##// END OF EJS Templates
Sync
paul -
r139:5ea3df9587c6 VHDLib206
parent child
Show More
@@ -1,273 +1,273
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Mon May 26 15:36:46 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Thu May 29 09:32:56 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=7 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=8 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_misc.c \
49 49 ../src/fsw_init.c \
50 50 ../src/fsw_globals.c \
51 51 ../src/fsw_spacewire.c \
52 52 ../src/tc_load_dump_parameters.c \
53 53 ../src/tm_lfr_tc_exe.c \
54 54 ../src/tc_acceptance.c \
55 55 ../src/processing/fsw_processing.c \
56 56 ../src/processing/avf0_prc0.c \
57 57 ../src/processing/avf1_prc1.c \
58 58 ../src/processing/avf2_prc2.c \
59 59 ../src/lfr_cpu_usage_report.c \
60 60 ../src/LFR_basic-parameters/basic_parameters.c
61 61 OBJECTS = obj/wf_handler.o \
62 62 obj/tc_handler.o \
63 63 obj/fsw_misc.o \
64 64 obj/fsw_init.o \
65 65 obj/fsw_globals.o \
66 66 obj/fsw_spacewire.o \
67 67 obj/tc_load_dump_parameters.o \
68 68 obj/tm_lfr_tc_exe.o \
69 69 obj/tc_acceptance.o \
70 70 obj/fsw_processing.o \
71 71 obj/avf0_prc0.o \
72 72 obj/avf1_prc1.o \
73 73 obj/avf2_prc2.o \
74 74 obj/lfr_cpu_usage_report.o \
75 75 obj/basic_parameters.o
76 76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
77 77 /usr/lib64/qt4/mkspecs/common/linux.conf \
78 78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
79 79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
80 80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
81 81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
82 82 /usr/lib64/qt4/mkspecs/qconfig.pri \
83 83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
84 84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
85 85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
86 86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
87 87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
88 88 sparc.pri \
89 89 /usr/lib64/qt4/mkspecs/features/release.prf \
90 90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
91 91 /usr/lib64/qt4/mkspecs/features/shared.prf \
92 92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
93 93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
94 94 /usr/lib64/qt4/mkspecs/features/resources.prf \
95 95 /usr/lib64/qt4/mkspecs/features/uic.prf \
96 96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
97 97 /usr/lib64/qt4/mkspecs/features/lex.prf \
98 98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
99 99 fsw-qt.pro
100 100 QMAKE_TARGET = fsw
101 101 DESTDIR = bin/
102 102 TARGET = bin/fsw
103 103
104 104 first: all
105 105 ####### Implicit rules
106 106
107 107 .SUFFIXES: .o .c .cpp .cc .cxx .C
108 108
109 109 .cpp.o:
110 110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111 111
112 112 .cc.o:
113 113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114 114
115 115 .cxx.o:
116 116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117 117
118 118 .C.o:
119 119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
120 120
121 121 .c.o:
122 122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
123 123
124 124 ####### Build rules
125 125
126 126 all: Makefile $(TARGET)
127 127
128 128 $(TARGET): $(OBJECTS)
129 129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
130 130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
131 131
132 132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
133 133 /usr/lib64/qt4/mkspecs/common/linux.conf \
134 134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
135 135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
136 136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
137 137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
138 138 /usr/lib64/qt4/mkspecs/qconfig.pri \
139 139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
140 140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
141 141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
142 142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
143 143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
144 144 sparc.pri \
145 145 /usr/lib64/qt4/mkspecs/features/release.prf \
146 146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
147 147 /usr/lib64/qt4/mkspecs/features/shared.prf \
148 148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
149 149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
150 150 /usr/lib64/qt4/mkspecs/features/resources.prf \
151 151 /usr/lib64/qt4/mkspecs/features/uic.prf \
152 152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
153 153 /usr/lib64/qt4/mkspecs/features/lex.prf \
154 154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
155 155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
156 156 /usr/lib64/qt4/mkspecs/common/unix.conf:
157 157 /usr/lib64/qt4/mkspecs/common/linux.conf:
158 158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
159 159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
160 160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
161 161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
162 162 /usr/lib64/qt4/mkspecs/qconfig.pri:
163 163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
164 164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
165 165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
166 166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
167 167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
168 168 sparc.pri:
169 169 /usr/lib64/qt4/mkspecs/features/release.prf:
170 170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
171 171 /usr/lib64/qt4/mkspecs/features/shared.prf:
172 172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
173 173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
174 174 /usr/lib64/qt4/mkspecs/features/resources.prf:
175 175 /usr/lib64/qt4/mkspecs/features/uic.prf:
176 176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
177 177 /usr/lib64/qt4/mkspecs/features/lex.prf:
178 178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
179 179 qmake: FORCE
180 180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
181 181
182 182 dist:
183 183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
184 184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
185 185
186 186
187 187 clean:compiler_clean
188 188 -$(DEL_FILE) $(OBJECTS)
189 189 -$(DEL_FILE) *~ core *.core
190 190
191 191
192 192 ####### Sub-libraries
193 193
194 194 distclean: clean
195 195 -$(DEL_FILE) $(TARGET)
196 196 -$(DEL_FILE) Makefile
197 197
198 198
199 199 grmon:
200 200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
201 201
202 202 check: first
203 203
204 204 compiler_rcc_make_all:
205 205 compiler_rcc_clean:
206 206 compiler_uic_make_all:
207 207 compiler_uic_clean:
208 208 compiler_image_collection_make_all: qmake_image_collection.cpp
209 209 compiler_image_collection_clean:
210 210 -$(DEL_FILE) qmake_image_collection.cpp
211 211 compiler_yacc_decl_make_all:
212 212 compiler_yacc_decl_clean:
213 213 compiler_yacc_impl_make_all:
214 214 compiler_yacc_impl_clean:
215 215 compiler_lex_make_all:
216 216 compiler_lex_clean:
217 217 compiler_clean:
218 218
219 219 ####### Compile
220 220
221 221 obj/wf_handler.o: ../src/wf_handler.c
222 222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
223 223
224 224 obj/tc_handler.o: ../src/tc_handler.c
225 225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
226 226
227 227 obj/fsw_misc.o: ../src/fsw_misc.c
