##// END OF EJS Templates
Bug 912 champ HK_LFR_SC_POTENTIEL_FLAG passe à OFF...
paul -
r335:718b17428d4a R3_plus draft
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 7c46de6059673d3239fcc7103e16510727f35923 header/lfr_common_headers
2 a34c50cabb1bc5e778bfc8374242e4683e4defc2 header/lfr_common_headers
@@ -1,988 +1,988
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 old_isr_handler = NULL;
29 29
30 30 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
31 31
32 32 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
33 33 if (status!=RTEMS_SUCCESSFUL)
34 34 {
35 35 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
36 36 }
37 37
38 38 timer_set_clock_divider( timer, clock_divider);
39 39 }
40 40
41 41 void timer_start(unsigned char timer)
42 42 {
43 43 /** This function starts a GPTIMER timer.
44 44 *
45 45 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
46 46 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
47 47 *
48 48 */
49 49
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
53 53 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
54 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
55 55 }
56 56
57 57 void timer_stop(unsigned char timer)
58 58 {
59 59 /** This function stops a GPTIMER timer.
60 60 *
61 61 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
62 62 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
63 63 *
64 64 */
65 65
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
67 67 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
68 68 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
69 69 }
70 70
71 71 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
72 72 {
73 73 /** This function sets the clock divider of a GPTIMER timer.
74 74 *
75 75 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
76 76 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
77 77 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
78 78 *
79 79 */
80 80
81 81 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
82 82 }
83 83
84 84 // WATCHDOG
85 85
86 86 rtems_isr watchdog_isr( rtems_vector_number vector )
87 87 {
88 88 rtems_status_code status_code;
89 89
90 90 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
91 91
92 92 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
93 93
94 94 exit(0);
95 95 }
96 96
97 97 void watchdog_configure(void)
98 98 {
99 99 /** This function configure the watchdog.
100 100 *
101 101 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
102 102 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
103 103 *
104 104 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
105 105 *
106 106 */
107 107
108 108 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
109 109
110 110 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
111 111
112 112 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
113 113 }
114 114
115 115 void watchdog_stop(void)
116 116 {
117 117 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
118 118 timer_stop( TIMER_WATCHDOG );
119 119 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
120 120 }
121 121
122 122 void watchdog_reload(void)
123 123 {
124 124 /** This function reloads the watchdog timer counter with the timer reload value.
125 125 *
126 126 * @param void
127 127 *
128 128 * @return void
129 129 *
130 130 */
131 131
132 132 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
133 133 }
134 134
135 135 void watchdog_start(void)
136 136 {
137 137 /** This function starts the watchdog timer.
138 138 *
139 139 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
140 140 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
141 141 *
142 142 */
143 143
144 144 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
145 145
146 146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
147 147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
148 148 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
149 149 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
150 150
151 151 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
152 152
153 153 }
154 154
155 155 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
156 156 {
157 157 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
158 158
159 159 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
160 160
161 161 return 0;
162 162 }
163 163
164 164 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
165 165 {
166 166 /** This function sets the scaler reload register of the apbuart module
167 167 *
168 168 * @param regs is the address of the apbuart registers in memory
169 169 * @param value is the value that will be stored in the scaler register
170 170 *
171 171 * The value shall be set by the software to get data on the serial interface.
172 172 *
173 173 */
174 174
175 175 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
176 176
177 177 apbuart_regs->scaler = value;
178 178
179 179 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
180 180 }
181 181
182 182 //************
183 183 // RTEMS TASKS
184 184
185 185 rtems_task load_task(rtems_task_argument argument)
186 186 {
187 187 BOOT_PRINTF("in LOAD *** \n")
188 188
189 189 rtems_status_code status;
190 190 unsigned int i;
191 191 unsigned int j;
192 192 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
193 193 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
194 194
195 195 watchdog_period_id = RTEMS_ID_NONE;
196 196
197 197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
198 198
199 199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
200 200 if( status != RTEMS_SUCCESSFUL ) {
201 201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
202 202 }
203 203
204 204 i = 0;
205 205 j = 0;
206 206
207 207 watchdog_configure();
208 208
209 209 watchdog_start();
210 210
211 211 set_sy_lfr_watchdog_enabled( true );
212 212
213 213 while(1){
214 214 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
215 215 watchdog_reload();
216 216 i = i + 1;
217 217 if ( i == WATCHDOG_LOOP_PRINTF )
218 218 {
219 219 i = 0;
220 220 j = j + 1;
221 221 PRINTF1("%d\n", j)
222 222 }
223 223 #ifdef DEBUG_WATCHDOG
224 224 if (j == WATCHDOG_LOOP_DEBUG )
225 225 {
226 226 status = rtems_task_delete(RTEMS_SELF);
227 227 }
228 228 #endif
229 229 }
230 230 }
231 231
232 232 rtems_task hous_task(rtems_task_argument argument)
233 233 {
234 234 rtems_status_code status;
235 235 rtems_status_code spare_status;
236 236 rtems_id queue_id;
237 237 rtems_rate_monotonic_period_status period_status;
238 238 bool isSynchronized;
239 239
240 240 queue_id = RTEMS_ID_NONE;
241 241 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
242 242 isSynchronized = false;
243 243
244 244 status = get_message_queue_id_send( &queue_id );
245 245 if (status != RTEMS_SUCCESSFUL)
246 246 {
247 247 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
248 248 }
249 249
250 250 BOOT_PRINTF("in HOUS ***\n");
251 251
252 252 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
253 253 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
254 254 if( status != RTEMS_SUCCESSFUL ) {
255 255 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
256 256 }
257 257 }
258 258
259 259 status = rtems_rate_monotonic_cancel(HK_id);
260 260 if( status != RTEMS_SUCCESSFUL ) {
261 261 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
262 262 }
263 263 else {
264 264 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
265 265 }
266 266
267 267 // startup phase
268 268 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
269 269 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
270 270 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
271 271 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
272 272 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
273 273 {
274 274 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
275 275 {
276 276 isSynchronized = true;
277 277 }
278 278 else
279 279 {
280 280 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
281 281
282 282 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
283 283 }
284 284 }
285 285 status = rtems_rate_monotonic_cancel(HK_id);
286 286 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
287 287
288 288 set_hk_lfr_reset_cause( POWER_ON );
289 289
290 290 while(1){ // launch the rate monotonic task
291 291 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
292 292 if ( status != RTEMS_SUCCESSFUL ) {
293 293 PRINTF1( "in HOUS *** ERR period: %d\n", status);
294 294 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
295 295 }
296 296 else {
297 297 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
298 298 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
299 299 increment_seq_counter( &sequenceCounterHK );
300 300
301 301 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
302 302 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
303 303 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
304 304 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
305 305 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
306 306 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
307 307
308 308 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
