##// END OF EJS Templates
3.0.0.21...
paul -
r275:7563e13131aa R3a
parent child
Show More
@@ -1,124 +1,124
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options =
4 4 # verbose
5 5 # boot_messages
6 6 # debug_messages
7 7 # cpu_usage_report
8 8 # stack_report
9 9 # vhdl_dev
10 10 # debug_tch
11 11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
12 12 # debug_watchdog
13 13 CONFIG += console verbose lpp_dpu_destid
14 14 CONFIG -= qt
15 15
16 16 include(./sparc.pri)
17 17
18 18 # flight software version
19 19 SWVERSION=-1-0
20 20 DEFINES += SW_VERSION_N1=3 # major
21 21 DEFINES += SW_VERSION_N2=0 # minor
22 22 DEFINES += SW_VERSION_N3=0 # patch
23 DEFINES += SW_VERSION_N4=19 # internal
23 DEFINES += SW_VERSION_N4=20 # internal
24 24
25 25 # <GCOV>
26 26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
27 27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
28 28 # </GCOV>
29 29
30 30 # <CHANGE BEFORE FLIGHT>
31 31 contains( CONFIG, lpp_dpu_destid ) {
32 32 DEFINES += LPP_DPU_DESTID
33 33 }
34 34 # </CHANGE BEFORE FLIGHT>
35 35
36 36 contains( CONFIG, debug_tch ) {
37 37 DEFINES += DEBUG_TCH
38 38 }
39 39 DEFINES += MSB_FIRST_TCH
40 40
41 41 contains( CONFIG, vhdl_dev ) {
42 42 DEFINES += VHDL_DEV
43 43 }
44 44
45 45 contains( CONFIG, verbose ) {
46 46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
47 47 }
48 48
49 49 contains( CONFIG, debug_messages ) {
50 50 DEFINES += DEBUG_MESSAGES
51 51 }
52 52
53 53 contains( CONFIG, cpu_usage_report ) {
54 54 DEFINES += PRINT_TASK_STATISTICS
55 55 }
56 56
57 57 contains( CONFIG, stack_report ) {
58 58 DEFINES += PRINT_STACK_REPORT
59 59 }
60 60
61 61 contains( CONFIG, boot_messages ) {
62 62 DEFINES += BOOT_MESSAGES
63 63 }
64 64
65 65 contains( CONFIG, debug_watchdog ) {
66 66 DEFINES += DEBUG_WATCHDOG
67 67 }
68 68
69 69 #doxygen.target = doxygen
70 70 #doxygen.commands = doxygen ../doc/Doxyfile
71 71 #QMAKE_EXTRA_TARGETS += doxygen
72 72
73 73 TARGET = fsw
74 74
75 75 INCLUDEPATH += \
76 76 $${PWD}/../src \
77 77 $${PWD}/../header \
78 78 $${PWD}/../header/lfr_common_headers \
79 79 $${PWD}/../header/processing \
80 80 $${PWD}/../LFR_basic-parameters
81 81
82 82 SOURCES += \
83 83 ../src/wf_handler.c \
84 84 ../src/tc_handler.c \
85 85 ../src/fsw_misc.c \
86 86 ../src/fsw_init.c \
87 87 ../src/fsw_globals.c \
88 88 ../src/fsw_spacewire.c \
89 89 ../src/tc_load_dump_parameters.c \
90 90 ../src/tm_lfr_tc_exe.c \
91 91 ../src/tc_acceptance.c \
92 92 ../src/processing/fsw_processing.c \
93 93 ../src/processing/avf0_prc0.c \
94 94 ../src/processing/avf1_prc1.c \
95 95 ../src/processing/avf2_prc2.c \
96 96 ../src/lfr_cpu_usage_report.c \
97 97 ../LFR_basic-parameters/basic_parameters.c
98 98
99 99 HEADERS += \
100 100 ../header/wf_handler.h \
101 101 ../header/tc_handler.h \
102 102 ../header/grlib_regs.h \
103 103 ../header/fsw_misc.h \
104 104 ../header/fsw_init.h \
105 105 ../header/fsw_spacewire.h \
106 106 ../header/tc_load_dump_parameters.h \
107 107 ../header/tm_lfr_tc_exe.h \
108 108 ../header/tc_acceptance.h \
109 109 ../header/processing/fsw_processing.h \
110 110 ../header/processing/avf0_prc0.h \
111 111 ../header/processing/avf1_prc1.h \
112 112 ../header/processing/avf2_prc2.h \
113 113 ../header/fsw_params_wf_handler.h \
114 114 ../header/lfr_cpu_usage_report.h \
115 115 ../header/lfr_common_headers/ccsds_types.h \
116 116 ../header/lfr_common_headers/fsw_params.h \
117 117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
118 118 ../header/lfr_common_headers/fsw_params_processing.h \
119 119 ../header/lfr_common_headers/TC_types.h \
120 120 ../header/lfr_common_headers/tm_byte_positions.h \
121 121 ../LFR_basic-parameters/basic_parameters.h \
122 122 ../LFR_basic-parameters/basic_parameters_params.h \
123 123 ../header/GscMemoryLPP.hpp
124 124
@@ -1,72 +1,72
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15
16 16 extern unsigned short sequenceCounterParameterDump;
17 17 extern unsigned short sequenceCounters_TM_DUMP[];
18 18 extern float k_coeff_intercalib_f0_norm[ ];
19 19 extern float k_coeff_intercalib_f0_sbm[ ];
20 20 extern float k_coeff_intercalib_f1_norm[ ];
21 21 extern float k_coeff_intercalib_f1_sbm[ ];
22 22 extern float k_coeff_intercalib_f2[ ];
23 23
24 24 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
25 25 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 26 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 27 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
28 28 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
29 29 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 30 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 31 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
32 32 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
33 33
34 34 // NORMAL
35 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
35 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
36 36 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
37 37 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
38 38 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
39 39 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
40 40 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
41 41 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
42 42
43 43 // BURST
44 44 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
45 45 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
46 46
47 47 // SBM1
48 48 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
49 49 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
50 50
51 51 // SBM2
52 52 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
53 53 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
54 54
55 55 // TC_LFR_UPDATE_INFO
56 56 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
57 57 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
58 58 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
59 59
60 60 // FBINS_MASK
61 61 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
62 62
63 63 // KCOEFFICIENTS
64 64 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
65 65 void copyFloatByChar( unsigned char *destination, unsigned char *source );
66 66
67 67 void init_parameter_dump( void );
68 68 void init_kcoefficients_dump( void );
69 69 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
70 70 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
71 71
72 72 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,1201 +1,1201
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 19 ring_node kcoefficient_node_1;
20 20 ring_node kcoefficient_node_2;
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 flag = check_common_par_consistency( TC, queue_id );
61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 193 if (aux > FLOAT_EQUAL_ZERO)
194 194 {
195 195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 196 flag = LFR_DEFAULT;
197 197 }
198 198 }
199 199
200 200 // SET THE PARAMETERS
201 201 if (flag == LFR_SUCCESSFUL)
202 202 {
203 203 flag = set_sy_lfr_s1_bp_p0( TC );
204 204 flag = set_sy_lfr_s1_bp_p1( TC );
205 205 }
206 206
207 207 return flag;
208 208 }
209 209
210 210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 211 {
212 212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 216 *
217 217 */
218 218
219 219 int flag;
220 220 rtems_status_code status;
221 221 unsigned char sy_lfr_s2_bp_p0;
222 222 unsigned char sy_lfr_s2_bp_p1;
223 223 float aux;
224 224
225 225 flag = LFR_SUCCESSFUL;
226 226
227 227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 229 flag = LFR_DEFAULT;
230 230 }
231 231
232 232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 234
235 235 // sy_lfr_s2_bp_p0
236 236 if (flag == LFR_SUCCESSFUL)
237 237 {
238 238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 239 {
240 240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 241 flag = WRONG_APP_DATA;
242 242 }
243 243 }
244 244 // sy_lfr_s2_bp_p1
245 245 if (flag == LFR_SUCCESSFUL)
246 246 {
247 247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 248 {
249 249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 250 flag = WRONG_APP_DATA;
251 251 }
252 252 }
253 253 //******************************************************************
254 254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 255 if (flag == LFR_SUCCESSFUL)
256 256 {
257 257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 260 if (aux > FLOAT_EQUAL_ZERO)
261 261 {
262 262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 263 flag = LFR_DEFAULT;
264 264 }
265 265 }
266 266
267 267 // SET THE PARAMETERS
268 268 if (flag == LFR_SUCCESSFUL)
269 269 {
270 270 flag = set_sy_lfr_s2_bp_p0( TC );
271 271 flag = set_sy_lfr_s2_bp_p1( TC );
272 272 }
273 273
274 274 return flag;
275 275 }
276 276
277 277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 278 {
279 279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 280 *
281 281 * @param TC points to the TeleCommand packet that is being processed
282 282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 283 *
284 284 */
285 285
286 286 int flag;
287 287
288 288 flag = LFR_DEFAULT;
289 289
290 290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 291
292 292 return flag;
293 293 }
294 294
295 295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 296 {
297 297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 298 *
299 299 * @param TC points to the TeleCommand packet that is being processed
300 300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 301 *
302 302 */
303 303
304 304 int flag;
305 305
306 306 flag = LFR_DEFAULT;
307 307
308 308 flag = set_sy_lfr_fbins( TC );
309 309
310 310 return flag;
311 311 }
312 312
313 313 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 314 {
315 315 /** This function updates the LFR registers with the incoming sbm2 parameters.
