##// END OF EJS Templates
3.0.0.14
paul -
r255:8000c9c61c45 R3a
parent child
Show More
@@ -1,124 +1,124
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options =
3 # CONFIG options =
4 # verbose
4 # verbose
5 # boot_messages
5 # boot_messages
6 # debug_messages
6 # debug_messages
7 # cpu_usage_report
7 # cpu_usage_report
8 # stack_report
8 # stack_report
9 # vhdl_dev
9 # vhdl_dev
10 # debug_tch
10 # debug_tch
11 # lpp_dpu_destid REMOVE BEFORE DELIVERY TO LESIA
11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
12 # debug_watchdog
12 # debug_watchdog
13 CONFIG += console verbose lpp_dpu_destid
13 CONFIG += console verbose lpp_dpu_destid
14 CONFIG -= qt
14 CONFIG -= qt
15
15
16 include(./sparc.pri)
16 include(./sparc.pri)
17
17
18 # flight software version
18 # flight software version
19 SWVERSION=-1-0
19 SWVERSION=-1-0
20 DEFINES += SW_VERSION_N1=3 # major
20 DEFINES += SW_VERSION_N1=3 # major
21 DEFINES += SW_VERSION_N2=0 # minor
21 DEFINES += SW_VERSION_N2=0 # minor
22 DEFINES += SW_VERSION_N3=0 # patch
22 DEFINES += SW_VERSION_N3=0 # patch
23 DEFINES += SW_VERSION_N4=14 # internal
23 DEFINES += SW_VERSION_N4=14 # internal
24
24
25 # <GCOV>
25 # <GCOV>
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
28 # </GCOV>
28 # </GCOV>
29
29
30 # <CHANGE BEFORE FLIGHT>
30 # <CHANGE BEFORE FLIGHT>
31 contains( CONFIG, lpp_dpu_destid ) {
31 contains( CONFIG, lpp_dpu_destid ) {
32 DEFINES += LPP_DPU_DESTID
32 DEFINES += LPP_DPU_DESTID
33 }
33 }
34 # </CHANGE BEFORE FLIGHT>
34 # </CHANGE BEFORE FLIGHT>
35
35
36 contains( CONFIG, debug_tch ) {
36 contains( CONFIG, debug_tch ) {
37 DEFINES += DEBUG_TCH
37 DEFINES += DEBUG_TCH
38 }
38 }
39 DEFINES += MSB_FIRST_TCH
39 DEFINES += MSB_FIRST_TCH
40
40
41 contains( CONFIG, vhdl_dev ) {
41 contains( CONFIG, vhdl_dev ) {
42 DEFINES += VHDL_DEV
42 DEFINES += VHDL_DEV
43 }
43 }
44
44
45 contains( CONFIG, verbose ) {
45 contains( CONFIG, verbose ) {
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
47 }
47 }
48
48
49 contains( CONFIG, debug_messages ) {
49 contains( CONFIG, debug_messages ) {
50 DEFINES += DEBUG_MESSAGES
50 DEFINES += DEBUG_MESSAGES
51 }
51 }
52
52
53 contains( CONFIG, cpu_usage_report ) {
53 contains( CONFIG, cpu_usage_report ) {
54 DEFINES += PRINT_TASK_STATISTICS
54 DEFINES += PRINT_TASK_STATISTICS
55 }
55 }
56
56
57 contains( CONFIG, stack_report ) {
57 contains( CONFIG, stack_report ) {
58 DEFINES += PRINT_STACK_REPORT
58 DEFINES += PRINT_STACK_REPORT
59 }
59 }
60
60
61 contains( CONFIG, boot_messages ) {
61 contains( CONFIG, boot_messages ) {
62 DEFINES += BOOT_MESSAGES
62 DEFINES += BOOT_MESSAGES
63 }
63 }
64
64
65 contains( CONFIG, debug_watchdog ) {
65 contains( CONFIG, debug_watchdog ) {
66 DEFINES += DEBUG_WATCHDOG
66 DEFINES += DEBUG_WATCHDOG
67 }
67 }
68
68
69 #doxygen.target = doxygen
69 #doxygen.target = doxygen
70 #doxygen.commands = doxygen ../doc/Doxyfile
70 #doxygen.commands = doxygen ../doc/Doxyfile
71 #QMAKE_EXTRA_TARGETS += doxygen
71 #QMAKE_EXTRA_TARGETS += doxygen
72
72
73 TARGET = fsw
73 TARGET = fsw
74
74
75 INCLUDEPATH += \
75 INCLUDEPATH += \
76 $${PWD}/../src \
76 $${PWD}/../src \
77 $${PWD}/../header \
77 $${PWD}/../header \
78 $${PWD}/../header/lfr_common_headers \
78 $${PWD}/../header/lfr_common_headers \
79 $${PWD}/../header/processing \
79 $${PWD}/../header/processing \
80 $${PWD}/../LFR_basic-parameters
80 $${PWD}/../LFR_basic-parameters
81
81
82 SOURCES += \
82 SOURCES += \
83 ../src/wf_handler.c \
83 ../src/wf_handler.c \
84 ../src/tc_handler.c \
84 ../src/tc_handler.c \
85 ../src/fsw_misc.c \
85 ../src/fsw_misc.c \
86 ../src/fsw_init.c \
86 ../src/fsw_init.c \
87 ../src/fsw_globals.c \
87 ../src/fsw_globals.c \
88 ../src/fsw_spacewire.c \
88 ../src/fsw_spacewire.c \
89 ../src/tc_load_dump_parameters.c \
89 ../src/tc_load_dump_parameters.c \
90 ../src/tm_lfr_tc_exe.c \
90 ../src/tm_lfr_tc_exe.c \
91 ../src/tc_acceptance.c \
91 ../src/tc_acceptance.c \
92 ../src/processing/fsw_processing.c \
92 ../src/processing/fsw_processing.c \
93 ../src/processing/avf0_prc0.c \
93 ../src/processing/avf0_prc0.c \
94 ../src/processing/avf1_prc1.c \
94 ../src/processing/avf1_prc1.c \
95 ../src/processing/avf2_prc2.c \
95 ../src/processing/avf2_prc2.c \
96 ../src/lfr_cpu_usage_report.c \
96 ../src/lfr_cpu_usage_report.c \
97 ../LFR_basic-parameters/basic_parameters.c
97 ../LFR_basic-parameters/basic_parameters.c
98
98
99 HEADERS += \
99 HEADERS += \
100 ../header/wf_handler.h \
100 ../header/wf_handler.h \
101 ../header/tc_handler.h \
101 ../header/tc_handler.h \
102 ../header/grlib_regs.h \
102 ../header/grlib_regs.h \
103 ../header/fsw_misc.h \
103 ../header/fsw_misc.h \
104 ../header/fsw_init.h \
104 ../header/fsw_init.h \
105 ../header/fsw_spacewire.h \
105 ../header/fsw_spacewire.h \
106 ../header/tc_load_dump_parameters.h \
106 ../header/tc_load_dump_parameters.h \
107 ../header/tm_lfr_tc_exe.h \
107 ../header/tm_lfr_tc_exe.h \
108 ../header/tc_acceptance.h \
108 ../header/tc_acceptance.h \
109 ../header/processing/fsw_processing.h \
109 ../header/processing/fsw_processing.h \
110 ../header/processing/avf0_prc0.h \
110 ../header/processing/avf0_prc0.h \
111 ../header/processing/avf1_prc1.h \
111 ../header/processing/avf1_prc1.h \
112 ../header/processing/avf2_prc2.h \
112 ../header/processing/avf2_prc2.h \
113 ../header/fsw_params_wf_handler.h \
113 ../header/fsw_params_wf_handler.h \
114 ../header/lfr_cpu_usage_report.h \
114 ../header/lfr_cpu_usage_report.h \
115 ../header/lfr_common_headers/ccsds_types.h \
115 ../header/lfr_common_headers/ccsds_types.h \
116 ../header/lfr_common_headers/fsw_params.h \
116 ../header/lfr_common_headers/fsw_params.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
119 ../header/lfr_common_headers/TC_types.h \
119 ../header/lfr_common_headers/TC_types.h \
120 ../header/lfr_common_headers/tm_byte_positions.h \
120 ../header/lfr_common_headers/tm_byte_positions.h \
121 ../LFR_basic-parameters/basic_parameters.h \
121 ../LFR_basic-parameters/basic_parameters.h \
122 ../LFR_basic-parameters/basic_parameters_params.h \
122 ../LFR_basic-parameters/basic_parameters_params.h \
123 ../header/GscMemoryLPP.hpp
123 ../header/GscMemoryLPP.hpp
124
124
@@ -1,1606 +1,1606
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[6];
35 unsigned char time[6];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 status = get_message_queue_id_recv( &queue_rcv_id );
39 status = get_message_queue_id_recv( &queue_rcv_id );
40 if (status != RTEMS_SUCCESSFUL)
40 if (status != RTEMS_SUCCESSFUL)
41 {
41 {
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 }
43 }
44
44
45 status = get_message_queue_id_send( &queue_snd_id );
45 status = get_message_queue_id_send( &queue_snd_id );
46 if (status != RTEMS_SUCCESSFUL)
46 if (status != RTEMS_SUCCESSFUL)
47 {
47 {
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 }
49 }
50
50
51 result = LFR_SUCCESSFUL;
51 result = LFR_SUCCESSFUL;
52 subtype = 0; // subtype of the current TC packet
52 subtype = 0; // subtype of the current TC packet
53
53
54 BOOT_PRINTF("in ACTN *** \n")
54 BOOT_PRINTF("in ACTN *** \n")
55
55
56 while(1)
56 while(1)
57 {
57 {
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 getTime( time ); // set time to the current time
60 getTime( time ); // set time to the current time
61 if (status!=RTEMS_SUCCESSFUL)
61 if (status!=RTEMS_SUCCESSFUL)
62 {
62 {
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 }
64 }
65 else
65 else
66 {
66 {
67 subtype = TC.serviceSubType;
67 subtype = TC.serviceSubType;
68 switch(subtype)
68 switch(subtype)
69 {
69 {
70 case TC_SUBTYPE_RESET:
70 case TC_SUBTYPE_RESET:
71 result = action_reset( &TC, queue_snd_id, time );
71 result = action_reset( &TC, queue_snd_id, time );
72 close_action( &TC, result, queue_snd_id );
72 close_action( &TC, result, queue_snd_id );
73 break;
73 break;
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 case TC_SUBTYPE_LOAD_NORM:
78 case TC_SUBTYPE_LOAD_NORM:
79 result = action_load_normal_par( &TC, queue_snd_id, time );
79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 close_action( &TC, result, queue_snd_id );
80 close_action( &TC, result, queue_snd_id );
81 break;
81 break;
82 case TC_SUBTYPE_LOAD_BURST:
82 case TC_SUBTYPE_LOAD_BURST:
83 result = action_load_burst_par( &TC, queue_snd_id, time );
83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 close_action( &TC, result, queue_snd_id );
84 close_action( &TC, result, queue_snd_id );
85 break;
85 break;
86 case TC_SUBTYPE_LOAD_SBM1:
86 case TC_SUBTYPE_LOAD_SBM1:
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 close_action( &TC, result, queue_snd_id );
88 close_action( &TC, result, queue_snd_id );
89 break;
89 break;
90 case TC_SUBTYPE_LOAD_SBM2:
90 case TC_SUBTYPE_LOAD_SBM2:
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 close_action( &TC, result, queue_snd_id );
92 close_action( &TC, result, queue_snd_id );
93 break;
93 break;
94 case TC_SUBTYPE_DUMP:
94 case TC_SUBTYPE_DUMP:
95 result = action_dump_par( &TC, queue_snd_id );
95 result = action_dump_par( &TC, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 case TC_SUBTYPE_ENTER:
98 case TC_SUBTYPE_ENTER:
99 result = action_enter_mode( &TC, queue_snd_id );
99 result = action_enter_mode( &TC, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
101 break;
101 break;
102 case TC_SUBTYPE_UPDT_INFO:
102 case TC_SUBTYPE_UPDT_INFO:
103 result = action_update_info( &TC, queue_snd_id );
103 result = action_update_info( &TC, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
105 break;
105 break;
