##// END OF EJS Templates
wf_handler updated with sequence counters...
paul -
r63:82d0f7d680ce default
parent child
Show More
@@ -1,305 +1,305
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 2.8.1, 2013-11-12T11:17:40. -->
3 <!-- Written by QtCreator 2.8.1, 2013-11-12T12:44:53. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QString" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QString" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">System</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">1</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
63 63 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
64 64 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
67 67 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
69 69 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
70 70 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
71 71 </valuemap>
72 72 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
73 73 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
74 74 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
77 77 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
78 78 <value type="QString">-w</value>
79 79 <value type="QString">-r</value>
80 80 </valuelist>
81 81 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
82 82 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w -j 4</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
84 84 </valuemap>
85 85 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
86 86 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
89 89 </valuemap>
90 90 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
92 92 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
93 93 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
96 96 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
97 97 <value type="QString">-w</value>
98 98 <value type="QString">-r</value>
99 99 </valuelist>
100 100 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
101 101 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
103 103 </valuemap>
104 104 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
105 105 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
108 108 </valuemap>
109 109 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
110 110 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
111 111 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
112 112 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Release</value>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
115 115 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
116 116 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
118 118 </valuemap>
119 119 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.1">
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
122 122 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
126 126 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
127 127 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
128 128 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
129 129 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
130 130 </valuemap>
131 131 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
132 132 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
133 133 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
134 134 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
135 135 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
136 136 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
137 137 <value type="QString">-w</value>
138 138 <value type="QString">-r</value>
139 139 </valuelist>
140 140 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
141 141 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w </value>
142 142 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
143 143 </valuemap>
144 144 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
145 145 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
146 146 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
147 147 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
148 148 </valuemap>
149 149 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
150 150 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
151 151 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
152 152 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
153 153 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
154 154 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
155 155 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
156 156 <value type="QString">-w</value>
157 157 <value type="QString">-r</value>
158 158 </valuelist>
159 159 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
160 160 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
161 161 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
162 162 </valuemap>
163 163 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
164 164 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
165 165 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
166 166 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
167 167 </valuemap>
168 168 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
169 169 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
170 170 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Debug</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
174 174 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">2</value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
177 177 </valuemap>
178 178 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">2</value>
179 179 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
180 180 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
181 181 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
182 182 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
183 183 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
184 184 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
187 187 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">No deployment</value>
188 188 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
189 189 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
190 190 </valuemap>
191 191 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
192 192 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
193 193 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
194 194 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
195 195 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
196 196 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
197 197 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
198 198 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
199 199 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
200 200 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
201 201 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
202 202 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
203 203 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
204 204 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
205 205 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
206 206 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
207 207 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
208 208 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
209 209 <value type="int">0</value>
210 210 <value type="int">1</value>
211 211 <value type="int">2</value>
212 212 <value type="int">3</value>
213 213 <value type="int">4</value>
214 214 <value type="int">5</value>
215 215 <value type="int">6</value>
216 216 <value type="int">7</value>
217 217 <value type="int">8</value>
218 218 <value type="int">9</value>
219 219 <value type="int">10</value>
220 220 <value type="int">11</value>
221 221 <value type="int">12</value>
222 222 <value type="int">13</value>
223 223 <value type="int">14</value>
224 224 </valuelist>
225 225 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
226 226 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
228 228 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
229 229 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
230 230 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
231 231 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
232 232 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
233 233 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
234 234 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
235 235 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
236 236 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
237 237 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
238 238 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
239 239 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
240 240 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">false</value>
241 241 </valuemap>
242 242 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.1">
243 243 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
244 244 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
245 245 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
246 246 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
247 247 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
248 248 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
249 249 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
250 250 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
251 251 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
252 252 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
253 253 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
254 254 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
255 255 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
256 256 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
257 257 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
258 258 <value type="int">0</value>
259 259 <value type="int">1</value>
260 260 <value type="int">2</value>
261 261 <value type="int">3</value>
262 262 <value type="int">4</value>
263 263 <value type="int">5</value>
264 264 <value type="int">6</value>
265 265 <value type="int">7</value>
266 266 <value type="int">8</value>
267 267 <value type="int">9</value>
268 268 <value type="int">10</value>
269 269 <value type="int">11</value>
270 270 <value type="int">12</value>
271 271 <value type="int">13</value>
272 272 <value type="int">14</value>
273 273 </valuelist>
274 274 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
275 275 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
276 276 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Arguments"></value>
277 277 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Executable">doxygen</value>
278 278 <value type="bool" key="ProjectExplorer.CustomExecutableRunConfiguration.UseTerminal">true</value>
279 279 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.WorkingDirectory">/opt/DEV_PLE/doc</value>
280 280 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Run doxygen</value>
281 281 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
282 282 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.CustomExecutableRunConfiguration</value>
283 283 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
284 284 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
285 285 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