316 316 *
317 317 * @param TC points to the TeleCommand packet that is being processed
318 318 * @param queue_id is the id of the queue which handles TM related to this execution step
319 319 *
320 320 */
321 321
322 322 unsigned int address;
323 323 rtems_status_code status;
324 324 unsigned int freq;
325 325 unsigned int bin;
326 326 unsigned int coeff;
327 327 unsigned char *kCoeffPtr;
328 328 unsigned char *kCoeffDumpPtr;
329 329
330 330 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
331 331 // F0 => 11 bins
332 332 // F1 => 13 bins
333 333 // F2 => 12 bins
334 334 // 36 bins to dump in two packets (30 bins max per packet)
335 335
336 336 //*********
337 337 // PACKET 1
338 338 // 11 F0 bins, 13 F1 bins and 6 F2 bins
339 339 kcoefficients_dump_1.destinationID = TC->sourceID;
340 340 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
341 341 for( freq=0;
342 342 freq<NB_BINS_COMPRESSED_SM_F0;
343 343 freq++ )
344 344 {
345 345 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
346 346 bin = freq;
347 347 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
348 348 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
349 349 {
350 350 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
351 351 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
352 352 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
353 353 }
354 354 }
355 355 for( freq=NB_BINS_COMPRESSED_SM_F0;
356 356 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
357 357 freq++ )
358 358 {
359 359 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
360 360 bin = freq - NB_BINS_COMPRESSED_SM_F0;
361 361 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
362 362 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
363 363 {
364 364 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
365 365 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
366 366 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
367 367 }
368 368 }
369 369 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
370 370 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
371 371 freq++ )
372 372 {
373 373 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
374 374 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
375 375 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
376 376 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
377 377 {
378 378 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
379 379 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
380 380 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
381 381 }
382 382 }
383 383 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
384 384 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
385 385 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
386 386 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
387 387 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
388 388 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
389 389 // SEND DATA
390 390 kcoefficient_node_1.status = 1;
391 391 address = (unsigned int) &kcoefficient_node_1;
392 392 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
393 393 if (status != RTEMS_SUCCESSFUL) {
394 394 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
395 395 }
396 396
397 397 //********
398 398 // PACKET 2
399 399 // 6 F2 bins
400 400 kcoefficients_dump_2.destinationID = TC->sourceID;
401 401 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
402 402 for( freq=0; freq<6; freq++ )
403 403 {
404 404 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
405 405 bin = freq + 6;
406 406 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
407 407 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
408 408 {
409 409 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
410 410 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
411 411 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
412 412 }
413 413 }
414 414 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
415 415 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
416 416 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
417 417 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
418 418 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
419 419 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
420 420 // SEND DATA
421 421 kcoefficient_node_2.status = 1;
422 422 address = (unsigned int) &kcoefficient_node_2;
423 423 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
424 424 if (status != RTEMS_SUCCESSFUL) {
425 425 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
426 426 }
427 427
428 428 return status;
429 429 }
430 430
431 431 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
432 432 {
433 433 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
434 434 *
435 435 * @param queue_id is the id of the queue which handles TM related to this execution step.
436 436 *
437 437 * @return RTEMS directive status codes:
438 438 * - RTEMS_SUCCESSFUL - message sent successfully
439 439 * - RTEMS_INVALID_ID - invalid queue id
440 440 * - RTEMS_INVALID_SIZE - invalid message size
441 441 * - RTEMS_INVALID_ADDRESS - buffer is NULL
442 442 * - RTEMS_UNSATISFIED - out of message buffers
443 443 * - RTEMS_TOO_MANY - queue s limit has been reached
444 444 *
445 445 */
446 446
447 447 int status;
448 448
449 449 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
450 450 parameter_dump_packet.destinationID = TC->sourceID;
451 451
452 452 // UPDATE TIME
453 453 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
454 454 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
455 455 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
456 456 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
457 457 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
458 458 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
459 459 // SEND DATA
460 460 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
461 461 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
462 462 if (status != RTEMS_SUCCESSFUL) {
463 463 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
464 464 }
465 465
466 466 return status;
467 467 }
468 468
469 469 //***********************
470 470 // NORMAL MODE PARAMETERS
471 471
472 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
472 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
473 473 {
474 474 unsigned char msb;
475 475 unsigned char lsb;
476 476 int flag;
477 477 float aux;
478 478 rtems_status_code status;
479 479
480 480 unsigned int sy_lfr_n_swf_l;
481 481 unsigned int sy_lfr_n_swf_p;
482 482 unsigned int sy_lfr_n_asm_p;
483 483 unsigned char sy_lfr_n_bp_p0;
484 484 unsigned char sy_lfr_n_bp_p1;
485 485 unsigned char sy_lfr_n_cwf_long_f3;
486 486
487 487 flag = LFR_SUCCESSFUL;
488 488
489 489 //***************
490 490 // get parameters
491 491 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
492 492 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
493 493 sy_lfr_n_swf_l = msb * 256 + lsb;
494 494
495 495 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
496 496 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
497 497 sy_lfr_n_swf_p = msb * 256 + lsb;
498 498
499 499 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
500 500 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
501 501 sy_lfr_n_asm_p = msb * 256 + lsb;
502 502
503 503 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
504 504
505 505 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
506 506
507 507 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
508 508
509 509 //******************
510 510 // check consistency
511 511 // sy_lfr_n_swf_l
512 512 if (sy_lfr_n_swf_l != 2048)
513 513 {
514 514 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
515 515 flag = WRONG_APP_DATA;
516 516 }
517 517 // sy_lfr_n_swf_p
518 518 if (flag == LFR_SUCCESSFUL)
519 519 {
520 if ( sy_lfr_n_swf_p < 16 )
520 if ( sy_lfr_n_swf_p < 22 )
521 521 {
522 522 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
523 523 flag = WRONG_APP_DATA;
524 524 }
525 525 }
526 526 // sy_lfr_n_bp_p0
527 527 if (flag == LFR_SUCCESSFUL)
528 528 {
529 529 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
530 530 {
531 531 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
532 532 flag = WRONG_APP_DATA;
533 533 }
534 534 }
535 535 // sy_lfr_n_asm_p
536 536 if (flag == LFR_SUCCESSFUL)
537 537 {
538 538 if (sy_lfr_n_asm_p == 0)
539 539 {
540 540 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
541 541 flag = WRONG_APP_DATA;
542 542 }
543 543 }
544 544 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
545 545 if (flag == LFR_SUCCESSFUL)
546 546 {
547 547 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
548 548 if (aux > FLOAT_EQUAL_ZERO)
549 549 {
550 550 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
551 551 flag = WRONG_APP_DATA;
552 552 }
553 553 }
554 554 // sy_lfr_n_bp_p1
555 555 if (flag == LFR_SUCCESSFUL)
556 556 {
557 557 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
558 558 {
559 559 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
560 560 flag = WRONG_APP_DATA;
561 561 }
562 562 }
563 563 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
564 564 if (flag == LFR_SUCCESSFUL)
565 565 {
566 566 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
567 567 if (aux > FLOAT_EQUAL_ZERO)
568 568 {
569 569 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
570 570 flag = LFR_DEFAULT;
571 571 }
572 572 }
573 573 // sy_lfr_n_cwf_long_f3
574 574
575 575 return flag;
576 576 }
577 577
578 578 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
579 579 {
580 580 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
581 581 *
582 582 * @param TC points to the TeleCommand packet that is being processed
583 583 * @param queue_id is the id of the queue which handles TM related to this execution step
584 584 *
585 585 */
586 586
587 587 int result;
588 588
589 589 result = LFR_SUCCESSFUL;
590 590
591 591 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
592 592 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
593 593
594 594 return result;
595 595 }
596 596
597 597 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
598 598 {
599 599 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
600 600 *
601 601 * @param TC points to the TeleCommand packet that is being processed
602 602 * @param queue_id is the id of the queue which handles TM related to this execution step
603 603 *
604 604 */
605 605
606 606 int result;
607 607
608 608 result = LFR_SUCCESSFUL;
609 609
610 610 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
611 611 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
612 612
613 613 return result;
614 614 }
615 615
616 616 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
617 617 {
618 618 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
619 619 *
620 620 * @param TC points to the TeleCommand packet that is being processed