228 228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
229 229
230 230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
231 231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
232 232
233 233 obj/fsw_globals.o: ../src/fsw_globals.c
234 234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
235 235
236 236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
237 237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
238 238
239 239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
240 240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
241 241
242 242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
243 243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
244 244
245 245 obj/tc_acceptance.o: ../src/tc_acceptance.c
246 246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
247 247
248 248 obj/fsw_processing.o: ../src/processing/fsw_processing.c
249 249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
250 250
251 251 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
252 252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
253 253
254 254 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
255 255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
256 256
257 257 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
258 258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
259 259
260 260 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
261 261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
262 262
263 263 obj/basic_parameters.o: ../src/LFR_basic-parameters/basic_parameters.c
264 264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/LFR_basic-parameters/basic_parameters.c
265 265
266 266 ####### Install
267 267
268 268 install: FORCE
269 269
270 270 uninstall: FORCE
271 271
272 272 FORCE:
273 273
@@ -1,95 +1,95
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 CONFIG += console verbose
4 CONFIG += console verbose debug_messages
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=8 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 44 #doxygen.target = doxygen
45 45 #doxygen.commands = doxygen ../doc/Doxyfile
46 46 #QMAKE_EXTRA_TARGETS += doxygen
47 47
48 48 TARGET = fsw
49 49
50 50 INCLUDEPATH += \
51 51 ../src \
52 52 ../header \
53 53 ../header/processing \
54 54 ../src/LFR_basic-parameters
55 55
56 56 SOURCES += \
57 57 ../src/wf_handler.c \
58 58 ../src/tc_handler.c \
59 59 ../src/fsw_misc.c \
60 60 ../src/fsw_init.c \
61 61 ../src/fsw_globals.c \
62 62 ../src/fsw_spacewire.c \
63 63 ../src/tc_load_dump_parameters.c \
64 64 ../src/tm_lfr_tc_exe.c \
65 65 ../src/tc_acceptance.c \
66 66 ../src/processing/fsw_processing.c \
67 67 ../src/processing/avf0_prc0.c \
68 68 ../src/processing/avf1_prc1.c \
69 69 ../src/processing/avf2_prc2.c \
70 70 ../src/lfr_cpu_usage_report.c \
71 71 ../src/LFR_basic-parameters/basic_parameters.c
72 72
73 73 HEADERS += \
74 74 ../header/wf_handler.h \
75 75 ../header/tc_handler.h \
76 76 ../header/grlib_regs.h \
77 77 ../header/fsw_params.h \
78 78 ../header/fsw_misc.h \
79 79 ../header/fsw_init.h \
80 80 ../header/ccsds_types.h \
81 81 ../header/fsw_spacewire.h \
82 82 ../header/tc_load_dump_parameters.h \
83 83 ../header/tm_lfr_tc_exe.h \
84 84 ../header/tc_acceptance.h \
85 85 ../header/fsw_params_nb_bytes.h \
86 86 ../header/fsw_params_processing.h \
87 87 ../header/processing/fsw_processing.h \
88 88 ../header/processing/avf0_prc0.h \
89 89 ../header/processing/avf1_prc1.h \
90 90 ../header/processing/avf2_prc2.h \
91 91 ../header/fsw_params_wf_handler.h \
92 92 ../header/lfr_cpu_usage_report.h \
93 93 ../src/LFR_basic-parameters/basic_parameters.h \
94 94 ../src/LFR_basic-parameters/basic_parameters_params.h
95 95
@@ -1,201 +1,201
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-05-26T15:34:26. -->
3 <!-- Written by QtCreator 3.0.1, 2014-05-29T15:54:19. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.TargetCount</variable>
191 191 <value type="int">1</value>
192 192 </data>
193 193 <data>
194 194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
196 196 </data>
197 197 <data>
198 198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 199 <value type="int">15</value>
200 200 </data>
201 201 </qtcreator>
@@ -1,250 +1,250
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 21 //************************
22 22 // flight software version
23 23 // this parameters is handled by the Qt project options
24 24
25 25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 28 #define TIME_OFFSET 2
29 29 #define TIME_OFFSET_IN_BYTES 8
30 30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 31 #define NB_BYTES_SWF_BLK (2 * 6)
32 32 #define NB_WORDS_SWF_BLK 3
33 33 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 35 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 36 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 37 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 38 #define NB_RING_NODES_F3 3 // AT LEAST 3
39 39
40 40 //**********
41 41 // LFR MODES
42 42 #define LFR_MODE_STANDBY 0
43 43 #define LFR_MODE_NORMAL 1
44 44 #define LFR_MODE_BURST 2
45 45 #define LFR_MODE_SBM1 3
46 46 #define LFR_MODE_SBM2 4
47 47
48 48 #define TDS_MODE_LFM 5
49 49 #define TDS_MODE_STANDBY 0
50 50 #define TDS_MODE_NORMAL 1
51 51 #define TDS_MODE_BURST 2
52 52 #define TDS_MODE_SBM1 3
53 53 #define TDS_MODE_SBM2 4
54 54
55 55 #define THR_MODE_STANDBY 0
56 56 #define THR_MODE_NORMAL 1
57 57 #define THR_MODE_BURST 2
58 58
59 59 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
60 60 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
61 61 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
62 62 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
63 63 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
64 64 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
65 65 #define RTEMS_EVENT_NORM_BP1_F0 RTEMS_EVENT_6
66 66 #define RTEMS_EVENT_NORM_BP2_F0 RTEMS_EVENT_7
67 67 #define RTEMS_EVENT_NORM_ASM_F0 RTEMS_EVENT_8 // ASM only in NORM mode
68 68 #define RTEMS_EVENT_NORM_BP1_F1 RTEMS_EVENT_9
69 69 #define RTEMS_EVENT_NORM_BP2_F1 RTEMS_EVENT_10
70 70 #define RTEMS_EVENT_NORM_ASM_F1 RTEMS_EVENT_11 // ASM only in NORM mode
71 71 #define RTEMS_EVENT_NORM_BP1_F2 RTEMS_EVENT_12
72 72 #define RTEMS_EVENT_NORM_BP2_F2 RTEMS_EVENT_13
73 73 #define RTEMS_EVENT_NORM_ASM_F2 RTEMS_EVENT_14 // ASM only in NORM mode
74 74 #define RTEMS_EVENT_BURST_SBM_BP1_F0 RTEMS_EVENT_15
75 75 #define RTEMS_EVENT_BURST_SBM_BP2_F0 RTEMS_EVENT_16
76 76 #define RTEMS_EVENT_BURST_SBM_BP1_F1 RTEMS_EVENT_17
77 77 #define RTEMS_EVENT_BURST_SBM_BP2_F1 RTEMS_EVENT_18
78 78
79 79 //****************************
80 80 // LFR DEFAULT MODE PARAMETERS
81 81 // COMMON
82 82 #define DEFAULT_SY_LFR_COMMON0 0x00
83 83 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
84 84 // NORM
85 85 #define SY_LFR_N_SWF_L 2048 // nb sample
86 86 #define SY_LFR_N_SWF_P 300 // sec
87 87 #define SY_LFR_N_ASM_P 3600 // sec
88 88 #define SY_LFR_N_BP_P0 4 // sec
89 89 #define SY_LFR_N_BP_P1 20 // sec
90 90 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
91 91 #define MIN_DELTA_SNAPSHOT 16 // sec
92 92 // BURST
93 93 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
94 94 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
95 95 // SBM1
96 96 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
97 97 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
98 98 // SBM2
99 99 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