286 286 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
287 287 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
288 288 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
289 289 </valuemap>
290 290 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">2</value>
291 291 </valuemap>
292 292 </data>
293 293 <data>
294 294 <variable>ProjectExplorer.Project.TargetCount</variable>
295 295 <value type="int">1</value>
296 296 </data>
297 297 <data>
298 298 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
299 299 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
300 300 </data>
301 301 <data>
302 302 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
303 303 <value type="int">14</value>
304 304 </data>
305 305 </qtcreator>
@@ -1,81 +1,86
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10
11 11 #define pi 3.1415
12 12
13 13 extern int fdSPW;
14 14 extern volatile int wf_snap_f0[ ];
15 15 //
16 16 extern volatile int wf_snap_f1[ ];
17 17 extern volatile int wf_snap_f1_bis[ ];
18 18 extern volatile int wf_snap_f1_norm[ ];
19 19 //
20 20 extern volatile int wf_snap_f2[ ];
21 21 extern volatile int wf_snap_f2_bis[ ];
22 22 extern volatile int wf_snap_f2_norm[ ];
23 23 //
24 24 extern volatile int wf_cont_f3[ ];
25 25 extern volatile int wf_cont_f3_bis[ ];
26 26 extern char wf_cont_f3_light[ ];
27 27 extern new_waveform_picker_regs_t *new_waveform_picker_regs;
28 28 extern time_management_regs_t *time_management_regs;
29 29 extern Packet_TM_LFR_HK_t housekeeping_packet;
30 30 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
31 31 extern struct param_local_str param_local;
32 32
33 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
34 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
35 extern unsigned short sequenceCounters_TC_EXE[];
36
33 37 extern rtems_name misc_name[5];
34 38 extern rtems_name Task_name[20]; /* array of task ids */
35 39 extern rtems_id Task_id[20]; /* array of task ids */
36 40
37 41 extern unsigned char lfrCurrentMode;
38 42
39 43 rtems_isr waveforms_isr( rtems_vector_number vector );
40 44 rtems_isr waveforms_simulator_isr( rtems_vector_number vector );
41 45 rtems_task wfrm_task( rtems_task_argument argument );
42 46 rtems_task cwf3_task( rtems_task_argument argument );
43 47 rtems_task cwf2_task( rtems_task_argument argument );
44 48 rtems_task cwf1_task( rtems_task_argument argument );
45 49
46 50 //******************
47 51 // general functions
48 52 void init_waveforms( void );
49 53 //
50 54 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
51 55 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
52 56 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
53 57 //
54 58 void reset_waveforms( void );
55 59 //
56 60 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
57 61 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
58 62 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
59 63 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
60 64 //
61 65 rtems_id get_pkts_queue_id( void );
62 66
63 67 //**************
64 68 // wfp registers
65 69 void set_wfp_data_shaping();
66 70 char set_wfp_delta_snapshot();
67 71 void set_wfp_burst_enable_register( unsigned char mode);
68 72 void reset_wfp_run_burst_enable();
69 73 void reset_wfp_status();
70 74 void reset_new_waveform_picker_regs();
71 void reset_new_waveform_picker_regs_alt();
72 75
73 76 //*****************
74 77 // local parameters
75 78 void set_local_sbm1_nb_cwf_max();
76 79 void set_local_sbm2_nb_cwf_max();
77 80 void set_local_nb_interrupt_f0_MAX();
78 81 void reset_local_sbm1_nb_cwf_sent();
79 82 void reset_local_sbm2_nb_cwf_sent();
80 83
84 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
85
81 86 #endif // WF_HANDLER_H_INCLUDED
@@ -1,89 +1,91
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23
24 24 // RTEMS GLOBAL VARIABLES
25 25 rtems_name misc_name[5];
26 26 rtems_id misc_id[5];
27 27 rtems_name Task_name[20]; /* array of task names */
28 28 rtems_id Task_id[20]; /* array of task ids */
29 29 unsigned int maxCount;
30 30 int fdSPW = 0;
31 31 int fdUART = 0;
32 32 unsigned char lfrCurrentMode;
33 33
34 34 // APB CONFIGURATION REGISTERS
35 35 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
36 36 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
37 37 #ifdef GSA
38 38 #else
39 39 new_waveform_picker_regs_t *new_waveform_picker_regs = (new_waveform_picker_regs_t*) REGS_ADDR_WAVEFORM_PICKER;
40 40 #endif
41 41 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
42 42
43 43 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes
44 44 volatile int wf_snap_f0[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
45 45 //
46 46 volatile int wf_snap_f1[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
47 47 volatile int wf_snap_f1_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
48 48 volatile int wf_snap_f1_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
49 49 //
50 50 volatile int wf_snap_f2[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
51 51 volatile int wf_snap_f2_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
52 52 volatile int wf_snap_f2_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
53 53 //
54 54 volatile int wf_cont_f3[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
55 55 volatile int wf_cont_f3_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
56 56 char wf_cont_f3_light[ NB_SAMPLES_PER_SNAPSHOT * NB_BYTES_CWF3_LIGHT_BLK ];
57 57
58 58 // SPECTRAL MATRICES GLOBAL VARIABLES
59 59 volatile int spec_mat_f0_0[ SM_HEADER + TOTAL_SIZE_SM ];
60 60 volatile int spec_mat_f0_1[ SM_HEADER + TOTAL_SIZE_SM ];
61 61 volatile int spec_mat_f0_a[ SM_HEADER + TOTAL_SIZE_SM ];
62 62 volatile int spec_mat_f0_b[ SM_HEADER + TOTAL_SIZE_SM ];
63 63 volatile int spec_mat_f0_c[ SM_HEADER + TOTAL_SIZE_SM ];
64 64 volatile int spec_mat_f0_d[ SM_HEADER + TOTAL_SIZE_SM ];
65 65 volatile int spec_mat_f0_e[ SM_HEADER + TOTAL_SIZE_SM ];
66 66 volatile int spec_mat_f0_f[ SM_HEADER + TOTAL_SIZE_SM ];
67 67 volatile int spec_mat_f0_g[ SM_HEADER + TOTAL_SIZE_SM ];
68 68 volatile int spec_mat_f0_h[ SM_HEADER + TOTAL_SIZE_SM ];
69 69 volatile int spec_mat_f0_0_bis[ SM_HEADER + TOTAL_SIZE_SM ];
70 70 volatile int spec_mat_f0_1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
71 71 //
72 72 volatile int spec_mat_f1[ SM_HEADER + TOTAL_SIZE_SM ];
73 73 volatile int spec_mat_f1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
74 74 //
75 75 volatile int spec_mat_f2[ SM_HEADER + TOTAL_SIZE_SM ];
76 76 volatile int spec_mat_f2_bis[ SM_HEADER + TOTAL_SIZE_SM ];
77 77
78 78 // MODE PARAMETERS
79 79 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
80 80 struct param_local_str param_local;
81 81
82 82 // HK PACKETS
83 83 Packet_TM_LFR_HK_t housekeeping_packet;
84 84 // sequence counters are incremented by APID (PID + CAT) and destination ID
85 unsigned short sequenceCounters[SEQ_CNT_NB_PID][SEQ_CNT_NB_CAT][SEQ_CNT_NB_DEST_ID];
85 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
86 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
87 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
86 88 spw_stats spacewire_stats;
87 89 spw_stats spacewire_stats_backup;
88 90
89 91
@@ -1,593 +1,582
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73 rtems_status_code status;
74 74 rtems_status_code status_spw;
75 75 rtems_isr_entry old_isr_handler;
76 76
77 77 BOOT_PRINTF("\n\n\n\n\n")
78 78 BOOT_PRINTF("***************************\n")
79 79 BOOT_PRINTF("** START Flight Software **\n")
80 80 BOOT_PRINTF("***************************\n")
81 81 BOOT_PRINTF("\n\n")
82 82
83 83 //send_console_outputs_on_apbuart_port();
84 84 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
85 85
86 86 // waveform picker registers initialization
87 87 reset_wfp_run_burst_enable();
88 88 reset_wfp_status();
89 89
90 90 init_parameter_dump();
91 91 init_local_mode_parameters();
92 92 init_housekeeping_parameters();
93 93
94 94 updateLFRCurrentMode();
95 95
96 96 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
97 97
98 98 create_names(); // create all names
99 99
100 100 status = create_message_queues(); // create message queues
101 101 if (status != RTEMS_SUCCESSFUL)
102 102 {
103 103 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
104 104 }
105 105
106 106 status = create_all_tasks(); // create all tasks
107 107 if (status != RTEMS_SUCCESSFUL)
108 108 {
109 109 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
110 110 }
111 111
112 112 // **************************
113 113 // <SPACEWIRE INITIALIZATION>
114 114 grspw_timecode_callback = &timecode_irq_handler;
115 115
116 116 status_spw = spacewire_open_link(); // (1) open the link
117 117 if ( status_spw != RTEMS_SUCCESSFUL )
118 118 {
119 119 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
120 120 }
121 121
122 122 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
123 123 {
124 124 status_spw = spacewire_configure_link( fdSPW );
125 125 if ( status_spw != RTEMS_SUCCESSFUL )
126 126 {
127 127 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
128 128 }
129 129 }
130 130
131 131 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
132 132 {
133 133 status_spw = spacewire_start_link( fdSPW );
134 134 if ( status_spw != RTEMS_SUCCESSFUL )
135 135 {
136 136 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
137 137 }
138 138 }
139 139 // </SPACEWIRE INITIALIZATION>
140 140 // ***************************
141 141
142 142 status = start_all_tasks(); // start all tasks
143 143 if (status != RTEMS_SUCCESSFUL)
144 144 {
145 145 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
146 146 }
147 147
148 148 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
149 149 status = start_recv_send_tasks();
150 150 if ( status != RTEMS_SUCCESSFUL )
151 151 {
152 152 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
153 153 }
154 154
155 155 // suspend science tasks. they will be restarted later depending on the mode
156 156 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
157 157 if (status != RTEMS_SUCCESSFUL)
158 158 {
159 159 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
160 160 }
161 161
162 162 #ifdef GSA
163 163 // mask IRQ lines
164 164 LEON_Mask_interrupt( IRQ_SM );
165 165 LEON_Mask_interrupt( IRQ_WF );
166 166 // Spectral Matrices simulator
167 167 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
168 168 IRQ_SPARC_SM, spectral_matrices_isr );
169 169 // WaveForms
170 170 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR, CLKDIV_WF_SIMULATOR,
171 171 IRQ_SPARC_WF, waveforms_simulator_isr );
172 172 #else
173 173 // configure IRQ handling for the waveform picker unit
174 174 status = rtems_interrupt_catch( waveforms_isr,
175 175 IRQ_SPARC_WAVEFORM_PICKER,
176 176 &old_isr_handler) ;
177 177 #endif
178 178
179 179 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
180 180 if ( status_spw != RTEMS_SUCCESSFUL )
181 181 {
182 182 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
183 183 if ( status != RTEMS_SUCCESSFUL ) {
184 184 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
185 185 }
186 186 }
187 187
188 188 BOOT_PRINTF("delete INIT\n")
189 189
190 190 status = rtems_task_delete(RTEMS_SELF);
191 191
192 192 }
193 193
194 194 void init_local_mode_parameters( void )
195 195 {
196 196 /** This function initialize the param_local global variable with default values.