621 621 * @param queue_id is the id of the queue which handles TM related to this execution step
622 622 *
623 623 */
624 624
625 625 int result;
626 626
627 627 result = LFR_SUCCESSFUL;
628 628
629 629 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
630 630 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
631 631
632 632 return result;
633 633 }
634 634
635 635 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
636 636 {
637 637 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
638 638 *
639 639 * @param TC points to the TeleCommand packet that is being processed
640 640 * @param queue_id is the id of the queue which handles TM related to this execution step
641 641 *
642 642 */
643 643
644 644 int status;
645 645
646 646 status = LFR_SUCCESSFUL;
647 647
648 648 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
649 649
650 650 return status;
651 651 }
652 652
653 653 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
654 654 {
655 655 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
656 656 *
657 657 * @param TC points to the TeleCommand packet that is being processed
658 658 * @param queue_id is the id of the queue which handles TM related to this execution step
659 659 *
660 660 */
661 661
662 662 int status;
663 663
664 664 status = LFR_SUCCESSFUL;
665 665
666 666 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
667 667
668 668 return status;
669 669 }
670 670
671 671 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
672 672 {
673 673 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
674 674 *
675 675 * @param TC points to the TeleCommand packet that is being processed
676 676 * @param queue_id is the id of the queue which handles TM related to this execution step
677 677 *
678 678 */
679 679
680 680 int status;
681 681
682 682 status = LFR_SUCCESSFUL;
683 683
684 684 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
685 685
686 686 return status;
687 687 }
688 688
689 689 //**********************
690 690 // BURST MODE PARAMETERS
691 691 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
692 692 {
693 693 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
694 694 *
695 695 * @param TC points to the TeleCommand packet that is being processed
696 696 * @param queue_id is the id of the queue which handles TM related to this execution step
697 697 *
698 698 */
699 699
700 700 int status;
701 701
702 702 status = LFR_SUCCESSFUL;
703 703
704 704 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
705 705
706 706 return status;
707 707 }
708 708
709 709 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
710 710 {
711 711 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
712 712 *
713 713 * @param TC points to the TeleCommand packet that is being processed
714 714 * @param queue_id is the id of the queue which handles TM related to this execution step
715 715 *
716 716 */
717 717
718 718 int status;
719 719
720 720 status = LFR_SUCCESSFUL;
721 721
722 722 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
723 723
724 724 return status;
725 725 }
726 726
727 727 //*********************
728 728 // SBM1 MODE PARAMETERS
729 729 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
730 730 {
731 731 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
732 732 *
733 733 * @param TC points to the TeleCommand packet that is being processed
734 734 * @param queue_id is the id of the queue which handles TM related to this execution step
735 735 *
736 736 */
737 737
738 738 int status;
739 739
740 740 status = LFR_SUCCESSFUL;
741 741
742 742 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
743 743
744 744 return status;
745 745 }
746 746
747 747 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
748 748 {
749 749 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
750 750 *
751 751 * @param TC points to the TeleCommand packet that is being processed
752 752 * @param queue_id is the id of the queue which handles TM related to this execution step
753 753 *
754 754 */
755 755
756 756 int status;
757 757
758 758 status = LFR_SUCCESSFUL;
759 759
760 760 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
761 761
762 762 return status;
763 763 }
764 764
765 765 //*********************
766 766 // SBM2 MODE PARAMETERS
767 767 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
768 768 {
769 769 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
770 770 *
771 771 * @param TC points to the TeleCommand packet that is being processed
772 772 * @param queue_id is the id of the queue which handles TM related to this execution step
773 773 *
774 774 */
775 775
776 776 int status;
777 777
778 778 status = LFR_SUCCESSFUL;
779 779
780 780 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
781 781
782 782 return status;
783 783 }
784 784
785 785 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
786 786 {
787 787 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
788 788 *
789 789 * @param TC points to the TeleCommand packet that is being processed
790 790 * @param queue_id is the id of the queue which handles TM related to this execution step
791 791 *
792 792 */
793 793
794 794 int status;
795 795
796 796 status = LFR_SUCCESSFUL;
797 797
798 798 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
799 799
800 800 return status;
801 801 }
802 802
803 803 //*******************
804 804 // TC_LFR_UPDATE_INFO
805 805 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
806 806 {
807 807 unsigned int status;
808 808
809 809 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
810 810 || (mode == LFR_MODE_BURST)
811 811 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
812 812 {
813 813 status = LFR_SUCCESSFUL;
814 814 }
815 815 else
816 816 {
817 817 status = LFR_DEFAULT;
818 818 }
819 819
820 820 return status;
821 821 }
822 822
823 823 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
824 824 {
825 825 unsigned int status;
826 826
827 827 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
828 828 || (mode == TDS_MODE_BURST)
829 829 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
830 830 || (mode == TDS_MODE_LFM))
831 831 {
832 832 status = LFR_SUCCESSFUL;
833 833 }
834 834 else
835 835 {
836 836 status = LFR_DEFAULT;
837 837 }
838 838
839 839 return status;
840 840 }
841 841
842 842 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
843 843 {
844 844 unsigned int status;
845 845
846 846 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
847 847 || (mode == THR_MODE_BURST))
848 848 {
849 849 status = LFR_SUCCESSFUL;
850 850 }
851 851 else
852 852 {
853 853 status = LFR_DEFAULT;
854 854 }
855 855
856 856 return status;
857 857 }
858 858
859 859 //***********
860 860 // FBINS MASK
861 861
862 862 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
863 863 {
864 864 int status;
865 865 unsigned int k;
866 866 unsigned char *fbins_mask_dump;
867 867 unsigned char *fbins_mask_TC;
868 868
869 869 status = LFR_SUCCESSFUL;
870 870
871 871 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
872 872 fbins_mask_TC = TC->dataAndCRC;
873 873
874 874 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
875 875 {
876 876 fbins_mask_dump[k] = fbins_mask_TC[k];
877 877 }
878 878 for (k=0; k < NB_FBINS_MASKS; k++)
879 879 {
880 880 unsigned char *auxPtr;
881 881 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
882 882 }
883 883
884 884
885 885 return status;
886 886 }
887 887
888 888 //**************
889 889 // KCOEFFICIENTS
890 890 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
891 891 {
892 892 unsigned int kcoeff;
893 893 unsigned short sy_lfr_kcoeff_frequency;
894 894 unsigned short bin;
895 895 unsigned short *freqPtr;
896 896 float *kcoeffPtr_norm;
897 897 float *kcoeffPtr_sbm;
898 898 int status;
899 899 unsigned char *kcoeffLoadPtr;
900 900 unsigned char *kcoeffNormPtr;
901 901 unsigned char *kcoeffSbmPtr_a;
902 902 unsigned char *kcoeffSbmPtr_b;
903 903
904 904 status = LFR_SUCCESSFUL;
905 905
906 906 kcoeffPtr_norm = NULL;
907 907 kcoeffPtr_sbm = NULL;
908 908 bin = 0;
909 909
910 910 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
911 911 sy_lfr_kcoeff_frequency = *freqPtr;
912 912
913 913 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
914 914 {
915 915 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
916 916 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
917 917 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
918 918 status = LFR_DEFAULT;
919 919 }
920 920 else
921 921 {
922 922 if ( ( sy_lfr_kcoeff_frequency >= 0 )
923 923 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
924 924 {
925 925 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
926 926 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
927 927 bin = sy_lfr_kcoeff_frequency;
928 928 }
929 929 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
930 930 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
931 931 {
932 932 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
933 933 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
934 934 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
935 935 }
936 936 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
937 937 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
938 938 {
939 939 kcoeffPtr_norm = k_coeff_intercalib_f2;
940 940 kcoeffPtr_sbm = NULL;
941 941 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
942 942 }
943 943 }
944 944
945 945 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
946 946 {
947 947 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
948 948 {
949 949 // destination
950 950 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
951 951 // source
952 952 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
953 953 // copy source to destination
954 954 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
955 955 }
956 956 }
957 957
958 958 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
959 959 {
960 960 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
961 961 {
962 962 // destination
963 963 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
964 964 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
965 965 // source
966 966 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
967 967 // copy source to destination
968 968 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
969 969 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
970 970 }
971 971 }
972 972
973 973 // print_k_coeff();
974 974
975 975 return status;
976 976 }
977 977
978 978 void copyFloatByChar( unsigned char *destination, unsigned char *source )
979 979 {
980 980 destination[0] = source[0];
981 981 destination[1] = source[1];
982 982 destination[2] = source[2];
983 983 destination[3] = source[3];
984 984 }
985 985
986 986 //**********
987 987 // init dump
988 988
989 989 void init_parameter_dump( void )
990 990 {
991 991 /** This function initialize the parameter_dump_packet global variable with default values.
