##// END OF EJS Templates
3.0.0.21...
paul -
r275:7563e13131aa R3a
parent child
Show More
@@ -1,124 +1,124
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options =
3 # CONFIG options =
4 # verbose
4 # verbose
5 # boot_messages
5 # boot_messages
6 # debug_messages
6 # debug_messages
7 # cpu_usage_report
7 # cpu_usage_report
8 # stack_report
8 # stack_report
9 # vhdl_dev
9 # vhdl_dev
10 # debug_tch
10 # debug_tch
11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
12 # debug_watchdog
12 # debug_watchdog
13 CONFIG += console verbose lpp_dpu_destid
13 CONFIG += console verbose lpp_dpu_destid
14 CONFIG -= qt
14 CONFIG -= qt
15
15
16 include(./sparc.pri)
16 include(./sparc.pri)
17
17
18 # flight software version
18 # flight software version
19 SWVERSION=-1-0
19 SWVERSION=-1-0
20 DEFINES += SW_VERSION_N1=3 # major
20 DEFINES += SW_VERSION_N1=3 # major
21 DEFINES += SW_VERSION_N2=0 # minor
21 DEFINES += SW_VERSION_N2=0 # minor
22 DEFINES += SW_VERSION_N3=0 # patch
22 DEFINES += SW_VERSION_N3=0 # patch
23 DEFINES += SW_VERSION_N4=19 # internal
23 DEFINES += SW_VERSION_N4=20 # internal
24
24
25 # <GCOV>
25 # <GCOV>
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
28 # </GCOV>
28 # </GCOV>
29
29
30 # <CHANGE BEFORE FLIGHT>
30 # <CHANGE BEFORE FLIGHT>
31 contains( CONFIG, lpp_dpu_destid ) {
31 contains( CONFIG, lpp_dpu_destid ) {
32 DEFINES += LPP_DPU_DESTID
32 DEFINES += LPP_DPU_DESTID
33 }
33 }
34 # </CHANGE BEFORE FLIGHT>
34 # </CHANGE BEFORE FLIGHT>
35
35
36 contains( CONFIG, debug_tch ) {
36 contains( CONFIG, debug_tch ) {
37 DEFINES += DEBUG_TCH
37 DEFINES += DEBUG_TCH
38 }
38 }
39 DEFINES += MSB_FIRST_TCH
39 DEFINES += MSB_FIRST_TCH
40
40
41 contains( CONFIG, vhdl_dev ) {
41 contains( CONFIG, vhdl_dev ) {
42 DEFINES += VHDL_DEV
42 DEFINES += VHDL_DEV
43 }
43 }
44
44
45 contains( CONFIG, verbose ) {
45 contains( CONFIG, verbose ) {
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
47 }
47 }
48
48
49 contains( CONFIG, debug_messages ) {
49 contains( CONFIG, debug_messages ) {
50 DEFINES += DEBUG_MESSAGES
50 DEFINES += DEBUG_MESSAGES
51 }
51 }
52
52
53 contains( CONFIG, cpu_usage_report ) {
53 contains( CONFIG, cpu_usage_report ) {
54 DEFINES += PRINT_TASK_STATISTICS
54 DEFINES += PRINT_TASK_STATISTICS
55 }
55 }
56
56
57 contains( CONFIG, stack_report ) {
57 contains( CONFIG, stack_report ) {
58 DEFINES += PRINT_STACK_REPORT
58 DEFINES += PRINT_STACK_REPORT
59 }
59 }
60
60
61 contains( CONFIG, boot_messages ) {
61 contains( CONFIG, boot_messages ) {
62 DEFINES += BOOT_MESSAGES
62 DEFINES += BOOT_MESSAGES
63 }
63 }
64
64
65 contains( CONFIG, debug_watchdog ) {
65 contains( CONFIG, debug_watchdog ) {
66 DEFINES += DEBUG_WATCHDOG
66 DEFINES += DEBUG_WATCHDOG
67 }
67 }
68
68
69 #doxygen.target = doxygen
69 #doxygen.target = doxygen
70 #doxygen.commands = doxygen ../doc/Doxyfile
70 #doxygen.commands = doxygen ../doc/Doxyfile
71 #QMAKE_EXTRA_TARGETS += doxygen
71 #QMAKE_EXTRA_TARGETS += doxygen
72
72
73 TARGET = fsw
73 TARGET = fsw
74
74
75 INCLUDEPATH += \
75 INCLUDEPATH += \
76 $${PWD}/../src \
76 $${PWD}/../src \
77 $${PWD}/../header \
77 $${PWD}/../header \
78 $${PWD}/../header/lfr_common_headers \
78 $${PWD}/../header/lfr_common_headers \
79 $${PWD}/../header/processing \
79 $${PWD}/../header/processing \
80 $${PWD}/../LFR_basic-parameters
80 $${PWD}/../LFR_basic-parameters
81
81
82 SOURCES += \
82 SOURCES += \
83 ../src/wf_handler.c \
83 ../src/wf_handler.c \
84 ../src/tc_handler.c \
84 ../src/tc_handler.c \
85 ../src/fsw_misc.c \
85 ../src/fsw_misc.c \
86 ../src/fsw_init.c \
86 ../src/fsw_init.c \
87 ../src/fsw_globals.c \
87 ../src/fsw_globals.c \
88 ../src/fsw_spacewire.c \
88 ../src/fsw_spacewire.c \
89 ../src/tc_load_dump_parameters.c \
89 ../src/tc_load_dump_parameters.c \
90 ../src/tm_lfr_tc_exe.c \
90 ../src/tm_lfr_tc_exe.c \
91 ../src/tc_acceptance.c \
91 ../src/tc_acceptance.c \
92 ../src/processing/fsw_processing.c \
92 ../src/processing/fsw_processing.c \
93 ../src/processing/avf0_prc0.c \
93 ../src/processing/avf0_prc0.c \
94 ../src/processing/avf1_prc1.c \
94 ../src/processing/avf1_prc1.c \
95 ../src/processing/avf2_prc2.c \
95 ../src/processing/avf2_prc2.c \
96 ../src/lfr_cpu_usage_report.c \
96 ../src/lfr_cpu_usage_report.c \
97 ../LFR_basic-parameters/basic_parameters.c
97 ../LFR_basic-parameters/basic_parameters.c
98
98
99 HEADERS += \
99 HEADERS += \
100 ../header/wf_handler.h \
100 ../header/wf_handler.h \
101 ../header/tc_handler.h \
101 ../header/tc_handler.h \
102 ../header/grlib_regs.h \
102 ../header/grlib_regs.h \
103 ../header/fsw_misc.h \
103 ../header/fsw_misc.h \
104 ../header/fsw_init.h \
104 ../header/fsw_init.h \
105 ../header/fsw_spacewire.h \
105 ../header/fsw_spacewire.h \
106 ../header/tc_load_dump_parameters.h \
106 ../header/tc_load_dump_parameters.h \
107 ../header/tm_lfr_tc_exe.h \
107 ../header/tm_lfr_tc_exe.h \
108 ../header/tc_acceptance.h \
108 ../header/tc_acceptance.h \
109 ../header/processing/fsw_processing.h \
109 ../header/processing/fsw_processing.h \
110 ../header/processing/avf0_prc0.h \
110 ../header/processing/avf0_prc0.h \
111 ../header/processing/avf1_prc1.h \
111 ../header/processing/avf1_prc1.h \
112 ../header/processing/avf2_prc2.h \
112 ../header/processing/avf2_prc2.h \
113 ../header/fsw_params_wf_handler.h \
113 ../header/fsw_params_wf_handler.h \
114 ../header/lfr_cpu_usage_report.h \
114 ../header/lfr_cpu_usage_report.h \
115 ../header/lfr_common_headers/ccsds_types.h \
115 ../header/lfr_common_headers/ccsds_types.h \
116 ../header/lfr_common_headers/fsw_params.h \
116 ../header/lfr_common_headers/fsw_params.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
119 ../header/lfr_common_headers/TC_types.h \
119 ../header/lfr_common_headers/TC_types.h \
120 ../header/lfr_common_headers/tm_byte_positions.h \
120 ../header/lfr_common_headers/tm_byte_positions.h \
121 ../LFR_basic-parameters/basic_parameters.h \
121 ../LFR_basic-parameters/basic_parameters.h \
122 ../LFR_basic-parameters/basic_parameters_params.h \
122 ../LFR_basic-parameters/basic_parameters_params.h \
123 ../header/GscMemoryLPP.hpp
123 ../header/GscMemoryLPP.hpp
124
124
@@ -1,72 +1,72
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6
6
7 #include "fsw_params.h"
7 #include "fsw_params.h"
8 #include "wf_handler.h"
8 #include "wf_handler.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "fsw_misc.h"
10 #include "fsw_misc.h"
11 #include "basic_parameters_params.h"
11 #include "basic_parameters_params.h"
12 #include "avf0_prc0.h"
12 #include "avf0_prc0.h"
13
13
14 #define FLOAT_EQUAL_ZERO 0.001
14 #define FLOAT_EQUAL_ZERO 0.001
15
15
16 extern unsigned short sequenceCounterParameterDump;
16 extern unsigned short sequenceCounterParameterDump;
17 extern unsigned short sequenceCounters_TM_DUMP[];
17 extern unsigned short sequenceCounters_TM_DUMP[];
18 extern float k_coeff_intercalib_f0_norm[ ];
18 extern float k_coeff_intercalib_f0_norm[ ];
19 extern float k_coeff_intercalib_f0_sbm[ ];
19 extern float k_coeff_intercalib_f0_sbm[ ];
20 extern float k_coeff_intercalib_f1_norm[ ];
20 extern float k_coeff_intercalib_f1_norm[ ];
21 extern float k_coeff_intercalib_f1_sbm[ ];
21 extern float k_coeff_intercalib_f1_sbm[ ];
22 extern float k_coeff_intercalib_f2[ ];
22 extern float k_coeff_intercalib_f2[ ];
23
23
24 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
24 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
25 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
25 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
28 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
28 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
29 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
32 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
32 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
33
33
34 // NORMAL
34 // NORMAL
35 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
35 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
36 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
36 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
37 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
37 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
38 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
38 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
39 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
39 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
40 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
40 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
41 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
41 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
42
42
43 // BURST
43 // BURST
44 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
44 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
45 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
45 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
46
46
47 // SBM1
47 // SBM1
48 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
48 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
49 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
49 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
50
50
51 // SBM2
51 // SBM2
52 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
52 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
53 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
53 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
54
54
55 // TC_LFR_UPDATE_INFO
55 // TC_LFR_UPDATE_INFO
56 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
56 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
57 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
57 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
58 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
58 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
59
59
60 // FBINS_MASK
60 // FBINS_MASK
61 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
61 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
62
62
63 // KCOEFFICIENTS
63 // KCOEFFICIENTS
64 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
64 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
65 void copyFloatByChar( unsigned char *destination, unsigned char *source );
65 void copyFloatByChar( unsigned char *destination, unsigned char *source );
66
66
67 void init_parameter_dump( void );
67 void init_parameter_dump( void );
68 void init_kcoefficients_dump( void );
68 void init_kcoefficients_dump( void );
69 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
69 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
70 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
70 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
71
71
72 #endif // TC_LOAD_DUMP_PARAMETERS_H
72 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,1201 +1,1201
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 ring_node kcoefficient_node_1;
19 ring_node kcoefficient_node_1;
20 ring_node kcoefficient_node_2;
20 ring_node kcoefficient_node_2;
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_common_par_consistency( TC, queue_id );
61 flag = check_normal_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET THE PARAMETERS
135 // SET THE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 if (aux > FLOAT_EQUAL_ZERO)
193 if (aux > FLOAT_EQUAL_ZERO)
194 {
194 {
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 flag = LFR_DEFAULT;
196 flag = LFR_DEFAULT;
197 }
197 }
198 }
198 }
199
199
200 // SET THE PARAMETERS
200 // SET THE PARAMETERS
201 if (flag == LFR_SUCCESSFUL)
201 if (flag == LFR_SUCCESSFUL)
202 {
202 {
203 flag = set_sy_lfr_s1_bp_p0( TC );
203 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
205 }
205 }
206
206
207 return flag;
207 return flag;
208 }
208 }
209
209
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 {
211 {
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 *
213 *
214 * @param TC points to the TeleCommand packet that is being processed
214 * @param TC points to the TeleCommand packet that is being processed
215 * @param queue_id is the id of the queue which handles TM related to this execution step
215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 *
216 *
217 */
217 */
218
218
219 int flag;
219 int flag;
220 rtems_status_code status;
220 rtems_status_code status;
221 unsigned char sy_lfr_s2_bp_p0;
221 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p1;
222 unsigned char sy_lfr_s2_bp_p1;
223 float aux;
223 float aux;
224
224
225 flag = LFR_SUCCESSFUL;
225 flag = LFR_SUCCESSFUL;
226
226
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 flag = LFR_DEFAULT;
229 flag = LFR_DEFAULT;
230 }
230 }
231
231
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234
234
235 // sy_lfr_s2_bp_p0
235 // sy_lfr_s2_bp_p0
236 if (flag == LFR_SUCCESSFUL)
236 if (flag == LFR_SUCCESSFUL)
237 {
237 {
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 {
239 {
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 flag = WRONG_APP_DATA;
241 flag = WRONG_APP_DATA;
242 }
242 }
243 }
243 }
244 // sy_lfr_s2_bp_p1
244 // sy_lfr_s2_bp_p1
245 if (flag == LFR_SUCCESSFUL)
245 if (flag == LFR_SUCCESSFUL)
246 {
246 {
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 {
248 {
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 flag = WRONG_APP_DATA;
250 flag = WRONG_APP_DATA;
251 }
251 }
252 }
252 }
253 //******************************************************************
253 //******************************************************************
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 if (flag == LFR_SUCCESSFUL)
255 if (flag == LFR_SUCCESSFUL)
256 {
256 {
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 if (aux > FLOAT_EQUAL_ZERO)
260 if (aux > FLOAT_EQUAL_ZERO)
261 {
261 {
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 flag = LFR_DEFAULT;
263 flag = LFR_DEFAULT;
264 }
264 }
265 }
265 }
266
266
267 // SET THE PARAMETERS
267 // SET THE PARAMETERS
268 if (flag == LFR_SUCCESSFUL)
268 if (flag == LFR_SUCCESSFUL)
269 {
269 {
270 flag = set_sy_lfr_s2_bp_p0( TC );
270 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
272 }
272 }
273
273
274 return flag;
274 return flag;
275 }
275 }
276
276
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 {
278 {
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 *
280 *
281 * @param TC points to the TeleCommand packet that is being processed
281 * @param TC points to the TeleCommand packet that is being processed
282 * @param queue_id is the id of the queue which handles TM related to this execution step
282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 *
283 *
284 */
284 */
285
285
286 int flag;
286 int flag;
287
287
288 flag = LFR_DEFAULT;
288 flag = LFR_DEFAULT;
289
289
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291
291
292 return flag;
292 return flag;
293 }
293 }
294
294
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 {
296 {
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 *
298 *
299 * @param TC points to the TeleCommand packet that is being processed
299 * @param TC points to the TeleCommand packet that is being processed
300 * @param queue_id is the id of the queue which handles TM related to this execution step
300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 *
301 *
302 */
302 */
303
303
304 int flag;
304 int flag;
305
305
306 flag = LFR_DEFAULT;
306 flag = LFR_DEFAULT;
307
307
308 flag = set_sy_lfr_fbins( TC );
308 flag = set_sy_lfr_fbins( TC );
309
309
310 return flag;
310 return flag;
311 }
311 }
312
312
313 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
313 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 {
314 {
315 /** This function updates the LFR registers with the incoming sbm2 parameters.
