##// END OF EJS Templates
compliance with ICD 4.3...
paul -
r299:7f467c56a168 R3_plus draft
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 94f0f2fccbcb8030d9437ffbb69ee0eefaaea188 header/lfr_common_headers
2 5cf0bac6095ff491d937622f8253c6f05095cb39 header/lfr_common_headers
@@ -1,125 +1,133
1 1 TEMPLATE = app
2 CONFIG += console
3 CONFIG -= app_bundle
4 CONFIG -= qt
5
6 include(sparc.pri)
7
8 INCLUDEPATH += ./
9
10 OBJECTS_DIR=obj
11 DESTDIR=bin
12
2 13 # CONFIG += console v8 sim
3 14 # CONFIG options =
4 15 # verbose
5 16 # boot_messages
6 17 # debug_messages
7 18 # cpu_usage_report
8 19 # stack_report
9 20 # vhdl_dev
10 21 # debug_tch
11 22 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
12 23 # debug_watchdog
13 24 CONFIG += console verbose lpp_dpu_destid cpu_usage_report
14 CONFIG -= qt
15
16 include(./sparc.pri)
17 25
18 26 INCLUDEPATH += /opt/rtems-4.10/sparc-rtems/leon3/lib/include
19 27
20 28 # flight software version
21 29 SWVERSION=-1-0
22 30 DEFINES += SW_VERSION_N1=3 # major
23 31 DEFINES += SW_VERSION_N2=1 # minor
24 32 DEFINES += SW_VERSION_N3=0 # patch
25 33 DEFINES += SW_VERSION_N4=4 # internal
26 34
27 35 # <GCOV>
28 36 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
29 37 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
30 38 # </GCOV>
31 39
32 40 # <CHANGE BEFORE FLIGHT>
33 41 contains( CONFIG, lpp_dpu_destid ) {
34 42 DEFINES += LPP_DPU_DESTID
35 43 }
36 44 # </CHANGE BEFORE FLIGHT>
37 45
38 46 contains( CONFIG, debug_tch ) {
39 47 DEFINES += DEBUG_TCH
40 48 }
41 49 DEFINES += MSB_FIRST_TCH
42 50
43 51 contains( CONFIG, vhdl_dev ) {
44 52 DEFINES += VHDL_DEV
45 53 }
46 54
47 55 contains( CONFIG, verbose ) {
48 56 DEFINES += PRINT_MESSAGES_ON_CONSOLE
49 57 }
50 58
51 59 contains( CONFIG, debug_messages ) {
52 60 DEFINES += DEBUG_MESSAGES
53 61 }
54 62
55 63 contains( CONFIG, cpu_usage_report ) {
56 64 DEFINES += PRINT_TASK_STATISTICS
57 65 }
58 66
59 67 contains( CONFIG, stack_report ) {
60 68 DEFINES += PRINT_STACK_REPORT
61 69 }
62 70
63 71 contains( CONFIG, boot_messages ) {
64 72 DEFINES += BOOT_MESSAGES
65 73 }
66 74
67 75 contains( CONFIG, debug_watchdog ) {
68 76 DEFINES += DEBUG_WATCHDOG
69 77 }
70 78
71 79 #doxygen.target = doxygen
72 80 #doxygen.commands = doxygen ../doc/Doxyfile
73 81 #QMAKE_EXTRA_TARGETS += doxygen
74 82
75 83 TARGET = fsw
76 84
77 85 INCLUDEPATH += \
78 86 $${PWD}/../src \
79 87 $${PWD}/../header \
80 88 $${PWD}/../header/lfr_common_headers \
81 89 $${PWD}/../header/processing \
82 90 $${PWD}/../LFR_basic-parameters
83 91
84 92 SOURCES += \
85 93 ../src/wf_handler.c \
86 94 ../src/tc_handler.c \
87 95 ../src/fsw_misc.c \
88 96 ../src/fsw_init.c \
89 97 ../src/fsw_globals.c \
90 98 ../src/fsw_spacewire.c \
91 99 ../src/tc_load_dump_parameters.c \
92 100 ../src/tm_lfr_tc_exe.c \
93 101 ../src/tc_acceptance.c \
94 102 ../src/processing/fsw_processing.c \
95 103 ../src/processing/avf0_prc0.c \
96 104 ../src/processing/avf1_prc1.c \
97 105 ../src/processing/avf2_prc2.c \
98 106 ../src/lfr_cpu_usage_report.c \
99 107 ../LFR_basic-parameters/basic_parameters.c
100 108
101 109 HEADERS += \
102 110 ../header/wf_handler.h \
103 111 ../header/tc_handler.h \
104 112 ../header/grlib_regs.h \
105 113 ../header/fsw_misc.h \
106 114 ../header/fsw_init.h \
107 115 ../header/fsw_spacewire.h \
108 116 ../header/tc_load_dump_parameters.h \
109 117 ../header/tm_lfr_tc_exe.h \
110 118 ../header/tc_acceptance.h \
111 119 ../header/processing/fsw_processing.h \
112 120 ../header/processing/avf0_prc0.h \
113 121 ../header/processing/avf1_prc1.h \
114 122 ../header/processing/avf2_prc2.h \
115 123 ../header/fsw_params_wf_handler.h \
116 124 ../header/lfr_cpu_usage_report.h \
117 125 ../header/lfr_common_headers/ccsds_types.h \
118 126 ../header/lfr_common_headers/fsw_params.h \
119 127 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
120 128 ../header/lfr_common_headers/fsw_params_processing.h \
121 129 ../header/lfr_common_headers/tm_byte_positions.h \
122 130 ../LFR_basic-parameters/basic_parameters.h \
123 131 ../LFR_basic-parameters/basic_parameters_params.h \
124 132 ../header/GscMemoryLPP.hpp
125 133
@@ -1,99 +1,69
1 CONFIG += console
2 CONFIG -= qt
1
3 2 QMAKE_CC=sparc-rtems-gcc
4 3 message(C compiler forced to: $$QMAKE_CC)
5 4 QMAKE_CXX=sparc-rtems-g++
6 5 message(C++ compiler forced to: $$QMAKE_CXX)
7 6 QMAKE_AR=sparc-rtems-ar rcs
8 7 message(Archiver forced to: $$QMAKE_AR)
9 8 QMAKE_LINK=sparc-rtems-g++
10 9 message(Linker forced to: $$QMAKE_LINK)
11 10 QMAKE_LINK_SHLIB=sparc-rtems-g++
12 11 QMAKE_OBJCOPY= sparc-rtems-objcopy
13 12 QMAKE_STRIP=sparc-rtems-strip
14 13 QMAKE_GDB=sparc-rtems-gdb
15 14
16 #INCLUDEPATH += /opt/rtems-4.10
17 INCLUDEPATH += /opt/rtems-4.10/sparc-rtems/leon3/lib/include
18
15 QMAKE_CFLAGS_APP=""
16 QMAKE_CXXFLAGS_APP=""
17 QMAKE_CFLAGS=
19 18 QMAKE_CFLAGS_DEBUG= -g
20 19 QMAKE_CFLAGS_RELEASE=""
21 20 QMAKE_CXXFLAGS_DEBUG= -g
22 21 QMAKE_CXXFLAGS_RELEASE=""
23 QMAKE_LFLAGS_RELEASE=""
22 QMAKE_LFLAGS_RELEASE=
24 23 QMAKE_LFLAGS_DEBUG= -g
25 24 QMAKE_CXXFLAGS_DEPS =
26 25 QMAKE_CXXFLAGS_WARN_ON = -Wall
27 26 QMAKE_CXXFLAGS_WARN_OFF = -w
28 27 QMAKE_CXXFLAGS_RELEASE =
29 28 QMAKE_CXXFLAGS_DEBUG =
30 29 QMAKE_CXXFLAGS_YACC =
31 30 QMAKE_CXXFLAGS_THREAD =
32 31 QMAKE_CXXFLAGS_RTTI_ON =
33 32 QMAKE_CXXFLAGS_RTTI_OFF =
34 33 QMAKE_CXXFLAGS_EXCEPTIONS_ON =
35 34 QMAKE_CXXFLAGS_EXCEPTIONS_OFF =
36 35 QMAKE_CFLAGS_WARN_ON = -Wall
37 36 QMAKE_CFLAGS_WARN_OFF = -w
38 37 QMAKE_CFLAGS_RELEASE =
39 38 QMAKE_CFLAGS_YACC =
40 39 QMAKE_LFLAGS_EXCEPTIONS_ON =
41 40 QMAKE_LFLAGS_EXCEPTIONS_OFF =
42 QMAKE_LFLAGS_RELEASE = -Xlinker -Map=output.map
43 41 QMAKE_LFLAGS_CONSOLE =
44 42 QMAKE_LFLAGS_WINDOWS =
45 43 QMAKE_LFLAGS_DLL =
46 44 QMAKE_INCDIR_QT =
47 45 QMAKE_INCDIR =
48 46 QMAKE_CFLAGS_SHLIB =
49 47 QMAKE_CFLAGS_STATIC_LIB =
50 48 QMAKE_CXXFLAGS_SHLIB =
51 49 QMAKE_CXXFLAGS_STATIC_LIB =
52 50 QMAKE_LIBS=""
53 51 INCLUDEPATH=""
54 52 DEFINES=""
55 53
56 contains( TEMPLATE, app ) {
57 OBJECTS_DIR=obj
58 DESTDIR=bin
59 }
60
61 #QMAKE_CFLAGS_RELEASE += -O0
62 #QMAKE_CFLAGS_DEBUG += -O0
63 #QMAKE_CXXFLAGS_RELEASE += -O0
64 #QMAKE_CXXFLAGS_DEBUG += -O0
65 54
66 55 QMAKE_CFLAGS_RELEASE += -O3
67 56 QMAKE_CFLAGS_DEBUG += -O3
68 57 QMAKE_CXXFLAGS_RELEASE += -O3
69 58 QMAKE_CXXFLAGS_DEBUG += -O3
70 59
71 #QMAKE_CFLAGS_RELEASE += -O3 -std=c99
72 #QMAKE_CFLAGS_DEBUG += -O3 -std=c99
73 #QMAKE_CXXFLAGS_RELEASE += -O3 -std=c99
74 #QMAKE_CXXFLAGS_DEBUG += -O3 -std=c99
75
76 contains( TEMPLATE, app ) {
77 grmon.target = grmon
78 grmon.commands = cd $$DESTDIR && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
79 QMAKE_EXTRA_TARGETS += grmon
80 }
81
82
83
60 #QMAKE_CFLAGS_RELEASE += -O0
61 #QMAKE_CFLAGS_DEBUG += -O0
62 #QMAKE_CXXFLAGS_RELEASE += -O0
63 #QMAKE_CXXFLAGS_DEBUG += -O0
84 64
85 65
86
87
88
89
90
91
92
93
94
95
96
97
98
99
66 #QMAKE_CFLAGS_RELEASE+= -O3 -std=c99
67 #QMAKE_CFLAGS_DEBUG+= -O3 -std=c99
68 #QMAKE_CXXFLAGS_RELEASE+= -O3 -std=c99
69 #QMAKE_CXXFLAGS_DEBUG+= -O3 -std=c99
@@ -1,64 +1,59
1 1 #ifndef FSW_INIT_H_INCLUDED
2 2 #define FSW_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 9 #include "fsw_processing.h"
10 10
11 11 #include "tc_handler.h"
12 12 #include "wf_handler.h"
13 13 #include "fsw_spacewire.h"
14 14
15 15 #include "avf0_prc0.h"
16 16 #include "avf1_prc1.h"
17 17 #include "avf2_prc2.h"
18 18
19 19 extern rtems_name Task_name[]; /* array of task names */
20 20 extern rtems_id Task_id[]; /* array of task ids */
21 21 extern rtems_name timecode_timer_name;
22 22 extern rtems_id timecode_timer_id;
23 23 extern unsigned char pa_bia_status_info;
24 extern unsigned char cp_rpw_sc_rw_f_flags;
25 extern float cp_rpw_sc_rw1_f1;
26 extern float cp_rpw_sc_rw1_f2;
27 extern float cp_rpw_sc_rw2_f1;
28 extern float cp_rpw_sc_rw2_f2;
29 extern float cp_rpw_sc_rw3_f1;
30 extern float cp_rpw_sc_rw3_f2;
31 extern float cp_rpw_sc_rw4_f1;
32 extern float cp_rpw_sc_rw4_f2;
24 extern unsigned char cp_rpw_sc_rw1_rw2_f_flags;
25 extern unsigned char cp_rpw_sc_rw3_rw4_f_flags;
26
33 27 extern filterPar_t filterPar;
28 extern rw_f_t rw_f;
34 29
35 30 // RTEMS TASKS
36 31 rtems_task Init( rtems_task_argument argument);
37 32
38 33 // OTHER functions
39 34 void create_names( void );
40 35 int create_all_tasks( void );
41 36 int start_all_tasks( void );
42 37 //
43 38 rtems_status_code create_message_queues( void );
44 39 rtems_status_code create_timecode_timer( void );
45 40 rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
46 41 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
47 42 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
48 43 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
49 44 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
50 45 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max );
51 46 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize );
52 47 //
53 48 int start_recv_send_tasks( void );
54 49 //
55 50 void init_local_mode_parameters( void );
56 51 void reset_local_time( void );
57 52
58 53 extern void rtems_cpu_usage_report( void );
59 54 extern void rtems_cpu_usage_reset( void );
60 55 extern void rtems_stack_checker_report_usage( void );
61 56
62 57 extern int sched_yield( void );
63 58
64 59 #endif // FSW_INIT_H_INCLUDED
@@ -1,83 +1,85
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15
16 16 extern unsigned short sequenceCounterParameterDump;
17 17 extern unsigned short sequenceCounters_TM_DUMP[];
18 18 extern float k_coeff_intercalib_f0_norm[ ];
19 19 extern float k_coeff_intercalib_f0_sbm[ ];
20 20 extern float k_coeff_intercalib_f1_norm[ ];
21 21 extern float k_coeff_intercalib_f1_sbm[ ];
22 22 extern float k_coeff_intercalib_f2[ ];
23 23 extern fbins_masks_t fbins_masks;
24 24
25 25 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
26 26 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 27 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
28 28 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
29 29 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
30 30 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 31 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
32 32 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
33 33 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
34 34 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
35 35
36 36 // NORMAL
37 37 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
38 38 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
39 39 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
40 40 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
41 41 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
42 42 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
43 43 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
44 44
45 45 // BURST
46 46 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
47 47 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
48 48
49 49 // SBM1
50 50 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
51 51 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
52 52
53 53 // SBM2
54 54 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
55 55 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
56 56
57 57 // TC_LFR_UPDATE_INFO
58 58 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
59 59 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
60 60 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
61 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value );
62 void set_hk_lfr_sc_rw_f_flags( void );
61 63 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
62 64 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag );
63 65 void build_sy_lfr_rw_mask( unsigned int channel );
64 66 void build_sy_lfr_rw_masks();
65 67 void merge_fbins_masks( void );
66 68
67 69 // FBINS_MASK
68 70 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
69 71
70 72 // TC_LFR_LOAD_PARS_FILTER_PAR
71 73 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
72 74
73 75 // KCOEFFICIENTS
74 76 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
75 77 void copyFloatByChar( unsigned char *destination, unsigned char *source );
76 78 void floatToChar( float value, unsigned char* ptr);
77 79
78 80 void init_parameter_dump( void );
79 81 void init_kcoefficients_dump( void );
80 82 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
81 83 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
82 84
83 85 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,14 +1,14
1 1 # LOAD FSW USING LINK 1
2 2 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
3 3
4 dsu3plugin0.openFile("/opt/DEV_PLE/FSW-qt/bin/fsw")
4 dsu3plugin0.openFile("/home/pleroy/DEV/DEV_PLE/FSW-qt/bin/fsw")
5 5 #dsu3plugin0.openFile("/opt/LFR/LFR-FSW/2.0.2.3/fsw")
6 6 dsu3plugin0.loadFile()
7 7
8 8 dsu3plugin0.run()
9 9
10 10 # START SENDING TIMECODES AT 1 Hz
11 11 #SpwPlugin0.StarDundeeStartTimecodes( 1 )
12 12
13 13 # it is possible to change the time code frequency
14 14 #RMAPPlugin0.changeTimecodeFrequency(2)
@@ -1,98 +1,92
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23 #include "fsw_params_wf_handler.h"
24 24
25 25 // RTEMS GLOBAL VARIABLES
26 26 rtems_name misc_name[5];
27 27 rtems_name Task_name[20]; /* array of task names */
28 28 rtems_id Task_id[20]; /* array of task ids */
29 29 rtems_name timecode_timer_name;
30 30 rtems_id timecode_timer_id;
31 31 int fdSPW = 0;
32 32 int fdUART = 0;
33 33 unsigned char lfrCurrentMode;
34 34 unsigned char pa_bia_status_info;
35 35 unsigned char thisIsAnASMRestart = 0;
36 36 unsigned char oneTcLfrUpdateTimeReceived = 0;
37 37
38 38 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
39 39 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
40 40 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
41 41 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
42 42 // F0 F1 F2 F3
43 43 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
44 44 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
45 45 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
46 46 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
47 47
48 48 //***********************************
49 49 // SPECTRAL MATRICES GLOBAL VARIABLES
50 50
51 51 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
52 52 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
53 53 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
54 54 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
55 55
56 56 // APB CONFIGURATION REGISTERS
57 57 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
58 58 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
59 59 waveform_picker_regs_0_1_18_t *waveform_picker_regs = (waveform_picker_regs_0_1_18_t*) REGS_ADDR_WAVEFORM_PICKER;
60 60 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
61 61
62 62 // MODE PARAMETERS
63 63 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
64 64 struct param_local_str param_local;
65 65 unsigned int lastValidEnterModeTime;
66 66
67 67 // HK PACKETS
68 68 Packet_TM_LFR_HK_t housekeeping_packet;
69 unsigned char cp_rpw_sc_rw_f_flags;
69 unsigned char cp_rpw_sc_rw1_rw2_f_flags;
70 unsigned char cp_rpw_sc_rw3_rw4_f_flags;
70 71 // message queues occupancy
71 72 unsigned char hk_lfr_q_sd_fifo_size_max;
72 73 unsigned char hk_lfr_q_rv_fifo_size_max;
73 74 unsigned char hk_lfr_q_p0_fifo_size_max;
74 75 unsigned char hk_lfr_q_p1_fifo_size_max;
75 76 unsigned char hk_lfr_q_p2_fifo_size_max;
76 77 // sequence counters are incremented by APID (PID + CAT) and destination ID
77 78 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
78 79 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
79 80 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
80 81 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID];
81 82 unsigned short sequenceCounterHK;
82 83 spw_stats grspw_stats;
83 84
84 85 // TC_LFR_UPDATE_INFO
85 float cp_rpw_sc_rw1_f1;
86 float cp_rpw_sc_rw1_f2;
87 float cp_rpw_sc_rw2_f1;
88 float cp_rpw_sc_rw2_f2;
89 float cp_rpw_sc_rw3_f1;
90 float cp_rpw_sc_rw3_f2;
91 float cp_rpw_sc_rw4_f1;
92 float cp_rpw_sc_rw4_f2;
86 rw_f_t rw_f;
93 87
94 88 // TC_LFR_LOAD_FILTER_PAR
95 89 filterPar_t filterPar;
96 90
97 91 fbins_masks_t fbins_masks;
98 92 unsigned int acquisitionDurations[3] = {ACQUISITION_DURATION_F0, ACQUISITION_DURATION_F1, ACQUISITION_DURATION_F2};
@@ -1,955 +1,968
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 21 // number of tasks concurrently active including INIT
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 37 #define CONFIGURE_MAXIMUM_PERIODS 5 // [hous] [load] [avgv]
38 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link]
39 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 40 #ifdef PRINT_STACK_REPORT
41 41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 42 #endif
43 43
44 44 #include <rtems/confdefs.h>
45 45
46 46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 47 #ifdef RTEMS_DRVMGR_STARTUP
48 48 #ifdef LEON3
49 49 /* Add Timer and UART Driver */
50 50
51 51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 53 #endif
54 54
55 55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 57 #endif
58 58
59 59 #endif
60 60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 61
62 62 #include <drvmgr/drvmgr_confdefs.h>
63 63 #endif
64 64
65 65 #include "fsw_init.h"
66 66 #include "fsw_config.c"
67 67 #include "GscMemoryLPP.hpp"
68 68
69 69 void initCache()
70 70 {
71 71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 72 // These should only be read and written using 32-bit LDA/STA instructions.