992 992 *
993 993 */
994 994
995 995 unsigned int k;
996 996
997 997 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
998 998 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
999 999 parameter_dump_packet.reserved = CCSDS_RESERVED;
1000 1000 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1001 1001 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1002 1002 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1003 1003 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1004 1004 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1005 1005 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1006 1006 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1007 1007 // DATA FIELD HEADER
1008 1008 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1009 1009 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1010 1010 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1011 1011 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1012 1012 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1013 1013 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1014 1014 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1015 1015 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1016 1016 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1017 1017 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1018 1018 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1019 1019
1020 1020 //******************
1021 1021 // COMMON PARAMETERS
1022 1022 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1023 1023 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1024 1024
1025 1025 //******************
1026 1026 // NORMAL PARAMETERS
1027 1027 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1028 1028 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1029 1029 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1030 1030 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1031 1031 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1032 1032 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1033 1033 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1034 1034 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1035 1035 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1036 1036
1037 1037 //*****************
1038 1038 // BURST PARAMETERS
1039 1039 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1040 1040 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1041 1041
1042 1042 //****************
1043 1043 // SBM1 PARAMETERS
1044 1044 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1045 1045 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1046 1046
1047 1047 //****************
1048 1048 // SBM2 PARAMETERS
1049 1049 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1050 1050 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1051 1051
1052 1052 //************
1053 1053 // FBINS MASKS
1054 1054 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1055 1055 {
1056 1056 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1057 1057 }
1058 1058 }
1059 1059
1060 1060 void init_kcoefficients_dump( void )
1061 1061 {
1062 1062 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1063 1063 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1064 1064
1065 1065 kcoefficient_node_1.previous = NULL;
1066 1066 kcoefficient_node_1.next = NULL;
1067 1067 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1068 1068 kcoefficient_node_1.coarseTime = 0x00;
1069 1069 kcoefficient_node_1.fineTime = 0x00;
1070 1070 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1071 1071 kcoefficient_node_1.status = 0x00;
1072 1072
1073 1073 kcoefficient_node_2.previous = NULL;
1074 1074 kcoefficient_node_2.next = NULL;
1075 1075 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1076 1076 kcoefficient_node_2.coarseTime = 0x00;
1077 1077 kcoefficient_node_2.fineTime = 0x00;
1078 1078 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1079 1079 kcoefficient_node_2.status = 0x00;
1080 1080 }
1081 1081
1082 1082 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1083 1083 {
1084 1084 unsigned int k;
1085 1085 unsigned int packetLength;
1086 1086
1087 1087 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1088 1088
1089 1089 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1090 1090 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1091 1091 kcoefficients_dump->reserved = CCSDS_RESERVED;
1092 1092 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1093 1093 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1094 1094 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1095 1095 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1096 1096 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1097 1097 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1098 1098 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1099 1099 // DATA FIELD HEADER
1100 1100 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1101 1101 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1102 1102 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1103 1103 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1104 1104 kcoefficients_dump->time[0] = 0x00;
1105 1105 kcoefficients_dump->time[1] = 0x00;
1106 1106 kcoefficients_dump->time[2] = 0x00;
1107 1107 kcoefficients_dump->time[3] = 0x00;
1108 1108 kcoefficients_dump->time[4] = 0x00;
1109 1109 kcoefficients_dump->time[5] = 0x00;
1110 1110 kcoefficients_dump->sid = SID_K_DUMP;
1111 1111
1112 1112 kcoefficients_dump->pkt_cnt = 2;
1113 1113 kcoefficients_dump->pkt_nr = pkt_nr;
1114 1114 kcoefficients_dump->blk_nr = blk_nr;
1115 1115
1116 1116 //******************
1117 1117 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1118 1118 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1119 1119 for (k=0; k<3900; k++)
1120 1120 {
1121 1121 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1122 1122 }
1123 1123 }
1124 1124
1125 1125 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1126 1126 {
1127 1127 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1128 1128 *
1129 1129 * @param packet_sequence_control points to the packet sequence control which will be incremented
1130 1130 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1131 1131 *
1132 1132 * If the destination ID is not known, a dedicated counter is incremented.