309 309
310 310 spacewire_read_statistics();
311 311
312 312 update_hk_with_grspw_stats();
313 313
314 314 set_hk_lfr_time_not_synchro();
315 315
316 316 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
317 317 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
318 318 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
319 319 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
320 320 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
321 321
322 322 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
323 323 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
324 324 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
325 325 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
326 326 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
327 327
328 328 hk_lfr_le_me_he_update();
329 329
330 330 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
331 331
332 332 // SEND PACKET
333 333 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
334 334 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
335 335 if (status != RTEMS_SUCCESSFUL) {
336 336 PRINTF1("in HOUS *** ERR send: %d\n", status)
337 337 }
338 338 }
339 339 }
340 340
341 341 PRINTF("in HOUS *** deleting task\n")
342 342
343 343 status = rtems_task_delete( RTEMS_SELF ); // should not return
344 344
345 345 return;
346 346 }
347 347
348 348 rtems_task avgv_task(rtems_task_argument argument)
349 349 {
350 350 #define MOVING_AVERAGE 16
351 351 rtems_status_code status;
352 352 static unsigned int v[MOVING_AVERAGE] = {0};
353 353 static unsigned int e1[MOVING_AVERAGE] = {0};
354 354 static unsigned int e2[MOVING_AVERAGE] = {0};
355 355 float average_v;
356 356 float average_e1;
357 357 float average_e2;
358 358 unsigned char k;
359 359 unsigned char indexOfOldValue;
360 360
361 361 BOOT_PRINTF("in AVGV ***\n");
362 362
363 363 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
364 364 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
365 365 if( status != RTEMS_SUCCESSFUL ) {
366 366 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
367 367 }
368 368 }
369 369
370 370 status = rtems_rate_monotonic_cancel(AVGV_id);
371 371 if( status != RTEMS_SUCCESSFUL ) {
372 372 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
373 373 }
374 374 else {
375 375 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
376 376 }
377 377
378 378 // initialize values
379 379 indexOfOldValue = MOVING_AVERAGE - 1;
380 380 average_v = 0.;
381 381 average_e1 = 0.;
382 382 average_e2 = 0.;
383 383
384 384 k = 0;
385 385
386 386 while(1){ // launch the rate monotonic task
387 387 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
388 388 if ( status != RTEMS_SUCCESSFUL ) {
389 389 PRINTF1( "in AVGV *** ERR period: %d\n", status);
390 390 }
391 391 else {
392 392 // store new value in buffer
393 393 v[k] = waveform_picker_regs->v;
394 394 e1[k] = waveform_picker_regs->e1;
395 395 e2[k] = waveform_picker_regs->e2;
396 396 if (k == (MOVING_AVERAGE - 1))
397 397 {
398 398 indexOfOldValue = 0;
399 399 }
400 400 else
401 401 {
402 402 indexOfOldValue = k + 1;
403 403 }
404 404 average_v = average_v + v[k] - v[indexOfOldValue];
405 405 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
406 406 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
407 407 }
408 408 if (k == (MOVING_AVERAGE-1))
409 409 {
410 410 k = 0;
411 411 PRINTF("tick\n");
412 412 }
413 413 else
414 414 {
415 415 k++;
416 416 }
417 417 }
418 418
419 419 PRINTF("in AVGV *** deleting task\n")
420 420
421 421 status = rtems_task_delete( RTEMS_SELF ); // should not return
422 422
423 423 return;
424 424 }
425 425
426 426 rtems_task dumb_task( rtems_task_argument unused )
427 427 {
428 428 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
429 429 *
430 430 * @param unused is the starting argument of the RTEMS task
431 431 *
432 432 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
433 433 *
434 434 */
435 435
436 436 unsigned int i;
437 437 unsigned int intEventOut;
438 438 unsigned int coarse_time = 0;
439 439 unsigned int fine_time = 0;
440 440 rtems_event_set event_out;
441 441
442 442 event_out = EVENT_SETS_NONE_PENDING;
443 443
444 444 BOOT_PRINTF("in DUMB *** \n")
445 445
446 446 while(1){
447 447 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
448 448 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
449 449 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
450 450 | RTEMS_EVENT_14,
451 451 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
452 452 intEventOut = (unsigned int) event_out;
453 453 for ( i=0; i<NB_RTEMS_EVENTS; i++)
454 454 {
455 455 if ( ((intEventOut >> i) & 1) != 0)
456 456 {
457 457 coarse_time = time_management_regs->coarse_time;
458 458 fine_time = time_management_regs->fine_time;
459 459 if (i==EVENT_12)
460 460 {
461 461 PRINTF1("%s\n", DUMB_MESSAGE_12)
462 462 }
463 463 if (i==EVENT_13)
464 464 {
465 465 PRINTF1("%s\n", DUMB_MESSAGE_13)
466 466 }
467 467 if (i==EVENT_14)
468 468 {
469 469 PRINTF1("%s\n", DUMB_MESSAGE_1)
470 470 }
471 471 }
472 472 }
473 473 }
474 474 }
475 475
476 476 //*****************************
477 477 // init housekeeping parameters
478 478
479 479 void init_housekeeping_parameters( void )
480 480 {
481 481 /** This function initialize the housekeeping_packet global variable with default values.
482 482 *
483 483 */
484 484
485 485 unsigned int i = 0;
486 486 unsigned char *parameters;
487 487 unsigned char sizeOfHK;
488 488
489 489 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
490 490
491 491 parameters = (unsigned char*) &housekeeping_packet;
492 492
493 493 for(i = 0; i< sizeOfHK; i++)
494 494 {
495 495 parameters[i] = INIT_CHAR;
496 496 }
497 497
498 498 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
499 499 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
500 500 housekeeping_packet.reserved = DEFAULT_RESERVED;
501 501 housekeeping_packet.userApplication = CCSDS_USER_APP;
502 502 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
503 503 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
504 504 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
505 505 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
506 506 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
507 507 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
508 508 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
509 509 housekeeping_packet.serviceType = TM_TYPE_HK;
510 510 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
511 511 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
512 512 housekeeping_packet.sid = SID_HK;
513 513
514 514 // init status word
515 515 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
516 516 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
517 517 // init software version
518 518 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
519 519 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
520 520 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
521 521 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
522 522 // init fpga version
523 523 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
524 524 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
525 525 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
526 526 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
527 527
528 528 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
529 529 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
530 530 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
531 531 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
532 532 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
533 533 }
534 534
535 535 void increment_seq_counter( unsigned short *packetSequenceControl )
536 536 {
537 537 /** This function increment the sequence counter passes in argument.
538 538 *
539 539 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
540 540 *
541 541 */
542 542
543 543 unsigned short segmentation_grouping_flag;
544 544 unsigned short sequence_cnt;
545 545
546 546 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
547 547 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
548 548
549 549 if ( sequence_cnt < SEQ_CNT_MAX)
550 550 {
551 551 sequence_cnt = sequence_cnt + 1;
552 552 }
553 553 else
554 554 {
555 555 sequence_cnt = 0;
556 556 }
557 557
558 558 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
559 559 }
560 560
561 561 void getTime( unsigned char *time)
562 562 {
563 563 /** This function write the current local time in the time buffer passed in argument.
564 564 *
565 565 */
566 566
567 567 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
568 568 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
569 569 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
570 570 time[3] = (unsigned char) (time_management_regs->coarse_time);
571 571 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
572 572 time[5] = (unsigned char) (time_management_regs->fine_time);
573 573 }
574 574
575 575 unsigned long long int getTimeAsUnsignedLongLongInt( )
576 576 {
577 577 /** This function write the current local time in the time buffer passed in argument.