73 73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 74 // The table below shows the register addresses:
75 75 // 0x00 Cache control register
76 76 // 0x04 Reserved
77 77 // 0x08 Instruction cache configuration register
78 78 // 0x0C Data cache configuration register
79 79
80 80 // Cache Control Register Leon3 / Leon3FT
81 81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 82 // RFT PS TB DS FD FI FT ST IB
83 83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 85
86 86 unsigned int cacheControlRegister;
87 87
88 88 CCR_resetCacheControlRegister();
89 89 ASR16_resetRegisterProtectionControlRegister();
90 90
91 91 cacheControlRegister = CCR_getValue();
92 92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 94
95 95 CCR_enableInstructionCache(); // ICS bits
96 96 CCR_enableDataCache(); // DCS bits
97 97 CCR_enableInstructionBurstFetch(); // IB bit
98 98
99 99 faultTolerantScheme();
100 100
101 101 cacheControlRegister = CCR_getValue();
102 102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 104
105 105 PRINTF("\n");
106 106 }
107 107
108 108 rtems_task Init( rtems_task_argument ignored )
109 109 {
110 110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 111 *
112 112 * @param unused is the starting argument of the RTEMS task
113 113 *
114 114 * The INIT task create and run all other RTEMS tasks.
115 115 *
116 116 */
117 117
118 118 //***********
119 119 // INIT CACHE
120 120
121 121 unsigned char *vhdlVersion;
122 122
123 123 reset_lfr();
124 124
125 125 reset_local_time();
126 126
127 127 rtems_cpu_usage_reset();
128 128
129 129 rtems_status_code status;
130 130 rtems_status_code status_spw;
131 131 rtems_isr_entry old_isr_handler;
132 132
133 133 // UART settings
134 134 enable_apbuart_transmitter();
135 135 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
136 136
137 137 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
138 138
139 139
140 140 PRINTF("\n\n\n\n\n")
141 141
142 142 initCache();
143 143
144 144 PRINTF("*************************\n")
145 145 PRINTF("** LFR Flight Software **\n")
146 146 PRINTF1("** %d-", SW_VERSION_N1)
147 147 PRINTF1("%d-" , SW_VERSION_N2)
148 148 PRINTF1("%d-" , SW_VERSION_N3)
149 149 PRINTF1("%d **\n", SW_VERSION_N4)
150 150
151 151 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
152 152 PRINTF("** VHDL **\n")
153 153 PRINTF1("** %d.", vhdlVersion[1])
154 154 PRINTF1("%d." , vhdlVersion[2])
155 155 PRINTF1("%d **\n", vhdlVersion[3])
156 156 PRINTF("*************************\n")
157 157 PRINTF("\n\n")
158 158
159 159 init_parameter_dump();
160 160 init_kcoefficients_dump();
161 161 init_local_mode_parameters();
162 162 init_housekeeping_parameters();
163 163 init_k_coefficients_prc0();
164 164 init_k_coefficients_prc1();
165 165 init_k_coefficients_prc2();
166 166 pa_bia_status_info = 0x00;
167 cp_rpw_sc_rw_f_flags = 0x00;
168 cp_rpw_sc_rw1_f1 = 0.0;
169 cp_rpw_sc_rw1_f2 = 0.0;
170 cp_rpw_sc_rw2_f1 = 0.0;
171 cp_rpw_sc_rw2_f2 = 0.0;
172 cp_rpw_sc_rw3_f1 = 0.0;
173 cp_rpw_sc_rw3_f2 = 0.0;
174 cp_rpw_sc_rw4_f1 = 0.0;
175 cp_rpw_sc_rw4_f2 = 0.0;
167
168 // initialize all reaction wheels frequencies to NaN
169 rw_f.cp_rpw_sc_rw1_f1 = NAN;
170 rw_f.cp_rpw_sc_rw1_f2 = NAN;
171 rw_f.cp_rpw_sc_rw1_f3 = NAN;
172 rw_f.cp_rpw_sc_rw1_f4 = NAN;
173 rw_f.cp_rpw_sc_rw2_f1 = NAN;
174 rw_f.cp_rpw_sc_rw2_f2 = NAN;
175 rw_f.cp_rpw_sc_rw2_f3 = NAN;
176 rw_f.cp_rpw_sc_rw2_f4 = NAN;
177 rw_f.cp_rpw_sc_rw3_f1 = NAN;
178 rw_f.cp_rpw_sc_rw3_f2 = NAN;
179 rw_f.cp_rpw_sc_rw3_f3 = NAN;
180 rw_f.cp_rpw_sc_rw3_f4 = NAN;
181 rw_f.cp_rpw_sc_rw4_f1 = NAN;
182 rw_f.cp_rpw_sc_rw4_f2 = NAN;
183 rw_f.cp_rpw_sc_rw4_f3 = NAN;
184 rw_f.cp_rpw_sc_rw4_f4 = NAN;
185
186 cp_rpw_sc_rw1_rw2_f_flags = 0x00;
187 cp_rpw_sc_rw3_rw4_f_flags = 0x00;
188
176 189 // initialize filtering parameters
177 190 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
178 191 filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
179 192 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
180 193 filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
181 194 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
182 195 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
183 196 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
184 197
185 198 // waveform picker initialization
186 199 WFP_init_rings();
187 200 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
188 201 WFP_reset_current_ring_nodes();
189 202 reset_waveform_picker_regs();
190 203
191 204 // spectral matrices initialization
192 205 SM_init_rings(); // initialize spectral matrices rings
193 206 SM_reset_current_ring_nodes();
194 207 reset_spectral_matrix_regs();
195 208
196 209 // configure calibration
197 210 configureCalibration( false ); // true means interleaved mode, false is for normal mode
198 211
199 212 updateLFRCurrentMode( LFR_MODE_STANDBY );
200 213
201 214 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
202 215
203 216 create_names(); // create all names
204 217
205 218 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
206 219 if (status != RTEMS_SUCCESSFUL)
207 220 {
208 221 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
209 222 }
210 223
211 224 status = create_message_queues(); // create message queues
212 225 if (status != RTEMS_SUCCESSFUL)
213 226 {
214 227 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
215 228 }
216 229
217 230 status = create_all_tasks(); // create all tasks
218 231 if (status != RTEMS_SUCCESSFUL)
219 232 {
220 233 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
221 234 }
222 235
223 236 // **************************
224 237 // <SPACEWIRE INITIALIZATION>
225 238 status_spw = spacewire_open_link(); // (1) open the link
226 239 if ( status_spw != RTEMS_SUCCESSFUL )
227 240 {
228 241 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
229 242 }
230 243
231 244 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
232 245 {
233 246 status_spw = spacewire_configure_link( fdSPW );
234 247 if ( status_spw != RTEMS_SUCCESSFUL )
235 248 {
236 249 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
237 250 }
238 251 }
239 252
240 253 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
241 254 {
242 255 status_spw = spacewire_start_link( fdSPW );
243 256 if ( status_spw != RTEMS_SUCCESSFUL )
244 257 {
245 258 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
246 259 }
247 260 }
248 261 // </SPACEWIRE INITIALIZATION>
249 262 // ***************************
250 263
251 264 status = start_all_tasks(); // start all tasks
252 265 if (status != RTEMS_SUCCESSFUL)
253 266 {
254 267 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
255 268 }
256 269
257 270 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
258 271 status = start_recv_send_tasks();
259 272 if ( status != RTEMS_SUCCESSFUL )
260 273 {
261 274 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
262 275 }
263 276
264 277 // suspend science tasks, they will be restarted later depending on the mode
265 278 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
266 279 if (status != RTEMS_SUCCESSFUL)
267 280 {
268 281 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
269 282 }
270 283
271 284 // configure IRQ handling for the waveform picker unit
272 285 status = rtems_interrupt_catch( waveforms_isr,
273 286 IRQ_SPARC_WAVEFORM_PICKER,
274 287 &old_isr_handler) ;
275 288 // configure IRQ handling for the spectral matrices unit
276 289 status = rtems_interrupt_catch( spectral_matrices_isr,
277 290 IRQ_SPARC_SPECTRAL_MATRIX,
278 291 &old_isr_handler) ;
279 292
280 293 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
281 294 if ( status_spw != RTEMS_SUCCESSFUL )
282 295 {
283 296 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
284 297 if ( status != RTEMS_SUCCESSFUL ) {
285 298 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
286 299 }
287 300 }
288 301
289 302 BOOT_PRINTF("delete INIT\n")
290 303
291 304 set_hk_lfr_sc_potential_flag( true );
292 305
293 306 // start the timer to detect a missing spacewire timecode
294 307 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
295 308 // if a tickout is generated, the timer is restarted
296 309 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
297 310
298 311 grspw_timecode_callback = &timecode_irq_handler;
299 312
300 313 status = rtems_task_delete(RTEMS_SELF);
301 314
302 315 }
303 316
304 317 void init_local_mode_parameters( void )
305 318 {
306 319 /** This function initialize the param_local global variable with default values.
307 320 *
308 321 */
309 322
310 323 unsigned int i;
311 324
312 325 // LOCAL PARAMETERS
313 326
314 327 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
315 328 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
316 329 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
317 330
318 331 // init sequence counters
319 332
320 333 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
321 334 {
322 335 sequenceCounters_TC_EXE[i] = 0x00;
323 336 sequenceCounters_TM_DUMP[i] = 0x00;
324 337 }
325 338 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
326 339 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
327 340 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
328 341 }
329 342
330 343 void reset_local_time( void )
331 344 {
332 345 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
333 346 }
334 347
335 348 void create_names( void ) // create all names for tasks and queues
336 349 {
337 350 /** This function creates all RTEMS names used in the software for tasks and queues.
338 351 *
339 352 * @return RTEMS directive status codes:
340 353 * - RTEMS_SUCCESSFUL - successful completion
341 354 *
342 355 */
343 356
344 357 // task names
345 358 Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' );
346 359 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
347 360 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
348 361 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
349 362 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
350 363 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
351 364 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
352 365 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
353 366 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
354 367 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
355 368 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
356 369 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
357 370 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
358 371 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
359 372 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
360 373 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
361 374 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
362 375 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
363 376 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
364 377 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
365 378
366 379 // rate monotonic period names
367 380 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
368 381 name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' );
369 382
370 383 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
371 384 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
372 385 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
373 386 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
374 387 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
375 388
376 389 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
377 390 }
378 391
379 392 int create_all_tasks( void ) // create all tasks which run in the software
380 393 {
381 394 /** This function creates all RTEMS tasks used in the software.
382 395 *
383 396 * @return RTEMS directive status codes:
384 397 * - RTEMS_SUCCESSFUL - task created successfully
385 398 * - RTEMS_INVALID_ADDRESS - id is NULL
386 399 * - RTEMS_INVALID_NAME - invalid task name
387 400 * - RTEMS_INVALID_PRIORITY - invalid task priority
388 401 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
389 402 * - RTEMS_TOO_MANY - too many tasks created
390 403 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
391 404 * - RTEMS_TOO_MANY - too many global objects
392 405 *
393 406 */
394 407
395 408 rtems_status_code status;
396 409
397 410 //**********
398 411 // SPACEWIRE
399 412 // RECV
400 413 status = rtems_task_create(
401 414 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
402 415 RTEMS_DEFAULT_MODES,
403 416 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
404 417 );
405 418 if (status == RTEMS_SUCCESSFUL) // SEND
406 419 {
407 420 status = rtems_task_create(
408 421 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
409 422 RTEMS_DEFAULT_MODES,
410 423 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
411 424 );
412 425 }
413 426 if (status == RTEMS_SUCCESSFUL) // LINK
414 427 {
415 428 status = rtems_task_create(
416 429 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
417 430 RTEMS_DEFAULT_MODES,
418 431 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
419 432 );
420 433 }
421 434 if (status == RTEMS_SUCCESSFUL) // ACTN
422 435 {
423 436 status = rtems_task_create(
424 437 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
425 438 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
426 439 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
427 440 );
428 441 }
429 442 if (status == RTEMS_SUCCESSFUL) // SPIQ
430 443 {
431 444 status = rtems_task_create(
432 445 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
433 446 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
434 447 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
435 448 );
436 449 }
437 450
438 451 //******************
439 452 // SPECTRAL MATRICES
440 453 if (status == RTEMS_SUCCESSFUL) // AVF0
441 454 {
442 455 status = rtems_task_create(
443 456 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
444 457 RTEMS_DEFAULT_MODES,
445 458 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
446 459 );
447 460 }
448 461 if (status == RTEMS_SUCCESSFUL) // PRC0
449 462 {
450 463 status = rtems_task_create(
451 464 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
452 465 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
453 466 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
454 467 );
455 468 }
456 469 if (status == RTEMS_SUCCESSFUL) // AVF1
457 470 {
458 471 status = rtems_task_create(
459 472 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
460 473 RTEMS_DEFAULT_MODES,
461 474 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
462 475 );
463 476 }
464 477 if (status == RTEMS_SUCCESSFUL) // PRC1
465 478 {
466 479 status = rtems_task_create(
467 480 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
468 481 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
469 482 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
470 483 );
471 484 }
472 485 if (status == RTEMS_SUCCESSFUL) // AVF2
473 486 {
474 487 status = rtems_task_create(
475 488 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
476 489 RTEMS_DEFAULT_MODES,
477 490 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
478 491 );
479 492 }
480 493 if (status == RTEMS_SUCCESSFUL) // PRC2
481 494 {
482 495 status = rtems_task_create(
483 496 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
484 497 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
485 498 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
486 499 );
487 500 }
488 501
489 502 //****************
490 503 // WAVEFORM PICKER
491 504 if (status == RTEMS_SUCCESSFUL) // WFRM
492 505 {
493 506 status = rtems_task_create(
494 507 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
495 508 RTEMS_DEFAULT_MODES,
496 509 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
497 510 );
498 511 }
499 512 if (status == RTEMS_SUCCESSFUL) // CWF3
500 513 {
501 514 status = rtems_task_create(
502 515 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
503 516 RTEMS_DEFAULT_MODES,
504 517 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
505 518 );
506 519 }
507 520 if (status == RTEMS_SUCCESSFUL) // CWF2
508 521 {
509 522 status = rtems_task_create(
510 523 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
511 524 RTEMS_DEFAULT_MODES,
512 525 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
513 526 );
514 527 }
515 528 if (status == RTEMS_SUCCESSFUL) // CWF1
516 529 {
517 530 status = rtems_task_create(
518 531 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
519 532 RTEMS_DEFAULT_MODES,
520 533 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
521 534 );
522 535 }
523 536 if (status == RTEMS_SUCCESSFUL) // SWBD
524 537 {
525 538 status = rtems_task_create(
526 539 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
527 540 RTEMS_DEFAULT_MODES,
528 541 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
529 542 );
530 543 }
531 544
532 545 //*****
533 546 // MISC
534 547 if (status == RTEMS_SUCCESSFUL) // LOAD
535 548 {
536 549 status = rtems_task_create(
537 550 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
538 551 RTEMS_DEFAULT_MODES,
539 552 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
540 553 );
541 554 }
542 555 if (status == RTEMS_SUCCESSFUL) // DUMB
543 556 {
544 557 status = rtems_task_create(
545 558 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
546 559 RTEMS_DEFAULT_MODES,
547 560 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
548 561 );
549 562 }
550 563 if (status == RTEMS_SUCCESSFUL) // HOUS
551 564 {
552 565 status = rtems_task_create(
553 566 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
554 567 RTEMS_DEFAULT_MODES,
555 568 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
556 569 );
557 570 }
558 571 if (status == RTEMS_SUCCESSFUL) // AVGV
559 572 {
560 573 status = rtems_task_create(
561 574 Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE,
562 575 RTEMS_DEFAULT_MODES,
563 576 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV]
564 577 );
565 578 }
566 579
567 580 return status;
568 581 }
569 582
570 583 int start_recv_send_tasks( void )
571 584 {
572 585 rtems_status_code status;
573 586
574 587 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
575 588 if (status!=RTEMS_SUCCESSFUL) {
576 589 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
577 590 }
578 591
579 592 if (status == RTEMS_SUCCESSFUL) // SEND
580 593 {
581 594 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
582 595 if (status!=RTEMS_SUCCESSFUL) {
583 596 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
584 597 }
585 598 }
586 599
587 600 return status;
588 601 }
589 602
590 603 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
591 604 {
592 605 /** This function starts all RTEMS tasks used in the software.