1133 1133 *
1134 1134 */
1135 1135
1136 1136 unsigned short sequence_cnt;
1137 1137 unsigned short segmentation_grouping_flag;
1138 1138 unsigned short new_packet_sequence_control;
1139 1139 unsigned char i;
1140 1140
1141 1141 switch (destination_id)
1142 1142 {
1143 1143 case SID_TC_GROUND:
1144 1144 i = GROUND;
1145 1145 break;
1146 1146 case SID_TC_MISSION_TIMELINE:
1147 1147 i = MISSION_TIMELINE;
1148 1148 break;
1149 1149 case SID_TC_TC_SEQUENCES:
1150 1150 i = TC_SEQUENCES;
1151 1151 break;
1152 1152 case SID_TC_RECOVERY_ACTION_CMD:
1153 1153 i = RECOVERY_ACTION_CMD;
1154 1154 break;
1155 1155 case SID_TC_BACKUP_MISSION_TIMELINE:
1156 1156 i = BACKUP_MISSION_TIMELINE;
1157 1157 break;
1158 1158 case SID_TC_DIRECT_CMD:
1159 1159 i = DIRECT_CMD;
1160 1160 break;
1161 1161 case SID_TC_SPARE_GRD_SRC1:
1162 1162 i = SPARE_GRD_SRC1;
1163 1163 break;
1164 1164 case SID_TC_SPARE_GRD_SRC2:
1165 1165 i = SPARE_GRD_SRC2;
1166 1166 break;
1167 1167 case SID_TC_OBCP:
1168 1168 i = OBCP;
1169 1169 break;
1170 1170 case SID_TC_SYSTEM_CONTROL:
1171 1171 i = SYSTEM_CONTROL;
1172 1172 break;
1173 1173 case SID_TC_AOCS:
1174 1174 i = AOCS;
1175 1175 break;
1176 1176 case SID_TC_RPW_INTERNAL:
1177 1177 i = RPW_INTERNAL;
1178 1178 break;
1179 1179 default:
1180 1180 i = GROUND;
1181 1181 break;
1182 1182 }
1183 1183
1184 1184 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1185 1185 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1186 1186
1187 1187 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1188 1188
1189 1189 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1190 1190 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1191 1191
1192 1192 // increment the sequence counter
1193 1193 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1194 1194 {
1195 1195 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1196 1196 }
1197 1197 else
1198 1198 {
1199 1199 sequenceCounters_TM_DUMP[ i ] = 0;
1200 1200 }
1201 1201 }
@@ -1,1310 +1,1310
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 16 ring_node *current_ring_node_f0;
17 17 ring_node *ring_node_to_send_swf_f0;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 20 ring_node *current_ring_node_f1;
21 21 ring_node *ring_node_to_send_swf_f1;
22 22 ring_node *ring_node_to_send_cwf_f1;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 25 ring_node *current_ring_node_f2;
26 26 ring_node *ring_node_to_send_swf_f2;
27 27 ring_node *ring_node_to_send_cwf_f2;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 30 ring_node *current_ring_node_f3;
31 31 ring_node *ring_node_to_send_cwf_f3;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 43 ring_node ring_node_swf1_extracted;
44 44 ring_node ring_node_swf2_extracted;
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case 1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case 2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case 3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case 0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case 1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case 2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
146 146
147 147
148 148 switch(status)
149 149 {
150 150 case 1:
151 151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
152 152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
153 153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
154 154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
155 155 current_ring_node_f2 = current_ring_node_f2->next;
156 156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
157 157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
158 158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
159 159 }
160 160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
161 161 break;
162 162 case 2:
163 163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
164 164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
165 165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
166 166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
167 167 current_ring_node_f2 = current_ring_node_f2->next;
168 168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
169 169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
170 170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
171 171 }
172 172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
173 173 break;
174 174 default:
175 175 break;
176 176 }
177 177 }
178 178
179 179 inline void waveform_isr_normal_sbm1_sbm2( void )
180 180 {
181 181 rtems_status_code status;
182 182
183 183 //***
184 184 // F0
185 185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
186 186 {
187 187 swf0_ready_flag_f1 = true;
188 188 swf0_ready_flag_f2 = true;
189 189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
190 190 current_ring_node_f0 = current_ring_node_f0->next;
191 191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
192 192 {
193 193
194 194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
195 195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
196 196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
197 197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
198 198 }
199 199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
200 200 {
201 201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
202 202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
203 203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
204 204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
205 205 }
206 206 // send an event to the WFRM task for resynchro activities
207 207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
208 208 }
209 209
210 210 //***
211 211 // F1
212 212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
213 213 // (1) change the receiving buffer for the waveform picker
214 214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 215 current_ring_node_f1 = current_ring_node_f1->next;
216 216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
217 217 {
218 218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
222 222 }
223 223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
224 224 {
225 225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
229 229 }
230 230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 232 }
233 233
234 234 //***
235 235 // F2
236 236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
237 237 // (1) change the receiving buffer for the waveform picker
238 238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 240 current_ring_node_f2 = current_ring_node_f2->next;
241 241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
242 242 {
243 243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
247 247 }
248 248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
249 249 {
250 250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
254 254 }
255 255 // (2) send an event for the waveforms transmission
256 256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 257 }
258 258 }
259 259
260 260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 261 {
262 262 /** This is the interrupt sub routine called by the waveform picker core.
263 263 *
264 264 * This ISR launch different actions depending mainly on two pieces of information:
265 265 * 1. the values read in the registers of the waveform picker.
266 266 * 2. the current LFR mode.
267 267 *
268 268 */
269 269
270 270 // STATUS
271 271 // new error error buffer full
272 272 // 15 14 13 12 11 10 9 8
273 273 // f3 f2 f1 f0 f3 f2 f1 f0
274 274 //
275 275 // ready buffer
276 276 // 7 6 5 4 3 2 1 0
277 277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278 278
279 279 rtems_status_code spare_status;
280 280
281 281 waveforms_isr_f3();
282 282
283 283 //*************************************************
284 284 // copy the status bits in the housekeeping packets
285 285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
287 287
288 288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
289 289 {
290 290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 291 }
292 292
293 293 switch(lfrCurrentMode)
294 294 {
295 295 //********
296 296 // STANDBY
297 297 case LFR_MODE_STANDBY:
298 298 break;
299 299 //**************************
300 300 // LFR NORMAL, SBM1 and SBM2
301 301 case LFR_MODE_NORMAL:
302 302 case LFR_MODE_SBM1:
303 303 case LFR_MODE_SBM2:
304 304 waveform_isr_normal_sbm1_sbm2();
305 305 break;
306 306 //******
307 307 // BURST
308 308 case LFR_MODE_BURST:
309 309 waveforms_isr_burst();
310 310 break;
311 311 //********
312 312 // DEFAULT
313 313 default:
314 314 break;
315 315 }
316 316 }
317 317
318 318 //************
319 319 // RTEMS TASKS
320 320
321 321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 322 {
323 323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 324 *
325 325 * @param unused is the starting argument of the RTEMS task
326 326 *
327 327 * The following data packets are sent by this task:
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 331 *
332 332 */
333 333
334 334 rtems_event_set event_out;
335 335 rtems_id queue_id;
336 336 rtems_status_code status;
337 337 ring_node *ring_node_swf1_extracted_ptr;
338 338 ring_node *ring_node_swf2_extracted_ptr;
339 339
340 340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
341 341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
342 342
343 343 status = get_message_queue_id_send( &queue_id );
344 344 if (status != RTEMS_SUCCESSFUL)
345 345 {
346 346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
347 347 }
348 348
349 349 BOOT_PRINTF("in WFRM ***\n");
350 350
351 351 while(1){
352 352 // wait for an RTEMS_EVENT
353 353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
354 354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
355 355
356 356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
357 357 {
358 358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
359 359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
360 360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
361 361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
362 362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
363 363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
364 364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
365 365 }
366 366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
367 367 {
368 368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
369 369 }
370 370 }
371 371 }
372 372
373 373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
374 374 {
375 375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
376 376 *
377 377 * @param unused is the starting argument of the RTEMS task
378 378 *
379 379 * The following data packet is sent by this task:
380 380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
381 381 *
382 382 */
383 383
384 384 rtems_event_set event_out;
385 385 rtems_id queue_id;
386 386 rtems_status_code status;
387 387 ring_node ring_node_cwf3_light;
388 388 ring_node *ring_node_to_send_cwf;
389 389
390 390 status = get_message_queue_id_send( &queue_id );
391 391 if (status != RTEMS_SUCCESSFUL)
392 392 {
393 393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