106 case TC_SUBTYPE_EN_CAL:
106 case TC_SUBTYPE_EN_CAL:
107 result = action_enable_calibration( &TC, queue_snd_id, time );
107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 close_action( &TC, result, queue_snd_id );
108 close_action( &TC, result, queue_snd_id );
109 break;
109 break;
110 case TC_SUBTYPE_DIS_CAL:
110 case TC_SUBTYPE_DIS_CAL:
111 result = action_disable_calibration( &TC, queue_snd_id, time );
111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 close_action( &TC, result, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
113 break;
113 break;
114 case TC_SUBTYPE_LOAD_K:
114 case TC_SUBTYPE_LOAD_K:
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 case TC_SUBTYPE_DUMP_K:
118 case TC_SUBTYPE_DUMP_K:
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 close_action( &TC, result, queue_snd_id );
120 close_action( &TC, result, queue_snd_id );
121 break;
121 break;
122 case TC_SUBTYPE_LOAD_FBINS:
122 case TC_SUBTYPE_LOAD_FBINS:
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 close_action( &TC, result, queue_snd_id );
124 close_action( &TC, result, queue_snd_id );
125 break;
125 break;
126 case TC_SUBTYPE_UPDT_TIME:
126 case TC_SUBTYPE_UPDT_TIME:
127 result = action_update_time( &TC );
127 result = action_update_time( &TC );
128 close_action( &TC, result, queue_snd_id );
128 close_action( &TC, result, queue_snd_id );
129 break;
129 break;
130 default:
130 default:
131 break;
131 break;
132 }
132 }
133 }
133 }
134 }
134 }
135 }
135 }
136
136
137 //***********
137 //***********
138 // TC ACTIONS
138 // TC ACTIONS
139
139
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 {
141 {
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 *
143 *
144 * @param TC points to the TeleCommand packet that is being processed
144 * @param TC points to the TeleCommand packet that is being processed
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 *
146 *
147 */
147 */
148
148
149 PRINTF("this is the end!!!\n")
149 PRINTF("this is the end!!!\n")
150 exit(0);
150 exit(0);
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 return LFR_DEFAULT;
152 return LFR_DEFAULT;
153 }
153 }
154
154
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 {
156 {
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 *
158 *
159 * @param TC points to the TeleCommand packet that is being processed
159 * @param TC points to the TeleCommand packet that is being processed
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 *
161 *
162 */
162 */
163
163
164 rtems_status_code status;
164 rtems_status_code status;
165 unsigned char requestedMode;
165 unsigned char requestedMode;
166 unsigned int *transitionCoarseTime_ptr;
166 unsigned int *transitionCoarseTime_ptr;
167 unsigned int transitionCoarseTime;
167 unsigned int transitionCoarseTime;
168 unsigned char * bytePosPtr;
168 unsigned char * bytePosPtr;
169
169
170 bytePosPtr = (unsigned char *) &TC->packetID;
170 bytePosPtr = (unsigned char *) &TC->packetID;
171
171
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175
175
176 status = check_mode_value( requestedMode );
176 status = check_mode_value( requestedMode );
177
177
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 {
179 {
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 }
181 }
182
182
183 else // the mode value is valid, check the transition
183 else // the mode value is valid, check the transition
184 {
184 {
185 status = check_mode_transition(requestedMode);
185 status = check_mode_transition(requestedMode);
186 if (status != LFR_SUCCESSFUL)
186 if (status != LFR_SUCCESSFUL)
187 {
187 {
188 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
189 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
190 }
190 }
191 }
191 }
192
192
193 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
193 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
194 {
194 {
195 status = check_transition_date( transitionCoarseTime );
195 status = check_transition_date( transitionCoarseTime );
196 if (status != LFR_SUCCESSFUL)
196 if (status != LFR_SUCCESSFUL)
197 {
197 {
198 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
198 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
199 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
199 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
200 }
200 }
201 }
201 }
202
202
203 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
203 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
204 {
204 {
205 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
205 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
206
206
207 update_last_valid_transition_date( transitionCoarseTime );
207 update_last_valid_transition_date( transitionCoarseTime );
208
208
209 switch(requestedMode)
209 switch(requestedMode)
210 {
210 {
211 case LFR_MODE_STANDBY:
211 case LFR_MODE_STANDBY:
212 status = enter_mode_standby();
212 status = enter_mode_standby();
213 break;
213 break;
214 case LFR_MODE_NORMAL:
214 case LFR_MODE_NORMAL:
215 status = enter_mode_normal( transitionCoarseTime );
215 status = enter_mode_normal( transitionCoarseTime );
216 break;
216 break;
217 case LFR_MODE_BURST:
217 case LFR_MODE_BURST:
218 status = enter_mode_burst( transitionCoarseTime );
218 status = enter_mode_burst( transitionCoarseTime );
219 break;
219 break;
220 case LFR_MODE_SBM1:
220 case LFR_MODE_SBM1:
221 status = enter_mode_sbm1( transitionCoarseTime );
221 status = enter_mode_sbm1( transitionCoarseTime );
222 break;
222 break;
223 case LFR_MODE_SBM2:
223 case LFR_MODE_SBM2:
224 status = enter_mode_sbm2( transitionCoarseTime );
224 status = enter_mode_sbm2( transitionCoarseTime );
225 break;
225 break;
226 default:
226 default:
227 break;
227 break;
228 }
228 }
229 }
229 }
230
230
231 return status;
231 return status;
232 }
232 }
233
233
234 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
234 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
235 {
235 {
236 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
236 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
237 *
237 *
238 * @param TC points to the TeleCommand packet that is being processed
238 * @param TC points to the TeleCommand packet that is being processed
239 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
239 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
240 *
240 *
241 * @return LFR directive status code:
241 * @return LFR directive status code:
242 * - LFR_DEFAULT
242 * - LFR_DEFAULT
243 * - LFR_SUCCESSFUL
243 * - LFR_SUCCESSFUL
244 *
244 *
245 */
245 */
246
246
247 unsigned int val;
247 unsigned int val;
248 int result;
248 int result;
249 unsigned int status;
249 unsigned int status;
250 unsigned char mode;
250 unsigned char mode;
251 unsigned char * bytePosPtr;
251 unsigned char * bytePosPtr;
252
252
253 bytePosPtr = (unsigned char *) &TC->packetID;
253 bytePosPtr = (unsigned char *) &TC->packetID;
254
254
255 // check LFR mode
255 // check LFR mode
256 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
256 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
257 status = check_update_info_hk_lfr_mode( mode );
257 status = check_update_info_hk_lfr_mode( mode );
258 if (status == LFR_SUCCESSFUL) // check TDS mode
258 if (status == LFR_SUCCESSFUL) // check TDS mode
259 {
259 {
260 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
260 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
261 status = check_update_info_hk_tds_mode( mode );
261 status = check_update_info_hk_tds_mode( mode );
262 }
262 }
263 if (status == LFR_SUCCESSFUL) // check THR mode
263 if (status == LFR_SUCCESSFUL) // check THR mode
264 {
264 {
265 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
265 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
266 status = check_update_info_hk_thr_mode( mode );
266 status = check_update_info_hk_thr_mode( mode );
267 }
267 }
268 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
268 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
269 {
269 {
270 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
270 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
271 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
271 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
272 val++;
272 val++;
273 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
273 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
274 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
274 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
275 }
275 }
276
276
277 // pa_bia_status_info
277 // pa_bia_status_info
278 // => pa_bia_mode_mux_set 3 bits
278 // => pa_bia_mode_mux_set 3 bits
279 // => pa_bia_mode_hv_enabled 1 bit
279 // => pa_bia_mode_hv_enabled 1 bit
280 // => pa_bia_mode_bias1_enabled 1 bit
280 // => pa_bia_mode_bias1_enabled 1 bit
281 // => pa_bia_mode_bias2_enabled 1 bit
281 // => pa_bia_mode_bias2_enabled 1 bit
282 // => pa_bia_mode_bias3_enabled 1 bit
282 // => pa_bia_mode_bias3_enabled 1 bit
283 // => pa_bia_on_off (cp_dpu_bias_on_off)
283 // => pa_bia_on_off (cp_dpu_bias_on_off)
284 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
284 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
285 pa_bia_status_info = pa_bia_status_info
285 pa_bia_status_info = pa_bia_status_info
286 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
286 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
287
287
288 result = status;
288 result = status;
289
289
290 return result;
290 return result;
291 }
291 }
292
292
293 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
293 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