593 606 *
594 607 * @return RTEMS directive status codes:
595 608 * - RTEMS_SUCCESSFUL - ask started successfully
596 609 * - RTEMS_INVALID_ADDRESS - invalid task entry point
597 610 * - RTEMS_INVALID_ID - invalid task id
598 611 * - RTEMS_INCORRECT_STATE - task not in the dormant state
599 612 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
600 613 *
601 614 */
602 615 // starts all the tasks fot eh flight software
603 616
604 617 rtems_status_code status;
605 618
606 619 //**********
607 620 // SPACEWIRE
608 621 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
609 622 if (status!=RTEMS_SUCCESSFUL) {
610 623 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
611 624 }
612 625
613 626 if (status == RTEMS_SUCCESSFUL) // LINK
614 627 {
615 628 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
616 629 if (status!=RTEMS_SUCCESSFUL) {
617 630 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
618 631 }
619 632 }
620 633
621 634 if (status == RTEMS_SUCCESSFUL) // ACTN
622 635 {
623 636 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
624 637 if (status!=RTEMS_SUCCESSFUL) {
625 638 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
626 639 }
627 640 }
628 641
629 642 //******************
630 643 // SPECTRAL MATRICES
631 644 if (status == RTEMS_SUCCESSFUL) // AVF0
632 645 {
633 646 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
634 647 if (status!=RTEMS_SUCCESSFUL) {
635 648 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
636 649 }
637 650 }
638 651 if (status == RTEMS_SUCCESSFUL) // PRC0
639 652 {
640 653 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
641 654 if (status!=RTEMS_SUCCESSFUL) {
642 655 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
643 656 }
644 657 }
645 658 if (status == RTEMS_SUCCESSFUL) // AVF1
646 659 {
647 660 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
648 661 if (status!=RTEMS_SUCCESSFUL) {
649 662 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
650 663 }
651 664 }
652 665 if (status == RTEMS_SUCCESSFUL) // PRC1
653 666 {
654 667 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
655 668 if (status!=RTEMS_SUCCESSFUL) {
656 669 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
657 670 }
658 671 }
659 672 if (status == RTEMS_SUCCESSFUL) // AVF2
660 673 {
661 674 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
662 675 if (status!=RTEMS_SUCCESSFUL) {
663 676 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
664 677 }
665 678 }
666 679 if (status == RTEMS_SUCCESSFUL) // PRC2
667 680 {
668 681 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
669 682 if (status!=RTEMS_SUCCESSFUL) {
670 683 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
671 684 }
672 685 }
673 686
674 687 //****************
675 688 // WAVEFORM PICKER
676 689 if (status == RTEMS_SUCCESSFUL) // WFRM
677 690 {
678 691 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
679 692 if (status!=RTEMS_SUCCESSFUL) {
680 693 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
681 694 }
682 695 }
683 696 if (status == RTEMS_SUCCESSFUL) // CWF3
684 697 {
685 698 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
686 699 if (status!=RTEMS_SUCCESSFUL) {
687 700 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
688 701 }
689 702 }
690 703 if (status == RTEMS_SUCCESSFUL) // CWF2
691 704 {
692 705 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
693 706 if (status!=RTEMS_SUCCESSFUL) {
694 707 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
695 708 }
696 709 }
697 710 if (status == RTEMS_SUCCESSFUL) // CWF1
698 711 {
699 712 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
700 713 if (status!=RTEMS_SUCCESSFUL) {
701 714 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
702 715 }
703 716 }
704 717 if (status == RTEMS_SUCCESSFUL) // SWBD
705 718 {
706 719 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
707 720 if (status!=RTEMS_SUCCESSFUL) {
708 721 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
709 722 }
710 723 }
711 724
712 725 //*****
713 726 // MISC
714 727 if (status == RTEMS_SUCCESSFUL) // HOUS
715 728 {
716 729 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
717 730 if (status!=RTEMS_SUCCESSFUL) {
718 731 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
719 732 }
720 733 }
721 734 if (status == RTEMS_SUCCESSFUL) // AVGV
722 735 {
723 736 status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 );
724 737 if (status!=RTEMS_SUCCESSFUL) {
725 738 BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n")
726 739 }
727 740 }
728 741 if (status == RTEMS_SUCCESSFUL) // DUMB
729 742 {
730 743 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
731 744 if (status!=RTEMS_SUCCESSFUL) {
732 745 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
733 746 }
734 747 }
735 748 if (status == RTEMS_SUCCESSFUL) // LOAD
736 749 {
737 750 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
738 751 if (status!=RTEMS_SUCCESSFUL) {
739 752 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
740 753 }
741 754 }
742 755
743 756 return status;
744 757 }
745 758
746 759 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
747 760 {
748 761 rtems_status_code status_recv;
749 762 rtems_status_code status_send;
750 763 rtems_status_code status_q_p0;
751 764 rtems_status_code status_q_p1;
752 765 rtems_status_code status_q_p2;
753 766 rtems_status_code ret;
754 767 rtems_id queue_id;
755 768
756 769 //****************************************
757 770 // create the queue for handling valid TCs
758 771 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
759 772 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
760 773 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
761 774 if ( status_recv != RTEMS_SUCCESSFUL ) {
762 775 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
763 776 }
764 777
765 778 //************************************************
766 779 // create the queue for handling TM packet sending
767 780 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
768 781 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
769 782 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
770 783 if ( status_send != RTEMS_SUCCESSFUL ) {
771 784 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
772 785 }
773 786
774 787 //*****************************************************************************
775 788 // create the queue for handling averaged spectral matrices for processing @ f0
776 789 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
777 790 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
778 791 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
779 792 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
780 793 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
781 794 }
782 795
783 796 //*****************************************************************************
784 797 // create the queue for handling averaged spectral matrices for processing @ f1
785 798 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
786 799 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
787 800 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
788 801 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
789 802 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
790 803 }
791 804
792 805 //*****************************************************************************
793 806 // create the queue for handling averaged spectral matrices for processing @ f2
794 807 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
795 808 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
796 809 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
797 810 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
798 811 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
799 812 }
800 813
801 814 if ( status_recv != RTEMS_SUCCESSFUL )
802 815 {
803 816 ret = status_recv;
804 817 }
805 818 else if( status_send != RTEMS_SUCCESSFUL )
806 819 {
807 820 ret = status_send;
808 821 }
809 822 else if( status_q_p0 != RTEMS_SUCCESSFUL )
810 823 {
811 824 ret = status_q_p0;
812 825 }
813 826 else if( status_q_p1 != RTEMS_SUCCESSFUL )
814 827 {
815 828 ret = status_q_p1;
816 829 }
817 830 else
818 831 {
819 832 ret = status_q_p2;
820 833 }
821 834
822 835 return ret;
823 836 }
824 837
825 838 rtems_status_code create_timecode_timer( void )
826 839 {
827 840 rtems_status_code status;
828 841
829 842 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
830 843
831 844 if ( status != RTEMS_SUCCESSFUL )
832 845 {
833 846 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
834 847 }
835 848 else
836 849 {
837 850 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
838 851 }
839 852
840 853 return status;
841 854 }
842 855
843 856 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
844 857 {
845 858 rtems_status_code status;
846 859 rtems_name queue_name;
847 860
848 861 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
849 862
850 863 status = rtems_message_queue_ident( queue_name, 0, queue_id );
851 864
852 865 return status;
853 866 }
854 867
855 868 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
856 869 {
857 870 rtems_status_code status;
858 871 rtems_name queue_name;
859 872
860 873 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
861 874
862 875 status = rtems_message_queue_ident( queue_name, 0, queue_id );
863 876
864 877 return status;
865 878 }
866 879
867 880 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
868 881 {
869 882 rtems_status_code status;
870 883 rtems_name queue_name;
871 884
872 885 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
873 886
874 887 status = rtems_message_queue_ident( queue_name, 0, queue_id );
875 888
876 889 return status;
877 890 }
878 891
879 892 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
880 893 {
881 894 rtems_status_code status;
882 895 rtems_name queue_name;
883 896
884 897 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
885 898
886 899 status = rtems_message_queue_ident( queue_name, 0, queue_id );
887 900
888 901 return status;
889 902 }
890 903
891 904 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
892 905 {
893 906 rtems_status_code status;
894 907 rtems_name queue_name;
895 908
896 909 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
897 910
898 911 status = rtems_message_queue_ident( queue_name, 0, queue_id );
899 912
900 913 return status;
901 914 }
902 915
903 916 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
904 917 {
905 918 u_int32_t count;
906 919 rtems_status_code status;
907 920
908 921 status = rtems_message_queue_get_number_pending( queue_id, &count );
909 922
910 923 count = count + 1;
911 924
912 925 if (status != RTEMS_SUCCESSFUL)
913 926 {
914 927 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
915 928 }
916 929 else
917 930 {
918 931 if (count > *fifo_size_max)
919 932 {
920 933 *fifo_size_max = count;
921 934 }
922 935 }
923 936 }
924 937
925 938 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
926 939 {
927 940 unsigned char i;
928 941
929 942 //***************
930 943 // BUFFER ADDRESS
931 944 for(i=0; i<nbNodes; i++)
932 945 {
933 946 ring[i].coarseTime = 0xffffffff;
934 947 ring[i].fineTime = 0xffffffff;
935 948 ring[i].sid = 0x00;
936 949 ring[i].status = 0x00;
937 950 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
938 951 }
939 952
940 953 //*****
941 954 // NEXT
942 955 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
943 956 for(i=0; i<nbNodes-1; i++)
944 957 {
945 958 ring[i].next = (ring_node*) &ring[ i + 1 ];
946 959 }
947 960
948 961 //*********
949 962 // PREVIOUS
950 963 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
951 964 for(i=1; i<nbNodes; i++)
952 965 {
953 966 ring[i].previous = (ring_node*) &ring[ i - 1 ];
954 967 }
955 968 }
@@ -1,898 +1,913
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 int16_t hk_lfr_sc_v_f3_as_int16;
11 int16_t hk_lfr_sc_e1_f3_as_int16;
12 int16_t hk_lfr_sc_e2_f3_as_int16;
13
10 14 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 16 {
13 17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 18 *
15 19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 22 * @param interrupt_level is the interrupt level that the timer drives.
19 23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 24 *
21 25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 26 *
23 27 */
24 28
25 29 rtems_status_code status;
26 30 rtems_isr_entry old_isr_handler;
27 31
28 32 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 33
30 34 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 35 if (status!=RTEMS_SUCCESSFUL)
32 36 {
33 37 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 38 }
35 39
36 40 timer_set_clock_divider( timer, clock_divider);
37 41 }
38 42
39 43 void timer_start(unsigned char timer)
40 44 {
41 45 /** This function starts a GPTIMER timer.
42 46 *
43 47 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 48 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 49 *
46 50 */
47 51
48 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 53 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 57 }
54 58
55 59 void timer_stop(unsigned char timer)
56 60 {
57 61 /** This function stops a GPTIMER timer.
58 62 *
59 63 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 64 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 65 *
62 66 */
63 67
64 68 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 69 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 71 }
68 72
69 73 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
70 74 {
71 75 /** This function sets the clock divider of a GPTIMER timer.
72 76 *
73 77 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 78 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 79 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 80 *
77 81 */
78 82
79 83 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 84 }
81 85
82 86 // WATCHDOG
83 87
84 88 rtems_isr watchdog_isr( rtems_vector_number vector )
85 89 {
86 90 rtems_status_code status_code;
87 91
88 92 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
89 93
90 94 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
91 95
92 96 exit(0);
93 97 }
94 98
95 99 void watchdog_configure(void)
96 100 {
97 101 /** This function configure the watchdog.
98 102 *
99 103 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
100 104 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
101 105 *
102 106 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
103 107 *
104 108 */
105 109
106 110 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
107 111
108 112 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
109 113
110 114 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
111 115 }
112 116
113 117 void watchdog_stop(void)
114 118 {
115 119 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
116 120 timer_stop( TIMER_WATCHDOG );
117 121 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
118 122 }
119 123
120 124 void watchdog_reload(void)
121 125 {
122 126 /** This function reloads the watchdog timer counter with the timer reload value.
123 127 *
124 128 * @param void
125 129 *
126 130 * @return void
127 131 *
128 132 */
129 133
130 134 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
131 135 }
132 136
133 137 void watchdog_start(void)
134 138 {
135 139 /** This function starts the watchdog timer.
136 140 *
137 141 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
138 142 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
139 143 *
140 144 */
141 145
142 146 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
143 147
144 148 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
145 149 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
146 150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
147 151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
148 152
149 153 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
150 154
151 155 }
152 156
153 157 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
154 158 {
155 159 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
156 160
157 161 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
158 162
159 163 return 0;
160 164 }
161 165
162 166 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
163 167 {
164 168 /** This function sets the scaler reload register of the apbuart module
165 169 *
166 170 * @param regs is the address of the apbuart registers in memory
167 171 * @param value is the value that will be stored in the scaler register
168 172 *
169 173 * The value shall be set by the software to get data on the serial interface.
170 174 *
171 175 */
172 176
173 177 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
174 178
175 179 apbuart_regs->scaler = value;
176 180
177 181 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
178 182 }
179 183
180 184 //************
181 185 // RTEMS TASKS
182 186
183 187 rtems_task load_task(rtems_task_argument argument)
184 188 {
185 189 BOOT_PRINTF("in LOAD *** \n")
186 190
187 191 rtems_status_code status;
188 192 unsigned int i;
189 193 unsigned int j;
190 194 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
191 195 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
192 196
193 197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
194 198
195 199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
196 200 if( status != RTEMS_SUCCESSFUL ) {
197 201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
198 202 }
199 203
200 204 i = 0;
201 205 j = 0;
202 206
203 207 watchdog_configure();
204 208
205 209 watchdog_start();
206 210
207 211 set_sy_lfr_watchdog_enabled( true );
208 212
209 213 while(1){
210 214 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
211 215 watchdog_reload();
212 216 i = i + 1;
213 217 if ( i == 10 )
214 218 {
215 219 i = 0;
216 220 j = j + 1;
217 221 PRINTF1("%d\n", j)
218 222 }
219 223 #ifdef DEBUG_WATCHDOG
220 224 if (j == 3 )
221 225 {
222 226 status = rtems_task_delete(RTEMS_SELF);
223 227 }
224 228 #endif
225 229 }
226 230 }
227 231
228 232 rtems_task hous_task(rtems_task_argument argument)
229 233 {
230 234 rtems_status_code status;
231 235 rtems_status_code spare_status;
232 236 rtems_id queue_id;
233 237 rtems_rate_monotonic_period_status period_status;
234 238
235 239 status = get_message_queue_id_send( &queue_id );
236 240 if (status != RTEMS_SUCCESSFUL)
237 241 {
238 242 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
239 243 }
240 244
241 245 BOOT_PRINTF("in HOUS ***\n");
242 246
243 247 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
244 248 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
245 249 if( status != RTEMS_SUCCESSFUL ) {
246 250 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
247 251 }
248 252 }
249 253
250 254 status = rtems_rate_monotonic_cancel(HK_id);
251 255 if( status != RTEMS_SUCCESSFUL ) {
252 256 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
253 257 }
254 258 else {
255 259 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
256 260 }
257 261
258 262 // startup phase
259 263 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
260 264 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
261 265 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
262 266 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
263 267 {
264 268 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
265 269 {
266 270 break; // break if LFR is synchronized
267 271 }
268 272 else
269 273 {
270 274 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
271 275 // sched_yield();
272 276 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
273 277 }
274 278 }
275 279 status = rtems_rate_monotonic_cancel(HK_id);
276 280 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
277 281
278 282 set_hk_lfr_reset_cause( POWER_ON );
279 283
280 284 while(1){ // launch the rate monotonic task
281 285 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
282 286 if ( status != RTEMS_SUCCESSFUL ) {
283 287 PRINTF1( "in HOUS *** ERR period: %d\n", status);
284 288 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
285 289 }
286 290 else {
287 291 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
288 292 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
289 293 increment_seq_counter( &sequenceCounterHK );
290 294
291 295 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
292 296 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
293 297 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
294 298 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
295 299 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
296 300 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
297 301
298 302 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
299 303
300 304 spacewire_read_statistics();
301 305
302 306 update_hk_with_grspw_stats();
303 307
304 308 set_hk_lfr_time_not_synchro();
305 309
306 310 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
307 311 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
308 312 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
309 313 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
310 314 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
311 315
312 316 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
313 317 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
314 318 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
315 319 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
316 320 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
317 321
318 322 hk_lfr_le_me_he_update();
319 323
320 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
324 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
325 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
321 326
322 327 // SEND PACKET
323 328 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
324 329 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
325 330 if (status != RTEMS_SUCCESSFUL) {
326 331 PRINTF1("in HOUS *** ERR send: %d\n", status)
327 332 }
328 333 }
329 334 }
330 335
331 336 PRINTF("in HOUS *** deleting task\n")
332 337
333 338 status = rtems_task_delete( RTEMS_SELF ); // should not return
334 339
335 340 return;
336 341 }
337 342
338 343 rtems_task avgv_task(rtems_task_argument argument)
339 344 {
340 345 #define MOVING_AVERAGE 16
341 346 rtems_status_code status;
342 347 unsigned int v[MOVING_AVERAGE];
343 348 unsigned int e1[MOVING_AVERAGE];
344 349 unsigned int e2[MOVING_AVERAGE];
345 350 float average_v;
346 351 float average_e1;
347 352 float average_e2;
353 float newValue_v;
354 float newValue_e1;
355 float newValue_e2;
348 356 unsigned char k;
349 357 unsigned char indexOfOldValue;
350 358
351 359 BOOT_PRINTF("in AVGV ***\n");
352 360
353 361 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
354 362 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
355 363 if( status != RTEMS_SUCCESSFUL ) {
356 364 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
357 365 }
358 366 }
359 367
360 368 status = rtems_rate_monotonic_cancel(AVGV_id);
361 369 if( status != RTEMS_SUCCESSFUL ) {
362 370 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
363 371 }
364 372 else {
365 373 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
366 374 }
367 375
368 376 // initialize values
369 377 k = 0;
370 378 indexOfOldValue = MOVING_AVERAGE - 1;
371 379 for (k = 0; k < MOVING_AVERAGE; k++)
372 380 {
373 381 v[k] = 0;
374 382 e1[k] = 0;
375 383 e2[k] = 0;
376 384 average_v = 0.;
377 385 average_e1 = 0.;
378 386 average_e2 = 0.;
387 newValue_v = 0.;
388 newValue_e1 = 0.;
389 newValue_e2 = 0.;
379 390 }
380 391
381 392 k = 0;
382 393
383 394 while(1){ // launch the rate monotonic task
384 395 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
385 396 if ( status != RTEMS_SUCCESSFUL ) {
386 397 PRINTF1( "in AVGV *** ERR period: %d\n", status);
387 398 }
388 399 else {
389 // store new value in buffer
390 v[k] = waveform_picker_regs->v;
391 e1[k] = waveform_picker_regs->e1;
392 e2[k] = waveform_picker_regs->e2;
393 if (k == (MOVING_AVERAGE - 1))
394 {
395 indexOfOldValue = 0;
396 }
397 else
398 {
399 indexOfOldValue = k + 1;
400 }
401 average_v = average_v + v[k] - v[indexOfOldValue];
402 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
403 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
400 // get new values
401 newValue_v = waveform_picker_regs->v;
402 newValue_e1 = waveform_picker_regs->e1;
403 newValue_e2 = waveform_picker_regs->e2;
404
405 // compute the moving average
406 average_v = average_v + newValue_v - v[k];
407 average_e1 = average_e1 + newValue_e1 - e1[k];
408 average_e2 = average_e2 + newValue_e2 - e2[k];
409
410 // store new values in buffers
411 v[k] = newValue_v;
412 e1[k] = newValue_e1;
413 e2[k] = newValue_e2;
404 414 }
405 415 if (k == (MOVING_AVERAGE-1))
406 416 {
407 417 k = 0;
408 418 printf("tick\n");
409 419 }
410 420 else
411 421 {
412 422 k++;
413 423 }
414 424 }
415 425
416 PRINTF("in AVGV *** deleting task\n")
426 //update int16 values
427 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
428 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
429 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
417 430
418 status = rtems_task_delete( RTEMS_SELF ); // should not return
431 PRINTF("in AVGV *** deleting task\n");
432
433 status = rtems_task_delete( RTEMS_SELF ); // should not return
419 434
420 435 return;
421 436 }
422 437
423 438 rtems_task dumb_task( rtems_task_argument unused )
424 439 {
425 440 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
426 441 *
427 442 * @param unused is the starting argument of the RTEMS task
428 443 *
429 444 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
430 445 *
431 446 */
432 447
433 448 unsigned int i;
434 449 unsigned int intEventOut;
435 450 unsigned int coarse_time = 0;
436 451 unsigned int fine_time = 0;
437 452 rtems_event_set event_out;
438 453
439 454 char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
440 455 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
441 456 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
442 457 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
443 458 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
444 459 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
445 460 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
446 461 "ready for dump", // RTEMS_EVENT_7
447 462 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
448 463 "tick", // RTEMS_EVENT_9
449 464 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
450 465 "VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
451 466 "WATCHDOG timer", // RTEMS_EVENT_12
452 467 "TIMECODE timer", // RTEMS_EVENT_13
453 468 "TIMECODE ISR" // RTEMS_EVENT_14
454 469 };
455 470
456 471 BOOT_PRINTF("in DUMB *** \n")
457 472
458 473 while(1){
459 474 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
460 475 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
461 476 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
462 477 | RTEMS_EVENT_14,
463 478 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
464 479 intEventOut = (unsigned int) event_out;
465 480 for ( i=0; i<32; i++)
466 481 {
467 482 if ( ((intEventOut >> i) & 0x0001) != 0)
468 483 {
469 484 coarse_time = time_management_regs->coarse_time;
470 485 fine_time = time_management_regs->fine_time;
471 486 if (i==12)
472 487 {
473 488 PRINTF1("%s\n", DumbMessages[12])
474 489 }
475 490 if (i==13)
476 491 {
477 492 PRINTF1("%s\n", DumbMessages[13])
478 493 }
479 494 if (i==14)
480 495 {
481 496 PRINTF1("%s\n", DumbMessages[1])
482 497 }
483 498 }
484 499 }
485 500 }
486 501 }
487 502
488 503 //*****************************
489 504 // init housekeeping parameters
490 505
491 506 void init_housekeeping_parameters( void )
492 507 {
493 508 /** This function initialize the housekeeping_packet global variable with default values.
494 509 *
495 510 */
496 511
497 512 unsigned int i = 0;
498 513 unsigned char *parameters;
499 514 unsigned char sizeOfHK;
500 515
501 516 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
502 517
503 518 parameters = (unsigned char*) &housekeeping_packet;
504 519
505 520 for(i = 0; i< sizeOfHK; i++)
506 521 {
507 522 parameters[i] = 0x00;
508 523 }
509 524
510 525 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
511 526 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
512 527 housekeeping_packet.reserved = DEFAULT_RESERVED;
513 528 housekeeping_packet.userApplication = CCSDS_USER_APP;
514 529 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
515 530 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
516 531 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
517 532 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
518 533 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
519 534 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
520 535 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
521 536 housekeeping_packet.serviceType = TM_TYPE_HK;
522 537 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
523 538 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
524 539 housekeeping_packet.sid = SID_HK;
525 540
526 541 // init status word
527 542 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
528 543 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
529 544 // init software version
530 545 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
531 546 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
532 547 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
533 548 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
534 549 // init fpga version
535 550 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
536 551 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
537 552 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
538 553 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
539 554
540 555 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
541 556 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
542 557 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
543 558 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
544 559 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
545 560 }
546 561
547 562 void increment_seq_counter( unsigned short *packetSequenceControl )
548 563 {
549 564 /** This function increment the sequence counter passes in argument.
550 565 *
551 566 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
552 567 *
553 568 */
554 569
555 570 unsigned short segmentation_grouping_flag;
556 571 unsigned short sequence_cnt;
557 572
558 573 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
559 574 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
560 575
561 576 if ( sequence_cnt < SEQ_CNT_MAX)
562 577 {
563 578 sequence_cnt = sequence_cnt + 1;
564 579 }
565 580 else
566 581 {
567 582 sequence_cnt = 0;
568 583 }
569 584
570 585 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
571 586 }
572 587
573 588 void getTime( unsigned char *time)
574 589 {
575 590 /** This function write the current local time in the time buffer passed in argument.