394 394 }
395 395
396 396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
397 397
398 398 // init the ring_node_cwf3_light structure
399 399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
400 400 ring_node_cwf3_light.coarseTime = 0x00;
401 401 ring_node_cwf3_light.fineTime = 0x00;
402 402 ring_node_cwf3_light.next = NULL;
403 403 ring_node_cwf3_light.previous = NULL;
404 404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
405 405 ring_node_cwf3_light.status = 0x00;
406 406
407 407 BOOT_PRINTF("in CWF3 ***\n")
408 408
409 409 while(1){
410 410 // wait for an RTEMS_EVENT
411 411 rtems_event_receive( RTEMS_EVENT_0,
412 412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
413 413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
414 414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
415 415 {
416 416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
417 417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
418 418 {
419 419 PRINTF("send CWF_LONG_F3\n")
420 420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
421 421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
422 422 }
423 423 else
424 424 {
425 425 PRINTF("send CWF_F3 (light)\n")
426 426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
427 427 }
428 428
429 429 }
430 430 else
431 431 {
432 432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
433 433 }
434 434 }
435 435 }
436 436
437 437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
438 438 {
439 439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
440 440 *
441 441 * @param unused is the starting argument of the RTEMS task
442 442 *
443 443 * The following data packet is sent by this function:
444 444 * - TM_LFR_SCIENCE_BURST_CWF_F2
445 445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
446 446 *
447 447 */
448 448
449 449 rtems_event_set event_out;
450 450 rtems_id queue_id;
451 451 rtems_status_code status;
452 452 ring_node *ring_node_to_send;
453 453 unsigned long long int acquisitionTimeF0_asLong;
454 454
455 455 acquisitionTimeF0_asLong = 0x00;
456 456
457 457 status = get_message_queue_id_send( &queue_id );
458 458 if (status != RTEMS_SUCCESSFUL)
459 459 {
460 460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
461 461 }
462 462
463 463 BOOT_PRINTF("in CWF2 ***\n")
464 464
465 465 while(1){
466 466 // wait for an RTEMS_EVENT// send the snapshot when built
467 467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
468 468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
469 469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
470 470 ring_node_to_send = getRingNodeToSendCWF( 2 );
471 471 if (event_out == RTEMS_EVENT_MODE_BURST)
472 472 {
473 473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
474 474 }
475 475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
476 476 {
477 477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
478 478 {
479 479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
480 480 }
481 481 // launch snapshot extraction if needed
482 482 if (extractSWF2 == true)
483 483 {
484 484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
485 485 // extract the snapshot
486 486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
487 487 &ring_node_swf2_extracted, swf2_extracted );
488 488 extractSWF2 = false;
489 489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
490 490 }
491 491 if (swf0_ready_flag_f2 == true)
492 492 {
493 493 extractSWF2 = true;
494 494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
495 495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
496 496 swf0_ready_flag_f2 = false;
497 497 }
498 498 }
499 499 }
500 500 }
501 501
502 502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
503 503 {
504 504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
505 505 *
506 506 * @param unused is the starting argument of the RTEMS task
507 507 *
508 508 * The following data packet is sent by this function:
509 509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
510 510 *
511 511 */
512 512
513 513 rtems_event_set event_out;
514 514 rtems_id queue_id;
515 515 rtems_status_code status;
516 516
517 517 ring_node *ring_node_to_send_cwf;
518 518
519 519 status = get_message_queue_id_send( &queue_id );
520 520 if (status != RTEMS_SUCCESSFUL)
521 521 {
522 522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
523 523 }
524 524
525 525 BOOT_PRINTF("in CWF1 ***\n");
526 526
527 527 while(1){
528 528 // wait for an RTEMS_EVENT
529 529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
530 530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
531 531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
532 532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
533 533 if (lfrCurrentMode == LFR_MODE_SBM1)
534 534 {
535 535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
536 536 if (status != 0)
537 537 {
538 538 PRINTF("cwf sending failed\n")
539 539 }
540 540 }
541 541 // launch snapshot extraction if needed
542 542 if (extractSWF1 == true)
543 543 {
544 544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
545 545 // launch the snapshot extraction
546 546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
547 547 extractSWF1 = false;
548 548 }
549 549 if (swf0_ready_flag_f1 == true)
550 550 {
551 551 extractSWF1 = true;
552 552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
553 553 }
554 554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
555 555 {
556 556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
557 557 swf1_ready = false;
558 558 swf2_ready = false;
559 559 }
560 560 }
561 561 }
562 562
563 563 rtems_task swbd_task(rtems_task_argument argument)
564 564 {
565 565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
566 566 *
567 567 * @param unused is the starting argument of the RTEMS task
568 568 *
569 569 */
570 570
571 571 rtems_event_set event_out;
572 572 unsigned long long int acquisitionTimeF0_asLong;
573 573
574 574 acquisitionTimeF0_asLong = 0x00;
575 575
576 576 BOOT_PRINTF("in SWBD ***\n")
577 577
578 578 while(1){
579 579 // wait for an RTEMS_EVENT
580 580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
581 581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
583 583 {
584 584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
585 585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
586 586 &ring_node_swf1_extracted, swf1_extracted );
587 587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
588 588 }
589 589 else
590 590 {
591 591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
592 592 }
593 593 }
594 594 }
595 595
596 596 //******************
597 597 // general functions
598 598
599 599 void WFP_init_rings( void )
600 600 {
601 601 // F0 RING
602 602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
603 603 // F1 RING
604 604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
605 605 // F2 RING
606 606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
607 607 // F3 RING
608 608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
609 609
610 610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
611 611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
612 612
613 613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
614 614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
615 615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
616 616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
617 617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
618 618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
619 619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
620 620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
621 621
622 622 }
623 623
624 624 void WFP_reset_current_ring_nodes( void )
625 625 {
626 626 current_ring_node_f0 = waveform_ring_f0[0].next;
627 627 current_ring_node_f1 = waveform_ring_f1[0].next;
628 628 current_ring_node_f2 = waveform_ring_f2[0].next;
629 629 current_ring_node_f3 = waveform_ring_f3[0].next;
630 630
631 631 ring_node_to_send_swf_f0 = waveform_ring_f0;
632 632 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 633 ring_node_to_send_swf_f2 = waveform_ring_f2;
634 634
635 635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
636 636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
637 637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
638 638 }
639 639
640 640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
641 641 {
642 642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
643 643 *
644 644 * @param waveform points to the buffer containing the data that will be send.
645 645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
646 646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
647 647 * contain information to setup the transmission of the data packets.
648 648 *
649 649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
650 650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
651 651 *
652 652 */
653 653
654 654 unsigned int i;
655 655 int ret;
656 656 rtems_status_code status;
657 657
658 658 char *sample;
659 659 int *dataPtr;
660 660
661 661 ret = LFR_DEFAULT;
662 662
663 663 dataPtr = (int*) ring_node_to_send->buffer_address;
664 664
665 665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
666 666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
667 667
668 668 //**********************
669 669 // BUILD CWF3_light DATA
670 670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
671 671 {
672 672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
673 673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
674 674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
675 675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
676 676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
677 677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
678 678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
679 679 }
680 680
681 681 // SEND PACKET
682 682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
683 683 if (status != RTEMS_SUCCESSFUL) {
684 684 ret = LFR_DEFAULT;
685 685 }
686 686
687 687 return ret;
688 688 }
689 689
690 690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
691 691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
692 692 {
693 693 unsigned long long int acquisitionTimeAsLong;
694 694 unsigned char localAcquisitionTime[6];
695 695 double deltaT;
696 696
697 697 deltaT = 0.;
698 698
699 699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
700 700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
701 701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
702 702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
703 703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
704 704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
705 705
706 706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
707 707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
708 708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
709 709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
710 710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
711 711 + ( (unsigned long long int) localAcquisitionTime[5] );
712 712
713 713 switch( sid )