578 578 *
579 579 */
580 580 unsigned long long int time;
581 581
582 582 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
583 583 + time_management_regs->fine_time;
584 584
585 585 return time;
586 586 }
587 587
588 588 void send_dumb_hk( void )
589 589 {
590 590 Packet_TM_LFR_HK_t dummy_hk_packet;
591 591 unsigned char *parameters;
592 592 unsigned int i;
593 593 rtems_id queue_id;
594 594
595 595 queue_id = RTEMS_ID_NONE;
596 596
597 597 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
598 598 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
599 599 dummy_hk_packet.reserved = DEFAULT_RESERVED;
600 600 dummy_hk_packet.userApplication = CCSDS_USER_APP;
601 601 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
602 602 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
603 603 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
604 604 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
605 605 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
606 606 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
607 607 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
608 608 dummy_hk_packet.serviceType = TM_TYPE_HK;
609 609 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
610 610 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
611 611 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
612 612 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
613 613 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
614 614 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
615 615 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
616 616 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
617 617 dummy_hk_packet.sid = SID_HK;
618 618
619 619 // init status word
620 620 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
621 621 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
622 622 // init software version
623 623 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
624 624 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
625 625 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
626 626 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
627 627 // init fpga version
628 628 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
629 629 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
630 630 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
631 631 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
632 632
633 633 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
634 634
635 635 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
636 636 {
637 637 parameters[i] = INT8_ALL_F;
638 638 }
639 639
640 640 get_message_queue_id_send( &queue_id );
641 641
642 642 rtems_message_queue_send( queue_id, &dummy_hk_packet,
643 643 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
644 644 }
645 645
646 646 void get_temperatures( unsigned char *temperatures )
647 647 {
648 648 unsigned char* temp_scm_ptr;
649 649 unsigned char* temp_pcb_ptr;
650 650 unsigned char* temp_fpga_ptr;
651 651
652 652 // SEL1 SEL0
653 653 // 0 0 => PCB
654 654 // 0 1 => FPGA
655 655 // 1 0 => SCM
656 656
657 657 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
658 658 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
659 659 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
660 660
661 661 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
662 662 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
663 663 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
664 664 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
665 665 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
666 666 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
667 667 }
668 668
669 669 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
670 670 {
671 671 unsigned char* v_ptr;
672 672 unsigned char* e1_ptr;
673 673 unsigned char* e2_ptr;
674 674
675 675 v_ptr = (unsigned char *) &waveform_picker_regs->v;
676 676 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
677 677 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
678 678
679 679 spacecraft_potential[ BYTE_0 ] = v_ptr[ BYTE_2 ];
680 680 spacecraft_potential[ BYTE_1 ] = v_ptr[ BYTE_3 ];
681 681 spacecraft_potential[ BYTE_2 ] = e1_ptr[ BYTE_2 ];
682 682 spacecraft_potential[ BYTE_3 ] = e1_ptr[ BYTE_3 ];
683 683 spacecraft_potential[ BYTE_4 ] = e2_ptr[ BYTE_2 ];
684 684 spacecraft_potential[ BYTE_5 ] = e2_ptr[ BYTE_3 ];
685 685 }
686 686
687 687 void get_cpu_load( unsigned char *resource_statistics )
688 688 {
689 689 unsigned char cpu_load;
690 690
691 691 cpu_load = lfr_rtems_cpu_usage_report();
692 692
693 693 // HK_LFR_CPU_LOAD
694 694 resource_statistics[0] = cpu_load;
695 695
696 696 // HK_LFR_CPU_LOAD_MAX
697 697 if (cpu_load > resource_statistics[1])
698 698 {
699 699 resource_statistics[1] = cpu_load;
700 700 }
701 701
702 702 // CPU_LOAD_AVE
703 703 resource_statistics[BYTE_2] = 0;
704 704
705 705 #ifndef PRINT_TASK_STATISTICS
706 706 rtems_cpu_usage_reset();
707 707 #endif
708 708
709 709 }
710 710
711 711 void set_hk_lfr_sc_potential_flag( bool state )
712 712 {
713 713 if (state == true)
714 714 {
715 715 housekeeping_packet.lfr_status_word[1] =
716 716 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
717 717 }
718 718 else
719 719 {
720 720 housekeeping_packet.lfr_status_word[1] =
721 721 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
722 722 }
723 723 }
724 724
725 725 void set_sy_lfr_pas_filter_enabled( bool state )
726 726 {
727 727 if (state == true)
728 728 {
729 729 housekeeping_packet.lfr_status_word[1] =
730 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
730 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
731 731 }
732 732 else
733 733 {
734 734 housekeeping_packet.lfr_status_word[1] =
735 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
735 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
736 736 }
737 737 }
738 738
739 739 void set_sy_lfr_watchdog_enabled( bool state )
740 740 {
741 741 if (state == true)
742 742 {
743 743 housekeeping_packet.lfr_status_word[1] =
744 744 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
745 745 }
746 746 else
747 747 {
748 748 housekeeping_packet.lfr_status_word[1] =
749 749 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
750 750 }
751 751 }
752 752
753 753 void set_hk_lfr_calib_enable( bool state )
754 754 {
755 755 if (state == true)
756 756 {
757 757 housekeeping_packet.lfr_status_word[1] =
758 758 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
759 759 }
760 760 else
761 761 {
762 762 housekeeping_packet.lfr_status_word[1] =
763 763 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
764 764 }
765 765 }
766 766
767 767 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
768 768 {
769 769 housekeeping_packet.lfr_status_word[1] =
770 770 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
771 771
772 772 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
773 773 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
774 774
775 775 }
776 776
777 777 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
778 778 {
779 779 int delta;
780 780
781 781 delta = 0;
782 782
783 783 if (newValue >= oldValue)
784 784 {
785 785 delta = newValue - oldValue;
786 786 }
787 787 else
788 788 {
789 789 delta = (255 - oldValue) + newValue;
790 790 }
791 791
792 792 *counter = *counter + delta;
793 793 }
794 794
795 795 void hk_lfr_le_update( void )
796 796 {
797 797 static hk_lfr_le_t old_hk_lfr_le = {0};
798 798 hk_lfr_le_t new_hk_lfr_le;
799 799 unsigned int counter;
800 800
801 801 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
802 802
803 803 // DPU
804 804 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
805 805 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
806 806 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
807 807 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
808 808 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
809 809 // TIMECODE
810 810 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
811 811 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
812 812 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
813 813 // TIME
814 814 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
815 815 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
816 816 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
817 817 //AHB
818 818 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
819 819 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
820 820 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
821 821
822 822 // update the le counter
823 823 // DPU
824 824 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
825 825 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
826 826 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
827 827 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
828 828 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
829 829 // TIMECODE
830 830 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
831 831 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
832 832 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
833 833 // TIME
834 834 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
835 835 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
836 836 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
837 837 // AHB
838 838 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
839 839
840 840 // DPU
841 841 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
842 842 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
843 843 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
844 844 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
845 845 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
846 846 // TIMECODE
847 847 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
848 848 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
849 849 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
850 850 // TIME
851 851 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
852 852 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
853 853 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
854 854 //AHB
855 855 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
856 856 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
857 857 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
858 858
859 859 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
860 860 // LE
861 861 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
862 862 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
863 863 }
864 864
865 865 void hk_lfr_me_update( void )
866 866 {
867 867 static hk_lfr_me_t old_hk_lfr_me = {0};
868 868 hk_lfr_me_t new_hk_lfr_me;
869 869 unsigned int counter;
870 870
871 871 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
872 872
873 873 // get the current values
874 874 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
875 875 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
876 876 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
877 877 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
878 878
879 879 // update the me counter
880 880 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
881 881 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
882 882 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
883 883 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
884 884
885 885 // store the counters for the next time
886 886 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
887 887 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
888 888 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
889 889 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
890 890
891 891 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
892 892 // ME
893 893 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
894 894 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
895 895 }
896 896
897 897 void hk_lfr_le_me_he_update()
898 898 {
899 899
900 900 unsigned int hk_lfr_he_cnt;
901 901
902 902 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
903 903
904 904 //update the low severity error counter
905 905 hk_lfr_le_update( );
906 906
907 907 //update the medium severity error counter
908 908 hk_lfr_me_update();
909 909
910 910 //update the high severity error counter
911 911 hk_lfr_he_cnt = 0;
912 912
913 913 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
914 914 // HE
915 915 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
916 916 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
917 917
918 918 }
919 919
920 920 void set_hk_lfr_time_not_synchro()
921 921 {
922 922 static unsigned char synchroLost = 1;
923 923 int synchronizationBit;
924 924
925 925 // get the synchronization bit
926 926 synchronizationBit =
927 927 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
928 928
929 929 switch (synchronizationBit)
930 930 {
931 931 case 0:
932 932 if (synchroLost == 1)
933 933 {
934 934 synchroLost = 0;
935 935 }
936 936 break;
937 937 case 1:
938 938 if (synchroLost == 0 )
939 939 {
940 940 synchroLost = 1;
941 941 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
942 942 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
943 943 }
944 944 break;
945 945 default:
946 946 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
947 947 break;
948 948 }
949 949
950 950 }
951 951
952 952 void set_hk_lfr_ahb_correctable() // CRITICITY L
953 953 {
954 954 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
955 955 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
956 956 * detected errors in the cache, in the integer unit and in the floating point unit.