294 {
294 {
295 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
295 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
296 *
296 *
297 * @param TC points to the TeleCommand packet that is being processed
297 * @param TC points to the TeleCommand packet that is being processed
298 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
298 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
299 *
299 *
300 */
300 */
301
301
302 int result;
302 int result;
303
303
304 result = LFR_DEFAULT;
304 result = LFR_DEFAULT;
305
305
306 setCalibration( true );
306 setCalibration( true );
307
307
308 result = LFR_SUCCESSFUL;
308 result = LFR_SUCCESSFUL;
309
309
310 return result;
310 return result;
311 }
311 }
312
312
313 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
313 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 {
314 {
315 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
315 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
316 *
316 *
317 * @param TC points to the TeleCommand packet that is being processed
317 * @param TC points to the TeleCommand packet that is being processed
318 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
318 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
319 *
319 *
320 */
320 */
321
321
322 int result;
322 int result;
323
323
324 result = LFR_DEFAULT;
324 result = LFR_DEFAULT;
325
325
326 setCalibration( false );
326 setCalibration( false );
327
327
328 result = LFR_SUCCESSFUL;
328 result = LFR_SUCCESSFUL;
329
329
330 return result;
330 return result;
331 }
331 }
332
332
333 int action_update_time(ccsdsTelecommandPacket_t *TC)
333 int action_update_time(ccsdsTelecommandPacket_t *TC)
334 {
334 {
335 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
335 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
336 *
336 *
337 * @param TC points to the TeleCommand packet that is being processed
337 * @param TC points to the TeleCommand packet that is being processed
338 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
338 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
339 *
339 *
340 * @return LFR_SUCCESSFUL
340 * @return LFR_SUCCESSFUL
341 *
341 *
342 */
342 */
343
343
344 unsigned int val;
344 unsigned int val;
345
345
346 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
346 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
347 + (TC->dataAndCRC[1] << 16)
347 + (TC->dataAndCRC[1] << 16)
348 + (TC->dataAndCRC[2] << 8)
348 + (TC->dataAndCRC[2] << 8)
349 + TC->dataAndCRC[3];
349 + TC->dataAndCRC[3];
350
350
351 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
351 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
352 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
352 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
353 val++;
353 val++;
354 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
354 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
355 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
355 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
356
356
357 return LFR_SUCCESSFUL;
357 return LFR_SUCCESSFUL;
358 }
358 }
359
359
360 //*******************
360 //*******************
361 // ENTERING THE MODES
361 // ENTERING THE MODES
362 int check_mode_value( unsigned char requestedMode )
362 int check_mode_value( unsigned char requestedMode )
363 {
363 {
364 int status;
364 int status;
365
365
366 if ( (requestedMode != LFR_MODE_STANDBY)
366 if ( (requestedMode != LFR_MODE_STANDBY)
367 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
367 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
368 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
368 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
369 {
369 {
370 status = LFR_DEFAULT;
370 status = LFR_DEFAULT;
371 }
371 }
372 else
372 else
373 {
373 {
374 status = LFR_SUCCESSFUL;
374 status = LFR_SUCCESSFUL;
375 }
375 }
376
376
377 return status;
377 return status;
378 }
378 }
379
379
380 int check_mode_transition( unsigned char requestedMode )
380 int check_mode_transition( unsigned char requestedMode )
381 {
381 {
382 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
382 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
383 *
383 *
384 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
384 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
385 *
385 *
386 * @return LFR directive status codes:
386 * @return LFR directive status codes:
387 * - LFR_SUCCESSFUL - the transition is authorized
387 * - LFR_SUCCESSFUL - the transition is authorized
388 * - LFR_DEFAULT - the transition is not authorized
388 * - LFR_DEFAULT - the transition is not authorized
389 *
389 *
390 */
390 */
391
391
392 int status;
392 int status;
393
393
394 switch (requestedMode)
394 switch (requestedMode)
395 {
395 {
396 case LFR_MODE_STANDBY:
396 case LFR_MODE_STANDBY:
397 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
397 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
398 status = LFR_DEFAULT;
398 status = LFR_DEFAULT;
399 }
399 }
400 else
400 else
401 {
401 {
402 status = LFR_SUCCESSFUL;
402 status = LFR_SUCCESSFUL;
403 }
403 }
404 break;
404 break;
405 case LFR_MODE_NORMAL:
405 case LFR_MODE_NORMAL:
406 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
406 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
407 status = LFR_DEFAULT;
407 status = LFR_DEFAULT;
408 }
408 }
409 else {
409 else {
410 status = LFR_SUCCESSFUL;
410 status = LFR_SUCCESSFUL;
411 }
411 }
412 break;
412 break;
413 case LFR_MODE_BURST:
413 case LFR_MODE_BURST:
414 if ( lfrCurrentMode == LFR_MODE_BURST ) {
414 if ( lfrCurrentMode == LFR_MODE_BURST ) {
415 status = LFR_DEFAULT;
415 status = LFR_DEFAULT;
416 }
416 }
417 else {
417 else {
418 status = LFR_SUCCESSFUL;
418 status = LFR_SUCCESSFUL;
419 }
419 }
420 break;
420 break;
421 case LFR_MODE_SBM1:
421 case LFR_MODE_SBM1:
422 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
422 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
423 status = LFR_DEFAULT;
423 status = LFR_DEFAULT;
424 }
424 }
425 else {
425 else {
426 status = LFR_SUCCESSFUL;
426 status = LFR_SUCCESSFUL;
427 }
427 }
428 break;
428 break;
429 case LFR_MODE_SBM2:
429 case LFR_MODE_SBM2:
430 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
430 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
431 status = LFR_DEFAULT;
431 status = LFR_DEFAULT;
432 }
432 }
433 else {
433 else {
434 status = LFR_SUCCESSFUL;
434 status = LFR_SUCCESSFUL;
435 }
435 }
436 break;
436 break;
437 default:
437 default:
438 status = LFR_DEFAULT;
438 status = LFR_DEFAULT;
439 break;
439 break;
440 }
440 }
441
441
442 return status;
442 return status;
443 }
443 }
444
444
445 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
445 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
446 {
446 {
447 lastValidEnterModeTime = transitionCoarseTime;
447 lastValidEnterModeTime = transitionCoarseTime;
448 PRINTF1("lastValidEnterModeTime = %x\n", transitionCoarseTime);
448 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
449 }
449 }
450
450
451 int check_transition_date( unsigned int transitionCoarseTime )
451 int check_transition_date( unsigned int transitionCoarseTime )
452 {
452 {
453 int status;
453 int status;
454 unsigned int localCoarseTime;
454 unsigned int localCoarseTime;
455 unsigned int deltaCoarseTime;
455 unsigned int deltaCoarseTime;
456
456
457 status = LFR_SUCCESSFUL;
457 status = LFR_SUCCESSFUL;
458
458
459 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
459 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
460 {
460 {
461 status = LFR_SUCCESSFUL;
461 status = LFR_SUCCESSFUL;
462 }
462 }
463 else
463 else
464 {
464 {
465 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
465 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
466
466
467 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
467 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
468
468
469 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
469 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
470 {
470 {
471 status = LFR_DEFAULT;
471 status = LFR_DEFAULT;
472 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
472 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
473 }
473 }
474
474
475 if (status == LFR_SUCCESSFUL)
475 if (status == LFR_SUCCESSFUL)
476 {
476 {
477 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
477 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
478 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
478 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
479 {
479 {
480 status = LFR_DEFAULT;
480 status = LFR_DEFAULT;
481 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
481 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
482 }
482 }
483 }
483 }
484 }
484 }
485
485
486 return status;
486 return status;
487 }
487 }
488
488
489 int restart_asm_activities( unsigned char lfrRequestedMode )
489 int restart_asm_activities( unsigned char lfrRequestedMode )
490 {
490 {
491 rtems_status_code status;
491 rtems_status_code status;
492
492
493 status = stop_spectral_matrices();
493 status = stop_spectral_matrices();
494
494
495 status = restart_asm_tasks( lfrRequestedMode );
495 status = restart_asm_tasks( lfrRequestedMode );
496
496
497 launch_spectral_matrix();
497 launch_spectral_matrix();
498
498
499 return status;
499 return status;
500 }
500 }
501
501
502 int stop_spectral_matrices( void )
502 int stop_spectral_matrices( void )
503 {
503 {
504 /** This function stops and restarts the current mode average spectral matrices activities.