315 /** This function updates the LFR registers with the incoming sbm2 parameters.
316 *
316 *
317 * @param TC points to the TeleCommand packet that is being processed
317 * @param TC points to the TeleCommand packet that is being processed
318 * @param queue_id is the id of the queue which handles TM related to this execution step
318 * @param queue_id is the id of the queue which handles TM related to this execution step
319 *
319 *
320 */
320 */
321
321
322 unsigned int address;
322 unsigned int address;
323 rtems_status_code status;
323 rtems_status_code status;
324 unsigned int freq;
324 unsigned int freq;
325 unsigned int bin;
325 unsigned int bin;
326 unsigned int coeff;
326 unsigned int coeff;
327 unsigned char *kCoeffPtr;
327 unsigned char *kCoeffPtr;
328 unsigned char *kCoeffDumpPtr;
328 unsigned char *kCoeffDumpPtr;
329
329
330 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
330 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
331 // F0 => 11 bins
331 // F0 => 11 bins
332 // F1 => 13 bins
332 // F1 => 13 bins
333 // F2 => 12 bins
333 // F2 => 12 bins
334 // 36 bins to dump in two packets (30 bins max per packet)
334 // 36 bins to dump in two packets (30 bins max per packet)
335
335
336 //*********
336 //*********
337 // PACKET 1
337 // PACKET 1
338 // 11 F0 bins, 13 F1 bins and 6 F2 bins
338 // 11 F0 bins, 13 F1 bins and 6 F2 bins
339 kcoefficients_dump_1.destinationID = TC->sourceID;
339 kcoefficients_dump_1.destinationID = TC->sourceID;
340 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
340 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
341 for( freq=0;
341 for( freq=0;
342 freq<NB_BINS_COMPRESSED_SM_F0;
342 freq<NB_BINS_COMPRESSED_SM_F0;
343 freq++ )
343 freq++ )
344 {
344 {
345 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
345 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
346 bin = freq;
346 bin = freq;
347 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
347 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
348 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
348 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
349 {
349 {
350 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
350 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
351 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
351 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
352 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
352 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
353 }
353 }
354 }
354 }
355 for( freq=NB_BINS_COMPRESSED_SM_F0;
355 for( freq=NB_BINS_COMPRESSED_SM_F0;
356 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
356 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
357 freq++ )
357 freq++ )
358 {
358 {
359 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
359 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
360 bin = freq - NB_BINS_COMPRESSED_SM_F0;
360 bin = freq - NB_BINS_COMPRESSED_SM_F0;
361 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
361 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
362 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
362 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
363 {
363 {
364 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
364 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
365 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
365 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
366 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
366 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
367 }
367 }
368 }
368 }
369 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
369 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
370 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
370 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
371 freq++ )
371 freq++ )
372 {
372 {
373 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
373 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
374 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
374 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
375 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
375 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
376 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
376 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
377 {
377 {
378 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
378 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
379 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
379 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
380 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
380 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
381 }
381 }
382 }
382 }
383 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
383 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
384 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
384 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
385 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
385 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
386 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
386 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
387 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
387 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
388 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
388 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
389 // SEND DATA
389 // SEND DATA
390 kcoefficient_node_1.status = 1;
390 kcoefficient_node_1.status = 1;
391 address = (unsigned int) &kcoefficient_node_1;
391 address = (unsigned int) &kcoefficient_node_1;
392 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
392 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
393 if (status != RTEMS_SUCCESSFUL) {
393 if (status != RTEMS_SUCCESSFUL) {
394 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
394 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
395 }
395 }
396
396
397 //********
397 //********
398 // PACKET 2
398 // PACKET 2
399 // 6 F2 bins
399 // 6 F2 bins
400 kcoefficients_dump_2.destinationID = TC->sourceID;
400 kcoefficients_dump_2.destinationID = TC->sourceID;
401 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
401 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
402 for( freq=0; freq<6; freq++ )
402 for( freq=0; freq<6; freq++ )
403 {
403 {
404 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
404 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
405 bin = freq + 6;
405 bin = freq + 6;
406 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
406 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
407 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
407 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
408 {
408 {
409 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
409 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
410 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
410 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
411 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
411 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
412 }
412 }
413 }
413 }
414 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
414 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
415 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
415 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
416 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
416 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
417 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
417 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
418 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
418 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
419 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
419 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
420 // SEND DATA
420 // SEND DATA
421 kcoefficient_node_2.status = 1;
421 kcoefficient_node_2.status = 1;
422 address = (unsigned int) &kcoefficient_node_2;
422 address = (unsigned int) &kcoefficient_node_2;
423 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
423 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
424 if (status != RTEMS_SUCCESSFUL) {
424 if (status != RTEMS_SUCCESSFUL) {
425 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
425 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
426 }
426 }
427
427
428 return status;
428 return status;
429 }
429 }
430
430
431 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
431 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
432 {
432 {
433 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
433 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
434 *
434 *
435 * @param queue_id is the id of the queue which handles TM related to this execution step.
435 * @param queue_id is the id of the queue which handles TM related to this execution step.
436 *
436 *
437 * @return RTEMS directive status codes:
437 * @return RTEMS directive status codes:
438 * - RTEMS_SUCCESSFUL - message sent successfully
438 * - RTEMS_SUCCESSFUL - message sent successfully
439 * - RTEMS_INVALID_ID - invalid queue id
439 * - RTEMS_INVALID_ID - invalid queue id
440 * - RTEMS_INVALID_SIZE - invalid message size
440 * - RTEMS_INVALID_SIZE - invalid message size
441 * - RTEMS_INVALID_ADDRESS - buffer is NULL
441 * - RTEMS_INVALID_ADDRESS - buffer is NULL
442 * - RTEMS_UNSATISFIED - out of message buffers
442 * - RTEMS_UNSATISFIED - out of message buffers
443 * - RTEMS_TOO_MANY - queue s limit has been reached
443 * - RTEMS_TOO_MANY - queue s limit has been reached
444 *
444 *
445 */
445 */
446
446
447 int status;
447 int status;
448
448
449 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
449 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
450 parameter_dump_packet.destinationID = TC->sourceID;
450 parameter_dump_packet.destinationID = TC->sourceID;
451
451
452 // UPDATE TIME
452 // UPDATE TIME
453 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
453 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
454 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
454 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
455 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
455 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
456 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
456 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
457 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
457 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
458 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
458 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
459 // SEND DATA
459 // SEND DATA
460 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
460 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
461 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
461 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
462 if (status != RTEMS_SUCCESSFUL) {
462 if (status != RTEMS_SUCCESSFUL) {
463 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
463 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
464 }
464 }
465
465
466 return status;
466 return status;
467 }
467 }
468
468
469 //***********************
469 //***********************
470 // NORMAL MODE PARAMETERS
470 // NORMAL MODE PARAMETERS
471
471
472 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
472 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
473 {
473 {
474 unsigned char msb;
474 unsigned char msb;
475 unsigned char lsb;
475 unsigned char lsb;
476 int flag;
476 int flag;
477 float aux;
477 float aux;
478 rtems_status_code status;
478 rtems_status_code status;
479
479
480 unsigned int sy_lfr_n_swf_l;
480 unsigned int sy_lfr_n_swf_l;
481 unsigned int sy_lfr_n_swf_p;
481 unsigned int sy_lfr_n_swf_p;
482 unsigned int sy_lfr_n_asm_p;
482 unsigned int sy_lfr_n_asm_p;
483 unsigned char sy_lfr_n_bp_p0;
483 unsigned char sy_lfr_n_bp_p0;
484 unsigned char sy_lfr_n_bp_p1;
484 unsigned char sy_lfr_n_bp_p1;
485 unsigned char sy_lfr_n_cwf_long_f3;
485 unsigned char sy_lfr_n_cwf_long_f3;
486
486
487 flag = LFR_SUCCESSFUL;
487 flag = LFR_SUCCESSFUL;
488
488
489 //***************
489 //***************
490 // get parameters
490 // get parameters
491 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
491 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
492 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
492 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
493 sy_lfr_n_swf_l = msb * 256 + lsb;
493 sy_lfr_n_swf_l = msb * 256 + lsb;
494
494
495 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
495 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
496 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
496 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
497 sy_lfr_n_swf_p = msb * 256 + lsb;
497 sy_lfr_n_swf_p = msb * 256 + lsb;
498
498
499 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
499 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
500 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
500 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
501 sy_lfr_n_asm_p = msb * 256 + lsb;
501 sy_lfr_n_asm_p = msb * 256 + lsb;
502
502
503 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
503 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
504
504
505 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
505 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
506
506
507 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
507 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
508
508
509 //******************
509 //******************
510 // check consistency
510 // check consistency
511 // sy_lfr_n_swf_l
511 // sy_lfr_n_swf_l
512 if (sy_lfr_n_swf_l != 2048)
512 if (sy_lfr_n_swf_l != 2048)
513 {
513 {
514 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
514 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
515 flag = WRONG_APP_DATA;
515 flag = WRONG_APP_DATA;
516 }
516 }
517 // sy_lfr_n_swf_p
517 // sy_lfr_n_swf_p
518 if (flag == LFR_SUCCESSFUL)
518 if (flag == LFR_SUCCESSFUL)
519 {
519 {
520 if ( sy_lfr_n_swf_p < 16 )
520 if ( sy_lfr_n_swf_p < 22 )
521 {
521 {
522 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
522 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
523 flag = WRONG_APP_DATA;
523 flag = WRONG_APP_DATA;
524 }
524 }
525 }
525 }
526 // sy_lfr_n_bp_p0
526 // sy_lfr_n_bp_p0
527 if (flag == LFR_SUCCESSFUL)
527 if (flag == LFR_SUCCESSFUL)
528 {
528 {
529 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
529 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
530 {
530 {
531 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
531 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
532 flag = WRONG_APP_DATA;
532 flag = WRONG_APP_DATA;
533 }
533 }
534 }
534 }
535 // sy_lfr_n_asm_p
535 // sy_lfr_n_asm_p
536 if (flag == LFR_SUCCESSFUL)
536 if (flag == LFR_SUCCESSFUL)
537 {
537 {
538 if (sy_lfr_n_asm_p == 0)
538 if (sy_lfr_n_asm_p == 0)
539 {
539 {
540 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
540 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
541 flag = WRONG_APP_DATA;
541 flag = WRONG_APP_DATA;
542 }
542 }
543 }
543 }
544 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
544 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
545 if (flag == LFR_SUCCESSFUL)
545 if (flag == LFR_SUCCESSFUL)
546 {
546 {
547 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
547 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
548 if (aux > FLOAT_EQUAL_ZERO)
548 if (aux > FLOAT_EQUAL_ZERO)
549 {
549 {
550 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
550 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
551 flag = WRONG_APP_DATA;
551 flag = WRONG_APP_DATA;
552 }
552 }
553 }
553 }
554 // sy_lfr_n_bp_p1
554 // sy_lfr_n_bp_p1
555 if (flag == LFR_SUCCESSFUL)
555 if (flag == LFR_SUCCESSFUL)
556 {
556 {
557 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
557 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
558 {
558 {
559 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
559 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
560 flag = WRONG_APP_DATA;
560 flag = WRONG_APP_DATA;
561 }
561 }
562 }
562 }
563 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
563 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
564 if (flag == LFR_SUCCESSFUL)
564 if (flag == LFR_SUCCESSFUL)
565 {
565 {
566 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
566 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
567 if (aux > FLOAT_EQUAL_ZERO)
567 if (aux > FLOAT_EQUAL_ZERO)
568 {
568 {
569 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
569 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
570 flag = LFR_DEFAULT;
570 flag = LFR_DEFAULT;
571 }
571 }
572 }
572 }
573 // sy_lfr_n_cwf_long_f3
573 // sy_lfr_n_cwf_long_f3
574
574
575 return flag;
575 return flag;
576 }
576 }
577
577
578 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
578 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
579 {
579 {
580 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
580 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
581 *
581 *
582 * @param TC points to the TeleCommand packet that is being processed
582 * @param TC points to the TeleCommand packet that is being processed
583 * @param queue_id is the id of the queue which handles TM related to this execution step
583 * @param queue_id is the id of the queue which handles TM related to this execution step
584 *
584 *
585 */
585 */
586
586
587 int result;
587 int result;
588
588
589 result = LFR_SUCCESSFUL;
589 result = LFR_SUCCESSFUL;
590
590
591 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
591 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
592 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
592 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
593
593
594 return result;
594 return result;
595 }
595 }
596
596
597 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
597 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
598 {
598 {
599 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
599 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
600 *
600 *
601 * @param TC points to the TeleCommand packet that is being processed
601 * @param TC points to the TeleCommand packet that is being processed
602 * @param queue_id is the id of the queue which handles TM related to this execution step
602 * @param queue_id is the id of the queue which handles TM related to this execution step
603 *
603 *
604 */
604 */
605
605
606 int result;
606 int result;
607
607
608 result = LFR_SUCCESSFUL;
608 result = LFR_SUCCESSFUL;
609
609
610 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
610 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
611 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
611 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
612
612
613 return result;
613 return result;
614 }
614 }
615
615
616 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
616 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
617 {
617 {