576 591 *
577 592 */
578 593
579 594 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
580 595 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
581 596 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
582 597 time[3] = (unsigned char) (time_management_regs->coarse_time);
583 598 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
584 599 time[5] = (unsigned char) (time_management_regs->fine_time);
585 600 }
586 601
587 602 unsigned long long int getTimeAsUnsignedLongLongInt( )
588 603 {
589 604 /** This function write the current local time in the time buffer passed in argument.
590 605 *
591 606 */
592 607 unsigned long long int time;
593 608
594 609 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
595 610 + time_management_regs->fine_time;
596 611
597 612 return time;
598 613 }
599 614
600 615 void send_dumb_hk( void )
601 616 {
602 617 Packet_TM_LFR_HK_t dummy_hk_packet;
603 618 unsigned char *parameters;
604 619 unsigned int i;
605 620 rtems_id queue_id;
606 621
607 622 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
608 623 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
609 624 dummy_hk_packet.reserved = DEFAULT_RESERVED;
610 625 dummy_hk_packet.userApplication = CCSDS_USER_APP;
611 626 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
612 627 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
613 628 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
614 629 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
615 630 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
616 631 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
617 632 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
618 633 dummy_hk_packet.serviceType = TM_TYPE_HK;
619 634 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
620 635 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
621 636 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
622 637 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
623 638 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
624 639 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
625 640 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
626 641 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
627 642 dummy_hk_packet.sid = SID_HK;
628 643
629 644 // init status word
630 645 dummy_hk_packet.lfr_status_word[0] = 0xff;
631 646 dummy_hk_packet.lfr_status_word[1] = 0xff;
632 647 // init software version
633 648 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
634 649 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
635 650 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
636 651 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
637 652 // init fpga version
638 653 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
639 654 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
640 655 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
641 656 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
642 657
643 658 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
644 659
645 660 for (i=0; i<100; i++)
646 661 {
647 662 parameters[i] = 0xff;
648 663 }
649 664
650 665 get_message_queue_id_send( &queue_id );
651 666
652 667 rtems_message_queue_send( queue_id, &dummy_hk_packet,
653 668 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
654 669 }
655 670
656 671 void get_temperatures( unsigned char *temperatures )
657 672 {
658 673 unsigned char* temp_scm_ptr;
659 674 unsigned char* temp_pcb_ptr;
660 675 unsigned char* temp_fpga_ptr;
661 676
662 677 // SEL1 SEL0
663 678 // 0 0 => PCB
664 679 // 0 1 => FPGA
665 680 // 1 0 => SCM
666 681
667 682 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
668 683 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
669 684 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
670 685
671 686 temperatures[0] = temp_scm_ptr[2];
672 687 temperatures[1] = temp_scm_ptr[3];
673 688 temperatures[2] = temp_pcb_ptr[2];
674 689 temperatures[3] = temp_pcb_ptr[3];
675 690 temperatures[4] = temp_fpga_ptr[2];
676 691 temperatures[5] = temp_fpga_ptr[3];
677 692 }
678 693
679 694 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
680 695 {
681 696 unsigned char* v_ptr;
682 697 unsigned char* e1_ptr;
683 698 unsigned char* e2_ptr;
684 699
685 v_ptr = (unsigned char *) &waveform_picker_regs->v;
686 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
687 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
700 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
701 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
702 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
688 703
689 spacecraft_potential[0] = v_ptr[2];
690 spacecraft_potential[1] = v_ptr[3];
691 spacecraft_potential[2] = e1_ptr[2];
692 spacecraft_potential[3] = e1_ptr[3];
693 spacecraft_potential[4] = e2_ptr[2];
694 spacecraft_potential[5] = e2_ptr[3];
704 spacecraft_potential[0] = v_ptr[0];
705 spacecraft_potential[1] = v_ptr[1];
706 spacecraft_potential[2] = e1_ptr[0];
707 spacecraft_potential[3] = e1_ptr[1];
708 spacecraft_potential[4] = e2_ptr[0];
709 spacecraft_potential[5] = e2_ptr[1];
695 710 }
696 711
697 712 void get_cpu_load( unsigned char *resource_statistics )
698 713 {
699 714 unsigned char cpu_load;
700 715
701 716 cpu_load = lfr_rtems_cpu_usage_report();
702 717
703 718 // HK_LFR_CPU_LOAD
704 719 resource_statistics[0] = cpu_load;
705 720
706 721 // HK_LFR_CPU_LOAD_MAX
707 722 if (cpu_load > resource_statistics[1])
708 723 {
709 724 resource_statistics[1] = cpu_load;
710 725 }
711 726
712 727 // CPU_LOAD_AVE
713 728 resource_statistics[2] = 0;
714 729
715 730 #ifndef PRINT_TASK_STATISTICS
716 731 rtems_cpu_usage_reset();
717 732 #endif
718 733
719 734 }
720 735
721 736 void set_hk_lfr_sc_potential_flag( bool state )
722 737 {
723 738 if (state == true)
724 739 {
725 740 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
726 741 }
727 742 else
728 743 {
729 744 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
730 745 }
731 746 }
732 747
733 748 void set_sy_lfr_pas_filter_enabled( bool state )
734 749 {
735 750 if (state == true)
736 751 {
737 752 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x20; // [0010 0000]
738 753 }
739 754 else
740 755 {
741 756 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xdf; // [1101 1111]
742 757 }
743 758 }
744 759
745 760 void set_sy_lfr_watchdog_enabled( bool state )
746 761 {
747 762 if (state == true)
748 763 {
749 764 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x10; // [0001 0000]
750 765 }
751 766 else
752 767 {
753 768 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xef; // [1110 1111]
754 769 }
755 770 }
756 771
757 772 void set_hk_lfr_calib_enable( bool state )
758 773 {
759 774 if (state == true)
760 775 {
761 776 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
762 777 }
763 778 else
764 779 {
765 780 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
766 781 }
767 782 }
768 783
769 784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
770 785 {
771 786 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf8; // [1111 1000]
772 787
773 788 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
774 789 | (lfr_reset_cause & 0x07 ); // [0000 0111]
775 790
776 791 }
777 792
778 793 void hk_lfr_le_me_he_update()
779 794 {
780 795 unsigned int hk_lfr_le_cnt;
781 796 unsigned int hk_lfr_me_cnt;
782 797 unsigned int hk_lfr_he_cnt;
783 798 unsigned int current_hk_lfr_le_cnt;
784 799 unsigned int current_hk_lfr_me_cnt;
785 800 unsigned int current_hk_lfr_he_cnt;
786 801
787 802 hk_lfr_le_cnt = 0;
788 803 hk_lfr_me_cnt = 0;
789 804 hk_lfr_he_cnt = 0;
790 805 current_hk_lfr_le_cnt = ((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256 + housekeeping_packet.hk_lfr_le_cnt[1];
791 806 current_hk_lfr_me_cnt = ((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256 + housekeeping_packet.hk_lfr_me_cnt[1];
792 807 current_hk_lfr_he_cnt = ((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256 + housekeeping_packet.hk_lfr_he_cnt[1];
793 808
794 809 //update the low severity error counter
795 810 hk_lfr_le_cnt =
796 811 current_hk_lfr_le_cnt
797 812 + housekeeping_packet.hk_lfr_dpu_spw_parity
798 813 + housekeeping_packet.hk_lfr_dpu_spw_disconnect
799 814 + housekeeping_packet.hk_lfr_dpu_spw_escape
800 815 + housekeeping_packet.hk_lfr_dpu_spw_credit
801 816 + housekeeping_packet.hk_lfr_dpu_spw_write_sync
802 817 + housekeeping_packet.hk_lfr_timecode_erroneous
803 818 + housekeeping_packet.hk_lfr_timecode_missing
804 819 + housekeeping_packet.hk_lfr_timecode_invalid
805 820 + housekeeping_packet.hk_lfr_time_timecode_it
806 821 + housekeeping_packet.hk_lfr_time_not_synchro
807 822 + housekeeping_packet.hk_lfr_time_timecode_ctr
808 823 + housekeeping_packet.hk_lfr_ahb_correctable;
809 824 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
810 825 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
811 826
812 827 //update the medium severity error counter
813 828 hk_lfr_me_cnt =
814 829 current_hk_lfr_me_cnt
815 830 + housekeeping_packet.hk_lfr_dpu_spw_early_eop
816 831 + housekeeping_packet.hk_lfr_dpu_spw_invalid_addr
817 832 + housekeeping_packet.hk_lfr_dpu_spw_eep
818 833 + housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
819 834
820 835 //update the high severity error counter
821 836 hk_lfr_he_cnt = 0;
822 837
823 838 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
824 839 // LE
825 840 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((hk_lfr_le_cnt & 0xff00) >> 8);
826 841 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (hk_lfr_le_cnt & 0x00ff);
827 842 // ME
828 843 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((hk_lfr_me_cnt & 0xff00) >> 8);
829 844 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (hk_lfr_me_cnt & 0x00ff);
830 845 // HE
831 846 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & 0xff00) >> 8);
832 847 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & 0x00ff);
833 848
834 849 }
835 850
836 851 void set_hk_lfr_time_not_synchro()
837 852 {
838 853 static unsigned char synchroLost = 1;
839 854 int synchronizationBit;
840 855
841 856 // get the synchronization bit
842 857 synchronizationBit = (time_management_regs->coarse_time & 0x80000000) >> 31; // 1000 0000 0000 0000
843 858
844 859 switch (synchronizationBit)
845 860 {
846 861 case 0:
847 862 if (synchroLost == 1)
848 863 {
849 864 synchroLost = 0;
850 865 }
851 866 break;
852 867 case 1:
853 868 if (synchroLost == 0 )
854 869 {
855 870 synchroLost = 1;
856 871 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
857 872 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
858 873 }
859 874 break;
860 875 default:
861 876 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
862 877 break;
863 878 }
864 879
865 880 }
866 881
867 882 void set_hk_lfr_ahb_correctable() // CRITICITY L
868 883 {
869 884 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
870 885 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
871 886 * detected errors in the cache, in the integer unit and in the floating point unit.
872 887 *
873 888 * @param void
874 889 *
875 890 * @return void
876 891 *
877 892 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
878 893 *
879 894 */
880 895
881 896 unsigned int ahb_correctable;
882 897 unsigned int instructionErrorCounter;
883 898 unsigned int dataErrorCounter;
884 899 unsigned int fprfErrorCounter;
885 900 unsigned int iurfErrorCounter;
886 901
887 902 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
888 903 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
889 904
890 905 ahb_correctable = instructionErrorCounter
891 906 + dataErrorCounter
892 907 + fprfErrorCounter
893 908 + iurfErrorCounter
894 909 + housekeeping_packet.hk_lfr_ahb_correctable;
895 910
896 911 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & 0xff); // [1111 1111]
897 912
898 913 }
@@ -1,1641 +1,1642
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14 #include "math.h"
15 15
16 16 //***********
17 17 // RTEMS TASK
18 18
19 19 rtems_task actn_task( rtems_task_argument unused )
20 20 {
21 21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 22 *
23 23 * @param unused is the starting argument of the RTEMS task
24 24 *
25 25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 26 * on the incoming TeleCommand.
27 27 *
28 28 */
29 29
30 30 int result;
31 31 rtems_status_code status; // RTEMS status code
32 32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 33 size_t size; // size of the incoming TC packet
34 34 unsigned char subtype; // subtype of the current TC packet
35 35 unsigned char time[6];
36 36 rtems_id queue_rcv_id;
37 37 rtems_id queue_snd_id;
38 38
39 39 status = get_message_queue_id_recv( &queue_rcv_id );
40 40 if (status != RTEMS_SUCCESSFUL)
41 41 {
42 42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 43 }
44 44
45 45 status = get_message_queue_id_send( &queue_snd_id );
46 46 if (status != RTEMS_SUCCESSFUL)
47 47 {
48 48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 49 }
50 50
51 51 result = LFR_SUCCESSFUL;
52 52 subtype = 0; // subtype of the current TC packet
53 53
54 54 BOOT_PRINTF("in ACTN *** \n");
55 55
56 56 while(1)
57 57 {
58 58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 60 getTime( time ); // set time to the current time
61 61 if (status!=RTEMS_SUCCESSFUL)
62 62 {
63 63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 64 }
65 65 else
66 66 {
67 67 subtype = TC.serviceSubType;
68 68 switch(subtype)
69 69 {
70 70 case TC_SUBTYPE_RESET:
71 71 result = action_reset( &TC, queue_snd_id, time );
72 72 close_action( &TC, result, queue_snd_id );
73 73 break;
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 case TC_SUBTYPE_LOAD_NORM:
79 79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 80 close_action( &TC, result, queue_snd_id );
81 81 break;
82 82 case TC_SUBTYPE_LOAD_BURST:
83 83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 84 close_action( &TC, result, queue_snd_id );
85 85 break;
86 86 case TC_SUBTYPE_LOAD_SBM1:
87 87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 88 close_action( &TC, result, queue_snd_id );
89 89 break;
90 90 case TC_SUBTYPE_LOAD_SBM2:
91 91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 92 close_action( &TC, result, queue_snd_id );
93 93 break;
94 94 case TC_SUBTYPE_DUMP:
95 95 result = action_dump_par( &TC, queue_snd_id );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 case TC_SUBTYPE_ENTER:
99 99 result = action_enter_mode( &TC, queue_snd_id );
100 100 close_action( &TC, result, queue_snd_id );
101 101 break;
102 102 case TC_SUBTYPE_UPDT_INFO:
103 103 result = action_update_info( &TC, queue_snd_id );
104 104 close_action( &TC, result, queue_snd_id );
105 105 break;
106 106 case TC_SUBTYPE_EN_CAL:
107 107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 108 close_action( &TC, result, queue_snd_id );
109 109 break;
110 110 case TC_SUBTYPE_DIS_CAL:
111 111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 112 close_action( &TC, result, queue_snd_id );
113 113 break;
114 114 case TC_SUBTYPE_LOAD_K:
115 115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 case TC_SUBTYPE_DUMP_K:
119 119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 120 close_action( &TC, result, queue_snd_id );
121 121 break;
122 122 case TC_SUBTYPE_LOAD_FBINS:
123 123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 124 close_action( &TC, result, queue_snd_id );
125 125 break;
126 126 case TC_SUBTYPE_LOAD_FILTER_PAR:
127 127 result = action_load_filter_par( &TC, queue_snd_id, time );
128 128 close_action( &TC, result, queue_snd_id );
129 129 break;
130 130 case TC_SUBTYPE_UPDT_TIME:
131 131 result = action_update_time( &TC );
132 132 close_action( &TC, result, queue_snd_id );
133 133 break;
134 134 default:
135 135 break;
136 136 }
137 137 }
138 138 }
139 139 }
140 140
141 141 //***********
142 142 // TC ACTIONS
143 143
144 144 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 145 {
146 146 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
147 147 *
148 148 * @param TC points to the TeleCommand packet that is being processed
149 149 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
150 150 *
151 151 */
152 152
153 153 PRINTF("this is the end!!!\n");
154 154 exit(0);
155 155
156 156 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
157 157
158 158 return LFR_DEFAULT;
159 159 }
160 160
161 161 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
162 162 {
163 163 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
164 164 *
165 165 * @param TC points to the TeleCommand packet that is being processed
166 166 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
167 167 *
168 168 */
169 169
170 170 rtems_status_code status;
171 171 unsigned char requestedMode;
172 172 unsigned int *transitionCoarseTime_ptr;
173 173 unsigned int transitionCoarseTime;
174 174 unsigned char * bytePosPtr;
175 175
176 176 bytePosPtr = (unsigned char *) &TC->packetID;
177 177
178 178 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
179 179 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
180 180 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
181 181
182 182 status = check_mode_value( requestedMode );
183 183
184 184 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
185 185 {
186 186 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
187 187 }
188 188
189 189 else // the mode value is valid, check the transition
190 190 {
191 191 status = check_mode_transition(requestedMode);
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
195 195 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
196 196 }
197 197 }
198 198
199 199 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
200 200 {
201 201 status = check_transition_date( transitionCoarseTime );
202 202 if (status != LFR_SUCCESSFUL)
203 203 {
204 204 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
205 205 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
206 206 }
207 207 }
208 208
209 209 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
210 210 {
211 211 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
212 212
213 213 switch(requestedMode)
214 214 {
215 215 case LFR_MODE_STANDBY:
216 216 status = enter_mode_standby();
217 217 break;
218 218 case LFR_MODE_NORMAL:
219 219 status = enter_mode_normal( transitionCoarseTime );
220 220 break;
221 221 case LFR_MODE_BURST:
222 222 status = enter_mode_burst( transitionCoarseTime );
223 223 break;
224 224 case LFR_MODE_SBM1:
225 225 status = enter_mode_sbm1( transitionCoarseTime );
226 226 break;
227 227 case LFR_MODE_SBM2:
228 228 status = enter_mode_sbm2( transitionCoarseTime );
229 229 break;
230 230 default:
231 231 break;
232 232 }
233 233
234 234 if (status != RTEMS_SUCCESSFUL)
235 235 {
236 236 status = LFR_EXE_ERROR;
237 237 }
238 238 }
239 239
240 240 return status;
241 241 }
242 242
243 243 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
244 244 {
245 245 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
246 246 *
247 247 * @param TC points to the TeleCommand packet that is being processed
248 248 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
249 249 *
250 250 * @return LFR directive status code:
251 251 * - LFR_DEFAULT
252 252 * - LFR_SUCCESSFUL
253 253 *
254 254 */
255 255
256 256 unsigned int val;
257 257 int result;
258 258 unsigned int status;
259 259 unsigned char mode;
260 260 unsigned char * bytePosPtr;
261 261
262 262 bytePosPtr = (unsigned char *) &TC->packetID;
263 263
264 264 // check LFR mode
265 265 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
266 266 status = check_update_info_hk_lfr_mode( mode );
267 267 if (status == LFR_SUCCESSFUL) // check TDS mode
268 268 {
269 269 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
270 270 status = check_update_info_hk_tds_mode( mode );
271 271 }
272 272 if (status == LFR_SUCCESSFUL) // check THR mode
273 273 {
274 274 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
275 275 status = check_update_info_hk_thr_mode( mode );
276 276 }
277 277 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
278 278 {
279 279 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
280 280 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
281 281 val++;
282 282 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
283 283 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
284 284 }
285 285
286 286 // pa_bia_status_info
287 287 // => pa_bia_mode_mux_set 3 bits
288 288 // => pa_bia_mode_hv_enabled 1 bit
289 289 // => pa_bia_mode_bias1_enabled 1 bit
290 290 // => pa_bia_mode_bias2_enabled 1 bit
291 291 // => pa_bia_mode_bias3_enabled 1 bit
292 292 // => pa_bia_on_off (cp_dpu_bias_on_off)
293 293 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
294 294 pa_bia_status_info = pa_bia_status_info
295 295 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
296 296
297 297 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
298 cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
298 //cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
299 299 getReactionWheelsFrequencies( TC );
300 set_hk_lfr_sc_rw_f_flags();
300 301 build_sy_lfr_rw_masks();
301 302
302 303 result = status;
303 304
304 305 return result;
305 306 }
306 307
307 308 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
308 309 {
309 310 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
310 311 *
311 312 * @param TC points to the TeleCommand packet that is being processed
312 313 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
313 314 *
314 315 */
315 316
316 317 int result;
317 318
318 319 result = LFR_DEFAULT;
319 320
320 321 setCalibration( true );
321 322
322 323 result = LFR_SUCCESSFUL;
323 324
324 325 return result;
325 326 }
326 327
327 328 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
328 329 {
329 330 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
330 331 *
331 332 * @param TC points to the TeleCommand packet that is being processed
332 333 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
333 334 *
334 335 */
335 336
336 337 int result;
337 338
338 339 result = LFR_DEFAULT;
339 340
340 341 setCalibration( false );
341 342
342 343 result = LFR_SUCCESSFUL;
343 344
344 345 return result;
345 346 }
346 347
347 348 int action_update_time(ccsdsTelecommandPacket_t *TC)
348 349 {
349 350 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
350 351 *
351 352 * @param TC points to the TeleCommand packet that is being processed
352 353 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
353 354 *
354 355 * @return LFR_SUCCESSFUL
355 356 *
356 357 */
357 358
358 359 unsigned int val;
359 360
360 361 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
361 362 + (TC->dataAndCRC[1] << 16)
362 363 + (TC->dataAndCRC[2] << 8)
363 364 + TC->dataAndCRC[3];
364 365
365 366 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
366 367 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
367 368 val++;
368 369 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
369 370 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
370 371
371 372 oneTcLfrUpdateTimeReceived = 1;
372 373
373 374 return LFR_SUCCESSFUL;
374 375 }
375 376
376 377 //*******************
377 378 // ENTERING THE MODES
378 379 int check_mode_value( unsigned char requestedMode )
379 380 {
380 381 int status;
381 382
382 383 if ( (requestedMode != LFR_MODE_STANDBY)
383 384 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
384 385 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
385 386 {
386 387 status = LFR_DEFAULT;
387 388 }
388 389 else
389 390 {
390 391 status = LFR_SUCCESSFUL;
391 392 }
392 393
393 394 return status;
394 395 }
395 396
396 397 int check_mode_transition( unsigned char requestedMode )
397 398 {
398 399 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
399 400 *
400 401 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
401 402 *
402 403 * @return LFR directive status codes:
403 404 * - LFR_SUCCESSFUL - the transition is authorized
404 405 * - LFR_DEFAULT - the transition is not authorized
405 406 *
406 407 */
407 408
408 409 int status;
409 410
410 411 switch (requestedMode)
411 412 {
412 413 case LFR_MODE_STANDBY:
413 414 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
414 415 status = LFR_DEFAULT;
415 416 }
416 417 else
417 418 {
418 419 status = LFR_SUCCESSFUL;
419 420 }
420 421 break;
421 422 case LFR_MODE_NORMAL:
422 423 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
423 424 status = LFR_DEFAULT;
424 425 }
425 426 else {
426 427 status = LFR_SUCCESSFUL;
427 428 }
428 429 break;
429 430 case LFR_MODE_BURST:
430 431 if ( lfrCurrentMode == LFR_MODE_BURST ) {
431 432 status = LFR_DEFAULT;
432 433 }
433 434 else {
434 435 status = LFR_SUCCESSFUL;
435 436 }
436 437 break;
437 438 case LFR_MODE_SBM1:
438 439 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
439 440 status = LFR_DEFAULT;
440 441 }
441 442 else {
442 443 status = LFR_SUCCESSFUL;
443 444 }
444 445 break;
445 446 case LFR_MODE_SBM2:
446 447 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
447 448 status = LFR_DEFAULT;
448 449 }
449 450 else {
450 451 status = LFR_SUCCESSFUL;
451 452 }
452 453 break;
453 454 default:
454 455 status = LFR_DEFAULT;
455 456 break;
456 457 }
457 458
458 459 return status;
459 460 }
460 461
461 462 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
462 463 {
463 464 if (transitionCoarseTime == 0)
464 465 {
465 466 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
466 467 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
467 468 }
468 469 else
469 470 {
470 471 lastValidEnterModeTime = transitionCoarseTime;
471 472 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
472 473 }
473 474 }
474 475
475 476 int check_transition_date( unsigned int transitionCoarseTime )
476 477 {
477 478 int status;
478 479 unsigned int localCoarseTime;
479 480 unsigned int deltaCoarseTime;
480 481
481 482 status = LFR_SUCCESSFUL;
482 483
483 484 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
484 485 {
485 486 status = LFR_SUCCESSFUL;
486 487 }
487 488 else
488 489 {
489 490 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
490 491
491 492 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
492 493
493 494 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
494 495 {
495 496 status = LFR_DEFAULT;
496 497 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
497 498 }
498 499
499 500 if (status == LFR_SUCCESSFUL)
500 501 {
501 502 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
502 503 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
503 504 {
504 505 status = LFR_DEFAULT;
505 506 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
506 507 }
507 508 }
508 509 }
509 510
510 511 return status;
511 512 }
512 513
513 514 int restart_asm_activities( unsigned char lfrRequestedMode )
514 515 {
515 516 rtems_status_code status;
516 517
517 518 status = stop_spectral_matrices();
518 519
519 520 thisIsAnASMRestart = 1;
520 521
521 522 status = restart_asm_tasks( lfrRequestedMode );
522 523
523 524 launch_spectral_matrix();
524 525
525 526 return status;
526 527 }
527 528
528 529 int stop_spectral_matrices( void )
529 530 {
530 531 /** This function stops and restarts the current mode average spectral matrices activities.
