##// END OF EJS Templates
sequence counters management added
paul -
r56:7b010fae8e4e default
parent child
Show More
@@ -1,248 +1,248
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Tue Nov 5 13:12:35 2013
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Thu Nov 7 08:03:44 2013
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 13 DEFINES = -DSW_VERSION_N1=0 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=20 -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c
56 56 OBJECTS = obj/wf_handler.o \
57 57 obj/tc_handler.o \
58 58 obj/fsw_processing.o \
59 59 obj/fsw_misc.o \
60 60 obj/fsw_init.o \
61 61 obj/fsw_globals.o \
62 62 obj/fsw_spacewire.o \
63 63 obj/tc_load_dump_parameters.o \
64 64 obj/tm_lfr_tc_exe.o \
65 65 obj/tc_acceptance.o
66 66 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
67 67 /usr/lib64/qt4/mkspecs/common/linux.conf \
68 68 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
69 69 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
70 70 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/qconfig.pri \
73 73 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
74 74 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
75 75 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
76 76 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
77 77 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
78 78 sparc.pri \
79 79 /usr/lib64/qt4/mkspecs/features/release.prf \
80 80 /usr/lib64/qt4/mkspecs/features/default_post.prf \
81 81 /usr/lib64/qt4/mkspecs/features/shared.prf \
82 82 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
83 83 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
84 84 /usr/lib64/qt4/mkspecs/features/resources.prf \
85 85 /usr/lib64/qt4/mkspecs/features/uic.prf \
86 86 /usr/lib64/qt4/mkspecs/features/yacc.prf \
87 87 /usr/lib64/qt4/mkspecs/features/lex.prf \
88 88 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
89 89 fsw-qt.pro
90 90 QMAKE_TARGET = fsw
91 91 DESTDIR = bin/
92 92 TARGET = bin/fsw
93 93
94 94 first: all
95 95 ####### Implicit rules
96 96
97 97 .SUFFIXES: .o .c .cpp .cc .cxx .C
98 98
99 99 .cpp.o:
100 100 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
101 101
102 102 .cc.o:
103 103 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
104 104
105 105 .cxx.o:
106 106 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
107 107
108 108 .C.o:
109 109 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
110 110
111 111 .c.o:
112 112 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
113 113
114 114 ####### Build rules
115 115
116 116 all: Makefile $(TARGET)
117 117
118 118 $(TARGET): $(OBJECTS)
119 119 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
120 120 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
121 121
122 122 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
123 123 /usr/lib64/qt4/mkspecs/common/linux.conf \
124 124 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
125 125 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
126 126 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/qconfig.pri \
129 129 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
130 130 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
131 131 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
132 132 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
133 133 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
134 134 sparc.pri \
135 135 /usr/lib64/qt4/mkspecs/features/release.prf \
136 136 /usr/lib64/qt4/mkspecs/features/default_post.prf \
137 137 /usr/lib64/qt4/mkspecs/features/shared.prf \
138 138 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
139 139 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
140 140 /usr/lib64/qt4/mkspecs/features/resources.prf \
141 141 /usr/lib64/qt4/mkspecs/features/uic.prf \
142 142 /usr/lib64/qt4/mkspecs/features/yacc.prf \
143 143 /usr/lib64/qt4/mkspecs/features/lex.prf \
144 144 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
145 145 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
146 146 /usr/lib64/qt4/mkspecs/common/unix.conf:
147 147 /usr/lib64/qt4/mkspecs/common/linux.conf:
148 148 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
149 149 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
150 150 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/qconfig.pri:
153 153 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
154 154 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
155 155 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
156 156 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
157 157 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
158 158 sparc.pri:
159 159 /usr/lib64/qt4/mkspecs/features/release.prf:
160 160 /usr/lib64/qt4/mkspecs/features/default_post.prf:
161 161 /usr/lib64/qt4/mkspecs/features/shared.prf:
162 162 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
163 163 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
164 164 /usr/lib64/qt4/mkspecs/features/resources.prf:
165 165 /usr/lib64/qt4/mkspecs/features/uic.prf:
166 166 /usr/lib64/qt4/mkspecs/features/yacc.prf:
167 167 /usr/lib64/qt4/mkspecs/features/lex.prf:
168 168 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
169 169 qmake: FORCE
170 170 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
171 171
172 172 dist:
173 173 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
174 174 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
175 175
176 176
177 177 clean:compiler_clean
178 178 -$(DEL_FILE) $(OBJECTS)
179 179 -$(DEL_FILE) *~ core *.core
180 180
181 181
182 182 ####### Sub-libraries
183 183
184 184 distclean: clean
185 185 -$(DEL_FILE) $(TARGET)
186 186 -$(DEL_FILE) Makefile
187 187
188 188
189 189 grmon:
190 190 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
191 191
192 192 check: first
193 193
194 194 compiler_rcc_make_all:
195 195 compiler_rcc_clean:
196 196 compiler_uic_make_all:
197 197 compiler_uic_clean:
198 198 compiler_image_collection_make_all: qmake_image_collection.cpp
199 199 compiler_image_collection_clean:
200 200 -$(DEL_FILE) qmake_image_collection.cpp
201 201 compiler_yacc_decl_make_all:
202 202 compiler_yacc_decl_clean:
203 203 compiler_yacc_impl_make_all:
204 204 compiler_yacc_impl_clean:
205 205 compiler_lex_make_all:
206 206 compiler_lex_clean:
207 207 compiler_clean:
208 208
209 209 ####### Compile
210 210
211 211 obj/wf_handler.o: ../src/wf_handler.c
212 212 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
213 213
214 214 obj/tc_handler.o: ../src/tc_handler.c
215 215 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
216 216
217 217 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
218 218 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
219 219
220 220 obj/fsw_misc.o: ../src/fsw_misc.c
221 221 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
222 222
223 223 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
224 224 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
225 225
226 226 obj/fsw_globals.o: ../src/fsw_globals.c
227 227 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
228 228
229 229 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
230 230 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
231 231
232 232 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
233 233 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
234 234
235 235 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
236 236 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
237 237
238 238 obj/tc_acceptance.o: ../src/tc_acceptance.c
239 239 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
240 240
241 241 ####### Install
242 242
243 243 install: FORCE
244 244
245 245 uninstall: FORCE
246 246
247 247 FORCE:
248 248
1 NO CONTENT: modified file, binary diff hidden
@@ -1,305 +1,305
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 2.8.1, 2013-11-05T13:11:18. -->
3 <!-- Written by QtCreator 2.8.1, 2013-11-08T07:03:44. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QString" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QString" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">System</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">1</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
63 63 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
64 64 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
67 67 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
69 69 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
70 70 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
71 71 </valuemap>
72 72 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
73 73 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
74 74 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
77 77 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
78 78 <value type="QString">-w</value>
79 79 <value type="QString">-r</value>
80 80 </valuelist>
81 81 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
82 82 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w -j 4</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
84 84 </valuemap>
85 85 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
86 86 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
89 89 </valuemap>
90 90 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
92 92 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
93 93 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
96 96 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
97 97 <value type="QString">-w</value>
98 98 <value type="QString">-r</value>
99 99 </valuelist>
100 100 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
101 101 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
103 103 </valuemap>
104 104 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
105 105 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
108 108 </valuemap>
109 109 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
110 110 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
111 111 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
112 112 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Release</value>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
115 115 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
116 116 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
118 118 </valuemap>
119 119 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.1">
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
122 122 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
126 126 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
127 127 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
128 128 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
129 129 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
130 130 </valuemap>
131 131 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
132 132 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
133 133 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
134 134 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
135 135 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
136 136 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
137 137 <value type="QString">-w</value>
138 138 <value type="QString">-r</value>
139 139 </valuelist>
140 140 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
141 141 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w </value>
142 142 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
143 143 </valuemap>
144 144 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
145 145 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
146 146 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
147 147 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
148 148 </valuemap>
149 149 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
150 150 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
151 151 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
152 152 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
153 153 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
154 154 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
155 155 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
156 156 <value type="QString">-w</value>
157 157 <value type="QString">-r</value>
158 158 </valuelist>
159 159 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
160 160 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
161 161 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
162 162 </valuemap>
163 163 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
164 164 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
165 165 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
166 166 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
167 167 </valuemap>
168 168 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
169 169 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
170 170 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Debug</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
174 174 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">2</value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
177 177 </valuemap>
178 178 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">2</value>
179 179 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
180 180 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
181 181 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
182 182 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
183 183 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
184 184 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
187 187 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">No deployment</value>
188 188 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
189 189 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
190 190 </valuemap>
191 191 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
192 192 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
193 193 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
194 194 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
195 195 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
196 196 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
197 197 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
198 198 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
199 199 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
200 200 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
201 201 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
202 202 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
203 203 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
204 204 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
205 205 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
206 206 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
207 207 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
208 208 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
209 209 <value type="int">0</value>
210 210 <value type="int">1</value>
211 211 <value type="int">2</value>
212 212 <value type="int">3</value>
213 213 <value type="int">4</value>
214 214 <value type="int">5</value>
215 215 <value type="int">6</value>
216 216 <value type="int">7</value>
217 217 <value type="int">8</value>
218 218 <value type="int">9</value>
219 219 <value type="int">10</value>
220 220 <value type="int">11</value>
221 221 <value type="int">12</value>
222 222 <value type="int">13</value>
223 223 <value type="int">14</value>
224 224 </valuelist>
225 225 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
226 226 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
228 228 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
229 229 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
230 230 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
231 231 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
232 232 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
233 233 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
234 234 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
235 235 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
236 236 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
237 237 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
238 238 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
239 239 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
240 240 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">false</value>
241 241 </valuemap>
242 242 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.1">
243 243 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
244 244 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
245 245 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
246 246 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
247 247 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
248 248 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
249 249 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
250 250 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
251 251 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
252 252 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
253 253 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
254 254 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
255 255 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
256 256 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
257 257 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
258 258 <value type="int">0</value>
259 259 <value type="int">1</value>
260 260 <value type="int">2</value>
261 261 <value type="int">3</value>
262 262 <value type="int">4</value>
263 263 <value type="int">5</value>
264 264 <value type="int">6</value>
265 265 <value type="int">7</value>
266 266 <value type="int">8</value>
267 267 <value type="int">9</value>
268 268 <value type="int">10</value>
269 269 <value type="int">11</value>
270 270 <value type="int">12</value>
271 271 <value type="int">13</value>
272 272 <value type="int">14</value>
273 273 </valuelist>
274 274 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
275 275 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
276 276 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Arguments"></value>
277 277 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Executable">doxygen</value>
278 278 <value type="bool" key="ProjectExplorer.CustomExecutableRunConfiguration.UseTerminal">true</value>
279 279 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.WorkingDirectory">/opt/DEV_PLE/doc</value>
280 280 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Run doxygen</value>
281 281 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
282 282 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.CustomExecutableRunConfiguration</value>
283 283 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
284 284 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
285 285 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
286 286 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
287 287 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
288 288 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
289 289 </valuemap>
290 290 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">2</value>
291 291 </valuemap>
292 292 </data>
293 293 <data>
294 294 <variable>ProjectExplorer.Project.TargetCount</variable>
295 295 <value type="int">1</value>
296 296 </data>
297 297 <data>
298 298 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
299 299 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
300 300 </data>
301 301 <data>
302 302 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
303 303 <value type="int">14</value>
304 304 </data>
305 305 </qtcreator>
@@ -1,643 +1,661
1 1 #ifndef CCSDS_TYPES_H_INCLUDED
2 2 #define CCSDS_TYPES_H_INCLUDED
3 3
4 4 #define CCSDS_PROTOCOLE_EXTRA_BYTES 4
5 5 #define CCSDS_TELEMETRY_HEADER_LENGTH 16+4
6 6 #define CCSDS_TM_PKT_MAX_SIZE 4412
7 7 #define CCSDS_TELECOMMAND_HEADER_LENGTH 10+4
8 8 #define CCSDS_TC_PKT_MAX_SIZE 256
9 9 #define CCSDS_TC_PKT_MIN_SIZE 16
10 10 #define CCSDS_TC_TM_PACKET_OFFSET 7
11 11 #define CCSDS_PROCESS_ID 76
12 12 #define CCSDS_PACKET_CATEGORY 12
13 13 #define CCSDS_NODE_ADDRESS 0xfe
14 14 #define CCSDS_USER_APP 0x00
15 15
16 16 #define DEFAULT_SPARE1_PUSVERSION_SPARE2 0x10
17 17 #define DEFAULT_RESERVED 0x00
18 18 #define DEFAULT_HKBIA 0x1e // 0001 1110
19 19
20 20 // PACKET ID
21 21 #define TM_PACKET_ID_TC_EXE 0x0cc1 // PID 76 CAT 1
22 22 #define TM_PACKET_ID_HK 0x0cc4 // PID 76 CAT 4
23 23 #define TM_PACKET_ID_PARAMETER_DUMP 0x0cc9 // PID 76 CAT 9
24 24 #define TM_PACKET_ID_SCIENCE_NORMAL_BURST 0x0ccc // PID 76 CAT 12
25 25 #define TM_PACKET_ID_SCIENCE_SBM1_SBM2 0x0cfc // PID 79 CAT 12
26 26 #define TM_PACKET_PID_DEFAULT 76
27 27 #define TM_PACKET_PID_BURST_SBM1_SBM2 79
28 28 #define TM_PACKET_CAT_TC_EXE 1
29 29 #define TM_PACKET_CAT_HK 4
30 30 #define TM_PACKET_CAT_PARAMETER_DUMP 9
31 31 #define TM_PACKET_CAT_SCIENCE 12
32 32
33 33 // PACKET SEQUENCE CONTROL
34 34 #define TM_PACKET_SEQ_CTRL_CONTINUATION 0x00 // [0000 0000]
35 35 #define TM_PACKET_SEQ_CTRL_FIRST 0x40 // [0100 0000]
36 36 #define TM_PACKET_SEQ_CTRL_LAST 0x80 // [1000 0000]
37 37 #define TM_PACKET_SEQ_CTRL_STANDALONE 0xc0 // [1100 0000]
38 38 #define TM_PACKET_SEQ_CNT_DEFAULT 0x00 // [0000 0000]
39 39
40 40 // DESTINATION ID
41 41 #define TM_DESTINATION_ID_GROUND 0
42 42 #define TM_DESTINATION_ID_MISSION_TIMELINE 110
43 43 #define TM_DESTINATION_ID_TC_SEQUENCES 111
44 44 #define TM_DESTINATION_ID_RECOVERY_ACTION_COMMAND 112
45 45 #define TM_DESTINATION_ID_BACKUP_MISSION_TIMELINE 113
46 46 #define TM_DESTINATION_ID_DIRECT_CMD 120
47 47 #define TM_DESTINATION_ID_SPARE_GRD_SRC1 121
48 48 #define TM_DESTINATION_ID_SPARE_GRD_SRC2 122
49 49 #define TM_DESTINATION_ID_OBCP 15
50 50 #define TM_DESTINATION_ID_SYSTEM_CONTROL 14
51 51 #define TM_DESTINATION_ID_AOCS 11
52 52
53 53 #define CCSDS_DESTINATION_ID 0x01
54 54 #define CCSDS_PROTOCOLE_ID 0x02
55 55 #define CCSDS_RESERVED 0x00
56 56 #define CCSDS_USER_APP 0x00
57 57
58 58 #define SIZE_TM_LFR_TC_EXE_NOT_IMPLEMENTED 24
59 59 #define SIZE_TM_LFR_TC_EXE_CORRUPTED 32
60 60 #define SIZE_HK_PARAMETERS 112
61 61
62 62 // TC TYPES
63 63 #define TC_TYPE_GEN 181
64 64 #define TC_TYPE_TIME 9
65 65
66 66 // TC SUBTYPES
67 67 #define TC_SUBTYPE_RESET 1
68 68 #define TC_SUBTYPE_LOAD_COMM 11
69 69 #define TC_SUBTYPE_LOAD_NORM 13
70 70 #define TC_SUBTYPE_LOAD_BURST 19
71 71 #define TC_SUBTYPE_LOAD_SBM1 25
72 72 #define TC_SUBTYPE_LOAD_SBM2 27
73 73 #define TC_SUBTYPE_DUMP 31
74 74 #define TC_SUBTYPE_ENTER 41
75 75 #define TC_SUBTYPE_UPDT_INFO 51
76 76 #define TC_SUBTYPE_EN_CAL 61
77 77 #define TC_SUBTYPE_DIS_CAL 63
78 78 #define TC_SUBTYPE_UPDT_TIME 129
79 79
80 80 // TC LEN
81 81 #define TC_LEN_RESET 12
82 82 #define TC_LEN_LOAD_COMM 14
83 83 #define TC_LEN_LOAD_NORM 20
84 84 #define TC_LEN_LOAD_BURST 14
85 85 #define TC_LEN_LOAD_SBM1 14
86 86 #define TC_LEN_LOAD_SBM2 14
87 87 #define TC_LEN_DUMP 12
88 88 #define TC_LEN_ENTER 20
89 89 #define TC_LEN_UPDT_INFO 48
90 90 #define TC_LEN_EN_CAL 12
91 91 #define TC_LEN_DIS_CAL 12
92 92 #define TC_LEN_UPDT_TIME 18
93 93
94 94 // TM TYPES
95 95 #define TM_TYPE_TC_EXE 1
96 96 #define TM_TYPE_HK 3
97 97 #define TM_TYPE_PARAMETER_DUMP 3
98 98 #define TM_TYPE_LFR_SCIENCE 21
99 99
100 100 // TM SUBTYPES
101 101 #define TM_SUBTYPE_EXE_OK 7
102 102 #define TM_SUBTYPE_EXE_NOK 8
103 103 #define TM_SUBTYPE_HK 25
104 104 #define TM_SUBTYPE_PARAMETER_DUMP 25
105 105 #define TM_SUBTYPE_SCIENCE 3
106 106 #define TM_SUBTYPE_LFR_SCIENCE 3
107 107
108 108 // FAILURE CODES
109 109 #define ILLEGAL_APID 0
110 110 #define WRONG_LEN_PKT 1
111 111 #define INCOR_CHECKSUM 2
112 112 #define ILL_TYPE 3
113 113 #define ILL_SUBTYPE 4
114 114 #define WRONG_APP_DATA 5 // 0x00 0x05
115 115 #define TC_NOT_EXE 42000 // 0xa4 0x10
116 116 #define WRONG_SRC_ID 42001 // 0xa4 0x11
117 117 #define FUNCT_NOT_IMPL 42002 // 0xa4 0x12
118 118 #define FAIL_DETECTED 42003 // 0xa4 0x13
119 119 #define NOT_ALLOWED 42004 // 0xa4 0x14
120 120 #define CORRUPTED 42005 // 0xa4 0x15
121 121 #define CCSDS_TM_VALID 7
122 122
123 123 // TC SID
124 #define SID_TC_DEFAULT 0 // the default SID for TC sent to the LFR
125 124 #define SID_TC_GROUND 0
126 125 #define SID_TC_MISSION_TIMELINE 110
127 126 #define SID_TC_TC_SEQUENCES 111
128 127 #define SID_TC_RECOVERY_ACTION_CMD 112
129 128 #define SID_TC_BACKUP_MISSION_TIMELINE 113
130 129 #define SID_TC_DIRECT_CMD 120
131 130 #define SID_TC_SPARE_GRD_SRC1 121
132 131 #define SID_TC_SPARE_GRD_SRC2 122
133 132 #define SID_TC_OBCP 15
134 133 #define SID_TC_SYSTEM_CONTROL 14
135 134 #define SID_TC_AOCS 11
136 135 #define SID_TC_RPW_INTERNAL 254
137 136
137 enum apid_destid{
138 GROUND,
139 MISSION_TIMELINE,
140 TC_SEQUENCES,
141 RECOVERY_ACTION_CMD,
142 BACKUP_MISSION_TIMELINE,
143 DIRECT_CMD,
144 SPARE_GRD_SRC1,
145 SPARE_GRD_SRC2,
146 OBCP,
147 SYSTEM_CONTROL,
148 AOCS,
149 RPW_INTERNAL,
150 UNKNOWN
151 };
152 // SEQUENCE COUNTERS
153 #define SEQ_CNT_MAX 16383
154 #define SEQ_CNT_NB_DEST_ID 12
155
138 156 // TM SID
139 157 #define SID_HK 1
140 158 #define SID_PARAMETER_DUMP 10
141 159
142 160 #define SID_NORM_SWF_F0 3
143 161 #define SID_NORM_SWF_F1 4
144 162 #define SID_NORM_SWF_F2 5
145 163 #define SID_NORM_CWF_F3 1
146 164 #define SID_BURST_CWF_F2 2
147 165 #define SID_SBM1_CWF_F1 24
148 166 #define SID_SBM2_CWF_F2 25
149 167 #define SID_NORM_ASM_F0 11
150 168 #define SID_NORM_ASM_F1 12
151 169 #define SID_NORM_ASM_F2 13
152 170 #define SID_NORM_BP1_F0 14
153 171 #define SID_NORM_BP1_F1 15
154 172 #define SID_NORM_BP1_F2 16
155 173 #define SID_NORM_BP2_F0 19
156 174 #define SID_NORM_BP2_F1 20
157 175 #define SID_NORM_BP2_F2 21
158 176 #define SID_BURST_BP1_F0 17
159 177 #define SID_BURST_BP2_F0 22
160 178 #define SID_BURST_BP1_F1 18
161 179 #define SID_BURST_BP2_F1 23
162 180 #define SID_SBM1_BP1_F0 28
163 181 #define SID_SBM1_BP2_F0 31
164 182 #define SID_SBM2_BP1_F0 29
165 183 #define SID_SBM2_BP2_F0 32
166 184 #define SID_SBM2_BP1_F1 30
167 185 #define SID_SBM2_BP2_F1 33
168 186
169 187 // LENGTH (BYTES)
170 188 #define LENGTH_TM_LFR_TC_EXE_MAX 32
171 189 #define LENGTH_TM_LFR_HK 126
172 190
173 191 // HEADER_LENGTH
174 192 #define TM_HEADER_LEN 16
175 193 #define HEADER_LENGTH_TM_LFR_SCIENCE_ASM 28
176 194 // PACKET_LENGTH
177 195 #define PACKET_LENGTH_TC_EXE_SUCCESS (20 - CCSDS_TC_TM_PACKET_OFFSET)
178 196 #define PACKET_LENGTH_TC_EXE_INCONSISTENT (26 - CCSDS_TC_TM_PACKET_OFFSET)
179 197 #define PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE (26 - CCSDS_TC_TM_PACKET_OFFSET)