504 /** This function stops and restarts the current mode average spectral matrices activities.
505 *
505 *
506 * @return RTEMS directive status codes:
506 * @return RTEMS directive status codes:
507 * - RTEMS_SUCCESSFUL - task restarted successfully
507 * - RTEMS_SUCCESSFUL - task restarted successfully
508 * - RTEMS_INVALID_ID - task id invalid
508 * - RTEMS_INVALID_ID - task id invalid
509 * - RTEMS_ALREADY_SUSPENDED - task already suspended
509 * - RTEMS_ALREADY_SUSPENDED - task already suspended
510 *
510 *
511 */
511 */
512
512
513 rtems_status_code status;
513 rtems_status_code status;
514
514
515 status = RTEMS_SUCCESSFUL;
515 status = RTEMS_SUCCESSFUL;
516
516
517 // (1) mask interruptions
517 // (1) mask interruptions
518 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
518 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
519
519
520 // (2) reset spectral matrices registers
520 // (2) reset spectral matrices registers
521 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
521 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
522 reset_sm_status();
522 reset_sm_status();
523
523
524 // (3) clear interruptions
524 // (3) clear interruptions
525 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
525 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
526
526
527 // suspend several tasks
527 // suspend several tasks
528 if (lfrCurrentMode != LFR_MODE_STANDBY) {
528 if (lfrCurrentMode != LFR_MODE_STANDBY) {
529 status = suspend_asm_tasks();
529 status = suspend_asm_tasks();
530 }
530 }
531
531
532 if (status != RTEMS_SUCCESSFUL)
532 if (status != RTEMS_SUCCESSFUL)
533 {
533 {
534 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
534 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
535 }
535 }
536
536
537 return status;
537 return status;
538 }
538 }
539
539
540 int stop_current_mode( void )
540 int stop_current_mode( void )
541 {
541 {
542 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
542 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
543 *
543 *
544 * @return RTEMS directive status codes:
544 * @return RTEMS directive status codes:
545 * - RTEMS_SUCCESSFUL - task restarted successfully
545 * - RTEMS_SUCCESSFUL - task restarted successfully
546 * - RTEMS_INVALID_ID - task id invalid
546 * - RTEMS_INVALID_ID - task id invalid
547 * - RTEMS_ALREADY_SUSPENDED - task already suspended
547 * - RTEMS_ALREADY_SUSPENDED - task already suspended
548 *
548 *
549 */
549 */
550
550
551 rtems_status_code status;
551 rtems_status_code status;
552
552
553 status = RTEMS_SUCCESSFUL;
553 status = RTEMS_SUCCESSFUL;
554
554
555 // (1) mask interruptions
555 // (1) mask interruptions
556 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
556 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
557 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
557 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
558
558
559 // (2) reset waveform picker registers
559 // (2) reset waveform picker registers
560 reset_wfp_burst_enable(); // reset burst and enable bits
560 reset_wfp_burst_enable(); // reset burst and enable bits
561 reset_wfp_status(); // reset all the status bits
561 reset_wfp_status(); // reset all the status bits
562
562
563 // (3) reset spectral matrices registers
563 // (3) reset spectral matrices registers
564 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
564 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
565 reset_sm_status();
565 reset_sm_status();
566
566
567 // reset lfr VHDL module
567 // reset lfr VHDL module
568 reset_lfr();
568 reset_lfr();
569
569
570 reset_extractSWF(); // reset the extractSWF flag to false
570 reset_extractSWF(); // reset the extractSWF flag to false
571
571
572 // (4) clear interruptions
572 // (4) clear interruptions
573 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
573 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
574 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
574 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
575
575
576 // suspend several tasks
576 // suspend several tasks
577 if (lfrCurrentMode != LFR_MODE_STANDBY) {
577 if (lfrCurrentMode != LFR_MODE_STANDBY) {
578 status = suspend_science_tasks();
578 status = suspend_science_tasks();
579 }
579 }
580
580
581 if (status != RTEMS_SUCCESSFUL)
581 if (status != RTEMS_SUCCESSFUL)
582 {
582 {
583 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
583 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
584 }
584 }
585
585
586 return status;
586 return status;
587 }
587 }
588
588
589 int enter_mode_standby( void )
589 int enter_mode_standby( void )
590 {
590 {
591 /** This function is used to put LFR in the STANDBY mode.
591 /** This function is used to put LFR in the STANDBY mode.
592 *
592 *
593 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
593 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
594 *
594 *
595 * @return RTEMS directive status codes:
595 * @return RTEMS directive status codes:
596 * - RTEMS_SUCCESSFUL - task restarted successfully
596 * - RTEMS_SUCCESSFUL - task restarted successfully
597 * - RTEMS_INVALID_ID - task id invalid
597 * - RTEMS_INVALID_ID - task id invalid
598 * - RTEMS_INCORRECT_STATE - task never started
598 * - RTEMS_INCORRECT_STATE - task never started
599 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
599 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
600 *
600 *
601 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
601 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
602 * is immediate.
602 * is immediate.
603 *
603 *
604 */
604 */
605
605
606 int status;
606 int status;
607
607
608 status = stop_current_mode(); // STOP THE CURRENT MODE
608 status = stop_current_mode(); // STOP THE CURRENT MODE
609
609
610 #ifdef PRINT_TASK_STATISTICS
610 #ifdef PRINT_TASK_STATISTICS
611 rtems_cpu_usage_report();
611 rtems_cpu_usage_report();
612 #endif
612 #endif
613
613
614 #ifdef PRINT_STACK_REPORT
614 #ifdef PRINT_STACK_REPORT
615 PRINTF("stack report selected\n")
615 PRINTF("stack report selected\n")
616 rtems_stack_checker_report_usage();
616 rtems_stack_checker_report_usage();
617 #endif
617 #endif
618
618
619 return status;
619 return status;
620 }
620 }
621
621
622 int enter_mode_normal( unsigned int transitionCoarseTime )
622 int enter_mode_normal( unsigned int transitionCoarseTime )
623 {
623 {
624 /** This function is used to start the NORMAL mode.
624 /** This function is used to start the NORMAL mode.
625 *
625 *
626 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
626 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
627 *
627 *
628 * @return RTEMS directive status codes:
628 * @return RTEMS directive status codes:
629 * - RTEMS_SUCCESSFUL - task restarted successfully
629 * - RTEMS_SUCCESSFUL - task restarted successfully
630 * - RTEMS_INVALID_ID - task id invalid
630 * - RTEMS_INVALID_ID - task id invalid
631 * - RTEMS_INCORRECT_STATE - task never started
631 * - RTEMS_INCORRECT_STATE - task never started
632 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
632 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
633 *
633 *
634 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
634 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
635 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
635 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
636 *
636 *
637 */
637 */
638
638
639 int status;
639 int status;
640
640
641 #ifdef PRINT_TASK_STATISTICS
641 #ifdef PRINT_TASK_STATISTICS
642 rtems_cpu_usage_reset();
642 rtems_cpu_usage_reset();
643 #endif
643 #endif
644
644
645 status = RTEMS_UNSATISFIED;
645 status = RTEMS_UNSATISFIED;
646
646
647 switch( lfrCurrentMode )
647 switch( lfrCurrentMode )
648 {
648 {
649 case LFR_MODE_STANDBY:
649 case LFR_MODE_STANDBY:
650 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
650 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
651 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
651 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
652 {
652 {
653 launch_spectral_matrix( );
653 launch_spectral_matrix( );
654 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
654 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
655 }
655 }
656 break;
656 break;
657 case LFR_MODE_BURST:
657 case LFR_MODE_BURST:
658 status = stop_current_mode(); // stop the current mode
658 status = stop_current_mode(); // stop the current mode
659 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
659 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
660 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
660 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
661 {
661 {
662 launch_spectral_matrix( );
662 launch_spectral_matrix( );
663 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
663 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
664 }
664 }
665 break;
665 break;
666 case LFR_MODE_SBM1:
666 case LFR_MODE_SBM1:
667 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
667 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
668 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
668 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
669 break;
669 break;
670 case LFR_MODE_SBM2:
670 case LFR_MODE_SBM2:
671 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
671 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
672 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
672 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
673 break;
673 break;
674 default:
674 default:
675 break;
675 break;
676 }
676 }
677
677
678 if (status != RTEMS_SUCCESSFUL)
678 if (status != RTEMS_SUCCESSFUL)
679 {
679 {
680 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
680 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
681 status = RTEMS_UNSATISFIED;
681 status = RTEMS_UNSATISFIED;
682 }
682 }
683
683
684 return status;
684 return status;
685 }
685 }
686
686
687 int enter_mode_burst( unsigned int transitionCoarseTime )
687 int enter_mode_burst( unsigned int transitionCoarseTime )
688 {
688 {
689 /** This function is used to start the BURST mode.
689 /** This function is used to start the BURST mode.