957 957 *
958 958 * @param void
959 959 *
960 960 * @return void
961 961 *
962 962 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
963 963 *
964 964 */
965 965
966 966 unsigned int ahb_correctable;
967 967 unsigned int instructionErrorCounter;
968 968 unsigned int dataErrorCounter;
969 969 unsigned int fprfErrorCounter;
970 970 unsigned int iurfErrorCounter;
971 971
972 972 instructionErrorCounter = 0;
973 973 dataErrorCounter = 0;
974 974 fprfErrorCounter = 0;
975 975 iurfErrorCounter = 0;
976 976
977 977 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
978 978 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
979 979
980 980 ahb_correctable = instructionErrorCounter
981 981 + dataErrorCounter
982 982 + fprfErrorCounter
983 983 + iurfErrorCounter
984 984 + housekeeping_packet.hk_lfr_ahb_correctable;
985 985
986 986 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
987 987
988 988 }
@@ -1,1688 +1,1671
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327
328 328 flag = LFR_DEFAULT;
329 329
330 330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
331 331
332 332 if (flag == LFR_SUCCESSFUL)
333 333 {
334 334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
345 345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
346 346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
349 349
350 350 //****************************
351 351 // store PAS filter parameters
352 352 // sy_lfr_pas_filter_enabled
353 353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
354 354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
355 355 // sy_lfr_pas_filter_modulus
356 356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
357 357 // sy_lfr_pas_filter_tbad
358 358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
359 359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
360 360 // sy_lfr_pas_filter_offset
361 361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
362 362 // sy_lfr_pas_filter_shift
363 363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
364 364 parameter_dump_packet.sy_lfr_pas_filter_shift );
365 365
366 366 //****************************************************
367 367 // store the parameter sy_lfr_sc_rw_delta_f as a float
368 368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
369 369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
370 370 }
371 371
372 372 return flag;
373 373 }
374 374
375 375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
376 376 {
377 377 /** This function updates the LFR registers with the incoming sbm2 parameters.
378 378 *
379 379 * @param TC points to the TeleCommand packet that is being processed
380 380 * @param queue_id is the id of the queue which handles TM related to this execution step
381 381 *
382 382 */
383 383
384 384 unsigned int address;
385 385 rtems_status_code status;
386 386 unsigned int freq;
387 387 unsigned int bin;
388 388 unsigned int coeff;
389 389 unsigned char *kCoeffPtr;
390 390 unsigned char *kCoeffDumpPtr;
391 391
392 392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
393 393 // F0 => 11 bins
394 394 // F1 => 13 bins
395 395 // F2 => 12 bins
396 396 // 36 bins to dump in two packets (30 bins max per packet)
397 397
398 398 //*********
399 399 // PACKET 1
400 400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
401 401 kcoefficients_dump_1.destinationID = TC->sourceID;
402 402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
403 403 for( freq = 0;
404 404 freq < NB_BINS_COMPRESSED_SM_F0;
405 405 freq++ )
406 406 {
407 407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
408 408 bin = freq;
409 409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
410 410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
411 411 {
412 412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
413 413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
414 414 ]; // 2 for the kcoeff_frequency
415 415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
416 416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
417 417 }
418 418 }
419 419 for( freq = NB_BINS_COMPRESSED_SM_F0;
420 420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
421 421 freq++ )
422 422 {
423 423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
424 424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
425 425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
426 426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
427 427 {
428 428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
429 429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
430 430 ]; // 2 for the kcoeff_frequency
431 431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
432 432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
433 433 }
434 434 }
435 435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
436 436 freq < KCOEFF_BLK_NR_PKT1 ;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
440 440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
442 442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
452 452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
453 453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
454 454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
455 455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
456 456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
457 457 // SEND DATA
458 458 kcoefficient_node_1.status = 1;
459 459 address = (unsigned int) &kcoefficient_node_1;
460 460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
461 461 if (status != RTEMS_SUCCESSFUL) {
462 462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
463 463 }
464 464
465 465 //********
466 466 // PACKET 2
467 467 // 6 F2 bins
468 468 kcoefficients_dump_2.destinationID = TC->sourceID;
469 469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
470 470 for( freq = 0;
471 471 freq < KCOEFF_BLK_NR_PKT2;
472 472 freq++ )
473 473 {
474 474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
475 475 bin = freq + KCOEFF_BLK_NR_PKT2;
476 476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
477 477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
478 478 {
479 479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
480 480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
481 481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
482 482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
483 483 }
484 484 }
485 485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
486 486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
487 487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
489 489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
490 490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
491 491 // SEND DATA
492 492 kcoefficient_node_2.status = 1;
493 493 address = (unsigned int) &kcoefficient_node_2;
494 494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
495 495 if (status != RTEMS_SUCCESSFUL) {
496 496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
503 503 {
504 504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
505 505 *
506 506 * @param queue_id is the id of the queue which handles TM related to this execution step.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - message sent successfully
510 510 * - RTEMS_INVALID_ID - invalid queue id
511 511 * - RTEMS_INVALID_SIZE - invalid message size
512 512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
513 513 * - RTEMS_UNSATISFIED - out of message buffers
514 514 * - RTEMS_TOO_MANY - queue s limit has been reached
515 515 *
516 516 */
517 517
518 518 int status;
519 519
520 520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
521 521 parameter_dump_packet.destinationID = TC->sourceID;
522 522
523 523 // UPDATE TIME
524 524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 530 // SEND DATA
531 531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
532 532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
533 533 if (status != RTEMS_SUCCESSFUL) {
534 534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
535 535 }
536 536
537 537 return status;
538 538 }
539 539
540 540 //***********************
541 541 // NORMAL MODE PARAMETERS
542 542
543 543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
544 544 {
545 545 unsigned char msb;
546 546 unsigned char lsb;
547 547 int flag;
548 548 float aux;
549 549 rtems_status_code status;
550 550
551 551 unsigned int sy_lfr_n_swf_l;
552 552 unsigned int sy_lfr_n_swf_p;
553 553 unsigned int sy_lfr_n_asm_p;
554 554 unsigned char sy_lfr_n_bp_p0;
555 555 unsigned char sy_lfr_n_bp_p1;
556 556 unsigned char sy_lfr_n_cwf_long_f3;
557 557
558 558 flag = LFR_SUCCESSFUL;
559 559
560 560 //***************
561 561 // get parameters
562 562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
563 563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
564 564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
565 565
566 566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
567 567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
568 568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
569 569
570 570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
571 571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