197 *
198 */
199
197 *
198 */
200 199 unsigned int i;
201 unsigned int j;
202 unsigned int k;
203
204 200 // LOCAL PARAMETERS
205 201 set_local_sbm1_nb_cwf_max();
206 202 set_local_sbm2_nb_cwf_max();
207 203 set_local_nb_interrupt_f0_MAX();
208
209 204 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
210 205 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
211 206 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
212
213 207 reset_local_sbm1_nb_cwf_sent();
214 208 reset_local_sbm2_nb_cwf_sent();
215
216 209 // init sequence counters
217 for (i = 0; i<SEQ_CNT_NB_PID; i++)
210 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
218 211 {
219 for(j = 0; j<SEQ_CNT_NB_CAT; j++)
220 {
221 for(k = 0; k<SEQ_CNT_NB_DEST_ID; k++)
222 {
223 sequenceCounters[i][j][k] = 0x00;
224 }
225 }
212 sequenceCounters_TC_EXE[i] = 0x00;
226 213 }
214 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
215 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
227 216 }
228 217
229 218 void create_names( void ) // create all names for tasks and queues
230 219 {
231 220 /** This function creates all RTEMS names used in the software for tasks and queues.
232 221 *
233 222 * @return RTEMS directive status codes:
234 223 * - RTEMS_SUCCESSFUL - successful completion
235 224 *
236 225 */
237 226
238 227 // task names
239 228 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
240 229 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
241 230 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
242 231 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
243 232 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
244 233 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
245 234 Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
246 235 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
247 236 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
248 237 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
249 238 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
250 239 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
251 240 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
252 241 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
253 242 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
254 243 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
255 244
256 245 // rate monotonic period names
257 246 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
258 247
259 248 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
260 249 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
261 250 }
262 251
263 252 int create_all_tasks( void ) // create all tasks which run in the software
264 253 {
265 254 /** This function creates all RTEMS tasks used in the software.
266 255 *
267 256 * @return RTEMS directive status codes:
268 257 * - RTEMS_SUCCESSFUL - task created successfully
269 258 * - RTEMS_INVALID_ADDRESS - id is NULL
270 259 * - RTEMS_INVALID_NAME - invalid task name
271 260 * - RTEMS_INVALID_PRIORITY - invalid task priority
272 261 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
273 262 * - RTEMS_TOO_MANY - too many tasks created
274 263 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
275 264 * - RTEMS_TOO_MANY - too many global objects
276 265 *
277 266 */
278 267
279 268 rtems_status_code status;
280 269
281 270 // RECV
282 271 status = rtems_task_create(
283 272 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
284 273 RTEMS_DEFAULT_MODES,
285 274 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
286 275 );
287 276
288 277 if (status == RTEMS_SUCCESSFUL) // ACTN
289 278 {
290 279 status = rtems_task_create(
291 280 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
292 281 RTEMS_DEFAULT_MODES,
293 282 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
294 283 );
295 284 }
296 285 if (status == RTEMS_SUCCESSFUL) // SPIQ
297 286 {
298 287 status = rtems_task_create(
299 288 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
300 289 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
301 290 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
302 291 );
303 292 }
304 293 if (status == RTEMS_SUCCESSFUL) // SMIQ
305 294 {
306 295 status = rtems_task_create(
307 296 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
308 297 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
309 298 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
310 299 );
311 300 }
312 301 if (status == RTEMS_SUCCESSFUL) // STAT
313 302 {
314 303 status = rtems_task_create(
315 304 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
316 305 RTEMS_DEFAULT_MODES,
317 306 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
318 307 );
319 308 }
320 309 if (status == RTEMS_SUCCESSFUL) // AVF0
321 310 {
322 311 status = rtems_task_create(
323 312 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
324 313 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
325 314 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
326 315 );
327 316 }
328 317 if (status == RTEMS_SUCCESSFUL) // BPF0
329 318 {
330 319 status = rtems_task_create(
331 320 Task_name[TASKID_BPF0], TASK_PRIORITY_BPF0, RTEMS_MINIMUM_STACK_SIZE,
332 321 RTEMS_DEFAULT_MODES,
333 322 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_BPF0]
334 323 );
335 324 }
336 325 if (status == RTEMS_SUCCESSFUL) // WFRM
337 326 {
338 327 status = rtems_task_create(
339 328 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
340 329 RTEMS_DEFAULT_MODES,
341 330 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
342 331 );
343 332 }
344 333 if (status == RTEMS_SUCCESSFUL) // DUMB
345 334 {
346 335 status = rtems_task_create(
347 336 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
348 337 RTEMS_DEFAULT_MODES,
349 338 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
350 339 );
351 340 }
352 341 if (status == RTEMS_SUCCESSFUL) // HOUS
353 342 {
354 343 status = rtems_task_create(
355 344 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
356 345 RTEMS_DEFAULT_MODES,
357 346 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
358 347 );
359 348 }
360 349 if (status == RTEMS_SUCCESSFUL) // MATR
361 350 {
362 351 status = rtems_task_create(
363 352 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
364 353 RTEMS_DEFAULT_MODES,
365 354 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
366 355 );
367 356 }
368 357 if (status == RTEMS_SUCCESSFUL) // CWF3
369 358 {
370 359 status = rtems_task_create(
371 360 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
372 361 RTEMS_DEFAULT_MODES,
373 362 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF3]
374 363 );
375 364 }
376 365 if (status == RTEMS_SUCCESSFUL) // CWF2
377 366 {
378 367 status = rtems_task_create(
379 368 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
380 369 RTEMS_DEFAULT_MODES,
381 370 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF2]
382 371 );
383 372 }
384 373 if (status == RTEMS_SUCCESSFUL) // CWF1
385 374 {
386 375 status = rtems_task_create(
387 376 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
388 377 RTEMS_DEFAULT_MODES,
389 378 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF1]
390 379 );
391 380 }
392 381 if (status == RTEMS_SUCCESSFUL) // SEND
393 382 {
394 383 status = rtems_task_create(
395 384 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
396 385 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
397 386 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
398 387 );
399 388 }
400 389 if (status == RTEMS_SUCCESSFUL) // WTDG
401 390 {
402 391 status = rtems_task_create(
403 392 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
404 393 RTEMS_DEFAULT_MODES,
405 394 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
406 395 );
407 396 }
408 397
409 398 return status;
410 399 }
411 400
412 401 int start_recv_send_tasks( void )
413 402 {
414 403 rtems_status_code status;
415 404
416 405 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
417 406 if (status!=RTEMS_SUCCESSFUL) {
418 407 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
419 408 }
420 409
421 410 if (status == RTEMS_SUCCESSFUL) // SEND
422 411 {
423 412 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
424 413 if (status!=RTEMS_SUCCESSFUL) {
425 414 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
426 415 }
427 416 }
428 417
429 418 return status;
430 419 }
431 420
432 421 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
433 422 {
434 423 /** This function starts all RTEMS tasks used in the software.