531 532 *
532 533 * @return RTEMS directive status codes:
533 534 * - RTEMS_SUCCESSFUL - task restarted successfully
534 535 * - RTEMS_INVALID_ID - task id invalid
535 536 * - RTEMS_ALREADY_SUSPENDED - task already suspended
536 537 *
537 538 */
538 539
539 540 rtems_status_code status;
540 541
541 542 status = RTEMS_SUCCESSFUL;
542 543
543 544 // (1) mask interruptions
544 545 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
545 546
546 547 // (2) reset spectral matrices registers
547 548 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
548 549 reset_sm_status();
549 550
550 551 // (3) clear interruptions
551 552 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
552 553
553 554 // suspend several tasks
554 555 if (lfrCurrentMode != LFR_MODE_STANDBY) {
555 556 status = suspend_asm_tasks();
556 557 }
557 558
558 559 if (status != RTEMS_SUCCESSFUL)
559 560 {
560 561 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
561 562 }
562 563
563 564 return status;
564 565 }
565 566
566 567 int stop_current_mode( void )
567 568 {
568 569 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
569 570 *
570 571 * @return RTEMS directive status codes:
571 572 * - RTEMS_SUCCESSFUL - task restarted successfully
572 573 * - RTEMS_INVALID_ID - task id invalid
573 574 * - RTEMS_ALREADY_SUSPENDED - task already suspended
574 575 *
575 576 */
576 577
577 578 rtems_status_code status;
578 579
579 580 status = RTEMS_SUCCESSFUL;
580 581
581 582 // (1) mask interruptions
582 583 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
583 584 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
584 585
585 586 // (2) reset waveform picker registers
586 587 reset_wfp_burst_enable(); // reset burst and enable bits
587 588 reset_wfp_status(); // reset all the status bits
588 589
589 590 // (3) reset spectral matrices registers
590 591 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
591 592 reset_sm_status();
592 593
593 594 // reset lfr VHDL module
594 595 reset_lfr();
595 596
596 597 reset_extractSWF(); // reset the extractSWF flag to false
597 598
598 599 // (4) clear interruptions
599 600 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
600 601 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
601 602
602 603 // suspend several tasks
603 604 if (lfrCurrentMode != LFR_MODE_STANDBY) {
604 605 status = suspend_science_tasks();
605 606 }
606 607
607 608 if (status != RTEMS_SUCCESSFUL)
608 609 {
609 610 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
610 611 }
611 612
612 613 return status;
613 614 }
614 615
615 616 int enter_mode_standby( void )
616 617 {
617 618 /** This function is used to put LFR in the STANDBY mode.
618 619 *
619 620 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
620 621 *
621 622 * @return RTEMS directive status codes:
622 623 * - RTEMS_SUCCESSFUL - task restarted successfully
623 624 * - RTEMS_INVALID_ID - task id invalid
624 625 * - RTEMS_INCORRECT_STATE - task never started
625 626 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
626 627 *
627 628 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
628 629 * is immediate.
629 630 *
630 631 */
631 632
632 633 int status;
633 634
634 635 status = stop_current_mode(); // STOP THE CURRENT MODE
635 636
636 637 #ifdef PRINT_TASK_STATISTICS
637 638 rtems_cpu_usage_report();
638 639 #endif
639 640
640 641 #ifdef PRINT_STACK_REPORT
641 642 PRINTF("stack report selected\n")
642 643 rtems_stack_checker_report_usage();
643 644 #endif
644 645
645 646 return status;
646 647 }
647 648
648 649 int enter_mode_normal( unsigned int transitionCoarseTime )
649 650 {
650 651 /** This function is used to start the NORMAL mode.
651 652 *
652 653 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
653 654 *
654 655 * @return RTEMS directive status codes:
655 656 * - RTEMS_SUCCESSFUL - task restarted successfully
656 657 * - RTEMS_INVALID_ID - task id invalid
657 658 * - RTEMS_INCORRECT_STATE - task never started
658 659 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
659 660 *
660 661 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
661 662 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
662 663 *
663 664 */
664 665
665 666 int status;
666 667
667 668 #ifdef PRINT_TASK_STATISTICS
668 669 rtems_cpu_usage_reset();
669 670 #endif
670 671
671 672 status = RTEMS_UNSATISFIED;
672 673
673 674 switch( lfrCurrentMode )
674 675 {
675 676 case LFR_MODE_STANDBY:
676 677 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
677 678 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
678 679 {
679 680 launch_spectral_matrix( );
680 681 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
681 682 }
682 683 break;
683 684 case LFR_MODE_BURST:
684 685 status = stop_current_mode(); // stop the current mode
685 686 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
686 687 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
687 688 {
688 689 launch_spectral_matrix( );
689 690 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
690 691 }
691 692 break;
692 693 case LFR_MODE_SBM1:
693 694 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
694 695 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
695 696 update_last_valid_transition_date( transitionCoarseTime );
696 697 break;
697 698 case LFR_MODE_SBM2:
698 699 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
699 700 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
700 701 update_last_valid_transition_date( transitionCoarseTime );
701 702 break;
702 703 default:
703 704 break;
704 705 }
705 706
706 707 if (status != RTEMS_SUCCESSFUL)
707 708 {
708 709 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
709 710 status = RTEMS_UNSATISFIED;
710 711 }
711 712
712 713 return status;
713 714 }
714 715
715 716 int enter_mode_burst( unsigned int transitionCoarseTime )
716 717 {
717 718 /** This function is used to start the BURST mode.
718 719 *
719 720 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
720 721 *
721 722 * @return RTEMS directive status codes:
722 723 * - RTEMS_SUCCESSFUL - task restarted successfully
723 724 * - RTEMS_INVALID_ID - task id invalid
724 725 * - RTEMS_INCORRECT_STATE - task never started
725 726 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
726 727 *
727 728 * The way the BURST mode is started does not depend on the LFR current mode.
728 729 *
729 730 */
730 731
731 732
732 733 int status;
733 734
734 735 #ifdef PRINT_TASK_STATISTICS
735 736 rtems_cpu_usage_reset();
736 737 #endif
737 738
738 739 status = stop_current_mode(); // stop the current mode
739 740 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
740 741 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
741 742 {
742 743 launch_spectral_matrix( );
743 744 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
744 745 }
745 746
746 747 if (status != RTEMS_SUCCESSFUL)
747 748 {
748 749 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
749 750 status = RTEMS_UNSATISFIED;
750 751 }
751 752
752 753 return status;
753 754 }
754 755
755 756 int enter_mode_sbm1( unsigned int transitionCoarseTime )
756 757 {
757 758 /** This function is used to start the SBM1 mode.
758 759 *
759 760 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
760 761 *
761 762 * @return RTEMS directive status codes:
762 763 * - RTEMS_SUCCESSFUL - task restarted successfully
763 764 * - RTEMS_INVALID_ID - task id invalid
764 765 * - RTEMS_INCORRECT_STATE - task never started
765 766 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
766 767 *
767 768 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
768 769 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
769 770 * cases, the acquisition is completely restarted.
770 771 *
771 772 */
772 773
773 774 int status;
774 775
775 776 #ifdef PRINT_TASK_STATISTICS
776 777 rtems_cpu_usage_reset();
777 778 #endif
778 779
779 780 status = RTEMS_UNSATISFIED;
780 781
781 782 switch( lfrCurrentMode )
782 783 {
783 784 case LFR_MODE_STANDBY:
784 785 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
785 786 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
786 787 {
787 788 launch_spectral_matrix( );
788 789 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
789 790 }
790 791 break;
791 792 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
792 793 status = restart_asm_activities( LFR_MODE_SBM1 );
793 794 status = LFR_SUCCESSFUL;
794 795 update_last_valid_transition_date( transitionCoarseTime );
795 796 break;
796 797 case LFR_MODE_BURST:
797 798 status = stop_current_mode(); // stop the current mode
798 799 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
799 800 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
800 801 {
801 802 launch_spectral_matrix( );
802 803 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
803 804 }
804 805 break;
805 806 case LFR_MODE_SBM2:
806 807 status = restart_asm_activities( LFR_MODE_SBM1 );
807 808 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
808 809 update_last_valid_transition_date( transitionCoarseTime );
809 810 break;
810 811 default:
811 812 break;
812 813 }
813 814
814 815 if (status != RTEMS_SUCCESSFUL)
815 816 {
816 817 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
817 818 status = RTEMS_UNSATISFIED;
818 819 }
819 820
820 821 return status;
821 822 }
822 823
823 824 int enter_mode_sbm2( unsigned int transitionCoarseTime )
824 825 {
825 826 /** This function is used to start the SBM2 mode.
826 827 *
827 828 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
828 829 *
829 830 * @return RTEMS directive status codes:
830 831 * - RTEMS_SUCCESSFUL - task restarted successfully
831 832 * - RTEMS_INVALID_ID - task id invalid
832 833 * - RTEMS_INCORRECT_STATE - task never started
833 834 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
834 835 *
835 836 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
836 837 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
837 838 * cases, the acquisition is completely restarted.
838 839 *
839 840 */
840 841
841 842 int status;
842 843
843 844 #ifdef PRINT_TASK_STATISTICS
844 845 rtems_cpu_usage_reset();
845 846 #endif
846 847
847 848 status = RTEMS_UNSATISFIED;
848 849
849 850 switch( lfrCurrentMode )
850 851 {
851 852 case LFR_MODE_STANDBY:
852 853 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
853 854 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
854 855 {
855 856 launch_spectral_matrix( );
856 857 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
857 858 }
858 859 break;
859 860 case LFR_MODE_NORMAL:
860 861 status = restart_asm_activities( LFR_MODE_SBM2 );
861 862 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
862 863 update_last_valid_transition_date( transitionCoarseTime );
863 864 break;
864 865 case LFR_MODE_BURST:
865 866 status = stop_current_mode(); // stop the current mode
866 867 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
867 868 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
868 869 {
869 870 launch_spectral_matrix( );
870 871 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
871 872 }
872 873 break;
873 874 case LFR_MODE_SBM1:
874 875 status = restart_asm_activities( LFR_MODE_SBM2 );
875 876 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
876 877 update_last_valid_transition_date( transitionCoarseTime );
877 878 break;
878 879 default:
879 880 break;
880 881 }
881 882
882 883 if (status != RTEMS_SUCCESSFUL)
883 884 {
884 885 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
885 886 status = RTEMS_UNSATISFIED;
886 887 }
887 888
888 889 return status;
889 890 }
890 891
891 892 int restart_science_tasks( unsigned char lfrRequestedMode )
892 893 {
893 894 /** This function is used to restart all science tasks.
894 895 *
895 896 * @return RTEMS directive status codes:
896 897 * - RTEMS_SUCCESSFUL - task restarted successfully
897 898 * - RTEMS_INVALID_ID - task id invalid
898 899 * - RTEMS_INCORRECT_STATE - task never started
899 900 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
900 901 *
901 902 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
902 903 *
903 904 */
904 905
905 906 rtems_status_code status[10];
906 907 rtems_status_code ret;
907 908
908 909 ret = RTEMS_SUCCESSFUL;
909 910
910 911 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
911 912 if (status[0] != RTEMS_SUCCESSFUL)
912 913 {
913 914 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
914 915 }
915 916
916 917 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
917 918 if (status[1] != RTEMS_SUCCESSFUL)
918 919 {
919 920 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
920 921 }
921 922
922 923 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
923 924 if (status[2] != RTEMS_SUCCESSFUL)
924 925 {
925 926 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
926 927 }
927 928
928 929 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
929 930 if (status[3] != RTEMS_SUCCESSFUL)
930 931 {
931 932 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
932 933 }
933 934
934 935 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
935 936 if (status[4] != RTEMS_SUCCESSFUL)
936 937 {
937 938 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
938 939 }
939 940
940 941 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
941 942 if (status[5] != RTEMS_SUCCESSFUL)
942 943 {
943 944 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
944 945 }
945 946
946 947 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
947 948 if (status[6] != RTEMS_SUCCESSFUL)
948 949 {
949 950 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
950 951 }
951 952
952 953 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
953 954 if (status[7] != RTEMS_SUCCESSFUL)
954 955 {
955 956 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
956 957 }
957 958
958 959 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
959 960 if (status[8] != RTEMS_SUCCESSFUL)
960 961 {
961 962 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
962 963 }
963 964
964 965 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
965 966 if (status[9] != RTEMS_SUCCESSFUL)
966 967 {
967 968 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
968 969 }
969 970
970 971 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
971 972 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
972 973 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
973 974 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
974 975 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
975 976 {
976 977 ret = RTEMS_UNSATISFIED;
977 978 }
978 979
979 980 return ret;
980 981 }
981 982
982 983 int restart_asm_tasks( unsigned char lfrRequestedMode )
983 984 {
984 985 /** This function is used to restart average spectral matrices tasks.
985 986 *
986 987 * @return RTEMS directive status codes:
987 988 * - RTEMS_SUCCESSFUL - task restarted successfully
988 989 * - RTEMS_INVALID_ID - task id invalid
989 990 * - RTEMS_INCORRECT_STATE - task never started
990 991 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
991 992 *
992 993 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
993 994 *
994 995 */
995 996
996 997 rtems_status_code status[6];
997 998 rtems_status_code ret;
998 999
999 1000 ret = RTEMS_SUCCESSFUL;
1000 1001
1001 1002 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1002 1003 if (status[0] != RTEMS_SUCCESSFUL)
1003 1004 {
1004 1005 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
1005 1006 }
1006 1007
1007 1008 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1008 1009 if (status[1] != RTEMS_SUCCESSFUL)
1009 1010 {
1010 1011 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
1011 1012 }
1012 1013
1013 1014 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1014 1015 if (status[2] != RTEMS_SUCCESSFUL)
1015 1016 {
1016 1017 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
1017 1018 }
1018 1019
1019 1020 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1020 1021 if (status[3] != RTEMS_SUCCESSFUL)
1021 1022 {
1022 1023 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
1023 1024 }
1024 1025
1025 1026 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1026 1027 if (status[4] != RTEMS_SUCCESSFUL)
1027 1028 {
1028 1029 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
1029 1030 }
1030 1031
1031 1032 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1032 1033 if (status[5] != RTEMS_SUCCESSFUL)
1033 1034 {
1034 1035 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
1035 1036 }
1036 1037
1037 1038 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
1038 1039 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
1039 1040 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
1040 1041 {
1041 1042 ret = RTEMS_UNSATISFIED;
1042 1043 }
1043 1044
1044 1045 return ret;
1045 1046 }
1046 1047
1047 1048 int suspend_science_tasks( void )
1048 1049 {
1049 1050 /** This function suspends the science tasks.
1050 1051 *
1051 1052 * @return RTEMS directive status codes:
1052 1053 * - RTEMS_SUCCESSFUL - task restarted successfully
1053 1054 * - RTEMS_INVALID_ID - task id invalid
1054 1055 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1055 1056 *
1056 1057 */
1057 1058
1058 1059 rtems_status_code status;
1059 1060
1060 1061 PRINTF("in suspend_science_tasks\n")
1061 1062
1062 1063 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1063 1064 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1064 1065 {
1065 1066 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1066 1067 }
1067 1068 else
1068 1069 {
1069 1070 status = RTEMS_SUCCESSFUL;
1070 1071 }
1071 1072 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1072 1073 {
1073 1074 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1074 1075 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1075 1076 {
1076 1077 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1077 1078 }
1078 1079 else
1079 1080 {
1080 1081 status = RTEMS_SUCCESSFUL;
1081 1082 }
1082 1083 }
1083 1084 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1084 1085 {
1085 1086 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1086 1087 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1087 1088 {
1088 1089 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1089 1090 }
1090 1091 else
1091 1092 {
1092 1093 status = RTEMS_SUCCESSFUL;
1093 1094 }
1094 1095 }
1095 1096 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1096 1097 {
1097 1098 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1098 1099 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1099 1100 {
1100 1101 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1101 1102 }
1102 1103 else
1103 1104 {
1104 1105 status = RTEMS_SUCCESSFUL;
1105 1106 }
1106 1107 }
1107 1108 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1108 1109 {
1109 1110 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1110 1111 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1111 1112 {
1112 1113 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1113 1114 }
1114 1115 else
1115 1116 {
1116 1117 status = RTEMS_SUCCESSFUL;
1117 1118 }
1118 1119 }
1119 1120 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1120 1121 {
1121 1122 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1122 1123 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1123 1124 {
1124 1125 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1125 1126 }
1126 1127 else
1127 1128 {
1128 1129 status = RTEMS_SUCCESSFUL;
1129 1130 }
1130 1131 }
1131 1132 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1132 1133 {
1133 1134 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1134 1135 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1135 1136 {
1136 1137 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1137 1138 }
1138 1139 else
1139 1140 {
1140 1141 status = RTEMS_SUCCESSFUL;
1141 1142 }
1142 1143 }
1143 1144 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1144 1145 {
1145 1146 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1146 1147 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1147 1148 {
1148 1149 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1149 1150 }
1150 1151 else
1151 1152 {
1152 1153 status = RTEMS_SUCCESSFUL;
1153 1154 }
1154 1155 }
1155 1156 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1156 1157 {
1157 1158 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1158 1159 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1159 1160 {
1160 1161 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1161 1162 }
1162 1163 else
1163 1164 {
1164 1165 status = RTEMS_SUCCESSFUL;
1165 1166 }
1166 1167 }
1167 1168 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1168 1169 {
1169 1170 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1170 1171 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1171 1172 {
1172 1173 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1173 1174 }
1174 1175 else
1175 1176 {
1176 1177 status = RTEMS_SUCCESSFUL;
1177 1178 }
1178 1179 }
1179 1180
1180 1181 return status;
1181 1182 }
1182 1183
1183 1184 int suspend_asm_tasks( void )
1184 1185 {
1185 1186 /** This function suspends the science tasks.