714 714 {
715 715 case SID_NORM_SWF_F0:
716 716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
717 717 break;
718 718
719 719 case SID_NORM_SWF_F1:
720 720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
721 721 break;
722 722
723 723 case SID_NORM_SWF_F2:
724 724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
725 725 break;
726 726
727 727 case SID_SBM1_CWF_F1:
728 728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
729 729 break;
730 730
731 731 case SID_SBM2_CWF_F2:
732 732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
733 733 break;
734 734
735 735 case SID_BURST_CWF_F2:
736 736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
737 737 break;
738 738
739 739 case SID_NORM_CWF_F3:
740 740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
741 741 break;
742 742
743 743 case SID_NORM_CWF_LONG_F3:
744 744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
745 745 break;
746 746
747 747 default:
748 748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
749 749 deltaT = 0.;
750 750 break;
751 751 }
752 752
753 753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
754 754 //
755 755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
756 756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
757 757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
758 758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
759 759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
760 760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
761 761
762 762 }
763 763
764 764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
765 765 unsigned char frequencyChannel,
766 766 unsigned long long int acquisitionTimeF0_asLong,
767 767 ring_node *ring_node_swf_extracted,
768 768 int *swf_extracted)
769 769 {
770 770 unsigned int i;
771 771 unsigned long long int centerTime_asLong;
772 772 unsigned long long int acquisitionTime_asLong;
773 773 unsigned long long int bufferAcquisitionTime_asLong;
774 774 unsigned char *ptr1;
775 775 unsigned char *ptr2;
776 776 unsigned char *timeCharPtr;
777 777 unsigned char nb_ring_nodes;
778 778 unsigned long long int frequency_asLong;
779 779 unsigned long long int nbTicksPerSample_asLong;
780 780 unsigned long long int nbSamplesPart1_asLong;
781 781 unsigned long long int sampleOffset_asLong;
782 782
783 783 unsigned int deltaT_F0;
784 784 unsigned int deltaT_F1;
785 785 unsigned long long int deltaT_F2;
786 786
787 787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
788 788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
789 789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
790 790 sampleOffset_asLong = 0x00;
791 791
792 792 // (1) get the f0 acquisition time => the value is passed in argument
793 793
794 794 // (2) compute the central reference time
795 795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
796 796
797 797 // (3) compute the acquisition time of the current snapshot
798 798 switch(frequencyChannel)
799 799 {
800 800 case 1: // 1 is for F1 = 4096 Hz
801 801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
802 802 nb_ring_nodes = NB_RING_NODES_F1;
803 803 frequency_asLong = 4096;
804 804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
805 805 break;
806 806 case 2: // 2 is for F2 = 256 Hz
807 807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
808 808 nb_ring_nodes = NB_RING_NODES_F2;
809 809 frequency_asLong = 256;
810 810 nbTicksPerSample_asLong = 256; // 65536 / 256;
811 811 break;
812 812 default:
813 813 acquisitionTime_asLong = centerTime_asLong;
814 814 frequency_asLong = 256;
815 815 nbTicksPerSample_asLong = 256;
816 816 break;
817 817 }
818 818
819 819 //****************************************************************************
820 820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
821 821 for (i=0; i<nb_ring_nodes; i++)
822 822 {
823 823 //PRINTF1("%d ... ", i);
824 824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
825 825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
826 826 {
827 827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
828 828 break;
829 829 }
830 830 ring_node_to_send = ring_node_to_send->previous;
831 831 }
832 832
833 833 // (5) compute the number of samples to take in the current buffer
834 834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
835 835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
836 836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
837 837
838 838 // (6) compute the final acquisition time
839 839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
840 840 sampleOffset_asLong * nbTicksPerSample_asLong;
841 841
842 842 // (7) copy the acquisition time at the beginning of the extrated snapshot
843 843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
844 844 // fine time
845 845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
846 846 ptr2[2] = ptr1[ 4 + 2 ];
847 847 ptr2[3] = ptr1[ 5 + 2 ];
848 848 // coarse time
849 849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
850 850 ptr2[0] = ptr1[ 0 + 2 ];
851 851 ptr2[1] = ptr1[ 1 + 2 ];
852 852 ptr2[2] = ptr1[ 2 + 2 ];
853 853 ptr2[3] = ptr1[ 3 + 2 ];
854 854
855 855 // re set the synchronization bit
856 856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
857 857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
858 858
859 859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
860 860 {
861 861 nbSamplesPart1_asLong = 0;
862 862 }
863 863 // copy the part 1 of the snapshot in the extracted buffer
864 864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
865 865 {
866 866 swf_extracted[i] =
867 867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
868 868 }
869 869 // copy the part 2 of the snapshot in the extracted buffer
870 870 ring_node_to_send = ring_node_to_send->next;
871 871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
872 872 {
873 873 swf_extracted[i] =
874 874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
875 875 }
876 876 }
877 877
878 878 double computeCorrection( unsigned char *timePtr )
879 879 {
880 880 unsigned long long int acquisitionTime;
881 881 unsigned long long int centerTime;
882 882 unsigned long long int previousTick;
883 883 unsigned long long int nextTick;
884 884 unsigned long long int deltaPreviousTick;
885 885 unsigned long long int deltaNextTick;
886 886 double deltaPrevious_ms;
887 887 double deltaNext_ms;
888 888 double correctionInF2;
889 889
890 890 // get acquisition time in fine time ticks
891 891 acquisitionTime = get_acquisition_time( timePtr );
892 892
893 893 // compute center time
894 894 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
895 895 previousTick = centerTime - (centerTime & 0xffff);
896 896 nextTick = previousTick + 65536;
897 897
898 898 deltaPreviousTick = centerTime - previousTick;
899 899 deltaNextTick = nextTick - centerTime;
900 900
901 901 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
902 902 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
903 903
904 904 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
905 905
906 906 // which tick is the closest?
907 907 if (deltaPreviousTick > deltaNextTick)
908 908 {
909 909 // the snapshot center is just before the second => increase delta_snapshot
910 910 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
911 911 }
912 912 else
913 913 {
914 914 // the snapshot center is just after the second => decrease delta_snapshot
915 915 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
916 916 }
917 917
918 918 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
919 919
920 920 return correctionInF2;
921 921 }
922 922
923 923 void applyCorrection( double correction )
924 924 {
925 925 int correctionInt;
926 926
927 927 if (correction >= 0.)
928 928 {
929 929 if ( (1. > correction) && (correction > 0.5) )
930 930 {
931 931 correctionInt = 1;
932 932 }
933 933 else
934 934 {
935 935 correctionInt = 2 * floor(correction);
936 936 }
937 937 }
938 938 else
939 939 {
940 if ( (correction < -1.) && (correction < -0.5) )
940 if ( (-1. < correction) && (correction < -0.5) )
941 941 {
942 942 correctionInt = -1;
943 943 }
944 944 else
945 945 {
946 946 correctionInt = 2 * ceil(correction);
947 947 }
948 948 }
949 949 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
950 950 }
951 951
952 952 void snapshot_resynchronization( unsigned char *timePtr )
953 953 {
954 954 /** This function compute a correction to apply on delta_snapshot.
955 955 *
956 956 *
957 957 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
958 958 *
959 959 * @return void
960 960 *
961 961 */
962 962
963 963 static double correction = 0.;
964 964 static resynchro_state state = MEASURE;
965 965 static unsigned int nbSnapshots = 0;
966 966
967 967 int correctionInt;
968 968
969 969 correctionInt = 0;
970 970
971 971 switch (state)
972 972 {
973 973
974 974 case MEASURE:
975 975 // ********
976 976 PRINTF1("MEASURE === %d\n", nbSnapshots);
977 977 state = CORRECTION;
978 978 correction = computeCorrection( timePtr );
979 979 PRINTF1("MEASURE === correction = %.2f\n", correction );
980 980 applyCorrection( correction );
981 981 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
982 982 //****
983 983 break;
984 984
985 985 case CORRECTION:
986 986 //************
987 987 PRINTF1("CORRECTION === %d\n", nbSnapshots);
988 988 state = MEASURE;
989 989 computeCorrection( timePtr );
990 990 set_wfp_delta_snapshot();
991 991 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
992 992 //****
993 993 break;
994 994
995 995 default:
996 996 break;
997 997
998 998 }
999 999
1000 1000 nbSnapshots++;
1001 1001 }
1002 1002
1003 1003 //**************
1004 1004 // wfp registers
1005 1005 void reset_wfp_burst_enable( void )
1006 1006 {
1007 1007 /** This function resets the waveform picker burst_enable register.
1008 1008 *
1009 1009 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1010 1010 *
1011 1011 */
1012 1012
1013 1013 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1014 1014 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1015 1015 }
1016 1016
1017 1017 void reset_wfp_status( void )
1018 1018 {
1019 1019 /** This function resets the waveform picker status register.
1020 1020 *
1021 1021 * All status bits are set to 0 [new_err full_err full].
1022 1022 *
1023 1023 */
1024 1024
1025 1025 waveform_picker_regs->status = 0xffff;
1026 1026 }
1027 1027
1028 1028 void reset_wfp_buffer_addresses( void )
1029 1029 {
1030 1030 // F0
1031 1031 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1032 1032 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1033 1033 // F1
1034 1034 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1035 1035 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1036 1036 // F2
1037 1037 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1038 1038 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1039 1039 // F3
1040 1040 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1041 1041 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1042 1042 }
1043 1043
1044 1044 void reset_waveform_picker_regs( void )
1045 1045 {
1046 1046 /** This function resets the waveform picker module registers.