100 100 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
101 101 // ADDITIONAL PARAMETERS
102 102 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
103 103 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
104 104 // STATUS WORD
105 105 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
106 106 #define DEFAULT_STATUS_WORD_BYTE1 0x00
107 107 //
108 108 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
109 109 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
110 110 //****************************
111 111
112 112 //*****************************
113 113 // APB REGISTERS BASE ADDRESSES
114 114 #define REGS_ADDR_APBUART 0x80000100
115 115 #define REGS_ADDR_GPTIMER 0x80000300
116 116 #define REGS_ADDR_GRSPW 0x80000500
117 117 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
118 118 #define REGS_ADDR_GRGPIO 0x80000b00
119 119
120 120 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
121 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f40
121 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f50
122 122
123 123 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
124 124 #define APBUART_CTRL_REG_MASK_TE 0x00000002
125 125 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
126 126
127 127 //**********
128 128 // IRQ LINES
129 129 #define IRQ_SM_SIMULATOR 9
130 130 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
131 131 #define IRQ_WAVEFORM_PICKER 14
132 132 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
133 133 #define IRQ_SPECTRAL_MATRIX 6
134 134 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
135 135
136 136 //*****
137 137 // TIME
138 138 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
139 139 #define TIMER_SM_SIMULATOR 1
140 140 #define HK_PERIOD 100 // 100 * 10ms => 1s
141 141 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
142 142 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
143 143
144 144 //**********
145 145 // LPP CODES
146 146 #define LFR_SUCCESSFUL 0
147 147 #define LFR_DEFAULT 1
148 148 #define LFR_EXE_ERROR 2
149 149
150 150 //******
151 151 // RTEMS
152 152 #define TASKID_RECV 1
153 153 #define TASKID_ACTN 2
154 154 #define TASKID_SPIQ 3
155 155 #define TASKID_STAT 4
156 156 #define TASKID_AVF0 5
157 157 #define TASKID_SWBD 6
158 158 #define TASKID_WFRM 7
159 159 #define TASKID_DUMB 8
160 160 #define TASKID_HOUS 9
161 161 #define TASKID_PRC0 10
162 162 #define TASKID_CWF3 11
163 163 #define TASKID_CWF2 12
164 164 #define TASKID_CWF1 13
165 165 #define TASKID_SEND 14
166 166 #define TASKID_WTDG 15
167 167 #define TASKID_AVF1 16
168 168 #define TASKID_PRC1 17
169 169 #define TASKID_AVF2 18
170 170 #define TASKID_PRC2 19
171 171
172 172 #define TASK_PRIORITY_SPIQ 5
173 173 #define TASK_PRIORITY_WTDG 20
174 174 #define TASK_PRIORITY_HOUS 30
175 175 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
176 176 #define TASK_PRIORITY_CWF2 35 //
177 177 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
178 178 #define TASK_PRIORITY_WFRM 40
179 179 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
180 180 #define TASK_PRIORITY_SEND 45
181 181 #define TASK_PRIORITY_RECV 50
182 182 #define TASK_PRIORITY_ACTN 50
183 183 #define TASK_PRIORITY_AVF0 60
184 184 #define TASK_PRIORITY_AVF1 70
185 185 #define TASK_PRIORITY_PRC0 100
186 186 #define TASK_PRIORITY_PRC1 100
187 187 #define TASK_PRIORITY_AVF2 110
188 188 #define TASK_PRIORITY_PRC2 110
189 189 #define TASK_PRIORITY_STAT 200
190 190 #define TASK_PRIORITY_DUMB 200
191 191
192 192 #define MSG_QUEUE_COUNT_RECV 10
193 193 #define MSG_QUEUE_COUNT_SEND 50
194 194 #define MSG_QUEUE_COUNT_PRC0 10
195 195 #define MSG_QUEUE_COUNT_PRC1 10
196 196 #define MSG_QUEUE_COUNT_PRC2 5
197 197 #define MSG_QUEUE_SIZE_SEND 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
198 198 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
199 199 #define MSG_QUEUE_SIZE_PRC0 20 // two pointers and one rtems_event + 2 integers
200 200 #define MSG_QUEUE_SIZE_PRC1 20 // two pointers and one rtems_event + 2 integers
201 201 #define MSG_QUEUE_SIZE_PRC2 20 // two pointers and one rtems_event + 2 integers
202 202
203 203 #define QUEUE_RECV 0
204 204 #define QUEUE_SEND 1
205 205 #define QUEUE_PRC0 2
206 206 #define QUEUE_PRC1 3
207 207 #define QUEUE_PRC2 4
208 208
209 209 //*******
210 210 // MACROS
211 211 #ifdef PRINT_MESSAGES_ON_CONSOLE
212 212 #define PRINTF(x) printf(x);
213 213 #define PRINTF1(x,y) printf(x,y);
214 214 #define PRINTF2(x,y,z) printf(x,y,z);
215 215 #else
216 216 #define PRINTF(x) ;
217 217 #define PRINTF1(x,y) ;
218 218 #define PRINTF2(x,y,z) ;
219 219 #endif
220 220
221 221 #ifdef BOOT_MESSAGES
222 222 #define BOOT_PRINTF(x) printf(x);
223 223 #define BOOT_PRINTF1(x,y) printf(x,y);
224 224 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
225 225 #else
226 226 #define BOOT_PRINTF(x) ;
227 227 #define BOOT_PRINTF1(x,y) ;
228 228 #define BOOT_PRINTF2(x,y,z) ;
229 229 #endif
230 230
231 231 #ifdef DEBUG_MESSAGES
232 232 #define DEBUG_PRINTF(x) printf(x);
233 233 #define DEBUG_PRINTF1(x,y) printf(x,y);
234 234 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
235 235 #else
236 236 #define DEBUG_PRINTF(x) ;
237 237 #define DEBUG_PRINTF1(x,y) ;
238 238 #define DEBUG_PRINTF2(x,y,z) ;
239 239 #endif
240 240
241 241 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
242 242
243 243 struct param_local_str{
244 244 unsigned int local_sbm1_nb_cwf_sent;
245 245 unsigned int local_sbm1_nb_cwf_max;
246 246 unsigned int local_sbm2_nb_cwf_sent;
247 247 unsigned int local_sbm2_nb_cwf_max;
248 248 };
249 249
250 250 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,100 +1,109
1 1 #ifndef GRLIB_REGS_H_INCLUDED
2 2 #define GRLIB_REGS_H_INCLUDED
3 3
4 4 #define NB_GPTIMER 3
5 5
6 6 struct apbuart_regs_str{
7 7 volatile unsigned int data;
8 8 volatile unsigned int status;
9 9 volatile unsigned int ctrl;
10 10 volatile unsigned int scaler;
11 11 volatile unsigned int fifoDebug;
12 12 };
13 13
14 14 struct grgpio_regs_str{
15 15 volatile int io_port_data_register;
16 16 int io_port_output_register;
17 17 int io_port_direction_register;
18 18 int interrupt_mak_register;
19 19 int interrupt_polarity_register;
20 20 int interrupt_edge_register;
21 21 int bypass_register;
22 22 int reserved;
23 23 // 0x20-0x3c interrupt map register(s)
24 24 };
25 25
26 26 typedef struct {
27 27 volatile unsigned int counter;
28 28 volatile unsigned int reload;
29 29 volatile unsigned int ctrl;
30 30 volatile unsigned int unused;
31 31 } timer_regs_t;
32 32
33 33 typedef struct {
34 34 volatile unsigned int scaler_value;
35 35 volatile unsigned int scaler_reload;
36 36 volatile unsigned int conf;
37 37 volatile unsigned int unused0;
38 38 timer_regs_t timer[NB_GPTIMER];
39 39 } gptimer_regs_t;
40 40
41 41 typedef struct {
42 42 volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time
43 43 volatile int coarse_time_load;
44 44 volatile int coarse_time;
45 45 volatile int fine_time;
46 46 } time_management_regs_t;
47 47
48 48 typedef struct {
49 49 volatile int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
50 50 volatile int burst_enable; // 0x04 01 *** burst f2, f1, f0 enable f3, f2, f1, f0
51 51 volatile int addr_data_f0; // 0x08 10 ***
52 52 volatile int addr_data_f1; // 0x0c 11 ***
53 53 volatile int addr_data_f2; // 0x10 100 ***
54 54 volatile int addr_data_f3; // 0x14 101 ***
55 55 volatile int status; // 0x18 110 ***
56 56 volatile int delta_snapshot; // 0x1c 111 ***