572 572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
573 573
574 574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
575 575
576 576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
577 577
578 578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
579 579
580 580 //******************
581 581 // check consistency
582 582 // sy_lfr_n_swf_l
583 583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
584 584 {
585 585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
586 586 flag = WRONG_APP_DATA;
587 587 }
588 588 // sy_lfr_n_swf_p
589 589 if (flag == LFR_SUCCESSFUL)
590 590 {
591 591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
592 592 {
593 593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
594 594 flag = WRONG_APP_DATA;
595 595 }
596 596 }
597 597 // sy_lfr_n_bp_p0
598 598 if (flag == LFR_SUCCESSFUL)
599 599 {
600 600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
601 601 {
602 602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
603 603 flag = WRONG_APP_DATA;
604 604 }
605 605 }
606 606 // sy_lfr_n_asm_p
607 607 if (flag == LFR_SUCCESSFUL)
608 608 {
609 609 if (sy_lfr_n_asm_p == 0)
610 610 {
611 611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
612 612 flag = WRONG_APP_DATA;
613 613 }
614 614 }
615 615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
616 616 if (flag == LFR_SUCCESSFUL)
617 617 {
618 618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
619 619 if (aux > FLOAT_EQUAL_ZERO)
620 620 {
621 621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
622 622 flag = WRONG_APP_DATA;
623 623 }
624 624 }
625 625 // sy_lfr_n_bp_p1
626 626 if (flag == LFR_SUCCESSFUL)
627 627 {
628 628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
629 629 {
630 630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
631 631 flag = WRONG_APP_DATA;
632 632 }
633 633 }
634 634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
635 635 if (flag == LFR_SUCCESSFUL)
636 636 {
637 637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
638 638 if (aux > FLOAT_EQUAL_ZERO)
639 639 {
640 640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
641 641 flag = LFR_DEFAULT;
642 642 }
643 643 }
644 644 // sy_lfr_n_cwf_long_f3
645 645
646 646 return flag;
647 647 }
648 648
649 649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
650 650 {
651 651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
652 652 *
653 653 * @param TC points to the TeleCommand packet that is being processed
654 654 * @param queue_id is the id of the queue which handles TM related to this execution step
655 655 *
656 656 */
657 657
658 658 int result;
659 659
660 660 result = LFR_SUCCESSFUL;
661 661
662 662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
663 663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
664 664
665 665 return result;
666 666 }
667 667
668 668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
669 669 {
670 670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
671 671 *
672 672 * @param TC points to the TeleCommand packet that is being processed
673 673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 674 *
675 675 */
676 676
677 677 int result;
678 678
679 679 result = LFR_SUCCESSFUL;
680 680
681 681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
682 682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
683 683
684 684 return result;
685 685 }
686 686
687 687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
688 688 {
689 689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
690 690 *
691 691 * @param TC points to the TeleCommand packet that is being processed
692 692 * @param queue_id is the id of the queue which handles TM related to this execution step
693 693 *
694 694 */
695 695
696 696 int result;
697 697
698 698 result = LFR_SUCCESSFUL;
699 699
700 700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
701 701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
702 702
703 703 return result;
704 704 }
705 705
706 706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
707 707 {
708 708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
709 709 *
710 710 * @param TC points to the TeleCommand packet that is being processed
711 711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 712 *
713 713 */
714 714
715 715 int status;
716 716
717 717 status = LFR_SUCCESSFUL;
718 718
719 719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
720 720
721 721 return status;
722 722 }
723 723
724 724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
725 725 {
726 726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
727 727 *
728 728 * @param TC points to the TeleCommand packet that is being processed
729 729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 730 *
731 731 */
732 732
733 733 int status;
734 734
735 735 status = LFR_SUCCESSFUL;
736 736
737 737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
738 738
739 739 return status;
740 740 }
741 741
742 742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
743 743 {
744 744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
745 745 *
746 746 * @param TC points to the TeleCommand packet that is being processed
747 747 * @param queue_id is the id of the queue which handles TM related to this execution step
748 748 *
749 749 */
750 750
751 751 int status;
752 752
753 753 status = LFR_SUCCESSFUL;
754 754
755 755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
756 756
757 757 return status;
758 758 }
759 759
760 760 //**********************
761 761 // BURST MODE PARAMETERS
762 762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
763 763 {
764 764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
765 765 *
766 766 * @param TC points to the TeleCommand packet that is being processed
767 767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 768 *
769 769 */
770 770
771 771 int status;
772 772
773 773 status = LFR_SUCCESSFUL;
774 774
775 775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
776 776
777 777 return status;
778 778 }
779 779
780 780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
781 781 {
782 782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
783 783 *
784 784 * @param TC points to the TeleCommand packet that is being processed
785 785 * @param queue_id is the id of the queue which handles TM related to this execution step
786 786 *
787 787 */
788 788
789 789 int status;
790 790
791 791 status = LFR_SUCCESSFUL;
792 792
793 793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
794 794
795 795 return status;
796 796 }
797 797
798 798 //*********************
799 799 // SBM1 MODE PARAMETERS
800 800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
801 801 {
802 802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
803 803 *
804 804 * @param TC points to the TeleCommand packet that is being processed
805 805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 806 *
807 807 */
808 808
809 809 int status;
810 810
811 811 status = LFR_SUCCESSFUL;
812 812
813 813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
814 814
815 815 return status;
816 816 }
817 817
818 818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
819 819 {
820 820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
821 821 *
822 822 * @param TC points to the TeleCommand packet that is being processed
823 823 * @param queue_id is the id of the queue which handles TM related to this execution step
824 824 *
825 825 */
826 826
827 827 int status;
828 828
829 829 status = LFR_SUCCESSFUL;
830 830
831 831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
832 832
833 833 return status;
834 834 }
835 835
836 836 //*********************
837 837 // SBM2 MODE PARAMETERS
838 838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
839 839 {
840 840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
841 841 *
842 842 * @param TC points to the TeleCommand packet that is being processed
843 843 * @param queue_id is the id of the queue which handles TM related to this execution step
844 844 *
845 845 */
846 846
847 847 int status;
848 848
849 849 status = LFR_SUCCESSFUL;
850 850
851 851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
852 852
853 853 return status;
854 854 }
855 855
856 856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
857 857 {
858 858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
859 859 *
860 860 * @param TC points to the TeleCommand packet that is being processed
861 861 * @param queue_id is the id of the queue which handles TM related to this execution step
862 862 *
863 863 */
864 864
865 865 int status;
866 866
867 867 status = LFR_SUCCESSFUL;
868 868
869 869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
870 870
871 871 return status;
872 872 }
873 873
874 874 //*******************
875 875 // TC_LFR_UPDATE_INFO
876 876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
877 877 {
878 878 unsigned int status;
879 879
880 880 status = LFR_DEFAULT;
881 881
882 882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
883 883 || (mode == LFR_MODE_BURST)
884 884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
885 885 {
886 886 status = LFR_SUCCESSFUL;
887 887 }
888 888 else
889 889 {
890 890 status = LFR_DEFAULT;
891 891 }