435 424 *
436 425 * @return RTEMS directive status codes:
437 426 * - RTEMS_SUCCESSFUL - ask started successfully
438 427 * - RTEMS_INVALID_ADDRESS - invalid task entry point
439 428 * - RTEMS_INVALID_ID - invalid task id
440 429 * - RTEMS_INCORRECT_STATE - task not in the dormant state
441 430 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
442 431 *
443 432 */
444 433 // starts all the tasks fot eh flight software
445 434
446 435 rtems_status_code status;
447 436
448 437 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
449 438 if (status!=RTEMS_SUCCESSFUL) {
450 439 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
451 440 }
452 441
453 442 if (status == RTEMS_SUCCESSFUL) // WTDG
454 443 {
455 444 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
456 445 if (status!=RTEMS_SUCCESSFUL) {
457 446 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
458 447 }
459 448 }
460 449
461 450 if (status == RTEMS_SUCCESSFUL) // SMIQ
462 451 {
463 452 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
464 453 if (status!=RTEMS_SUCCESSFUL) {
465 454 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
466 455 }
467 456 }
468 457
469 458 if (status == RTEMS_SUCCESSFUL) // ACTN
470 459 {
471 460 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
472 461 if (status!=RTEMS_SUCCESSFUL) {
473 462 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
474 463 }
475 464 }
476 465
477 466 if (status == RTEMS_SUCCESSFUL) // STAT
478 467 {
479 468 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
480 469 if (status!=RTEMS_SUCCESSFUL) {
481 470 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
482 471 }
483 472 }
484 473
485 474 if (status == RTEMS_SUCCESSFUL) // AVF0
486 475 {
487 476 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
488 477 if (status!=RTEMS_SUCCESSFUL) {
489 478 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
490 479 }
491 480 }
492 481
493 482 if (status == RTEMS_SUCCESSFUL) // BPF0
494 483 {
495 484 status = rtems_task_start( Task_id[TASKID_BPF0], bpf0_task, 1 );
496 485 if (status!=RTEMS_SUCCESSFUL) {
497 486 BOOT_PRINTF("in INIT *** Error starting TASK_BPF0\n")
498 487 }
499 488 }
500 489
501 490 if (status == RTEMS_SUCCESSFUL) // WFRM
502 491 {
503 492 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
504 493 if (status!=RTEMS_SUCCESSFUL) {
505 494 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
506 495 }
507 496 }
508 497
509 498 if (status == RTEMS_SUCCESSFUL) // DUMB
510 499 {
511 500 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
512 501 if (status!=RTEMS_SUCCESSFUL) {
513 502 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
514 503 }
515 504 }
516 505
517 506 if (status == RTEMS_SUCCESSFUL) // HOUS
518 507 {
519 508 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
520 509 if (status!=RTEMS_SUCCESSFUL) {
521 510 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
522 511 }
523 512 }
524 513
525 514 if (status == RTEMS_SUCCESSFUL) // MATR
526 515 {
527 516 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
528 517 if (status!=RTEMS_SUCCESSFUL) {
529 518 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
530 519 }
531 520 }
532 521
533 522 if (status == RTEMS_SUCCESSFUL) // CWF3
534 523 {
535 524 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
536 525 if (status!=RTEMS_SUCCESSFUL) {
537 526 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
538 527 }
539 528 }
540 529
541 530 if (status == RTEMS_SUCCESSFUL) // CWF2
542 531 {
543 532 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
544 533 if (status!=RTEMS_SUCCESSFUL) {
545 534 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
546 535 }
547 536 }
548 537
549 538 if (status == RTEMS_SUCCESSFUL) // CWF1
550 539 {
551 540 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
552 541 if (status!=RTEMS_SUCCESSFUL) {
553 542 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
554 543 }
555 544 }
556 545 return status;
557 546 }
558 547
559 548 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
560 549 {
561 550 rtems_status_code status_recv;
562 551 rtems_status_code status_send;
563 552 rtems_status_code ret;
564 553 rtems_id queue_id;
565 554
566 555 // create the queue for handling valid TCs
567 556 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
568 557 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
569 558 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
570 559 if ( status_recv != RTEMS_SUCCESSFUL ) {
571 560 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
572 561 }
573 562
574 563 // create the queue for handling TM packet sending
575 564 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
576 565 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
577 566 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
578 567 if ( status_send != RTEMS_SUCCESSFUL ) {
579 568 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
580 569 }
581 570
582 571 if ( status_recv != RTEMS_SUCCESSFUL )
583 572 {
584 573 ret = status_recv;
585 574 }
586 575 else
587 576 {
588 577 ret = status_send;
589 578 }
590 579
591 580 return ret;
592 581 }
593 582
@@ -1,1177 +1,1225
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 // SWF
13 13 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
14 14 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
16 16 // CWF
17 17 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
18 18 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
22 22
23 23 unsigned char doubleSendCWF1 = 0;
24 24 unsigned char doubleSendCWF2 = 0;
25 25
26 26 rtems_isr waveforms_isr( rtems_vector_number vector )
27 27 {
28 28 /** This is the interrupt sub routine called by the waveform picker core.
29 29 *
30 30 * This ISR launch different actions depending mainly on two pieces of information:
31 31 * 1. the values read in the registers of the waveform picker.
32 32 * 2. the current LFR mode.
33 33 *
34 34 */
35 35
36 36 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
37 37 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff00f; // clear new_err and full_err
38 38
39 39 #ifdef GSA
40 40 #else
41 41 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
42 42 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
43 43 { // in modes other than STANDBY and BURST, send the CWF_F3 data
44 44 if ((new_waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
45 45 // (1) change the receiving buffer for the waveform picker
46 46 if (new_waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
47 47 new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_bis);
48 48 }
49 49 else {
50 50 new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3);
51 51 }
52 52 // (2) send an event for the waveforms transmission
53 53 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
54 54 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
55 55 }
56 56 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
57 57 }
58 58 }
59 59 #endif
60 60
61 61 switch(lfrCurrentMode)
62 62 {
63 63 //********
64 64 // STANDBY
65 65 case(LFR_MODE_STANDBY):
66 66 break;
67 67
68 68 //******
69 69 // NORMAL
70 70 case(LFR_MODE_NORMAL):
71 71 #ifdef GSA
72 72 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
73 73 #else
74 74 if ( (new_waveform_picker_regs->run_burst_enable & 0x7) == 0x0 ){ // if no channel is enable
75 75 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
76 76 }
77 77 else {
78 78 if ( (new_waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
79 79 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable & 0x08;
80 80 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
81 81 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
82 82 }
83 83 // new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0x00;
84 84 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff888;
85 85 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x07; // [0111] enable f2 f1 f0
86 86 }
87 87 }
88 88 #endif
89 89 break;
90 90
91 91 //******
92 92 // BURST
93 93 case(LFR_MODE_BURST):
94 94 #ifdef GSA
95 95 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
96 96 #else
97 97 if ((new_waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
98 98 // (1) change the receiving buffer for the waveform picker
99 99 if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
100 100 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
101 101 }
102 102 else {
103 103 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
104 104 }
105 105 // (2) send an event for the waveforms transmission
106 106 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
107 107 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
108 108 }
109 109 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
110 110 }
111 111 #endif
112 112 break;
113 113
114 114 //*****
115 115 // SBM1
116 116 case(LFR_MODE_SBM1):
117 117 #ifdef GSA
118 118 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
119 119 #else
120 120 if ((new_waveform_picker_regs->status & 0x02) == 0x02){ // [0010] check the f1 full bit
121 121 // (1) change the receiving buffer for the waveform picker
122 122 if ( param_local.local_sbm1_nb_cwf_sent == (param_local.local_sbm1_nb_cwf_max-1) )
123 123 {
124 124 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_norm);
125 125 }
126 126 else if ( new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1_norm )
127 127 {
128 128 doubleSendCWF1 = 1;
129 129 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
130 130 }
131 131 else if ( new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1 ) {
132 132 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_bis);
133 133 }
134 134 else {
135 135 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
136 136 }
137 137 // (2) send an event for the waveforms transmission
138 138 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
139 139 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
140 140 }
141 141 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
142 142 }
143 143 if ( ( (new_waveform_picker_regs->status & 0x05) == 0x05 ) ) { // [0101] check the f2 and f0 full bit
144 144 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
145 145 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
146 146 }
147 147 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
148 148 reset_local_sbm1_nb_cwf_sent();
149 149 }
150 150
151 151 #endif
152 152 break;
153 153
154 154 //*****
155 155 // SBM2
156 156 case(LFR_MODE_SBM2):
157 157 #ifdef GSA
158 158 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
159 159 #else
160 160 if ((new_waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
161 161 // (1) change the receiving buffer for the waveform picker
162 162 if ( param_local.local_sbm2_nb_cwf_sent == (param_local.local_sbm2_nb_cwf_max-1) )
163 163 {
164 164 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_norm);
165 165 }
166 166 else if ( new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2_norm ) {
167 167 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
168 168 doubleSendCWF2 = 1;
169 169 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2_WFRM ) != RTEMS_SUCCESSFUL) {
170 170 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
171 171 }
172 172 reset_local_sbm2_nb_cwf_sent();
173 173 }
174 174 else if ( new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2 ) {
175 175 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
176 176 }
177 177 else {
178 178 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
179 179 }
180 180 // (2) send an event for the waveforms transmission
181 181 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
182 182 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
183 183 }
184 184 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
185 185 }
186 186 if ( ( (new_waveform_picker_regs->status & 0x03) == 0x03 ) ) { // [0011] f3 f2 f1 f0, f1 and f0 are full
187 187 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
188 188 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
189 189 }
190 190 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
191 191 }
192 192 #endif
193 193 break;
194 194
195 195 //********
196 196 // DEFAULT
197 197 default:
198 198 break;
199 199 }
200 200 }
201 201
202 202 rtems_isr waveforms_simulator_isr( rtems_vector_number vector )
203 203 {
204 204 /** This is the interrupt sub routine called by the waveform picker simulator.