1186 1187 *
1187 1188 * @return RTEMS directive status codes:
1188 1189 * - RTEMS_SUCCESSFUL - task restarted successfully
1189 1190 * - RTEMS_INVALID_ID - task id invalid
1190 1191 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1191 1192 *
1192 1193 */
1193 1194
1194 1195 rtems_status_code status;
1195 1196
1196 1197 PRINTF("in suspend_science_tasks\n")
1197 1198
1198 1199 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1199 1200 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1200 1201 {
1201 1202 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1202 1203 }
1203 1204 else
1204 1205 {
1205 1206 status = RTEMS_SUCCESSFUL;
1206 1207 }
1207 1208
1208 1209 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1209 1210 {
1210 1211 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1211 1212 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1212 1213 {
1213 1214 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1214 1215 }
1215 1216 else
1216 1217 {
1217 1218 status = RTEMS_SUCCESSFUL;
1218 1219 }
1219 1220 }
1220 1221
1221 1222 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1222 1223 {
1223 1224 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1224 1225 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1225 1226 {
1226 1227 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1227 1228 }
1228 1229 else
1229 1230 {
1230 1231 status = RTEMS_SUCCESSFUL;
1231 1232 }
1232 1233 }
1233 1234
1234 1235 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1235 1236 {
1236 1237 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1237 1238 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1238 1239 {
1239 1240 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1240 1241 }
1241 1242 else
1242 1243 {
1243 1244 status = RTEMS_SUCCESSFUL;
1244 1245 }
1245 1246 }
1246 1247
1247 1248 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1248 1249 {
1249 1250 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1250 1251 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1251 1252 {
1252 1253 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1253 1254 }
1254 1255 else
1255 1256 {
1256 1257 status = RTEMS_SUCCESSFUL;
1257 1258 }
1258 1259 }
1259 1260
1260 1261 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1261 1262 {
1262 1263 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1263 1264 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1264 1265 {
1265 1266 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1266 1267 }
1267 1268 else
1268 1269 {
1269 1270 status = RTEMS_SUCCESSFUL;
1270 1271 }
1271 1272 }
1272 1273
1273 1274 return status;
1274 1275 }
1275 1276
1276 1277 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1277 1278 {
1278 1279
1279 1280 WFP_reset_current_ring_nodes();
1280 1281
1281 1282 reset_waveform_picker_regs();
1282 1283
1283 1284 set_wfp_burst_enable_register( mode );
1284 1285
1285 1286 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1286 1287 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1287 1288
1288 1289 if (transitionCoarseTime == 0)
1289 1290 {
1290 1291 // instant transition means transition on the next valid date
1291 1292 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1292 1293 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1293 1294 }
1294 1295 else
1295 1296 {
1296 1297 waveform_picker_regs->start_date = transitionCoarseTime;
1297 1298 }
1298 1299
1299 1300 update_last_valid_transition_date(waveform_picker_regs->start_date);
1300 1301
1301 1302 }
1302 1303
1303 1304 void launch_spectral_matrix( void )
1304 1305 {
1305 1306 SM_reset_current_ring_nodes();
1306 1307
1307 1308 reset_spectral_matrix_regs();
1308 1309
1309 1310 reset_nb_sm();
1310 1311
1311 1312 set_sm_irq_onNewMatrix( 1 );
1312 1313
1313 1314 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1314 1315 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1315 1316
1316 1317 }
1317 1318
1318 1319 void set_sm_irq_onNewMatrix( unsigned char value )
1319 1320 {
1320 1321 if (value == 1)
1321 1322 {
1322 1323 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1323 1324 }
1324 1325 else
1325 1326 {
1326 1327 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1327 1328 }
1328 1329 }
1329 1330
1330 1331 void set_sm_irq_onError( unsigned char value )
1331 1332 {
1332 1333 if (value == 1)
1333 1334 {
1334 1335 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1335 1336 }
1336 1337 else
1337 1338 {
1338 1339 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1339 1340 }
1340 1341 }
1341 1342
1342 1343 //*****************************
1343 1344 // CONFIGURE CALIBRATION SIGNAL
1344 1345 void setCalibrationPrescaler( unsigned int prescaler )
1345 1346 {
1346 1347 // prescaling of the master clock (25 MHz)
1347 1348 // master clock is divided by 2^prescaler
1348 1349 time_management_regs->calPrescaler = prescaler;
1349 1350 }
1350 1351
1351 1352 void setCalibrationDivisor( unsigned int divisionFactor )
1352 1353 {
1353 1354 // division of the prescaled clock by the division factor
1354 1355 time_management_regs->calDivisor = divisionFactor;
1355 1356 }
1356 1357
1357 1358 void setCalibrationData( void ){
1358 1359 unsigned int k;
1359 1360 unsigned short data;
1360 1361 float val;
1361 1362 float f0;
1362 1363 float f1;
1363 1364 float fs;
1364 1365 float Ts;
1365 1366 float scaleFactor;
1366 1367
1367 1368 f0 = 625;
1368 1369 f1 = 10000;
1369 1370 fs = 160256.410;
1370 1371 Ts = 1. / fs;
1371 1372 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1372 1373
1373 1374 time_management_regs->calDataPtr = 0x00;
1374 1375
1375 1376 // build the signal for the SCM calibration
1376 1377 for (k=0; k<256; k++)
1377 1378 {
1378 1379 val = sin( 2 * pi * f0 * k * Ts )
1379 1380 + sin( 2 * pi * f1 * k * Ts );
1380 1381 data = (unsigned short) ((val * scaleFactor) + 2048);
1381 1382 time_management_regs->calData = data & 0xfff;
1382 1383 }
1383 1384 }
1384 1385
1385 1386 void setCalibrationDataInterleaved( void ){
1386 1387 unsigned int k;
1387 1388 float val;
1388 1389 float f0;
1389 1390 float f1;
1390 1391 float fs;
1391 1392 float Ts;
1392 1393 unsigned short data[384];
1393 1394 unsigned char *dataPtr;
1394 1395
1395 1396 f0 = 625;
1396 1397 f1 = 10000;
1397 1398 fs = 240384.615;
1398 1399 Ts = 1. / fs;
1399 1400
1400 1401 time_management_regs->calDataPtr = 0x00;
1401 1402
1402 1403 // build the signal for the SCM calibration
1403 1404 for (k=0; k<384; k++)
1404 1405 {
1405 1406 val = sin( 2 * pi * f0 * k * Ts )
1406 1407 + sin( 2 * pi * f1 * k * Ts );
1407 1408 data[k] = (unsigned short) (val * 512 + 2048);
1408 1409 }
1409 1410
1410 1411 // write the signal in interleaved mode
1411 1412 for (k=0; k<128; k++)
1412 1413 {
1413 1414 dataPtr = (unsigned char*) &data[k*3 + 2];
1414 1415 time_management_regs->calData = (data[k*3] & 0xfff)
1415 1416 + ( (dataPtr[0] & 0x3f) << 12);
1416 1417 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1417 1418 + ( (dataPtr[1] & 0x3f) << 12);
1418 1419 }
1419 1420 }
1420 1421
1421 1422 void setCalibrationReload( bool state)
1422 1423 {
1423 1424 if (state == true)
1424 1425 {
1425 1426 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1426 1427 }
1427 1428 else
1428 1429 {
1429 1430 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1430 1431 }
1431 1432 }
1432 1433
1433 1434 void setCalibrationEnable( bool state )
1434 1435 {
1435 1436 // this bit drives the multiplexer
1436 1437 if (state == true)
1437 1438 {
1438 1439 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1439 1440 }
1440 1441 else
1441 1442 {
1442 1443 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1443 1444 }
1444 1445 }
1445 1446
1446 1447 void setCalibrationInterleaved( bool state )
1447 1448 {
1448 1449 // this bit drives the multiplexer
1449 1450 if (state == true)
1450 1451 {
1451 1452 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1452 1453 }
1453 1454 else
1454 1455 {
1455 1456 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1456 1457 }
1457 1458 }
1458 1459
1459 1460 void setCalibration( bool state )
1460 1461 {
1461 1462 if (state == true)
1462 1463 {
1463 1464 setCalibrationEnable( true );
1464 1465 setCalibrationReload( false );
1465 1466 set_hk_lfr_calib_enable( true );
1466 1467 }
1467 1468 else
1468 1469 {
1469 1470 setCalibrationEnable( false );
1470 1471 setCalibrationReload( true );
1471 1472 set_hk_lfr_calib_enable( false );
1472 1473 }
1473 1474 }
1474 1475
1475 1476 void configureCalibration( bool interleaved )
1476 1477 {
1477 1478 setCalibration( false );
1478 1479 if ( interleaved == true )
1479 1480 {
1480 1481 setCalibrationInterleaved( true );
1481 1482 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1482 1483 setCalibrationDivisor( 26 ); // => 240 384
1483 1484 setCalibrationDataInterleaved();
1484 1485 }
1485 1486 else
1486 1487 {
1487 1488 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1488 1489 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1489 1490 setCalibrationData();
1490 1491 }
1491 1492 }
1492 1493
1493 1494 //****************
1494 1495 // CLOSING ACTIONS
1495 1496 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1496 1497 {
1497 1498 /** This function is used to update the HK packets statistics after a successful TC execution.
1498 1499 *
1499 1500 * @param TC points to the TC being processed
1500 1501 * @param time is the time used to date the TC execution
1501 1502 *
1502 1503 */
1503 1504
1504 1505 unsigned int val;
1505 1506
1506 1507 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1507 1508 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1508 1509 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1509 1510 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1510 1511 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1511 1512 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1512 1513 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1513 1514 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1514 1515 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1515 1516 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1516 1517 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1517 1518 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1518 1519
1519 1520 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1520 1521 val++;
1521 1522 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1522 1523 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1523 1524 }
1524 1525
1525 1526 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1526 1527 {
1527 1528 /** This function is used to update the HK packets statistics after a TC rejection.
1528 1529 *
1529 1530 * @param TC points to the TC being processed
1530 1531 * @param time is the time used to date the TC rejection
1531 1532 *
1532 1533 */
1533 1534
1534 1535 unsigned int val;
1535 1536
1536 1537 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1537 1538 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1538 1539 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1539 1540 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1540 1541 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1541 1542 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1542 1543 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1543 1544 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1544 1545 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1545 1546 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1546 1547 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1547 1548 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1548 1549
1549 1550 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1550 1551 val++;
1551 1552 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1552 1553 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1553 1554 }
1554 1555
1555 1556 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1556 1557 {
1557 1558 /** This function is the last step of the TC execution workflow.
1558 1559 *
1559 1560 * @param TC points to the TC being processed
1560 1561 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1561 1562 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1562 1563 * @param time is the time used to date the TC execution
1563 1564 *
1564 1565 */
1565 1566
1566 1567 unsigned char requestedMode;
1567 1568
1568 1569 if (result == LFR_SUCCESSFUL)
1569 1570 {
1570 1571 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1571 1572 &
1572 1573 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1573 1574 )
1574 1575 {
1575 1576 send_tm_lfr_tc_exe_success( TC, queue_id );
1576 1577 }
1577 1578 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1578 1579 {
1579 1580 //**********************************
1580 1581 // UPDATE THE LFRMODE LOCAL VARIABLE
1581 1582 requestedMode = TC->dataAndCRC[1];
1582 1583 updateLFRCurrentMode( requestedMode );
1583 1584 }
1584 1585 }
1585 1586 else if (result == LFR_EXE_ERROR)
1586 1587 {
1587 1588 send_tm_lfr_tc_exe_error( TC, queue_id );
1588 1589 }
1589 1590 }
1590 1591
1591 1592 //***************************
1592 1593 // Interrupt Service Routines
1593 1594 rtems_isr commutation_isr1( rtems_vector_number vector )
1594 1595 {
1595 1596 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1596 1597 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1597 1598 }
1598 1599 }
1599 1600
1600 1601 rtems_isr commutation_isr2( rtems_vector_number vector )
1601 1602 {
1602 1603 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1603 1604 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1604 1605 }
1605 1606 }
1606 1607
1607 1608 //****************
1608 1609 // OTHER FUNCTIONS
1609 1610 void updateLFRCurrentMode( unsigned char requestedMode )
1610 1611 {
1611 1612 /** This function updates the value of the global variable lfrCurrentMode.
1612 1613 *
1613 1614 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1614 1615 *
1615 1616 */
1616 1617
1617 1618 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1618 1619 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1619 1620 lfrCurrentMode = requestedMode;
1620 1621 }
1621 1622
1622 1623 void set_lfr_soft_reset( unsigned char value )
1623 1624 {
1624 1625 if (value == 1)
1625 1626 {
1626 1627 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1627 1628 }
1628 1629 else
1629 1630 {
1630 1631 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1631 1632 }
1632 1633 }
1633 1634
1634 1635 void reset_lfr( void )
1635 1636 {
1636 1637 set_lfr_soft_reset( 1 );
1637 1638
1638 1639 set_lfr_soft_reset( 0 );
1639 1640
1640 1641 set_hk_lfr_sc_potential_flag( true );
1641 1642 }
@@ -1,1628 +1,1753
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 19 ring_node kcoefficient_node_1;
20 20 ring_node kcoefficient_node_2;
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 193 if (aux > FLOAT_EQUAL_ZERO)
194 194 {
195 195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 196 flag = LFR_DEFAULT;
197 197 }
198 198 }
199 199
200 200 // SET THE PARAMETERS
201 201 if (flag == LFR_SUCCESSFUL)
202 202 {
203 203 flag = set_sy_lfr_s1_bp_p0( TC );
204 204 flag = set_sy_lfr_s1_bp_p1( TC );
205 205 }
206 206
207 207 return flag;
208 208 }
209 209
210 210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 211 {
212 212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 216 *
217 217 */
218 218
219 219 int flag;
220 220 rtems_status_code status;
221 221 unsigned char sy_lfr_s2_bp_p0;
222 222 unsigned char sy_lfr_s2_bp_p1;
223 223 float aux;
224 224
225 225 flag = LFR_SUCCESSFUL;
226 226
227 227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 229 flag = LFR_DEFAULT;
230 230 }
231 231
232 232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 234
235 235 // sy_lfr_s2_bp_p0
236 236 if (flag == LFR_SUCCESSFUL)
237 237 {
238 238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 239 {
240 240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 241 flag = WRONG_APP_DATA;
242 242 }
243 243 }
244 244 // sy_lfr_s2_bp_p1
245 245 if (flag == LFR_SUCCESSFUL)
246 246 {
247 247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 248 {
249 249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 250 flag = WRONG_APP_DATA;
251 251 }
252 252 }
253 253 //******************************************************************
254 254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 255 if (flag == LFR_SUCCESSFUL)
256 256 {
257 257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 260 if (aux > FLOAT_EQUAL_ZERO)
261 261 {
262 262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 263 flag = LFR_DEFAULT;
264 264 }
265 265 }
266 266
267 267 // SET THE PARAMETERS
268 268 if (flag == LFR_SUCCESSFUL)
269 269 {
270 270 flag = set_sy_lfr_s2_bp_p0( TC );
271 271 flag = set_sy_lfr_s2_bp_p1( TC );
272 272 }
273 273
274 274 return flag;
275 275 }
276 276
277 277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 278 {
279 279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 280 *
281 281 * @param TC points to the TeleCommand packet that is being processed
282 282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 283 *
284 284 */
285 285
286 286 int flag;
287 287
288 288 flag = LFR_DEFAULT;
289 289
290 290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 291
292 292 return flag;
293 293 }
294 294
295 295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 296 {
297 297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 298 *
299 299 * @param TC points to the TeleCommand packet that is being processed
300 300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 301 *
302 302 */
303 303
304 304 int flag;
305 305
306 306 flag = LFR_DEFAULT;
307 307
308 308 flag = set_sy_lfr_fbins( TC );
309 309
310 310 return flag;
311 311 }
312 312
313 313 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 314 {
315 315 /** This function updates the LFR registers with the incoming sbm2 parameters.
316 316 *
317 317 * @param TC points to the TeleCommand packet that is being processed
318 318 * @param queue_id is the id of the queue which handles TM related to this execution step
319 319 *
320 320 */
321 321
322 322 int flag;
323 unsigned char k;
323 324
324 325 flag = LFR_DEFAULT;
326 k = 0;
325 327
326 328 flag = check_sy_lfr_filter_parameters( TC, queue_id );
327 329
328 330 if (flag == LFR_SUCCESSFUL)
329 331 {
330 332 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
331 333 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
332 334 parameter_dump_packet.sy_lfr_pas_filter_tbad[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 0 ];
333 335 parameter_dump_packet.sy_lfr_pas_filter_tbad[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 1 ];
334 336 parameter_dump_packet.sy_lfr_pas_filter_tbad[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 2 ];
335 337 parameter_dump_packet.sy_lfr_pas_filter_tbad[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 3 ];
336 338 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
337 339 parameter_dump_packet.sy_lfr_pas_filter_shift[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 0 ];
338 340 parameter_dump_packet.sy_lfr_pas_filter_shift[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 1 ];
339 341 parameter_dump_packet.sy_lfr_pas_filter_shift[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 2 ];
340 342 parameter_dump_packet.sy_lfr_pas_filter_shift[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 3 ];
341 343 parameter_dump_packet.sy_lfr_sc_rw_delta_f[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 0 ];
342 344 parameter_dump_packet.sy_lfr_sc_rw_delta_f[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 1 ];
343 345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 2 ];
344 346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 3 ];
345 347
346 348 //****************************
347 349 // store PAS filter parameters
348 350 // sy_lfr_pas_filter_enabled
349 351 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
350 352 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & 0x01 );
351 353 // sy_lfr_pas_filter_modulus
352 354 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
353 355 // sy_lfr_pas_filter_tbad
354 356 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
355 357 parameter_dump_packet.sy_lfr_pas_filter_tbad );
356 358 // sy_lfr_pas_filter_offset
357 359 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
358 360 // sy_lfr_pas_filter_shift
359 361 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
360 362 parameter_dump_packet.sy_lfr_pas_filter_shift );
361 363
362 364 //****************************************************
363 365 // store the parameter sy_lfr_sc_rw_delta_f as a float
364 366 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
365 367 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
368
369 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
370 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
371 {
372 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
373 }
374
375 //***********************************************
376 // store the parameter sy_lfr_rw.._k.. as a float
377 // rw1_k
378 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
379 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
380 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
381 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
382 // rw2_k
383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
386 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
387 // rw3_k
388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
391 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
392 // rw4_k
393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
396 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
397
366 398 }
367 399
368 400 return flag;
369 401 }
370 402
371 403 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
372 404 {
373 405 /** This function updates the LFR registers with the incoming sbm2 parameters.