57 57 volatile int delta_f2_f1; // 0x20 0000 ***
58 58 volatile int delta_f2_f0; // 0x24 0001 ***
59 59 volatile int nb_burst_available;// 0x28 0010 ***
60 60 volatile int nb_snapshot_param; // 0x2c 0011 ***
61 61 } waveform_picker_regs_t;
62 62
63 63 typedef struct{
64 64 int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
65 65 int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
66 66 int addr_data_f0; // 0x08
67 67 int addr_data_f1; // 0x0c
68 68 int addr_data_f2; // 0x10
69 69 int addr_data_f3; // 0x14
70 70 volatile int status; // 0x18
71 71 int delta_snapshot; // 0x1c
72 72 int delta_f0; // 0x20
73 73 int delta_f0_2; // 0x24
74 74 int delta_f1; // 0x28
75 75 int delta_f2; // 0x2c
76 76 int nb_data_by_buffer; // 0x30
77 77 int snapshot_param; // 0x34
78 78 int start_date; // 0x38
79 79 int nb_word_in_buffer; // 0x3c
80 80 } waveform_picker_regs_new_t;
81 81
82 82 typedef struct {
83 83 volatile int config; // 0x00
84 84 volatile int status; // 0x04
85 volatile int matrixF0_Address0; // 0x08
86 volatile int matrixFO_Address1; // 0x0C
87 volatile int matrixF1_Address; // 0x10
88 volatile int matrixF2_Address; // 0x14
89 volatile int coarse_time_F0_0; // 0x18
90 volatile int coarse_time_F0_1; // 0x1C
91 volatile int coarse_time_F1; // 0x20
92 volatile int coarse_time_F2; // 0x24
93 volatile int fine_time_FO_0; // 0x28
94 volatile int fine_time_F0_1; // 0x2C
95 volatile int fine_time_F1; // 0x30
96 volatile int fine_time_F2; // 0x34
97 volatile int debug; // 0x38
85 volatile int f0_0_address; // 0x08
86 volatile int f0_1_address; // 0x0C
87 //
88 volatile int f1_0_address; // 0x10
89 volatile int f1_1_address; // 0x14
90 volatile int f2_0_address; // 0x18
91 volatile int f2_1_address; // 0x1C
92 //
93 volatile int f0_0_coarse_time; // 0x20
94 volatile int f0_0_fine_time; // 0x24
95 volatile int f0_1_coarse_time; // 0x28
96 volatile int f0_1_fine_time; // 0x2C
97 //
98 volatile int f1_0_coarse_time; // 0x30
99 volatile int f1_0_fine_time; // 0x34
100 volatile int f1_1_coarse_time; // 0x38
101 volatile int f1_1_time_time; // 0x3C
102 //
103 volatile int f2_0_coarse_time; // 0x40
104 volatile int f2_0_fine_time; // 0x44
105 volatile int f2_1_coarse_time; // 0x48
106 volatile int f2_1_time_time; // 0x4C
98 107 } spectral_matrix_regs_t;
99 108
100 109 #endif // GRLIB_REGS_H_INCLUDED
@@ -1,239 +1,242
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13
14 14 typedef struct ring_node_sm
15 15 {
16 16 struct ring_node_sm *previous;
17 17 struct ring_node_sm *next;
18 18 int buffer_address;
19 19 unsigned int status;
20 20 unsigned int coarseTime;
21 21 unsigned int fineTime;
22 22 } ring_node_sm;
23 23
24 24 typedef struct ring_node_asm
25 25 {
26 26 struct ring_node_asm *next;
27 27 float matrix[ TOTAL_SIZE_SM ];
28 28 unsigned int status;
29 29 } ring_node_asm;
30 30
31 31 typedef struct
32 32 {
33 33 Header_TM_LFR_SCIENCE_BP_t header;
34 34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
35 35 } bp_packet;
36 36
37 37 typedef struct
38 38 {
39 39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
40 40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
41 41 } bp_packet_with_spare;
42 42
43 43 typedef struct
44 44 {
45 45 ring_node_asm *norm;
46 46 ring_node_asm *burst_sbm;
47 47 rtems_event_set event;
48 48 unsigned int coarseTime;
49 49 unsigned int fineTime;
50 50 } asm_msg;
51 51
52 52 extern volatile int sm_f0[ ];
53 53 extern volatile int sm_f1[ ];
54 54 extern volatile int sm_f2[ ];
55 55
56 56 // parameters
57 57 extern struct param_local_str param_local;
58 58
59 59 // registers
60 60 extern time_management_regs_t *time_management_regs;
61 61 extern spectral_matrix_regs_t *spectral_matrix_regs;
62 62
63 63 extern rtems_name misc_name[5];
64 64 extern rtems_id Task_id[20]; /* array of task ids */
65 65
66 66 // ISR
67 67 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
68 68 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
69 69
70 70 //******************
71 71 // Spectral Matrices
72 72 void reset_nb_sm( void );
73 73 // SM
74 74 void SM_init_rings( void );
75 75 void SM_reset_current_ring_nodes( void );
76 76 void SM_generic_init_ring(ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] );
77 77 // ASM
78 78 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
79 79 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
80 80 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
81 81 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
82 82
83 83 //*****************
84 84 // Basic Parameters
85 85
86 86 void BP_reset_current_ring_nodes( void );
87 87 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
88 88 unsigned int apid, unsigned char sid,
89 89 unsigned int packetLength , unsigned char blkNr);
90 90 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
91 91 unsigned int apid, unsigned char sid,
92 92 unsigned int packetLength, unsigned char blkNr );
93 93 void BP_send( char *data,
94 94 rtems_id queue_id ,
95 95 unsigned int nbBytesToSend , unsigned int sid );
96 96
97 97 //******************
98 98 // general functions
99 99 void reset_spectral_matrix_regs( void );
100 100 void set_time(unsigned char *time, unsigned char *timeInBuffer );
101 unsigned long long int get_acquisition_time( unsigned char *timePtr );
102 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
103 ring_node_sm *node_for_averaging, ring_node_sm *ringNode);
101 104
102 105 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
103 106 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
104 107
105 108 //***************************************
106 109 // DEFINITIONS OF STATIC INLINE FUNCTIONS
107 110 static inline void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
108 111 ring_node_sm *ring_node_tab[],
109 112 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
110 113 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
111 114 float divider );
112 115 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
113 116 float divider,
114 117 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
115 118 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
116 119
117 120 void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
118 121 ring_node_sm *ring_node_tab[],
119 122 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
120 123 {
121 124 float sum;
122 125 unsigned int i;
123 126
124 127 for(i=0; i<TOTAL_SIZE_SM; i++)
125 128 {
126 129 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
127 130 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
128 131 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
129 132 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
130 133 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
131 134 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
132 135 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
133 136 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
134 137
135 138 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
136 139 {
137 140 averaged_spec_mat_f0[ i ] = sum;
138 141 averaged_spec_mat_f1[ i ] = sum;
139 142 }
140 143 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
141 144 {
142 145 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
143 146 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
144 147 }
145 148 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
146 149 {
147 150 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
148 151 averaged_spec_mat_f1[ i ] = sum;