205 205 *
206 206 * This ISR is for debug purpose only.
207 207 *
208 208 */
209 209
210 210 unsigned char lfrMode;
211 211 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
212 212
213 213 switch(lfrMode) {
214 214 case (LFR_MODE_STANDBY):
215 215 break;
216 216 case (LFR_MODE_NORMAL):
217 217 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
218 218 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_5 );
219 219 }
220 220 break;
221 221 case (LFR_MODE_BURST):
222 222 break;
223 223 case (LFR_MODE_SBM1):
224 224 break;
225 225 case (LFR_MODE_SBM2):
226 226 break;
227 227 }
228 228 }
229 229
230 230 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
231 231 {
232 232 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
233 233 *
234 234 * @param unused is the starting argument of the RTEMS task
235 235 *
236 236 * The following data packets are sent by this task:
237 237 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
238 238 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
239 239 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
240 240 *
241 241 */
242 242
243 243 rtems_event_set event_out;
244 244 rtems_id queue_id;
245 245
246 246 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
247 247 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
248 248 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
249 249
250 250 init_waveforms();
251 251
252 252 queue_id = get_pkts_queue_id();
253 253
254 254 BOOT_PRINTF("in WFRM ***\n")
255 255
256 256 while(1){
257 257 // wait for an RTEMS_EVENT
258 258 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
259 259 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
260 260 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
261 261
262 262 if (event_out == RTEMS_EVENT_MODE_NORMAL)
263 263 {
264 264 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
265 265 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
266 266 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
267 267 #ifdef GSA
268 268 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xf888; // [1111 1000 1000 1000] f2, f1, f0 bits =0
269 269 #endif
270 270 }
271 271 else if (event_out == RTEMS_EVENT_MODE_SBM1)
272 272 {
273 273 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
274 274 send_waveform_SWF(wf_snap_f1_norm, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
275 275 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
276 276 #ifdef GSA
277 277 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2, f0 bits = 0
278 278 #endif
279 279 }
280 280 else if (event_out == RTEMS_EVENT_MODE_SBM2)
281 281 {
282 282 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
283 283 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
284 284 #ifdef GSA
285 285 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
286 286 #endif
287 287 }
288 288 else if (event_out == RTEMS_EVENT_MODE_SBM2_WFRM)
289 289 {
290 290 send_waveform_SWF(wf_snap_f2_norm, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
291 291 }
292 292 else
293 293 {
294 294 PRINTF("in WFRM *** unexpected event")
295 295 }
296 296
297 297
298 298 #ifdef GSA
299 299 // irq processed, reset the related register of the timer unit
300 300 gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl = gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl | 0x00000010;
301 301 // clear the interruption
302 302 LEON_Unmask_interrupt( IRQ_WF );
303 303 #endif
304 304 }
305 305 }
306 306
307 307 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
308 308 {
309 309 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
310 310 *
311 311 * @param unused is the starting argument of the RTEMS task
312 312 *
313 313 * The following data packet is sent by this task:
314 314 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
315 315 *
316 316 */
317 317
318 318 rtems_event_set event_out;
319 319 rtems_id queue_id;
320 320
321 321 init_header_continuous_wf_table( SID_NORM_CWF_F3, headerCWF_F3 );
322 322 init_header_continuous_wf3_light_table( headerCWF_F3_light );
323 323
324 324 queue_id = get_pkts_queue_id();
325 325
326 326 BOOT_PRINTF("in CWF3 ***\n")
327 327
328 328 while(1){
329 329 // wait for an RTEMS_EVENT
330 330 rtems_event_receive( RTEMS_EVENT_0,
331 331 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
332 332 PRINTF("send CWF F3 \n")
333 333 #ifdef GSA
334 334 #else
335 335 if (new_waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
336 336 send_waveform_CWF3_light( wf_cont_f3_bis, headerCWF_F3_light, queue_id );
337 337 }
338 338 else {
339 339 send_waveform_CWF3_light( wf_cont_f3, headerCWF_F3_light, queue_id );
340 340 }
341 341 #endif
342 342 }
343 343 }
344 344
345 345 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
346 346 {
347 347 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
348 348 *
349 349 * @param unused is the starting argument of the RTEMS task
350 350 *
351 351 * The following data packet is sent by this function:
352 352 * - TM_LFR_SCIENCE_BURST_CWF_F2
353 353 * - TM_LFR_SCIENCE_SBM2_CWF_F2
354 354 *
355 355 */
356 356
357 357 rtems_event_set event_out;
358 358 rtems_id queue_id;
359 359
360 360 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
361 361 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
362 362
363 363 queue_id = get_pkts_queue_id();
364 364
365 365 BOOT_PRINTF("in CWF2 ***\n")
366 366
367 367 while(1){
368 368 // wait for an RTEMS_EVENT
369 369 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
370 370 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
371 371
372 372 if (event_out == RTEMS_EVENT_MODE_BURST)
373 373 {
374 374 // F2
375 375 #ifdef GSA
376 376 #else
377 377 if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
378 378 send_waveform_CWF( wf_snap_f2_bis, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
379 379 }
380 380 else {
381 381 send_waveform_CWF( wf_snap_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
382 382 }
383 383 #endif
384 384 }
385 385
386 386 else if (event_out == RTEMS_EVENT_MODE_SBM2)
387 387 {
388 388 #ifdef GSA
389 389 #else
390 390 if (doubleSendCWF2 == 1)
391 391 {
392 392 doubleSendCWF2 = 0;
393 393 send_waveform_CWF( wf_snap_f2_norm, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
394 394 }
395 395 else if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
396 396 send_waveform_CWF( wf_snap_f2_bis, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
397 397 }
398 398 else {
399 399 send_waveform_CWF( wf_snap_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
400 400 }
401 401 param_local.local_sbm2_nb_cwf_sent ++;
402 402 #endif
403 403 }
404 404 else
405 405 {
406 406 PRINTF1("in CWF2 *** ERR mode = %d\n", lfrCurrentMode)
407 407 }
408 408 }
409 409 }
410 410
411 411 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
412 412 {
413 413 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
414 414 *
415 415 * @param unused is the starting argument of the RTEMS task
416 416 *
417 417 * The following data packet is sent by this function:
418 418 * - TM_LFR_SCIENCE_SBM1_CWF_F1
419 419 *
420 420 */
421 421
422 422 rtems_event_set event_out;
423 423 rtems_id queue_id;
424 424
425 425 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
426 426
427 427 queue_id = get_pkts_queue_id();
428 428
429 429 BOOT_PRINTF("in CWF1 ***\n")
430 430
431 431 while(1){
432 432 // wait for an RTEMS_EVENT
433 433 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
434 434 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
435 435 if (event_out == RTEMS_EVENT_MODE_SBM1)
436 436 {
437 437 #ifdef GSA
438 438 #else
439 439 if (doubleSendCWF1 == 1)
440 440 {
441 441 doubleSendCWF1 = 0;
442 442 send_waveform_CWF( wf_snap_f1_norm, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
443 443 }
444 444 else if (new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1) {
445 445 send_waveform_CWF( wf_snap_f1_bis, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
446 446 }
447 447 else {
448 448 send_waveform_CWF( wf_snap_f1, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
449 449 }
450 450 param_local.local_sbm1_nb_cwf_sent ++;
451 451 #endif
452 452 }
453 453 else
454 454 {
455 455 PRINTF1("in CWF1 *** ERR mode = %d\n", lfrCurrentMode)
456 456 }
457 457 }
458 458 }
459 459
460 460 //******************
461 461 // general functions
462 462 void init_waveforms( void )
463 463 {
464 464 int i = 0;
465 465
466 466 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
467 467 {
468 468 //***
469 469 // F0
470 470 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
471 471 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
472 472 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
473 473
474 474 //***
475 475 // F1
476 476 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
477 477 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
478 478 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
479 479
480 480 //***
481 481 // F2
482 482 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
483 483 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
484 484 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
485 485
486 486 //***
487 487 // F3
488 488 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
489 489 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
490 490 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
491 491 }
492 492 }
493 493
494 494 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
495 495 {
496 496 unsigned char i;
497 497
498 498 for (i=0; i<7; i++)
499 499 {
500 500 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
501 501 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
502 502 headerSWF[ i ].reserved = DEFAULT_RESERVED;
503 503 headerSWF[ i ].userApplication = CCSDS_USER_APP;
504 504 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
505 505 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
506 506 if (i == 0)
507 507 {
508 508 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
509 509 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
510 510 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
511 511 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
512 512 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
513 513 }
514 514 else if (i == 6)
515 515 {
516 516 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