180 198 #define PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED (24 - CCSDS_TC_TM_PACKET_OFFSET)
181 199 #define PACKET_LENGTH_TC_EXE_ERROR (24 - CCSDS_TC_TM_PACKET_OFFSET)
182 200 #define PACKET_LENGTH_TC_EXE_CORRUPTED (32 - CCSDS_TC_TM_PACKET_OFFSET)
183 201 #define PACKET_LENGTH_HK (126 - CCSDS_TC_TM_PACKET_OFFSET)
184 202 #define PACKET_LENGTH_PARAMETER_DUMP (34 - CCSDS_TC_TM_PACKET_OFFSET)
185 203 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM (TOTAL_SIZE_SM + HEADER_LENGTH_TM_LFR_SCIENCE_ASM - CCSDS_TC_TM_PACKET_OFFSET)
186 204
187 205 #define SPARE1_PUSVERSION_SPARE2 0x10
188 206
189 207 #define LEN_TM_LFR_HK 130 // 126 + 4
190 208 #define LEN_TM_LFR_TC_EXE_NOT_IMP 28 // 24 + 4
191 209
192 210 #define TM_LEN_SCI_SWF_340 4101 // 340 * 12 + 10 + 12 - 1
193 211 #define TM_LEN_SCI_SWF_8 117 // 8 * 12 + 10 + 12 - 1
194 212 #define TM_LEN_SCI_CWF_340 4099 // 340 * 12 + 10 + 10 - 1
195 213 #define TM_LEN_SCI_CWF_8 115 // 8 * 12 + 10 + 10 - 1
196 214 #define TM_LEN_SCI_CWF3_LIGHT_340 2059 // 340 * 6 + 10 + 10 - 1
197 215 #define TM_LEN_SCI_CWF3_LIGHT_8 67 // 8 * 6 + 10 + 10 - 1
198 216 #define DEFAULT_PKTCNT 0x07
199 217 #define BLK_NR_340 0x0154
200 218 #define BLK_NR_8 0x0008
201 219
202 220 enum TM_TYPE{
203 221 TM_LFR_TC_EXE_OK,
204 222 TM_LFR_TC_EXE_ERR,
205 223 TM_LFR_HK,
206 224 TM_LFR_SCI,
207 225 TM_LFR_SCI_SBM,
208 226 TM_LFR_PAR_DUMP
209 227 };
210 228
211 229 struct TMHeader_str
212 230 {
213 volatile unsigned char targetLogicalAddress;
214 volatile unsigned char protocolIdentifier;
215 volatile unsigned char reserved;
216 volatile unsigned char userApplication;
217 volatile unsigned char packetID[2];
218 volatile unsigned char packetSequenceControl[2];
219 volatile unsigned char packetLength[2];
231 unsigned char targetLogicalAddress;
232 unsigned char protocolIdentifier;
233 unsigned char reserved;
234 unsigned char userApplication;
235 unsigned char packetID[2];
236 unsigned char packetSequenceControl[2];
237 unsigned char packetLength[2];
220 238 // DATA FIELD HEADER
221 volatile unsigned char spare1_pusVersion_spare2;
222 volatile unsigned char serviceType;
223 volatile unsigned char serviceSubType;
224 volatile unsigned char destinationID;
225 volatile unsigned char time[6];
239 unsigned char spare1_pusVersion_spare2;
240 unsigned char serviceType;
241 unsigned char serviceSubType;
242 unsigned char destinationID;
243 unsigned char time[6];
226 244 };
227 245 typedef struct TMHeader_str TMHeader_t;
228 246
229 247 struct Packet_TM_LFR_TC_EXE_str
230 248 {
231 volatile unsigned char targetLogicalAddress;
232 volatile unsigned char protocolIdentifier;
233 volatile unsigned char reserved;
234 volatile unsigned char userApplication;
235 volatile unsigned char packetID[2];
236 volatile unsigned char packetSequenceControl[2];
237 volatile unsigned char packetLength[2];
249 unsigned char targetLogicalAddress;
250 unsigned char protocolIdentifier;
251 unsigned char reserved;
252 unsigned char userApplication;
253 unsigned char packetID[2];
254 unsigned char packetSequenceControl[2];
255 unsigned char packetLength[2];
238 256 // DATA FIELD HEADER
239 volatile unsigned char spare1_pusVersion_spare2;
240 volatile unsigned char serviceType;
241 volatile unsigned char serviceSubType;
242 volatile unsigned char destinationID;
243 volatile unsigned char time[6];
244 volatile unsigned char data[LENGTH_TM_LFR_TC_EXE_MAX - 10 + 1];
257 unsigned char spare1_pusVersion_spare2;
258 unsigned char serviceType;
259 unsigned char serviceSubType;
260 unsigned char destinationID;
261 unsigned char time[6];
262 unsigned char data[LENGTH_TM_LFR_TC_EXE_MAX - 10 + 1];
245 263 };
246 264 typedef struct Packet_TM_LFR_TC_EXE_str Packet_TM_LFR_TC_EXE_t;
247 265
248 266 struct Packet_TM_LFR_TC_EXE_SUCCESS_str
249 267 {
250 volatile unsigned char targetLogicalAddress;
251 volatile unsigned char protocolIdentifier;
252 volatile unsigned char reserved;
253 volatile unsigned char userApplication;
268 unsigned char targetLogicalAddress;
269 unsigned char protocolIdentifier;
270 unsigned char reserved;
271 unsigned char userApplication;
254 272 // PACKET HEADER
255 volatile unsigned char packetID[2];
256 volatile unsigned char packetSequenceControl[2];
257 volatile unsigned char packetLength[2];
273 unsigned char packetID[2];
274 unsigned char packetSequenceControl[2];
275 unsigned char packetLength[2];
258 276 // DATA FIELD HEADER
259 volatile unsigned char spare1_pusVersion_spare2;
260 volatile unsigned char serviceType;
261 volatile unsigned char serviceSubType;
262 volatile unsigned char destinationID;
263 volatile unsigned char time[6];
277 unsigned char spare1_pusVersion_spare2;
278 unsigned char serviceType;
279 unsigned char serviceSubType;
280 unsigned char destinationID;
281 unsigned char time[6];
264 282 //
265 volatile unsigned char telecommand_pkt_id[2];
266 volatile unsigned char pkt_seq_control[2];
283 unsigned char telecommand_pkt_id[2];
284 unsigned char pkt_seq_control[2];
267 285 };
268 286 typedef struct Packet_TM_LFR_TC_EXE_SUCCESS_str Packet_TM_LFR_TC_EXE_SUCCESS_t;
269 287
270 288 struct Packet_TM_LFR_TC_EXE_INCONSISTENT_str
271 289 {
272 volatile unsigned char targetLogicalAddress;
273 volatile unsigned char protocolIdentifier;
274 volatile unsigned char reserved;
275 volatile unsigned char userApplication;
290 unsigned char targetLogicalAddress;
291 unsigned char protocolIdentifier;
292 unsigned char reserved;
293 unsigned char userApplication;
276 294 // PACKET HEADER
277 volatile unsigned char packetID[2];
278 volatile unsigned char packetSequenceControl[2];
279 volatile unsigned char packetLength[2];
295 unsigned char packetID[2];
296 unsigned char packetSequenceControl[2];
297 unsigned char packetLength[2];
280 298 // DATA FIELD HEADER
281 volatile unsigned char spare1_pusVersion_spare2;
282 volatile unsigned char serviceType;
283 volatile unsigned char serviceSubType;
284 volatile unsigned char destinationID;
285 volatile unsigned char time[6];
299 unsigned char spare1_pusVersion_spare2;
300 unsigned char serviceType;
301 unsigned char serviceSubType;
302 unsigned char destinationID;
303 unsigned char time[6];
286 304 //
287 volatile unsigned char tc_failure_code[2];
288 volatile unsigned char telecommand_pkt_id[2];
289 volatile unsigned char pkt_seq_control[2];
290 volatile unsigned char tc_service;
291 volatile unsigned char tc_subtype;
292 volatile unsigned char byte_position;
293 volatile unsigned char rcv_value;
305 unsigned char tc_failure_code[2];
306 unsigned char telecommand_pkt_id[2];
307 unsigned char pkt_seq_control[2];
308 unsigned char tc_service;
309 unsigned char tc_subtype;
310 unsigned char byte_position;
311 unsigned char rcv_value;
294 312 };
295 313 typedef struct Packet_TM_LFR_TC_EXE_INCONSISTENT_str Packet_TM_LFR_TC_EXE_INCONSISTENT_t;
296 314
297 315 struct Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_str
298 316 {
299 volatile unsigned char targetLogicalAddress;
300 volatile unsigned char protocolIdentifier;
301 volatile unsigned char reserved;
302 volatile unsigned char userApplication;
317 unsigned char targetLogicalAddress;
318 unsigned char protocolIdentifier;
319 unsigned char reserved;
320 unsigned char userApplication;
303 321 // PACKET HEADER
304 volatile unsigned char packetID[2];
305 volatile unsigned char packetSequenceControl[2];
306 volatile unsigned char packetLength[2];
322 unsigned char packetID[2];
323 unsigned char packetSequenceControl[2];
324 unsigned char packetLength[2];
307 325 // DATA FIELD HEADER
308 volatile unsigned char spare1_pusVersion_spare2;
309 volatile unsigned char serviceType;
310 volatile unsigned char serviceSubType;
311 volatile unsigned char destinationID;
312 volatile unsigned char time[6];
326 unsigned char spare1_pusVersion_spare2;
327 unsigned char serviceType;
328 unsigned char serviceSubType;
329 unsigned char destinationID;
330 unsigned char time[6];
313 331 //
314 volatile unsigned char tc_failure_code[2];
315 volatile unsigned char telecommand_pkt_id[2];
316 volatile unsigned char pkt_seq_control[2];
317 volatile unsigned char tc_service;
318 volatile unsigned char tc_subtype;
319 volatile unsigned char lfr_status_word[2];
332 unsigned char tc_failure_code[2];
333 unsigned char telecommand_pkt_id[2];
334 unsigned char pkt_seq_control[2];
335 unsigned char tc_service;
336 unsigned char tc_subtype;
337 unsigned char lfr_status_word[2];
320 338 };
321 339 typedef struct Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_str Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t;
322 340
323 341 struct Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_str
324 342 {
325 volatile unsigned char targetLogicalAddress;
326 volatile unsigned char protocolIdentifier;
327 volatile unsigned char reserved;
328 volatile unsigned char userApplication;
343 unsigned char targetLogicalAddress;
344 unsigned char protocolIdentifier;
345 unsigned char reserved;
346 unsigned char userApplication;
329 347 // PACKET HEADER
330 volatile unsigned char packetID[2];
331 volatile unsigned char packetSequenceControl[2];
332 volatile unsigned char packetLength[2];
348 unsigned char packetID[2];
349 unsigned char packetSequenceControl[2];
350 unsigned char packetLength[2];
333 351 // DATA FIELD HEADER
334 volatile unsigned char spare1_pusVersion_spare2;
335 volatile unsigned char serviceType;
336 volatile unsigned char serviceSubType;
337 volatile unsigned char destinationID;
338 volatile unsigned char time[6];
352 unsigned char spare1_pusVersion_spare2;
353 unsigned char serviceType;
354 unsigned char serviceSubType;
355 unsigned char destinationID;
356 unsigned char time[6];
339 357 //
340 volatile unsigned char tc_failure_code[2];
341 volatile unsigned char telecommand_pkt_id[2];
342 volatile unsigned char pkt_seq_control[2];
343 volatile unsigned char tc_service;
344 volatile unsigned char tc_subtype;
358 unsigned char tc_failure_code[2];
359 unsigned char telecommand_pkt_id[2];
360 unsigned char pkt_seq_control[2];
361 unsigned char tc_service;
362 unsigned char tc_subtype;
345 363 };
346 364 typedef struct Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_str Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t;
347 365
348 366 struct Packet_TM_LFR_TC_EXE_ERROR_str
349 367 {
350 volatile unsigned char targetLogicalAddress;
351 volatile unsigned char protocolIdentifier;
352 volatile unsigned char reserved;
353 volatile unsigned char userApplication;
368 unsigned char targetLogicalAddress;
369 unsigned char protocolIdentifier;
370 unsigned char reserved;
371 unsigned char userApplication;
354 372 // PACKET HEADER
355 volatile unsigned char packetID[2];
356 volatile unsigned char packetSequenceControl[2];
357 volatile unsigned char packetLength[2];
373 unsigned char packetID[2];
374 unsigned char packetSequenceControl[2];
375 unsigned char packetLength[2];
358 376 // DATA FIELD HEADER
359 volatile unsigned char spare1_pusVersion_spare2;
360 volatile unsigned char serviceType;
361 volatile unsigned char serviceSubType;
362 volatile unsigned char destinationID;
363 volatile unsigned char time[6];
377 unsigned char spare1_pusVersion_spare2;
378 unsigned char serviceType;
379 unsigned char serviceSubType;
380 unsigned char destinationID;
381 unsigned char time[6];
364 382 //
365 volatile unsigned char tc_failure_code[2];
366 volatile unsigned char telecommand_pkt_id[2];
367 volatile unsigned char pkt_seq_control[2];
368 volatile unsigned char tc_service;
369 volatile unsigned char tc_subtype;
383 unsigned char tc_failure_code[2];
384 unsigned char telecommand_pkt_id[2];
385 unsigned char pkt_seq_control[2];
386 unsigned char tc_service;
387 unsigned char tc_subtype;
370 388 };
371 389 typedef struct Packet_TM_LFR_TC_EXE_ERROR_str Packet_TM_LFR_TC_EXE_ERROR_t;
372 390
373 391 struct Packet_TM_LFR_TC_EXE_CORRUPTED_str
374 392 {
375 volatile unsigned char targetLogicalAddress;
376 volatile unsigned char protocolIdentifier;
377 volatile unsigned char reserved;
378 volatile unsigned char userApplication;
393 unsigned char targetLogicalAddress;
394 unsigned char protocolIdentifier;
395 unsigned char reserved;
396 unsigned char userApplication;
379 397 // PACKET HEADER
380 volatile unsigned char packetID[2];
381 volatile unsigned char packetSequenceControl[2];
382 volatile unsigned char packetLength[2];
398 unsigned char packetID[2];
399 unsigned char packetSequenceControl[2];
400 unsigned char packetLength[2];
383 401 // DATA FIELD HEADER
384 volatile unsigned char spare1_pusVersion_spare2;
385 volatile unsigned char serviceType;
386 volatile unsigned char serviceSubType;
387 volatile unsigned char destinationID;
388 volatile unsigned char time[6];
402 unsigned char spare1_pusVersion_spare2;
403 unsigned char serviceType;
404 unsigned char serviceSubType;
405 unsigned char destinationID;
406 unsigned char time[6];
389 407 //
390 volatile unsigned char tc_failure_code[2];
391 volatile unsigned char telecommand_pkt_id[2];
392 volatile unsigned char pkt_seq_control[2];
393 volatile unsigned char tc_service;
394 volatile unsigned char tc_subtype;
395 volatile unsigned char pkt_len_rcv_value[2];
396 volatile unsigned char pkt_datafieldsize_cnt[2];
397 volatile unsigned char rcv_crc[2];
398 volatile unsigned char computed_crc[2];
408 unsigned char tc_failure_code[2];
409 unsigned char telecommand_pkt_id[2];
410 unsigned char pkt_seq_control[2];
411 unsigned char tc_service;
412 unsigned char tc_subtype;
413 unsigned char pkt_len_rcv_value[2];
414 unsigned char pkt_datafieldsize_cnt[2];
415 unsigned char rcv_crc[2];
416 unsigned char computed_crc[2];
399 417 };
400 418 typedef struct Packet_TM_LFR_TC_EXE_CORRUPTED_str Packet_TM_LFR_TC_EXE_CORRUPTED_t;
401 419
402 420 struct Header_TM_LFR_SCIENCE_SWF_str
403 421 {
404 volatile unsigned char targetLogicalAddress;
405 volatile unsigned char protocolIdentifier;
406 volatile unsigned char reserved;
407 volatile unsigned char userApplication;
408 volatile unsigned char packetID[2];
409 volatile unsigned char packetSequenceControl[2];
410 volatile unsigned char packetLength[2];
422 unsigned char targetLogicalAddress;
423 unsigned char protocolIdentifier;
424 unsigned char reserved;
425 unsigned char userApplication;
426 unsigned char packetID[2];
427 unsigned char packetSequenceControl[2];
428 unsigned char packetLength[2];
411 429 // DATA FIELD HEADER
412 volatile unsigned char spare1_pusVersion_spare2;
413 volatile unsigned char serviceType;
414 volatile unsigned char serviceSubType;
415 volatile unsigned char destinationID;
416 volatile unsigned char time[6];
430 unsigned char spare1_pusVersion_spare2;
431 unsigned char serviceType;
432 unsigned char serviceSubType;
433 unsigned char destinationID;
434 unsigned char time[6];
417 435 // AUXILIARY HEADER
418 volatile unsigned char sid;
419 volatile unsigned char hkBIA;
420 volatile unsigned char pktCnt;
421 volatile unsigned char pktNr;
422 volatile unsigned char acquisitionTime[6];
423 volatile unsigned char blkNr[2];
436 unsigned char sid;
437 unsigned char hkBIA;
438 unsigned char pktCnt;
439 unsigned char pktNr;
440 unsigned char acquisitionTime[6];
441 unsigned char blkNr[2];
424 442 };
425 443 typedef struct Header_TM_LFR_SCIENCE_SWF_str Header_TM_LFR_SCIENCE_SWF_t;
426 444
427 445 struct Header_TM_LFR_SCIENCE_CWF_str
428 446 {
429 volatile unsigned char targetLogicalAddress;
430 volatile unsigned char protocolIdentifier;
431 volatile unsigned char reserved;
432 volatile unsigned char userApplication;
433 volatile unsigned char packetID[2];
434 volatile unsigned char packetSequenceControl[2];
435 volatile unsigned char packetLength[2];
447 unsigned char targetLogicalAddress;
448 unsigned char protocolIdentifier;
449 unsigned char reserved;
450 unsigned char userApplication;
451 unsigned char packetID[2];
452 unsigned char packetSequenceControl[2];
453 unsigned char packetLength[2];
436 454 // DATA FIELD HEADER
437 volatile unsigned char spare1_pusVersion_spare2;
438 volatile unsigned char serviceType;
439 volatile unsigned char serviceSubType;
440 volatile unsigned char destinationID;
441 volatile unsigned char time[6];
455 unsigned char spare1_pusVersion_spare2;
456 unsigned char serviceType;
457 unsigned char serviceSubType;
458 unsigned char destinationID;
459 unsigned char time[6];
442 460 // AUXILIARY DATA HEADER
443 volatile unsigned char sid;
444 volatile unsigned char hkBIA;
445 volatile unsigned char acquisitionTime[6];
446 volatile unsigned char blkNr[2];
461 unsigned char sid;
462 unsigned char hkBIA;
463 unsigned char acquisitionTime[6];
464 unsigned char blkNr[2];
447 465 };
448 466 typedef struct Header_TM_LFR_SCIENCE_CWF_str Header_TM_LFR_SCIENCE_CWF_t;
449 467
450 468 struct Header_TM_LFR_SCIENCE_ASM_str
451 469 {
452 volatile unsigned char targetLogicalAddress;
453 volatile unsigned char protocolIdentifier;
454 volatile unsigned char reserved;
455 volatile unsigned char userApplication;
456 volatile unsigned char packetID[2];
457 volatile unsigned char packetSequenceControl[2];
458 volatile unsigned char packetLength[2];
470 unsigned char targetLogicalAddress;
471 unsigned char protocolIdentifier;
472 unsigned char reserved;
473 unsigned char userApplication;
474 unsigned char packetID[2];
475 unsigned char packetSequenceControl[2];
476 unsigned char packetLength[2];
459 477 // DATA FIELD HEADER
460 volatile unsigned char spare1_pusVersion_spare2;
461 volatile unsigned char serviceType;
462 volatile unsigned char serviceSubType;
463 volatile unsigned char destinationID;
464 volatile unsigned char time[6];
478 unsigned char spare1_pusVersion_spare2;
479 unsigned char serviceType;
480 unsigned char serviceSubType;
481 unsigned char destinationID;
482 unsigned char time[6];
465 483 // AUXILIARY HEADER
466 volatile unsigned char sid;
467 volatile unsigned char biaStatusInfo;
468 volatile unsigned char cntASM;
469 volatile unsigned char nrASM;
470 volatile unsigned char acquisitionTime[6];
471 volatile unsigned char blkNr[2];
484 unsigned char sid;
485 unsigned char biaStatusInfo;
486 unsigned char cntASM;
487 unsigned char nrASM;
488 unsigned char acquisitionTime[6];
489 unsigned char blkNr[2];
472 490 };
473 491 typedef struct Header_TM_LFR_SCIENCE_ASM_str Header_TM_LFR_SCIENCE_ASM_t;
474 492
475 493 struct ccsdsTelecommandPacket_str
476 494 {
477 495 //unsigned char targetLogicalAddress; // removed by the grspw module
478 volatile unsigned char protocolIdentifier;
479 volatile unsigned char reserved;
480 volatile unsigned char userApplication;
481 volatile unsigned char packetID[2];
482 volatile unsigned char packetSequenceControl[2];
483 volatile unsigned char packetLength[2];
496 unsigned char protocolIdentifier;
497 unsigned char reserved;
498 unsigned char userApplication;
499 unsigned char packetID[2];
500 unsigned char packetSequenceControl[2];
501 unsigned char packetLength[2];
484 502 // DATA FIELD HEADER
485 volatile unsigned char headerFlag_pusVersion_Ack;
486 volatile unsigned char serviceType;
487 volatile unsigned char serviceSubType;
488 volatile unsigned char sourceID;
489 volatile unsigned char dataAndCRC[CCSDS_TC_PKT_MAX_SIZE-10];
503 unsigned char headerFlag_pusVersion_Ack;
504 unsigned char serviceType;
505 unsigned char serviceSubType;
506 unsigned char sourceID;
507 unsigned char dataAndCRC[CCSDS_TC_PKT_MAX_SIZE-10];
490 508 };
491 509 typedef struct ccsdsTelecommandPacket_str ccsdsTelecommandPacket_t;
492 510
493 511 struct Packet_TM_LFR_HK_str
494 512 {
495 volatile unsigned char targetLogicalAddress;
496 volatile unsigned char protocolIdentifier;
497 volatile unsigned char reserved;
498 volatile unsigned char userApplication;
499 volatile unsigned char packetID[2];
500 volatile unsigned char packetSequenceControl[2];
501 volatile unsigned char packetLength[2];
502 volatile unsigned char spare1_pusVersion_spare2;
503 volatile unsigned char serviceType;
504 volatile unsigned char serviceSubType;
505 volatile unsigned char destinationID;
506 volatile unsigned char time[6];
507 volatile unsigned char sid;
513 unsigned char targetLogicalAddress;
514 unsigned char protocolIdentifier;
515 unsigned char reserved;
516 unsigned char userApplication;
517 unsigned char packetID[2];
518 unsigned char packetSequenceControl[2];
519 unsigned char packetLength[2];
520 unsigned char spare1_pusVersion_spare2;
521 unsigned char serviceType;
522 unsigned char serviceSubType;
523 unsigned char destinationID;
524 unsigned char time[6];
525 unsigned char sid;
508 526
509 527 //**************
510 528 // HK PARAMETERS
511 529 unsigned char lfr_status_word[2];
512 530 unsigned char lfr_sw_version[4];
513 531 // tc statistics
514 532 unsigned char hk_lfr_update_info_tc_cnt[2];
515 533 unsigned char hk_lfr_update_time_tc_cnt[2];
516 534 unsigned char hk_dpu_exe_tc_lfr_cnt[2];
517 535 unsigned char hk_dpu_rej_tc_lfr_cnt[2];
518 536 unsigned char hk_lfr_last_exe_tc_id[2];
519 537 unsigned char hk_lfr_last_exe_tc_type[2];
520 538 unsigned char hk_lfr_last_exe_tc_subtype[2];
521 539 unsigned char hk_lfr_last_exe_tc_time[6];
522 540 unsigned char hk_lfr_last_rej_tc_id[2];
523 541 unsigned char hk_lfr_last_rej_tc_type[2];
524 542 unsigned char hk_lfr_last_rej_tc_subtype[2];
525 543 unsigned char hk_lfr_last_rej_tc_time[6];
526 544 // anomaly statistics
527 545 unsigned char hk_lfr_le_cnt[2];
528 546 unsigned char hk_lfr_me_cnt[2];
529 547 unsigned char hk_lfr_he_cnt[2];
530 548 unsigned char hk_lfr_last_er_rid[2];
531 549 unsigned char hk_lfr_last_er_code;
532 550 unsigned char hk_lfr_last_er_time[6];
533 551 // vhdl_blk_status
534 552 unsigned char hk_lfr_vhdl_aa_sm;
535 553 unsigned char hk_lfr_vhdl_fft_sr;
536 554 unsigned char hk_lfr_vhdl_cic_hk;
537 555 unsigned char hk_lfr_vhdl_iir_cal;
538 556 // spacewire_if_statistics
539 557 unsigned char hk_lfr_dpu_spw_pkt_rcv_cnt[2];
540 558 unsigned char hk_lfr_dpu_spw_pkt_sent_cnt[2];
541 559 unsigned char hk_lfr_dpu_spw_tick_out_cnt;
542 unsigned char hk_lfr_dpu_spw_last_timc;
560 unsigned char hk_lfr_dpu_spw_last_time;
543 561 // ahb error statistics
544 562 unsigned int hk_lfr_last_fail_addr;
545 563 // temperatures
546 564 unsigned char hk_lfr_temp_scm[2];
547 565 unsigned char hk_lfr_temp_pcb[2];
548 566 unsigned char hk_lfr_temp_fpga[2];
549 567 // error counters
550 568 unsigned char hk_lfr_dpu_spw_parity;
551 569 unsigned char hk_lfr_dpu_spw_disconnect;
552 570 unsigned char hk_lfr_dpu_spw_escape;
553 571 unsigned char hk_lfr_dpu_spw_credit;
554 572 unsigned char hk_lfr_dpu_spw_write_sync;
555 573 unsigned char hk_lfr_dpu_spw_rx_ahb;
556 574 unsigned char hk_lfr_dpu_spw_tx_ahb;
557 575 unsigned char hk_lfr_dpu_spw_header_crc;
558 576 unsigned char hk_lfr_dpu_spw_data_crc;
559 577 unsigned char hk_lfr_dpu_spw_early_eop;
560 578 unsigned char hk_lfr_dpu_spw_invalid_addr;
561 579 unsigned char hk_lfr_dpu_spw_eep;
562 580 unsigned char hk_lfr_dpu_spw_rx_too_big;
563 581 // timecode
564 582 unsigned char hk_lfr_timecode_erroneous;
565 583 unsigned char hk_lfr_timecode_missing;
566 584 unsigned char hk_lfr_timecode_invalid;
567 585 // time
568 586 unsigned char hk_lfr_time_timecode_it;
569 587 unsigned char hk_lfr_time_not_synchro;
570 588 unsigned char hk_lfr_time_timecode_ctr;
571 589 // hk_lfr_buffer_dpu_
572 590 unsigned char hk_lfr_buffer_dpu_tc_fifo;
573 591 unsigned char hk_lfr_buffer_dpu_tm_fifo;
574 592 // hk_lfr_ahb_
575 593 unsigned char hk_lfr_ahb_correctable;
576 594 unsigned char hk_lfr_ahb_uncorrectable;
577 595 unsigned char hk_lfr_ahb_fails_trans;
578 596 // hk_lfr_adc_
579 597 unsigned char hk_lfr_adc_failure;
580 598 unsigned char hk_lfr_adc_timeout;
581 599 unsigned char hk_lfr_toomany_err;
582 600 // hk_lfr_cpu_
583 601 unsigned char hk_lfr_cpu_write_err;
584 602 unsigned char hk_lfr_cpu_ins_access_err;
585 603 unsigned char hk_lfr_cpu_illegal_ins;
586 604 unsigned char hk_lfr_cpu_privilegied_ins;
587 605 unsigned char hk_lfr_cpu_register_hw;
588 606 unsigned char hk_lfr_cpu_not_aligned;
589 607 unsigned char hk_lfr_cpu_data_exception;
590 608 unsigned char hk_lfr_cpu_div_exception;
591 609 unsigned char hk_lfr_cpu_arith_overflow;
592 610 };
593 611 typedef struct Packet_TM_LFR_HK_str Packet_TM_LFR_HK_t;
594 612
595 613 struct Packet_TM_LFR_PARAMETER_DUMP_str
596 614 {
597 volatile unsigned char targetLogicalAddress;
598 volatile unsigned char protocolIdentifier;
599 volatile unsigned char reserved;
600 volatile unsigned char userApplication;
601 volatile unsigned char packetID[2];
602 volatile unsigned char packetSequenceControl[2];
603 volatile unsigned char packetLength[2];
615 unsigned char targetLogicalAddress;
616 unsigned char protocolIdentifier;
617 unsigned char reserved;
618 unsigned char userApplication;
619 unsigned char packetID[2];
620 unsigned char packetSequenceControl[2];
621 unsigned char packetLength[2];
604 622 // DATA FIELD HEADER
605 volatile unsigned char spare1_pusVersion_spare2;
606 volatile unsigned char serviceType;
607 volatile unsigned char serviceSubType;
608 volatile unsigned char destinationID;
609 volatile unsigned char time[6];
610 volatile unsigned char sid;
623 unsigned char spare1_pusVersion_spare2;
624 unsigned char serviceType;
625 unsigned char serviceSubType;
626 unsigned char destinationID;
627 unsigned char time[6];
628 unsigned char sid;
611 629
612 630 //******************
613 631 // COMMON PARAMETERS
614 volatile unsigned char unused0;
615 volatile unsigned char bw_sp0_sp1_r0_r1;
632 unsigned char unused0;
633 unsigned char bw_sp0_sp1_r0_r1;
616 634
617 635 //******************
618 636 // NORMAL PARAMETERS
619 volatile unsigned char sy_lfr_n_swf_l[2];
620 volatile unsigned char sy_lfr_n_swf_p[2];
621 volatile unsigned char sy_lfr_n_asm_p[2];
622 volatile unsigned char sy_lfr_n_bp_p0;
623 volatile unsigned char sy_lfr_n_bp_p1;
637 unsigned char sy_lfr_n_swf_l[2];
638 unsigned char sy_lfr_n_swf_p[2];
639 unsigned char sy_lfr_n_asm_p[2];
640 unsigned char sy_lfr_n_bp_p0;
641 unsigned char sy_lfr_n_bp_p1;
624 642
625 643 //*****************
626 644 // BURST PARAMETERS
627 volatile unsigned char sy_lfr_b_bp_p0;
628 volatile unsigned char sy_lfr_b_bp_p1;
645 unsigned char sy_lfr_b_bp_p0;
646 unsigned char sy_lfr_b_bp_p1;
629 647
630 648 //****************
631 649 // SBM1 PARAMETERS
632 volatile unsigned char sy_lfr_s1_bp_p0;
633 volatile unsigned char sy_lfr_s1_bp_p1;
650 unsigned char sy_lfr_s1_bp_p0;
651 unsigned char sy_lfr_s1_bp_p1;
634 652
635 653 //****************
636 654 // SBM2 PARAMETERS
637 volatile unsigned char sy_lfr_s2_bp_p0;
638 volatile unsigned char sy_lfr_s2_bp_p1;
655 unsigned char sy_lfr_s2_bp_p0;
656 unsigned char sy_lfr_s2_bp_p1;
639 657 };
640 658 typedef struct Packet_TM_LFR_PARAMETER_DUMP_str Packet_TM_LFR_PARAMETER_DUMP_t;