618 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
618 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
619 *
619 *
620 * @param TC points to the TeleCommand packet that is being processed
620 * @param TC points to the TeleCommand packet that is being processed
621 * @param queue_id is the id of the queue which handles TM related to this execution step
621 * @param queue_id is the id of the queue which handles TM related to this execution step
622 *
622 *
623 */
623 */
624
624
625 int result;
625 int result;
626
626
627 result = LFR_SUCCESSFUL;
627 result = LFR_SUCCESSFUL;
628
628
629 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
629 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
630 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
630 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
631
631
632 return result;
632 return result;
633 }
633 }
634
634
635 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
635 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
636 {
636 {
637 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
637 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
638 *
638 *
639 * @param TC points to the TeleCommand packet that is being processed
639 * @param TC points to the TeleCommand packet that is being processed
640 * @param queue_id is the id of the queue which handles TM related to this execution step
640 * @param queue_id is the id of the queue which handles TM related to this execution step
641 *
641 *
642 */
642 */
643
643
644 int status;
644 int status;
645
645
646 status = LFR_SUCCESSFUL;
646 status = LFR_SUCCESSFUL;
647
647
648 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
648 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
649
649
650 return status;
650 return status;
651 }
651 }
652
652
653 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
653 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
654 {
654 {
655 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
655 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
656 *
656 *
657 * @param TC points to the TeleCommand packet that is being processed
657 * @param TC points to the TeleCommand packet that is being processed
658 * @param queue_id is the id of the queue which handles TM related to this execution step
658 * @param queue_id is the id of the queue which handles TM related to this execution step
659 *
659 *
660 */
660 */
661
661
662 int status;
662 int status;
663
663
664 status = LFR_SUCCESSFUL;
664 status = LFR_SUCCESSFUL;
665
665
666 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
666 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
667
667
668 return status;
668 return status;
669 }
669 }
670
670
671 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
671 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
672 {
672 {
673 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
673 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
674 *
674 *
675 * @param TC points to the TeleCommand packet that is being processed
675 * @param TC points to the TeleCommand packet that is being processed
676 * @param queue_id is the id of the queue which handles TM related to this execution step
676 * @param queue_id is the id of the queue which handles TM related to this execution step
677 *
677 *
678 */
678 */
679
679
680 int status;
680 int status;
681
681
682 status = LFR_SUCCESSFUL;
682 status = LFR_SUCCESSFUL;
683
683
684 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
684 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
685
685
686 return status;
686 return status;
687 }
687 }
688
688
689 //**********************
689 //**********************
690 // BURST MODE PARAMETERS
690 // BURST MODE PARAMETERS
691 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
691 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
692 {
692 {
693 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
693 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
694 *
694 *
695 * @param TC points to the TeleCommand packet that is being processed
695 * @param TC points to the TeleCommand packet that is being processed
696 * @param queue_id is the id of the queue which handles TM related to this execution step
696 * @param queue_id is the id of the queue which handles TM related to this execution step
697 *
697 *
698 */
698 */
699
699
700 int status;
700 int status;
701
701
702 status = LFR_SUCCESSFUL;
702 status = LFR_SUCCESSFUL;
703
703
704 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
704 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
705
705
706 return status;
706 return status;
707 }
707 }
708
708
709 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
709 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
710 {
710 {
711 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
711 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
712 *
712 *
713 * @param TC points to the TeleCommand packet that is being processed
713 * @param TC points to the TeleCommand packet that is being processed
714 * @param queue_id is the id of the queue which handles TM related to this execution step
714 * @param queue_id is the id of the queue which handles TM related to this execution step
715 *
715 *
716 */
716 */
717
717
718 int status;
718 int status;
719
719
720 status = LFR_SUCCESSFUL;
720 status = LFR_SUCCESSFUL;
721
721
722 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
722 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
723
723
724 return status;
724 return status;
725 }
725 }
726
726
727 //*********************
727 //*********************
728 // SBM1 MODE PARAMETERS
728 // SBM1 MODE PARAMETERS
729 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
729 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
730 {
730 {
731 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
731 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
732 *
732 *
733 * @param TC points to the TeleCommand packet that is being processed
733 * @param TC points to the TeleCommand packet that is being processed
734 * @param queue_id is the id of the queue which handles TM related to this execution step
734 * @param queue_id is the id of the queue which handles TM related to this execution step
735 *
735 *
736 */
736 */
737
737
738 int status;
738 int status;
739
739
740 status = LFR_SUCCESSFUL;
740 status = LFR_SUCCESSFUL;
741
741
742 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
742 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
743
743
744 return status;
744 return status;
745 }
745 }
746
746
747 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
747 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
748 {
748 {
749 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
749 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
750 *
750 *
751 * @param TC points to the TeleCommand packet that is being processed
751 * @param TC points to the TeleCommand packet that is being processed
752 * @param queue_id is the id of the queue which handles TM related to this execution step
752 * @param queue_id is the id of the queue which handles TM related to this execution step
753 *
753 *
754 */
754 */
755
755
756 int status;
756 int status;
757
757
758 status = LFR_SUCCESSFUL;
758 status = LFR_SUCCESSFUL;
759
759
760 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
760 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
761
761
762 return status;
762 return status;
763 }
763 }
764
764
765 //*********************
765 //*********************
766 // SBM2 MODE PARAMETERS
766 // SBM2 MODE PARAMETERS
767 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
767 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
768 {
768 {
769 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
769 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
770 *
770 *
771 * @param TC points to the TeleCommand packet that is being processed
771 * @param TC points to the TeleCommand packet that is being processed
772 * @param queue_id is the id of the queue which handles TM related to this execution step
772 * @param queue_id is the id of the queue which handles TM related to this execution step
773 *
773 *
774 */
774 */
775
775
776 int status;
776 int status;
777
777
778 status = LFR_SUCCESSFUL;
778 status = LFR_SUCCESSFUL;
779
779
780 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
780 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
781
781
782 return status;
782 return status;
783 }
783 }
784
784
785 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
785 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
786 {
786 {
787 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
787 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
788 *
788 *
789 * @param TC points to the TeleCommand packet that is being processed
789 * @param TC points to the TeleCommand packet that is being processed
790 * @param queue_id is the id of the queue which handles TM related to this execution step
790 * @param queue_id is the id of the queue which handles TM related to this execution step
791 *
791 *
792 */
792 */
793
793
794 int status;
794 int status;
795
795
796 status = LFR_SUCCESSFUL;
796 status = LFR_SUCCESSFUL;
797
797
798 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
798 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
799
799
800 return status;
800 return status;
801 }
801 }
802
802
803 //*******************
803 //*******************
804 // TC_LFR_UPDATE_INFO
804 // TC_LFR_UPDATE_INFO
805 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
805 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
806 {
806 {
807 unsigned int status;
807 unsigned int status;
808
808
809 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
809 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
810 || (mode == LFR_MODE_BURST)
810 || (mode == LFR_MODE_BURST)
811 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
811 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
812 {
812 {
813 status = LFR_SUCCESSFUL;
813 status = LFR_SUCCESSFUL;
814 }
814 }
815 else
815 else
816 {
816 {
817 status = LFR_DEFAULT;
817 status = LFR_DEFAULT;
818 }
818 }
819
819
820 return status;
820 return status;
821 }
821 }
822
822
823 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
823 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
824 {
824 {
825 unsigned int status;
825 unsigned int status;
826
826
827 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
827 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
828 || (mode == TDS_MODE_BURST)
828 || (mode == TDS_MODE_BURST)
829 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
829 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
830 || (mode == TDS_MODE_LFM))
830 || (mode == TDS_MODE_LFM))
831 {
831 {
832 status = LFR_SUCCESSFUL;
832 status = LFR_SUCCESSFUL;
833 }
833 }
834 else
834 else
835 {
835 {
836 status = LFR_DEFAULT;
836 status = LFR_DEFAULT;
837 }
837 }
838
838
839 return status;
839 return status;
840 }
840 }
841
841
842 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
842 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
843 {
843 {
844 unsigned int status;
844 unsigned int status;
845
845
846 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
846 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
847 || (mode == THR_MODE_BURST))
847 || (mode == THR_MODE_BURST))
848 {
848 {
849 status = LFR_SUCCESSFUL;
849 status = LFR_SUCCESSFUL;
850 }
850 }
851 else
851 else
852 {
852 {
853 status = LFR_DEFAULT;
853 status = LFR_DEFAULT;
854 }
854 }
855
855
856 return status;
856 return status;
857 }
857 }
858
858
859 //***********
859 //***********
860 // FBINS MASK
860 // FBINS MASK
861
861
862 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
862 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
863 {
863 {
864 int status;
864 int status;
865 unsigned int k;
865 unsigned int k;
866 unsigned char *fbins_mask_dump;
866 unsigned char *fbins_mask_dump;
867 unsigned char *fbins_mask_TC;
867 unsigned char *fbins_mask_TC;
868
868
869 status = LFR_SUCCESSFUL;
869 status = LFR_SUCCESSFUL;
870
870
871 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
871 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
872 fbins_mask_TC = TC->dataAndCRC;
872 fbins_mask_TC = TC->dataAndCRC;
873
873
874 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
874 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
875 {
875 {
876 fbins_mask_dump[k] = fbins_mask_TC[k];
876 fbins_mask_dump[k] = fbins_mask_TC[k];
877 }
877 }
878 for (k=0; k < NB_FBINS_MASKS; k++)
878 for (k=0; k < NB_FBINS_MASKS; k++)
879 {
879 {
880 unsigned char *auxPtr;
880 unsigned char *auxPtr;
881 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
881 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
882 }
882 }
883
883
884
884
885 return status;
885 return status;
886 }
886 }
887
887
888 //**************
888 //**************
889 // KCOEFFICIENTS
889 // KCOEFFICIENTS
890 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
890 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
891 {
891 {
892 unsigned int kcoeff;
892 unsigned int kcoeff;
893 unsigned short sy_lfr_kcoeff_frequency;
893 unsigned short sy_lfr_kcoeff_frequency;
894 unsigned short bin;
894 unsigned short bin;
895 unsigned short *freqPtr;
895 unsigned short *freqPtr;
896 float *kcoeffPtr_norm;
896 float *kcoeffPtr_norm;
897 float *kcoeffPtr_sbm;
897 float *kcoeffPtr_sbm;
898 int status;
898 int status;
899 unsigned char *kcoeffLoadPtr;
899 unsigned char *kcoeffLoadPtr;
900 unsigned char *kcoeffNormPtr;
900 unsigned char *kcoeffNormPtr;
901 unsigned char *kcoeffSbmPtr_a;
901 unsigned char *kcoeffSbmPtr_a;
902 unsigned char *kcoeffSbmPtr_b;
902 unsigned char *kcoeffSbmPtr_b;
903
903
904 status = LFR_SUCCESSFUL;
904 status = LFR_SUCCESSFUL;
905
905
906 kcoeffPtr_norm = NULL;
906 kcoeffPtr_norm = NULL;
907 kcoeffPtr_sbm = NULL;
907 kcoeffPtr_sbm = NULL;
908 bin = 0;
908 bin = 0;
909
909
910 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
910 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
911 sy_lfr_kcoeff_frequency = *freqPtr;
911 sy_lfr_kcoeff_frequency = *freqPtr;
912
912
913 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
913 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
914 {
914 {
915 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
915 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
916 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
916 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
917 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
917 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
918 status = LFR_DEFAULT;
918 status = LFR_DEFAULT;
919 }
919 }
920 else
920 else
921 {
921 {
922 if ( ( sy_lfr_kcoeff_frequency >= 0 )
922 if ( ( sy_lfr_kcoeff_frequency >= 0 )
923 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
923 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
924 {
924 {
925 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
925 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
926 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
926 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
927 bin = sy_lfr_kcoeff_frequency;
927 bin = sy_lfr_kcoeff_frequency;
928 }
928 }
929 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
929 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
930 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
930 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
931 {
931 {
932 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
932 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
933 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
933 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
934 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
934 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
935 }
935 }
936 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
936 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
937 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
937 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
938 {
938 {
939 kcoeffPtr_norm = k_coeff_intercalib_f2;
939 kcoeffPtr_norm = k_coeff_intercalib_f2;
940 kcoeffPtr_sbm = NULL;
940 kcoeffPtr_sbm = NULL;
941 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
941 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
942 }
942 }
943 }
943 }
944
944
945 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
945 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
946 {
946 {
947 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
947 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
948 {
948 {
949 // destination
949 // destination
950 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
950 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
951 // source
951 // source
952 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
952 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
953 // copy source to destination
953 // copy source to destination
954 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
954 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
955 }
955 }
956 }
956 }
957
957
958 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
958 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
959 {
959 {
960 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
960 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
961 {
961 {
962 // destination
962 // destination
963 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
963 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
964 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
964 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
965 // source
965 // source
966 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
966 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
967 // copy source to destination
967 // copy source to destination
968 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
968 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
969 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
969 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
970 }
970 }
971 }
971 }
972
972
973 // print_k_coeff();
973 // print_k_coeff();
974
974
975 return status;
975 return status;
976 }
976 }
977
977
978 void copyFloatByChar( unsigned char *destination, unsigned char *source )
978 void copyFloatByChar( unsigned char *destination, unsigned char *source )
979 {
979 {
980 destination[0] = source[0];
980 destination[0] = source[0];
981 destination[1] = source[1];
981 destination[1] = source[1];
982 destination[2] = source[2];
982 destination[2] = source[2];
983 destination[3] = source[3];
983 destination[3] = source[3];
984 }
984 }
985
985
986 //**********
986 //**********
987 // init dump
987 // init dump
988
988
989 void init_parameter_dump( void )
989 void init_parameter_dump( void )
990 {
990 {
991 /** This function initialize the parameter_dump_packet global variable with default values.