517 517 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_8 >> 8);
518 518 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_8 );
519 519 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
520 520 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
521 521 }
522 522 else
523 523 {
524 524 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
525 525 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
526 526 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
527 527 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
528 528 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
529 529 }
530 530 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
531 531 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
532 532 headerSWF[ i ].pktNr = i+1; // PKT_NR
533 533 // DATA FIELD HEADER
534 534 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
535 535 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
536 536 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
537 537 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
538 538 // AUXILIARY DATA HEADER
539 539 headerSWF[ i ].sid = sid;
540 540 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
541 541 headerSWF[ i ].time[0] = 0x00;
542 542 headerSWF[ i ].time[0] = 0x00;
543 543 headerSWF[ i ].time[0] = 0x00;
544 544 headerSWF[ i ].time[0] = 0x00;
545 545 headerSWF[ i ].time[0] = 0x00;
546 546 headerSWF[ i ].time[0] = 0x00;
547 547 }
548 548 return LFR_SUCCESSFUL;
549 549 }
550 550
551 551 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
552 552 {
553 553 unsigned int i;
554 554
555 555 for (i=0; i<7; i++)
556 556 {
557 557 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
558 558 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
559 559 headerCWF[ i ].reserved = DEFAULT_RESERVED;
560 560 headerCWF[ i ].userApplication = CCSDS_USER_APP;
561 561 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
562 562 {
563 563 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
564 564 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
565 565 }
566 566 else
567 567 {
568 568 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
569 569 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
570 570 }
571 571 if (i == 0)
572 572 {
573 573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
574 574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
575 575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
576 576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
577 577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
578 578 }
579 579 else if (i == 6)
580 580 {
581 581 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
582 582 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
583 583 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
584 584 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
585 585 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
586 586 }
587 587 else
588 588 {
589 589 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
590 590 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
591 591 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
592 592 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
593 593 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
594 594 }
595 595 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
596 596 // PKT_CNT
597 597 // PKT_NR
598 598 // DATA FIELD HEADER
599 599 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
600 600 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
601 601 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
602 602 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
603 603 // AUXILIARY DATA HEADER
604 604 headerCWF[ i ].sid = sid;
605 605 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
606 606 headerCWF[ i ].time[0] = 0x00;
607 607 headerCWF[ i ].time[0] = 0x00;
608 608 headerCWF[ i ].time[0] = 0x00;
609 609 headerCWF[ i ].time[0] = 0x00;
610 610 headerCWF[ i ].time[0] = 0x00;
611 611 headerCWF[ i ].time[0] = 0x00;
612 612 }
613 613 return LFR_SUCCESSFUL;
614 614 }
615 615
616 616 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
617 617 {
618 618 unsigned int i;
619 619
620 620 for (i=0; i<7; i++)
621 621 {
622 622 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
623 623 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
624 624 headerCWF[ i ].reserved = DEFAULT_RESERVED;
625 625 headerCWF[ i ].userApplication = CCSDS_USER_APP;
626 626
627 627 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
628 628 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
629 629 if (i == 0)
630 630 {
631 631 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
632 632 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
633 633 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
634 634 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
635 635 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
636 636 }
637 637 else if (i == 6)
638 638 {
639 639 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
640 640 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
641 641 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
642 642 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
643 643 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
644 644 }
645 645 else
646 646 {
647 647 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
648 648 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
649 649 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
650 650 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
651 651 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
652 652 }
653 653 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
654 654 // DATA FIELD HEADER
655 655 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
656 656 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
657 657 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
658 658 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
659 659 // AUXILIARY DATA HEADER
660 660 headerCWF[ i ].sid = SID_NORM_CWF_F3;
661 661 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
662 662 headerCWF[ i ].time[0] = 0x00;
663 663 headerCWF[ i ].time[0] = 0x00;
664 664 headerCWF[ i ].time[0] = 0x00;
665 665 headerCWF[ i ].time[0] = 0x00;
666 666 headerCWF[ i ].time[0] = 0x00;
667 667 headerCWF[ i ].time[0] = 0x00;
668 668 }
669 669 return LFR_SUCCESSFUL;
670 670 }
671 671
672 672 void reset_waveforms( void )
673 673 {
674 674 int i = 0;
675 675
676 676 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
677 677 {
678 678 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x10002000;
679 679 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
680 680 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
681 681
682 682 //***
683 683 // F1
684 684 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x1000f000;
685 685 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0xf0001000;
686 686 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
687 687
688 688 //***
689 689 // F2
690 690 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x40008000;
691 691 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
692 692 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x10002000;
693 693
694 694 //***
695 695 // F3
696 696 /*wf_cont_f3[ i* NB_WORDS_SWF_BLK + 0 ] = build_value( i, i ); // v and 1
697 697 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 1 ] = build_value( i, i ); // e2 and b1
698 698 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 2 ] = build_value( i, i ); // b2 and b3*/
699 699 }
700 700 }
701 701
702 702 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
703 703 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
704 704 {
705 705 /** This function sends SWF CCSDS packets (F2, F1 or F0).
706 706 *
707 707 * @param waveform points to the buffer containing the data that will be send.
708 708 * @param sid is the source identifier of the data that will be sent.
709 709 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
710 710 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
711 711 * contain information to setup the transmission of the data packets.
712 712 *
713 713 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
714 714 *
715 715 */
716 716
717 717 unsigned int i;
718 718 int ret;
719 719 rtems_status_code status;
720 720 spw_ioctl_pkt_send spw_ioctl_send_SWF;
721 721
722 722 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
723 723 spw_ioctl_send_SWF.options = 0;
724 724
725 725 ret = LFR_DEFAULT;
726 726
727 727 for (i=0; i<7; i++) // send waveform
728 728 {
729 729 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
730 730 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
731 731 // BUILD THE DATA
732 732 if (i==6) {
733 733 spw_ioctl_send_SWF.dlen = 8 * NB_BYTES_SWF_BLK;
734 734 }
735 735 else {
736 736 spw_ioctl_send_SWF.dlen = 340 * NB_BYTES_SWF_BLK;
737 737 }
738 // SET PACKET SEQUENCE COUNTER
739 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
738 740 // SET PACKET TIME
739 741 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
740 742 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
741 743 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
742 744 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
743 745 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
744 746 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
745 747 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
746 748 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
747 749 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
748 750 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
749 751 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
750 752 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
751 753 // SEND PACKET
752 754 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
753 755 if (status != RTEMS_SUCCESSFUL) {
754 756 printf("%d-%d, ERR %d\n", sid, i, (int) status);
755 757 ret = LFR_DEFAULT;
756 758 }
757 759 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
758 760 }
759 761
760 762 return ret;
761 763 }
762 764
763 765 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
764 766 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
765 767 {
766 768 /** This function sends CWF CCSDS packets (F2, F1 or F0).