892 892
893 893 return status;
894 894 }
895 895
896 896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
897 897 {
898 898 unsigned int status;
899 899
900 900 status = LFR_DEFAULT;
901 901
902 902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
903 903 || (mode == TDS_MODE_BURST)
904 904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
905 905 || (mode == TDS_MODE_LFM))
906 906 {
907 907 status = LFR_SUCCESSFUL;
908 908 }
909 909 else
910 910 {
911 911 status = LFR_DEFAULT;
912 912 }
913 913
914 914 return status;
915 915 }
916 916
917 917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
918 918 {
919 919 unsigned int status;
920 920
921 921 status = LFR_DEFAULT;
922 922
923 923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
924 924 || (mode == THR_MODE_BURST))
925 925 {
926 926 status = LFR_SUCCESSFUL;
927 927 }
928 928 else
929 929 {
930 930 status = LFR_DEFAULT;
931 931 }
932 932
933 933 return status;
934 934 }
935 935
936 936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
937 937 {
938 938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
939 939 *
940 940 * @param TC points to the TeleCommand packet that is being processed
941 941 *
942 942 */
943 943
944 944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
945 945
946 946 bytePosPtr = (unsigned char *) &TC->packetID;
947 947
948 948 // cp_rpw_sc_rw1_f1
949 949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
950 950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
951 951
952 952 // cp_rpw_sc_rw1_f2
953 953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
954 954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
955 955
956 956 // cp_rpw_sc_rw2_f1
957 957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
958 958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
959 959
960 960 // cp_rpw_sc_rw2_f2
961 961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
962 962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
963 963
964 964 // cp_rpw_sc_rw3_f1
965 965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
966 966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
967 967
968 968 // cp_rpw_sc_rw3_f2
969 969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
970 970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
971 971
972 972 // cp_rpw_sc_rw4_f1
973 973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
974 974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
975 975
976 976 // cp_rpw_sc_rw4_f2
977 977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
978 978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
979 979 }
980 980
981 981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
982 982 {
983 983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
984 984 *
985 985 * @param fbins_mask
986 986 * @param rw_f is the reaction wheel frequency to filter
987 987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
988 988 * @param flag [true] filtering enabled [false] filtering disabled
989 989 *
990 990 * @return void
991 991 *
992 992 */
993 993
994 994 float f_RW_min;
995 995 float f_RW_MAX;
996 996 float fi_min;
997 997 float fi_MAX;
998 998 float fi;
999 999 float deltaBelow;
1000 1000 float deltaAbove;
1001 1001 int binBelow;
1002 1002 int binAbove;
1003 1003 int closestBin;
1004 1004 unsigned int whichByte;
1005 1005 int selectedByte;
1006 1006 int bin;
1007 1007 int binToRemove[NB_BINS_TO_REMOVE];
1008 1008 int k;
1009 1009
1010 1010 closestBin = 0;
1011 1011 whichByte = 0;
1012 1012 bin = 0;
1013 1013
1014 1014 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1015 1015 {
1016 1016 binToRemove[k] = -1;
1017 1017 }
1018 1018
1019 1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1020 1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1021 1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1022 1022
1023 1023 // compute the index of the frequency bin immediately below rw_f
1024 1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1025 1025 deltaBelow = rw_f - binBelow * deltaFreq;
1026 1026
1027 1027 // compute the index of the frequency bin immediately above rw_f
1028 1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1029 1029 deltaAbove = binAbove * deltaFreq - rw_f;
1030 1030
1031 1031 // search the closest bin
1032 1032 if (deltaAbove > deltaBelow)
1033 1033 {
1034 1034 closestBin = binBelow;
1035 1035 }
1036 1036 else
1037 1037 {
1038 1038 closestBin = binAbove;
1039 1039 }
1040 1040
1041 1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1042 1042 fi = closestBin * deltaFreq;
1043 1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1044 1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1045 1045
1046 1046 //**************************************************************************************
1047 1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1048 1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1049 1049 //**************************************************************************************
1050 1050
1051 1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1052 1052 // => remove f_(i), f_(i-1) and f_(i+1)
1053 1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1054 1054 {
1055 1055 binToRemove[0] = (closestBin - 1) - 1;
1056 1056 binToRemove[1] = (closestBin) - 1;
1057 1057 binToRemove[2] = (closestBin + 1) - 1;
1058 1058 }
1059 1059 // 2. ELSE
1060 1060 // => remove the two f_(i) which are around f_RW
1061 1061 else
1062 1062 {
1063 1063 binToRemove[0] = (binBelow) - 1;
1064 1064 binToRemove[1] = (binAbove) - 1;
1065 1065 binToRemove[2] = (-1);
1066 1066 }
1067 1067
1068 1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1069 1069 {
1070 1070 bin = binToRemove[k];
1071 1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1072 1072 {
1073 1073 if (flag == 1)
1074 1074 {
1075 1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1076 1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1077 1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1078 1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1079 1079 }
1080 1080 }
1081 1081 }
1082 1082 }
1083 1083
1084 1084 void build_sy_lfr_rw_mask( unsigned int channel )
1085 1085 {
1086 1086 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1087 1087 unsigned char *maskPtr;
1088 1088 double deltaF;
1089 1089 unsigned k;
1090 1090
1091 1091 k = 0;
1092 1092
1093 1093 maskPtr = NULL;
1094 1094 deltaF = DELTAF_F2;
1095 1095
1096 1096 switch (channel)
1097 1097 {
1098 1098 case CHANNELF0:
1099 1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1100 1100 deltaF = DELTAF_F0;
1101 1101 break;
1102 1102 case CHANNELF1:
1103 1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1104 1104 deltaF = DELTAF_F1;
1105 1105 break;
1106 1106 case CHANNELF2:
1107 1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1108 1108 deltaF = DELTAF_F2;
1109 1109 break;
1110 1110 default:
1111 1111 break;
1112 1112 }
1113 1113
1114 1114 for (k = 0; k < BYTES_PER_MASK; k++)
1115 1115 {
1116 1116 local_rw_fbins_mask[k] = INT8_ALL_F;
1117 1117 }
1118 1118
1119 1119 // RW1 F1
1120 1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1121 1121
1122 1122 // RW1 F2
1123 1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1124 1124
1125 1125 // RW2 F1
1126 1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1127 1127
1128 1128 // RW2 F2
1129 1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1130 1130
1131 1131 // RW3 F1
1132 1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1133 1133
1134 1134 // RW3 F2
1135 1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1136 1136
1137 1137 // RW4 F1
1138 1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1139 1139
1140 1140 // RW4 F2
1141 1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1142 1142
1143 1143 // update the value of the fbins related to reaction wheels frequency filtering
1144 1144 if (maskPtr != NULL)
1145 1145 {
1146 1146 for (k = 0; k < BYTES_PER_MASK; k++)
1147 1147 {
1148 1148 maskPtr[k] = local_rw_fbins_mask[k];
1149 1149 }
1150 1150 }
1151 1151 }
1152 1152
1153 1153 void build_sy_lfr_rw_masks( void )
1154 1154 {
1155 1155 build_sy_lfr_rw_mask( CHANNELF0 );
1156 1156 build_sy_lfr_rw_mask( CHANNELF1 );
1157 1157 build_sy_lfr_rw_mask( CHANNELF2 );
1158 1158 }
1159 1159
1160 1160 void merge_fbins_masks( void )
1161 1161 {
1162 1162 unsigned char k;
1163 1163
1164 1164 unsigned char *fbins_f0;
1165 1165 unsigned char *fbins_f1;
1166 1166 unsigned char *fbins_f2;
1167 1167 unsigned char *rw_mask_f0;
1168 1168 unsigned char *rw_mask_f1;
1169 1169 unsigned char *rw_mask_f2;
1170 1170
1171 1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1172 1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1173 1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1174 1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1175 1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1176 1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1177 1177
1178 1178 for( k=0; k < BYTES_PER_MASK; k++ )
1179 1179 {
1180 1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1181 1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1182 1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1183 1183 }
1184 1184 }
1185 1185