690 *
690 *
691 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
691 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
692 *
692 *
693 * @return RTEMS directive status codes:
693 * @return RTEMS directive status codes:
694 * - RTEMS_SUCCESSFUL - task restarted successfully
694 * - RTEMS_SUCCESSFUL - task restarted successfully
695 * - RTEMS_INVALID_ID - task id invalid
695 * - RTEMS_INVALID_ID - task id invalid
696 * - RTEMS_INCORRECT_STATE - task never started
696 * - RTEMS_INCORRECT_STATE - task never started
697 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
697 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
698 *
698 *
699 * The way the BURST mode is started does not depend on the LFR current mode.
699 * The way the BURST mode is started does not depend on the LFR current mode.
700 *
700 *
701 */
701 */
702
702
703
703
704 int status;
704 int status;
705
705
706 #ifdef PRINT_TASK_STATISTICS
706 #ifdef PRINT_TASK_STATISTICS
707 rtems_cpu_usage_reset();
707 rtems_cpu_usage_reset();
708 #endif
708 #endif
709
709
710 status = stop_current_mode(); // stop the current mode
710 status = stop_current_mode(); // stop the current mode
711 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
711 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
712 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
712 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
713 {
713 {
714 launch_spectral_matrix( );
714 launch_spectral_matrix( );
715 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
715 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
716 }
716 }
717
717
718 if (status != RTEMS_SUCCESSFUL)
718 if (status != RTEMS_SUCCESSFUL)
719 {
719 {
720 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
720 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
721 status = RTEMS_UNSATISFIED;
721 status = RTEMS_UNSATISFIED;
722 }
722 }
723
723
724 return status;
724 return status;
725 }
725 }
726
726
727 int enter_mode_sbm1( unsigned int transitionCoarseTime )
727 int enter_mode_sbm1( unsigned int transitionCoarseTime )
728 {
728 {
729 /** This function is used to start the SBM1 mode.
729 /** This function is used to start the SBM1 mode.
730 *
730 *
731 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
731 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
732 *
732 *
733 * @return RTEMS directive status codes:
733 * @return RTEMS directive status codes:
734 * - RTEMS_SUCCESSFUL - task restarted successfully
734 * - RTEMS_SUCCESSFUL - task restarted successfully
735 * - RTEMS_INVALID_ID - task id invalid
735 * - RTEMS_INVALID_ID - task id invalid
736 * - RTEMS_INCORRECT_STATE - task never started
736 * - RTEMS_INCORRECT_STATE - task never started
737 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
737 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
738 *
738 *
739 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
739 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
740 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
740 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
741 * cases, the acquisition is completely restarted.
741 * cases, the acquisition is completely restarted.
742 *
742 *
743 */
743 */
744
744
745 int status;
745 int status;
746
746
747 #ifdef PRINT_TASK_STATISTICS
747 #ifdef PRINT_TASK_STATISTICS
748 rtems_cpu_usage_reset();
748 rtems_cpu_usage_reset();
749 #endif
749 #endif
750
750
751 status = RTEMS_UNSATISFIED;
751 status = RTEMS_UNSATISFIED;
752
752
753 switch( lfrCurrentMode )
753 switch( lfrCurrentMode )
754 {
754 {
755 case LFR_MODE_STANDBY:
755 case LFR_MODE_STANDBY:
756 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
756 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
757 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
757 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
758 {
758 {
759 launch_spectral_matrix( );
759 launch_spectral_matrix( );
760 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
760 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
761 }
761 }
762 break;
762 break;
763 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
763 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
764 restart_asm_activities( LFR_MODE_SBM1 );
764 restart_asm_activities( LFR_MODE_SBM1 );
765 status = LFR_SUCCESSFUL;
765 status = LFR_SUCCESSFUL;
766 break;
766 break;
767 case LFR_MODE_BURST:
767 case LFR_MODE_BURST:
768 status = stop_current_mode(); // stop the current mode
768 status = stop_current_mode(); // stop the current mode
769 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
769 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
770 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
770 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
771 {
771 {
772 launch_spectral_matrix( );
772 launch_spectral_matrix( );
773 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
773 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
774 }
774 }
775 break;
775 break;
776 case LFR_MODE_SBM2:
776 case LFR_MODE_SBM2:
777 restart_asm_activities( LFR_MODE_SBM1 );
777 restart_asm_activities( LFR_MODE_SBM1 );
778 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
778 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
779 break;
779 break;
780 default:
780 default:
781 break;
781 break;
782 }
782 }
783
783
784 if (status != RTEMS_SUCCESSFUL)
784 if (status != RTEMS_SUCCESSFUL)
785 {
785 {
786 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status)
786 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status)
787 status = RTEMS_UNSATISFIED;
787 status = RTEMS_UNSATISFIED;
788 }
788 }
789
789
790 return status;
790 return status;
791 }
791 }
792
792
793 int enter_mode_sbm2( unsigned int transitionCoarseTime )
793 int enter_mode_sbm2( unsigned int transitionCoarseTime )
794 {
794 {
795 /** This function is used to start the SBM2 mode.
795 /** This function is used to start the SBM2 mode.
796 *
796 *
797 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
797 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
798 *
798 *
799 * @return RTEMS directive status codes:
799 * @return RTEMS directive status codes:
800 * - RTEMS_SUCCESSFUL - task restarted successfully
800 * - RTEMS_SUCCESSFUL - task restarted successfully
801 * - RTEMS_INVALID_ID - task id invalid
801 * - RTEMS_INVALID_ID - task id invalid
802 * - RTEMS_INCORRECT_STATE - task never started
802 * - RTEMS_INCORRECT_STATE - task never started
803 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
803 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
804 *
804 *
805 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
805 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
806 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
806 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
807 * cases, the acquisition is completely restarted.
807 * cases, the acquisition is completely restarted.
808 *
808 *
809 */
809 */
810
810
811 int status;
811 int status;
812
812
813 #ifdef PRINT_TASK_STATISTICS
813 #ifdef PRINT_TASK_STATISTICS
814 rtems_cpu_usage_reset();
814 rtems_cpu_usage_reset();
815 #endif
815 #endif
816
816
817 status = RTEMS_UNSATISFIED;
817 status = RTEMS_UNSATISFIED;
818
818
819 switch( lfrCurrentMode )
819 switch( lfrCurrentMode )
820 {
820 {
821 case LFR_MODE_STANDBY:
821 case LFR_MODE_STANDBY:
822 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
822 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
823 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
823 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
824 {
824 {
825 launch_spectral_matrix( );
825 launch_spectral_matrix( );
826 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
826 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
827 }
827 }
828 break;
828 break;
829 case LFR_MODE_NORMAL:
829 case LFR_MODE_NORMAL:
830 restart_asm_activities( LFR_MODE_SBM2 );
830 restart_asm_activities( LFR_MODE_SBM2 );
831 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
831 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
832 break;
832 break;
833 case LFR_MODE_BURST:
833 case LFR_MODE_BURST:
834 status = stop_current_mode(); // stop the current mode
834 status = stop_current_mode(); // stop the current mode
835 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
835 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
836 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
836 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
837 {
837 {
838 launch_spectral_matrix( );
838 launch_spectral_matrix( );
839 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
839 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
840 }
840 }
841 break;
841 break;
842 case LFR_MODE_SBM1:
842 case LFR_MODE_SBM1:
843 restart_asm_activities( LFR_MODE_SBM2 );
843 restart_asm_activities( LFR_MODE_SBM2 );
844 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
844 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
845 break;
845 break;
846 default:
846 default:
847 break;
847 break;
848 }
848 }
849
849
850 if (status != RTEMS_SUCCESSFUL)
850 if (status != RTEMS_SUCCESSFUL)
851 {
851 {
852 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
852 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
853 status = RTEMS_UNSATISFIED;
853 status = RTEMS_UNSATISFIED;
854 }
854 }
855
855
856 return status;
856 return status;
857 }
857 }
858
858
859 int restart_science_tasks( unsigned char lfrRequestedMode )
859 int restart_science_tasks( unsigned char lfrRequestedMode )
860 {
860 {
861 /** This function is used to restart all science tasks.
861 /** This function is used to restart all science tasks.