374 406 *
375 407 * @param TC points to the TeleCommand packet that is being processed
376 408 * @param queue_id is the id of the queue which handles TM related to this execution step
377 409 *
378 410 */
379 411
380 412 unsigned int address;
381 413 rtems_status_code status;
382 414 unsigned int freq;
383 415 unsigned int bin;
384 416 unsigned int coeff;
385 417 unsigned char *kCoeffPtr;
386 418 unsigned char *kCoeffDumpPtr;
387 419
388 420 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
389 421 // F0 => 11 bins
390 422 // F1 => 13 bins
391 423 // F2 => 12 bins
392 424 // 36 bins to dump in two packets (30 bins max per packet)
393 425
394 426 //*********
395 427 // PACKET 1
396 428 // 11 F0 bins, 13 F1 bins and 6 F2 bins
397 429 kcoefficients_dump_1.destinationID = TC->sourceID;
398 430 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
399 431 for( freq=0;
400 432 freq<NB_BINS_COMPRESSED_SM_F0;
401 433 freq++ )
402 434 {
403 435 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
404 436 bin = freq;
405 437 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
406 438 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
407 439 {
408 440 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
409 441 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
410 442 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
411 443 }
412 444 }
413 445 for( freq=NB_BINS_COMPRESSED_SM_F0;
414 446 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
415 447 freq++ )
416 448 {
417 449 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
418 450 bin = freq - NB_BINS_COMPRESSED_SM_F0;
419 451 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
420 452 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
421 453 {
422 454 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
423 455 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
424 456 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
425 457 }
426 458 }
427 459 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
428 460 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
429 461 freq++ )
430 462 {
431 463 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
432 464 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
433 465 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
434 466 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
435 467 {
436 468 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
437 469 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
438 470 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
439 471 }
440 472 }
441 473 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
442 474 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
443 475 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
444 476 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
445 477 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
446 478 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
447 479 // SEND DATA
448 480 kcoefficient_node_1.status = 1;
449 481 address = (unsigned int) &kcoefficient_node_1;
450 482 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
451 483 if (status != RTEMS_SUCCESSFUL) {
452 484 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
453 485 }
454 486
455 487 //********
456 488 // PACKET 2
457 489 // 6 F2 bins
458 490 kcoefficients_dump_2.destinationID = TC->sourceID;
459 491 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
460 492 for( freq=0; freq<6; freq++ )
461 493 {
462 494 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
463 495 bin = freq + 6;
464 496 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
465 497 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
466 498 {
467 499 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
468 500 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
469 501 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
470 502 }
471 503 }
472 504 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
473 505 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
474 506 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
475 507 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
476 508 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
477 509 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
478 510 // SEND DATA
479 511 kcoefficient_node_2.status = 1;
480 512 address = (unsigned int) &kcoefficient_node_2;
481 513 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
482 514 if (status != RTEMS_SUCCESSFUL) {
483 515 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
484 516 }
485 517
486 518 return status;
487 519 }
488 520
489 521 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 522 {
491 523 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
492 524 *
493 525 * @param queue_id is the id of the queue which handles TM related to this execution step.
494 526 *
495 527 * @return RTEMS directive status codes:
496 528 * - RTEMS_SUCCESSFUL - message sent successfully
497 529 * - RTEMS_INVALID_ID - invalid queue id
498 530 * - RTEMS_INVALID_SIZE - invalid message size
499 531 * - RTEMS_INVALID_ADDRESS - buffer is NULL
500 532 * - RTEMS_UNSATISFIED - out of message buffers
501 533 * - RTEMS_TOO_MANY - queue s limit has been reached
502 534 *
503 535 */
504 536
505 537 int status;
506 538
507 539 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
508 540 parameter_dump_packet.destinationID = TC->sourceID;
509 541
510 542 // UPDATE TIME
511 543 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
512 544 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
513 545 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
514 546 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
515 547 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
516 548 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
517 549 // SEND DATA
518 550 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
519 551 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
520 552 if (status != RTEMS_SUCCESSFUL) {
521 553 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
522 554 }
523 555
524 556 return status;
525 557 }
526 558
527 559 //***********************
528 560 // NORMAL MODE PARAMETERS
529 561
530 562 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
531 563 {
532 564 unsigned char msb;
533 565 unsigned char lsb;
534 566 int flag;
535 567 float aux;
536 568 rtems_status_code status;
537 569
538 570 unsigned int sy_lfr_n_swf_l;
539 571 unsigned int sy_lfr_n_swf_p;
540 572 unsigned int sy_lfr_n_asm_p;
541 573 unsigned char sy_lfr_n_bp_p0;
542 574 unsigned char sy_lfr_n_bp_p1;
543 575 unsigned char sy_lfr_n_cwf_long_f3;
544 576
545 577 flag = LFR_SUCCESSFUL;
546 578
547 579 //***************
548 580 // get parameters
549 581 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
550 582 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
551 583 sy_lfr_n_swf_l = msb * 256 + lsb;
552 584
553 585 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
554 586 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
555 587 sy_lfr_n_swf_p = msb * 256 + lsb;
556 588
557 589 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
558 590 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
559 591 sy_lfr_n_asm_p = msb * 256 + lsb;
560 592
561 593 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
562 594
563 595 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
564 596
565 597 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
566 598
567 599 //******************
568 600 // check consistency
569 601 // sy_lfr_n_swf_l
570 602 if (sy_lfr_n_swf_l != 2048)
571 603 {
572 604 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
573 605 flag = WRONG_APP_DATA;
574 606 }
575 607 // sy_lfr_n_swf_p
576 608 if (flag == LFR_SUCCESSFUL)
577 609 {
578 610 if ( sy_lfr_n_swf_p < 22 )
579 611 {
580 612 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
581 613 flag = WRONG_APP_DATA;
582 614 }
583 615 }
584 616 // sy_lfr_n_bp_p0
585 617 if (flag == LFR_SUCCESSFUL)
586 618 {
587 619 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
588 620 {
589 621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
590 622 flag = WRONG_APP_DATA;
591 623 }
592 624 }
593 625 // sy_lfr_n_asm_p
594 626 if (flag == LFR_SUCCESSFUL)
595 627 {
596 628 if (sy_lfr_n_asm_p == 0)
597 629 {
598 630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
599 631 flag = WRONG_APP_DATA;
600 632 }
601 633 }
602 634 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
603 635 if (flag == LFR_SUCCESSFUL)
604 636 {
605 637 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
606 638 if (aux > FLOAT_EQUAL_ZERO)
607 639 {
608 640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
609 641 flag = WRONG_APP_DATA;
610 642 }
611 643 }
612 644 // sy_lfr_n_bp_p1
613 645 if (flag == LFR_SUCCESSFUL)
614 646 {
615 647 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
616 648 {
617 649 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
618 650 flag = WRONG_APP_DATA;
619 651 }
620 652 }
621 653 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
622 654 if (flag == LFR_SUCCESSFUL)
623 655 {
624 656 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
625 657 if (aux > FLOAT_EQUAL_ZERO)
626 658 {
627 659 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
628 660 flag = LFR_DEFAULT;
629 661 }
630 662 }
631 663 // sy_lfr_n_cwf_long_f3
632 664
633 665 return flag;
634 666 }
635 667
636 668 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
637 669 {
638 670 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
639 671 *
640 672 * @param TC points to the TeleCommand packet that is being processed
641 673 * @param queue_id is the id of the queue which handles TM related to this execution step
642 674 *
643 675 */
644 676
645 677 int result;
646 678
647 679 result = LFR_SUCCESSFUL;
648 680
649 681 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
650 682 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
651 683
652 684 return result;
653 685 }
654 686
655 687 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
656 688 {
657 689 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
658 690 *
659 691 * @param TC points to the TeleCommand packet that is being processed
660 692 * @param queue_id is the id of the queue which handles TM related to this execution step
661 693 *
662 694 */
663 695
664 696 int result;
665 697
666 698 result = LFR_SUCCESSFUL;
667 699
668 700 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
669 701 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
670 702
671 703 return result;
672 704 }
673 705
674 706 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
675 707 {
676 708 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
677 709 *
678 710 * @param TC points to the TeleCommand packet that is being processed
679 711 * @param queue_id is the id of the queue which handles TM related to this execution step
680 712 *
681 713 */
682 714
683 715 int result;
684 716
685 717 result = LFR_SUCCESSFUL;
686 718
687 719 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
688 720 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
689 721
690 722 return result;
691 723 }
692 724
693 725 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
694 726 {
695 727 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
696 728 *
697 729 * @param TC points to the TeleCommand packet that is being processed
698 730 * @param queue_id is the id of the queue which handles TM related to this execution step
699 731 *
700 732 */
701 733
702 734 int status;
703 735
704 736 status = LFR_SUCCESSFUL;
705 737
706 738 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
707 739
708 740 return status;
709 741 }
710 742
711 743 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
712 744 {
713 745 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
714 746 *
715 747 * @param TC points to the TeleCommand packet that is being processed
716 748 * @param queue_id is the id of the queue which handles TM related to this execution step
717 749 *
718 750 */
719 751
720 752 int status;
721 753
722 754 status = LFR_SUCCESSFUL;
723 755
724 756 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
725 757
726 758 return status;
727 759 }
728 760
729 761 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
730 762 {
731 763 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
732 764 *
733 765 * @param TC points to the TeleCommand packet that is being processed
734 766 * @param queue_id is the id of the queue which handles TM related to this execution step
735 767 *
736 768 */
737 769
738 770 int status;
739 771
740 772 status = LFR_SUCCESSFUL;
741 773
742 774 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
743 775
744 776 return status;
745 777 }
746 778
747 779 //**********************
748 780 // BURST MODE PARAMETERS
749 781 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
750 782 {
751 783 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
752 784 *
753 785 * @param TC points to the TeleCommand packet that is being processed
754 786 * @param queue_id is the id of the queue which handles TM related to this execution step
755 787 *
756 788 */
757 789
758 790 int status;
759 791
760 792 status = LFR_SUCCESSFUL;
761 793
762 794 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
763 795
764 796 return status;
765 797 }
766 798
767 799 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
768 800 {
769 801 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
770 802 *
771 803 * @param TC points to the TeleCommand packet that is being processed
772 804 * @param queue_id is the id of the queue which handles TM related to this execution step
773 805 *
774 806 */
775 807
776 808 int status;
777 809
778 810 status = LFR_SUCCESSFUL;
779 811
780 812 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
781 813
782 814 return status;
783 815 }
784 816
785 817 //*********************
786 818 // SBM1 MODE PARAMETERS
787 819 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
788 820 {
789 821 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
790 822 *
791 823 * @param TC points to the TeleCommand packet that is being processed
792 824 * @param queue_id is the id of the queue which handles TM related to this execution step
793 825 *
794 826 */
795 827
796 828 int status;
797 829
798 830 status = LFR_SUCCESSFUL;
799 831
800 832 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
801 833
802 834 return status;
803 835 }
804 836
805 837 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
806 838 {
807 839 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
808 840 *
809 841 * @param TC points to the TeleCommand packet that is being processed
810 842 * @param queue_id is the id of the queue which handles TM related to this execution step
811 843 *
812 844 */
813 845
814 846 int status;
815 847
816 848 status = LFR_SUCCESSFUL;
817 849
818 850 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
819 851
820 852 return status;
821 853 }
822 854
823 855 //*********************
824 856 // SBM2 MODE PARAMETERS
825 857 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
826 858 {
827 859 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
828 860 *
829 861 * @param TC points to the TeleCommand packet that is being processed
830 862 * @param queue_id is the id of the queue which handles TM related to this execution step
831 863 *
832 864 */
833 865
834 866 int status;
835 867
836 868 status = LFR_SUCCESSFUL;
837 869
838 870 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
839 871
840 872 return status;
841 873 }
842 874
843 875 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
844 876 {
845 877 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
846 878 *
847 879 * @param TC points to the TeleCommand packet that is being processed
848 880 * @param queue_id is the id of the queue which handles TM related to this execution step
849 881 *
850 882 */
851 883
852 884 int status;
853 885
854 886 status = LFR_SUCCESSFUL;
855 887
856 888 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
857 889
858 890 return status;
859 891 }
860 892
861 893 //*******************
862 894 // TC_LFR_UPDATE_INFO
863 895 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
864 896 {
865 897 unsigned int status;
866 898
867 899 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
868 900 || (mode == LFR_MODE_BURST)
869 901 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
870 902 {
871 903 status = LFR_SUCCESSFUL;
872 904 }
873 905 else
874 906 {
875 907 status = LFR_DEFAULT;
876 908 }
877 909
878 910 return status;
879 911 }
880 912
881 913 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
882 914 {
883 915 unsigned int status;
884 916
885 917 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
886 918 || (mode == TDS_MODE_BURST)
887 919 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
888 920 || (mode == TDS_MODE_LFM))
889 921 {
890 922 status = LFR_SUCCESSFUL;
891 923 }
892 924 else
893 925 {
894 926 status = LFR_DEFAULT;
895 927 }
896 928
897 929 return status;
898 930 }
899 931
900 932 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
901 933 {
902 934 unsigned int status;
903 935
904 936 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
905 937 || (mode == THR_MODE_BURST))
906 938 {
907 939 status = LFR_SUCCESSFUL;
908 940 }
909 941 else
910 942 {
911 943 status = LFR_DEFAULT;
912 944 }
913 945
914 946 return status;
915 947 }
916 948
949 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
950 {
951 unsigned char flag;
952 unsigned char flagPosInByte;
953 unsigned char newFlag;
954 unsigned char flagMask;
955
956 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
957 if (isnan(value))
958 {
959 flag = 0;
960 }
961 else
962 {
963 flag = 1;
964 }
965
966 switch(wheel)
967 {
968 case 1:
969 flagPosInByte = 8 - freq;
970 flagMask = ~(1 << flagPosInByte);
971 newFlag = flag << flagPosInByte;
972 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
973 break;
974 case 2:
975 flagPosInByte = 4 - freq;
976 flagMask = ~(1 << flagPosInByte);
977 newFlag = flag << flagPosInByte;
978 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
979 break;
980 case 3:
981 flagPosInByte = 8 - freq;
982 flagMask = ~(1 << flagPosInByte);
983 newFlag = flag << flagPosInByte;
984 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
985 break;
986 case 4:
987 flagPosInByte = 4 - freq;
988 flagMask = ~(1 << flagPosInByte);
989 newFlag = flag << flagPosInByte;
990 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
991 break;
992 default:
993 break;
994 }
995 }
996
997 void set_hk_lfr_sc_rw_f_flags( void )
998 {
999 // RW1
1000 set_hk_lfr_sc_rw_f_flag( 1, 1, rw_f.cp_rpw_sc_rw1_f1 );
1001 set_hk_lfr_sc_rw_f_flag( 1, 2, rw_f.cp_rpw_sc_rw1_f2 );
1002 set_hk_lfr_sc_rw_f_flag( 1, 3, rw_f.cp_rpw_sc_rw1_f3 );
1003 set_hk_lfr_sc_rw_f_flag( 1, 4, rw_f.cp_rpw_sc_rw1_f4 );
1004
1005 // RW2
1006 set_hk_lfr_sc_rw_f_flag( 2, 1, rw_f.cp_rpw_sc_rw2_f1 );
1007 set_hk_lfr_sc_rw_f_flag( 2, 2, rw_f.cp_rpw_sc_rw2_f2 );
1008 set_hk_lfr_sc_rw_f_flag( 2, 3, rw_f.cp_rpw_sc_rw2_f3 );
1009 set_hk_lfr_sc_rw_f_flag( 2, 4, rw_f.cp_rpw_sc_rw2_f4 );
1010
1011 // RW3
1012 set_hk_lfr_sc_rw_f_flag( 3, 1, rw_f.cp_rpw_sc_rw3_f1 );
1013 set_hk_lfr_sc_rw_f_flag( 3, 2, rw_f.cp_rpw_sc_rw3_f2 );
1014 set_hk_lfr_sc_rw_f_flag( 3, 3, rw_f.cp_rpw_sc_rw3_f3 );
1015 set_hk_lfr_sc_rw_f_flag( 3, 4, rw_f.cp_rpw_sc_rw3_f4 );
1016
1017 // RW4
1018 set_hk_lfr_sc_rw_f_flag( 4, 1, rw_f.cp_rpw_sc_rw4_f1 );
1019 set_hk_lfr_sc_rw_f_flag( 4, 2, rw_f.cp_rpw_sc_rw4_f2 );
1020 set_hk_lfr_sc_rw_f_flag( 4, 3, rw_f.cp_rpw_sc_rw4_f3 );
1021 set_hk_lfr_sc_rw_f_flag( 4, 4, rw_f.cp_rpw_sc_rw4_f4 );
1022 }
1023
917 1024 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
918 1025 {
919 1026 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
920 1027 *
921 1028 * @param TC points to the TeleCommand packet that is being processed
922 1029 *
923 1030 */
924 1031
925 1032 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
926 1033
927 1034 bytePosPtr = (unsigned char *) &TC->packetID;
928 1035
929 // cp_rpw_sc_rw1_f1
930 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
931 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
932
933 // cp_rpw_sc_rw1_f2
934 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
935 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1036 // rw1_f
1037 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1038 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1039 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1040 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
936 1041
937 // cp_rpw_sc_rw2_f1
938 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
939 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
940
941 // cp_rpw_sc_rw2_f2
942 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
943 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1042 // rw2_f
1043 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1044 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1045 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1046 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
944 1047
945 // cp_rpw_sc_rw3_f1
946 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
947 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
948
949 // cp_rpw_sc_rw3_f2
950 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
951 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1048 // rw3_f
1049 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1050 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1051 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1052 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
952 1053
953 // cp_rpw_sc_rw4_f1
954 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
955 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1054 // rw4_f
1055 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
956 1059
957 // cp_rpw_sc_rw4_f2
958 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
959 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1060 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1061
1062
960 1063 }
961 1064
962 1065 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
963 1066 {
964 1067 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
965 1068 *
966 1069 * @param fbins_mask
967 1070 * @param rw_f is the reaction wheel frequency to filter
968 1071 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
969 1072 * @param flag [true] filtering enabled [false] filtering disabled
970 1073 *
971 1074 * @return void
972 1075 *
973 1076 */
974 1077
975 1078 float f_RW_min;
976 1079 float f_RW_MAX;
977 1080 float fi_min;
978 1081 float fi_MAX;
979 1082 float fi;
980 1083 float deltaBelow;
981 1084 float deltaAbove;
982 1085 int binBelow;
983 1086 int binAbove;
984 1087 int closestBin;
985 1088 unsigned int whichByte;
986 1089 int selectedByte;
987 1090 int bin;
988 1091 int binToRemove[3];
989 1092 int k;
990 1093
991 1094 whichByte = 0;
992 1095 bin = 0;
993 1096
994 1097 binToRemove[0] = -1;
995 1098 binToRemove[1] = -1;
996 1099 binToRemove[2] = -1;
997 1100
998 1101 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
999 1102 f_RW_min = rw_f - filterPar.sy_lfr_sc_rw_delta_f / 2.;
1000 1103 f_RW_MAX = rw_f + filterPar.sy_lfr_sc_rw_delta_f / 2.;
1001 1104
1002 1105 // compute the index of the frequency bin immediately below rw_f
1003 1106 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1004 1107 deltaBelow = rw_f - binBelow * deltaFreq;
1005 1108
1006 1109 // compute the index of the frequency bin immediately above rw_f
1007 1110 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1008 1111 deltaAbove = binAbove * deltaFreq - rw_f;
1009 1112
1010 1113 // search the closest bin
1011 1114 if (deltaAbove > deltaBelow)
1012 1115 {
1013 1116 closestBin = binBelow;
1014 1117 }
1015 1118 else
1016 1119 {
1017 1120 closestBin = binAbove;
1018 1121 }
1019 1122
1020 1123 // compute the fi interval [fi - Delta_f * 0.285, fi + Delta_f * 0.285]
1021 1124 fi = closestBin * deltaFreq;
1022 1125