641 659
642 660
643 661 #endif // CCSDS_TYPES_H_INCLUDED
@@ -1,48 +1,52
1 1 #ifndef FSW_INIT_H_INCLUDED
2 2 #define FSW_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 9 #include "fsw_processing.h"
10 10 #include "tc_handler.h"
11 11 #include "wf_handler.h"
12 12
13 13 #include "fsw_spacewire.h"
14 14
15 15 extern rtems_name misc_name[5];
16 16 extern rtems_id misc_id[5];
17 17 extern rtems_name Task_name[20]; /* array of task names */
18 18 extern rtems_id Task_id[20]; /* array of task ids */
19 19 extern unsigned int maxCount;
20 20 extern int fdSPW; // grspw file descriptor
21 21 extern int fdUART; // uart file descriptor
22 22 extern unsigned char lfrCurrentMode;
23 23
24 24 // MODE PARAMETERS
25 25 extern struct param_local_str param_local;
26 26 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
27 extern unsigned short sequenceCounters[SEQ_CNT_NB_PID][SEQ_CNT_NB_CAT][SEQ_CNT_NB_DEST_ID];
27 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
28 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
29 extern unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
28 30
29 31 // RTEMS TASKS
30 32 rtems_task Init( rtems_task_argument argument);
31 33
32 34 // OTHER functions
33 35 void create_names( void );
34 rtems_status_code create_message_queues( void );
35 36 int create_all_tasks( void );
36 37 int start_all_tasks( void );
38 //
39 rtems_status_code create_message_queues( void );
40 //
37 41 int start_recv_send_tasks( void );
38 42 //
39 43 void init_local_mode_parameters( void );
40 44
41 45 extern int rtems_cpu_usage_report( void );
42 46 extern int rtems_cpu_usage_reset( void );
43 47 extern void rtems_stack_checker_report_usage( void );
44 48
45 49 extern int sched_yield( void );
46 50 extern int errno;
47 51
48 52 #endif // FSW_INIT_H_INCLUDED
@@ -1,35 +1,37
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7
8 8 #include "fsw_params.h"
9 9 #include "fsw_spacewire.h"
10 10
11 11 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
12 12 rtems_id HK_id; // id of the HK rate monotonic period
13 13
14 14 extern rtems_name misc_name[5];
15 15 time_management_regs_t *time_management_regs;
16 16 extern Packet_TM_LFR_HK_t housekeeping_packet;
17 17
18 18 int configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
19 19 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
20 20 int timer_start( gptimer_regs_t *gptimer_regs, unsigned char timer );
21 21 int timer_stop( gptimer_regs_t *gptimer_regs, unsigned char timer );
22 22 int timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider);
23 23
24 24 // SERIAL LINK
25 25 int send_console_outputs_on_apbuart_port( void );
26 26 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
27 27
28 28 // RTEMS TASKS
29 29 rtems_task stat_task( rtems_task_argument argument );
30 30 rtems_task hous_task( rtems_task_argument argument );
31 31 rtems_task dumb_task( rtems_task_argument unused );
32 32
33 33 void init_housekeeping_parameters( void );
34 34
35 void increment_seq_counter( unsigned char *packet_sequence_control);
36
35 37 #endif // FSW_MISC_H_INCLUDED
@@ -1,235 +1,211
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "tm_byte_positions.h"
7 7 #include "ccsds_types.h"
8 8
9 9 #define GRSPW_DEVICE_NAME "/dev/grspw0"
10 10 #define UART_DEVICE_NAME "/dev/console"
11 11
12 12 //************************
13 13 // flight software version
14 14 // this parameters is handled by the Qt project options
15 15
16 16 //**********
17 17 // LFR MODES
18 18 #define LFR_MODE_STANDBY 0
19 19 #define LFR_MODE_NORMAL 1
20 20 #define LFR_MODE_BURST 2
21 21 #define LFR_MODE_SBM1 3
22 22 #define LFR_MODE_SBM2 4
23 23 #define LFR_MODE_NORMAL_CWF_F3 5
24 24
25 25 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
26 26 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
27 27 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
28 28 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
29 29 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
30 30 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
31 31
32 32 //****************************
33 33 // LFR DEFAULT MODE PARAMETERS
34 34 // COMMON
35 35 #define DEFAULT_SY_LFR_COMMON0 0x00
36 36 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
37 37 // NORM
38 38 #define SY_LFR_N_SWF_L 2048 // nb sample
39 39 #define SY_LFR_N_SWF_P 300 // sec
40 40 #define SY_LFR_N_ASM_P 3600 // sec
41 41 #define SY_LFR_N_BP_P0 4 // sec
42 42 #define SY_LFR_N_BP_P1 20 // sec
43 43 #define MIN_DELTA_SNAPSHOT 16 // sec
44 44 // BURST
45 45 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
46 46 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
47 47 // SBM1
48 48 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
49 49 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
50 50 // SBM2
51 51 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
52 52 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
53 53 // ADDITIONAL PARAMETERS
54 54 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
55 55 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
56 56 // STATUS WORD
57 57 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
58 58 #define DEFAULT_STATUS_WORD_BYTE1 0x00
59 59 //
60 60 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
61 61 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
62 62 //****************************
63 63
64 64 //*****************************
65 65 // APB REGISTERS BASE ADDRESSES
66 66 #define REGS_ADDR_APBUART 0x80000100
67 67 #define REGS_ADDR_GPTIMER 0x80000300
68 68 #define REGS_ADDR_GRSPW 0x80000500
69 69 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
70 70 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
71 71
72 72 #ifdef GSA
73 73 #else
74 74 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
75 75 #endif
76 76
77 77 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
78 78 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
79 79
80 80 //**********
81 81 // IRQ LINES
82 82 #define IRQ_SM 9
83 83 #define IRQ_SPARC_SM 0x19 // see sparcv8.pdf p.76 for interrupt levels
84 84 #define IRQ_WF 10
85 85 #define IRQ_SPARC_WF 0x1a // see sparcv8.pdf p.76 for interrupt levels
86 86 #define IRQ_TIME1 12
87 87 #define IRQ_SPARC_TIME1 0x1c // see sparcv8.pdf p.76 for interrupt levels
88 88 #define IRQ_TIME2 13
89 89 #define IRQ_SPARC_TIME2 0x1d // see sparcv8.pdf p.76 for interrupt levels
90 90 #define IRQ_WAVEFORM_PICKER 14
91 91 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
92 92 #define IRQ_SPECTRAL_MATRIX 6
93 93 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
94 94
95 95 //*****
96 96 // TIME
97 97 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
98 98 #define CLKDIV_WF_SIMULATOR (10000000 - 1) // 10 000 000 * 1 us = 10 s
99 99 #define TIMER_SM_SIMULATOR 1
100 100 #define TIMER_WF_SIMULATOR 2
101 101 #define HK_PERIOD 100 // 100 * 10ms => 1sec
102 102
103 103 //**********
104 104 // LPP CODES
105 105 #define LFR_SUCCESSFUL 0
106 106 #define LFR_DEFAULT 1
107 107
108 108 //******
109 109 // RTEMS
110 110 #define TASKID_RECV 1
111 111 #define TASKID_ACTN 2
112 112 #define TASKID_SPIQ 3
113 113 #define TASKID_SMIQ 4
114 114 #define TASKID_STAT 5
115 115 #define TASKID_AVF0 6
116 116 #define TASKID_BPF0 7
117 117 #define TASKID_WFRM 8
118 118 #define TASKID_DUMB 9
119 119 #define TASKID_HOUS 10
120 120 #define TASKID_MATR 11
121 121 #define TASKID_CWF3 12
122 122 #define TASKID_CWF2 13
123 123 #define TASKID_CWF1 14
124 124 #define TASKID_SEND 15
125 125 #define TASKID_WTDG 16
126 126
127 127 #define TASK_PRIORITY_SPIQ 5
128 128 #define TASK_PRIORITY_SMIQ 10
129 129 //
130 130 #define TASK_PRIORITY_WTDG 20
131 131 //
132 132 #define TASK_PRIORITY_HOUS 30
133 133 //
134 134 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
135 135 #define TASK_PRIORITY_CWF2 35 //
136 136 //
137 137 #define TASK_PRIORITY_WFRM 40
138 138 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
139 139 //
140 140 #define TASK_PRIORITY_SEND 45
141 141 //
142 142 #define TASK_PRIORITY_RECV 50
143 143 #define TASK_PRIORITY_ACTN 50
144 144 //
145 145 #define TASK_PRIORITY_AVF0 60
146 146 #define TASK_PRIORITY_BPF0 60
147 147 #define TASK_PRIORITY_MATR 100
148 148 #define TASK_PRIORITY_STAT 200
149 149 #define TASK_PRIORITY_DUMB 200
150 150
151 #define SEMQ_PRIORITY_CEILING 30
152
151 153 #define ACTION_MSG_QUEUE_COUNT 10
152 154 #define ACTION_MSG_PKTS_COUNT 50
153 155 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
154 156 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
155 157
156 158 #define QUEUE_RECV 0
157 159 #define QUEUE_SEND 1
158 160
159 161 //*******
160 162 // MACROS
161 163 #ifdef PRINT_MESSAGES_ON_CONSOLE
162 164 #define PRINTF(x) printf(x);
163 165 #define PRINTF1(x,y) printf(x,y);
164 166 #define PRINTF2(x,y,z) printf(x,y,z);
165 167 #else
166 168 #define PRINTF(x) ;
167 169 #define PRINTF1(x,y) ;
168 170 #define PRINTF2(x,y,z) ;
169 171 #endif
170 172
171 173 #ifdef BOOT_MESSAGES
172 174 #define BOOT_PRINTF(x) printf(x);
173 175 #define BOOT_PRINTF1(x,y) printf(x,y);
174 176 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
175 177 #else
176 178 #define BOOT_PRINTF(x) ;
177 179 #define BOOT_PRINTF1(x,y) ;
178 180 #define BOOT_PRINTF2(x,y,z) ;
179 181 #endif
180 182
181 183 #ifdef DEBUG_MESSAGES
182 184 #define DEBUG_PRINTF(x) printf(x);
183 185 #define DEBUG_PRINTF1(x,y) printf(x,y);
184 186 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
185 187 #else
186 188 #define DEBUG_PRINTF(x) ;
187 189 #define DEBUG_PRINTF1(x,y) ;
188 190 #define DEBUG_PRINTF2(x,y,z) ;
189 191 #endif
190 192
191 193 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
192 194
193 195 #define NB_SAMPLES_PER_SNAPSHOT 2048
194 196 #define TIME_OFFSET 2
195 197 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
196 198 #define NB_BYTES_SWF_BLK (2 * 6)
197 199 #define NB_WORDS_SWF_BLK 3
198 200 #define NB_BYTES_CWF3_LIGHT_BLK 6
199 201 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
200 202
201 //******************
202 // SEQUENCE COUNTERS
203 #define SEQ_CNT_NB_PID 2
204 #define SEQ_CNT_NB_CAT 4
205 #define SEQ_CNT_NB_DEST_ID 11
206 // pid
207 #define SEQ_CNT_PID_76 0
208 #define SEQ_CNT_PID_79 1
209 //cat
210 #define SEQ_CNT_CAT_1 0
211 #define SEQ_CNT_CAT_4 1
212 #define SEQ_CNT_CAT_9 2
213 #define SEQ_CNT_CAT_12 3
214 // destination id
215 #define SEQ_CNT_DST_ID_GROUND 0
216 #define SEQ_CNT_DST_ID_MISSION_TIMELINE 1
217 #define SEQ_CNT_DST_ID_TC_SEQUENCES 2
218 #define SEQ_CNT_DST_ID_RECOVERY_ACTION_CMD 3
219 #define SEQ_CNT_DST_ID_BACKUP_MISSION_TIMELINE 4
220 #define SEQ_CNT_DST_ID_DIRECT_CMD 5
221 #define SEQ_CNT_DST_ID_SPARE_GRD_SRC1 6
222 #define SEQ_CNT_DST_ID_SPARE_GRD_SRC2 7
223 #define SEQ_CNT_DST_ID_OBCP 8
224 #define SEQ_CNT_DST_ID_SYSTEM_CONTROL 9
225 #define SEQ_CNT_DST_ID_AOCS 10
226
227 203 struct param_local_str{
228 204 unsigned int local_sbm1_nb_cwf_sent;
229 205 unsigned int local_sbm1_nb_cwf_max;
230 206 unsigned int local_sbm2_nb_cwf_sent;
231 207 unsigned int local_sbm2_nb_cwf_max;
232 208 unsigned int local_nb_interrupt_f0_MAX;
233 209 };
234 210
235 211 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,65 +1,67
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 #include <math.h>
9 10
10 11 #include "fsw_params.h"
12 #include "fsw_spacewire.h"
11 13
12 14
13 15 extern volatile int spec_mat_f0_0[ ];
14 16 extern volatile int spec_mat_f0_1[ ];
15 17 extern volatile int spec_mat_f0_a[ ];
16 18 extern volatile int spec_mat_f0_b[ ];
17 19 extern volatile int spec_mat_f0_c[ ];
18 20 extern volatile int spec_mat_f0_d[ ];
19 21 extern volatile int spec_mat_f0_e[ ];
20 22 extern volatile int spec_mat_f0_f[ ];
21 23 extern volatile int spec_mat_f0_g[ ];
22 24 extern volatile int spec_mat_f0_h[ ];
23 25
24 26 extern volatile int spec_mat_f1[ ];
25 27 extern volatile int spec_mat_f2[ ];
26 28
27 29 extern volatile int spec_mat_f1_bis[ ];
28 30 extern volatile int spec_mat_f2_bis[ ];
29 31 extern volatile int spec_mat_f0_0_bis[ ];
30 32 extern volatile int spec_mat_f0_1_bis[ ];
31 33
32 34 // parameters
33 35 extern struct param_local_str param_local;
34 36
35 37 // registers
36 38 extern time_management_regs_t *time_management_regs;
37 39 extern spectral_matrix_regs_t *spectral_matrix_regs;
38 40
39 41 extern rtems_name misc_name[5];
40 42 extern rtems_id Task_id[20]; /* array of task ids */
41 43
42 44 // ISR
43 45 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
44 46 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
45 47
46 48 // RTEMS TASKS
47 49 rtems_task spw_bppr_task(rtems_task_argument argument);
48 50 rtems_task avf0_task(rtems_task_argument argument);
49 51 rtems_task bpf0_task(rtems_task_argument argument);
50 52 rtems_task smiq_task(rtems_task_argument argument); // added to test the spectral matrix simulator
51 53 rtems_task matr_task(rtems_task_argument argument);
52 54
53 55 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat);
54 56 void matrix_reset(volatile float *averaged_spec_mat);
55 57 void BP1_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1);
56 58 void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat);
57 59 //
58 60 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header);
59 61 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
60 62 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
61 63 void convert_averaged_spectral_matrix(volatile float *input_matrix, char *output_matrix);
62 64 void fill_averaged_spectral_matrix( void );
63 65 void reset_spectral_matrix_regs();
64 66
65 67 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,31 +1,32
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 #include "fsw_misc.h"
10 11
11 12 extern int fdSPW;
12 13 extern unsigned char lfrCurrentMode;
13 14 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
14 15 extern Packet_TM_LFR_HK_t housekeeping_packet;
15 16
16 17 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
17 18 int action_load_normal_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
18 19 int action_load_burst_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
19 20 int action_load_sbm1_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
20 21 int action_load_sbm2_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
21 22 int action_dump_par(rtems_id queue_id );
22 23
23 24 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
24 25 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
25 26 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
26 27 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
27 28 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
28 29
29 30 void init_parameter_dump( void );
30 31
31 32 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,24 +1,28
1 1 #ifndef TM_LFR_TC_EXE_H_INCLUDED
2 2 #define TM_LFR_TC_EXE_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 #include "fsw_spacewire.h"
8 9
9 10 extern time_management_regs_t *time_management_regs;
10 11 extern Packet_TM_LFR_HK_t housekeeping_packet;
12 extern unsigned short sequenceCounters_TC_EXE[];
11 13
12 14 int send_tm_lfr_tc_exe_success(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
13 15 int send_tm_lfr_tc_exe_inconsistent(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
14 16 unsigned char byte_position, unsigned char rcv_value);
15 17 int send_tm_lfr_tc_exe_not_executable(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
16 18 int send_tm_lfr_tc_exe_not_implemented(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
17 19 int send_tm_lfr_tc_exe_error(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
18 20 int send_tm_lfr_tc_exe_corrupted(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
19 21 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV);
20 22
23 void increment_seq_counter_destination_id( unsigned char *packet_sequence_control, unsigned char destination_id );
24
21 25 #endif // TM_LFR_TC_EXE_H_INCLUDED
22 26
23 27
24 28
@@ -1,81 +1,88
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 #include "fsw_spacewire.h"
11 #include "fsw_misc.h"
10 12
11 13 #define pi 3.1415
12 14
13 15 extern int fdSPW;
14 16 extern volatile int wf_snap_f0[ ];
15 17 //
16 18 extern volatile int wf_snap_f1[ ];
17 19 extern volatile int wf_snap_f1_bis[ ];
18 20 extern volatile int wf_snap_f1_norm[ ];
19 21 //
20 22 extern volatile int wf_snap_f2[ ];
21 23 extern volatile int wf_snap_f2_bis[ ];
22 24 extern volatile int wf_snap_f2_norm[ ];
23 25 //
24 26 extern volatile int wf_cont_f3[ ];
25 27 extern volatile int wf_cont_f3_bis[ ];
26 28 extern char wf_cont_f3_light[ ];
27 29 extern waveform_picker_regs_t *waveform_picker_regs;
28 30 extern waveform_picker_regs_t_alt *waveform_picker_regs_alt;
29 31 extern time_management_regs_t *time_management_regs;
30 32 extern Packet_TM_LFR_HK_t housekeeping_packet;
31 33 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
32 34 extern struct param_local_str param_local;
33 35
36 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
37 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
38
34 39 extern rtems_name misc_name[5];
35 40 extern rtems_name Task_name[20]; /* array of task ids */
36 41 extern rtems_id Task_id[20]; /* array of task ids */
37 42
38 43 extern unsigned char lfrCurrentMode;
39 44
40 45 rtems_isr waveforms_isr( rtems_vector_number vector );
41 46 rtems_isr waveforms_simulator_isr( rtems_vector_number vector );
42 47 rtems_task wfrm_task( rtems_task_argument argument );
43 48 rtems_task cwf3_task( rtems_task_argument argument );
44 49 rtems_task cwf2_task( rtems_task_argument argument );
45 50 rtems_task cwf1_task( rtems_task_argument argument );
46 51
47 52 //******************
48 53 // general functions
49 54 void init_waveforms( void );
50 55 //
51 56 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
52 57 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
53 58 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
54 59 //
55 60 void reset_waveforms( void );
56 61 //
57 62 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
58 63 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
59 64 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
60 65 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
61 66 //
62 67 rtems_id get_pkts_queue_id( void );
63 68
64 69 //**************
65 70 // wfp registers
66 71 void set_wfp_data_shaping();
67 72 char set_wfp_delta_snapshot();
68 73 void set_wfp_burst_enable_register( unsigned char mode);
69 74 void reset_wfp_burst_enable();
70 75 void reset_wfp_status();
71 76 void reset_waveform_picker_regs();
72 77
73 78 //*****************
74 79 // local parameters
75 80 void set_local_sbm1_nb_cwf_max();
76 81 void set_local_sbm2_nb_cwf_max();
77 82 void set_local_nb_interrupt_f0_MAX();
78 83 void reset_local_sbm1_nb_cwf_sent();
79 84 void reset_local_sbm2_nb_cwf_sent();
80 85
86 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
87
81 88 #endif // WF_HANDLER_H_INCLUDED
@@ -1,90 +1,92
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23
24 24 // RTEMS GLOBAL VARIABLES
25 25 rtems_name misc_name[5];
26 26 rtems_id misc_id[5];
27 27 rtems_name Task_name[20]; /* array of task names */
28 28 rtems_id Task_id[20]; /* array of task ids */
29 29 unsigned int maxCount;
30 30 int fdSPW = 0;
31 31 int fdUART = 0;
32 32 unsigned char lfrCurrentMode;
33 33
34 34 // APB CONFIGURATION REGISTERS
35 35 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
36 36 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
37 37 #ifdef GSA
38 38 #else
39 39 waveform_picker_regs_t *waveform_picker_regs = (waveform_picker_regs_t*) REGS_ADDR_WAVEFORM_PICKER;
40 40 waveform_picker_regs_t_alt *waveform_picker_regs_alt = (waveform_picker_regs_t_alt*) REGS_ADDR_WAVEFORM_PICKER;
41 41 #endif
42 42 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
43 43
44 44 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes
45 45 volatile int wf_snap_f0[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
46 46 //
47 47 volatile int wf_snap_f1[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
48 48 volatile int wf_snap_f1_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
49 49 volatile int wf_snap_f1_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
50 50 //
51 51 volatile int wf_snap_f2[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
52 52 volatile int wf_snap_f2_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
53 53 volatile int wf_snap_f2_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
54 54 //
55 55 volatile int wf_cont_f3[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
56 56 volatile int wf_cont_f3_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
57 57 char wf_cont_f3_light[ NB_SAMPLES_PER_SNAPSHOT * NB_BYTES_CWF3_LIGHT_BLK ];
58 58
59 59 // SPECTRAL MATRICES GLOBAL VARIABLES
60 60 volatile int spec_mat_f0_0[ SM_HEADER + TOTAL_SIZE_SM ];
61 61 volatile int spec_mat_f0_1[ SM_HEADER + TOTAL_SIZE_SM ];
62 62 volatile int spec_mat_f0_a[ SM_HEADER + TOTAL_SIZE_SM ];
63 63 volatile int spec_mat_f0_b[ SM_HEADER + TOTAL_SIZE_SM ];
64 64 volatile int spec_mat_f0_c[ SM_HEADER + TOTAL_SIZE_SM ];
65 65 volatile int spec_mat_f0_d[ SM_HEADER + TOTAL_SIZE_SM ];
66 66 volatile int spec_mat_f0_e[ SM_HEADER + TOTAL_SIZE_SM ];
67 67 volatile int spec_mat_f0_f[ SM_HEADER + TOTAL_SIZE_SM ];
68 68 volatile int spec_mat_f0_g[ SM_HEADER + TOTAL_SIZE_SM ];
69 69 volatile int spec_mat_f0_h[ SM_HEADER + TOTAL_SIZE_SM ];
70 70 volatile int spec_mat_f0_0_bis[ SM_HEADER + TOTAL_SIZE_SM ];
71 71 volatile int spec_mat_f0_1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
72 72 //
73 73 volatile int spec_mat_f1[ SM_HEADER + TOTAL_SIZE_SM ];
74 74 volatile int spec_mat_f1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
75 75 //
76 76 volatile int spec_mat_f2[ SM_HEADER + TOTAL_SIZE_SM ];
77 77 volatile int spec_mat_f2_bis[ SM_HEADER + TOTAL_SIZE_SM ];
78 78
79 79 // MODE PARAMETERS
80 80 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
81 81 struct param_local_str param_local;
82 82
83 83 // HK PACKETS
84 84 Packet_TM_LFR_HK_t housekeeping_packet;
85 85 // sequence counters are incremented by APID (PID + CAT) and destination ID
86 unsigned short sequenceCounters[SEQ_CNT_NB_PID][SEQ_CNT_NB_CAT][SEQ_CNT_NB_DEST_ID];
86 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
87 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
88 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
87 89 spw_stats spacewire_stats;
88 90 spw_stats spacewire_stats_backup;
89 91
90 92
@@ -1,592 +1,586
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73
74 74 rtems_status_code status;
75 75 rtems_status_code status_spw;
76 76 rtems_isr_entry old_isr_handler;
77 77
78 78 BOOT_PRINTF("\n\n\n\n\n")
79 79 BOOT_PRINTF("***************************\n")
80 80 BOOT_PRINTF("** START Flight Software **\n")
81 81 BOOT_PRINTF("***************************\n")
82 82 BOOT_PRINTF("\n\n")
83 83
84 84 //send_console_outputs_on_apbuart_port();
85 85 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
86 86
87 87 reset_wfp_burst_enable(); // stop the waveform picker if it was running
88 88
89 89 init_parameter_dump();
90 90 init_local_mode_parameters();
91 91 init_housekeeping_parameters();
92 92
93 93 updateLFRCurrentMode();
94 94
95 95 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
96 96
97 97 create_names(); // create all names
98 98
99 99 status = create_message_queues(); // create message queues
100 100 if (status != RTEMS_SUCCESSFUL)
101 101 {
102 102 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
103 103 }
104 104
105 105 status = create_all_tasks(); // create all tasks
106 106 if (status != RTEMS_SUCCESSFUL)
107 107 {
108 108 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
109 109 }
110 110
111 111 // **************************
112 112 // <SPACEWIRE INITIALIZATION>
113 113 grspw_timecode_callback = &timecode_irq_handler;
114 114
115 115 status_spw = spacewire_open_link(); // (1) open the link
116 116 if ( status_spw != RTEMS_SUCCESSFUL )
117 117 {
118 118 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
119 119 }
120 120
121 121 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
122 122 {
123 123 status_spw = spacewire_configure_link( fdSPW );
124 124 if ( status_spw != RTEMS_SUCCESSFUL )
125 125 {
126 126 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
127 127 }
128 128 }
129 129
130 130 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
131 131 {
132 132 status_spw = spacewire_start_link( fdSPW );
133 133 if ( status_spw != RTEMS_SUCCESSFUL )
134 134 {
135 135 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
136 136 }
137 137 }
138 138 // </SPACEWIRE INITIALIZATION>
139 139 // ***************************
140 140
141 141 status = start_all_tasks(); // start all tasks
142 142 if (status != RTEMS_SUCCESSFUL)
143 143 {
144 144 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
145 145 }
146 146
147 147 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
148 148 status = start_recv_send_tasks();
149 149 if ( status != RTEMS_SUCCESSFUL )
150 150 {
151 151 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
152 152 }
153 153
154 154 // suspend science tasks. they will be restarted later depending on the mode
155 155 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
156 156 if (status != RTEMS_SUCCESSFUL)
157 157 {
158 158 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
159 159 }
160 160
161 161 #ifdef GSA
162 162 // mask IRQ lines
163 163 LEON_Mask_interrupt( IRQ_SM );
164 164 LEON_Mask_interrupt( IRQ_WF );
165 165 // Spectral Matrices simulator
166 166 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
167 167 IRQ_SPARC_SM, spectral_matrices_isr );
168 168 // WaveForms
169 169 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR, CLKDIV_WF_SIMULATOR,
170 170 IRQ_SPARC_WF, waveforms_simulator_isr );
171 171 #else
172 172 // configure IRQ handling for the waveform picker unit
173 173 status = rtems_interrupt_catch( waveforms_isr,
174 174 IRQ_SPARC_WAVEFORM_PICKER,
175 175 &old_isr_handler) ;
176 176 #endif
177 177
178 178 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
179 179 if ( status_spw != RTEMS_SUCCESSFUL )
180 180 {
181 181 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
182 182 if ( status != RTEMS_SUCCESSFUL ) {
183 183 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
184 184 }
185 185 }
186 186
187 187 BOOT_PRINTF("delete INIT\n")
188 188
189 189 status = rtems_task_delete(RTEMS_SELF);
190 190
191 191 }
192 192
193 193 void init_local_mode_parameters( void )
194 194 {
195 195 /** This function initialize the param_local global variable with default values.