149 152 }
150 153 else
151 154 {
152 155 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
153 156 }
154 157 }
155 158 }
156 159
157 160 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
158 161 {
159 162 int frequencyBin;
160 163 int asmComponent;
161 164 unsigned int offsetAveragedSpecMatReorganized;
162 165 unsigned int offsetAveragedSpecMat;
163 166
164 167 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
165 168 {
166 169 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
167 170 {
168 171 offsetAveragedSpecMatReorganized =
169 172 frequencyBin * NB_VALUES_PER_SM
170 173 + asmComponent;
171 174 offsetAveragedSpecMat =
172 175 asmComponent * NB_BINS_PER_SM
173 176 + frequencyBin;
174 177 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
175 178 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
176 179 }
177 180 }
178 181 }
179 182
180 183 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
181 184 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
182 185 {
183 186 int frequencyBin;
184 187 int asmComponent;
185 188 int offsetASM;
186 189 int offsetCompressed;
187 190 int k;
188 191
189 192 // build data
190 193 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
191 194 {
192 195 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
193 196 {
194 197 offsetCompressed = // NO TIME OFFSET
195 198 frequencyBin * NB_VALUES_PER_SM
196 199 + asmComponent;
197 200 offsetASM = // NO TIME OFFSET
198 201 asmComponent * NB_BINS_PER_SM
199 202 + ASMIndexStart
200 203 + frequencyBin * nbBinsToAverage;
201 204 compressed_spec_mat[ offsetCompressed ] = 0;
202 205 for ( k = 0; k < nbBinsToAverage; k++ )
203 206 {
204 207 compressed_spec_mat[offsetCompressed ] =
205 208 ( compressed_spec_mat[ offsetCompressed ]
206 209 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
207 210 }
208 211 }
209 212 }
210 213 }
211 214
212 215 void ASM_convert( volatile float *input_matrix, char *output_matrix)
213 216 {
214 217 unsigned int frequencyBin;
215 218 unsigned int asmComponent;
216 219 char * pt_char_input;
217 220 char * pt_char_output;
218 221 unsigned int offsetInput;
219 222 unsigned int offsetOutput;
220 223
221 224 pt_char_input = (char*) &input_matrix;
222 225 pt_char_output = (char*) &output_matrix;
223 226
224 227 // convert all other data
225 228 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
226 229 {
227 230 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
228 231 {
229 232 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
230 233 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
231 234 pt_char_input = (char*) &input_matrix [ offsetInput ];
232 235 pt_char_output = (char*) &output_matrix[ offsetOutput ];
233 236 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
234 237 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
235 238 }
236 239 }
237 240 }
238 241
239 242 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,92 +1,92
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "fsw_misc.h"
12 12 #include "fsw_params_wf_handler.h"
13 13
14 14 #define pi 3.1415
15 15
16 16 extern int fdSPW;
17 17
18 18 //*****************
19 19 // waveform buffers
20 20 extern volatile int wf_snap_f0[ ];
21 21 extern volatile int wf_snap_f1[ ];
22 22 extern volatile int wf_snap_f2[ ];
23 23 extern volatile int wf_cont_f3[ ];
24 24 extern char wf_cont_f3_light[ ];
25 25
26 26 extern waveform_picker_regs_new_t *waveform_picker_regs;
27 27 extern time_management_regs_t *time_management_regs;
28 28 extern Packet_TM_LFR_HK_t housekeeping_packet;
29 29 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
30 30 extern struct param_local_str param_local;
31 31
32 32 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
33 33 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
34 34
35 35 extern rtems_id Task_id[20]; /* array of task ids */
36 36
37 37 extern unsigned char lfrCurrentMode;
38 38
39 39 //**********
40 40 // RTEMS_ISR
41 41 void reset_extractSWF( void );
42 42 rtems_isr waveforms_isr( rtems_vector_number vector );
43 43
44 44 //***********
45 45 // RTEMS_TASK
46 46 rtems_task wfrm_task( rtems_task_argument argument );
47 47 rtems_task cwf3_task( rtems_task_argument argument );
48 48 rtems_task cwf2_task( rtems_task_argument argument );
49 49 rtems_task cwf1_task( rtems_task_argument argument );
50 50 rtems_task swbd_task( rtems_task_argument argument );
51 51
52 52 //******************
53 53 // general functions
54 void init_waveform_rings( void );
54 void WFP_init_rings( void );
55 55 void init_waveform_ring( ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] );
56 void reset_current_ring_nodes( void );
56 void WFP_reset_current_ring_nodes( void );
57 57 //
58 58 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
59 59 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
60 60 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
61 61 //
62 62 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
63 63 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
64 64 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
65 65 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
66 66 //
67 67 void compute_acquisition_time(unsigned int coarseTime, unsigned int fineTime,
68 68 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char *acquisitionTime );
69 69 void build_snapshot_from_ring(ring_node *ring_node_to_send , unsigned char frequencyChannel );
70 70 void build_acquisition_time( unsigned long long int * acquisitionTimeAslong, ring_node *current_ring_node );
71 71 //
72 72 rtems_id get_pkts_queue_id( void );
73 73
74 74 //**************
75 75 // wfp registers
76 76 // RESET
77 77 void reset_wfp_burst_enable( void );
78 78 void reset_wfp_status(void);
79 79 void reset_waveform_picker_regs( void );
80 80 // SET
81 81 void set_wfp_data_shaping(void);
82 82 void set_wfp_burst_enable_register( unsigned char mode );
83 83 void set_wfp_delta_snapshot( void );
84 84 void set_wfp_delta_f0_f0_2( void );
85 85 void set_wfp_delta_f1( void );
86 86 void set_wfp_delta_f2( void );
87 87
88 88 //*****************
89 89 // local parameters
90 90 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
91 91
92 92 #endif // WF_HANDLER_H_INCLUDED
@@ -1,768 +1,772
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
35 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 37 #define CONFIGURE_MAXIMUM_PERIODS 5
37 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
39 40 #ifdef PRINT_STACK_REPORT
40 41 #define CONFIGURE_STACK_CHECKER_ENABLED
41 42 #endif
42 43
43 44 #include <rtems/confdefs.h>
44 45
45 46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 47 #ifdef RTEMS_DRVMGR_STARTUP
47 48 #ifdef LEON3
48 49 /* Add Timer and UART Driver */
49 50 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 51 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 52 #endif
52 53 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 54 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 55 #endif
55 56 #endif
56 57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 58 #include <drvmgr/drvmgr_confdefs.h>
58 59 #endif
59 60
60 61 #include "fsw_init.h"
61 62 #include "fsw_config.c"
62 63
63 64 rtems_task Init( rtems_task_argument ignored )
64 65 {
65 66 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 67 *
67 68 * @param unused is the starting argument of the RTEMS task
68 69 *
69 70 * The INIT task create and run all other RTEMS tasks.
