c
1115 1159 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1116 1160 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1117 1161 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1118 1162 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1119 1163 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1120 1164 // 2688 = 8 * 336
1121 1165 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1122 1166 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1123 1167 waveform_picker_regs->start_date = 0x00; // 0x38
1124 1168 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1125 1169 }
1126 1170
1127 1171 void set_wfp_data_shaping( void )
1128 1172 {
1129 1173 /** This function sets the data_shaping register of the waveform picker module.
1130 1174 *
1131 1175 * The value is read from one field of the parameter_dump_packet structure:\n
1132 1176 * bw_sp0_sp1_r0_r1
1133 1177 *
1134 1178 */
1135 1179
1136 1180 unsigned char data_shaping;
1137 1181
1138 1182 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1139 1183 // waveform picker : [R1 R0 SP1 SP0 BW]
1140 1184
1141 1185 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1142 1186
1143 1187 waveform_picker_regs->data_shaping =
1144 1188 ( (data_shaping & 0x10) >> 4 ) // BW
1145 1189 + ( (data_shaping & 0x08) >> 2 ) // SP0
1146 1190 + ( (data_shaping & 0x04) ) // SP1
1147 1191 + ( (data_shaping & 0x02) << 2 ) // R0
1148 1192 + ( (data_shaping & 0x01) << 4 ); // R1
1149 1193 }
1150 1194
1151 1195 void set_wfp_burst_enable_register( unsigned char mode )
1152 1196 {
1153 1197 /** This function sets the waveform picker burst_enable register depending on the mode.
1154 1198 *
1155 1199 * @param mode is the LFR mode to launch.
1156 1200 *
1157 1201 * The burst bits shall be before the enable bits.
1158 1202 *
1159 1203 */
1160 1204
1161 1205 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1162 1206 // the burst bits shall be set first, before the enable bits
1163 1207 switch(mode) {
1164 1208 case(LFR_MODE_NORMAL):
1165 1209 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1166 1210 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1167 1211 break;
1168 1212 case(LFR_MODE_BURST):
1169 1213 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1170 1214 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1171 1215 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1172 1216 break;
1173 1217 case(LFR_MODE_SBM1):
1174 1218 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1175 1219 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1176 1220 break;
1177 1221 case(LFR_MODE_SBM2):
1178 1222 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1179 1223 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1180 1224 break;
1181 1225 default:
1182 1226 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1183 1227 break;
1184 1228 }
1185 1229 }
1186 1230
1187 1231 void set_wfp_delta_snapshot( void )
1188 1232 {
1189 1233 /** This function sets the delta_snapshot register of the waveform picker module.
1190 1234 *
1191 1235 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1192 1236 * - sy_lfr_n_swf_p[0]
1193 1237 * - sy_lfr_n_swf_p[1]
1194 1238 *
1195 1239 */
1196 1240
1197 1241 unsigned int delta_snapshot;
1198 1242 unsigned int delta_snapshot_in_T2;
1199 1243
1200 1244 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1201 1245 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1202 1246
1203 1247 delta_snapshot_in_T2 = delta_snapshot * 256;
1204 1248 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1205 1249 }
1206 1250
1207 1251 void set_wfp_delta_f0_f0_2( void )
1208 1252 {
1209 1253 unsigned int delta_snapshot;
1210 1254 unsigned int nb_samples_per_snapshot;
1211 1255 float delta_f0_in_float;
1212 1256
1213 1257 delta_snapshot = waveform_picker_regs->delta_snapshot;
1214 1258 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1215 1259 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1216 1260
1217 1261 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1218 1262 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1219 1263 }
1220 1264
1221 1265 void set_wfp_delta_f1( void )
1222 1266 {
1223 1267 unsigned int delta_snapshot;
1224 1268 unsigned int nb_samples_per_snapshot;
1225 1269 float delta_f1_in_float;
1226 1270
1227 1271 delta_snapshot = waveform_picker_regs->delta_snapshot;
1228 1272 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1229 1273 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1230 1274
1231 1275 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1232 1276 }
1233 1277
1234 1278 void set_wfp_delta_f2()
1235 1279 {
1236 1280 unsigned int delta_snapshot;
1237 1281 unsigned int nb_samples_per_snapshot;
1238 1282
1239 1283 delta_snapshot = waveform_picker_regs->delta_snapshot;
1240 1284 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1241 1285
1242 1286 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1243 1287 }
1244 1288
1245 1289 //*****************
1246 1290 // local parameters
1247 1291
1248 1292 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1249 1293 {
1250 1294 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1251 1295 *
1252 1296 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1253 1297 * @param sid is the source identifier of the packet being updated.
1254 1298 *
1255 1299 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1256 1300 * The sequence counters shall wrap around from 2^14 to zero.
1257 1301 * The sequence counter shall start at zero at startup.
1258 1302 *
1259 1303 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1260 1304 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1261 1305 *
1262 1306 */
1263 1307
1264 1308 unsigned short *sequence_cnt;
1265 1309 unsigned short segmentation_grouping_flag;
1266 1310 unsigned short new_packet_sequence_control;
1267 1311 rtems_mode initial_mode_set;
1268 1312 rtems_mode current_mode_set;
1269 1313 rtems_status_code status;
1270 1314
1271 1315 //******************************************
1272 1316 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1273 1317 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1274 1318
1275 1319 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1276 1320 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1277 1321 || (sid == SID_BURST_CWF_F2)
1278 1322 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1279 1323 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1280 1324 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1281 1325 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1282 1326 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1283 1327 {
1284 1328 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1285 1329 }
1286 1330 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1287 1331 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1288 1332 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1289 1333 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1290 1334 {
1291 1335 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1292 1336 }
1293 1337 else
1294 1338 {
1295 1339 sequence_cnt = (unsigned short *) NULL;
1296 1340 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1297 1341 }
1298 1342
1299 1343 if (sequence_cnt != NULL)
1300 1344 {
1301 1345 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1302 1346 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1303 1347
1304 1348 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1305 1349
1306 1350 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1307 1351 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1308 1352
1309 1353 // increment the sequence counter
1310 1354 if ( *sequence_cnt < SEQ_CNT_MAX)
1311 1355 {
1312 1356 *sequence_cnt = *sequence_cnt + 1;
1313 1357 }
1314 1358 else
1315 1359 {
1316 1360 *sequence_cnt = 0;
1317 1361 }
1318 1362 }
1319 1363
1320 1364 //***********************************
1321 1365 // RESET THE MODE OF THE CALLING TASK
1322 1366 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1323 1367 }
General Comments 0
You need to be logged in to leave comments. Login now