196 196 *
197 197 */
198 198
199 199 unsigned int i;
200 unsigned int j;
201 unsigned int k;
202 200
203 201 // LOCAL PARAMETERS
204 202 set_local_sbm1_nb_cwf_max();
205 203 set_local_sbm2_nb_cwf_max();
206 204 set_local_nb_interrupt_f0_MAX();
207 205
208 206 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
209 207 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
210 208 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
211 209
212 210 reset_local_sbm1_nb_cwf_sent();
213 211 reset_local_sbm2_nb_cwf_sent();
214 212
215 213 // init sequence counters
216 for (i = 0; i<SEQ_CNT_NB_PID; i++)
214
215 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
217 216 {
218 for(j = 0; j<SEQ_CNT_NB_CAT; j++)
219 {
220 for(k = 0; k<SEQ_CNT_NB_DEST_ID; k++)
221 {
222 sequenceCounters[i][j][k] = 0x00;
223 }
224 }
217 sequenceCounters_TC_EXE[i] = 0x00;
225 218 }
219 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
220 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
226 221 }
227 222
228 223 void create_names( void ) // create all names for tasks and queues
229 224 {
230 225 /** This function creates all RTEMS names used in the software for tasks and queues.
231 226 *
232 227 * @return RTEMS directive status codes:
233 228 * - RTEMS_SUCCESSFUL - successful completion
234 229 *
235 230 */
236 231
237 232 // task names
238 233 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
239 234 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
240 235 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
241 236 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
242 237 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
243 238 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
244 239 Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
245 240 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
246 241 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
247 242 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
248 243 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
249 244 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
250 245 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
251 246 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
252 247 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
253 248 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
254 249
255 250 // rate monotonic period names
256 251 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
257 252
258 253 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
259 254 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
260 255 }
261 256
262 257 int create_all_tasks( void ) // create all tasks which run in the software
263 258 {
264 259 /** This function creates all RTEMS tasks used in the software.
265 260 *
266 261 * @return RTEMS directive status codes:
267 262 * - RTEMS_SUCCESSFUL - task created successfully
268 263 * - RTEMS_INVALID_ADDRESS - id is NULL
269 264 * - RTEMS_INVALID_NAME - invalid task name
270 265 * - RTEMS_INVALID_PRIORITY - invalid task priority
271 266 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
272 267 * - RTEMS_TOO_MANY - too many tasks created
273 268 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
274 269 * - RTEMS_TOO_MANY - too many global objects
275 270 *
276 271 */
277 272
278 273 rtems_status_code status;
279 274
280 275 // RECV
281 276 status = rtems_task_create(
282 277 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
283 278 RTEMS_DEFAULT_MODES,
284 279 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
285 280 );
286 281
287 282 if (status == RTEMS_SUCCESSFUL) // ACTN
288 283 {
289 284 status = rtems_task_create(
290 285 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
291 286 RTEMS_DEFAULT_MODES,
292 287 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
293 288 );
294 289 }
295 290 if (status == RTEMS_SUCCESSFUL) // SPIQ
296 291 {
297 292 status = rtems_task_create(
298 293 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
299 294 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
300 295 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
301 296 );
302 297 }
303 298 if (status == RTEMS_SUCCESSFUL) // SMIQ
304 299 {
305 300 status = rtems_task_create(
306 301 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
307 302 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
308 303 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
309 304 );
310 305 }
311 306 if (status == RTEMS_SUCCESSFUL) // STAT
312 307 {
313 308 status = rtems_task_create(
314 309 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
315 310 RTEMS_DEFAULT_MODES,
316 311 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
317 312 );
318 313 }
319 314 if (status == RTEMS_SUCCESSFUL) // AVF0
320 315 {
321 316 status = rtems_task_create(
322 317 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
323 318 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
324 319 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
325 320 );
326 321 }
327 322 if (status == RTEMS_SUCCESSFUL) // BPF0
328 323 {
329 324 status = rtems_task_create(
330 325 Task_name[TASKID_BPF0], TASK_PRIORITY_BPF0, RTEMS_MINIMUM_STACK_SIZE,
331 326 RTEMS_DEFAULT_MODES,
332 327 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_BPF0]
333 328 );
334 329 }
335 330 if (status == RTEMS_SUCCESSFUL) // WFRM
336 331 {
337 332 status = rtems_task_create(
338 333 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
339 334 RTEMS_DEFAULT_MODES,
340 335 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
341 336 );
342 337 }
343 338 if (status == RTEMS_SUCCESSFUL) // DUMB
344 339 {
345 340 status = rtems_task_create(
346 341 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
347 342 RTEMS_DEFAULT_MODES,
348 343 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
349 344 );
350 345 }
351 346 if (status == RTEMS_SUCCESSFUL) // HOUS
352 347 {
353 348 status = rtems_task_create(
354 349 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
355 RTEMS_DEFAULT_MODES,
350 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
356 351 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
357 352 );
358 353 }
359 354 if (status == RTEMS_SUCCESSFUL) // MATR
360 355 {
361 356 status = rtems_task_create(
362 357 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
363 358 RTEMS_DEFAULT_MODES,
364 359 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
365 360 );
366 361 }
367 362 if (status == RTEMS_SUCCESSFUL) // CWF3
368 363 {
369 364 status = rtems_task_create(
370 365 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
371 366 RTEMS_DEFAULT_MODES,
372 367 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF3]
373 368 );
374 369 }
375 370 if (status == RTEMS_SUCCESSFUL) // CWF2
376 371 {
377 372 status = rtems_task_create(
378 373 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
379 374 RTEMS_DEFAULT_MODES,
380 375 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF2]
381 376 );
382 377 }
383 378 if (status == RTEMS_SUCCESSFUL) // CWF1
384 379 {
385 380 status = rtems_task_create(
386 381 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
387 382 RTEMS_DEFAULT_MODES,
388 383 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF1]
389 384 );
390 385 }
391 386 if (status == RTEMS_SUCCESSFUL) // SEND
392 387 {
393 388 status = rtems_task_create(
394 389 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
395 390 RTEMS_DEFAULT_MODES,
396 391 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
397 392 );
398 393 }
399 394 if (status == RTEMS_SUCCESSFUL) // WTDG
400 395 {
401 396 status = rtems_task_create(
402 397 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
403 398 RTEMS_DEFAULT_MODES,
404 399 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
405 400 );
406 401 }
407 402
408 403 return status;
409 404 }
410 405
411 406 int start_recv_send_tasks( void )
412 407 {
413 408 rtems_status_code status;
414 409
415 410 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
416 411 if (status!=RTEMS_SUCCESSFUL) {
417 412 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
418 413 }
419 414
420 415 if (status == RTEMS_SUCCESSFUL) // SEND
421 416 {
422 417 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
423 418 if (status!=RTEMS_SUCCESSFUL) {
424 419 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
425 420 }
426 421 }
427 422
428 423 return status;
429 424 }
430 425
431 426 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
432 427 {
433 428 /** This function starts all RTEMS tasks used in the software.
434 429 *
435 430 * @return RTEMS directive status codes:
436 431 * - RTEMS_SUCCESSFUL - ask started successfully
437 432 * - RTEMS_INVALID_ADDRESS - invalid task entry point
438 433 * - RTEMS_INVALID_ID - invalid task id
439 434 * - RTEMS_INCORRECT_STATE - task not in the dormant state
440 435 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
441 436 *
442 437 */
443 438 // starts all the tasks fot eh flight software
444 439
445 440 rtems_status_code status;
446 441
447 442 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
448 443 if (status!=RTEMS_SUCCESSFUL) {
449 444 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
450 445 }
451 446
452 447 if (status == RTEMS_SUCCESSFUL) // WTDG
453 448 {
454 449 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
455 450 if (status!=RTEMS_SUCCESSFUL) {
456 451 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
457 452 }
458 453 }
459 454
460 455 if (status == RTEMS_SUCCESSFUL) // SMIQ
461 456 {
462 457 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
463 458 if (status!=RTEMS_SUCCESSFUL) {
464 459 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
465 460 }
466 461 }
467 462
468 463 if (status == RTEMS_SUCCESSFUL) // ACTN
469 464 {
470 465 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
471 466 if (status!=RTEMS_SUCCESSFUL) {
472 467 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
473 468 }
474 469 }
475 470
476 471 if (status == RTEMS_SUCCESSFUL) // STAT
477 472 {
478 473 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
479 474 if (status!=RTEMS_SUCCESSFUL) {
480 475 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
481 476 }
482 477 }
483 478
484 479 if (status == RTEMS_SUCCESSFUL) // AVF0
485 480 {
486 481 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
487 482 if (status!=RTEMS_SUCCESSFUL) {
488 483 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
489 484 }
490 485 }
491 486
492 487 if (status == RTEMS_SUCCESSFUL) // BPF0
493 488 {
494 489 status = rtems_task_start( Task_id[TASKID_BPF0], bpf0_task, 1 );
495 490 if (status!=RTEMS_SUCCESSFUL) {
496 491 BOOT_PRINTF("in INIT *** Error starting TASK_BPF0\n")
497 492 }
498 493 }
499 494
500 495 if (status == RTEMS_SUCCESSFUL) // WFRM
501 496 {
502 497 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
503 498 if (status!=RTEMS_SUCCESSFUL) {
504 499 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
505 500 }
506 501 }
507 502
508 503 if (status == RTEMS_SUCCESSFUL) // DUMB
509 504 {
510 505 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
511 506 if (status!=RTEMS_SUCCESSFUL) {
512 507 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
513 508 }
514 509 }
515 510
516 511 if (status == RTEMS_SUCCESSFUL) // HOUS
517 512 {
518 513 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
519 514 if (status!=RTEMS_SUCCESSFUL) {
520 515 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
521 516 }
522 517 }
523 518
524 519 if (status == RTEMS_SUCCESSFUL) // MATR
525 520 {
526 521 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
527 522 if (status!=RTEMS_SUCCESSFUL) {
528 523 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
529 524 }
530 525 }
531 526
532 527 if (status == RTEMS_SUCCESSFUL) // CWF3
533 528 {
534 529 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
535 530 if (status!=RTEMS_SUCCESSFUL) {
536 531 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
537 532 }
538 533 }
539 534
540 535 if (status == RTEMS_SUCCESSFUL) // CWF2
541 536 {
542 537 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
543 538 if (status!=RTEMS_SUCCESSFUL) {
544 539 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
545 540 }
546 541 }
547 542
548 543 if (status == RTEMS_SUCCESSFUL) // CWF1
549 544 {
550 545 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
551 546 if (status!=RTEMS_SUCCESSFUL) {
552 547 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
553 548 }
554 549 }
555 550 return status;
556 551 }
557 552
558 553 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
559 554 {
560 555 rtems_status_code status_recv;
561 556 rtems_status_code status_send;
562 557 rtems_status_code ret;
563 558 rtems_id queue_id;
564 559
565 560 // create the queue for handling valid TCs
566 561 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
567 562 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
568 563 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
569 564 if ( status_recv != RTEMS_SUCCESSFUL ) {
570 565 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
571 566 }
572 567
573 568 // create the queue for handling TM packet sending
574 569 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
575 570 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
576 571 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
577 572 if ( status_send != RTEMS_SUCCESSFUL ) {
578 573 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
579 574 }
580 575
581 576 if ( status_recv != RTEMS_SUCCESSFUL )
582 577 {
583 578 ret = status_recv;
584 579 }
585 580 else
586 581 {
587 582 ret = status_send;
588 583 }
589 584
590 585 return ret;
591 586 }
592
@@ -1,295 +1,325
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 char *DumbMessages[7] = {"in DUMB *** default", // RTEMS_EVENT_0
11 11 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
12 12 "in DUMB *** waveforms_isr", // RTEMS_EVENT_2
13 13 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
14 14 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
15 15 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
16 16 "ERR HK" // RTEMS_EVENT_6
17 17 };
18 18
19 19 int configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
20 20 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
21 21 {
22 22 /** This function configures a GPTIMER timer instantiated in the VHDL design.
23 23 *
24 24 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
25 25 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
26 26 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
27 27 * @param interrupt_level is the interrupt level that the timer drives.
28 28 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
29 29 *
30 30 * @return
31 31 *
32 32 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
33 33 *
34 34 */
35 35
36 36 rtems_status_code status;
37 37 rtems_isr_entry old_isr_handler;
38 38
39 39 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
40 40 if (status!=RTEMS_SUCCESSFUL)
41 41 {
42 42 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
43 43 }
44 44
45 45 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
46 46
47 47 return 1;
48 48 }
49 49
50 50 int timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
51 51 {
52 52 /** This function starts a GPTIMER timer.
53 53 *
54 54 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
55 55 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
56 56 *
57 57 * @return 1
58 58 *
59 59 */
60 60
61 61 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
62 62 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
63 63 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
66 66
67 67 return 1;
68 68 }
69 69
70 70 int timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
71 71 {
72 72 /** This function stops a GPTIMER timer.
73 73 *
74 74 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
75 75 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
76 76 *
77 77 * @return 1
78 78 *
79 79 */
80 80
81 81 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
82 82 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
83 83 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
84 84
85 85 return 1;
86 86 }
87 87
88 88 int timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
89 89 {
90 90 /** This function sets the clock divider of a GPTIMER timer.
91 91 *
92 92 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
93 93 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
94 94 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
95 95 *
96 96 * @return 1
97 97 *
98 98 */
99 99
100 100 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
101 101
102 102 return 1;
103 103 }
104 104
105 105 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
106 106 {
107 107 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
108 108
109 109 apbuart_regs->ctrl = apbuart_regs->ctrl & APBUART_CTRL_REG_MASK_DB;
110 110 PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
111 111
112 112 return 0;
113 113 }
114 114
115 115 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
116 116 {
117 117 /** This function sets the scaler reload register of the apbuart module
118 118 *
119 119 * @param regs is the address of the apbuart registers in memory
120 120 * @param value is the value that will be stored in the scaler register
121 121 *
122 122 * The value shall be set by the software to get data on the serial interface.
123 123 *
124 124 */
125 125
126 126 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
127 127
128 128 apbuart_regs->scaler = value;
129 129 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
130 130 }
131 131
132 132 //************
133 133 // RTEMS TASKS
134 134
135 135 rtems_task stat_task(rtems_task_argument argument)
136 136 {
137 137 int i;
138 138 int j;
139 139 i = 0;
140 140 j = 0;
141 141 BOOT_PRINTF("in STAT *** \n")
142 142 while(1){
143 143 rtems_task_wake_after(1000);
144 144 PRINTF1("%d\n", j)
145 145 if (i == CPU_USAGE_REPORT_PERIOD) {
146 146 // #ifdef PRINT_TASK_STATISTICS
147 147 // rtems_cpu_usage_report();
148 148 // rtems_cpu_usage_reset();
149 149 // #endif
150 150 i = 0;
151 151 }
152 152 else i++;
153 153 j++;
154 154 }
155 155 }
156 156
157 157 rtems_task hous_task(rtems_task_argument argument)
158 158 {
159 159 rtems_status_code status;
160 160 rtems_id queue_id;
161 161
162 162 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id );
163 163 if (status != RTEMS_SUCCESSFUL)
164 164 {
165 165 PRINTF1("in HOUS *** ERR %d\n", status)
166 166 }
167 167
168 168 BOOT_PRINTF("in HOUS ***\n")
169 169
170 170 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
171 171 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
172 172 if( status != RTEMS_SUCCESSFUL ) {
173 173 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
174 174 }
175 175 }
176 176
177 177 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
178 178 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
179 179 housekeeping_packet.reserved = DEFAULT_RESERVED;
180 180 housekeeping_packet.userApplication = CCSDS_USER_APP;
181 181 housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
182 182 housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
183 183 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
184 184 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
185 185 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
186 186 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
187 187 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
188 188 housekeeping_packet.serviceType = TM_TYPE_HK;
189 189 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
190 190 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
191 191
192 192 status = rtems_rate_monotonic_cancel(HK_id);
193 193 if( status != RTEMS_SUCCESSFUL ) {
194 194 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
195 195 }
196 196 else {
197 197 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
198 198 }
199 199
200 200 while(1){ // launch the rate monotonic task
201 201 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
202 202 if ( status != RTEMS_SUCCESSFUL ) {
203 203 PRINTF1( "in HOUS *** ERR period: %d\n", status);
204 204 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
205 205 }
206 206 else {
207 increment_seq_counter( housekeeping_packet.packetSequenceControl );
207 208 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
208 209 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
209 210 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
210 211 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
211 212 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
212 213 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
213 214 housekeeping_packet.sid = SID_HK;
214 215
215 216 spacewire_update_statistics();
216 217
217 218 // SEND PACKET
218 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
219 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
219 220 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
220 221 if (status != RTEMS_SUCCESSFUL) {
221 222 PRINTF1("in HOUS *** ERR send: %d\n", status)
222 223 }
223 224 }
224 225 }
225 226
226 227 PRINTF("in HOUS *** deleting task\n")
227 228
228 229 status = rtems_task_delete( RTEMS_SELF ); // should not return
229 230 printf( "rtems_task_delete returned with status of %d.\n", status );
230 231 return;
231 232 }
232 233
233 234 rtems_task dumb_task( rtems_task_argument unused )
234 235 {
235 236 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
236 237 *
237 238 * @param unused is the starting argument of the RTEMS task
238 239 *
239 240 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
240 241 *
241 242 */
242 243
243 244 unsigned int i;
244 245 unsigned int intEventOut;
245 246 unsigned int coarse_time = 0;
246 247 unsigned int fine_time = 0;
247 248 rtems_event_set event_out;
248 249
249 250 BOOT_PRINTF("in DUMB *** \n")
250 251
251 252 while(1){
252 253 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
253 254 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6,
254 255 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
255 256 intEventOut = (unsigned int) event_out;
256 257 for ( i=0; i<32; i++)
257 258 {
258 259 if ( ((intEventOut >> i) & 0x0001) != 0)
259 260 {
260 261 coarse_time = time_management_regs->coarse_time;
261 262 fine_time = time_management_regs->fine_time;
262 263 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
263 264 }
264 265 }
265 266 }
266 267 }
267 268
268 269 //*****************************
269 270 // init housekeeping parameters
270 271
271 272 void init_housekeeping_parameters( void )
272 273 {
273 274 /** This function initialize the housekeeping_packet global variable with default values.