70 71 *
71 72 */
72 73
73 74 reset_local_time();
74 75
75 76 rtems_cpu_usage_reset();
76 77
77 78 rtems_status_code status;
78 79 rtems_status_code status_spw;
79 80 rtems_isr_entry old_isr_handler;
80 81
81 82 // UART settings
82 83 send_console_outputs_on_apbuart_port();
83 84 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
84 85 enable_apbuart_transmitter();
85 86 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
86 87
87 88 PRINTF("\n\n\n\n\n")
88 89 PRINTF("*************************\n")
89 90 PRINTF("** LFR Flight Software **\n")
90 91 PRINTF1("** %d.", SW_VERSION_N1)
91 92 PRINTF1("%d." , SW_VERSION_N2)
92 93 PRINTF1("%d." , SW_VERSION_N3)
93 94 PRINTF1("%d **\n", SW_VERSION_N4)
94 95 PRINTF("*************************\n")
95 96 PRINTF("\n\n")
96 97
97 98 init_parameter_dump();
98 99 init_local_mode_parameters();
99 100 init_housekeeping_parameters();
100 101
101 init_waveform_rings(); // initialize the waveform rings
102 SM_init_rings(); // initialize spectral matrices rings
102 // waveform picker initialization
103 WFP_init_rings(); // initialize the waveform rings
104 WFP_reset_current_ring_nodes();
105 reset_waveform_picker_regs();
103 106
104 reset_wfp_burst_enable();
105 reset_wfp_status();
106 set_wfp_data_shaping();
107 // spectral matrices initialization
108 SM_init_rings(); // initialize spectral matrices rings
109 SM_reset_current_ring_nodes();
110 reset_spectral_matrix_regs();
107 111
108 112 updateLFRCurrentMode();
109 113
110 114 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
111 115
112 116 create_names(); // create all names
113 117
114 118 status = create_message_queues(); // create message queues
115 119 if (status != RTEMS_SUCCESSFUL)
116 120 {
117 121 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
118 122 }
119 123
120 124 status = create_all_tasks(); // create all tasks
121 125 if (status != RTEMS_SUCCESSFUL)
122 126 {
123 127 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
124 128 }
125 129
126 130 // **************************
127 131 // <SPACEWIRE INITIALIZATION>
128 132 grspw_timecode_callback = &timecode_irq_handler;
129 133
130 134 status_spw = spacewire_open_link(); // (1) open the link
131 135 if ( status_spw != RTEMS_SUCCESSFUL )
132 136 {
133 137 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
134 138 }
135 139
136 140 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
137 141 {
138 142 status_spw = spacewire_configure_link( fdSPW );
139 143 if ( status_spw != RTEMS_SUCCESSFUL )
140 144 {
141 145 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
142 146 }
143 147 }
144 148
145 149 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
146 150 {
147 151 status_spw = spacewire_start_link( fdSPW );
148 152 if ( status_spw != RTEMS_SUCCESSFUL )
149 153 {
150 154 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
151 155 }
152 156 }
153 157 // </SPACEWIRE INITIALIZATION>
154 158 // ***************************
155 159
156 160 status = start_all_tasks(); // start all tasks
157 161 if (status != RTEMS_SUCCESSFUL)
158 162 {
159 163 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
160 164 }
161 165
162 166 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
163 167 status = start_recv_send_tasks();
164 168 if ( status != RTEMS_SUCCESSFUL )
165 169 {
166 170 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
167 171 }
168 172
169 173 // suspend science tasks, they will be restarted later depending on the mode
170 174 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
171 175 if (status != RTEMS_SUCCESSFUL)
172 176 {
173 177 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
174 178 }
175 179
176 180 //******************************
177 181 // <SPECTRAL MATRICES SIMULATOR>
178 182 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
179 183 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
180 184 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
181 185 // </SPECTRAL MATRICES SIMULATOR>
182 186 //*******************************
183 187
184 188 // configure IRQ handling for the waveform picker unit
185 189 status = rtems_interrupt_catch( waveforms_isr,
186 190 IRQ_SPARC_WAVEFORM_PICKER,
187 191 &old_isr_handler) ;
188 192 // configure IRQ handling for the spectral matrices unit
189 193 status = rtems_interrupt_catch( spectral_matrices_isr,
190 194 IRQ_SPARC_SPECTRAL_MATRIX,
191 195 &old_isr_handler) ;
192 196
193 197 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
194 198 if ( status_spw != RTEMS_SUCCESSFUL )
195 199 {
196 200 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
197 201 if ( status != RTEMS_SUCCESSFUL ) {
198 202 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
199 203 }
200 204 }
201 205
202 206 BOOT_PRINTF("delete INIT\n")
203 207
204 208 send_dumb_hk();
205 209
206 210 status = rtems_task_delete(RTEMS_SELF);
207 211
208 212 }
209 213
210 214 void init_local_mode_parameters( void )
211 215 {
212 216 /** This function initialize the param_local global variable with default values.