862 *
862 *
863 * @return RTEMS directive status codes:
863 * @return RTEMS directive status codes:
864 * - RTEMS_SUCCESSFUL - task restarted successfully
864 * - RTEMS_SUCCESSFUL - task restarted successfully
865 * - RTEMS_INVALID_ID - task id invalid
865 * - RTEMS_INVALID_ID - task id invalid
866 * - RTEMS_INCORRECT_STATE - task never started
866 * - RTEMS_INCORRECT_STATE - task never started
867 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
867 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
868 *
868 *
869 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
869 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
870 *
870 *
871 */
871 */
872
872
873 rtems_status_code status[10];
873 rtems_status_code status[10];
874 rtems_status_code ret;
874 rtems_status_code ret;
875
875
876 ret = RTEMS_SUCCESSFUL;
876 ret = RTEMS_SUCCESSFUL;
877
877
878 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
878 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
879 if (status[0] != RTEMS_SUCCESSFUL)
879 if (status[0] != RTEMS_SUCCESSFUL)
880 {
880 {
881 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
881 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
882 }
882 }
883
883
884 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
884 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
885 if (status[1] != RTEMS_SUCCESSFUL)
885 if (status[1] != RTEMS_SUCCESSFUL)
886 {
886 {
887 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
887 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
888 }
888 }
889
889
890 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
890 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
891 if (status[2] != RTEMS_SUCCESSFUL)
891 if (status[2] != RTEMS_SUCCESSFUL)
892 {
892 {
893 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
893 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
894 }
894 }
895
895
896 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
896 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
897 if (status[3] != RTEMS_SUCCESSFUL)
897 if (status[3] != RTEMS_SUCCESSFUL)
898 {
898 {
899 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
899 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
900 }
900 }
901
901
902 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
902 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
903 if (status[4] != RTEMS_SUCCESSFUL)
903 if (status[4] != RTEMS_SUCCESSFUL)
904 {
904 {
905 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
905 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
906 }
906 }
907
907
908 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
908 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
909 if (status[5] != RTEMS_SUCCESSFUL)
909 if (status[5] != RTEMS_SUCCESSFUL)
910 {
910 {
911 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
911 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
912 }
912 }
913
913
914 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
914 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
915 if (status[6] != RTEMS_SUCCESSFUL)
915 if (status[6] != RTEMS_SUCCESSFUL)
916 {
916 {
917 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
917 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
918 }
918 }
919
919
920 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
920 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
921 if (status[7] != RTEMS_SUCCESSFUL)
921 if (status[7] != RTEMS_SUCCESSFUL)
922 {
922 {
923 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
923 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
924 }
924 }
925
925
926 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
926 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
927 if (status[8] != RTEMS_SUCCESSFUL)
927 if (status[8] != RTEMS_SUCCESSFUL)
928 {
928 {
929 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
929 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
930 }
930 }
931
931
932 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
932 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
933 if (status[9] != RTEMS_SUCCESSFUL)
933 if (status[9] != RTEMS_SUCCESSFUL)
934 {
934 {
935 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
935 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
936 }
936 }
937
937
938 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
938 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
939 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
939 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
940 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
940 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
941 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
941 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
942 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
942 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
943 {
943 {
944 ret = RTEMS_UNSATISFIED;
944 ret = RTEMS_UNSATISFIED;
945 }
945 }
946
946
947 return ret;
947 return ret;
948 }
948 }
949
949
950 int restart_asm_tasks( unsigned char lfrRequestedMode )
950 int restart_asm_tasks( unsigned char lfrRequestedMode )
951 {
951 {
952 /** This function is used to restart average spectral matrices tasks.
952 /** This function is used to restart average spectral matrices tasks.
953 *
953 *
954 * @return RTEMS directive status codes:
954 * @return RTEMS directive status codes:
955 * - RTEMS_SUCCESSFUL - task restarted successfully
955 * - RTEMS_SUCCESSFUL - task restarted successfully
956 * - RTEMS_INVALID_ID - task id invalid
956 * - RTEMS_INVALID_ID - task id invalid
957 * - RTEMS_INCORRECT_STATE - task never started
957 * - RTEMS_INCORRECT_STATE - task never started
958 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
958 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
959 *
959 *
960 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
960 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
961 *
961 *
962 */
962 */
963
963
964 rtems_status_code status[6];
964 rtems_status_code status[6];
965 rtems_status_code ret;
965 rtems_status_code ret;
966
966
967 ret = RTEMS_SUCCESSFUL;
967 ret = RTEMS_SUCCESSFUL;
968
968
969 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
969 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
970 if (status[0] != RTEMS_SUCCESSFUL)
970 if (status[0] != RTEMS_SUCCESSFUL)
971 {
971 {
972 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
972 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
973 }
973 }
974
974
975 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
975 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
976 if (status[1] != RTEMS_SUCCESSFUL)
976 if (status[1] != RTEMS_SUCCESSFUL)
977 {
977 {
978 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
978 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
979 }
979 }
980
980
981 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
981 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
982 if (status[2] != RTEMS_SUCCESSFUL)
982 if (status[2] != RTEMS_SUCCESSFUL)
983 {
983 {
984 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
984 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
985 }
985 }
986
986
987 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
987 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
988 if (status[3] != RTEMS_SUCCESSFUL)
988 if (status[3] != RTEMS_SUCCESSFUL)
989 {
989 {
990 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
990 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
991 }
991 }
992
992
993 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
993 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
994 if (status[4] != RTEMS_SUCCESSFUL)
994 if (status[4] != RTEMS_SUCCESSFUL)
995 {
995 {
996 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
996 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
997 }
997 }
998
998
999 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
999 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1000 if (status[5] != RTEMS_SUCCESSFUL)
1000 if (status[5] != RTEMS_SUCCESSFUL)
1001 {
1001 {
1002 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
1002 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
1003 }
1003 }
1004
1004
1005 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
1005 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
1006 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
1006 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
1007 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
1007 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
1008 {
1008 {
1009 ret = RTEMS_UNSATISFIED;
1009 ret = RTEMS_UNSATISFIED;
1010 }
1010 }
1011
1011
1012 return ret;
1012 return ret;
1013 }
1013 }
1014
1014
1015 int suspend_science_tasks( void )
1015 int suspend_science_tasks( void )
1016 {
1016 {
1017 /** This function suspends the science tasks.
1017 /** This function suspends the science tasks.
1018 *
1018 *
1019 * @return RTEMS directive status codes:
1019 * @return RTEMS directive status codes:
1020 * - RTEMS_SUCCESSFUL - task restarted successfully
1020 * - RTEMS_SUCCESSFUL - task restarted successfully
1021 * - RTEMS_INVALID_ID - task id invalid
1021 * - RTEMS_INVALID_ID - task id invalid
1022 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1022 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1023 *
1023 *
1024 */
1024 */
1025
1025
1026 rtems_status_code status;
1026 rtems_status_code status;
1027
1027
1028 PRINTF("in suspend_science_tasks\n")
1028 PRINTF("in suspend_science_tasks\n")
1029
1029
1030 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1030 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1031 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1031 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1032 {
1032 {
1033 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1033 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1034 }
1034 }
1035 else
1035 else
1036 {
1036 {
1037 status = RTEMS_SUCCESSFUL;
1037 status = RTEMS_SUCCESSFUL;
1038 }
1038 }
1039 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1039 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1040 {
1040 {
1041 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1041 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1042 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1042 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1043 {
1043 {
1044 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1044 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1045 }
1045 }
1046 else
1046 else
1047 {
1047 {
1048 status = RTEMS_SUCCESSFUL;
1048 status = RTEMS_SUCCESSFUL;
1049 }
1049 }
1050 }
1050 }
1051 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1051 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1052 {
1052 {
1053 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1053 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1054 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1054 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1055 {
1055 {
1056 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1056 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1057 }
1057 }
1058 else
1058 else
1059 {
1059 {
1060 status = RTEMS_SUCCESSFUL;
1060 status = RTEMS_SUCCESSFUL;
1061 }
1061 }
1062 }
1062 }
1063 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1063 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1064 {
1064 {
1065 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1065 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1066 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1066 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1067 {
1067 {
1068 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1068 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1069 }
1069 }
1070 else
1070 else
1071 {
1071 {
1072 status = RTEMS_SUCCESSFUL;
1072 status = RTEMS_SUCCESSFUL;
1073 }
1073 }
1074 }
1074 }
1075 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1075 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1076 {
1076 {
1077 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1077 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1078 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1078 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1079 {
1079 {
1080 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1080 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1081 }
1081 }
1082 else
1082 else
1083 {
1083 {
1084 status = RTEMS_SUCCESSFUL;
1084 status = RTEMS_SUCCESSFUL;
1085 }
1085 }
1086 }
1086 }
1087 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1087 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1088 {
1088 {
1089 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1089 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1090 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1090 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1091 {
1091 {
1092 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1092 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1093 }
1093 }
1094 else
1094 else
1095 {
1095 {
1096 status = RTEMS_SUCCESSFUL;
1096 status = RTEMS_SUCCESSFUL;
1097 }
1097 }
1098 }
1098 }
1099 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1099 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1100 {
1100 {
1101 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1101 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1102 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1102 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1103 {
1103 {
1104 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1104 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1105 }
1105 }
1106 else
1106 else
1107 {
1107 {
1108 status = RTEMS_SUCCESSFUL;
1108 status = RTEMS_SUCCESSFUL;
1109 }
1109 }
1110 }
1110 }
1111 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1111 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1112 {
1112 {
1113 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1113 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1114 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1114 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1115 {
1115 {
1116 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1116 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1117 }
1117 }
1118 else
1118 else
1119 {
1119 {
1120 status = RTEMS_SUCCESSFUL;
1120 status = RTEMS_SUCCESSFUL;
1121 }
1121 }
1122 }
1122 }
1123 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1123 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1124 {
1124 {
1125 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1125 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1126 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1126 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1127 {
1127 {
1128 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1128 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1129 }
1129 }
1130 else
1130 else
1131 {
1131 {
1132 status = RTEMS_SUCCESSFUL;
1132 status = RTEMS_SUCCESSFUL;
1133 }
1133 }
1134 }
1134 }
1135 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1135 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1136 {
1136 {
1137 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1137 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1138 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1138 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1139 {
1139 {
1140 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1140 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1141 }
1141 }
1142 else
1142 else
1143 {
1143 {
1144 status = RTEMS_SUCCESSFUL;
1144 status = RTEMS_SUCCESSFUL;
1145 }
1145 }
1146 }
1146 }
1147
1147
1148 return status;
1148 return status;
1149 }
1149 }
1150
1150
1151 int suspend_asm_tasks( void )
1151 int suspend_asm_tasks( void )
1152 {
1152 {
1153 /** This function suspends the science tasks.
1153 /** This function suspends the science tasks.