274 275 *
275 276 */
276 277
277 278 unsigned int i = 0;
278 279 char *parameters;
279 280
280 281 parameters = (char*) &housekeeping_packet.lfr_status_word;
281 282 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
282 283 {
283 284 parameters[i] = 0x00;
284 285 }
285 286 // init status word
286 287 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
287 288 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
288 289 // init software version
289 290 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
290 291 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
291 292 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
292 293 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
293 294
294 295 }
295 296
297 void increment_seq_counter( unsigned char *packet_sequence_control)
298 {
299 unsigned short sequence_cnt;
300 unsigned short segmentation_grouping_flag;
301 unsigned short new_packet_sequence_control;
302
303 segmentation_grouping_flag = (unsigned short) ( (packet_sequence_control[0] & 0xc0) << 8 ); // keep bits 7 downto 6
304 sequence_cnt = (unsigned short) (
305 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
306 + packet_sequence_control[1]
307 );
308
309 if ( sequence_cnt < SEQ_CNT_MAX)
310 {
311 sequence_cnt = sequence_cnt + 1;
312 }
313 else
314 {
315 sequence_cnt = 0;
316 }
317
318 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
319
320 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
321 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
322 }
323
324
325
@@ -1,678 +1,677
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 #include <math.h>
12 11
13 12 #include "fsw_processing_globals.c"
14 13
15 14 unsigned char LFR_BP1_F0[ NB_BINS_COMPRESSED_SM_F0 * 9 ];
16 15 BP1_t data_BP1[ NB_BINS_COMPRESSED_SM_F0 ];
17 16 float averaged_spec_mat_f0[ TOTAL_SIZE_SM ];
18 17 char averaged_spec_mat_f0_char[ TOTAL_SIZE_SM * 2 ];
19 18 float compressed_spec_mat_f0[ TOTAL_SIZE_COMPRESSED_MATRIX_f0 ];
20 19
21 20 //***********************************************************
22 21 // Interrupt Service Routine for spectral matrices processing
23 22 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
24 23 {
25 24 unsigned char status;
26 25 unsigned char i;
27 26
28 27 status = spectral_matrix_regs->status; //[f2 f1 f0_1 f0_0]
29 28 for (i=0; i<4; i++)
30 29 {
31 30 if ( ( (status >> i) & 0x01) == 1) // (1) buffer rotation
32 31 {
33 32 switch(i)
34 33 {
35 34 case 0:
36 35 if (spectral_matrix_regs->matrixF0_Address0 == (int) spec_mat_f0_0)
37 36 {
38 37 spectral_matrix_regs->matrixF0_Address0 = (int) spec_mat_f0_0_bis;
39 38 }
40 39 else
41 40 {
42 41 spectral_matrix_regs->matrixF0_Address0 = (int) spec_mat_f0_0;
43 42 }
44 43 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe;
45 44 break;
46 45 case 1:
47 46 if (spectral_matrix_regs->matrixFO_Address1 == (int) spec_mat_f0_1)
48 47 {
49 48 spectral_matrix_regs->matrixFO_Address1 = (int) spec_mat_f0_1_bis;
50 49 }
51 50 else
52 51 {
53 52 spectral_matrix_regs->matrixFO_Address1 = (int) spec_mat_f0_1;
54 53 }
55 54 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd;
56 55 break;
57 56 case 2:
58 57 if (spectral_matrix_regs->matrixF1_Address == (int) spec_mat_f1)
59 58 {
60 59 spectral_matrix_regs->matrixF1_Address = (int) spec_mat_f1_bis;
61 60 }
62 61 else
63 62 {
64 63 spectral_matrix_regs->matrixF1_Address = (int) spec_mat_f1;
65 64 }
66 65 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffb;
67 66 break;
68 67 case 3:
69 68 if (spectral_matrix_regs->matrixF2_Address == (int) spec_mat_f2)
70 69 {
71 70 spectral_matrix_regs->matrixF2_Address = (int) spec_mat_f2_bis;
72 71 }
73 72 else
74 73 {
75 74 spectral_matrix_regs->matrixF2_Address = (int) spec_mat_f2;
76 75 }
77 76 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff7;
78 77 break;
79 78 default:
80 79 break;
81 80 }
82 81 }
83 82 }
84 83
85 84 // reset error codes to 0
86 85 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // [1100 1111]
87 86
88 87 if (rtems_event_send( Task_id[TASKID_SMIQ], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
89 88 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_4 );
90 89 }
91 90 }
92 91
93 92 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
94 93 {
95 94 if (rtems_event_send( Task_id[TASKID_SMIQ], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
96 95 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_4 );
97 96 }
98 97 }
99 98
100 99 //************
101 100 // RTEMS TASKS
102 101
103 102 rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
104 103 {
105 104 rtems_event_set event_out;
106 105 unsigned int nb_interrupt_f0 = 0;
107 106
108 107 BOOT_PRINTF("in SMIQ *** \n")
109 108
110 109 while(1){
111 110 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
112 111 nb_interrupt_f0 = nb_interrupt_f0 + 1;
113 112 if (nb_interrupt_f0 == NB_SM_TO_RECEIVE_BEFORE_AVF0 ){
114 113 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
115 114 {
116 115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
117 116 }
118 117 nb_interrupt_f0 = 0;
119 118 }
120 119 }
121 120 }
122 121
123 122 //rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
124 123 //{
125 124 // rtems_event_set event_out;
126 125 // unsigned int nb_interrupt_f0 = 0;
127 126
128 127 // PRINTF("in SMIQ *** \n")
129 128
130 129 // while(1){
131 130 // rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
132 131 // nb_interrupt_f0 = nb_interrupt_f0 + 1;
133 132 // if (nb_interrupt_f0 == param_local.local_nb_interrupt_f0_MAX ){
134 133 // if (rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
135 134 // {
136 135 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
137 136 // }
138 137 // nb_interrupt_f0 = 0;
139 138 // }
140 139 // }
141 140 //}
142 141
143 142 rtems_task spw_bppr_task(rtems_task_argument argument)
144 143 {
145 144 rtems_status_code status;
146 145 rtems_event_set event_out;
147 146
148 147 BOOT_PRINTF("in BPPR ***\n");
149 148
150 149 while( true ){ // wait for an event to begin with the processing
151 150 status = rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
152 151 }
153 152 }
154 153
155 154 rtems_task avf0_task(rtems_task_argument argument)
156 155 {
157 156 int i;
158 157 static int nb_average;
159 158 rtems_event_set event_out;
160 159 rtems_status_code status;
161 160
162 161 nb_average = 0;
163 162
164 163 BOOT_PRINTF("in AVFO *** \n")
165 164
166 165 while(1){
167 166 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
168 167 for(i=0; i<TOTAL_SIZE_SM; i++){
169 168 averaged_spec_mat_f0[i] = averaged_spec_mat_f0[i] + spec_mat_f0_a[i]
170 169 + spec_mat_f0_b[i]
171 170 + spec_mat_f0_c[i]
172 171 + spec_mat_f0_d[i]
173 172 + spec_mat_f0_e[i]
174 173 + spec_mat_f0_f[i]
175 174 + spec_mat_f0_g[i]
176 175 + spec_mat_f0_h[i];
177 176 }
178 177 nb_average = nb_average + NB_SM_TO_RECEIVE_BEFORE_AVF0;
179 178 if (nb_average == NB_AVERAGE_NORMAL_f0) {
180 179 nb_average = 0;
181 180 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ); // sending an event to the task 7, BPF0
182 181 if (status != RTEMS_SUCCESSFUL) {
183 182 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
184 183 }
185 184 }
186 185 }
187 186 }
188 187
189 188 rtems_task bpf0_task(rtems_task_argument argument)
190 189 {
191 190 rtems_event_set event_out;
192 191
193 192 BOOT_PRINTF("in BPFO *** \n")
194 193
195 194 while(1){
196 195 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
197 196 matrix_compression(averaged_spec_mat_f0, 0, compressed_spec_mat_f0);
198 197 BP1_set(compressed_spec_mat_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
199 198 //PRINTF("IN TASK BPF0 *** Matrix compressed, parameters calculated\n")
200 199 }
201 200 }
202 201
203 202 rtems_task matr_task(rtems_task_argument argument)
204 203 {
205 204 spw_ioctl_pkt_send spw_ioctl_send_ASM;
206 205 rtems_event_set event_out;
207 206 rtems_status_code status;
208 207 rtems_id queue_id;
209 208 Header_TM_LFR_SCIENCE_ASM_t headerASM;
210 209
211 210 init_header_asm( &headerASM );
212 211
213 212 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id );
214 213 if (status != RTEMS_SUCCESSFUL)
215 214 {
216 215 PRINTF1("in MATR *** ERR getting queue id, %d\n", status)
217 216 }
218 217
219 218 BOOT_PRINTF("in MATR *** \n")
220 219
221 220 fill_averaged_spectral_matrix( );
222 221
223 222 while(1){
224 223 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
225 224
226 225 #ifdef GSA
227 226 #else
228 227 fill_averaged_spectral_matrix( );
229 228 #endif
230 229 convert_averaged_spectral_matrix( averaged_spec_mat_f0, averaged_spec_mat_f0_char);
231 230
232 231 send_spectral_matrix( &headerASM, averaged_spec_mat_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
233 232 }
234 233 }
235 234
236 235 //*****************************
237 236 // Spectral matrices processing
238 237
239 238 void matrix_reset(volatile float *averaged_spec_mat)
240 239 {
241 240 // int i;
242 241 // for(i=0; i<TOTAL_SIZE_SM; i++){
243 242 // averaged_spec_mat_f0[i] = 0;
244 243 // }
245 244 }
246 245
247 246 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat)
248 247 {
249 248 int i;
250 249 int j;
251 250 switch (fChannel){
252 251 case 0:
253 252 for(i=0;i<NB_BINS_COMPRESSED_SM_F0;i++){
254 253 j = 17 + (i * 8);
255 254 compressed_spec_mat[i] = (averaged_spec_mat[j]
256 255 + averaged_spec_mat[j+1]
257 256 + averaged_spec_mat[j+2]
258 257 + averaged_spec_mat[j+3]
259 258 + averaged_spec_mat[j+4]
260 259 + averaged_spec_mat[j+5]
261 260 + averaged_spec_mat[j+6]
262 261 + averaged_spec_mat[j+7])/(8*NB_AVERAGE_NORMAL_f0);
263 262 }
264 263 break;
265 264 case 1:
266 265 // case fChannel = f1 to be completed later
267 266 break;
268 267 case 2:
269 268 // case fChannel = f1 to be completed later
270 269 break;
271 270 default:
272 271 break;
273 272 }
274 273 }
275 274
276 275 void BP1_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
277 276 int i;
278 277 int j;
279 278 unsigned char tmp_u_char;
280 279 unsigned char * pt_char = NULL;
281 280 float PSDB, PSDE;
282 281 float NVEC_V0;
283 282 float NVEC_V1;
284 283 float NVEC_V2;
285 284 //float significand;
286 285 //int exponent;
287 286 float aux;
288 287 float tr_SB_SB;
289 288 float tmp;
290 289 float sx_re;
291 290 float sx_im;
292 291 float nebx_re = 0;
293 292 float nebx_im = 0;
294 293 float ny = 0;
295 294 float nz = 0;
296 295 float bx_bx_star = 0;
297 296 for(i=0; i<nb_bins_compressed_spec_mat; i++){
298 297 //==============================================
299 298 // BP1 PSD == B PAR_LFR_SC_BP1_PE_FL0 == 16 bits
300 299 PSDB = compressed_spec_mat[i*30] // S11
301 300 + compressed_spec_mat[(i*30) + 10] // S22
302 301 + compressed_spec_mat[(i*30) + 18]; // S33
303 302 //significand = frexp(PSDB, &exponent);
304 303 pt_char = (unsigned char*) &PSDB;
305 304 LFR_BP1[(i*9) + 2] = pt_char[0]; // bits 31 downto 24 of the float
306 305 LFR_BP1[(i*9) + 3] = pt_char[1]; // bits 23 downto 16 of the float
307 306 //==============================================
308 307 // BP1 PSD == E PAR_LFR_SC_BP1_PB_FL0 == 16 bits
309 308 PSDE = compressed_spec_mat[(i*30) + 24] * K44_pe // S44
310 309 + compressed_spec_mat[(i*30) + 28] * K55_pe // S55
311 310 + compressed_spec_mat[(i*30) + 26] * K45_pe_re // S45
312 311 - compressed_spec_mat[(i*30) + 27] * K45_pe_im; // S45
313 312 pt_char = (unsigned char*) &PSDE;
314 313 LFR_BP1[(i*9) + 0] = pt_char[0]; // bits 31 downto 24 of the float
315 314 LFR_BP1[(i*9) + 1] = pt_char[1]; // bits 23 downto 16 of the float
316 315 //==============================================================================
317 316 // BP1 normal wave vector == PAR_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
318 317 // == PAR_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
319 318 // == PAR_LFR_SC_BP1_NVEC_V2_F0 == 1 bits
320 319 tmp = sqrt(
321 320 compressed_spec_mat[(i*30) + 3]*compressed_spec_mat[(i*30) + 3] //Im S12
322 321 +compressed_spec_mat[(i*30) + 5]*compressed_spec_mat[(i*30) + 5] //Im S13
323 322 +compressed_spec_mat[(i*30) + 13]*compressed_spec_mat[(i*30) + 13] //Im S23
324 323 );
325 324 NVEC_V0 = compressed_spec_mat[(i*30) + 13] / tmp; // Im S23
326 325 NVEC_V1 = -compressed_spec_mat[(i*30) + 5] / tmp; // Im S13
327 326 NVEC_V2 = compressed_spec_mat[(i*30) + 3] / tmp; // Im S12
328 327 LFR_BP1[(i*9) + 4] = (char) (NVEC_V0*127);
329 328 LFR_BP1[(i*9) + 5] = (char) (NVEC_V1*127);
330 329 pt_char = (unsigned char*) &NVEC_V2;
331 330 LFR_BP1[(i*9) + 6] = pt_char[0] & 0x80; // extract the sign of NVEC_V2
332 331 //=======================================================
333 332 // BP1 ellipticity == PAR_LFR_SC_BP1_ELLIP_F0 == 4 bits
334 333 aux = 2*tmp / PSDB; // compute the ellipticity
335 334 tmp_u_char = (unsigned char) (aux*(16-1)); // convert the ellipticity
336 335 LFR_BP1[i*9+6] = LFR_BP1[i*9+6] | ((tmp_u_char&0x0f)<<3); // keeps 4 bits of the resulting unsigned char
337 336 //==============================================================
338 337 // BP1 degree of polarization == PAR_LFR_SC_BP1_DOP_F0 == 3 bits
339 338 for(j = 0; j<NB_VALUES_PER_SM;j++){
340 339 tr_SB_SB = compressed_spec_mat[i*30] * compressed_spec_mat[i*30]
341 340 + compressed_spec_mat[(i*30) + 10] * compressed_spec_mat[(i*30) + 10]
342 341 + compressed_spec_mat[(i*30) + 18] * compressed_spec_mat[(i*30) + 18]
343 342 + 2 * compressed_spec_mat[(i*30) + 2] * compressed_spec_mat[(i*30) + 2]
344 343 + 2 * compressed_spec_mat[(i*30) + 3] * compressed_spec_mat[(i*30) + 3]
345 344 + 2 * compressed_spec_mat[(i*30) + 4] * compressed_spec_mat[(i*30) + 4]
346 345 + 2 * compressed_spec_mat[(i*30) + 5] * compressed_spec_mat[(i*30) + 5]
347 346 + 2 * compressed_spec_mat[(i*30) + 12] * compressed_spec_mat[(i*30) + 12]
348 347 + 2 * compressed_spec_mat[(i*30) + 13] * compressed_spec_mat[(i*30) + 13];
349 348 }
350 349 aux = PSDB*PSDB;
351 350 tmp = sqrt( abs( ( 3*tr_SB_SB - aux ) / ( 2 * aux ) ) );
352 351 tmp_u_char = (unsigned char) (NVEC_V0*(8-1));
353 352 LFR_BP1[(i*9) + 6] = LFR_BP1[(i*9) + 6] | (tmp_u_char & 0x07); // keeps 3 bits of the resulting unsigned char
354 353 //=======================================================================================
355 354 // BP1 x-component of the normalized Poynting flux == PAR_LFR_SC_BP1_SZ_F0 == 8 bits (7+1)
356 355 sx_re = compressed_spec_mat[(i*30) + 20] * K34_sx_re
357 356 + compressed_spec_mat[(i*30) + 6] * K14_sx_re
358 357 + compressed_spec_mat[(i*30) + 8] * K15_sx_re
359 358 + compressed_spec_mat[(i*30) + 14] * K24_sx_re
360 359 + compressed_spec_mat[(i*30) + 16] * K25_sx_re
361 360 + compressed_spec_mat[(i*30) + 22] * K35_sx_re;
362 361 sx_im = compressed_spec_mat[(i*30) + 21] * K34_sx_im
363 362 + compressed_spec_mat[(i*30) + 7] * K14_sx_im
364 363 + compressed_spec_mat[(i*30) + 9] * K15_sx_im
365 364 + compressed_spec_mat[(i*30) + 15] * K24_sx_im
366 365 + compressed_spec_mat[(i*30) + 17] * K25_sx_im
367 366 + compressed_spec_mat[(i*30) + 23] * K35_sx_im;
368 367 LFR_BP1[(i*9) + 7] = ((unsigned char) (sx_re * 128)) & 0x7f; // cf DOC for the compression
369 368 if ( abs(sx_re) > abs(sx_im) ) {
370 369 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] | (0x80); // extract the sector of sx
371 370 }
372 371 else {
373 372 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] & (0x7f); // extract the sector of sx
374 373 }
375 374 //======================================================================
376 375 // BP1 phase velocity estimator == PAR_LFR_SC_BP1_VPHI_F0 == 8 bits (7+1)
377 376 ny = sin(Alpha_M)*NVEC_V1 + cos(Alpha_M)*NVEC_V2;
378 377 nz = NVEC_V0;
379 378 bx_bx_star = cos(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+10] // re S22
380 379 + sin(Alpha_M) * sin(Alpha_M) * compressed_spec_mat[i*30+18] // re S33
381 380 - 2 * sin(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+12]; // re S23
382 381 nebx_re = ny * (compressed_spec_mat[(i*30) + 14] * K24_ny_re
383 382 +compressed_spec_mat[(i*30) + 16] * K25_ny_re
384 383 +compressed_spec_mat[(i*30) + 20] * K34_ny_re
385 384 +compressed_spec_mat[(i*30) + 22] * K35_ny_re)
386 385 + nz * (compressed_spec_mat[(i*30) + 14] * K24_nz_re
387 386 +compressed_spec_mat[(i*30) + 16] * K25_nz_re
388 387 +compressed_spec_mat[(i*30) + 20] * K34_nz_re
389 388 +compressed_spec_mat[(i*30) + 22] * K35_nz_re);
390 389 nebx_im = ny * (compressed_spec_mat[(i*30) + 15]*K24_ny_re
391 390 +compressed_spec_mat[(i*30) + 17] * K25_ny_re
392 391 +compressed_spec_mat[(i*30) + 21] * K34_ny_re
393 392 +compressed_spec_mat[(i*30) + 23] * K35_ny_re)
394 393 + nz * (compressed_spec_mat[(i*30) + 15] * K24_nz_im
395 394 +compressed_spec_mat[(i*30) + 17] * K25_nz_im
396 395 +compressed_spec_mat[(i*30) + 21] * K34_nz_im
397 396 +compressed_spec_mat[(i*30) + 23] * K35_nz_im);
398 397 tmp = nebx_re / bx_bx_star;
399 398 LFR_BP1[(i*9) + 8] = ((unsigned char) (tmp * 128)) & 0x7f; // cf DOC for the compression
400 399 if ( abs(nebx_re) > abs(nebx_im) ) {
401 400 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] | (0x80); // extract the sector of nebx
402 401 }
403 402 else {
404 403 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] & (0x7f); // extract the sector of nebx
405 404 }
406 405 }
407 406
408 407 }
409 408
410 409 void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
411 410 // BP2 autocorrelation
412 411 int i;
413 412 int aux = 0;
414 413
415 414 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
416 415 // S12
417 416 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 10]);
418 417 compressed_spec_mat[(i*30) + 2] = compressed_spec_mat[(i*30) + 2] / aux;
419 418 compressed_spec_mat[(i*30) + 3] = compressed_spec_mat[(i*30) + 3] / aux;
420 419 // S13
421 420 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 18]);
422 421 compressed_spec_mat[(i*30) + 4] = compressed_spec_mat[(i*30) + 4] / aux;
423 422 compressed_spec_mat[(i*30) + 5] = compressed_spec_mat[(i*30) + 5] / aux;
424 423 // S23
425 424 aux = sqrt(compressed_spec_mat[i*30+12]*compressed_spec_mat[(i*30) + 18]);
426 425 compressed_spec_mat[(i*30) + 12] = compressed_spec_mat[(i*30) + 12] / aux;
427 426 compressed_spec_mat[(i*30) + 13] = compressed_spec_mat[(i*30) + 13] / aux;
428 427 // S45
429 428 aux = sqrt(compressed_spec_mat[i*30+24]*compressed_spec_mat[(i*30) + 28]);
430 429 compressed_spec_mat[(i*30) + 26] = compressed_spec_mat[(i*30) + 26] / aux;
431 430 compressed_spec_mat[(i*30) + 27] = compressed_spec_mat[(i*30) + 27] / aux;
432 431 // S14
433 432 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) +24]);
434 433 compressed_spec_mat[(i*30) + 6] = compressed_spec_mat[(i*30) + 6] / aux;
435 434 compressed_spec_mat[(i*30) + 7] = compressed_spec_mat[(i*30) + 7] / aux;
436 435 // S15
437 436 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 28]);
438 437 compressed_spec_mat[(i*30) + 8] = compressed_spec_mat[(i*30) + 8] / aux;
439 438 compressed_spec_mat[(i*30) + 9] = compressed_spec_mat[(i*30) + 9] / aux;
440 439 // S24
441 440 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 24]);
442 441 compressed_spec_mat[(i*30) + 14] = compressed_spec_mat[(i*30) + 14] / aux;
443 442 compressed_spec_mat[(i*30) + 15] = compressed_spec_mat[(i*30) + 15] / aux;
444 443 // S25
445 444 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 28]);
446 445 compressed_spec_mat[(i*30) + 16] = compressed_spec_mat[(i*30) + 16] / aux;
447 446 compressed_spec_mat[(i*30) + 17] = compressed_spec_mat[(i*30) + 17] / aux;
448 447 // S34
449 448 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 24]);
450 449 compressed_spec_mat[(i*30) + 20] = compressed_spec_mat[(i*30) + 20] / aux;
451 450 compressed_spec_mat[(i*30) + 21] = compressed_spec_mat[(i*30) + 21] / aux;
452 451 // S35
453 452 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 28]);
454 453 compressed_spec_mat[(i*30) + 22] = compressed_spec_mat[(i*30) + 22] / aux;
455 454 compressed_spec_mat[(i*30) + 23] = compressed_spec_mat[(i*30) + 23] / aux;
456 455 }
457 456 }
458 457
459 458 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
460 459 {
461 460 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
462 461 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
463 462 header->reserved = 0x00;
464 463 header->userApplication = CCSDS_USER_APP;
465 464 header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
466 465 header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
467 466 header->packetSequenceControl[0] = 0xc0;
468 467 header->packetSequenceControl[1] = 0x00;
469 468 header->packetLength[0] = 0x00;
470 469 header->packetLength[1] = 0x00;
471 470 // DATA FIELD HEADER
472 471 header->spare1_pusVersion_spare2 = 0x10;
473 472 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
474 473 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
475 474 header->destinationID = TM_DESTINATION_ID_GROUND;
476 475 // AUXILIARY DATA HEADER
477 476 header->sid = 0x00;
478 477 header->biaStatusInfo = 0x00;
479 478 header->cntASM = 0x00;
480 479 header->nrASM = 0x00;
481 480 header->time[0] = 0x00;
482 481 header->time[0] = 0x00;
483 482 header->time[0] = 0x00;
484 483 header->time[0] = 0x00;
485 484 header->time[0] = 0x00;
486 485 header->time[0] = 0x00;
487 486 header->blkNr[0] = 0x00; // BLK_NR MSB
488 487 header->blkNr[1] = 0x00; // BLK_NR LSB
489 488 }
490 489
491 490 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
492 491 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
493 492 {
494 493 unsigned int i;
495 494 unsigned int length = 0;
496 495 rtems_status_code status;
497 496
498 497 header->sid = (unsigned char) sid;
499 498
500 499 for (i=0; i<2; i++)
501 500 {
502 501 // BUILD THE DATA
503 502 spw_ioctl_send->dlen = TOTAL_SIZE_SM;
504 503 spw_ioctl_send->data = &spectral_matrix[ i * TOTAL_SIZE_SM];
505 504 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
506 505 spw_ioctl_send->hdr = (char *) header;
507 506 spw_ioctl_send->options = 0;
508 507
509 508 // BUILD THE HEADER
510 509 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM;
511 510 header->packetLength[0] = (unsigned char) (length>>8);
512 511 header->packetLength[1] = (unsigned char) (length);
513 512 header->sid = (unsigned char) sid; // SID
514 513 header->cntASM = 2;
515 514 header->nrASM = (unsigned char) (i+1);
516 515 header->blkNr[0] =(unsigned char) ( (NB_BINS_PER_SM/2) >> 8 ); // BLK_NR MSB
517 516 header->blkNr[1] = (unsigned char) (NB_BINS_PER_SM/2); // BLK_NR LSB
518 517 // SET PACKET TIME
519 518 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
520 519 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
521 520 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
522 521 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
523 522 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
524 523 header->time[5] = (unsigned char) (time_management_regs->fine_time);
525 524 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
526 525 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
527 526 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
528 527 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
529 528 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
530 529 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
531 530 // SEND PACKET
532 531 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
533 532 if (status != RTEMS_SUCCESSFUL) {
534 533 printf("in send_spectral_matrix *** ERR %d\n", (int) status);
535 534 }
536 535 }
537 536 }
538 537
539 538 void convert_averaged_spectral_matrix( volatile float *input_matrix, char *output_matrix)
540 539 {
541 540 unsigned int i;
542 541 unsigned int j;
543 542 char * pt_char_input;
544 543 char * pt_char_output;
545 544
546 545 pt_char_input = NULL;
547 546 pt_char_output = NULL;
548 547
549 548 for( i=0; i<NB_BINS_PER_SM; i++)
550 549 {
551 550 for ( j=0; j<NB_VALUES_PER_SM; j++)
552 551 {
553 552 pt_char_input = (char*) &input_matrix[ (i*NB_VALUES_PER_SM) + j ];
554 553 pt_char_output = (char*) &output_matrix[ 2 * ( (i*NB_VALUES_PER_SM) + j ) ];
555 554 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
556 555 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
557 556 }
558 557 }
559 558 }
560 559
561 560 void fill_averaged_spectral_matrix(void)
562 561 {
563 562 /** This function fills spectral matrices related buffers with arbitrary data.
564 563 *
565 564 * This function is for testing purpose only.
566 565 *
567 566 */
568 567
569 568 #ifdef GSA
570 569 float offset = 10.;
571 570 float coeff = 100000.;
572 571
573 572 averaged_spec_mat_f0[ 0 + 25 * 0 ] = 0. + offset;
574 573 averaged_spec_mat_f0[ 0 + 25 * 1 ] = 1. + offset;
575 574 averaged_spec_mat_f0[ 0 + 25 * 2 ] = 2. + offset;
576 575 averaged_spec_mat_f0[ 0 + 25 * 3 ] = 3. + offset;
577 576 averaged_spec_mat_f0[ 0 + 25 * 4 ] = 4. + offset;
578 577 averaged_spec_mat_f0[ 0 + 25 * 5 ] = 5. + offset;
579 578 averaged_spec_mat_f0[ 0 + 25 * 6 ] = 6. + offset;
580 579 averaged_spec_mat_f0[ 0 + 25 * 7 ] = 7. + offset;
581 580 averaged_spec_mat_f0[ 0 + 25 * 8 ] = 8. + offset;
582 581 averaged_spec_mat_f0[ 0 + 25 * 9 ] = 9. + offset;
583 582 averaged_spec_mat_f0[ 0 + 25 * 10 ] = 10. + offset;
584 583 averaged_spec_mat_f0[ 0 + 25 * 11 ] = 11. + offset;
585 584 averaged_spec_mat_f0[ 0 + 25 * 12 ] = 12. + offset;
586 585 averaged_spec_mat_f0[ 0 + 25 * 13 ] = 13. + offset;
587 586 averaged_spec_mat_f0[ 0 + 25 * 14 ] = 14. + offset;
588 587 averaged_spec_mat_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
589 588 averaged_spec_mat_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
590 589 averaged_spec_mat_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
591 590 averaged_spec_mat_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
592 591 averaged_spec_mat_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
593 592 averaged_spec_mat_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
594 593 averaged_spec_mat_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
595 594 averaged_spec_mat_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
596 595 averaged_spec_mat_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
597 596 averaged_spec_mat_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
598 597 averaged_spec_mat_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
599 598 averaged_spec_mat_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
600 599 averaged_spec_mat_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
601 600 averaged_spec_mat_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
602 601 averaged_spec_mat_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
603 602 offset = 10000000;
604 603 averaged_spec_mat_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
605 604 averaged_spec_mat_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
606 605 averaged_spec_mat_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
607 606 averaged_spec_mat_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
608 607 averaged_spec_mat_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
609 608 averaged_spec_mat_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
610 609 averaged_spec_mat_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
611 610 averaged_spec_mat_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
612 611 averaged_spec_mat_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
613 612 averaged_spec_mat_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
614 613 averaged_spec_mat_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
615 614 averaged_spec_mat_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
616 615 averaged_spec_mat_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
617 616 averaged_spec_mat_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
618 617 averaged_spec_mat_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
619 618
620 619 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_spec_mat_f0[ 0 ];
621 620 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_spec_mat_f0[ 1 ];
622 621 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_spec_mat_f0[ 2 ];
623 622 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_spec_mat_f0[ 3 ];
624 623 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_spec_mat_f0[ 4 ];
625 624 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_spec_mat_f0[ 5 ];
626 625 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_spec_mat_f0[ 6 ];
627 626 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_spec_mat_f0[ 7 ];
628 627 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_spec_mat_f0[ 8 ];
629 628 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_spec_mat_f0[ 9 ];
630 629 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_spec_mat_f0[ 10 ];
631 630 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_spec_mat_f0[ 11 ];
632 631 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_spec_mat_f0[ 12 ];
633 632 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_spec_mat_f0[ 13 ];
634 633 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_spec_mat_f0[ 14 ];
635 634 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_spec_mat_f0[ 15 ];
636 635 #else
637 636 unsigned int i;
638 637
639 638 for(i=0; i<TOTAL_SIZE_SM; i++)
640 639 {
641 640 if (spectral_matrix_regs->matrixF0_Address0 == (int) spec_mat_f0_0)
642 641 averaged_spec_mat_f0[i] = (float) spec_mat_f0_0_bis[ SM_HEADER + i ];
643 642 else
644 643 averaged_spec_mat_f0[i] = (float) spec_mat_f0_0[ SM_HEADER + i ];
645 644 }
646 645 #endif
647 646 }
648 647
649 648 void reset_spectral_matrix_regs()
650 649 {
651 650 /** This function resets the spectral matrices module registers.
652 651 *
653 652 * The registers affected by this function are located at the following offset addresses:
654 653 *
655 654 * - 0x00 config
656 655 * - 0x04 status
657 656 * - 0x08 matrixF0_Address0
658 657 * - 0x10 matrixFO_Address1
659 658 * - 0x14 matrixF1_Address
660 659 * - 0x18 matrixF2_Address
661 660 *
662 661 */
663 662
664 663 #ifdef GSA
665 664 #else
666 665 spectral_matrix_regs->matrixF0_Address0 = (int) spec_mat_f0_0;
667 666 spectral_matrix_regs->matrixFO_Address1 = (int) spec_mat_f0_1;
668 667 spectral_matrix_regs->matrixF1_Address = (int) spec_mat_f1;
669 668 spectral_matrix_regs->matrixF2_Address = (int) spec_mat_f2;
670 669 #endif
671 670 }
672 671
673 672 //******************
674 673 // general functions
675 674
676 675
677 676
678 677
@@ -1,602 +1,623
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 char *lstates[6] = {"Error-reset",
17 17 "Error-wait",
18 18 "Ready",
19 19 "Started",
20 20 "Connecting",
21 21 "Run"
22 22 };
23 23
24 rtems_name semq_name;
25 rtems_id semq_id;
26
24 27 //***********
25 28 // RTEMS TASK
26 29 rtems_task spiq_task(rtems_task_argument unused)
27 30 {
28 31 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
29 32 *
30 33 * @param unused is the starting argument of the RTEMS task
31 34 *
32 35 */
33 36
34 37 rtems_event_set event_out;
35 38 rtems_status_code status;
36 39 int linkStatus;
37 40
38 41 BOOT_PRINTF("in SPIQ *** \n")
39 42
40 43 while(true){
41 44 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
42 45 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
43 46
44 47 // [0] SUSPEND RECV AND SEND TASKS
45 48 rtems_task_suspend( Task_id[ TASKID_RECV ] );
46 49 rtems_task_suspend( Task_id[ TASKID_SEND ] );
47 50
48 51 // [1] CHECK THE LINK
49 52 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
50 53 if ( linkStatus != 5) {
51 54 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
52 55 rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
53 56 }
54 57
55 58 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
56 59 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
57 60 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
58 61 {
59 62 spacewire_compute_stats_offsets();
60 63 status = spacewire_reset_link( );
61 64 }
62 65 else // [2.b] in run state, start the link
63 66 {
64 67 status = spacewire_stop_start_link( fdSPW ); // start the link
65 68 if ( status != RTEMS_SUCCESSFUL)
66 69 {
67 70 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
68 71 }
69 72 }
70 73
71 74 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
72 75 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
73 76 {
74 77 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
75 78 if ( status != RTEMS_SUCCESSFUL ) {
76 79 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
77 80 }
78 81 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
79 82 if ( status != RTEMS_SUCCESSFUL ) {
80 83 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
81 84 }
82 85 }
83 86 else // [3.b] the link is not in run state, go in STANDBY mode
84 87 {
85 88 status = stop_current_mode();
86 89 if ( status != RTEMS_SUCCESSFUL ) {
87 90 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
88 91 }
89 92 status = enter_standby_mode();
90 93 if ( status != RTEMS_SUCCESSFUL ) {
91 94 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
92 95 }
93 96 // wake the WTDG task up to wait for the link recovery
94 97 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
95 98 rtems_task_suspend( RTEMS_SELF );
96 99 }
97 100 }
98 101 }
99 102
100 103 rtems_task recv_task( rtems_task_argument unused )
101 104 {
102 105 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
103 106 *
104 107 * @param unused is the starting argument of the RTEMS task
105 108 *
106 109 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
107 110 * 1. It reads the incoming data.