767 769 *
768 770 * @param waveform points to the buffer containing the data that will be send.
769 771 * @param sid is the source identifier of the data that will be sent.
770 772 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
771 773 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
772 774 * contain information to setup the transmission of the data packets.
773 775 *
774 776 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
775 777 *
776 778 */
777 779
778 780 unsigned int i;
779 781 int ret;
780 782 rtems_status_code status;
781 783 spw_ioctl_pkt_send spw_ioctl_send_CWF;
782 784
783 785 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
784 786 spw_ioctl_send_CWF.options = 0;
785 787
786 788 ret = LFR_DEFAULT;
787 789
788 790 for (i=0; i<7; i++) // send waveform
789 791 {
790 792 int coarseTime = 0x00;
791 793 int fineTime = 0x00;
792 794 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
793 795 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
794 796 // BUILD THE DATA
795 797 if (i==6) {
796 798 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
797 799 }
798 800 else {
799 801 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
800 802 }
803 // SET PACKET SEQUENCE COUNTER
804 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
801 805 // SET PACKET TIME
802 806 coarseTime = time_management_regs->coarse_time;
803 807 fineTime = time_management_regs->fine_time;
804 808 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
805 809 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
806 810 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
807 811 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
808 812 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
809 813 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
810 814 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
811 815 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
812 816 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
813 817 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
814 818 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
815 819 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
816 820 // SEND PACKET
817 821 if (sid == SID_NORM_CWF_F3)
818 822 {
819 823 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
820 824 if (status != RTEMS_SUCCESSFUL) {
821 825 printf("%d-%d, ERR %d\n", sid, i, (int) status);
822 826 ret = LFR_DEFAULT;
823 827 }
824 828 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
825 829 }
826 830 else
827 831 {
828 832 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
829 833 if (status != RTEMS_SUCCESSFUL) {
830 834 printf("%d-%d, ERR %d\n", sid, i, (int) status);
831 835 ret = LFR_DEFAULT;
832 836 }
833 837 }
834 838 }
835 839
836 840 return ret;
837 841 }
838 842
839 843 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
840 844 {
841 845 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
842 846 *
843 847 * @param waveform points to the buffer containing the data that will be send.
844 848 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
845 849 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
846 850 * contain information to setup the transmission of the data packets.
847 851 *
848 852 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
849 853 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
850 854 *
851 855 */
852 856
853 857 unsigned int i;
854 858 int ret;
855 859 rtems_status_code status;
856 860 spw_ioctl_pkt_send spw_ioctl_send_CWF;
857 861 char *sample;
858 862
859 863 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
860 864 spw_ioctl_send_CWF.options = 0;
861 865
862 866 ret = LFR_DEFAULT;
863 867
864 868 //**********************
865 869 // BUILD CWF3_light DATA
866 870 for ( i=0; i< 2048; i++)
867 871 {
868 872 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
869 873 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
870 874 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
871 875 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
872 876 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
873 877 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
874 878 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
875 879 }
876 880
877 881 //*********************
878 882 // SEND CWF3_light DATA
879 883
880 884 for (i=0; i<7; i++) // send waveform
881 885 {
882 886 int coarseTime = 0x00;
883 887 int fineTime = 0x00;
884 888 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
885 889 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
886 890 // BUILD THE DATA
887 891 if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
888 892 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
889 893 }
890 894 else {
891 895 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
892 896 }
897 // SET PACKET SEQUENCE COUNTER
898 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
893 899 // SET PACKET TIME
894 900 coarseTime = time_management_regs->coarse_time;
895 901 fineTime = time_management_regs->fine_time;
896 902 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
897 903 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
898 904 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
899 905 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
900 906 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
901 907 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
902 908 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
903 909 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
904 910 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
905 911 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
906 912 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
907 913 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
908 914 // SEND PACKET
909 915 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
910 916 if (status != RTEMS_SUCCESSFUL) {
911 917 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
912 918 ret = LFR_DEFAULT;
913 919 }
914 920 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
915 921 }
916 922
917 923 return ret;
918 924 }
919 925
920 926
921 927 //**************
922 928 // wfp registers
923 929 void set_wfp_data_shaping()
924 930 {
925 931 /** This function sets the data_shaping register of the waveform picker module.
926 932 *
927 933 * The value is read from one field of the parameter_dump_packet structure:\n
928 934 * bw_sp0_sp1_r0_r1
929 935 *
930 936 */
931 937
932 938 unsigned char data_shaping;
933 939
934 940 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
935 941 // waveform picker : [R1 R0 SP1 SP0 BW]
936 942
937 943 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
938 944
939 945 #ifdef GSA
940 946 #else
941 947 new_waveform_picker_regs->data_shaping =
942 948 ( (data_shaping & 0x10) >> 4 ) // BW
943 949 + ( (data_shaping & 0x08) >> 2 ) // SP0
944 950 + ( (data_shaping & 0x04) ) // SP1
945 951 + ( (data_shaping & 0x02) << 2 ) // R0
946 952 + ( (data_shaping & 0x01) << 4 ); // R1
947 953 #endif
948 954 }
949 955
950 956 char set_wfp_delta_snapshot()
951 957 {
952 958 /** This function sets the delta_snapshot register of the waveform picker module.
953 959 *
954 960 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
955 961 * - sy_lfr_n_swf_p[0]
956 962 * - sy_lfr_n_swf_p[1]
957 963 *
958 964 */
959 965
960 966 char ret;
961 967 unsigned int delta_snapshot;
962 968 unsigned int aux;
963 969
964 970 aux = 0;
965 971 ret = LFR_DEFAULT;
966 972
967 973 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
968 974 + parameter_dump_packet.sy_lfr_n_swf_p[1];
969 975
970 976 #ifdef GSA
971 977 #else
972 978 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
973 979 {
974 980 aux = MIN_DELTA_SNAPSHOT;
975 981 ret = LFR_DEFAULT;
976 982 }
977 983 else
978 984 {
979 985 aux = delta_snapshot ;
980 986 ret = LFR_SUCCESSFUL;
981 987 }
982 988 new_waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
983 989 #endif
984 990
985 991 return ret;
986 992 }
987 993
988 994 void set_wfp_burst_enable_register( unsigned char mode)
989 995 {
990 996 /** This function sets the waveform picker burst_enable register depending on the mode.
991 997 *
992 998 * @param mode is the LFR mode to launch.
993 999 *
994 1000 * The burst bits shall be before the enable bits.
995 1001 *
996 1002 */
997 1003
998 1004 #ifdef GSA
999 1005 #else
1000 1006 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1001 1007 // the burst bits shall be set first, before the enable bits
1002 1008 switch(mode) {
1003 1009 case(LFR_MODE_NORMAL):
1004 1010 new_waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1005 1011 // new_waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1006 1012 new_waveform_picker_regs->run_burst_enable = 0x07; // [0000 0111] enable f2 f1 f0
1007 1013 break;
1008 1014 case(LFR_MODE_BURST):
1009 1015 new_waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1010 1016 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1011 1017 break;
1012 1018 case(LFR_MODE_SBM1):
1013 1019 new_waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1014 1020 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1015 1021 break;
1016 1022 case(LFR_MODE_SBM2):
1017 1023 new_waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1018 1024 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1019 1025 break;
1020 1026 default:
1021 1027 new_waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1022 1028 break;
1023 1029 }
1024 1030 #endif
1025 1031 }
1026 1032
1027 1033 void reset_wfp_run_burst_enable()
1028 1034 {
1029 1035 /** This function resets the waveform picker burst_enable register.