1154 *
1154 *
1155 * @return RTEMS directive status codes:
1155 * @return RTEMS directive status codes:
1156 * - RTEMS_SUCCESSFUL - task restarted successfully
1156 * - RTEMS_SUCCESSFUL - task restarted successfully
1157 * - RTEMS_INVALID_ID - task id invalid
1157 * - RTEMS_INVALID_ID - task id invalid
1158 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1158 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1159 *
1159 *
1160 */
1160 */
1161
1161
1162 rtems_status_code status;
1162 rtems_status_code status;
1163
1163
1164 PRINTF("in suspend_science_tasks\n")
1164 PRINTF("in suspend_science_tasks\n")
1165
1165
1166 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1166 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1167 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1167 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1168 {
1168 {
1169 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1169 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1170 }
1170 }
1171 else
1171 else
1172 {
1172 {
1173 status = RTEMS_SUCCESSFUL;
1173 status = RTEMS_SUCCESSFUL;
1174 }
1174 }
1175
1175
1176 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1176 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1177 {
1177 {
1178 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1178 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1179 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1179 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1180 {
1180 {
1181 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1181 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1182 }
1182 }
1183 else
1183 else
1184 {
1184 {
1185 status = RTEMS_SUCCESSFUL;
1185 status = RTEMS_SUCCESSFUL;
1186 }
1186 }
1187 }
1187 }
1188
1188
1189 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1189 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1190 {
1190 {
1191 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1191 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1192 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1192 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1193 {
1193 {
1194 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1194 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1195 }
1195 }
1196 else
1196 else
1197 {
1197 {
1198 status = RTEMS_SUCCESSFUL;
1198 status = RTEMS_SUCCESSFUL;
1199 }
1199 }
1200 }
1200 }
1201
1201
1202 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1202 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1203 {
1203 {
1204 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1204 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1205 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1205 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1206 {
1206 {
1207 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1207 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1208 }
1208 }
1209 else
1209 else
1210 {
1210 {
1211 status = RTEMS_SUCCESSFUL;
1211 status = RTEMS_SUCCESSFUL;
1212 }
1212 }
1213 }
1213 }
1214
1214
1215 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1215 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1216 {
1216 {
1217 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1217 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1218 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1218 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1219 {
1219 {
1220 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1220 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1221 }
1221 }
1222 else
1222 else
1223 {
1223 {
1224 status = RTEMS_SUCCESSFUL;
1224 status = RTEMS_SUCCESSFUL;
1225 }
1225 }
1226 }
1226 }
1227
1227
1228 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1228 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1229 {
1229 {
1230 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1230 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1231 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1231 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1232 {
1232 {
1233 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1233 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1234 }
1234 }
1235 else
1235 else
1236 {
1236 {
1237 status = RTEMS_SUCCESSFUL;
1237 status = RTEMS_SUCCESSFUL;
1238 }
1238 }
1239 }
1239 }
1240
1240
1241 return status;
1241 return status;
1242 }
1242 }
1243
1243
1244 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1244 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1245 {
1245 {
1246 WFP_reset_current_ring_nodes();
1246 WFP_reset_current_ring_nodes();
1247
1247
1248 reset_waveform_picker_regs();
1248 reset_waveform_picker_regs();
1249
1249
1250 set_wfp_burst_enable_register( mode );
1250 set_wfp_burst_enable_register( mode );
1251
1251
1252 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1252 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1253 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1253 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1254
1254
1255 if (transitionCoarseTime == 0)
1255 if (transitionCoarseTime == 0)
1256 {
1256 {
1257 // instant transition means transition on the next valid date
1257 // instant transition means transition on the next valid date
1258 // this is mandatory to have a good snapshot period a a good correction of the snapshot period
1258 // this is mandatory to have a good snapshot period a a good correction of the snapshot period
1259 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1259 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1260 }
1260 }
1261 else
1261 else
1262 {
1262 {
1263 waveform_picker_regs->start_date = transitionCoarseTime;
1263 waveform_picker_regs->start_date = transitionCoarseTime;
1264 }
1264 }
1265
1265
1266 }
1266 }
1267
1267
1268 void launch_spectral_matrix( void )
1268 void launch_spectral_matrix( void )
1269 {
1269 {
1270 SM_reset_current_ring_nodes();
1270 SM_reset_current_ring_nodes();
1271
1271
1272 reset_spectral_matrix_regs();
1272 reset_spectral_matrix_regs();
1273
1273
1274 reset_nb_sm();
1274 reset_nb_sm();
1275
1275
1276 set_sm_irq_onNewMatrix( 1 );
1276 set_sm_irq_onNewMatrix( 1 );
1277
1277
1278 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1278 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1279 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1279 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1280
1280
1281 }
1281 }
1282
1282
1283 void set_sm_irq_onNewMatrix( unsigned char value )
1283 void set_sm_irq_onNewMatrix( unsigned char value )
1284 {
1284 {
1285 if (value == 1)
1285 if (value == 1)
1286 {
1286 {
1287 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1287 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1288 }
1288 }
1289 else
1289 else
1290 {
1290 {
1291 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1291 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1292 }
1292 }
1293 }
1293 }
1294
1294
1295 void set_sm_irq_onError( unsigned char value )
1295 void set_sm_irq_onError( unsigned char value )
1296 {
1296 {
1297 if (value == 1)
1297 if (value == 1)
1298 {
1298 {
1299 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1299 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1300 }
1300 }
1301 else
1301 else
1302 {
1302 {
1303 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1303 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1304 }
1304 }
1305 }
1305 }
1306
1306
1307 //*****************************
1307 //*****************************
1308 // CONFIGURE CALIBRATION SIGNAL
1308 // CONFIGURE CALIBRATION SIGNAL
1309 void setCalibrationPrescaler( unsigned int prescaler )
1309 void setCalibrationPrescaler( unsigned int prescaler )
1310 {
1310 {
1311 // prescaling of the master clock (25 MHz)
1311 // prescaling of the master clock (25 MHz)
1312 // master clock is divided by 2^prescaler
1312 // master clock is divided by 2^prescaler
1313 time_management_regs->calPrescaler = prescaler;
1313 time_management_regs->calPrescaler = prescaler;
1314 }
1314 }
1315
1315
1316 void setCalibrationDivisor( unsigned int divisionFactor )
1316 void setCalibrationDivisor( unsigned int divisionFactor )
1317 {
1317 {
1318 // division of the prescaled clock by the division factor
1318 // division of the prescaled clock by the division factor
1319 time_management_regs->calDivisor = divisionFactor;
1319 time_management_regs->calDivisor = divisionFactor;
1320 }
1320 }
1321
1321
1322 void setCalibrationData( void ){
1322 void setCalibrationData( void ){
1323 unsigned int k;
1323 unsigned int k;
1324 unsigned short data;
1324 unsigned short data;
1325 float val;
1325 float val;
1326 float f0;
1326 float f0;
1327 float f1;
1327 float f1;
1328 float fs;
1328 float fs;
1329 float Ts;
1329 float Ts;
1330 float scaleFactor;
1330 float scaleFactor;
1331
1331
1332 f0 = 625;
1332 f0 = 625;
1333 f1 = 10000;
1333 f1 = 10000;
1334 fs = 160256.410;
1334 fs = 160256.410;
1335 Ts = 1. / fs;
1335 Ts = 1. / fs;
1336 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1336 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1337
1337
1338 time_management_regs->calDataPtr = 0x00;
1338 time_management_regs->calDataPtr = 0x00;
1339
1339
1340 // build the signal for the SCM calibration
1340 // build the signal for the SCM calibration
1341 for (k=0; k<256; k++)
1341 for (k=0; k<256; k++)
1342 {
1342 {
1343 val = sin( 2 * pi * f0 * k * Ts )
1343 val = sin( 2 * pi * f0 * k * Ts )
1344 + sin( 2 * pi * f1 * k * Ts );
1344 + sin( 2 * pi * f1 * k * Ts );
1345 data = (unsigned short) ((val * scaleFactor) + 2048);
1345 data = (unsigned short) ((val * scaleFactor) + 2048);
1346 time_management_regs->calData = data & 0xfff;
1346 time_management_regs->calData = data & 0xfff;
1347 }
1347 }
1348 }
1348 }
1349
1349
1350 void setCalibrationDataInterleaved( void ){
1350 void setCalibrationDataInterleaved( void ){
1351 unsigned int k;
1351 unsigned int k;
1352 float val;
1352 float val;
1353 float f0;
1353 float f0;
1354 float f1;
1354 float f1;
1355 float fs;
1355 float fs;
1356 float Ts;
1356 float Ts;
1357 unsigned short data[384];
1357 unsigned short data[384];
1358 unsigned char *dataPtr;
1358 unsigned char *dataPtr;
1359
1359
1360 f0 = 625;
1360 f0 = 625;
1361 f1 = 10000;
1361 f1 = 10000;
1362 fs = 240384.615;
1362 fs = 240384.615;
1363 Ts = 1. / fs;
1363 Ts = 1. / fs;
1364
1364
1365 time_management_regs->calDataPtr = 0x00;
1365 time_management_regs->calDataPtr = 0x00;
1366
1366
1367 // build the signal for the SCM calibration
1367 // build the signal for the SCM calibration
1368 for (k=0; k<384; k++)
1368 for (k=0; k<384; k++)
1369 {
1369 {
1370 val = sin( 2 * pi * f0 * k * Ts )
1370 val = sin( 2 * pi * f0 * k * Ts )
1371 + sin( 2 * pi * f1 * k * Ts );
1371 + sin( 2 * pi * f1 * k * Ts );
1372 data[k] = (unsigned short) (val * 512 + 2048);
1372 data[k] = (unsigned short) (val * 512 + 2048);
1373 }
1373 }
1374
1374
1375 // write the signal in interleaved mode
1375 // write the signal in interleaved mode
1376 for (k=0; k<128; k++)
1376 for (k=0; k<128; k++)
1377 {
1377 {
1378 dataPtr = (unsigned char*) &data[k*3 + 2];
1378 dataPtr = (unsigned char*) &data[k*3 + 2];
1379 time_management_regs->calData = (data[k*3] & 0xfff)
1379 time_management_regs->calData = (data[k*3] & 0xfff)
1380 + ( (dataPtr[0] & 0x3f) << 12);
1380 + ( (dataPtr[0] & 0x3f) << 12);
1381 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1381 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1382 + ( (dataPtr[1] & 0x3f) << 12);
1382 + ( (dataPtr[1] & 0x3f) << 12);
1383 }
1383 }
1384 }
1384 }
1385
1385
1386 void setCalibrationReload( bool state)
1386 void setCalibrationReload( bool state)
1387 {
1387 {
1388 if (state == true)
1388 if (state == true)
1389 {
1389 {
1390 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1390 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1391 }
1391 }
1392 else
1392 else
1393 {
1393 {
1394 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1394 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1395 }
1395 }
1396 }
1396 }
1397
1397
1398 void setCalibrationEnable( bool state )
1398 void setCalibrationEnable( bool state )
1399 {
1399 {
1400 // this bit drives the multiplexer
1400 // this bit drives the multiplexer
1401 if (state == true)
1401 if (state == true)
1402 {
1402 {