1186 1186 //***********
1187 1187 // FBINS MASK
1188 1188
1189 1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1190 1190 {
1191 1191 int status;
1192 1192 unsigned int k;
1193 1193 unsigned char *fbins_mask_dump;
1194 1194 unsigned char *fbins_mask_TC;
1195 1195
1196 1196 status = LFR_SUCCESSFUL;
1197 1197
1198 1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1199 1199 fbins_mask_TC = TC->dataAndCRC;
1200 1200
1201 1201 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1202 1202 {
1203 1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1204 1204 }
1205 1205
1206 1206 return status;
1207 1207 }
1208 1208
1209 1209 //***************************
1210 1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1211 1211
1212 1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1213 1213 {
1214 1214 int flag;
1215 1215 rtems_status_code status;
1216 1216
1217 1217 unsigned char sy_lfr_pas_filter_enabled;
1218 1218 unsigned char sy_lfr_pas_filter_modulus;
1219 1219 float sy_lfr_pas_filter_tbad;
1220 1220 unsigned char sy_lfr_pas_filter_offset;
1221 1221 float sy_lfr_pas_filter_shift;
1222 1222 float sy_lfr_sc_rw_delta_f;
1223 1223 char *parPtr;
1224 1224
1225 1225 flag = LFR_SUCCESSFUL;
1226 1226 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1227 1227 sy_lfr_pas_filter_shift = INIT_FLOAT;
1228 1228 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1229 1229 parPtr = NULL;
1230 1230
1231 1231 //***************
1232 1232 // get parameters
1233 1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1234 1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1235 1235 copyFloatByChar(
1236 1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1237 1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1238 1238 );
1239 1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1240 1240 copyFloatByChar(
1241 1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1242 1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1243 1243 );
1244 1244 copyFloatByChar(
1245 1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1246 1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1247 1247 );
1248 1248
1249 1249 //******************
1250 1250 // CHECK CONSISTENCY
1251 1251
1252 1252 //**************************
1253 1253 // sy_lfr_pas_filter_enabled
1254 1254 // nothing to check, value is 0 or 1
1255 1255
1256 1256 //**************************
1257 1257 // sy_lfr_pas_filter_modulus
1258 1258 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1259 1259 {
1260 1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1261 1261 flag = WRONG_APP_DATA;
1262 1262 }
1263 1263
1264 1264 //***********************
1265 1265 // sy_lfr_pas_filter_tbad
1266 1266 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1267 1267 {
1268 1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1269 1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1270 1270 flag = WRONG_APP_DATA;
1271 1271 }
1272 1272
1273 1273 //*************************
1274 1274 // sy_lfr_pas_filter_offset
1275 1275 if (flag == LFR_SUCCESSFUL)
1276 1276 {
1277 1277 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1278 1278 {
1279 1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1280 1280 flag = WRONG_APP_DATA;
1281 1281 }
1282 1282 }
1283 1283
1284 1284 //************************
1285 1285 // sy_lfr_pas_filter_shift
1286 1286 if (flag == LFR_SUCCESSFUL)
1287 1287 {
1288 1288 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1289 1289 {
1290 1290 parPtr = (char*) &sy_lfr_pas_filter_shift;
1291 1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1292 1292 flag = WRONG_APP_DATA;
1293 1293 }
1294 1294 }
1295 1295
1296 1296 //*************************************
1297 1297 // check global coherency of the values
1298 1298 if (flag == LFR_SUCCESSFUL)
1299 1299 {
1300 1300 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1301 1301 {
1302 1302 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1303 1303 flag = WRONG_APP_DATA;
1304 1304 }
1305 1305 }
1306 1306
1307 1307 //*********************
1308 1308 // sy_lfr_sc_rw_delta_f
1309 1309 // nothing to check, no default value in the ICD
1310 1310
1311 1311 return flag;
1312 1312 }
1313 1313
1314 1314 //**************
1315 1315 // KCOEFFICIENTS
1316 1316 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1317 1317 {
1318 1318 unsigned int kcoeff;
1319 1319 unsigned short sy_lfr_kcoeff_frequency;
1320 1320 unsigned short bin;
1321 1321 float *kcoeffPtr_norm;
1322 1322 float *kcoeffPtr_sbm;
1323 1323 int status;
1324 1324 unsigned char *kcoeffLoadPtr;
1325 1325 unsigned char *kcoeffNormPtr;
1326 1326 unsigned char *kcoeffSbmPtr_a;
1327 1327 unsigned char *kcoeffSbmPtr_b;
1328 1328
1329 1329 sy_lfr_kcoeff_frequency = 0;
1330 1330 bin = 0;
1331 1331 kcoeffPtr_norm = NULL;
1332 1332 kcoeffPtr_sbm = NULL;
1333 1333 status = LFR_SUCCESSFUL;
1334 1334
1335 1335 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1336 1336 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1337 1337
1338 1338 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1339 1339 {
1340 1340 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1341 1341 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1342 1342 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1343 1343 status = LFR_DEFAULT;
1344 1344 }
1345 1345 else
1346 1346 {
1347 1347 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1348 1348 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1349 1349 {
1350 1350 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1351 1351 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1352 1352 bin = sy_lfr_kcoeff_frequency;
1353 1353 }
1354 1354 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1355 1355 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1356 1356 {
1357 1357 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1358 1358 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1359 1359 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1360 1360 }
1361 1361 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1362 1362 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1363 1363 {
1364 1364 kcoeffPtr_norm = k_coeff_intercalib_f2;
1365 1365 kcoeffPtr_sbm = NULL;
1366 1366 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1367 1367 }
1368 1368 }
1369 1369
1370 1370 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1371 1371 {
1372 1372 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1373 1373 {
1374 1374 // destination
1375 1375 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1376 1376 // source
1377 1377 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1378 1378 // copy source to destination
1379 1379 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1380 1380 }
1381 1381 }
1382 1382
1383 1383 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1384 1384 {
1385 1385 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1386 1386 {
1387 1387 // destination
1388 1388 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1389 1389 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1390 1390 // source
1391 1391 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1392 1392 // copy source to destination
1393 1393 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1394 1394 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1395 1395 }
1396 1396 }
1397 1397
1398 1398 //print_k_coeff();
1399 1399
1400 1400 return status;
1401 1401 }
1402 1402
1403 1403 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1404 1404 {
1405 1405 destination[BYTE_0] = source[BYTE_0];
1406 1406 destination[BYTE_1] = source[BYTE_1];
1407 1407 destination[BYTE_2] = source[BYTE_2];
1408 1408 destination[BYTE_3] = source[BYTE_3];
1409 1409 }
1410 1410
1411 1411 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1412 1412 {
1413 1413 destination[BYTE_0] = source[BYTE_0];
1414 1414 destination[BYTE_1] = source[BYTE_1];
1415 1415 destination[BYTE_2] = source[BYTE_2];
1416 1416 destination[BYTE_3] = source[BYTE_3];
1417 1417 }
1418 1418
1419 1419 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1420 1420 {
1421 1421 destination[BYTE_0] = source[BYTE_0];
1422 1422 destination[BYTE_1] = source[BYTE_1];
1423 1423 }
1424 1424
1425 1425 void floatToChar( float value, unsigned char* ptr)
1426 1426 {
1427 1427 unsigned char* valuePtr;
1428 1428
1429 1429 valuePtr = (unsigned char*) &value;
1430 1430
1431 1431 ptr[BYTE_0] = valuePtr[BYTE_0];
1432 1432 ptr[BYTE_1] = valuePtr[BYTE_1];
1433 1433 ptr[BYTE_2] = valuePtr[BYTE_2];
1434 1434 ptr[BYTE_3] = valuePtr[BYTE_3];
1435
1436 // <TEST>
1437 printf("\n\n<TEST>\n");
1438
1439 float aux = NAN;
1440 unsigned char* auxPtr;
1441 auxPtr = (unsigned char*) &aux;
1442
1443 printf("aux = %f, value = %f\n", aux, value);
1444
1445 auxPtr[BYTE_0] = valuePtr[BYTE_0];
1446 auxPtr[BYTE_1] = valuePtr[BYTE_1];
1447 auxPtr[BYTE_2] = valuePtr[BYTE_2];
1448 auxPtr[BYTE_3] = valuePtr[BYTE_3];
1449
1450 printf("aux = %f\n", aux);
1451 // </TEST>
1452 1435 }
1453 1436
1454 1437 //**********
1455 1438 // init dump
1456 1439
1457 1440 void init_parameter_dump( void )
1458 1441 {
1459 1442 /** This function initialize the parameter_dump_packet global variable with default values.