108 111 * 2. Launches the acceptance procedure.
109 112 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
110 113 *
111 114 */
112 115
113 116 int len;
114 117 ccsdsTelecommandPacket_t currentTC;
115 118 unsigned char computed_CRC[ 2 ];
116 119 unsigned char currentTC_LEN_RCV[ 2 ];
117 120 unsigned int currentTC_LEN_RCV_AsUnsignedInt;
118 121 unsigned int parserCode;
119 122 rtems_status_code status;
120 123 rtems_id queue_recv_id;
121 124 rtems_id queue_send_id;
122 125
123 126 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
124 127
125 128 status = rtems_message_queue_ident( misc_name[QUEUE_RECV], 0, &queue_recv_id );
126 129 if (status != RTEMS_SUCCESSFUL)
127 130 {
128 131 PRINTF1("in RECV *** ERR getting QUEUE_RECV id, %d\n", status)
129 132 }
130 133
131 134 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_send_id );
132 135 if (status != RTEMS_SUCCESSFUL)
133 136 {
134 137 PRINTF1("in RECV *** ERR getting QUEUE_SEND id, %d\n", status)
135 138 }
136 139
137 140 BOOT_PRINTF("in RECV *** \n")
138 141
139 142 while(1)
140 143 {
141 144 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
142 145 if (len == -1){ // error during the read call
143 146 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
144 147 }
145 148 else {
146 149 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
147 150 PRINTF("in RECV *** packet lenght too short\n")
148 151 }
149 152 else {
150 153 currentTC_LEN_RCV_AsUnsignedInt = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
151 154 currentTC_LEN_RCV[ 0 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt >> 8);
152 155 currentTC_LEN_RCV[ 1 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt );
153 156 // CHECK THE TC
154 157 parserCode = tc_parser( &currentTC, currentTC_LEN_RCV_AsUnsignedInt, computed_CRC ) ;
155 158 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
156 159 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
157 160 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
158 161 || (parserCode == WRONG_SRC_ID) )
159 162 { // send TM_LFR_TC_EXE_CORRUPTED
160 163 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
161 164 &&
162 165 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
163 166 )
164 167 {
165 168 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id, computed_CRC, currentTC_LEN_RCV );
166 169 }
167 170 }
168 171 else
169 172 { // send valid TC to the action launcher
170 173 status = rtems_message_queue_send( queue_recv_id, &currentTC,
171 174 currentTC_LEN_RCV_AsUnsignedInt + CCSDS_TC_TM_PACKET_OFFSET + 3);
172 175 }
173 176 }
174 177 }
175 178 }
176 179 }
177 180
178 181 rtems_task send_task( rtems_task_argument argument)
179 182 {
180 183 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
181 184 *
182 185 * @param unused is the starting argument of the RTEMS task
183 186 *
184 187 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
185 188 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
186 189 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
187 190 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
188 191 * data it contains.
189 192 *
190 193 */
191 194
192 195 rtems_status_code status; // RTEMS status code
193 196 char incomingData[ACTION_MSG_PKTS_MAX_SIZE]; // incoming data buffer
194 197 spw_ioctl_pkt_send *spw_ioctl_send;
195 198 size_t size; // size of the incoming TC packet
196 199 u_int32_t count;
197 200 rtems_id queue_id;
198 201
199 202 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id );
200 203 if (status != RTEMS_SUCCESSFUL)
201 204 {
202 205 PRINTF1("in SEND *** ERR getting queue id, %d\n", status)
203 206 }
204 207
205 208 BOOT_PRINTF("in SEND *** \n")
206 209
207 210 while(1)
208 211 {
209 212 status = rtems_message_queue_receive( queue_id, incomingData, &size,
210 213 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
211 214
212 215 if (status!=RTEMS_SUCCESSFUL)
213 216 {
214 217 PRINTF1("in SEND *** (1) ERR = %d\n", status)
215 218 }
216 219 else
217 220 {
218 221 if ( incomingData[0] == CCSDS_DESTINATION_ID) // the incoming message is a ccsds packet
219 222 {
220 223 status = write( fdSPW, incomingData, size );
221 224 if (status == -1){
222 225 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
223 226 }
224 227 }
225 228 else // the incoming message is a spw_ioctl_pkt_send structure
226 229 {
227 230 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
228 231 if (spw_ioctl_send->hlen == 0)
229 232 {
230 233 status = write( fdSPW, spw_ioctl_send->data, spw_ioctl_send->dlen );
231 234 if (status == -1){
232 235 PRINTF2("in SEND *** (2.b) ERRNO = %d, dlen = %d\n", errno, spw_ioctl_send->dlen)
233 236 }
234 237 }
235 238 else
236 239 {
237 240 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
238 241 if (status == -1){
239 242 PRINTF2("in SEND *** (2.c) ERRNO = %d, dlen = %d\n", errno, spw_ioctl_send->dlen)
240 243 PRINTF1(" hlen = %d\n", spw_ioctl_send->hlen)
241 244 }
242 245 }
243 246 }
244 247 }
245 248
246 249 status = rtems_message_queue_get_number_pending( queue_id, &count );
247 250 if (status != RTEMS_SUCCESSFUL)
248 251 {
249 252 PRINTF1("in SEND *** (3) ERR = %d\n", status)
250 253 }
251 254 else
252 255 {
253 256 if (count > maxCount)
254 257 {
255 258 maxCount = count;
256 259 }
257 260 }
258 261 }
259 262 }
260 263
261 264 rtems_task wtdg_task( rtems_task_argument argument )
262 265 {
263 266 rtems_event_set event_out;
264 267 rtems_status_code status;
265 268 int linkStatus;
266 269
267 270 BOOT_PRINTF("in WTDG ***\n")
268 271
269 272 while(1)
270 273 {
271 274 // wait for an RTEMS_EVENT
272 275 rtems_event_receive( RTEMS_EVENT_0,
273 276 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
274 277 PRINTF("in WTDG *** wait for the link\n")
275 278 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
276 279 while( linkStatus != 5) // wait for the link
277 280 {
278 281 rtems_task_wake_after( 10 );
279 282 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
280 283 }
281 284
282 285 status = spacewire_stop_start_link( fdSPW );
283 286
284 287 if (status != RTEMS_SUCCESSFUL)
285 288 {
286 289 PRINTF1("in WTDG *** ERR link not started %d\n", status)
287 290 }
288 291 else
289 292 {
290 293 PRINTF("in WTDG *** OK link started\n")
291 294 }
292 295
293 296 // restart the SPIQ task
294 297 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
295 298 if ( status != RTEMS_SUCCESSFUL ) {
296 299 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
297 300 }
298 301
299 302 // restart RECV and SEND
300 303 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
301 304 if ( status != RTEMS_SUCCESSFUL ) {
302 305 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
303 306 }
304 307 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
305 308 if ( status != RTEMS_SUCCESSFUL ) {
306 309 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
307 310 }
308 311 }
309 312 }
310 313
311 314 //****************
312 315 // OTHER FUNCTIONS
313 316 int spacewire_open_link( void )
314 317 {
315 318 /** This function opens the SpaceWire link.
316 319 *
317 320 * @return a valid file descriptor in case of success, -1 in case of a failure
318 321 *
319 322 */
320 323 rtems_status_code status;
321 324
322 325 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
323 326 if ( fdSPW < 0 ) {
324 327 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
325 328 }
326 329 else
327 330 {
328 331 status = RTEMS_SUCCESSFUL;
329 332 }
330 333
331 334 return status;
332 335 }
333 336
334 337 int spacewire_start_link( int fd )
335 338 {
336 339 rtems_status_code status;
337 340
338 341 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
339 342 // -1 default hardcoded driver timeout
340 343
341 344 return status;
342 345 }
343 346
344 347 int spacewire_stop_start_link( int fd )
345 348 {
346 349 rtems_status_code status;
347 350
348 351 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
349 352 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
350 353 // -1 default hardcoded driver timeout
351 354
352 355 return status;
353 356 }
354 357
355 358 int spacewire_configure_link( int fd )
356 359 {
357 360 /** This function configures the SpaceWire link.
358 361 *
359 362 * @return GR-RTEMS-DRIVER directive status codes:
360 363 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
361 364 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
362 365 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
363 366 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
364 367 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
365 368 * - 5 EIO - Error when writing to grswp hardware registers.
366 369 * - 2 ENOENT - No such file or directory
367 370 */
368 371
369 372 rtems_status_code status;
370 373
371 374 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
372 375 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
373 376
374 377 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
375 378 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
376 379 //
377 380 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
378 381 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
379 382 //
380 383 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
381 384 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
382 385 //
383 386 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
384 387 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
385 388 //
386 389 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
387 390 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
388 391 //
389 392 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
390 393 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
391 394 //
392 395 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
393 396 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
394 397
395 398 return status;
396 399 }
397 400
398 401 int spacewire_reset_link( void )
399 402 {
400 403 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
401 404 *
402 405 * @return RTEMS directive status code:
403 406 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
404 407 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
405 408 *
406 409 */
407 410
408 411 rtems_status_code status_spw;
409 412 int i;
410 413
411 414 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
412 415 {
413 416 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
414 417
415 418 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
416 419
417 420 status_spw = spacewire_stop_start_link( fdSPW );
418 421 if ( status_spw != RTEMS_SUCCESSFUL )
419 422 {
420 423 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
421 424 }
422 425
423 426 if ( status_spw == RTEMS_SUCCESSFUL)
424 427 {
425 428 break;
426 429 }
427 430 }
428 431
429 432 return status_spw;
430 433 }
431 434
432 435 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
433 436 {
434 437 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
435 438 *
436 439 * @param val is the value, 0 or 1, used to set the value of the NP bit.
437 440 * @param regAddr is the address of the GRSPW control register.
438 441 *
439 442 * NP is the bit 20 of the GRSPW control register.
440 443 *
441 444 */
442 445
443 446 unsigned int *spwptr = (unsigned int*) regAddr;
444 447
445 448 if (val == 1) {
446 449 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
447 450 }
448 451 if (val== 0) {
449 452 *spwptr = *spwptr & 0xffdfffff;
450 453 }
451 454 }
452 455
453 456 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
454 457 {
455 458 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
456 459 *
457 460 * @param val is the value, 0 or 1, used to set the value of the RE bit.
458 461 * @param regAddr is the address of the GRSPW control register.
459 462 *
460 463 * RE is the bit 16 of the GRSPW control register.
461 464 *
462 465 */
463 466
464 467 unsigned int *spwptr = (unsigned int*) regAddr;
465 468
466 469 if (val == 1)
467 470 {
468 471 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
469 472 }
470 473 if (val== 0)
471 474 {
472 475 *spwptr = *spwptr & 0xfffdffff;
473 476 }
474 477 }
475 478
476 479 void spacewire_compute_stats_offsets( void )
477 480 {
478 481 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
479 482 *
480 483 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
481 484 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
482 485 * during the open systel call).
483 486 *
484 487 */
485 488
486 489 spw_stats spacewire_stats_grspw;
487 490 rtems_status_code status;
488 491
489 492 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
490 493
491 494 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
492 495 + spacewire_stats.packets_received;
493 496 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
494 497 + spacewire_stats.packets_sent;
495 498 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
496 499 + spacewire_stats.parity_err;
497 500 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
498 501 + spacewire_stats.disconnect_err;
499 502 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
500 503 + spacewire_stats.escape_err;
501 504 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
502 505 + spacewire_stats.credit_err;
503 506 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
504 507 + spacewire_stats.write_sync_err;
505 508 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
506 509 + spacewire_stats.rx_rmap_header_crc_err;
507 510 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
508 511 + spacewire_stats.rx_rmap_data_crc_err;
509 512 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
510 513 + spacewire_stats.early_ep;
511 514 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
512 515 + spacewire_stats.invalid_address;
513 516 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
514 517 + spacewire_stats.rx_eep_err;
515 518 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
516 519 + spacewire_stats.rx_truncated;
517 520 }
518 521
519 522 void spacewire_update_statistics( void )
520 523 {
521 524 rtems_status_code status;
522 525 spw_stats spacewire_stats_grspw;
523 526
524 527 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
525 528
526 529 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
527 530 + spacewire_stats_grspw.packets_received;
528 531 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
529 532 + spacewire_stats_grspw.packets_sent;
530 533 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
531 534 + spacewire_stats_grspw.parity_err;
532 535 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
533 536 + spacewire_stats_grspw.disconnect_err;
534 537 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
535 538 + spacewire_stats_grspw.escape_err;
536 539 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
537 540 + spacewire_stats_grspw.credit_err;
538 541 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
539 542 + spacewire_stats_grspw.write_sync_err;
540 543 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
541 544 + spacewire_stats_grspw.rx_rmap_header_crc_err;
542 545 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
543 546 + spacewire_stats_grspw.rx_rmap_data_crc_err;
544 547 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
545 548 + spacewire_stats_grspw.early_ep;
546 549 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
547 550 + spacewire_stats_grspw.invalid_address;
548 551 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
549 552 + spacewire_stats_grspw.rx_eep_err;
550 553 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
551 554 + spacewire_stats_grspw.rx_truncated;
552 555 //spacewire_stats.tx_link_err;
553 556
554 557 //****************************
555 558 // DPU_SPACEWIRE_IF_STATISTICS
556 559 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
557 560 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
558 561 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
559 562 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
560 563 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
561 564 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
562 565
563 566 //******************************************
564 567 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
565 568 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
566 569 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
567 570 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
568 571 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
569 572 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
570 573 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb;
571 574 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb;
572 575 housekeeping_packet.hk_lfr_dpu_spw_header_crc = (unsigned char) spacewire_stats.rx_rmap_header_crc_err;
573 576 housekeeping_packet.hk_lfr_dpu_spw_data_crc = (unsigned char) spacewire_stats.rx_rmap_data_crc_err;
574 577
575 578 //*********************************************
576 579 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
577 580 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
578 581 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
579 582 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
580 583 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
581 584
582 585 }
583 586
584 587 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
585 588 {
586 589 //if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_1 ) != RTEMS_SUCCESSFUL) {
587 590 // printf("In timecode_irq_handler *** Error sending event to DUMB\n");
588 591 //}
589 592 }
590 593
591 594 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
592 595 {
593 596 int linkStatus;
594 597 rtems_status_code status;
595 598
596 599 ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
597 600
598 601 if ( linkStatus == 5) {
599 602 PRINTF("in spacewire_reset_link *** link is running\n")
600 603 status = RTEMS_SUCCESSFUL;
601 604 }
602 605 }
606
607 rtems_status_code rtems_message_queue_send_lfr( rtems_id id, const void *buffer, size_t size )
608 {
609 rtems_status_code status;
610 rtems_mode previous_mode_set;
611
612 // set the preemption OFF
613 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &previous_mode_set );
614
615 // use the message queue
616 status = rtems_message_queue_send_lfr( id, buffer, size );
617
618 // set the preemption ON
619 status = rtems_task_mode( RTEMS_PREEMPT , RTEMS_PREEMPT_MASK, &previous_mode_set );
620
621 return status;
622 }
623
@@ -1,448 +1,449
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 28 set_wfp_data_shaping(parameter_dump_packet.bw_sp0_sp1_r0_r1);
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43
44 44 flag = LFR_SUCCESSFUL;
45 45 result = LFR_SUCCESSFUL;
46 46
47 47 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
48 48 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
49 49 flag = LFR_DEFAULT;
50 50 }
51 51
52 52 //***************
53 53 // sy_lfr_n_swf_l
54 54 if (flag == LFR_SUCCESSFUL)
55 55 {
56 56 result = set_sy_lfr_n_swf_l( TC, queue_id );
57 57 if (result != LFR_SUCCESSFUL)
58 58 {
59 59 flag = LFR_DEFAULT;
60 60 }
61 61 }
62 62
63 63 //***************
64 64 // sy_lfr_n_swf_p
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_p( TC, queue_id );
68 68 if (result != LFR_SUCCESSFUL)
69 69 {
70 70 flag = LFR_DEFAULT;
71 71 }
72 72 }
73 73
74 74 //***************
75 75 // SY_LFR_N_ASM_P
76 76 if (flag == LFR_SUCCESSFUL)
77 77 {
78 78 result = set_sy_lfr_n_asm_p( TC, queue_id );
79 79 if (result != LFR_SUCCESSFUL)
80 80 {
81 81 flag = LFR_DEFAULT;
82 82 }
83 83 }
84 84
85 85 //***************
86 86 // SY_LFR_N_BP_P0
87 87 if (flag == LFR_SUCCESSFUL)
88 88 {
89 89 result = set_sy_lfr_n_bp_p0( TC, queue_id );
90 90 if (result != LFR_SUCCESSFUL)
91 91 {
92 92 flag = LFR_DEFAULT;
93 93 }
94 94 }
95 95
96 96 //***************
97 97 // sy_lfr_n_bp_p1
98 98 if (flag == LFR_SUCCESSFUL)
99 99 {
100 100 result = set_sy_lfr_n_bp_p1( TC, queue_id );
101 101 if (result != LFR_SUCCESSFUL)
102 102 {
103 103 flag = LFR_DEFAULT;
104 104 }
105 105 }
106 106
107 107 return result;
108 108 }
109 109
110 110 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
111 111 {
112 112 /** This function updates the LFR registers with the incoming burst parameters.
113 113 *
114 114 * @param TC points to the TeleCommand packet that is being processed
115 115 * @param queue_id is the id of the queue which handles TM related to this execution step
116 116 *
117 117 */
118 118
119 119 int result;
120 120 unsigned char lfrMode;
121 121
122 122 result = LFR_DEFAULT;
123 123 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
124 124
125 125 if ( lfrMode == LFR_MODE_BURST ) {
126 126 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
127 127 result = LFR_DEFAULT;
128 128 }
129 129 else {
130 130 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[0];
131 131 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[1];
132 132
133 133 result = LFR_SUCCESSFUL;
134 134 }
135 135
136 136 return result;
137 137 }
138 138
139 139 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
140 140 {
141 141 /** This function updates the LFR registers with the incoming sbm1 parameters.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM related to this execution step
145 145 *
146 146 */
147 147 int result;
148 148 unsigned char lfrMode;
149 149
150 150 result = LFR_DEFAULT;
151 151 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
152 152
153 153 if ( (lfrMode == LFR_MODE_SBM1) || (lfrMode == LFR_MODE_SBM2) ) {
154 154 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
155 155 result = LFR_DEFAULT;
156 156 }
157 157 else {
158 158 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[0];
159 159 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[1];
160 160
161 161 result = LFR_SUCCESSFUL;
162 162 }
163 163
164 164 return result;
165 165 }
166 166
167 167 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
168 168 {
169 169 /** This function updates the LFR registers with the incoming sbm2 parameters.
170 170 *
171 171 * @param TC points to the TeleCommand packet that is being processed
172 172 * @param queue_id is the id of the queue which handles TM related to this execution step
173 173 *
174 174 */
175 175
176 176 int result;
177 177 unsigned char lfrMode;
178 178
179 179 result = LFR_DEFAULT;
180 180 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
181 181
182 182 if ( (lfrMode == LFR_MODE_SBM2) || (lfrMode == LFR_MODE_SBM2) ) {
183 183 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
184 184 result = LFR_DEFAULT;
185 185 }
186 186 else {
187 187 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[0];
188 188 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[1];
189 189
190 190 result = LFR_SUCCESSFUL;
191 191 }
192 192
193 193 return result;
194 194 }
195 195
196 196 int action_dump_par( rtems_id queue_id )
197 197 {
198 198 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
199 199 *
200 200 * @param queue_id is the id of the queue which handles TM related to this execution step.
201 201 *
202 202 * @return RTEMS directive status codes:
203 203 * - RTEMS_SUCCESSFUL - message sent successfully
204 204 * - RTEMS_INVALID_ID - invalid queue id
205 205 * - RTEMS_INVALID_SIZE - invalid message size
206 206 * - RTEMS_INVALID_ADDRESS - buffer is NULL
207 207 * - RTEMS_UNSATISFIED - out of message buffers
208 208 * - RTEMS_TOO_MANY - queue s limit has been reached
209 209 *
210 210 */
211 211
212 212 int status;
213 213
214 214 // UPDATE TIME
215 increment_seq_counter( parameter_dump_packet.packetSequenceControl );
215 216 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
216 217 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
217 218 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
218 219 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
219 220 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
220 221 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
221 222 // SEND DATA
222 223 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
223 224 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
224 225 if (status != RTEMS_SUCCESSFUL) {
225 226 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
226 227 }
227 228
228 229 return status;
229 230 }
230 231
231 232 //***********************
232 233 // NORMAL MODE PARAMETERS
233 234
234 235 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
235 236 {
236 237 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
237 238 *
238 239 * @param TC points to the TeleCommand packet that is being processed
239 240 * @param queue_id is the id of the queue which handles TM related to this execution step
240 241 *
241 242 */
242 243
243 244 unsigned int tmp;
244 245 int result;
245 246 unsigned char msb;
246 247 unsigned char lsb;
247 248
248 249 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L ];
249 250 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L+1 ];
250 251
251 252 tmp = ( unsigned int ) floor(
252 253 ( ( msb*256 ) + lsb ) / 16
253 254 ) * 16;
254 255
255 256 if ( (tmp < 16) || (tmp > 2048) ) // the snapshot period is a multiple of 16
256 257 { // 2048 is the maximum limit due to the size of the buffers
257 258 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_L+10, lsb );
258 259 result = WRONG_APP_DATA;
259 260 }
260 261 else if (tmp != 2048)
261 262 {
262 263 send_tm_lfr_tc_exe_not_implemented( TC, queue_id );
263 264 result = FUNCT_NOT_IMPL;
264 265 }
265 266 else
266 267 {
267 268 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (tmp >> 8);
268 269 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (tmp );
269 270 result = LFR_SUCCESSFUL;
270 271 }
271 272
272 273 return result;
273 274 }
274 275
275 276 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
276 277 {
277 278 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
278 279 *
279 280 * @param TC points to the TeleCommand packet that is being processed
280 281 * @param queue_id is the id of the queue which handles TM related to this execution step
281 282 *
282 283 */
283 284
284 285 unsigned int tmp;
285 286 int result;
286 287 unsigned char msb;
287 288 unsigned char lsb;
288 289
289 290 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P ];
290 291 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P+1 ];
291 292
292 293 tmp = ( unsigned int ) floor(
293 294 ( ( msb*256 ) + lsb ) / 8
294 295 ) * 8;
295 296
296 297 if ( (tmp < 16) || (tmp > 65528) )
297 298 {
298 299 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_P+10, lsb );
299 300 result = WRONG_APP_DATA;
300 301 }
301 302 else
302 303 {
303 304 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (tmp >> 8);
304 305 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (tmp );
305 306 result = LFR_SUCCESSFUL;
306 307 }
307 308
308 309 return result;
309 310 }
310 311
311 312 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
312 313 {
313 314 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
314 315 *
315 316 * @param TC points to the TeleCommand packet that is being processed
316 317 * @param queue_id is the id of the queue which handles TM related to this execution step
317 318 *
318 319 */
319 320
320 321 int result;
321 322 unsigned char msb;
322 323 unsigned char lsb;
323 324
324 325 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P ];
325 326 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P+1 ];
326 327
327 328 parameter_dump_packet.sy_lfr_n_asm_p[0] = msb;
328 329 parameter_dump_packet.sy_lfr_n_asm_p[1] = lsb;
329 330 result = LFR_SUCCESSFUL;
330 331
331 332 return result;
332 333 }
333 334
334 335 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
335 336 {
336 337 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
337 338 *
338 339 * @param TC points to the TeleCommand packet that is being processed
339 340 * @param queue_id is the id of the queue which handles TM related to this execution step
340 341 *
341 342 */
342 343
343 344 int status;
344 345
345 346 status = LFR_SUCCESSFUL;
346 347
347 348 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P0 ];
348 349
349 350 return status;
350 351 }
351 352
352 353 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
353 354 {
354 355 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
355 356 *
356 357 * @param TC points to the TeleCommand packet that is being processed
357 358 * @param queue_id is the id of the queue which handles TM related to this execution step
358 359 *
359 360 */
360 361
361 362 int status;
362 363
363 364 status = LFR_SUCCESSFUL;
364 365
365 366 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P1 ];
366 367
367 368 return status;
368 369 }
369 370
370 371 //**********************
371 372 // BURST MODE PARAMETERS
372 373
373 374 //*********************
374 375 // SBM1 MODE PARAMETERS
375 376
376 377 //*********************
377 378 // SBM2 MODE PARAMETERS
378 379
379 380 //**********
380 381 // init dump
381 382
382 383 void init_parameter_dump( void )
383 384 {
384 385 /** This function initialize the parameter_dump_packet global variable with default values.