1403 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1403 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1404 }
1404 }
1405 else
1405 else
1406 {
1406 {
1407 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1407 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1408 }
1408 }
1409 }
1409 }
1410
1410
1411 void setCalibrationInterleaved( bool state )
1411 void setCalibrationInterleaved( bool state )
1412 {
1412 {
1413 // this bit drives the multiplexer
1413 // this bit drives the multiplexer
1414 if (state == true)
1414 if (state == true)
1415 {
1415 {
1416 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1416 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1417 }
1417 }
1418 else
1418 else
1419 {
1419 {
1420 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1420 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1421 }
1421 }
1422 }
1422 }
1423
1423
1424 void setCalibration( bool state )
1424 void setCalibration( bool state )
1425 {
1425 {
1426 if (state == true)
1426 if (state == true)
1427 {
1427 {
1428 setCalibrationEnable( true );
1428 setCalibrationEnable( true );
1429 setCalibrationReload( false );
1429 setCalibrationReload( false );
1430 set_hk_lfr_calib_enable( true );
1430 set_hk_lfr_calib_enable( true );
1431 }
1431 }
1432 else
1432 else
1433 {
1433 {
1434 setCalibrationEnable( false );
1434 setCalibrationEnable( false );
1435 setCalibrationReload( true );
1435 setCalibrationReload( true );
1436 set_hk_lfr_calib_enable( false );
1436 set_hk_lfr_calib_enable( false );
1437 }
1437 }
1438 }
1438 }
1439
1439
1440 void configureCalibration( bool interleaved )
1440 void configureCalibration( bool interleaved )
1441 {
1441 {
1442 setCalibration( false );
1442 setCalibration( false );
1443 if ( interleaved == true )
1443 if ( interleaved == true )
1444 {
1444 {
1445 setCalibrationInterleaved( true );
1445 setCalibrationInterleaved( true );
1446 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1446 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1447 setCalibrationDivisor( 26 ); // => 240 384
1447 setCalibrationDivisor( 26 ); // => 240 384
1448 setCalibrationDataInterleaved();
1448 setCalibrationDataInterleaved();
1449 }
1449 }
1450 else
1450 else
1451 {
1451 {
1452 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1452 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1453 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1453 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1454 setCalibrationData();
1454 setCalibrationData();
1455 }
1455 }
1456 }
1456 }
1457
1457
1458 //****************
1458 //****************
1459 // CLOSING ACTIONS
1459 // CLOSING ACTIONS
1460 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1460 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1461 {
1461 {
1462 /** This function is used to update the HK packets statistics after a successful TC execution.
1462 /** This function is used to update the HK packets statistics after a successful TC execution.
1463 *
1463 *
1464 * @param TC points to the TC being processed
1464 * @param TC points to the TC being processed
1465 * @param time is the time used to date the TC execution
1465 * @param time is the time used to date the TC execution
1466 *
1466 *
1467 */
1467 */
1468
1468
1469 unsigned int val;
1469 unsigned int val;
1470
1470
1471 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1471 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1472 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1472 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1473 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1473 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1474 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1474 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1475 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1475 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1476 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1476 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1477 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1477 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1478 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1478 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1479 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1479 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1480 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1480 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1481 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1481 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1482 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1482 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1483
1483
1484 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1484 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1485 val++;
1485 val++;
1486 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1486 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1487 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1487 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1488 }
1488 }
1489
1489
1490 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1490 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1491 {
1491 {
1492 /** This function is used to update the HK packets statistics after a TC rejection.
1492 /** This function is used to update the HK packets statistics after a TC rejection.
1493 *
1493 *
1494 * @param TC points to the TC being processed
1494 * @param TC points to the TC being processed
1495 * @param time is the time used to date the TC rejection
1495 * @param time is the time used to date the TC rejection
1496 *
1496 *
1497 */
1497 */
1498
1498
1499 unsigned int val;
1499 unsigned int val;
1500
1500
1501 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1501 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1502 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1502 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1503 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1503 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1504 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1504 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1505 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1505 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1506 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1506 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1507 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1507 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1508 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1508 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1509 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1509 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1510 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1510 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1511 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1511 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1512 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1512 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1513
1513
1514 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1514 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1515 val++;
1515 val++;
1516 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1516 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1517 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1517 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1518 }
1518 }
1519
1519
1520 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1520 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1521 {
1521 {
1522 /** This function is the last step of the TC execution workflow.
1522 /** This function is the last step of the TC execution workflow.
1523 *
1523 *
1524 * @param TC points to the TC being processed
1524 * @param TC points to the TC being processed
1525 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1525 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1526 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1526 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1527 * @param time is the time used to date the TC execution
1527 * @param time is the time used to date the TC execution
1528 *
1528 *
1529 */
1529 */
1530
1530
1531 unsigned char requestedMode;
1531 unsigned char requestedMode;
1532
1532
1533 if (result == LFR_SUCCESSFUL)
1533 if (result == LFR_SUCCESSFUL)
1534 {
1534 {
1535 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1535 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1536 &
1536 &
1537 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1537 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1538 )
1538 )
1539 {
1539 {
1540 send_tm_lfr_tc_exe_success( TC, queue_id );
1540 send_tm_lfr_tc_exe_success( TC, queue_id );
1541 }
1541 }
1542 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1542 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1543 {
1543 {
1544 //**********************************
1544 //**********************************
1545 // UPDATE THE LFRMODE LOCAL VARIABLE
1545 // UPDATE THE LFRMODE LOCAL VARIABLE
1546 requestedMode = TC->dataAndCRC[1];
1546 requestedMode = TC->dataAndCRC[1];
1547 updateLFRCurrentMode( requestedMode );
1547 updateLFRCurrentMode( requestedMode );
1548 }
1548 }
1549 }
1549 }
1550 else if (result == LFR_EXE_ERROR)
1550 else if (result == LFR_EXE_ERROR)
1551 {
1551 {
1552 send_tm_lfr_tc_exe_error( TC, queue_id );
1552 send_tm_lfr_tc_exe_error( TC, queue_id );
1553 }
1553 }
1554 }
1554 }
1555
1555
1556 //***************************
1556 //***************************
1557 // Interrupt Service Routines
1557 // Interrupt Service Routines
1558 rtems_isr commutation_isr1( rtems_vector_number vector )
1558 rtems_isr commutation_isr1( rtems_vector_number vector )
1559 {
1559 {
1560 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1560 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1561 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1561 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1562 }
1562 }
1563 }
1563 }
1564
1564
1565 rtems_isr commutation_isr2( rtems_vector_number vector )
1565 rtems_isr commutation_isr2( rtems_vector_number vector )
1566 {
1566 {
1567 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1567 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1568 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1568 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1569 }
1569 }
1570 }
1570 }
1571
1571
1572 //****************
1572 //****************
1573 // OTHER FUNCTIONS
1573 // OTHER FUNCTIONS
1574 void updateLFRCurrentMode( unsigned char requestedMode )
1574 void updateLFRCurrentMode( unsigned char requestedMode )
1575 {
1575 {
1576 /** This function updates the value of the global variable lfrCurrentMode.
1576 /** This function updates the value of the global variable lfrCurrentMode.
1577 *
1577 *
1578 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1578 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1579 *
1579 *
1580 */
1580 */
1581
1581
1582 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1582 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1583 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1583 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1584 lfrCurrentMode = requestedMode;
1584 lfrCurrentMode = requestedMode;
1585 }
1585 }
1586
1586
1587 void set_lfr_soft_reset( unsigned char value )
1587 void set_lfr_soft_reset( unsigned char value )
1588 {
1588 {
1589 if (value == 1)
1589 if (value == 1)
1590 {
1590 {
1591 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1591 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1592 }
1592 }
1593 else
1593 else
1594 {
1594 {
1595 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1595 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1596 }
1596 }
1597 }
1597 }
1598
1598
1599 void reset_lfr( void )
1599 void reset_lfr( void )
1600 {
1600 {
1601 set_lfr_soft_reset( 1 );
1601 set_lfr_soft_reset( 1 );
1602
1602
1603 set_lfr_soft_reset( 0 );
1603 set_lfr_soft_reset( 0 );
1604
1604
1605 set_hk_lfr_sc_potential_flag( true );
1605 set_hk_lfr_sc_potential_flag( true );
1606 }
1606 }
General Comments 0
You need to be logged in to leave comments. Login now