1047 1047 *
1048 1048 * The registers affected by this function are located at the following offset addresses:
1049 1049 * - 0x00 data_shaping
1050 1050 * - 0x04 run_burst_enable
1051 1051 * - 0x08 addr_data_f0
1052 1052 * - 0x0C addr_data_f1
1053 1053 * - 0x10 addr_data_f2
1054 1054 * - 0x14 addr_data_f3
1055 1055 * - 0x18 status
1056 1056 * - 0x1C delta_snapshot
1057 1057 * - 0x20 delta_f0
1058 1058 * - 0x24 delta_f0_2
1059 1059 * - 0x28 delta_f1 (obsolet parameter)
1060 1060 * - 0x2c delta_f2
1061 1061 * - 0x30 nb_data_by_buffer
1062 1062 * - 0x34 nb_snapshot_param
1063 1063 * - 0x38 start_date
1064 1064 * - 0x3c nb_word_in_buffer
1065 1065 *
1066 1066 */
1067 1067
1068 1068 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1069 1069
1070 1070 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1071 1071
1072 1072 reset_wfp_buffer_addresses();
1073 1073
1074 1074 reset_wfp_status(); // 0x18
1075 1075
1076 1076 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1077 1077
1078 1078 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1079 1079
1080 1080 //the parameter delta_f1 [0x28] is not used anymore
1081 1081
1082 1082 set_wfp_delta_f2(); // 0x2c
1083 1083
1084 1084 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1085 1085 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1086 1086 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1087 1087 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1088 1088 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1089 1089 // 2688 = 8 * 336
1090 1090 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1091 1091 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1092 1092 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1093 1093 //
1094 1094 // coarse time and fine time registers are not initialized, they are volatile
1095 1095 //
1096 1096 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1097 1097 }
1098 1098
1099 1099 void set_wfp_data_shaping( void )
1100 1100 {
1101 1101 /** This function sets the data_shaping register of the waveform picker module.
1102 1102 *
1103 1103 * The value is read from one field of the parameter_dump_packet structure:\n
1104 1104 * bw_sp0_sp1_r0_r1
1105 1105 *
1106 1106 */
1107 1107
1108 1108 unsigned char data_shaping;
1109 1109
1110 1110 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1111 1111 // waveform picker : [R1 R0 SP1 SP0 BW]
1112 1112
1113 1113 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1114 1114
1115 1115 waveform_picker_regs->data_shaping =
1116 1116 ( (data_shaping & 0x20) >> 5 ) // BW
1117 1117 + ( (data_shaping & 0x10) >> 3 ) // SP0
1118 1118 + ( (data_shaping & 0x08) >> 1 ) // SP1
1119 1119 + ( (data_shaping & 0x04) << 1 ) // R0
1120 1120 + ( (data_shaping & 0x02) << 3 ) // R1
1121 1121 + ( (data_shaping & 0x01) << 5 ); // R2
1122 1122 }
1123 1123
1124 1124 void set_wfp_burst_enable_register( unsigned char mode )
1125 1125 {
1126 1126 /** This function sets the waveform picker burst_enable register depending on the mode.
1127 1127 *
1128 1128 * @param mode is the LFR mode to launch.
1129 1129 *
1130 1130 * The burst bits shall be before the enable bits.
1131 1131 *
1132 1132 */
1133 1133
1134 1134 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1135 1135 // the burst bits shall be set first, before the enable bits
1136 1136 switch(mode) {
1137 1137 case LFR_MODE_NORMAL:
1138 1138 case LFR_MODE_SBM1:
1139 1139 case LFR_MODE_SBM2:
1140 1140 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1141 1141 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1142 1142 break;
1143 1143 case LFR_MODE_BURST:
1144 1144 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1145 1145 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1146 1146 break;
1147 1147 default:
1148 1148 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1149 1149 break;
1150 1150 }
1151 1151 }
1152 1152
1153 1153 void set_wfp_delta_snapshot( void )
1154 1154 {
1155 1155 /** This function sets the delta_snapshot register of the waveform picker module.
1156 1156 *
1157 1157 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1158 1158 * - sy_lfr_n_swf_p[0]
1159 1159 * - sy_lfr_n_swf_p[1]
1160 1160 *
1161 1161 */
1162 1162
1163 1163 unsigned int delta_snapshot;
1164 1164 unsigned int delta_snapshot_in_T2;
1165 1165
1166 1166 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1167 1167 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1168 1168
1169 1169 delta_snapshot_in_T2 = delta_snapshot * 256;
1170 1170 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1171 1171 }
1172 1172
1173 1173 void set_wfp_delta_f0_f0_2( void )
1174 1174 {
1175 1175 unsigned int delta_snapshot;
1176 1176 unsigned int nb_samples_per_snapshot;
1177 1177 float delta_f0_in_float;
1178 1178
1179 1179 delta_snapshot = waveform_picker_regs->delta_snapshot;
1180 1180 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1181 1181 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1182 1182
1183 1183 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1184 1184 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1185 1185 }
1186 1186
1187 1187 void set_wfp_delta_f1( void )
1188 1188 {
1189 1189 /** Sets the value of the delta_f1 parameter
1190 1190 *
1191 1191 * @param void
1192 1192 *
1193 1193 * @return void
1194 1194 *
1195 1195 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1196 1196 *
1197 1197 */
1198 1198
1199 1199 unsigned int delta_snapshot;
1200 1200 unsigned int nb_samples_per_snapshot;
1201 1201 float delta_f1_in_float;
1202 1202
1203 1203 delta_snapshot = waveform_picker_regs->delta_snapshot;
1204 1204 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1205 1205 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1206 1206
1207 1207 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1208 1208 }
1209 1209
1210 1210 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1211 1211 {
1212 1212 /** Sets the value of the delta_f2 parameter
1213 1213 *
1214 1214 * @param void
1215 1215 *
1216 1216 * @return void
1217 1217 *
1218 1218 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1219 1219 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1220 1220 *
1221 1221 */
1222 1222
1223 1223 unsigned int delta_snapshot;
1224 1224 unsigned int nb_samples_per_snapshot;
1225 1225
1226 1226 delta_snapshot = waveform_picker_regs->delta_snapshot;
1227 1227 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1228 1228
1229 1229 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1230 1230 }
1231 1231
1232 1232 //*****************
1233 1233 // local parameters
1234 1234
1235 1235 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1236 1236 {
1237 1237 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1238 1238 *
1239 1239 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1240 1240 * @param sid is the source identifier of the packet being updated.
1241 1241 *
1242 1242 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1243 1243 * The sequence counters shall wrap around from 2^14 to zero.
1244 1244 * The sequence counter shall start at zero at startup.
1245 1245 *
1246 1246 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1247 1247 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1248 1248 *
1249 1249 */
1250 1250
1251 1251 unsigned short *sequence_cnt;
1252 1252 unsigned short segmentation_grouping_flag;
1253 1253 unsigned short new_packet_sequence_control;
1254 1254 rtems_mode initial_mode_set;
1255 1255 rtems_mode current_mode_set;
1256 1256 rtems_status_code status;
1257 1257
1258 1258 //******************************************
1259 1259 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1260 1260 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1261 1261
1262 1262 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1263 1263 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1264 1264 || (sid == SID_BURST_CWF_F2)
1265 1265 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1266 1266 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1267 1267 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1268 1268 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1269 1269 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1270 1270 {
1271 1271 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1272 1272 }
1273 1273 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1274 1274 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1275 1275 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1276 1276 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1277 1277 {
1278 1278 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1279 1279 }
1280 1280 else
1281 1281 {
1282 1282 sequence_cnt = (unsigned short *) NULL;
1283 1283 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1284 1284 }
1285 1285
1286 1286 if (sequence_cnt != NULL)
1287 1287 {
1288 1288 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1289 1289 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1290 1290
1291 1291 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1292 1292
1293 1293 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1294 1294 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1295 1295
1296 1296 // increment the sequence counter
1297 1297 if ( *sequence_cnt < SEQ_CNT_MAX)
1298 1298 {
1299 1299 *sequence_cnt = *sequence_cnt + 1;
1300 1300 }
1301 1301 else
1302 1302 {
1303 1303 *sequence_cnt = 0;
1304 1304 }
1305 1305 }
1306 1306
1307 1307 //*************************************
1308 1308 // RESTORE THE MODE OF THE CALLING TASK
1309 1309 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1310 1310 }
General Comments 0
You need to be logged in to leave comments. Login now