991 /** This function initialize the parameter_dump_packet global variable with default values.
992 *
992 *
993 */
993 */
994
994
995 unsigned int k;
995 unsigned int k;
996
996
997 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
997 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
998 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
998 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
999 parameter_dump_packet.reserved = CCSDS_RESERVED;
999 parameter_dump_packet.reserved = CCSDS_RESERVED;
1000 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1000 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1001 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1001 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1002 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1002 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1003 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1003 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1004 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1004 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1005 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1005 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1006 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1006 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1007 // DATA FIELD HEADER
1007 // DATA FIELD HEADER
1008 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1008 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1009 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1009 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1010 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1010 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1011 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1011 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1012 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1012 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1013 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1013 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1014 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1014 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1015 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1015 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1016 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1016 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1017 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1017 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1018 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1018 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1019
1019
1020 //******************
1020 //******************
1021 // COMMON PARAMETERS
1021 // COMMON PARAMETERS
1022 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1022 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1023 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1023 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1024
1024
1025 //******************
1025 //******************
1026 // NORMAL PARAMETERS
1026 // NORMAL PARAMETERS
1027 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1027 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1028 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1028 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1029 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1029 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1030 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1030 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1031 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1031 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1032 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1032 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1033 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1033 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1034 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1034 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1035 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1035 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1036
1036
1037 //*****************
1037 //*****************
1038 // BURST PARAMETERS
1038 // BURST PARAMETERS
1039 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1039 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1040 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1040 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1041
1041
1042 //****************
1042 //****************
1043 // SBM1 PARAMETERS
1043 // SBM1 PARAMETERS
1044 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1044 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1045 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1045 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1046
1046
1047 //****************
1047 //****************
1048 // SBM2 PARAMETERS
1048 // SBM2 PARAMETERS
1049 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1049 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1050 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1050 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1051
1051
1052 //************
1052 //************
1053 // FBINS MASKS
1053 // FBINS MASKS
1054 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1054 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1055 {
1055 {
1056 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1056 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1057 }
1057 }
1058 }
1058 }
1059
1059
1060 void init_kcoefficients_dump( void )
1060 void init_kcoefficients_dump( void )
1061 {
1061 {
1062 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1062 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1063 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1063 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1064
1064
1065 kcoefficient_node_1.previous = NULL;
1065 kcoefficient_node_1.previous = NULL;
1066 kcoefficient_node_1.next = NULL;
1066 kcoefficient_node_1.next = NULL;
1067 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1067 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1068 kcoefficient_node_1.coarseTime = 0x00;
1068 kcoefficient_node_1.coarseTime = 0x00;
1069 kcoefficient_node_1.fineTime = 0x00;
1069 kcoefficient_node_1.fineTime = 0x00;
1070 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1070 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1071 kcoefficient_node_1.status = 0x00;
1071 kcoefficient_node_1.status = 0x00;
1072
1072
1073 kcoefficient_node_2.previous = NULL;
1073 kcoefficient_node_2.previous = NULL;
1074 kcoefficient_node_2.next = NULL;
1074 kcoefficient_node_2.next = NULL;
1075 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1075 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1076 kcoefficient_node_2.coarseTime = 0x00;
1076 kcoefficient_node_2.coarseTime = 0x00;
1077 kcoefficient_node_2.fineTime = 0x00;
1077 kcoefficient_node_2.fineTime = 0x00;
1078 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1078 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1079 kcoefficient_node_2.status = 0x00;
1079 kcoefficient_node_2.status = 0x00;
1080 }
1080 }
1081
1081
1082 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1082 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1083 {
1083 {
1084 unsigned int k;
1084 unsigned int k;
1085 unsigned int packetLength;
1085 unsigned int packetLength;
1086
1086
1087 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1087 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1088
1088
1089 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1089 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1090 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1090 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1091 kcoefficients_dump->reserved = CCSDS_RESERVED;
1091 kcoefficients_dump->reserved = CCSDS_RESERVED;
1092 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1092 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1093 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1093 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1094 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1094 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1095 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1095 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1096 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1096 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1097 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1097 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1098 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1098 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1099 // DATA FIELD HEADER
1099 // DATA FIELD HEADER
1100 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1100 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1101 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1101 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1102 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1102 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1103 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1103 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1104 kcoefficients_dump->time[0] = 0x00;
1104 kcoefficients_dump->time[0] = 0x00;
1105 kcoefficients_dump->time[1] = 0x00;
1105 kcoefficients_dump->time[1] = 0x00;
1106 kcoefficients_dump->time[2] = 0x00;
1106 kcoefficients_dump->time[2] = 0x00;
1107 kcoefficients_dump->time[3] = 0x00;
1107 kcoefficients_dump->time[3] = 0x00;
1108 kcoefficients_dump->time[4] = 0x00;
1108 kcoefficients_dump->time[4] = 0x00;
1109 kcoefficients_dump->time[5] = 0x00;
1109 kcoefficients_dump->time[5] = 0x00;
1110 kcoefficients_dump->sid = SID_K_DUMP;
1110 kcoefficients_dump->sid = SID_K_DUMP;
1111
1111
1112 kcoefficients_dump->pkt_cnt = 2;
1112 kcoefficients_dump->pkt_cnt = 2;
1113 kcoefficients_dump->pkt_nr = pkt_nr;
1113 kcoefficients_dump->pkt_nr = pkt_nr;
1114 kcoefficients_dump->blk_nr = blk_nr;
1114 kcoefficients_dump->blk_nr = blk_nr;
1115
1115
1116 //******************
1116 //******************
1117 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1117 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1118 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1118 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1119 for (k=0; k<3900; k++)
1119 for (k=0; k<3900; k++)
1120 {
1120 {
1121 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1121 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1122 }
1122 }
1123 }
1123 }
1124
1124
1125 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1125 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1126 {
1126 {
1127 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1127 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1128 *
1128 *
1129 * @param packet_sequence_control points to the packet sequence control which will be incremented
1129 * @param packet_sequence_control points to the packet sequence control which will be incremented
1130 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1130 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1131 *
1131 *
1132 * If the destination ID is not known, a dedicated counter is incremented.
1132 * If the destination ID is not known, a dedicated counter is incremented.