385 386 *
386 387 */
387 388
388 389 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
389 390 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
390 391 parameter_dump_packet.reserved = CCSDS_RESERVED;
391 392 parameter_dump_packet.userApplication = CCSDS_USER_APP;
392 393 parameter_dump_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_PARAMETER_DUMP >> 8);
393 394 parameter_dump_packet.packetID[1] = (unsigned char) TM_PACKET_ID_PARAMETER_DUMP;
394 395 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
395 396 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
396 397 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
397 398 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
398 399 // DATA FIELD HEADER
399 400 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
400 401 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
401 402 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
402 403 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
403 404 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
404 405 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
405 406 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
406 407 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
407 408 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
408 409 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
409 410 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
410 411
411 412 //******************
412 413 // COMMON PARAMETERS
413 414 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
414 415 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
415 416
416 417 //******************
417 418 // NORMAL PARAMETERS
418 419 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
419 420 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
420 421 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
421 422 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
422 423 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
423 424 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
424 425 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
425 426 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
426 427
427 428 //*****************
428 429 // BURST PARAMETERS
429 430 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
430 431 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
431 432
432 433 //****************
433 434 // SBM1 PARAMETERS
434 435 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
435 436 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
436 437
437 438 //****************
438 439 // SBM2 PARAMETERS
439 440 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
440 441 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
441 442 }
442 443
443 444
444 445
445 446
446 447
447 448
448 449
@@ -1,419 +1,490
1 1 /** Functions to send TM packets related to TC parsing and execution.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to send appropriate TM packets after parsing and execution:
7 7 * - TM_LFR_TC_EXE_SUCCESS
8 8 * - TM_LFR_TC_EXE_INCONSISTENT
9 9 * - TM_LFR_TC_EXE_NOT_EXECUTABLE
10 10 * - TM_LFR_TC_EXE_NOT_IMPLEMENTED
11 11 * - TM_LFR_TC_EXE_ERROR
12 12 * - TM_LFR_TC_EXE_CORRUPTED
13 13 *
14 14 */
15 15
16 16 #include "tm_lfr_tc_exe.h"
17 17
18 18 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
19 19 {
20 20 /** This function sends a TM_LFR_TC_EXE_SUCCESS packet in the dedicated RTEMS message queue.
21 21 *
22 22 * @param TC points to the TeleCommand packet that is being processed
23 23 * @param queue_id is the id of the queue which handles TM
24 24 *
25 25 * @return RTEMS directive status code:
26 26 * - RTEMS_SUCCESSFUL - message sent successfully
27 27 * - RTEMS_INVALID_ID - invalid queue id
28 28 * - RTEMS_INVALID_SIZE - invalid message size
29 29 * - RTEMS_INVALID_ADDRESS - buffer is NULL
30 30 * - RTEMS_UNSATISFIED - out of message buffers
31 31 * - RTEMS_TOO_MANY - queue s limit has been reached
32 32 *
33 33 */
34 34
35 35 rtems_status_code status;
36 36 Packet_TM_LFR_TC_EXE_SUCCESS_t TM;
37 37 unsigned char messageSize;
38 38
39 39 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
40 40 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
41 41 TM.reserved = DEFAULT_RESERVED;
42 42 TM.userApplication = CCSDS_USER_APP;
43 43 // PACKET HEADER
44 44 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
45 45 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
46 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
47 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
46 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
48 47 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS >> 8);
49 48 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS );
50 49 // DATA FIELD HEADER
51 50 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
52 51 TM.serviceType = TM_TYPE_TC_EXE;
53 52 TM.serviceSubType = TM_SUBTYPE_EXE_OK;
54 53 TM.destinationID = TC->sourceID;
55 54 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
56 55 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
57 56 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
58 57 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
59 58 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
60 59 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
61 60 //
62 61 TM.telecommand_pkt_id[0] = TC->packetID[0];
63 62 TM.telecommand_pkt_id[1] = TC->packetID[1];
64 63 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
65 64 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
66 65
67 66 messageSize = PACKET_LENGTH_TC_EXE_SUCCESS + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
68 67
69 68 // SEND DATA
70 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
69 status = rtems_message_queue_send( queue_id, &TM, messageSize);
71 70 if (status != RTEMS_SUCCESSFUL) {
72 71 PRINTF("in send_tm_lfr_tc_exe_success *** ERR\n")
73 72 }
74 73
75 74 return status;
76 75 }
77 76
78 77 int send_tm_lfr_tc_exe_inconsistent( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
79 78 unsigned char byte_position, unsigned char rcv_value )
80 79 {
81 80 /** This function sends a TM_LFR_TC_EXE_INCONSISTENT packet in the dedicated RTEMS message queue.
82 81 *
83 82 * @param TC points to the TeleCommand packet that is being processed
84 83 * @param queue_id is the id of the queue which handles TM
85 84 * @param byte_position is the byte position of the MSB of the parameter that has been seen as inconsistent
86 85 * @param rcv_value is the value of the LSB of the parameter that has been deteced as inconsistent
87 86 *
88 87 * @return RTEMS directive status code:
89 88 * - RTEMS_SUCCESSFUL - message sent successfully
90 89 * - RTEMS_INVALID_ID - invalid queue id
91 90 * - RTEMS_INVALID_SIZE - invalid message size
92 91 * - RTEMS_INVALID_ADDRESS - buffer is NULL
93 92 * - RTEMS_UNSATISFIED - out of message buffers
94 93 * - RTEMS_TOO_MANY - queue s limit has been reached
95 94 *
96 95 */
97 96
98 97 rtems_status_code status;
99 98 Packet_TM_LFR_TC_EXE_INCONSISTENT_t TM;
100 99 unsigned char messageSize;
101 100
102 101 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
103 102 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
104 103 TM.reserved = DEFAULT_RESERVED;
105 104 TM.userApplication = CCSDS_USER_APP;
106 105 // PACKET HEADER
107 106 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
108 107 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
109 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
110 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
108 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
111 109 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT >> 8);
112 110 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT );
113 111 // DATA FIELD HEADER
114 112 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
115 113 TM.serviceType = TM_TYPE_TC_EXE;
116 114 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
117 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
115 TM.destinationID = TC->sourceID;
118 116 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
119 117 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
120 118 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
121 119 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
122 120 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
123 121 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
124 122 //
125 123 TM.tc_failure_code[0] = (char) (WRONG_APP_DATA >> 8);
126 124 TM.tc_failure_code[1] = (char) (WRONG_APP_DATA );
127 125 TM.telecommand_pkt_id[0] = TC->packetID[0];
128 126 TM.telecommand_pkt_id[1] = TC->packetID[1];
129 127 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
130 128 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
131 129 TM.tc_service = TC->serviceType; // type of the rejected TC
132 130 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
133 131 TM.byte_position = byte_position;
134 132 TM.rcv_value = rcv_value;
135 133
136 134 messageSize = PACKET_LENGTH_TC_EXE_INCONSISTENT + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
137 135
138 136 // SEND DATA
139 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
137 status = rtems_message_queue_send( queue_id, &TM, messageSize);
140 138 if (status != RTEMS_SUCCESSFUL) {
141 139 PRINTF("in send_tm_lfr_tc_exe_inconsistent *** ERR\n")
142 140 }
143 141
144 142 return status;
145 143 }
146 144
147 145 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
148 146 {
149 147 /** This function sends a TM_LFR_TC_EXE_NOT_EXECUTABLE packet in the dedicated RTEMS message queue.
150 148 *
151 149 * @param TC points to the TeleCommand packet that is being processed
152 150 * @param queue_id is the id of the queue which handles TM
153 151 *
154 152 * @return RTEMS directive status code:
155 153 * - RTEMS_SUCCESSFUL - message sent successfully
156 154 * - RTEMS_INVALID_ID - invalid queue id
157 155 * - RTEMS_INVALID_SIZE - invalid message size
158 156 * - RTEMS_INVALID_ADDRESS - buffer is NULL
159 157 * - RTEMS_UNSATISFIED - out of message buffers
160 158 * - RTEMS_TOO_MANY - queue s limit has been reached
161 159 *
162 160 */
163 161
164 162 rtems_status_code status;
165 163 Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t TM;
166 164 unsigned char messageSize;
167 165
168 166 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
169 167 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
170 168 TM.reserved = DEFAULT_RESERVED;
171 169 TM.userApplication = CCSDS_USER_APP;
172 170 // PACKET HEADER
173 171 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
174 172 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
175 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
176 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
173 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
177 174 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE >> 8);
178 175 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE );
179 176 // DATA FIELD HEADER
180 177 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
181 178 TM.serviceType = TM_TYPE_TC_EXE;
182 179 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
183 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
180 TM.destinationID = TC->sourceID; // default destination id
184 181 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
185 182 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
186 183 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
187 184 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
188 185 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
189 186 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
190 187 //
191 188 TM.tc_failure_code[0] = (char) (TC_NOT_EXE >> 8);
192 189 TM.tc_failure_code[1] = (char) (TC_NOT_EXE );
193 190 TM.telecommand_pkt_id[0] = TC->packetID[0];
194 191 TM.telecommand_pkt_id[1] = TC->packetID[1];
195 192 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
196 193 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
197 194 TM.tc_service = TC->serviceType; // type of the rejected TC
198 195 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
199 196 TM.lfr_status_word[0] = housekeeping_packet.lfr_status_word[0];
200 197 TM.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1];
201 198
202 199 messageSize = PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
203 200
204 201 // SEND DATA
205 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
202 status = rtems_message_queue_send( queue_id, &TM, messageSize);
206 203 if (status != RTEMS_SUCCESSFUL) {
207 204 PRINTF("in send_tm_lfr_tc_exe_not_executable *** ERR\n")
208 205 }
209 206
210 207 return status;
211 208 }
212 209
213 210 int send_tm_lfr_tc_exe_not_implemented( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
214 211 {
215 212 /** This function sends a TM_LFR_TC_EXE_NOT_IMPLEMENTED packet in the dedicated RTEMS message queue.
216 213 *
217 214 * @param TC points to the TeleCommand packet that is being processed
218 215 * @param queue_id is the id of the queue which handles TM
219 216 *
220 217 * @return RTEMS directive status code:
221 218 * - RTEMS_SUCCESSFUL - message sent successfully
222 219 * - RTEMS_INVALID_ID - invalid queue id
223 220 * - RTEMS_INVALID_SIZE - invalid message size
224 221 * - RTEMS_INVALID_ADDRESS - buffer is NULL
225 222 * - RTEMS_UNSATISFIED - out of message buffers
226 223 * - RTEMS_TOO_MANY - queue s limit has been reached
227 224 *
228 225 */
229 226
230 227 rtems_status_code status;
231 228 Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t TM;
232 229 unsigned char messageSize;
233 230
234 231 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
235 232 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
236 233 TM.reserved = DEFAULT_RESERVED;
237 234 TM.userApplication = CCSDS_USER_APP;
238 235 // PACKET HEADER
239 236 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
240 237 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
241 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
242 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
238 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
243 239 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED >> 8);
244 240 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED );
245 241 // DATA FIELD HEADER
246 242 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
247 243 TM.serviceType = TM_TYPE_TC_EXE;
248 244 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
249 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
245 TM.destinationID = TC->sourceID; // default destination id
250 246 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
251 247 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
252 248 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
253 249 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
254 250 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
255 251 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
256 252 //
257 253 TM.tc_failure_code[0] = (char) (FUNCT_NOT_IMPL >> 8);
258 254 TM.tc_failure_code[1] = (char) (FUNCT_NOT_IMPL );
259 255 TM.telecommand_pkt_id[0] = TC->packetID[0];
260 256 TM.telecommand_pkt_id[1] = TC->packetID[1];
261 257 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
262 258 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
263 259 TM.tc_service = TC->serviceType; // type of the rejected TC
264 260 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
265 261
266 262 messageSize = PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
267 263
268 264 // SEND DATA
269 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
265 status = rtems_message_queue_send( queue_id, &TM, messageSize);
270 266 if (status != RTEMS_SUCCESSFUL) {
271 267 PRINTF("in send_tm_lfr_tc_exe_not_implemented *** ERR\n")
272 268 }
273 269
274 270 return status;
275 271 }
276 272
277 273 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
278 274 {
279 275 /** This function sends a TM_LFR_TC_EXE_ERROR packet in the dedicated RTEMS message queue.
280 276 *
281 277 * @param TC points to the TeleCommand packet that is being processed
282 278 * @param queue_id is the id of the queue which handles TM
283 279 *
284 280 * @return RTEMS directive status code:
285 281 * - RTEMS_SUCCESSFUL - message sent successfully
286 282 * - RTEMS_INVALID_ID - invalid queue id
287 283 * - RTEMS_INVALID_SIZE - invalid message size
288 284 * - RTEMS_INVALID_ADDRESS - buffer is NULL
289 285 * - RTEMS_UNSATISFIED - out of message buffers
290 286 * - RTEMS_TOO_MANY - queue s limit has been reached
291 287 *
292 288 */
293 289
294 290 rtems_status_code status;
295 291 Packet_TM_LFR_TC_EXE_ERROR_t TM;
296 292 unsigned char messageSize;
297 293
298 294 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
299 295 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
300 296 TM.reserved = DEFAULT_RESERVED;
301 297 TM.userApplication = CCSDS_USER_APP;
302 298 // PACKET HEADER
303 299 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
304 300 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
305 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
306 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
301 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
307 302 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR >> 8);
308 303 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR );
309 304 // DATA FIELD HEADER
310 305 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
311 306 TM.serviceType = TM_TYPE_TC_EXE;
312 307 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
313 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
308 TM.destinationID = TC->sourceID; // default destination id
314 309 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
315 310 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
316 311 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
317 312 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
318 313 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
319 314 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
320 315 //
321 316 TM.tc_failure_code[0] = (char) (FAIL_DETECTED >> 8);
322 317 TM.tc_failure_code[1] = (char) (FAIL_DETECTED );
323 318 TM.telecommand_pkt_id[0] = TC->packetID[0];
324 319 TM.telecommand_pkt_id[1] = TC->packetID[1];
325 320 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
326 321 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
327 322 TM.tc_service = TC->serviceType; // type of the rejected TC
328 323 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
329 324
330 325 messageSize = PACKET_LENGTH_TC_EXE_ERROR + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
331 326
332 327 // SEND DATA
333 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
328 status = rtems_message_queue_send( queue_id, &TM, messageSize);
334 329 if (status != RTEMS_SUCCESSFUL) {
335 330 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
336 331 }
337 332
338 333 return status;
339 334 }
340 335
341 336 int send_tm_lfr_tc_exe_corrupted(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
342 337 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV )
343 338 {
344 339 /** This function sends a TM_LFR_TC_EXE_CORRUPTED packet in the dedicated RTEMS message queue.
345 340 *
346 341 * @param TC points to the TeleCommand packet that is being processed
347 342 * @param queue_id is the id of the queue which handles TM
348 343 * @param computed_CRC points to a buffer of two bytes containing the CRC computed during the parsing of the TeleCommand
349 344 * @param currentTC_LEN_RCV points to a buffer of two bytes containing a packet size field computed on the received data
350 345 *
351 346 * @return RTEMS directive status code:
352 347 * - RTEMS_SUCCESSFUL - message sent successfully
353 348 * - RTEMS_INVALID_ID - invalid queue id
354 349 * - RTEMS_INVALID_SIZE - invalid message size
355 350 * - RTEMS_INVALID_ADDRESS - buffer is NULL
356 351 * - RTEMS_UNSATISFIED - out of message buffers
357 352 * - RTEMS_TOO_MANY - queue s limit has been reached
358 353 *
359 354 */
360 355
361 356 rtems_status_code status;
362 357 Packet_TM_LFR_TC_EXE_CORRUPTED_t TM;
363 358 unsigned char messageSize;
364 359 unsigned int packetLength;
365 360 unsigned char *packetDataField;
366 361
367 362 packetLength = (TC->packetLength[0] * 256) + TC->packetLength[1]; // compute the packet length parameter
368 363 packetDataField = (unsigned char *) &TC->headerFlag_pusVersion_Ack; // get the beginning of the data field
369 364
370 365 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
371 366 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
372 367 TM.reserved = DEFAULT_RESERVED;
373 368 TM.userApplication = CCSDS_USER_APP;
374 369 // PACKET HEADER
375 370 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
376 371 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
377 TM.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
378 TM.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
372 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
379 373 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED >> 8);
380 374 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED );
381 375 // DATA FIELD HEADER
382 376 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
383 377 TM.serviceType = TM_TYPE_TC_EXE;
384 378 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
385 TM.destinationID = TM_DESTINATION_ID_GROUND; // default destination id
379 TM.destinationID = TC->sourceID; // default destination id
386 380 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
387 381 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
388 382 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
389 383 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
390 384 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
391 385 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
392 386 //
393 387 TM.tc_failure_code[0] = (unsigned char) (CORRUPTED >> 8);
394 388 TM.tc_failure_code[1] = (unsigned char) (CORRUPTED );
395 389 TM.telecommand_pkt_id[0] = TC->packetID[0];
396 390 TM.telecommand_pkt_id[1] = TC->packetID[1];
397 391 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
398 392 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
399 393 TM.tc_service = TC->serviceType; // type of the rejected TC
400 394 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
401 395 TM.pkt_len_rcv_value[0] = TC->packetLength[0];
402 396 TM.pkt_len_rcv_value[1] = TC->packetLength[1];
403 397 TM.pkt_datafieldsize_cnt[0] = currentTC_LEN_RCV[0];
404 398 TM.pkt_datafieldsize_cnt[1] = currentTC_LEN_RCV[1];
405 399 TM.rcv_crc[0] = packetDataField[ packetLength - 1 ];
406 400 TM.rcv_crc[1] = packetDataField[ packetLength ];
407 401 TM.computed_crc[0] = computed_CRC[0];
408 402 TM.computed_crc[1] = computed_CRC[1];
409 403
410 404 messageSize = PACKET_LENGTH_TC_EXE_CORRUPTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
411 405
412 406 // SEND DATA
413 status = rtems_message_queue_urgent( queue_id, &TM, messageSize);
407 status = rtems_message_queue_send( queue_id, &TM, messageSize);
414 408 if (status != RTEMS_SUCCESSFUL) {
415 409 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
416 410 }
417 411
418 412 return status;
419 413 }
414
415 void increment_seq_counter_destination_id( unsigned char *packet_sequence_control, unsigned char destination_id )
416 {
417 unsigned short sequence_cnt;
418 unsigned short segmentation_grouping_flag;
419 unsigned short new_packet_sequence_control;
420 unsigned char i;
421
422 switch (destination_id)
423 {
424 case SID_TC_GROUND:
425 i = GROUND;
426 break;
427 case SID_TC_MISSION_TIMELINE:
428 i = MISSION_TIMELINE;
429 break;
430 case SID_TC_TC_SEQUENCES:
431 i = TC_SEQUENCES;
432 break;
433 case SID_TC_RECOVERY_ACTION_CMD:
434 i = RECOVERY_ACTION_CMD;
435 break;
436 case SID_TC_BACKUP_MISSION_TIMELINE:
437 i = BACKUP_MISSION_TIMELINE;
438 break;
439 case SID_TC_DIRECT_CMD:
440 i = DIRECT_CMD;
441 break;
442 case SID_TC_SPARE_GRD_SRC1:
443 i = SPARE_GRD_SRC1;
444 break;
445 case SID_TC_SPARE_GRD_SRC2:
446 i = SPARE_GRD_SRC2;
447 break;
448 case SID_TC_OBCP:
449 i = OBCP;
450 break;
451 case SID_TC_SYSTEM_CONTROL:
452 i = SYSTEM_CONTROL;
453 break;
454 case SID_TC_AOCS:
455 i = AOCS;
456 break;
457 case SID_TC_RPW_INTERNAL:
458 i = RPW_INTERNAL;
459 break;
460 default:
461 i = UNKNOWN;
462 break;
463 }
464
465 if (i != UNKNOWN)
466 {
467 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
468 sequence_cnt = sequenceCounters_TC_EXE[ i ] & 0x3fff;
469
470 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
471
472 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
473 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
474
475 // increment the seuqence counter for the next packet
476 if ( sequenceCounters_TC_EXE[ i ] < SEQ_CNT_MAX)
477 {
478 sequenceCounters_TC_EXE[ i ] = sequenceCounters_TC_EXE[ i ] + 1;
479 }
480 else
481 {
482 sequenceCounters_TC_EXE[ i ] = 0;
483 }
484 }
485 else
486 {
487 PRINTF1("in increment_seq_counter_destination_id *** ERR destination ID %d not known\n", destination_id)
488 }
489
490 }
@@ -1,1172 +1,1219
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 // SWF
13 13 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
14 14 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
16 16 // CWF
17 17 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
18 18 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
22 22
23 23 unsigned char doubleSendCWF1 = 0;
24 24 unsigned char doubleSendCWF2 = 0;
25 25
26 26 rtems_isr waveforms_isr( rtems_vector_number vector )
27 27 {
28 28 /** This is the interrupt sub routine called by the waveform picker core.
29 29 *
30 30 * This ISR launch different actions depending mainly on two pieces of information:
31 31 * 1. the values read in the registers of the waveform picker.
32 32 * 2. the current LFR mode.
33 33 *
34 34 */
35 35
36 36 #ifdef GSA
37 37 #else
38 38 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
39 39 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
40 40 { // in modes other than STANDBY and BURST, send the CWF_F3 data
41 41 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
42 42 // (1) change the receiving buffer for the waveform picker
43 43 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
44 44 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_bis);
45 45 }
46 46 else {
47 47 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3);
48 48 }
49 49 // (2) send an event for the waveforms transmission
50 50 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
51 51 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
52 52 }
53 53 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
54 54 }
55 55 }
56 56 #endif
57 57
58 58 switch(lfrCurrentMode)
59 59 {
60 60 //********
61 61 // STANDBY
62 62 case(LFR_MODE_STANDBY):
63 63 break;
64 64
65 65 //******
66 66 // NORMAL
67 67 case(LFR_MODE_NORMAL):
68 68 #ifdef GSA
69 69 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
70 70 #else
71 71 if ( (waveform_picker_regs->burst_enable & 0x7) == 0x0 ){ // if no channel is enable
72 72 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
73 73 }
74 74 else {
75 75 if ( (waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
76 76 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable & 0x08;
77 77 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
78 78 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
79 79 }
80 80 // waveform_picker_regs->status = waveform_picker_regs->status & 0x00;
81 81 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888;
82 82 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x07; // [0111] enable f2 f1 f0
83 83 }
84 84 }
85 85 #endif
86 86 break;
87 87
88 88 //******
89 89 // BURST
90 90 case(LFR_MODE_BURST):
91 91 #ifdef GSA
92 92 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
93 93 #else
94 94 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
95 95 // (1) change the receiving buffer for the waveform picker
96 96 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
97 97 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
98 98 }
99 99 else {
100 100 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
101 101 }
102 102 // (2) send an event for the waveforms transmission
103 103 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
104 104 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
105 105 }
106 106 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
107 107 }
108 108 #endif
109 109 break;
110 110
111 111 //*****
112 112 // SBM1
113 113 case(LFR_MODE_SBM1):
114 114 #ifdef GSA
115 115 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
116 116 #else
117 117 if ((waveform_picker_regs->status & 0x02) == 0x02){ // [0010] check the f1 full bit
118 118 // (1) change the receiving buffer for the waveform picker
119 119 if ( param_local.local_sbm1_nb_cwf_sent == (param_local.local_sbm1_nb_cwf_max-1) )
120 120 {
121 121 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_norm);
122 122 }
123 123 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1_norm )
124 124 {
125 125 doubleSendCWF1 = 1;
126 126 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
127 127 }
128 128 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1 ) {
129 129 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_bis);
130 130 }
131 131 else {
132 132 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
133 133 }
134 134 // (2) send an event for the waveforms transmission
135 135 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
136 136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 137 }
138 138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
139 139 }
140 140 if ( ( (waveform_picker_regs->status & 0x05) == 0x05 ) ) { // [0101] check the f2 and f0 full bit
141 141 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
142 142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
143 143 }
144 144 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
145 145 reset_local_sbm1_nb_cwf_sent();
146 146 }
147 147
148 148 #endif
149 149 break;
150 150
151 151 //*****
152 152 // SBM2
153 153 case(LFR_MODE_SBM2):
154 154 #ifdef GSA
155 155 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
156 156 #else
157 157 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
158 158 // (1) change the receiving buffer for the waveform picker
159 159 if ( param_local.local_sbm2_nb_cwf_sent == (param_local.local_sbm2_nb_cwf_max-1) )
160 160 {
161 161 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_norm);
162 162 }
163 163 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2_norm ) {
164 164 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
165 165 doubleSendCWF2 = 1;
166 166 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2_WFRM ) != RTEMS_SUCCESSFUL) {
167 167 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
168 168 }
169 169 reset_local_sbm2_nb_cwf_sent();
170 170 }
171 171 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2 ) {
172 172 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
173 173 }
174 174 else {
175 175 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
176 176 }
177 177 // (2) send an event for the waveforms transmission
178 178 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
179 179 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
180 180 }
181 181 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
182 182 }
183 183 if ( ( (waveform_picker_regs->status & 0x03) == 0x03 ) ) { // [0011] f3 f2 f1 f0, f1 and f0 are full
184 184 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
185 185 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
186 186 }
187 187 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
188 188 }
189 189 #endif
190 190 break;
191 191
192 192 //********
193 193 // DEFAULT
194 194 default:
195 195 break;
196 196 }
197 197 }
198 198
199 199 rtems_isr waveforms_simulator_isr( rtems_vector_number vector )
200 200 {
201 201 /** This is the interrupt sub routine called by the waveform picker simulator.
202 202 *
203 203 * This ISR is for debug purpose only.