1023 1126 fi_min = fi - (deltaFreq * 0.285);
1024 1127 if ( fi_min < 0 )
1025 1128 {
1026 1129 fi_min = 0;
1027 1130 }
1028 1131 else if ( fi_min > (deltaFreq*127) )
1029 1132 {
1030 1133 fi_min = -1;
1031 1134 }
1032 1135
1033 1136 fi_MAX = fi + (deltaFreq * 0.285);
1034 1137 if ( fi_MAX > (deltaFreq*127) )
1035 1138 {
1036 1139 fi_MAX = -1;
1037 1140 }
1038 1141
1039 1142 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1040 1143 // => remove f_(i), f_(i-1) and f_(i+1)
1041 1144 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1042 1145 {
1043 1146 binToRemove[0] = closestBin - 1;
1044 1147 binToRemove[1] = closestBin;
1045 1148 binToRemove[2] = closestBin + 1;
1046 1149 }
1047 1150 // 2. ELSE
1048 1151 // => remove the two f_(i) which are around f_RW
1049 1152 else
1050 1153 {
1051 1154 binToRemove[0] = binBelow;
1052 1155 binToRemove[1] = binAbove;
1053 1156 binToRemove[2] = -1;
1054 1157 }
1055 1158
1056 1159 for (k = 0; k <= 3; k++)
1057 1160 {
1058 1161 bin = binToRemove[k];
1059 1162 if ( (bin >= 0) && (bin <= 127) )
1060 1163 {
1061 1164 if (flag == 1)
1062 1165 {
1063 1166 whichByte = (bin >> 3); // division by 8
1064 1167 selectedByte = ( 1 << (bin - (whichByte * 8)) );
1065 1168 fbins_mask[15 - whichByte] = fbins_mask[15 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1066 1169 }
1067 1170 }
1068 1171 }
1069 1172 }
1070 1173
1071 1174 void build_sy_lfr_rw_mask( unsigned int channel )
1072 1175 {
1073 1176 unsigned char local_rw_fbins_mask[16];
1074 1177 unsigned char *maskPtr;
1075 1178 double deltaF;
1076 1179 unsigned k;
1077 1180
1078 1181 k = 0;
1079 1182
1080 1183 maskPtr = NULL;
1081 1184 deltaF = 1.;
1082 1185
1083 1186 switch (channel)
1084 1187 {
1085 1188 case 0:
1086 1189 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1087 1190 deltaF = 96.;
1088 1191 break;
1089 1192 case 1:
1090 1193 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1091 1194 deltaF = 16.;
1092 1195 break;
1093 1196 case 2:
1094 1197 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1095 1198 deltaF = 1.;
1096 1199 break;
1097 1200 default:
1098 1201 break;
1099 1202 }
1100 1203
1101 1204 for (k = 0; k < 16; k++)
1102 1205 {
1103 1206 local_rw_fbins_mask[k] = 0xff;
1104 1207 }
1105 1208
1106 // RW1 F1
1107 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x80) >> 7 ); // [1000 0000]
1108
1109 // RW1 F2
1110 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x40) >> 6 ); // [0100 0000]
1209 // RW1
1210 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x80) >> 7 ); // [1000 0000]
1211 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x40) >> 6 ); // [0100 0000]
1212 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x20) >> 5 ); // [0010 0000]
1213 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x10) >> 4 ); // [0001 0000]
1111 1214
1112 // RW2 F1
1113 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x20) >> 5 ); // [0010 0000]
1114
1115 // RW2 F2
1116 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x10) >> 4 ); // [0001 0000]
1215 // RW2
1216 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x08) >> 3 ); // [0000 1000]
1217 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x04) >> 2 ); // [0000 0100]
1218 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x02) >> 1 ); // [0000 0010]
1219 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw1_rw2_f_flags & 0x01) ); // [0000 0001]
1117 1220
1118 // RW3 F1
1119 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x08) >> 3 ); // [0000 1000]
1120
1121 // RW3 F2
1122 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x04) >> 2 ); // [0000 0100]
1221 // RW3
1222 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x80) >> 7 ); // [1000 0000]
1223 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x40) >> 6 ); // [0100 0000]
1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x20) >> 5 ); // [0010 0000]
1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x10) >> 4 ); // [0001 0000]
1123 1226
1124 // RW4 F1
1125 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x02) >> 1 ); // [0000 0010]
1126
1127 // RW4 F2
1128 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x01) ); // [0000 0001]
1227 // RW4
1228 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x08) >> 3 ); // [0000 1000]
1229 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x04) >> 2 ); // [0000 0100]
1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x02) >> 1 ); // [0000 0010]
1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw3_rw4_f_flags & 0x03) ); // [0000 0001]
1129 1232
1130 1233 // update the value of the fbins related to reaction wheels frequency filtering
1131 1234 if (maskPtr != NULL)
1132 1235 {
1133 1236 for (k = 0; k < 16; k++)
1134 1237 {
1135 1238 maskPtr[k] = local_rw_fbins_mask[k];
1136 1239 }
1137 1240 }
1138 1241 }
1139 1242
1140 1243 void build_sy_lfr_rw_masks( void )
1141 1244 {
1142 1245 build_sy_lfr_rw_mask( 0 );
1143 1246 build_sy_lfr_rw_mask( 1 );
1144 1247 build_sy_lfr_rw_mask( 2 );
1145 1248
1146 1249 merge_fbins_masks();
1147 1250 }
1148 1251
1149 1252 void merge_fbins_masks( void )
1150 1253 {
1151 1254 unsigned char k;
1152 1255
1153 1256 unsigned char *fbins_f0;
1154 1257 unsigned char *fbins_f1;
1155 1258 unsigned char *fbins_f2;
1156 1259 unsigned char *rw_mask_f0;
1157 1260 unsigned char *rw_mask_f1;
1158 1261 unsigned char *rw_mask_f2;
1159 1262
1160 1263 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1161 1264 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1162 1265 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1163 1266 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1164 1267 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1165 1268 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1166 1269
1167 1270 for( k=0; k < 16; k++ )
1168 1271 {
1169 1272 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1170 1273 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1171 1274 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1172 1275 }
1173 1276 }
1174 1277
1175 1278 //***********
1176 1279 // FBINS MASK
1177 1280
1178 1281 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1179 1282 {
1180 1283 int status;
1181 1284 unsigned int k;
1182 1285 unsigned char *fbins_mask_dump;
1183 1286 unsigned char *fbins_mask_TC;
1184 1287
1185 1288 status = LFR_SUCCESSFUL;
1186 1289
1187 1290 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1188 1291 fbins_mask_TC = TC->dataAndCRC;
1189 1292
1190 1293 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1191 1294 {
1192 1295 fbins_mask_dump[k] = fbins_mask_TC[k];
1193 1296 }
1194 1297
1195 1298 return status;
1196 1299 }
1197 1300
1198 1301 //***************************
1199 1302 // TC_LFR_LOAD_PAS_FILTER_PAR
1200 1303
1201 1304 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1202 1305 {
1203 1306 int flag;
1204 1307 rtems_status_code status;
1205 1308
1206 1309 unsigned char sy_lfr_pas_filter_enabled;
1207 1310 unsigned char sy_lfr_pas_filter_modulus;
1208 1311 float sy_lfr_pas_filter_tbad;
1209 1312 unsigned char sy_lfr_pas_filter_offset;
1210 1313 float sy_lfr_pas_filter_shift;
1211 1314 float sy_lfr_sc_rw_delta_f;
1212 1315 char *parPtr;
1213 1316
1214 1317 flag = LFR_SUCCESSFUL;
1215 1318 sy_lfr_pas_filter_tbad = 0.0;
1216 1319 sy_lfr_pas_filter_shift = 0.0;
1217 1320 sy_lfr_sc_rw_delta_f = 0.0;
1218 1321 parPtr = NULL;
1219 1322
1220 1323 //***************
1221 1324 // get parameters
1222 1325 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & 0x01; // [0000 0001]
1223 1326 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1224 1327 copyFloatByChar(
1225 1328 (unsigned char*) &sy_lfr_pas_filter_tbad,
1226 1329 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1227 1330 );
1228 1331 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1229 1332 copyFloatByChar(
1230 1333 (unsigned char*) &sy_lfr_pas_filter_shift,
1231 1334 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1232 1335 );
1233 1336 copyFloatByChar(
1234 1337 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1235 1338 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1236 1339 );
1237 1340
1238 1341 //******************
1239 1342 // CHECK CONSISTENCY
1240 1343
1241 1344 //**************************
1242 1345 // sy_lfr_pas_filter_enabled
1243 1346 // nothing to check, value is 0 or 1
1244 1347
1245 1348 //**************************
1246 1349 // sy_lfr_pas_filter_modulus
1247 1350 if ( (sy_lfr_pas_filter_modulus < 4) || (sy_lfr_pas_filter_modulus > 8) )
1248 1351 {
1249 1352 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS+10, sy_lfr_pas_filter_modulus );
1250 1353 flag = WRONG_APP_DATA;
1251 1354 }
1252 1355
1253 1356 //***********************
1254 1357 // sy_lfr_pas_filter_tbad
1255 1358 if ( (sy_lfr_pas_filter_tbad < 0.0) || (sy_lfr_pas_filter_tbad > 4.0) )
1256 1359 {
1257 1360 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1258 1361 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD+10, parPtr[3] );
1259 1362 flag = WRONG_APP_DATA;
1260 1363 }
1261 1364
1262 1365 //*************************
1263 1366 // sy_lfr_pas_filter_offset
1264 1367 if (flag == LFR_SUCCESSFUL)
1265 1368 {
1266 1369 if ( (sy_lfr_pas_filter_offset < 0) || (sy_lfr_pas_filter_offset > 7) )
1267 1370 {
1268 1371 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET+10, sy_lfr_pas_filter_offset );
1269 1372 flag = WRONG_APP_DATA;
1270 1373 }
1271 1374 }
1272 1375
1273 1376 //************************
1274 1377 // sy_lfr_pas_filter_shift
1275 1378 if ( (sy_lfr_pas_filter_shift < 0.0) || (sy_lfr_pas_filter_shift > 1.0) )
1276 1379 {
1277 1380 parPtr = (char*) &sy_lfr_pas_filter_shift;
1278 1381 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT+10, parPtr[3] );
1279 1382 flag = WRONG_APP_DATA;
1280 1383 }
1281 1384
1282 1385 //*********************
1283 1386 // sy_lfr_sc_rw_delta_f
1284 1387 // nothing to check, no default value in the ICD
1285 1388
1286 1389 return flag;
1287 1390 }
1288 1391
1289 1392 //**************
1290 1393 // KCOEFFICIENTS
1291 1394 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1292 1395 {
1293 1396 unsigned int kcoeff;
1294 1397 unsigned short sy_lfr_kcoeff_frequency;
1295 1398 unsigned short bin;
1296 1399 unsigned short *freqPtr;
1297 1400 float *kcoeffPtr_norm;
1298 1401 float *kcoeffPtr_sbm;
1299 1402 int status;
1300 1403 unsigned char *kcoeffLoadPtr;
1301 1404 unsigned char *kcoeffNormPtr;
1302 1405 unsigned char *kcoeffSbmPtr_a;
1303 1406 unsigned char *kcoeffSbmPtr_b;
1304 1407
1305 1408 status = LFR_SUCCESSFUL;
1306 1409
1307 1410 kcoeffPtr_norm = NULL;
1308 1411 kcoeffPtr_sbm = NULL;
1309 1412 bin = 0;
1310 1413
1311 1414 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1312 1415 sy_lfr_kcoeff_frequency = *freqPtr;
1313 1416
1314 1417 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1315 1418 {
1316 1419 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1317 1420 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
1318 1421 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1319 1422 status = LFR_DEFAULT;
1320 1423 }
1321 1424 else
1322 1425 {
1323 1426 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1324 1427 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1325 1428 {
1326 1429 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1327 1430 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1328 1431 bin = sy_lfr_kcoeff_frequency;
1329 1432 }
1330 1433 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1331 1434 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1332 1435 {
1333 1436 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1334 1437 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1335 1438 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1336 1439 }
1337 1440 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1338 1441 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1339 1442 {
1340 1443 kcoeffPtr_norm = k_coeff_intercalib_f2;
1341 1444 kcoeffPtr_sbm = NULL;
1342 1445 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1343 1446 }
1344 1447 }
1345 1448
1346 1449 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1347 1450 {
1348 1451 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1349 1452 {
1350 1453 // destination
1351 1454 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1352 1455 // source
1353 1456 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1354 1457 // copy source to destination
1355 1458 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1356 1459 }
1357 1460 }
1358 1461
1359 1462 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1360 1463 {
1361 1464 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1362 1465 {
1363 1466 // destination
1364 1467 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
1365 1468 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
1366 1469 // source
1367 1470 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1368 1471 // copy source to destination
1369 1472 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1370 1473 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1371 1474 }
1372 1475 }
1373 1476
1374 1477 // print_k_coeff();
1375 1478
1376 1479 return status;
1377 1480 }
1378 1481
1379 1482 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1380 1483 {
1381 1484 destination[0] = source[0];
1382 1485 destination[1] = source[1];
1383 1486 destination[2] = source[2];
1384 1487 destination[3] = source[3];
1385 1488 }
1386 1489
1387 1490 void floatToChar( float value, unsigned char* ptr)
1388 1491 {
1389 1492 unsigned char* valuePtr;
1390 1493
1391 1494 valuePtr = (unsigned char*) &value;
1392 1495 ptr[0] = valuePtr[0];
1393 1496 ptr[1] = valuePtr[0];
1394 1497 ptr[2] = valuePtr[0];
1395 1498 ptr[3] = valuePtr[0];
1396 1499 }
1397 1500
1398 1501 //**********
1399 1502 // init dump
1400 1503
1401 1504 void init_parameter_dump( void )
1402 1505 {
1403 1506 /** This function initialize the parameter_dump_packet global variable with default values.
1404 1507 *
1405 1508 */
1406 1509
1407 1510 unsigned int k;
1408 1511
1409 1512 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1410 1513 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1411 1514 parameter_dump_packet.reserved = CCSDS_RESERVED;
1412 1515 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1413 1516 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1414 1517 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1415 1518 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1416 1519 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1417 1520 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1418 1521 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1419 1522 // DATA FIELD HEADER
1420 1523 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1421 1524 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1422 1525 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1423 1526 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1424 1527 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1425 1528 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1426 1529 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1427 1530 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1428 1531 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1429 1532 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1430 1533 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1431 1534
1432 1535 //******************
1433 1536 // COMMON PARAMETERS
1434 1537 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1435 1538 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1436 1539
1437 1540 //******************
1438 1541 // NORMAL PARAMETERS
1439 1542 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1440 1543 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1441 1544 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1442 1545 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1443 1546 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1444 1547 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1445 1548 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1446 1549 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1447 1550 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1448 1551
1449 1552 //*****************
1450 1553 // BURST PARAMETERS
1451 1554 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1452 1555 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1453 1556
1454 1557 //****************
1455 1558 // SBM1 PARAMETERS
1456 1559 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1457 1560 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1458 1561
1459 1562 //****************
1460 1563 // SBM2 PARAMETERS
1461 1564 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1462 1565 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1463 1566
1464 1567 //************
1465 1568 // FBINS MASKS
1466 1569 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1467 1570 {
1468 1571 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1469 1572 }
1470 1573
1471 // PAS FILTER PARAMETERS
1574 //******************
1575 // FILTER PARAMETERS
1472 1576 parameter_dump_packet.pa_rpw_spare8_2 = 0x00;
1473 1577 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = 0x00;
1474 1578 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1475 1579 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1476 1580 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1477 1581 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1478 1582 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1479 1583
1584 // RW1_K
1585 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1586 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1587 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1588 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1589 // RW2_K
1590 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1591 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1592 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1593 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1594 // RW3_K
1595 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1596 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1597 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1598 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1599 // RW4_K
1600 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1601 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1602 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1603 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1604
1480 1605 // LFR_RW_MASK
1481 1606 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1482 1607 {
1483 1608 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = 0xff;
1484 1609 }
1485 1610 }
1486 1611
1487 1612 void init_kcoefficients_dump( void )
1488 1613 {
1489 1614 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1490 1615 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1491 1616
1492 1617 kcoefficient_node_1.previous = NULL;
1493 1618 kcoefficient_node_1.next = NULL;
1494 1619 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1495 1620 kcoefficient_node_1.coarseTime = 0x00;
1496 1621 kcoefficient_node_1.fineTime = 0x00;
1497 1622 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1498 1623 kcoefficient_node_1.status = 0x00;
1499 1624
1500 1625 kcoefficient_node_2.previous = NULL;
1501 1626 kcoefficient_node_2.next = NULL;
1502 1627 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1503 1628 kcoefficient_node_2.coarseTime = 0x00;
1504 1629 kcoefficient_node_2.fineTime = 0x00;
1505 1630 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1506 1631 kcoefficient_node_2.status = 0x00;
1507 1632 }
1508 1633
1509 1634 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1510 1635 {
1511 1636 unsigned int k;
1512 1637 unsigned int packetLength;
1513 1638
1514 1639 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1515 1640
1516 1641 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1517 1642 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1518 1643 kcoefficients_dump->reserved = CCSDS_RESERVED;
1519 1644 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1520 1645 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1521 1646 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1522 1647 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1523 1648 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1524 1649 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1525 1650 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1526 1651 // DATA FIELD HEADER
1527 1652 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1528 1653 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1529 1654 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1530 1655 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1531 1656 kcoefficients_dump->time[0] = 0x00;
1532 1657 kcoefficients_dump->time[1] = 0x00;
1533 1658 kcoefficients_dump->time[2] = 0x00;
1534 1659 kcoefficients_dump->time[3] = 0x00;
1535 1660 kcoefficients_dump->time[4] = 0x00;
1536 1661 kcoefficients_dump->time[5] = 0x00;
1537 1662 kcoefficients_dump->sid = SID_K_DUMP;
1538 1663
1539 1664 kcoefficients_dump->pkt_cnt = 2;
1540 1665 kcoefficients_dump->pkt_nr = pkt_nr;
1541 1666 kcoefficients_dump->blk_nr = blk_nr;
1542 1667
1543 1668 //******************
1544 1669 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1545 1670 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1546 1671 for (k=0; k<3900; k++)
1547 1672 {
1548 1673 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1549 1674 }
1550 1675 }
1551 1676
1552 1677 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1553 1678 {
1554 1679 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1555 1680 *
1556 1681 * @param packet_sequence_control points to the packet sequence control which will be incremented
1557 1682 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1558 1683 *
1559 1684 * If the destination ID is not known, a dedicated counter is incremented.
1560 1685 *
1561 1686 */
1562 1687
1563 1688 unsigned short sequence_cnt;
1564 1689 unsigned short segmentation_grouping_flag;
1565 1690 unsigned short new_packet_sequence_control;
1566 1691 unsigned char i;
1567 1692
1568 1693 switch (destination_id)
1569 1694 {
1570 1695 case SID_TC_GROUND:
1571 1696 i = GROUND;
1572 1697 break;
1573 1698 case SID_TC_MISSION_TIMELINE:
1574 1699 i = MISSION_TIMELINE;
1575 1700 break;
1576 1701 case SID_TC_TC_SEQUENCES:
1577 1702 i = TC_SEQUENCES;
1578 1703 break;
1579 1704 case SID_TC_RECOVERY_ACTION_CMD:
1580 1705 i = RECOVERY_ACTION_CMD;
1581 1706 break;
1582 1707 case SID_TC_BACKUP_MISSION_TIMELINE:
1583 1708 i = BACKUP_MISSION_TIMELINE;
1584 1709 break;
1585 1710 case SID_TC_DIRECT_CMD:
1586 1711 i = DIRECT_CMD;
1587 1712 break;
1588 1713 case SID_TC_SPARE_GRD_SRC1:
1589 1714 i = SPARE_GRD_SRC1;
1590 1715 break;
1591 1716 case SID_TC_SPARE_GRD_SRC2:
1592 1717 i = SPARE_GRD_SRC2;
1593 1718 break;
1594 1719 case SID_TC_OBCP:
1595 1720 i = OBCP;
1596 1721 break;
1597 1722 case SID_TC_SYSTEM_CONTROL:
1598 1723 i = SYSTEM_CONTROL;
1599 1724 break;
1600 1725 case SID_TC_AOCS:
1601 1726 i = AOCS;
1602 1727 break;
1603 1728 case SID_TC_RPW_INTERNAL:
1604 1729 i = RPW_INTERNAL;
1605 1730 break;
1606 1731 default:
1607 1732 i = GROUND;
1608 1733 break;
1609 1734 }
1610 1735
1611 1736 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1612 1737 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1613 1738
1614 1739 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1615 1740
1616 1741 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1617 1742 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1618 1743
1619 1744 // increment the sequence counter
1620 1745 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1621 1746 {
1622 1747 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1623 1748 }
1624 1749 else
1625 1750 {
1626 1751 sequenceCounters_TM_DUMP[ i ] = 0;
1627 1752 }
1628 1753 }
General Comments 0
You need to be logged in to leave comments. Login now