1030 1036 *
1031 1037 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1032 1038 *
1033 1039 */
1034 1040
1035 1041 #ifdef GSA
1036 1042 #else
1037 1043 new_waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1038 1044 #endif
1039 1045 }
1040 1046
1041 1047 void reset_wfp_status()
1042 1048 {
1043 1049 /** This function resets the waveform picker status register.
1044 1050 *
1045 1051 * All status bits are set to 0 [new_err full_err full].
1046 1052 *
1047 1053 */
1048 1054
1049 1055 #ifdef GSA
1050 1056 #else
1051 1057 new_waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1052 1058 #endif
1053 1059 }
1054 1060
1055 1061 void reset_new_waveform_picker_regs()
1056 1062 {
1063 /** This function resets the waveform picker module registers.
1064 *
1065 * The registers affected by this function are located at the following offset addresses:
1066 * - 0x00 data_shaping
1067 * - 0x04 run_burst_enable
1068 * - 0x08 addr_data_f0
1069 * - 0x0C addr_data_f1
1070 * - 0x10 addr_data_f2
1071 * - 0x14 addr_data_f3
1072 * - 0x18 status
1073 * - 0x1C delta_snapshot
1074 * - 0x20 delta_f0
1075 * - 0x24 delta_f0_2
1076 * - 0x28 delta_f1
1077 * - 0x2c delta_f2
1078 * - 0x30 nb_data_by_buffer
1079 * - 0x34 nb_snapshot_param
1080 * - 0x38 start_date
1081 *
1082 */
1083
1057 1084 new_waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1058 1085 new_waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1059 1086 new_waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1060 1087 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); // 0x0c
1061 1088 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); // 0x10
1062 1089 new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); // 0x14
1063 1090 new_waveform_picker_regs->status = 0x00; // 0x18
1064 1091 // new_waveform_picker_regs->delta_snapshot = 0x12800; // 0x1c 296 * 256 = 75776
1065 1092 new_waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c 16 * 256 = 4096
1066 1093 new_waveform_picker_regs->delta_f0 = 0x3f5; // 0x20 *** 1013
1067 1094 new_waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7
1068 1095 new_waveform_picker_regs->delta_f1 = 0x3c0; // 0x28 *** 960
1069 1096 // new_waveform_picker_regs->delta_f2 = 0x12200; // 0x2c *** 74240
1070 1097 new_waveform_picker_regs->delta_f2 = 0xc00; // 0x2c *** 12 * 256 = 2048
1071 1098 new_waveform_picker_regs->nb_data_by_buffer = 0x1802; // 0x30 *** 2048 * 3 + 2
1072 1099 new_waveform_picker_regs->snapshot_param = 0x7ff; // 0x34 *** 2048 -1
1073 1100 new_waveform_picker_regs->start_date = 0x00; // 0x38
1074 1101 }
1075 1102
1076 void reset_new_waveform_picker_regs_alt()
1077 {
1078 new_waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1079 new_waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1080 new_waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1081 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); // 0x0c
1082 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); // 0x10
1083 new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); // 0x14
1084 new_waveform_picker_regs->status = 0x00; // 0x18
1085 new_waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c 16 * 256 = 4096
1086 new_waveform_picker_regs->delta_f0 = 0x19; // 0x20 *** 1013
1087 new_waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7
1088 new_waveform_picker_regs->delta_f1 = 0x19; // 0x28 *** 960
1089 new_waveform_picker_regs->delta_f2 = 0x400; // 0x2c *** 4 * 256 = 1024
1090 new_waveform_picker_regs->nb_data_by_buffer = 0x32; // 0x30 *** 16 * 3 + 2
1091 new_waveform_picker_regs->snapshot_param = 0xf; // 0x34 *** 16 -1
1092 new_waveform_picker_regs->start_date = 0x00; // 0x38
1093 }
1094
1095 1103 //*****************
1096 1104 // local parameters
1097 1105 void set_local_sbm1_nb_cwf_max()
1098 1106 {
1099 1107 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1100 1108 *
1101 1109 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1102 1110 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.\n\n
1103 1111 * (2 snapshots of 2048 points per seconds) * (period of the NORM snashots) - 8 s (duration of the f2 snapshot)
1104 1112 *
1105 1113 */
1106 1114 param_local.local_sbm1_nb_cwf_max = 2 *
1107 1115 (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1108 1116 + parameter_dump_packet.sy_lfr_n_swf_p[1]) - 8; // 16 CWF1 parts during 1 SWF2
1109 1117 }
1110 1118
1111 1119 void set_local_sbm2_nb_cwf_max()
1112 1120 {
1113 1121 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1114 1122 *
1115 1123 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1116 1124 * This parameter is used to send CWF_F2 data as normal data when the SBM2 is active.\n\n
1117 1125 * (period of the NORM snashots) / (8 seconds per snapshot at f2 = 256 Hz)
1118 1126 *
1119 1127 */
1120 1128
1121 1129 param_local.local_sbm2_nb_cwf_max = (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1122 1130 + parameter_dump_packet.sy_lfr_n_swf_p[1]) / 8;
1123 1131 }
1124 1132
1125 1133 void set_local_nb_interrupt_f0_MAX()
1126 1134 {
1127 1135 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1128 1136 *
1129 1137 * This parameter is used for the SM validation only.\n
1130 1138 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1131 1139 * module before launching a basic processing.
1132 1140 *
1133 1141 */
1134 1142
1135 1143 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1136 1144 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1137 1145 }
1138 1146
1139 1147 void reset_local_sbm1_nb_cwf_sent()
1140 1148 {
1141 1149 /** This function resets the value of the sbm1_nb_cwf_sent local parameter.
1142 1150 *
1143 1151 * The sbm1_nb_cwf_sent parameter counts the number of CWF_F1 records that have been sent.\n
1144 1152 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.
1145 1153 *
1146 1154 */
1147 1155
1148 1156 param_local.local_sbm1_nb_cwf_sent = 0;
1149 1157 }
1150 1158
1151 1159 void reset_local_sbm2_nb_cwf_sent()
1152 1160 {
1153 1161 /** This function resets the value of the sbm2_nb_cwf_sent local parameter.
1154 1162 *
1155 1163 * The sbm2_nb_cwf_sent parameter counts the number of CWF_F2 records that have been sent.\n
1156 1164 * This parameter is used to send CWF_F2 data as normal data when the SBM2 mode is active.
1157 1165 *
1158 1166 */
1159 1167
1160 1168 param_local.local_sbm2_nb_cwf_sent = 0;
1161 1169 }
1162 1170
1163 1171 rtems_id get_pkts_queue_id( void )
1164 1172 {
1165 1173 rtems_id queue_id;
1166 1174 rtems_status_code status;
1167 1175 rtems_name queue_send_name;
1168 1176
1169 1177 queue_send_name = rtems_build_name( 'Q', '_', 'S', 'D' );
1170 1178
1171 1179 status = rtems_message_queue_ident( queue_send_name, 0, &queue_id );
1172 1180 if (status != RTEMS_SUCCESSFUL)
1173 1181 {
1174 1182 PRINTF1("in get_pkts_queue_id *** ERR %d\n", status)
1175 1183 }
1176 1184 return queue_id;
1177 1185 }
1186
1187 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1188 {
1189 unsigned short *sequence_cnt;
1190 unsigned short segmentation_grouping_flag;
1191 unsigned short new_packet_sequence_control;
1192
1193 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1194 || (sid ==SID_NORM_CWF_F3) || (sid ==SID_BURST_CWF_F2) )
1195 {
1196 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1197 }
1198 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1199 {
1200 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1201 }
1202 else
1203 {
1204 sequence_cnt = &sequenceCounters_TC_EXE[ UNKNOWN ];
1205 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1206 }
1207
1208 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1209 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1210
1211 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1212
1213 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1214 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1215
1216 // increment the sequence counter for the next packet
1217 if ( *sequence_cnt < SEQ_CNT_MAX)
1218 {
1219 *sequence_cnt = *sequence_cnt + 1;
1220 }
1221 else
1222 {
1223 *sequence_cnt = 0;
1224 }
1225 }
General Comments 0
You need to be logged in to leave comments. Login now