204 204 *
205 205 */
206 206
207 207 unsigned char lfrMode;
208 208 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
209 209
210 210 switch(lfrMode) {
211 211 case (LFR_MODE_STANDBY):
212 212 break;
213 213 case (LFR_MODE_NORMAL):
214 214 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
215 215 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_5 );
216 216 }
217 217 break;
218 218 case (LFR_MODE_BURST):
219 219 break;
220 220 case (LFR_MODE_SBM1):
221 221 break;
222 222 case (LFR_MODE_SBM2):
223 223 break;
224 224 }
225 225 }
226 226
227 227 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
228 228 {
229 229 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
230 230 *
231 231 * @param unused is the starting argument of the RTEMS task
232 232 *
233 233 * The following data packets are sent by this task:
234 234 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
235 235 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
236 236 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
237 237 *
238 238 */
239 239
240 240 rtems_event_set event_out;
241 241 rtems_id queue_id;
242 242
243 243 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
244 244 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
245 245 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
246 246
247 247 init_waveforms();
248 248
249 249 queue_id = get_pkts_queue_id();
250 250
251 251 BOOT_PRINTF("in WFRM ***\n")
252 252
253 253 while(1){
254 254 // wait for an RTEMS_EVENT
255 255 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
256 256 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
257 257 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
258 258
259 259 if (event_out == RTEMS_EVENT_MODE_NORMAL)
260 260 {
261 261 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
262 262 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
263 263 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
264 264 #ifdef GSA
265 265 waveform_picker_regs->status = waveform_picker_regs->status & 0xf888; // [1111 1000 1000 1000] f2, f1, f0 bits =0
266 266 #endif
267 267 }
268 268 else if (event_out == RTEMS_EVENT_MODE_SBM1)
269 269 {
270 270 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
271 271 send_waveform_SWF(wf_snap_f1_norm, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
272 272 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
273 273 #ifdef GSA
274 274 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2, f0 bits = 0
275 275 #endif
276 276 }
277 277 else if (event_out == RTEMS_EVENT_MODE_SBM2)
278 278 {
279 279 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
280 280 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
281 281 #ifdef GSA
282 282 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
283 283 #endif
284 284 }
285 285 else if (event_out == RTEMS_EVENT_MODE_SBM2_WFRM)
286 286 {
287 287 send_waveform_SWF(wf_snap_f2_norm, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
288 288 }
289 289 else
290 290 {
291 291 PRINTF("in WFRM *** unexpected event")
292 292 }
293 293
294 294
295 295 #ifdef GSA
296 296 // irq processed, reset the related register of the timer unit
297 297 gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl = gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl | 0x00000010;
298 298 // clear the interruption
299 299 LEON_Unmask_interrupt( IRQ_WF );
300 300 #endif
301 301 }
302 302 }
303 303
304 304 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
305 305 {
306 306 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
307 307 *
308 308 * @param unused is the starting argument of the RTEMS task
309 309 *
310 310 * The following data packet is sent by this task:
311 311 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
312 312 *
313 313 */
314 314
315 315 rtems_event_set event_out;
316 316 rtems_id queue_id;
317 317
318 318 init_header_continuous_wf_table( SID_NORM_CWF_F3, headerCWF_F3 );
319 319 init_header_continuous_wf3_light_table( headerCWF_F3_light );
320 320
321 321 queue_id = get_pkts_queue_id();
322 322
323 323 BOOT_PRINTF("in CWF3 ***\n")
324 324
325 325 while(1){
326 326 // wait for an RTEMS_EVENT
327 327 rtems_event_receive( RTEMS_EVENT_0,
328 328 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
329 329 PRINTF("send CWF F3 \n")
330 330 #ifdef GSA
331 331 #else
332 332 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
333 333 send_waveform_CWF3_light( wf_cont_f3_bis, headerCWF_F3_light, queue_id );
334 334 }
335 335 else {
336 336 send_waveform_CWF3_light( wf_cont_f3, headerCWF_F3_light, queue_id );
337 337 }
338 338 #endif
339 339 }
340 340 }
341 341
342 342 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
343 343 {
344 344 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
345 345 *
346 346 * @param unused is the starting argument of the RTEMS task
347 347 *
348 348 * The following data packet is sent by this function:
349 349 * - TM_LFR_SCIENCE_BURST_CWF_F2
350 350 * - TM_LFR_SCIENCE_SBM2_CWF_F2
351 351 *
352 352 */
353 353
354 354 rtems_event_set event_out;
355 355 rtems_id queue_id;
356 356
357 357 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
358 358 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
359 359
360 360 queue_id = get_pkts_queue_id();
361 361
362 362 BOOT_PRINTF("in CWF2 ***\n")
363 363
364 364 while(1){
365 365 // wait for an RTEMS_EVENT
366 366 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
367 367 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
368 368
369 369 if (event_out == RTEMS_EVENT_MODE_BURST)
370 370 {
371 371 // F2
372 372 #ifdef GSA
373 373 #else
374 374 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
375 375 send_waveform_CWF( wf_snap_f2_bis, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
376 376 }
377 377 else {
378 378 send_waveform_CWF( wf_snap_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
379 379 }
380 380 #endif
381 381 }
382 382
383 383 else if (event_out == RTEMS_EVENT_MODE_SBM2)
384 384 {
385 385 #ifdef GSA
386 386 #else
387 387 if (doubleSendCWF2 == 1)
388 388 {
389 389 doubleSendCWF2 = 0;
390 390 send_waveform_CWF( wf_snap_f2_norm, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
391 391 }
392 392 else if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
393 393 send_waveform_CWF( wf_snap_f2_bis, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
394 394 }
395 395 else {
396 396 send_waveform_CWF( wf_snap_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
397 397 }
398 398 param_local.local_sbm2_nb_cwf_sent ++;
399 399 #endif
400 400 }
401 401 else
402 402 {
403 403 PRINTF1("in CWF2 *** ERR mode = %d\n", lfrCurrentMode)
404 404 }
405 405 }
406 406 }
407 407
408 408 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
409 409 {
410 410 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
411 411 *
412 412 * @param unused is the starting argument of the RTEMS task
413 413 *
414 414 * The following data packet is sent by this function:
415 415 * - TM_LFR_SCIENCE_SBM1_CWF_F1
416 416 *
417 417 */
418 418
419 419 rtems_event_set event_out;
420 420 rtems_id queue_id;
421 421
422 422 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
423 423
424 424 queue_id = get_pkts_queue_id();
425 425
426 426 BOOT_PRINTF("in CWF1 ***\n")
427 427
428 428 while(1){
429 429 // wait for an RTEMS_EVENT
430 430 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
431 431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
432 432 if (event_out == RTEMS_EVENT_MODE_SBM1)
433 433 {
434 434 #ifdef GSA
435 435 #else
436 436 if (doubleSendCWF1 == 1)
437 437 {
438 438 doubleSendCWF1 = 0;
439 439 send_waveform_CWF( wf_snap_f1_norm, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
440 440 }
441 441 else if (waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1) {
442 442 send_waveform_CWF( wf_snap_f1_bis, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
443 443 }
444 444 else {
445 445 send_waveform_CWF( wf_snap_f1, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
446 446 }
447 447 param_local.local_sbm1_nb_cwf_sent ++;
448 448 #endif
449 449 }
450 450 else
451 451 {
452 452 PRINTF1("in CWF1 *** ERR mode = %d\n", lfrCurrentMode)
453 453 }
454 454 }
455 455 }
456 456
457 457 //******************
458 458 // general functions
459 459 void init_waveforms( void )
460 460 {
461 461 int i = 0;
462 462
463 463 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
464 464 {
465 465 //***
466 466 // F0
467 467 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
468 468 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
469 469 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
470 470
471 471 //***
472 472 // F1
473 473 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
474 474 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
475 475 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
476 476
477 477 //***
478 478 // F2
479 479 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
480 480 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
481 481 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
482 482
483 483 //***
484 484 // F3
485 485 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
486 486 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
487 487 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
488 488 }
489 489 }
490 490
491 491 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
492 492 {
493 493 unsigned char i;
494 494
495 495 for (i=0; i<7; i++)
496 496 {
497 497 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
498 498 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
499 499 headerSWF[ i ].reserved = DEFAULT_RESERVED;
500 500 headerSWF[ i ].userApplication = CCSDS_USER_APP;
501 501 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
502 502 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
503 503 if (i == 0)
504 504 {
505 505 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
506 506 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
507 507 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
508 508 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
509 509 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
510 510 }
511 511 else if (i == 6)
512 512 {
513 513 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
514 514 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_8 >> 8);
515 515 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_8 );
516 516 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
517 517 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
518 518 }
519 519 else
520 520 {
521 521 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
522 522 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
523 523 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
524 524 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
525 525 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
526 526 }
527 527 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
528 528 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
529 529 headerSWF[ i ].pktNr = i+1; // PKT_NR
530 530 // DATA FIELD HEADER
531 531 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
532 532 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
533 533 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
534 534 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
535 535 // AUXILIARY DATA HEADER
536 headerSWF[ i ].sid = sid;
537 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
538 536 headerSWF[ i ].time[0] = 0x00;
539 537 headerSWF[ i ].time[0] = 0x00;
540 538 headerSWF[ i ].time[0] = 0x00;
541 539 headerSWF[ i ].time[0] = 0x00;
542 540 headerSWF[ i ].time[0] = 0x00;
543 541 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].sid = sid;
543 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
544 544 }
545 545 return LFR_SUCCESSFUL;
546 546 }
547 547
548 548 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
549 549 {
550 550 unsigned int i;
551 551
552 552 for (i=0; i<7; i++)
553 553 {
554 554 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
555 555 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
556 556 headerCWF[ i ].reserved = DEFAULT_RESERVED;
557 557 headerCWF[ i ].userApplication = CCSDS_USER_APP;
558 558 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
559 559 {
560 560 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
561 561 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
562 562 }
563 563 else
564 564 {
565 565 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
566 566 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
567 567 }
568 568 if (i == 0)
569 569 {
570 570 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
571 571 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
572 572 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
573 573 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
574 574 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
575 575 }
576 576 else if (i == 6)
577 577 {
578 578 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
579 579 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
580 580 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
581 581 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
582 582 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
583 583 }
584 584 else
585 585 {
586 586 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
587 587 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
588 588 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
589 589 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
590 590 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
591 591 }
592 592 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
593 593 // PKT_CNT
594 594 // PKT_NR
595 595 // DATA FIELD HEADER
596 596 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
597 597 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
598 598 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
599 599 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
600 600 // AUXILIARY DATA HEADER
601 601 headerCWF[ i ].sid = sid;
602 602 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
603 603 headerCWF[ i ].time[0] = 0x00;
604 604 headerCWF[ i ].time[0] = 0x00;
605 605 headerCWF[ i ].time[0] = 0x00;
606 606 headerCWF[ i ].time[0] = 0x00;
607 607 headerCWF[ i ].time[0] = 0x00;
608 608 headerCWF[ i ].time[0] = 0x00;
609 609 }
610 610 return LFR_SUCCESSFUL;
611 611 }
612 612
613 613 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
614 614 {
615 615 unsigned int i;
616 616
617 617 for (i=0; i<7; i++)
618 618 {
619 619 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
620 620 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
621 621 headerCWF[ i ].reserved = DEFAULT_RESERVED;
622 622 headerCWF[ i ].userApplication = CCSDS_USER_APP;
623 623
624 624 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
625 625 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
626 626 if (i == 0)
627 627 {
628 628 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
629 629 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
630 630 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
631 631 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
632 632 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
633 633 }
634 634 else if (i == 6)
635 635 {
636 636 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
637 637 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
638 638 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
639 639 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
640 640 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
641 641 }
642 642 else
643 643 {
644 644 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
645 645 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
646 646 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
647 647 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
648 648 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
649 649 }
650 650 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
651 651 // DATA FIELD HEADER
652 652 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
653 653 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
654 654 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
655 655 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
656 656 // AUXILIARY DATA HEADER
657 657 headerCWF[ i ].sid = SID_NORM_CWF_F3;
658 658 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
659 659 headerCWF[ i ].time[0] = 0x00;
660 660 headerCWF[ i ].time[0] = 0x00;
661 661 headerCWF[ i ].time[0] = 0x00;
662 662 headerCWF[ i ].time[0] = 0x00;
663 663 headerCWF[ i ].time[0] = 0x00;
664 664 headerCWF[ i ].time[0] = 0x00;
665 665 }
666 666 return LFR_SUCCESSFUL;
667 667 }
668 668
669 669 void reset_waveforms( void )
670 670 {
671 671 int i = 0;
672 672
673 673 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
674 674 {
675 675 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x10002000;
676 676 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
677 677 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
678 678
679 679 //***
680 680 // F1
681 681 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x1000f000;
682 682 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0xf0001000;
683 683 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
684 684
685 685 //***
686 686 // F2
687 687 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x40008000;
688 688 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
689 689 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x10002000;
690 690
691 691 //***
692 692 // F3
693 693 /*wf_cont_f3[ i* NB_WORDS_SWF_BLK + 0 ] = build_value( i, i ); // v and 1
694 694 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 1 ] = build_value( i, i ); // e2 and b1
695 695 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 2 ] = build_value( i, i ); // b2 and b3*/
696 696 }
697 697 }
698 698
699 699 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
700 700 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
701 701 {
702 702 /** This function sends SWF CCSDS packets (F2, F1 or F0).
703 703 *
704 704 * @param waveform points to the buffer containing the data that will be send.
705 705 * @param sid is the source identifier of the data that will be sent.
706 706 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
707 707 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
708 708 * contain information to setup the transmission of the data packets.
709 709 *
710 710 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
711 711 *
712 712 */
713 713
714 714 unsigned int i;
715 715 int ret;
716 716 rtems_status_code status;
717 717 spw_ioctl_pkt_send spw_ioctl_send_SWF;
718 718
719 719 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
720 720 spw_ioctl_send_SWF.options = 0;
721 721
722 722 ret = LFR_DEFAULT;
723 723
724 724 for (i=0; i<7; i++) // send waveform
725 725 {
726 726 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
727 727 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
728 728 // BUILD THE DATA
729 729 if (i==6) {
730 730 spw_ioctl_send_SWF.dlen = 8 * NB_BYTES_SWF_BLK;
731 731 }
732 732 else {
733 733 spw_ioctl_send_SWF.dlen = 340 * NB_BYTES_SWF_BLK;
734 734 }
735 // SET PACKET SEQUENCE COUNTER
736 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
735 737 // SET PACKET TIME
736 738 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
737 739 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
738 740 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
739 741 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
740 742 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
741 743 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
742 744 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
743 745 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
744 746 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
745 747 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
746 748 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
747 749 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
748 750 // SEND PACKET
749 751 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
750 752 if (status != RTEMS_SUCCESSFUL) {
751 753 printf("%d-%d, ERR %d\n", sid, i, (int) status);
752 754 ret = LFR_DEFAULT;
753 755 }
754 756 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
755 757 }
756 758
757 759 return ret;
758 760 }
759 761
760 762 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
761 763 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
762 764 {
763 765 /** This function sends CWF CCSDS packets (F2, F1 or F0).
764 766 *
765 767 * @param waveform points to the buffer containing the data that will be send.
766 768 * @param sid is the source identifier of the data that will be sent.
767 769 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
768 770 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
769 771 * contain information to setup the transmission of the data packets.
770 772 *
771 773 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
772 774 *
773 775 */
774 776
775 777 unsigned int i;
776 778 int ret;
777 779 rtems_status_code status;
778 780 spw_ioctl_pkt_send spw_ioctl_send_CWF;
779 781
780 782 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
781 783 spw_ioctl_send_CWF.options = 0;
782 784
783 785 ret = LFR_DEFAULT;
784 786
785 787 for (i=0; i<7; i++) // send waveform
786 788 {
787 789 int coarseTime = 0x00;
788 790 int fineTime = 0x00;
789 791 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
790 792 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
791 793 // BUILD THE DATA
792 794 if (i==6) {
793 795 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
794 796 }
795 797 else {
796 798 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
797 799 }
800 // SET PACKET SEQUENCE COUNTER
801 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
798 802 // SET PACKET TIME
799 803 coarseTime = time_management_regs->coarse_time;
800 804 fineTime = time_management_regs->fine_time;
801 805 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
802 806 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
803 807 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
804 808 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
805 809 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
806 810 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
807 811 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
808 812 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
809 813 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
810 814 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
811 815 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
812 816 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
813 817 // SEND PACKET
814 818 if (sid == SID_NORM_CWF_F3)
815 819 {
816 820 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
817 821 if (status != RTEMS_SUCCESSFUL) {
818 822 printf("%d-%d, ERR %d\n", sid, i, (int) status);
819 823 ret = LFR_DEFAULT;
820 824 }
821 825 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
822 826 }
823 827 else
824 828 {
825 829 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
826 830 if (status != RTEMS_SUCCESSFUL) {
827 831 printf("%d-%d, ERR %d\n", sid, i, (int) status);
828 832 ret = LFR_DEFAULT;
829 833 }
830 834 }
831 835 }
832 836
833 837 return ret;
834 838 }
835 839
836 840 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
837 841 {
838 842 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
839 843 *
840 844 * @param waveform points to the buffer containing the data that will be send.
841 845 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
842 846 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
843 847 * contain information to setup the transmission of the data packets.
844 848 *
845 849 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
846 850 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
847 851 *
848 852 */
849 853
850 854 unsigned int i;
851 855 int ret;
852 856 rtems_status_code status;
853 857 spw_ioctl_pkt_send spw_ioctl_send_CWF;
854 858 char *sample;
855 859
856 860 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
857 861 spw_ioctl_send_CWF.options = 0;
858 862
859 863 ret = LFR_DEFAULT;
860 864
861 865 //**********************
862 866 // BUILD CWF3_light DATA
863 867 for ( i=0; i< 2048; i++)
864 868 {
865 869 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
866 870 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
867 871 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
868 872 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
869 873 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
870 874 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
871 875 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
872 876 }
873 877
874 878 //*********************
875 879 // SEND CWF3_light DATA
876 880
877 881 for (i=0; i<7; i++) // send waveform
878 882 {
879 883 int coarseTime = 0x00;
880 884 int fineTime = 0x00;
881 885 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
882 886 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
883 887 // BUILD THE DATA
884 888 if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
885 889 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
886 890 }
887 891 else {
888 892 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
889 893 }
894 // SET PACKET SEQUENCE COUNTER
895 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
890 896 // SET PACKET TIME
891 897 coarseTime = time_management_regs->coarse_time;
892 898 fineTime = time_management_regs->fine_time;
893 899 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
894 900 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
895 901 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
896 902 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
897 903 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
898 904 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
899 905 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
900 906 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
901 907 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
902 908 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
903 909 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
904 910 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
905 911 // SEND PACKET
906 912 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
907 913 if (status != RTEMS_SUCCESSFUL) {
908 914 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
909 915 ret = LFR_DEFAULT;
910 916 }
911 917 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
912 918 }
913 919
914 920 return ret;
915 921 }
916 922
917 923
918 924 //**************
919 925 // wfp registers
920 926 void set_wfp_data_shaping()
921 927 {
922 928 /** This function sets the data_shaping register of the waveform picker module.
923 929 *
924 930 * The value is read from one field of the parameter_dump_packet structure:\n
925 931 * bw_sp0_sp1_r0_r1
926 932 *
927 933 */
928 934
929 935 unsigned char data_shaping;
930 936
931 937 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
932 938 // waveform picker : [R1 R0 SP1 SP0 BW]
933 939
934 940 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
935 941
936 942 #ifdef GSA
937 943 #else
938 944 waveform_picker_regs->data_shaping =
939 945 ( (data_shaping & 0x10) >> 4 ) // BW
940 946 + ( (data_shaping & 0x08) >> 2 ) // SP0
941 947 + ( (data_shaping & 0x04) ) // SP1
942 948 + ( (data_shaping & 0x02) << 2 ) // R0
943 949 + ( (data_shaping & 0x01) << 4 ); // R1
944 950 #endif
945 951 }
946 952
947 953 char set_wfp_delta_snapshot()
948 954 {
949 955 /** This function sets the delta_snapshot register of the waveform picker module.
950 956 *
951 957 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
952 958 * - sy_lfr_n_swf_p[0]
953 959 * - sy_lfr_n_swf_p[1]
954 960 *
955 961 */
956 962
957 963 char ret;
958 964 unsigned int delta_snapshot;
959 965 unsigned int aux;
960 966
961 967 aux = 0;
962 968 ret = LFR_DEFAULT;
963 969
964 970 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
965 971 + parameter_dump_packet.sy_lfr_n_swf_p[1];
966 972
967 973 #ifdef GSA
968 974 #else
969 975 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
970 976 {
971 977 aux = MIN_DELTA_SNAPSHOT;
972 978 ret = LFR_DEFAULT;
973 979 }
974 980 else
975 981 {
976 982 aux = delta_snapshot ;
977 983 ret = LFR_SUCCESSFUL;
978 984 }
979 985 waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
980 986 #endif
981 987
982 988 return ret;
983 989 }
984 990
985 991 void set_wfp_burst_enable_register( unsigned char mode)
986 992 {
987 993 /** This function sets the waveform picker burst_enable register depending on the mode.
988 994 *
989 995 * @param mode is the LFR mode to launch.
990 996 *
991 997 * The burst bits shall be before the enable bits.
992 998 *
993 999 */
994 1000
995 1001 #ifdef GSA
996 1002 #else
997 1003 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
998 1004 // the burst bits shall be set first, before the enable bits
999 1005 switch(mode) {
1000 1006 case(LFR_MODE_NORMAL):
1001 1007 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enable
1002 1008 waveform_picker_regs->burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1003 1009 break;
1004 1010 case(LFR_MODE_BURST):
1005 1011 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1006 1012 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x04; // [0100] enable f2
1007 1013 break;
1008 1014 case(LFR_MODE_SBM1):
1009 1015 waveform_picker_regs->burst_enable = 0x20; // [0010 0000] f1 burst enabled
1010 1016 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1011 1017 break;
1012 1018 case(LFR_MODE_SBM2):
1013 1019 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1014 1020 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1015 1021 break;
1016 1022 default:
1017 1023 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1018 1024 break;
1019 1025 }
1020 1026 #endif
1021 1027 }
1022 1028
1023 1029 void reset_wfp_burst_enable()
1024 1030 {
1025 1031 /** This function resets the waveform picker burst_enable register.
1026 1032 *
1027 1033 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1028 1034 *
1029 1035 */
1030 1036
1031 1037 #ifdef GSA
1032 1038 #else
1033 1039 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1034 1040 #endif
1035 1041 }
1036 1042
1037 1043 void reset_wfp_status()
1038 1044 {
1039 1045 /** This function resets the waveform picker status register.
1040 1046 *
1041 1047 * All status bits are set to 0 [new_err full_err full].
1042 1048 *
1043 1049 */
1044 1050
1045 1051 #ifdef GSA
1046 1052 #else
1047 1053 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1048 1054 #endif
1049 1055 }
1050 1056
1051 1057 void reset_waveform_picker_regs()
1052 1058 {
1053 1059 /** This function resets the waveform picker module registers.
1054 1060 *
1055 1061 * The registers affected by this function are located at the following offset addresses:
1056 1062 * - 0x00 data_shaping
1057 1063 * - 0x04 burst_enable
1058 1064 * - 0x08 addr_data_f0
1059 1065 * - 0x0C addr_data_f1
1060 1066 * - 0x10 addr_data_f2
1061 1067 * - 0x14 addr_data_f3
1062 1068 * - 0x18 status
1063 1069 * - 0x1C delta_snapshot
1064 1070 * - 0x20 delta_f2_f1
1065 1071 * - 0x24 delta_f2_f0
1066 1072 * - 0x28 nb_burst
1067 1073 * - 0x2C nb_snapshot
1068 1074 *
1069 1075 */
1070 1076
1071 1077 #ifdef GSA
1072 1078 #else
1073 1079 reset_wfp_burst_enable();
1074 1080 reset_wfp_status();
1075 1081 // set buffer addresses
1076 1082 waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); //
1077 1083 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); //
1078 1084 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); //
1079 1085 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); //
1080 1086 // set other parameters
1081 1087 set_wfp_data_shaping();
1082 1088 set_wfp_delta_snapshot(); // time in seconds between two snapshots
1083 1089 waveform_picker_regs->delta_f2_f1 = 0xffff; // 0x16800 => 92160 (max 4 bytes)
1084 1090 waveform_picker_regs->delta_f2_f0 = 0x17c00; // 97 280 (max 5 bytes)
1085 1091 waveform_picker_regs->nb_burst_available = 0x180; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1086 1092 waveform_picker_regs->nb_snapshot_param = 0x7ff; // max 3 octets, 2048 - 1
1087 1093 #endif
1088 1094 }
1089 1095
1090 1096 //*****************
1091 1097 // local parameters
1092 1098 void set_local_sbm1_nb_cwf_max()
1093 1099 {
1094 1100 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1095 1101 *
1096 1102 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1097 1103 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.\n\n
1098 1104 * (2 snapshots of 2048 points per seconds) * (period of the NORM snashots) - 8 s (duration of the f2 snapshot)
1099 1105 *
1100 1106 */
1101 1107 param_local.local_sbm1_nb_cwf_max = 2 *
1102 1108 (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1103 1109 + parameter_dump_packet.sy_lfr_n_swf_p[1]) - 8; // 16 CWF1 parts during 1 SWF2
1104 1110 }
1105 1111
1106 1112 void set_local_sbm2_nb_cwf_max()
1107 1113 {
1108 1114 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1109 1115 *
1110 1116 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1111 1117 * This parameter is used to send CWF_F2 data as normal data when the SBM2 is active.\n\n
1112 1118 * (period of the NORM snashots) / (8 seconds per snapshot at f2 = 256 Hz)
1113 1119 *
1114 1120 */
1115 1121
1116 1122 param_local.local_sbm2_nb_cwf_max = (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1117 1123 + parameter_dump_packet.sy_lfr_n_swf_p[1]) / 8;
1118 1124 }
1119 1125
1120 1126 void set_local_nb_interrupt_f0_MAX()
1121 1127 {
1122 1128 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1123 1129 *
1124 1130 * This parameter is used for the SM validation only.\n
1125 1131 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1126 1132 * module before launching a basic processing.
1127 1133 *
1128 1134 */
1129 1135
1130 1136 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1131 1137 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1132 1138 }
1133 1139
1134 1140 void reset_local_sbm1_nb_cwf_sent()
1135 1141 {
1136 1142 /** This function resets the value of the sbm1_nb_cwf_sent local parameter.
1137 1143 *
1138 1144 * The sbm1_nb_cwf_sent parameter counts the number of CWF_F1 records that have been sent.\n
1139 1145 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.
1140 1146 *
1141 1147 */
1142 1148
1143 1149 param_local.local_sbm1_nb_cwf_sent = 0;
1144 1150 }
1145 1151
1146 1152 void reset_local_sbm2_nb_cwf_sent()
1147 1153 {
1148 1154 /** This function resets the value of the sbm2_nb_cwf_sent local parameter.
1149 1155 *
1150 1156 * The sbm2_nb_cwf_sent parameter counts the number of CWF_F2 records that have been sent.\n
1151 1157 * This parameter is used to send CWF_F2 data as normal data when the SBM2 mode is active.
1152 1158 *
1153 1159 */
1154 1160
1155 1161 param_local.local_sbm2_nb_cwf_sent = 0;
1156 1162 }
1157 1163
1158 1164 rtems_id get_pkts_queue_id( void )
1159 1165 {
1160 1166 rtems_id queue_id;
1161 1167 rtems_status_code status;
1162 1168 rtems_name queue_send_name;
1163 1169
1164 1170 queue_send_name = rtems_build_name( 'Q', '_', 'S', 'D' );
1165 1171
1166 1172 status = rtems_message_queue_ident( queue_send_name, 0, &queue_id );
1167 1173 if (status != RTEMS_SUCCESSFUL)
1168 1174 {
1169 1175 PRINTF1("in get_pkts_queue_id *** ERR %d\n", status)
1170 1176 }
1171 1177 return queue_id;
1172 1178 }
1179
1180 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1181 {
1182 unsigned short *sequence_cnt;
1183 unsigned short segmentation_grouping_flag;
1184 unsigned short new_packet_sequence_control;
1185
1186 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1187 || (sid ==SID_BURST_CWF_F2) )
1188 {
1189 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1190 }
1191 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1192 {
1193 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1194 }
1195 else
1196 {
1197 sequence_cnt = &sequenceCounters_TC_EXE[ UNKNOWN ];
1198 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1199 }
1200
1201 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1202 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1203
1204 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1205
1206 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1207 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1208
1209 // increment the seuqence counter for the next packet
1210 if ( *sequence_cnt < SEQ_CNT_MAX)
1211 {
1212 *sequence_cnt = *sequence_cnt + 1;
1213 }
1214 else
1215 {
1216 *sequence_cnt = 0;
1217 }
1218
1219 }
General Comments 0
You need to be logged in to leave comments. Login now