1133 *
1133 *
1134 */
1134 */
1135
1135
1136 unsigned short sequence_cnt;
1136 unsigned short sequence_cnt;
1137 unsigned short segmentation_grouping_flag;
1137 unsigned short segmentation_grouping_flag;
1138 unsigned short new_packet_sequence_control;
1138 unsigned short new_packet_sequence_control;
1139 unsigned char i;
1139 unsigned char i;
1140
1140
1141 switch (destination_id)
1141 switch (destination_id)
1142 {
1142 {
1143 case SID_TC_GROUND:
1143 case SID_TC_GROUND:
1144 i = GROUND;
1144 i = GROUND;
1145 break;
1145 break;
1146 case SID_TC_MISSION_TIMELINE:
1146 case SID_TC_MISSION_TIMELINE:
1147 i = MISSION_TIMELINE;
1147 i = MISSION_TIMELINE;
1148 break;
1148 break;
1149 case SID_TC_TC_SEQUENCES:
1149 case SID_TC_TC_SEQUENCES:
1150 i = TC_SEQUENCES;
1150 i = TC_SEQUENCES;
1151 break;
1151 break;
1152 case SID_TC_RECOVERY_ACTION_CMD:
1152 case SID_TC_RECOVERY_ACTION_CMD:
1153 i = RECOVERY_ACTION_CMD;
1153 i = RECOVERY_ACTION_CMD;
1154 break;
1154 break;
1155 case SID_TC_BACKUP_MISSION_TIMELINE:
1155 case SID_TC_BACKUP_MISSION_TIMELINE:
1156 i = BACKUP_MISSION_TIMELINE;
1156 i = BACKUP_MISSION_TIMELINE;
1157 break;
1157 break;
1158 case SID_TC_DIRECT_CMD:
1158 case SID_TC_DIRECT_CMD:
1159 i = DIRECT_CMD;
1159 i = DIRECT_CMD;
1160 break;
1160 break;
1161 case SID_TC_SPARE_GRD_SRC1:
1161 case SID_TC_SPARE_GRD_SRC1:
1162 i = SPARE_GRD_SRC1;
1162 i = SPARE_GRD_SRC1;
1163 break;
1163 break;
1164 case SID_TC_SPARE_GRD_SRC2:
1164 case SID_TC_SPARE_GRD_SRC2:
1165 i = SPARE_GRD_SRC2;
1165 i = SPARE_GRD_SRC2;
1166 break;
1166 break;
1167 case SID_TC_OBCP:
1167 case SID_TC_OBCP:
1168 i = OBCP;
1168 i = OBCP;
1169 break;
1169 break;
1170 case SID_TC_SYSTEM_CONTROL:
1170 case SID_TC_SYSTEM_CONTROL:
1171 i = SYSTEM_CONTROL;
1171 i = SYSTEM_CONTROL;
1172 break;
1172 break;
1173 case SID_TC_AOCS:
1173 case SID_TC_AOCS:
1174 i = AOCS;
1174 i = AOCS;
1175 break;
1175 break;
1176 case SID_TC_RPW_INTERNAL:
1176 case SID_TC_RPW_INTERNAL:
1177 i = RPW_INTERNAL;
1177 i = RPW_INTERNAL;
1178 break;
1178 break;
1179 default:
1179 default:
1180 i = GROUND;
1180 i = GROUND;
1181 break;
1181 break;
1182 }
1182 }
1183
1183
1184 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1184 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1185 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1185 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1186
1186
1187 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1187 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1188
1188
1189 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1189 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1190 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1190 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1191
1191
1192 // increment the sequence counter
1192 // increment the sequence counter
1193 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1193 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1194 {
1194 {
1195 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1195 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1196 }
1196 }
1197 else
1197 else
1198 {
1198 {
1199 sequenceCounters_TM_DUMP[ i ] = 0;
1199 sequenceCounters_TM_DUMP[ i ] = 0;
1200 }
1200 }
1201 }
1201 }
@@ -1,1310 +1,1310
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //***************
12 //***************
13 // waveform rings
13 // waveform rings
14 // F0
14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 ring_node *current_ring_node_f0;
16 ring_node *current_ring_node_f0;
17 ring_node *ring_node_to_send_swf_f0;
17 ring_node *ring_node_to_send_swf_f0;
18 // F1
18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 ring_node *current_ring_node_f1;
20 ring_node *current_ring_node_f1;
21 ring_node *ring_node_to_send_swf_f1;
21 ring_node *ring_node_to_send_swf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
23 // F2
23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 ring_node *current_ring_node_f2;
25 ring_node *current_ring_node_f2;
26 ring_node *ring_node_to_send_swf_f2;
26 ring_node *ring_node_to_send_swf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
28 // F3
28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node *current_ring_node_f3;
30 ring_node *current_ring_node_f3;
31 ring_node *ring_node_to_send_cwf_f3;
31 ring_node *ring_node_to_send_cwf_f3;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33
33
34 bool extractSWF1 = false;
34 bool extractSWF1 = false;
35 bool extractSWF2 = false;
35 bool extractSWF2 = false;
36 bool swf0_ready_flag_f1 = false;
36 bool swf0_ready_flag_f1 = false;
37 bool swf0_ready_flag_f2 = false;
37 bool swf0_ready_flag_f2 = false;
38 bool swf1_ready = false;
38 bool swf1_ready = false;
39 bool swf2_ready = false;
39 bool swf2_ready = false;
40
40
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 ring_node ring_node_swf1_extracted;
43 ring_node ring_node_swf1_extracted;
44 ring_node ring_node_swf2_extracted;
44 ring_node ring_node_swf2_extracted;
45
45
46 typedef enum resynchro_state_t
46 typedef enum resynchro_state_t
47 {
47 {
48 MEASURE,
48 MEASURE,
49 CORRECTION
49 CORRECTION
50 } resynchro_state;
50 } resynchro_state;
51
51
52 //*********************
52 //*********************
53 // Interrupt SubRoutine
53 // Interrupt SubRoutine
54
54
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 {
56 {
57 ring_node *node;
57 ring_node *node;
58
58
59 node = NULL;
59 node = NULL;
60 switch ( frequencyChannel ) {
60 switch ( frequencyChannel ) {
61 case 1:
61 case 1:
62 node = ring_node_to_send_cwf_f1;
62 node = ring_node_to_send_cwf_f1;
63 break;
63 break;
64 case 2:
64 case 2:
65 node = ring_node_to_send_cwf_f2;
65 node = ring_node_to_send_cwf_f2;
66 break;
66 break;
67 case 3:
67 case 3:
68 node = ring_node_to_send_cwf_f3;
68 node = ring_node_to_send_cwf_f3;
69 break;
69 break;
70 default:
70 default:
71 break;
71 break;
72 }
72 }
73
73
74 return node;
74 return node;
75 }
75 }
76
76
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 {
78 {
79 ring_node *node;
79 ring_node *node;
80
80
81 node = NULL;
81 node = NULL;
82 switch ( frequencyChannel ) {
82 switch ( frequencyChannel ) {
83 case 0:
83 case 0:
84 node = ring_node_to_send_swf_f0;
84 node = ring_node_to_send_swf_f0;
85 break;
85 break;
86 case 1:
86 case 1:
87 node = ring_node_to_send_swf_f1;
87 node = ring_node_to_send_swf_f1;
88 break;
88 break;
89 case 2:
89 case 2:
90 node = ring_node_to_send_swf_f2;
90 node = ring_node_to_send_swf_f2;
91 break;
91 break;
92 default:
92 default:
93 break;
93 break;
94 }
94 }
95
95
96 return node;
96 return node;
97 }
97 }
98
98
99 void reset_extractSWF( void )
99 void reset_extractSWF( void )
100 {
100 {
101 extractSWF1 = false;
101 extractSWF1 = false;
102 extractSWF2 = false;
102 extractSWF2 = false;
103 swf0_ready_flag_f1 = false;
103 swf0_ready_flag_f1 = false;
104 swf0_ready_flag_f2 = false;
104 swf0_ready_flag_f2 = false;
105 swf1_ready = false;
105 swf1_ready = false;
106 swf2_ready = false;
106 swf2_ready = false;
107 }
107 }
108
108
109 inline void waveforms_isr_f3( void )
109 inline void waveforms_isr_f3( void )
110 {
110 {
111 rtems_status_code spare_status;
111 rtems_status_code spare_status;
112
112
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 //***
116 //***
117 // F3
117 // F3
118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 current_ring_node_f3 = current_ring_node_f3->next;
120 current_ring_node_f3 = current_ring_node_f3->next;
121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
126 }
126 }
127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
132 }
132 }
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 }
135 }
136 }
136 }
137 }
137 }
138 }
138 }
139
139
140 inline void waveforms_isr_burst( void )
140 inline void waveforms_isr_burst( void )
141 {
141 {
142 unsigned char status;
142 unsigned char status;
143 rtems_status_code spare_status;
143 rtems_status_code spare_status;
144
144
145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
146
146
147
147
148 switch(status)
148 switch(status)
149 {
149 {
150 case 1:
150 case 1:
151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
155 current_ring_node_f2 = current_ring_node_f2->next;
155 current_ring_node_f2 = current_ring_node_f2->next;
156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
159 }
159 }
160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
161 break;
161 break;
162 case 2:
162 case 2:
163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
167 current_ring_node_f2 = current_ring_node_f2->next;
167 current_ring_node_f2 = current_ring_node_f2->next;
168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
171 }
171 }
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
173 break;
173 break;
174 default:
174 default:
175 break;
175 break;
176 }
176 }
177 }
177 }
178
178
179 inline void waveform_isr_normal_sbm1_sbm2( void )
179 inline void waveform_isr_normal_sbm1_sbm2( void )
180 {
180 {
181 rtems_status_code status;
181 rtems_status_code status;
182
182
183 //***
183 //***
184 // F0
184 // F0
185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
186 {
186 {
187 swf0_ready_flag_f1 = true;
187 swf0_ready_flag_f1 = true;
188 swf0_ready_flag_f2 = true;
188 swf0_ready_flag_f2 = true;
189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
190 current_ring_node_f0 = current_ring_node_f0->next;
190 current_ring_node_f0 = current_ring_node_f0->next;
191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
192 {
192 {
193
193
194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
198 }
198 }
199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
200 {
200 {
201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
205 }
205 }
206 // send an event to the WFRM task for resynchro activities
206 // send an event to the WFRM task for resynchro activities
207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
208 }
208 }
209
209
210 //***
210 //***
211 // F1
211 // F1
212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
213 // (1) change the receiving buffer for the waveform picker
213 // (1) change the receiving buffer for the waveform picker
214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 current_ring_node_f1 = current_ring_node_f1->next;
215 current_ring_node_f1 = current_ring_node_f1->next;
216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
217 {
217 {
218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
222 }
222 }
223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
224 {
224 {
225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
229 }
229 }
230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 }
232 }
233
233
234 //***
234 //***
235 // F2
235 // F2
236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
237 // (1) change the receiving buffer for the waveform picker
237 // (1) change the receiving buffer for the waveform picker
238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 current_ring_node_f2 = current_ring_node_f2->next;
240 current_ring_node_f2 = current_ring_node_f2->next;
241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
242 {
242 {
243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
247 }
247 }
248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
249 {
249 {
250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
254 }
254 }
255 // (2) send an event for the waveforms transmission
255 // (2) send an event for the waveforms transmission
256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 }
257 }
258 }
258 }
259
259
260 rtems_isr waveforms_isr( rtems_vector_number vector )
260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 {
261 {
262 /** This is the interrupt sub routine called by the waveform picker core.
262 /** This is the interrupt sub routine called by the waveform picker core.
263 *
263 *
264 * This ISR launch different actions depending mainly on two pieces of information:
264 * This ISR launch different actions depending mainly on two pieces of information:
265 * 1. the values read in the registers of the waveform picker.
265 * 1. the values read in the registers of the waveform picker.
266 * 2. the current LFR mode.
266 * 2. the current LFR mode.
267 *
267 *
268 */
268 */
269
269
270 // STATUS
270 // STATUS
271 // new error error buffer full
271 // new error error buffer full
272 // 15 14 13 12 11 10 9 8
272 // 15 14 13 12 11 10 9 8
273 // f3 f2 f1 f0 f3 f2 f1 f0
273 // f3 f2 f1 f0 f3 f2 f1 f0
274 //
274 //
275 // ready buffer
275 // ready buffer
276 // 7 6 5 4 3 2 1 0
276 // 7 6 5 4 3 2 1 0
277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278
278
279 rtems_status_code spare_status;
279 rtems_status_code spare_status;
280
280
281 waveforms_isr_f3();
281 waveforms_isr_f3();
282
282
283 //*************************************************
283 //*************************************************
284 // copy the status bits in the housekeeping packets
284 // copy the status bits in the housekeeping packets
285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
287
287
288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
289 {
289 {
290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 }
291 }
292
292
293 switch(lfrCurrentMode)
293 switch(lfrCurrentMode)
294 {
294 {
295 //********
295 //********
296 // STANDBY
296 // STANDBY
297 case LFR_MODE_STANDBY:
297 case LFR_MODE_STANDBY:
298 break;
298 break;
299 //**************************
299 //**************************
300 // LFR NORMAL, SBM1 and SBM2
300 // LFR NORMAL, SBM1 and SBM2
301 case LFR_MODE_NORMAL:
301 case LFR_MODE_NORMAL:
302 case LFR_MODE_SBM1:
302 case LFR_MODE_SBM1:
303 case LFR_MODE_SBM2:
303 case LFR_MODE_SBM2:
304 waveform_isr_normal_sbm1_sbm2();
304 waveform_isr_normal_sbm1_sbm2();
305 break;
305 break;
306 //******
306 //******
307 // BURST
307 // BURST
308 case LFR_MODE_BURST:
308 case LFR_MODE_BURST:
309 waveforms_isr_burst();
309 waveforms_isr_burst();
310 break;
310 break;
311 //********
311 //********
312 // DEFAULT
312 // DEFAULT
313 default:
313 default:
314 break;
314 break;
315 }
315 }
316 }
316 }
317
317
318 //************
318 //************
319 // RTEMS TASKS
319 // RTEMS TASKS
320
320
321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 {
322 {
323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 *
324 *
325 * @param unused is the starting argument of the RTEMS task
325 * @param unused is the starting argument of the RTEMS task
326 *
326 *
327 * The following data packets are sent by this task:
327 * The following data packets are sent by this task:
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 *
331 *
332 */
332 */
333
333
334 rtems_event_set event_out;
334 rtems_event_set event_out;
335 rtems_id queue_id;
335 rtems_id queue_id;
336 rtems_status_code status;
336 rtems_status_code status;
337 ring_node *ring_node_swf1_extracted_ptr;
337 ring_node *ring_node_swf1_extracted_ptr;
338 ring_node *ring_node_swf2_extracted_ptr;
338 ring_node *ring_node_swf2_extracted_ptr;
339
339
340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
342
342
343 status = get_message_queue_id_send( &queue_id );
343 status = get_message_queue_id_send( &queue_id );
344 if (status != RTEMS_SUCCESSFUL)
344 if (status != RTEMS_SUCCESSFUL)
345 {
345 {
346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
347 }
347 }
348
348
349 BOOT_PRINTF("in WFRM ***\n");
349 BOOT_PRINTF("in WFRM ***\n");
350
350
351 while(1){
351 while(1){
352 // wait for an RTEMS_EVENT
352 // wait for an RTEMS_EVENT
353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
355
355
356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
357 {
357 {
358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
365 }
365 }
366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
367 {
367 {
368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
369 }
369 }
370 }
370 }
371 }
371 }
372
372
373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
374 {
374 {
375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
376 *
376 *
377 * @param unused is the starting argument of the RTEMS task
377 * @param unused is the starting argument of the RTEMS task
378 *
378 *
379 * The following data packet is sent by this task:
379 * The following data packet is sent by this task:
380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
381 *
381 *
382 */
382 */
383
383
384 rtems_event_set event_out;
384 rtems_event_set event_out;
385 rtems_id queue_id;
385 rtems_id queue_id;
386 rtems_status_code status;
386 rtems_status_code status;
387 ring_node ring_node_cwf3_light;
387 ring_node ring_node_cwf3_light;
388 ring_node *ring_node_to_send_cwf;
388 ring_node *ring_node_to_send_cwf;
389
389
390 status = get_message_queue_id_send( &queue_id );
390 status = get_message_queue_id_send( &queue_id );
391 if (status != RTEMS_SUCCESSFUL)
391 if (status != RTEMS_SUCCESSFUL)
392 {
392 {
393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
394 }
394 }
395
395
396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
397
397
398 // init the ring_node_cwf3_light structure
398 // init the ring_node_cwf3_light structure
399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
400 ring_node_cwf3_light.coarseTime = 0x00;
400 ring_node_cwf3_light.coarseTime = 0x00;
401 ring_node_cwf3_light.fineTime = 0x00;
401 ring_node_cwf3_light.fineTime = 0x00;
402 ring_node_cwf3_light.next = NULL;
402 ring_node_cwf3_light.next = NULL;
403 ring_node_cwf3_light.previous = NULL;
403 ring_node_cwf3_light.previous = NULL;
404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
405 ring_node_cwf3_light.status = 0x00;
405 ring_node_cwf3_light.status = 0x00;
406
406
407 BOOT_PRINTF("in CWF3 ***\n")
407 BOOT_PRINTF("in CWF3 ***\n")
408
408
409 while(1){
409 while(1){
410 // wait for an RTEMS_EVENT
410 // wait for an RTEMS_EVENT
411 rtems_event_receive( RTEMS_EVENT_0,
411 rtems_event_receive( RTEMS_EVENT_0,
412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
415 {
415 {
416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
418 {
418 {
419 PRINTF("send CWF_LONG_F3\n")
419 PRINTF("send CWF_LONG_F3\n")
420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
422 }
422 }
423 else
423 else
424 {
424 {
425 PRINTF("send CWF_F3 (light)\n")
425 PRINTF("send CWF_F3 (light)\n")
426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
427 }
427 }
428
428
429 }
429 }
430 else
430 else
431 {
431 {
432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
433 }
433 }
434 }
434 }
435 }
435 }
436
436
437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
438 {
438 {
439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
440 *
440 *
441 * @param unused is the starting argument of the RTEMS task
441 * @param unused is the starting argument of the RTEMS task
442 *
442 *
443 * The following data packet is sent by this function:
443 * The following data packet is sent by this function:
444 * - TM_LFR_SCIENCE_BURST_CWF_F2
444 * - TM_LFR_SCIENCE_BURST_CWF_F2
445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
446 *
446 *
447 */
447 */
448
448
449 rtems_event_set event_out;
449 rtems_event_set event_out;
450 rtems_id queue_id;
450 rtems_id queue_id;
451 rtems_status_code status;
451 rtems_status_code status;
452 ring_node *ring_node_to_send;
452 ring_node *ring_node_to_send;
453 unsigned long long int acquisitionTimeF0_asLong;
453 unsigned long long int acquisitionTimeF0_asLong;
454
454
455 acquisitionTimeF0_asLong = 0x00;
455 acquisitionTimeF0_asLong = 0x00;
456
456
457 status = get_message_queue_id_send( &queue_id );
457 status = get_message_queue_id_send( &queue_id );
458 if (status != RTEMS_SUCCESSFUL)
458 if (status != RTEMS_SUCCESSFUL)
459 {
459 {
460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
461 }
461 }
462
462
463 BOOT_PRINTF("in CWF2 ***\n")
463 BOOT_PRINTF("in CWF2 ***\n")
464
464
465 while(1){
465 while(1){
466 // wait for an RTEMS_EVENT// send the snapshot when built
466 // wait for an RTEMS_EVENT// send the snapshot when built
467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
470 ring_node_to_send = getRingNodeToSendCWF( 2 );
470 ring_node_to_send = getRingNodeToSendCWF( 2 );
471 if (event_out == RTEMS_EVENT_MODE_BURST)
471 if (event_out == RTEMS_EVENT_MODE_BURST)
472 {
472 {
473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
474 }
474 }
475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
476 {
476 {
477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
478 {
478 {
479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
480 }
480 }
481 // launch snapshot extraction if needed
481 // launch snapshot extraction if needed
482 if (extractSWF2 == true)
482 if (extractSWF2 == true)
483 {
483 {
484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
485 // extract the snapshot
485 // extract the snapshot
486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
487 &ring_node_swf2_extracted, swf2_extracted );
487 &ring_node_swf2_extracted, swf2_extracted );
488 extractSWF2 = false;
488 extractSWF2 = false;
489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
490 }
490 }
491 if (swf0_ready_flag_f2 == true)
491 if (swf0_ready_flag_f2 == true)
492 {
492 {
493 extractSWF2 = true;
493 extractSWF2 = true;
494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
496 swf0_ready_flag_f2 = false;
496 swf0_ready_flag_f2 = false;
497 }
497 }
498 }
498 }
499 }
499 }
500 }
500 }
501
501
502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
503 {
503 {
504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
505 *
505 *
506 * @param unused is the starting argument of the RTEMS task
506 * @param unused is the starting argument of the RTEMS task
507 *
507 *
508 * The following data packet is sent by this function:
508 * The following data packet is sent by this function:
509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
510 *
510 *
511 */
511 */
512
512
513 rtems_event_set event_out;
513 rtems_event_set event_out;
514 rtems_id queue_id;
514 rtems_id queue_id;
515 rtems_status_code status;
515 rtems_status_code status;
516
516
517 ring_node *ring_node_to_send_cwf;
517 ring_node *ring_node_to_send_cwf;
518
518
519 status = get_message_queue_id_send( &queue_id );
519 status = get_message_queue_id_send( &queue_id );
520 if (status != RTEMS_SUCCESSFUL)
520 if (status != RTEMS_SUCCESSFUL)
521 {
521 {
522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
523 }
523 }
524
524
525 BOOT_PRINTF("in CWF1 ***\n");
525 BOOT_PRINTF("in CWF1 ***\n");
526
526
527 while(1){
527 while(1){
528 // wait for an RTEMS_EVENT
528 // wait for an RTEMS_EVENT
529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
533 if (lfrCurrentMode == LFR_MODE_SBM1)
533 if (lfrCurrentMode == LFR_MODE_SBM1)
534 {
534 {
535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
536 if (status != 0)
536 if (status != 0)
537 {
537 {
538 PRINTF("cwf sending failed\n")
538 PRINTF("cwf sending failed\n")
539 }
539 }
540 }
540 }
541 // launch snapshot extraction if needed
541 // launch snapshot extraction if needed
542 if (extractSWF1 == true)
542 if (extractSWF1 == true)
543 {
543 {
544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
545 // launch the snapshot extraction
545 // launch the snapshot extraction
546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
547 extractSWF1 = false;
547 extractSWF1 = false;
548 }
548 }
549 if (swf0_ready_flag_f1 == true)
549 if (swf0_ready_flag_f1 == true)
550 {
550 {
551 extractSWF1 = true;
551 extractSWF1 = true;
552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
553 }
553 }
554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
555 {
555 {
556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
557 swf1_ready = false;
557 swf1_ready = false;
558 swf2_ready = false;
558 swf2_ready = false;
559 }
559 }
560 }
560 }
561 }
561 }
562
562
563 rtems_task swbd_task(rtems_task_argument argument)
563 rtems_task swbd_task(rtems_task_argument argument)
564 {
564 {
565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
566 *
566 *
567 * @param unused is the starting argument of the RTEMS task
567 * @param unused is the starting argument of the RTEMS task
568 *
568 *
569 */
569 */
570
570
571 rtems_event_set event_out;
571 rtems_event_set event_out;
572 unsigned long long int acquisitionTimeF0_asLong;
572 unsigned long long int acquisitionTimeF0_asLong;
573
573
574 acquisitionTimeF0_asLong = 0x00;
574 acquisitionTimeF0_asLong = 0x00;
575
575
576 BOOT_PRINTF("in SWBD ***\n")
576 BOOT_PRINTF("in SWBD ***\n")
577
577
578 while(1){
578 while(1){
579 // wait for an RTEMS_EVENT
579 // wait for an RTEMS_EVENT
580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
583 {
583 {
584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
586 &ring_node_swf1_extracted, swf1_extracted );
586 &ring_node_swf1_extracted, swf1_extracted );
587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
588 }
588 }
589 else
589 else
590 {
590 {
591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
592 }
592 }
593 }
593 }
594 }
594 }
595
595
596 //******************
596 //******************
597 // general functions
597 // general functions
598
598
599 void WFP_init_rings( void )
599 void WFP_init_rings( void )
600 {
600 {
601 // F0 RING
601 // F0 RING
602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
603 // F1 RING
603 // F1 RING
604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
605 // F2 RING
605 // F2 RING
606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
607 // F3 RING
607 // F3 RING
608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
609
609
610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
612
612
613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
621
621
622 }
622 }
623
623
624 void WFP_reset_current_ring_nodes( void )
624 void WFP_reset_current_ring_nodes( void )
625 {
625 {
626 current_ring_node_f0 = waveform_ring_f0[0].next;
626 current_ring_node_f0 = waveform_ring_f0[0].next;
627 current_ring_node_f1 = waveform_ring_f1[0].next;
627 current_ring_node_f1 = waveform_ring_f1[0].next;
628 current_ring_node_f2 = waveform_ring_f2[0].next;
628 current_ring_node_f2 = waveform_ring_f2[0].next;
629 current_ring_node_f3 = waveform_ring_f3[0].next;
629 current_ring_node_f3 = waveform_ring_f3[0].next;
630
630
631 ring_node_to_send_swf_f0 = waveform_ring_f0;
631 ring_node_to_send_swf_f0 = waveform_ring_f0;
632 ring_node_to_send_swf_f1 = waveform_ring_f1;
632 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 ring_node_to_send_swf_f2 = waveform_ring_f2;
633 ring_node_to_send_swf_f2 = waveform_ring_f2;
634
634
635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
638 }
638 }
639
639
640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
641 {
641 {
642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
643 *
643 *
644 * @param waveform points to the buffer containing the data that will be send.
644 * @param waveform points to the buffer containing the data that will be send.
645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
647 * contain information to setup the transmission of the data packets.
647 * contain information to setup the transmission of the data packets.