213 217 *
214 218 */
215 219
216 220 unsigned int i;
217 221
218 222 // LOCAL PARAMETERS
219 223
220 224 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
221 225 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
222 226 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
223 227
224 228 // init sequence counters
225 229
226 230 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
227 231 {
228 232 sequenceCounters_TC_EXE[i] = 0x00;
229 233 }
230 234 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
231 235 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
232 236 }
233 237
234 238 void reset_local_time( void )
235 239 {
236 240 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
237 241 }
238 242
239 243 void create_names( void ) // create all names for tasks and queues
240 244 {
241 245 /** This function creates all RTEMS names used in the software for tasks and queues.
242 246 *
243 247 * @return RTEMS directive status codes:
244 248 * - RTEMS_SUCCESSFUL - successful completion
245 249 *
246 250 */
247 251
248 252 // task names
249 253 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
250 254 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
251 255 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
252 256 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
253 257 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
254 258 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
255 259 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
256 260 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
257 261 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
258 262 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
259 263 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
260 264 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
261 265 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
262 266 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
263 267 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
264 268 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
265 269 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
266 270 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
267 271 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
268 272
269 273 // rate monotonic period names
270 274 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
271 275
272 276 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
273 277 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
274 278 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
275 279 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
276 280 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
277 281 }
278 282
279 283 int create_all_tasks( void ) // create all tasks which run in the software
280 284 {
281 285 /** This function creates all RTEMS tasks used in the software.
282 286 *
283 287 * @return RTEMS directive status codes:
284 288 * - RTEMS_SUCCESSFUL - task created successfully
285 289 * - RTEMS_INVALID_ADDRESS - id is NULL
286 290 * - RTEMS_INVALID_NAME - invalid task name
287 291 * - RTEMS_INVALID_PRIORITY - invalid task priority
288 292 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
289 293 * - RTEMS_TOO_MANY - too many tasks created
290 294 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
291 295 * - RTEMS_TOO_MANY - too many global objects
292 296 *
293 297 */
294 298
295 299 rtems_status_code status;
296 300
297 301 //**********
298 302 // SPACEWIRE
299 303 // RECV
300 304 status = rtems_task_create(
301 305 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
302 306 RTEMS_DEFAULT_MODES,
303 307 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
304 308 );
305 309 if (status == RTEMS_SUCCESSFUL) // SEND
306 310 {
307 311 status = rtems_task_create(
308 312 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
309 313 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
310 314 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
311 315 );
312 316 }
313 317 if (status == RTEMS_SUCCESSFUL) // WTDG
314 318 {
315 319 status = rtems_task_create(
316 320 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
317 321 RTEMS_DEFAULT_MODES,
318 322 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
319 323 );
320 324 }
321 325 if (status == RTEMS_SUCCESSFUL) // ACTN
322 326 {
323 327 status = rtems_task_create(
324 328 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
325 329 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
326 330 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
327 331 );
328 332 }
329 333 if (status == RTEMS_SUCCESSFUL) // SPIQ
330 334 {
331 335 status = rtems_task_create(
332 336 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
333 337 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
334 338 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
335 339 );
336 340 }
337 341
338 342 //******************
339 343 // SPECTRAL MATRICES
340 344 if (status == RTEMS_SUCCESSFUL) // AVF0
341 345 {
342 346 status = rtems_task_create(
343 347 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
344 348 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
345 349 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
346 350 );
347 351 }
348 352 if (status == RTEMS_SUCCESSFUL) // PRC0
349 353 {
350 354 status = rtems_task_create(
351 355 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
352 356 RTEMS_DEFAULT_MODES,
353 357 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
354 358 );
355 359 }
356 360 if (status == RTEMS_SUCCESSFUL) // AVF1
357 361 {
358 362 status = rtems_task_create(
359 363 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
360 364 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
361 365 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
362 366 );
363 367 }
364 368 if (status == RTEMS_SUCCESSFUL) // PRC1
365 369 {
366 370 status = rtems_task_create(
367 371 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
368 372 RTEMS_DEFAULT_MODES,
369 373 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
370 374 );
371 375 }
372 376 if (status == RTEMS_SUCCESSFUL) // AVF2
373 377 {
374 378 status = rtems_task_create(
375 379 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
376 380 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
377 381 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
378 382 );
379 383 }
380 384 if (status == RTEMS_SUCCESSFUL) // PRC2
381 385 {
382 386 status = rtems_task_create(
383 387 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
384 388 RTEMS_DEFAULT_MODES,
385 389 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
386 390 );
387 391 }
388 392
389 393 //****************
390 394 // WAVEFORM PICKER
391 395 if (status == RTEMS_SUCCESSFUL) // WFRM
392 396 {
393 397 status = rtems_task_create(
394 398 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
395 399 RTEMS_DEFAULT_MODES,
396 400 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
397 401 );
398 402 }
399 403 if (status == RTEMS_SUCCESSFUL) // CWF3
400 404 {
401 405 status = rtems_task_create(
402 406 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
403 407 RTEMS_DEFAULT_MODES,
404 408 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
405 409 );
406 410 }
407 411 if (status == RTEMS_SUCCESSFUL) // CWF2
408 412 {
409 413 status = rtems_task_create(
410 414 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
411 415 RTEMS_DEFAULT_MODES,
412 416 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
413 417 );
414 418 }
415 419 if (status == RTEMS_SUCCESSFUL) // CWF1
416 420 {
417 421 status = rtems_task_create(
418 422 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
419 423 RTEMS_DEFAULT_MODES,
420 424 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
421 425 );
422 426 }
423 427 if (status == RTEMS_SUCCESSFUL) // SWBD
424 428 {
425 429 status = rtems_task_create(
426 430 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
427 431 RTEMS_DEFAULT_MODES,
428 432 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
429 433 );
430 434 }
431 435
432 436 //*****
433 437 // MISC
434 438 if (status == RTEMS_SUCCESSFUL) // STAT
435 439 {
436 440 status = rtems_task_create(
437 441 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
438 442 RTEMS_DEFAULT_MODES,
439 443 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
440 444 );
441 445 }
442 446 if (status == RTEMS_SUCCESSFUL) // DUMB
443 447 {
444 448 status = rtems_task_create(
445 449 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
446 450 RTEMS_DEFAULT_MODES,
447 451 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
448 452 );
449 453 }
450 454 if (status == RTEMS_SUCCESSFUL) // HOUS
451 455 {
452 456 status = rtems_task_create(
453 457 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
454 458 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
455 459 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
456 460 );
457 461 }
458 462
459 463 return status;
460 464 }
461 465
462 466 int start_recv_send_tasks( void )
463 467 {
464 468 rtems_status_code status;
465 469
466 470 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
467 471 if (status!=RTEMS_SUCCESSFUL) {
468 472 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
469 473 }
470 474
471 475 if (status == RTEMS_SUCCESSFUL) // SEND
472 476 {
473 477 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
474 478 if (status!=RTEMS_SUCCESSFUL) {
475 479 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
476 480 }
477 481 }
478 482
479 483 return status;
480 484 }
481 485
482 486 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
483 487 {
484 488 /** This function starts all RTEMS tasks used in the software.