1460 1443 *
1461 1444 */
1462 1445
1463 1446 unsigned int k;
1464 1447
1465 1448 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1466 1449 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1467 1450 parameter_dump_packet.reserved = CCSDS_RESERVED;
1468 1451 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1469 1452 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1470 1453 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1471 1454 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1472 1455 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1473 1456 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1474 1457 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1475 1458 // DATA FIELD HEADER
1476 1459 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1477 1460 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1478 1461 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1479 1462 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1480 1463 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1481 1464 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1482 1465 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1483 1466 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1484 1467 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1485 1468 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1486 1469 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1487 1470
1488 1471 //******************
1489 1472 // COMMON PARAMETERS
1490 1473 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1491 1474 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1492 1475
1493 1476 //******************
1494 1477 // NORMAL PARAMETERS
1495 1478 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1496 1479 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1497 1480 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1498 1481 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1499 1482 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1500 1483 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1501 1484 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1502 1485 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1503 1486 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1504 1487
1505 1488 //*****************
1506 1489 // BURST PARAMETERS
1507 1490 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1508 1491 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1509 1492
1510 1493 //****************
1511 1494 // SBM1 PARAMETERS
1512 1495 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1513 1496 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1514 1497
1515 1498 //****************
1516 1499 // SBM2 PARAMETERS
1517 1500 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1518 1501 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1519 1502
1520 1503 //************
1521 1504 // FBINS MASKS
1522 1505 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1523 1506 {
1524 1507 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1525 1508 }
1526 1509
1527 1510 // PAS FILTER PARAMETERS
1528 1511 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1529 1512 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1530 1513 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1531 1514 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1532 1515 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1533 1516 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1534 1517 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1535 1518
1536 1519 // LFR_RW_MASK
1537 1520 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1538 1521 {
1539 1522 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1540 1523 }
1541 1524
1542 1525 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1543 1526 merge_fbins_masks();
1544 1527 }
1545 1528
1546 1529 void init_kcoefficients_dump( void )
1547 1530 {
1548 1531 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1549 1532 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1550 1533
1551 1534 kcoefficient_node_1.previous = NULL;
1552 1535 kcoefficient_node_1.next = NULL;
1553 1536 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1554 1537 kcoefficient_node_1.coarseTime = INIT_CHAR;
1555 1538 kcoefficient_node_1.fineTime = INIT_CHAR;
1556 1539 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1557 1540 kcoefficient_node_1.status = INIT_CHAR;
1558 1541
1559 1542 kcoefficient_node_2.previous = NULL;
1560 1543 kcoefficient_node_2.next = NULL;
1561 1544 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1562 1545 kcoefficient_node_2.coarseTime = INIT_CHAR;
1563 1546 kcoefficient_node_2.fineTime = INIT_CHAR;
1564 1547 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1565 1548 kcoefficient_node_2.status = INIT_CHAR;
1566 1549 }
1567 1550
1568 1551 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1569 1552 {
1570 1553 unsigned int k;
1571 1554 unsigned int packetLength;
1572 1555
1573 1556 packetLength =
1574 1557 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1575 1558
1576 1559 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1577 1560 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1578 1561 kcoefficients_dump->reserved = CCSDS_RESERVED;
1579 1562 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1580 1563 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1581 1564 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1582 1565 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1583 1566 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1584 1567 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1585 1568 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1586 1569 // DATA FIELD HEADER
1587 1570 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1588 1571 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1589 1572 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1590 1573 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1591 1574 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1592 1575 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1593 1576 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1594 1577 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1595 1578 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1596 1579 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1597 1580 kcoefficients_dump->sid = SID_K_DUMP;
1598 1581
1599 1582 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1600 1583 kcoefficients_dump->pkt_nr = PKTNR_1;
1601 1584 kcoefficients_dump->blk_nr = blk_nr;
1602 1585
1603 1586 //******************
1604 1587 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1605 1588 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1606 1589 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1607 1590 {
1608 1591 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1609 1592 }
1610 1593 }
1611 1594
1612 1595 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1613 1596 {
1614 1597 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1615 1598 *
1616 1599 * @param packet_sequence_control points to the packet sequence control which will be incremented
1617 1600 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1618 1601 *
1619 1602 * If the destination ID is not known, a dedicated counter is incremented.
1620 1603 *
1621 1604 */
1622 1605
1623 1606 unsigned short sequence_cnt;
1624 1607 unsigned short segmentation_grouping_flag;
1625 1608 unsigned short new_packet_sequence_control;
1626 1609 unsigned char i;
1627 1610
1628 1611 switch (destination_id)
1629 1612 {
1630 1613 case SID_TC_GROUND:
1631 1614 i = GROUND;
1632 1615 break;
1633 1616 case SID_TC_MISSION_TIMELINE:
1634 1617 i = MISSION_TIMELINE;
1635 1618 break;
1636 1619 case SID_TC_TC_SEQUENCES:
1637 1620 i = TC_SEQUENCES;
1638 1621 break;
1639 1622 case SID_TC_RECOVERY_ACTION_CMD:
1640 1623 i = RECOVERY_ACTION_CMD;
1641 1624 break;
1642 1625 case SID_TC_BACKUP_MISSION_TIMELINE:
1643 1626 i = BACKUP_MISSION_TIMELINE;
1644 1627 break;
1645 1628 case SID_TC_DIRECT_CMD:
1646 1629 i = DIRECT_CMD;
1647 1630 break;
1648 1631 case SID_TC_SPARE_GRD_SRC1:
1649 1632 i = SPARE_GRD_SRC1;
1650 1633 break;
1651 1634 case SID_TC_SPARE_GRD_SRC2:
1652 1635 i = SPARE_GRD_SRC2;
1653 1636 break;
1654 1637 case SID_TC_OBCP:
1655 1638 i = OBCP;
1656 1639 break;
1657 1640 case SID_TC_SYSTEM_CONTROL:
1658 1641 i = SYSTEM_CONTROL;
1659 1642 break;
1660 1643 case SID_TC_AOCS:
1661 1644 i = AOCS;
1662 1645 break;
1663 1646 case SID_TC_RPW_INTERNAL:
1664 1647 i = RPW_INTERNAL;
1665 1648 break;
1666 1649 default:
1667 1650 i = GROUND;
1668 1651 break;
1669 1652 }
1670 1653
1671 1654 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1672 1655 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1673 1656
1674 1657 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1675 1658
1676 1659 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1677 1660 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1678 1661
1679 1662 // increment the sequence counter
1680 1663 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1681 1664 {
1682 1665 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1683 1666 }
1684 1667 else
1685 1668 {
1686 1669 sequenceCounters_TM_DUMP[ i ] = 0;
1687 1670 }
1688 1671 }
General Comments 0
You need to be logged in to leave comments. Login now