648 *
648 *
649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
651 *
651 *
652 */
652 */
653
653
654 unsigned int i;
654 unsigned int i;
655 int ret;
655 int ret;
656 rtems_status_code status;
656 rtems_status_code status;
657
657
658 char *sample;
658 char *sample;
659 int *dataPtr;
659 int *dataPtr;
660
660
661 ret = LFR_DEFAULT;
661 ret = LFR_DEFAULT;
662
662
663 dataPtr = (int*) ring_node_to_send->buffer_address;
663 dataPtr = (int*) ring_node_to_send->buffer_address;
664
664
665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
667
667
668 //**********************
668 //**********************
669 // BUILD CWF3_light DATA
669 // BUILD CWF3_light DATA
670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
671 {
671 {
672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
679 }
679 }
680
680
681 // SEND PACKET
681 // SEND PACKET
682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
683 if (status != RTEMS_SUCCESSFUL) {
683 if (status != RTEMS_SUCCESSFUL) {
684 ret = LFR_DEFAULT;
684 ret = LFR_DEFAULT;
685 }
685 }
686
686
687 return ret;
687 return ret;
688 }
688 }
689
689
690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
692 {
692 {
693 unsigned long long int acquisitionTimeAsLong;
693 unsigned long long int acquisitionTimeAsLong;
694 unsigned char localAcquisitionTime[6];
694 unsigned char localAcquisitionTime[6];
695 double deltaT;
695 double deltaT;
696
696
697 deltaT = 0.;
697 deltaT = 0.;
698
698
699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
705
705
706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
711 + ( (unsigned long long int) localAcquisitionTime[5] );
711 + ( (unsigned long long int) localAcquisitionTime[5] );
712
712
713 switch( sid )
713 switch( sid )
714 {
714 {
715 case SID_NORM_SWF_F0:
715 case SID_NORM_SWF_F0:
716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
717 break;
717 break;
718
718
719 case SID_NORM_SWF_F1:
719 case SID_NORM_SWF_F1:
720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
721 break;
721 break;
722
722
723 case SID_NORM_SWF_F2:
723 case SID_NORM_SWF_F2:
724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
725 break;
725 break;
726
726
727 case SID_SBM1_CWF_F1:
727 case SID_SBM1_CWF_F1:
728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
729 break;
729 break;
730
730
731 case SID_SBM2_CWF_F2:
731 case SID_SBM2_CWF_F2:
732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
733 break;
733 break;
734
734
735 case SID_BURST_CWF_F2:
735 case SID_BURST_CWF_F2:
736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
737 break;
737 break;
738
738
739 case SID_NORM_CWF_F3:
739 case SID_NORM_CWF_F3:
740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
741 break;
741 break;
742
742
743 case SID_NORM_CWF_LONG_F3:
743 case SID_NORM_CWF_LONG_F3:
744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
745 break;
745 break;
746
746
747 default:
747 default:
748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
749 deltaT = 0.;
749 deltaT = 0.;
750 break;
750 break;
751 }
751 }
752
752
753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
754 //
754 //
755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
761
761
762 }
762 }
763
763
764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
765 unsigned char frequencyChannel,
765 unsigned char frequencyChannel,
766 unsigned long long int acquisitionTimeF0_asLong,
766 unsigned long long int acquisitionTimeF0_asLong,
767 ring_node *ring_node_swf_extracted,
767 ring_node *ring_node_swf_extracted,
768 int *swf_extracted)
768 int *swf_extracted)
769 {
769 {
770 unsigned int i;
770 unsigned int i;
771 unsigned long long int centerTime_asLong;
771 unsigned long long int centerTime_asLong;
772 unsigned long long int acquisitionTime_asLong;
772 unsigned long long int acquisitionTime_asLong;
773 unsigned long long int bufferAcquisitionTime_asLong;
773 unsigned long long int bufferAcquisitionTime_asLong;
774 unsigned char *ptr1;
774 unsigned char *ptr1;
775 unsigned char *ptr2;
775 unsigned char *ptr2;
776 unsigned char *timeCharPtr;
776 unsigned char *timeCharPtr;
777 unsigned char nb_ring_nodes;
777 unsigned char nb_ring_nodes;
778 unsigned long long int frequency_asLong;
778 unsigned long long int frequency_asLong;
779 unsigned long long int nbTicksPerSample_asLong;
779 unsigned long long int nbTicksPerSample_asLong;
780 unsigned long long int nbSamplesPart1_asLong;
780 unsigned long long int nbSamplesPart1_asLong;
781 unsigned long long int sampleOffset_asLong;
781 unsigned long long int sampleOffset_asLong;
782
782
783 unsigned int deltaT_F0;
783 unsigned int deltaT_F0;
784 unsigned int deltaT_F1;
784 unsigned int deltaT_F1;
785 unsigned long long int deltaT_F2;
785 unsigned long long int deltaT_F2;
786
786
787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
790 sampleOffset_asLong = 0x00;
790 sampleOffset_asLong = 0x00;
791
791
792 // (1) get the f0 acquisition time => the value is passed in argument
792 // (1) get the f0 acquisition time => the value is passed in argument
793
793
794 // (2) compute the central reference time
794 // (2) compute the central reference time
795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
796
796
797 // (3) compute the acquisition time of the current snapshot
797 // (3) compute the acquisition time of the current snapshot
798 switch(frequencyChannel)
798 switch(frequencyChannel)
799 {
799 {
800 case 1: // 1 is for F1 = 4096 Hz
800 case 1: // 1 is for F1 = 4096 Hz
801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
802 nb_ring_nodes = NB_RING_NODES_F1;
802 nb_ring_nodes = NB_RING_NODES_F1;
803 frequency_asLong = 4096;
803 frequency_asLong = 4096;
804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
805 break;
805 break;
806 case 2: // 2 is for F2 = 256 Hz
806 case 2: // 2 is for F2 = 256 Hz
807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
808 nb_ring_nodes = NB_RING_NODES_F2;
808 nb_ring_nodes = NB_RING_NODES_F2;
809 frequency_asLong = 256;
809 frequency_asLong = 256;
810 nbTicksPerSample_asLong = 256; // 65536 / 256;
810 nbTicksPerSample_asLong = 256; // 65536 / 256;
811 break;
811 break;
812 default:
812 default:
813 acquisitionTime_asLong = centerTime_asLong;
813 acquisitionTime_asLong = centerTime_asLong;
814 frequency_asLong = 256;
814 frequency_asLong = 256;
815 nbTicksPerSample_asLong = 256;
815 nbTicksPerSample_asLong = 256;
816 break;
816 break;
817 }
817 }
818
818
819 //****************************************************************************
819 //****************************************************************************
820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
821 for (i=0; i<nb_ring_nodes; i++)
821 for (i=0; i<nb_ring_nodes; i++)
822 {
822 {
823 //PRINTF1("%d ... ", i);
823 //PRINTF1("%d ... ", i);
824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
826 {
826 {
827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
828 break;
828 break;
829 }
829 }
830 ring_node_to_send = ring_node_to_send->previous;
830 ring_node_to_send = ring_node_to_send->previous;
831 }
831 }
832
832
833 // (5) compute the number of samples to take in the current buffer
833 // (5) compute the number of samples to take in the current buffer
834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
837
837
838 // (6) compute the final acquisition time
838 // (6) compute the final acquisition time
839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
840 sampleOffset_asLong * nbTicksPerSample_asLong;
840 sampleOffset_asLong * nbTicksPerSample_asLong;
841
841
842 // (7) copy the acquisition time at the beginning of the extrated snapshot
842 // (7) copy the acquisition time at the beginning of the extrated snapshot
843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
844 // fine time
844 // fine time
845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
846 ptr2[2] = ptr1[ 4 + 2 ];
846 ptr2[2] = ptr1[ 4 + 2 ];
847 ptr2[3] = ptr1[ 5 + 2 ];
847 ptr2[3] = ptr1[ 5 + 2 ];
848 // coarse time
848 // coarse time
849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
850 ptr2[0] = ptr1[ 0 + 2 ];
850 ptr2[0] = ptr1[ 0 + 2 ];
851 ptr2[1] = ptr1[ 1 + 2 ];
851 ptr2[1] = ptr1[ 1 + 2 ];
852 ptr2[2] = ptr1[ 2 + 2 ];
852 ptr2[2] = ptr1[ 2 + 2 ];
853 ptr2[3] = ptr1[ 3 + 2 ];
853 ptr2[3] = ptr1[ 3 + 2 ];
854
854
855 // re set the synchronization bit
855 // re set the synchronization bit
856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
858
858
859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
860 {
860 {
861 nbSamplesPart1_asLong = 0;
861 nbSamplesPart1_asLong = 0;
862 }
862 }
863 // copy the part 1 of the snapshot in the extracted buffer
863 // copy the part 1 of the snapshot in the extracted buffer
864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
865 {
865 {
866 swf_extracted[i] =
866 swf_extracted[i] =
867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
868 }
868 }
869 // copy the part 2 of the snapshot in the extracted buffer
869 // copy the part 2 of the snapshot in the extracted buffer
870 ring_node_to_send = ring_node_to_send->next;
870 ring_node_to_send = ring_node_to_send->next;
871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
872 {
872 {
873 swf_extracted[i] =
873 swf_extracted[i] =
874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
875 }
875 }
876 }
876 }
877
877
878 double computeCorrection( unsigned char *timePtr )
878 double computeCorrection( unsigned char *timePtr )
879 {
879 {
880 unsigned long long int acquisitionTime;
880 unsigned long long int acquisitionTime;
881 unsigned long long int centerTime;
881 unsigned long long int centerTime;
882 unsigned long long int previousTick;
882 unsigned long long int previousTick;
883 unsigned long long int nextTick;
883 unsigned long long int nextTick;
884 unsigned long long int deltaPreviousTick;
884 unsigned long long int deltaPreviousTick;
885 unsigned long long int deltaNextTick;
885 unsigned long long int deltaNextTick;
886 double deltaPrevious_ms;
886 double deltaPrevious_ms;
887 double deltaNext_ms;
887 double deltaNext_ms;
888 double correctionInF2;
888 double correctionInF2;
889
889
890 // get acquisition time in fine time ticks
890 // get acquisition time in fine time ticks
891 acquisitionTime = get_acquisition_time( timePtr );
891 acquisitionTime = get_acquisition_time( timePtr );
892
892
893 // compute center time
893 // compute center time
894 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
894 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
895 previousTick = centerTime - (centerTime & 0xffff);
895 previousTick = centerTime - (centerTime & 0xffff);
896 nextTick = previousTick + 65536;
896 nextTick = previousTick + 65536;
897
897
898 deltaPreviousTick = centerTime - previousTick;
898 deltaPreviousTick = centerTime - previousTick;
899 deltaNextTick = nextTick - centerTime;
899 deltaNextTick = nextTick - centerTime;
900
900
901 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
901 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
902 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
902 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
903
903
904 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
904 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
905
905
906 // which tick is the closest?
906 // which tick is the closest?
907 if (deltaPreviousTick > deltaNextTick)
907 if (deltaPreviousTick > deltaNextTick)
908 {
908 {
909 // the snapshot center is just before the second => increase delta_snapshot
909 // the snapshot center is just before the second => increase delta_snapshot
910 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
910 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
911 }
911 }
912 else
912 else
913 {
913 {
914 // the snapshot center is just after the second => decrease delta_snapshot
914 // the snapshot center is just after the second => decrease delta_snapshot
915 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
915 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
916 }
916 }
917
917
918 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
918 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
919
919
920 return correctionInF2;
920 return correctionInF2;
921 }
921 }
922
922
923 void applyCorrection( double correction )
923 void applyCorrection( double correction )
924 {
924 {
925 int correctionInt;
925 int correctionInt;
926
926
927 if (correction >= 0.)
927 if (correction >= 0.)
928 {
928 {
929 if ( (1. > correction) && (correction > 0.5) )
929 if ( (1. > correction) && (correction > 0.5) )
930 {
930 {
931 correctionInt = 1;
931 correctionInt = 1;
932 }
932 }
933 else
933 else
934 {
934 {
935 correctionInt = 2 * floor(correction);
935 correctionInt = 2 * floor(correction);
936 }
936 }
937 }
937 }
938 else
938 else
939 {
939 {
940 if ( (correction < -1.) && (correction < -0.5) )
940 if ( (-1. < correction) && (correction < -0.5) )
941 {
941 {
942 correctionInt = -1;
942 correctionInt = -1;
943 }
943 }
944 else
944 else
945 {
945 {
946 correctionInt = 2 * ceil(correction);
946 correctionInt = 2 * ceil(correction);
947 }
947 }
948 }
948 }
949 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
949 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
950 }
950 }
951
951
952 void snapshot_resynchronization( unsigned char *timePtr )
952 void snapshot_resynchronization( unsigned char *timePtr )
953 {
953 {
954 /** This function compute a correction to apply on delta_snapshot.
954 /** This function compute a correction to apply on delta_snapshot.
955 *
955 *
956 *
956 *
957 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
957 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
958 *
958 *
959 * @return void
959 * @return void
960 *
960 *
961 */
961 */
962
962
963 static double correction = 0.;
963 static double correction = 0.;
964 static resynchro_state state = MEASURE;
964 static resynchro_state state = MEASURE;
965 static unsigned int nbSnapshots = 0;
965 static unsigned int nbSnapshots = 0;
966
966
967 int correctionInt;
967 int correctionInt;
968
968
969 correctionInt = 0;
969 correctionInt = 0;
970
970
971 switch (state)
971 switch (state)
972 {
972 {
973
973
974 case MEASURE:
974 case MEASURE:
975 // ********
975 // ********
976 PRINTF1("MEASURE === %d\n", nbSnapshots);
976 PRINTF1("MEASURE === %d\n", nbSnapshots);
977 state = CORRECTION;
977 state = CORRECTION;
978 correction = computeCorrection( timePtr );
978 correction = computeCorrection( timePtr );
979 PRINTF1("MEASURE === correction = %.2f\n", correction );
979 PRINTF1("MEASURE === correction = %.2f\n", correction );
980 applyCorrection( correction );
980 applyCorrection( correction );
981 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
981 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
982 //****
982 //****
983 break;
983 break;
984
984
985 case CORRECTION:
985 case CORRECTION:
986 //************
986 //************
987 PRINTF1("CORRECTION === %d\n", nbSnapshots);
987 PRINTF1("CORRECTION === %d\n", nbSnapshots);
988 state = MEASURE;
988 state = MEASURE;
989 computeCorrection( timePtr );
989 computeCorrection( timePtr );
990 set_wfp_delta_snapshot();
990 set_wfp_delta_snapshot();
991 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
991 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
992 //****
992 //****
993 break;
993 break;
994
994
995 default:
995 default:
996 break;
996 break;
997
997
998 }
998 }
999
999
1000 nbSnapshots++;
1000 nbSnapshots++;
1001 }
1001 }
1002
1002
1003 //**************
1003 //**************
1004 // wfp registers
1004 // wfp registers
1005 void reset_wfp_burst_enable( void )
1005 void reset_wfp_burst_enable( void )
1006 {
1006 {
1007 /** This function resets the waveform picker burst_enable register.
1007 /** This function resets the waveform picker burst_enable register.
1008 *
1008 *
1009 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1009 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1010 *
1010 *
1011 */
1011 */
1012
1012
1013 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1013 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1014 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1014 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1015 }
1015 }
1016
1016
1017 void reset_wfp_status( void )
1017 void reset_wfp_status( void )
1018 {
1018 {
1019 /** This function resets the waveform picker status register.
1019 /** This function resets the waveform picker status register.
1020 *
1020 *
1021 * All status bits are set to 0 [new_err full_err full].
1021 * All status bits are set to 0 [new_err full_err full].
1022 *
1022 *
1023 */
1023 */
1024
1024
1025 waveform_picker_regs->status = 0xffff;
1025 waveform_picker_regs->status = 0xffff;
1026 }
1026 }
1027
1027
1028 void reset_wfp_buffer_addresses( void )
1028 void reset_wfp_buffer_addresses( void )
1029 {
1029 {
1030 // F0
1030 // F0
1031 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1031 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1032 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1032 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1033 // F1
1033 // F1
1034 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1034 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1035 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1035 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1036 // F2
1036 // F2
1037 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1037 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1038 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1038 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1039 // F3
1039 // F3
1040 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1040 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1041 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1041 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1042 }
1042 }
1043
1043
1044 void reset_waveform_picker_regs( void )
1044 void reset_waveform_picker_regs( void )
1045 {
1045 {
1046 /** This function resets the waveform picker module registers.
1046 /** This function resets the waveform picker module registers.
1047 *
1047 *
1048 * The registers affected by this function are located at the following offset addresses:
1048 * The registers affected by this function are located at the following offset addresses:
1049 * - 0x00 data_shaping
1049 * - 0x00 data_shaping
1050 * - 0x04 run_burst_enable
1050 * - 0x04 run_burst_enable
1051 * - 0x08 addr_data_f0
1051 * - 0x08 addr_data_f0
1052 * - 0x0C addr_data_f1
1052 * - 0x0C addr_data_f1
1053 * - 0x10 addr_data_f2
1053 * - 0x10 addr_data_f2
1054 * - 0x14 addr_data_f3
1054 * - 0x14 addr_data_f3
1055 * - 0x18 status
1055 * - 0x18 status
1056 * - 0x1C delta_snapshot
1056 * - 0x1C delta_snapshot
1057 * - 0x20 delta_f0
1057 * - 0x20 delta_f0
1058 * - 0x24 delta_f0_2
1058 * - 0x24 delta_f0_2
1059 * - 0x28 delta_f1 (obsolet parameter)
1059 * - 0x28 delta_f1 (obsolet parameter)
1060 * - 0x2c delta_f2
1060 * - 0x2c delta_f2
1061 * - 0x30 nb_data_by_buffer
1061 * - 0x30 nb_data_by_buffer
1062 * - 0x34 nb_snapshot_param
1062 * - 0x34 nb_snapshot_param
1063 * - 0x38 start_date
1063 * - 0x38 start_date
1064 * - 0x3c nb_word_in_buffer
1064 * - 0x3c nb_word_in_buffer
1065 *
1065 *
1066 */
1066 */
1067
1067
1068 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1068 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1069
1069
1070 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1070 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1071
1071
1072 reset_wfp_buffer_addresses();
1072 reset_wfp_buffer_addresses();
1073
1073
1074 reset_wfp_status(); // 0x18
1074 reset_wfp_status(); // 0x18
1075
1075
1076 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1076 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1077
1077
1078 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1078 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1079
1079
1080 //the parameter delta_f1 [0x28] is not used anymore
1080 //the parameter delta_f1 [0x28] is not used anymore
1081
1081
1082 set_wfp_delta_f2(); // 0x2c
1082 set_wfp_delta_f2(); // 0x2c
1083
1083
1084 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1084 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1085 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1085 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1086 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1086 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1087 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1087 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1088 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1088 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1089 // 2688 = 8 * 336
1089 // 2688 = 8 * 336
1090 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1090 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1091 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1091 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1092 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1092 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1093 //
1093 //
1094 // coarse time and fine time registers are not initialized, they are volatile
1094 // coarse time and fine time registers are not initialized, they are volatile
1095 //
1095 //
1096 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1096 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1097 }
1097 }
1098
1098
1099 void set_wfp_data_shaping( void )
1099 void set_wfp_data_shaping( void )
1100 {
1100 {
1101 /** This function sets the data_shaping register of the waveform picker module.
1101 /** This function sets the data_shaping register of the waveform picker module.
1102 *
1102 *
1103 * The value is read from one field of the parameter_dump_packet structure:\n
1103 * The value is read from one field of the parameter_dump_packet structure:\n
1104 * bw_sp0_sp1_r0_r1
1104 * bw_sp0_sp1_r0_r1
1105 *
1105 *
1106 */
1106 */
1107
1107
1108 unsigned char data_shaping;
1108 unsigned char data_shaping;
1109
1109
1110 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1110 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1111 // waveform picker : [R1 R0 SP1 SP0 BW]
1111 // waveform picker : [R1 R0 SP1 SP0 BW]
1112
1112
1113 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1113 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1114
1114
1115 waveform_picker_regs->data_shaping =
1115 waveform_picker_regs->data_shaping =
1116 ( (data_shaping & 0x20) >> 5 ) // BW
1116 ( (data_shaping & 0x20) >> 5 ) // BW
1117 + ( (data_shaping & 0x10) >> 3 ) // SP0
1117 + ( (data_shaping & 0x10) >> 3 ) // SP0
1118 + ( (data_shaping & 0x08) >> 1 ) // SP1
1118 + ( (data_shaping & 0x08) >> 1 ) // SP1
1119 + ( (data_shaping & 0x04) << 1 ) // R0
1119 + ( (data_shaping & 0x04) << 1 ) // R0
1120 + ( (data_shaping & 0x02) << 3 ) // R1
1120 + ( (data_shaping & 0x02) << 3 ) // R1
1121 + ( (data_shaping & 0x01) << 5 ); // R2
1121 + ( (data_shaping & 0x01) << 5 ); // R2
1122 }
1122 }
1123
1123
1124 void set_wfp_burst_enable_register( unsigned char mode )
1124 void set_wfp_burst_enable_register( unsigned char mode )
1125 {
1125 {
1126 /** This function sets the waveform picker burst_enable register depending on the mode.
1126 /** This function sets the waveform picker burst_enable register depending on the mode.
1127 *
1127 *
1128 * @param mode is the LFR mode to launch.
1128 * @param mode is the LFR mode to launch.
1129 *
1129 *
1130 * The burst bits shall be before the enable bits.
1130 * The burst bits shall be before the enable bits.
1131 *
1131 *
1132 */
1132 */
1133
1133
1134 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1134 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1135 // the burst bits shall be set first, before the enable bits
1135 // the burst bits shall be set first, before the enable bits
1136 switch(mode) {
1136 switch(mode) {
1137 case LFR_MODE_NORMAL:
1137 case LFR_MODE_NORMAL:
1138 case LFR_MODE_SBM1:
1138 case LFR_MODE_SBM1:
1139 case LFR_MODE_SBM2:
1139 case LFR_MODE_SBM2:
1140 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1140 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1141 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1141 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1142 break;
1142 break;
1143 case LFR_MODE_BURST:
1143 case LFR_MODE_BURST:
1144 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1144 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1145 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1145 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1146 break;
1146 break;
1147 default:
1147 default:
1148 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1148 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1149 break;
1149 break;
1150 }
1150 }
1151 }
1151 }
1152
1152
1153 void set_wfp_delta_snapshot( void )
1153 void set_wfp_delta_snapshot( void )
1154 {
1154 {
1155 /** This function sets the delta_snapshot register of the waveform picker module.
1155 /** This function sets the delta_snapshot register of the waveform picker module.
1156 *
1156 *
1157 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1157 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1158 * - sy_lfr_n_swf_p[0]
1158 * - sy_lfr_n_swf_p[0]
1159 * - sy_lfr_n_swf_p[1]
1159 * - sy_lfr_n_swf_p[1]
1160 *
1160 *
1161 */
1161 */
1162
1162
1163 unsigned int delta_snapshot;
1163 unsigned int delta_snapshot;
1164 unsigned int delta_snapshot_in_T2;
1164 unsigned int delta_snapshot_in_T2;
1165
1165
1166 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1166 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1167 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1167 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1168
1168
1169 delta_snapshot_in_T2 = delta_snapshot * 256;
1169 delta_snapshot_in_T2 = delta_snapshot * 256;
1170 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1170 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1171 }
1171 }
1172
1172
1173 void set_wfp_delta_f0_f0_2( void )
1173 void set_wfp_delta_f0_f0_2( void )
1174 {
1174 {
1175 unsigned int delta_snapshot;
1175 unsigned int delta_snapshot;
1176 unsigned int nb_samples_per_snapshot;
1176 unsigned int nb_samples_per_snapshot;
1177 float delta_f0_in_float;
1177 float delta_f0_in_float;
1178
1178
1179 delta_snapshot = waveform_picker_regs->delta_snapshot;
1179 delta_snapshot = waveform_picker_regs->delta_snapshot;
1180 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1180 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1181 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1181 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1182
1182
1183 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1183 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1184 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1184 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1185 }
1185 }
1186
1186
1187 void set_wfp_delta_f1( void )
1187 void set_wfp_delta_f1( void )
1188 {
1188 {
1189 /** Sets the value of the delta_f1 parameter
1189 /** Sets the value of the delta_f1 parameter
1190 *
1190 *
1191 * @param void
1191 * @param void
1192 *
1192 *
1193 * @return void
1193 * @return void
1194 *
1194 *
1195 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1195 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1196 *
1196 *
1197 */
1197 */
1198
1198
1199 unsigned int delta_snapshot;
1199 unsigned int delta_snapshot;
1200 unsigned int nb_samples_per_snapshot;
1200 unsigned int nb_samples_per_snapshot;
1201 float delta_f1_in_float;
1201 float delta_f1_in_float;
1202
1202
1203 delta_snapshot = waveform_picker_regs->delta_snapshot;
1203 delta_snapshot = waveform_picker_regs->delta_snapshot;
1204 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1204 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1205 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1205 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1206
1206
1207 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1207 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1208 }
1208 }
1209
1209
1210 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1210 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1211 {
1211 {
1212 /** Sets the value of the delta_f2 parameter
1212 /** Sets the value of the delta_f2 parameter
1213 *
1213 *
1214 * @param void
1214 * @param void
1215 *
1215 *
1216 * @return void
1216 * @return void
1217 *
1217 *
1218 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1218 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1219 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1219 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1220 *
1220 *
1221 */
1221 */
1222
1222
1223 unsigned int delta_snapshot;
1223 unsigned int delta_snapshot;
1224 unsigned int nb_samples_per_snapshot;
1224 unsigned int nb_samples_per_snapshot;
1225
1225
1226 delta_snapshot = waveform_picker_regs->delta_snapshot;
1226 delta_snapshot = waveform_picker_regs->delta_snapshot;
1227 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1227 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1228
1228
1229 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1229 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1230 }
1230 }
1231
1231
1232 //*****************
1232 //*****************
1233 // local parameters
1233 // local parameters
1234
1234
1235 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1235 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1236 {
1236 {
1237 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1237 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1238 *
1238 *
1239 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1239 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1240 * @param sid is the source identifier of the packet being updated.
1240 * @param sid is the source identifier of the packet being updated.
1241 *
1241 *
1242 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1242 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1243 * The sequence counters shall wrap around from 2^14 to zero.
1243 * The sequence counters shall wrap around from 2^14 to zero.
1244 * The sequence counter shall start at zero at startup.
1244 * The sequence counter shall start at zero at startup.
1245 *
1245 *
1246 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1246 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1247 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1247 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1248 *
1248 *
1249 */
1249 */
1250
1250
1251 unsigned short *sequence_cnt;
1251 unsigned short *sequence_cnt;
1252 unsigned short segmentation_grouping_flag;
1252 unsigned short segmentation_grouping_flag;
1253 unsigned short new_packet_sequence_control;
1253 unsigned short new_packet_sequence_control;
1254 rtems_mode initial_mode_set;
1254 rtems_mode initial_mode_set;
1255 rtems_mode current_mode_set;
1255 rtems_mode current_mode_set;
1256 rtems_status_code status;
1256 rtems_status_code status;
1257
1257
1258 //******************************************
1258 //******************************************
1259 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1259 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1260 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1260 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1261
1261
1262 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1262 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1263 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1263 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1264 || (sid == SID_BURST_CWF_F2)
1264 || (sid == SID_BURST_CWF_F2)
1265 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1265 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1266 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1266 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1267 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1267 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1268 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1268 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1269 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1269 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1270 {
1270 {
1271 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1271 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1272 }
1272 }
1273 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1273 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1274 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1274 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1275 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1275 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1276 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1276 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1277 {
1277 {
1278 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1278 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1279 }
1279 }
1280 else
1280 else
1281 {
1281 {
1282 sequence_cnt = (unsigned short *) NULL;
1282 sequence_cnt = (unsigned short *) NULL;
1283 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1283 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1284 }
1284 }
1285
1285
1286 if (sequence_cnt != NULL)
1286 if (sequence_cnt != NULL)
1287 {
1287 {
1288 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1288 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1289 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1289 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1290
1290
1291 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1291 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1292
1292
1293 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1293 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1294 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1294 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1295
1295
1296 // increment the sequence counter
1296 // increment the sequence counter
1297 if ( *sequence_cnt < SEQ_CNT_MAX)
1297 if ( *sequence_cnt < SEQ_CNT_MAX)
1298 {
1298 {
1299 *sequence_cnt = *sequence_cnt + 1;
1299 *sequence_cnt = *sequence_cnt + 1;
1300 }
1300 }
1301 else
1301 else
1302 {
1302 {
1303 *sequence_cnt = 0;
1303 *sequence_cnt = 0;
1304 }
1304 }
1305 }
1305 }
1306
1306
1307 //*************************************
1307 //*************************************
1308 // RESTORE THE MODE OF THE CALLING TASK
1308 // RESTORE THE MODE OF THE CALLING TASK
1309 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1309 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1310 }
1310 }
General Comments 0
You need to be logged in to leave comments. Login now