485 489 *
486 490 * @return RTEMS directive status codes:
487 491 * - RTEMS_SUCCESSFUL - ask started successfully
488 492 * - RTEMS_INVALID_ADDRESS - invalid task entry point
489 493 * - RTEMS_INVALID_ID - invalid task id
490 494 * - RTEMS_INCORRECT_STATE - task not in the dormant state
491 495 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
492 496 *
493 497 */
494 498 // starts all the tasks fot eh flight software
495 499
496 500 rtems_status_code status;
497 501
498 502 //**********
499 503 // SPACEWIRE
500 504 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
501 505 if (status!=RTEMS_SUCCESSFUL) {
502 506 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
503 507 }
504 508
505 509 if (status == RTEMS_SUCCESSFUL) // WTDG
506 510 {
507 511 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
508 512 if (status!=RTEMS_SUCCESSFUL) {
509 513 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
510 514 }
511 515 }
512 516
513 517 if (status == RTEMS_SUCCESSFUL) // ACTN
514 518 {
515 519 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
516 520 if (status!=RTEMS_SUCCESSFUL) {
517 521 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
518 522 }
519 523 }
520 524
521 525 //******************
522 526 // SPECTRAL MATRICES
523 527 if (status == RTEMS_SUCCESSFUL) // AVF0
524 528 {
525 529 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
526 530 if (status!=RTEMS_SUCCESSFUL) {
527 531 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
528 532 }
529 533 }
530 534 if (status == RTEMS_SUCCESSFUL) // PRC0
531 535 {
532 536 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
533 537 if (status!=RTEMS_SUCCESSFUL) {
534 538 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
535 539 }
536 540 }
537 541 if (status == RTEMS_SUCCESSFUL) // AVF1
538 542 {
539 543 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
540 544 if (status!=RTEMS_SUCCESSFUL) {
541 545 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
542 546 }
543 547 }
544 548 if (status == RTEMS_SUCCESSFUL) // PRC1
545 549 {
546 550 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
547 551 if (status!=RTEMS_SUCCESSFUL) {
548 552 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
549 553 }
550 554 }
551 555 if (status == RTEMS_SUCCESSFUL) // AVF2
552 556 {
553 557 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
554 558 if (status!=RTEMS_SUCCESSFUL) {
555 559 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
556 560 }
557 561 }
558 562 if (status == RTEMS_SUCCESSFUL) // PRC2
559 563 {
560 564 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
561 565 if (status!=RTEMS_SUCCESSFUL) {
562 566 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
563 567 }
564 568 }
565 569
566 570 //****************
567 571 // WAVEFORM PICKER
568 572 if (status == RTEMS_SUCCESSFUL) // WFRM
569 573 {
570 574 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
571 575 if (status!=RTEMS_SUCCESSFUL) {
572 576 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
573 577 }
574 578 }
575 579 if (status == RTEMS_SUCCESSFUL) // CWF3
576 580 {
577 581 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
578 582 if (status!=RTEMS_SUCCESSFUL) {
579 583 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
580 584 }
581 585 }
582 586 if (status == RTEMS_SUCCESSFUL) // CWF2
583 587 {
584 588 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
585 589 if (status!=RTEMS_SUCCESSFUL) {
586 590 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
587 591 }
588 592 }
589 593 if (status == RTEMS_SUCCESSFUL) // CWF1
590 594 {
591 595 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
592 596 if (status!=RTEMS_SUCCESSFUL) {
593 597 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
594 598 }
595 599 }
596 600 if (status == RTEMS_SUCCESSFUL) // SWBD
597 601 {
598 602 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
599 603 if (status!=RTEMS_SUCCESSFUL) {
600 604 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
601 605 }
602 606 }
603 607
604 608 //*****
605 609 // MISC
606 610 if (status == RTEMS_SUCCESSFUL) // HOUS
607 611 {
608 612 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
609 613 if (status!=RTEMS_SUCCESSFUL) {
610 614 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
611 615 }
612 616 }
613 617 if (status == RTEMS_SUCCESSFUL) // DUMB
614 618 {
615 619 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
616 620 if (status!=RTEMS_SUCCESSFUL) {
617 621 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
618 622 }
619 623 }
620 624 if (status == RTEMS_SUCCESSFUL) // STAT
621 625 {
622 626 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
623 627 if (status!=RTEMS_SUCCESSFUL) {
624 628 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
625 629 }
626 630 }
627 631
628 632 return status;
629 633 }
630 634
631 635 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
632 636 {
633 637 rtems_status_code status_recv;
634 638 rtems_status_code status_send;
635 639 rtems_status_code status_q_p0;
636 640 rtems_status_code status_q_p1;
637 641 rtems_status_code status_q_p2;
638 642 rtems_status_code ret;
639 643 rtems_id queue_id;
640 644
641 645 //****************************************
642 646 // create the queue for handling valid TCs
643 647 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
644 648 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
645 649 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
646 650 if ( status_recv != RTEMS_SUCCESSFUL ) {
647 651 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
648 652 }
649 653
650 654 //************************************************
651 655 // create the queue for handling TM packet sending
652 656 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
653 657 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
654 658 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
655 659 if ( status_send != RTEMS_SUCCESSFUL ) {
656 660 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
657 661 }
658 662
659 663 //*****************************************************************************
660 664 // create the queue for handling averaged spectral matrices for processing @ f0
661 665 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
662 666 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
663 667 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
664 668 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
665 669 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
666 670 }
667 671
668 672 //*****************************************************************************
669 673 // create the queue for handling averaged spectral matrices for processing @ f1
670 674 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
671 675 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
672 676 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
673 677 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
674 678 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
675 679 }
676 680
677 681 //*****************************************************************************
678 682 // create the queue for handling averaged spectral matrices for processing @ f2
679 683 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
680 684 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
681 685 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
682 686 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
683 687 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
684 688 }
685 689
686 690 if ( status_recv != RTEMS_SUCCESSFUL )
687 691 {
688 692 ret = status_recv;
689 693 }
690 694 else if( status_send != RTEMS_SUCCESSFUL )
691 695 {
692 696 ret = status_send;
693 697 }
694 698 else if( status_q_p0 != RTEMS_SUCCESSFUL )
695 699 {
696 700 ret = status_q_p0;
697 701 }
698 702 else if( status_q_p1 != RTEMS_SUCCESSFUL )
699 703 {
700 704 ret = status_q_p1;
701 705 }
702 706 else
703 707 {
704 708 ret = status_q_p2;
705 709 }
706 710
707 711 return ret;
708 712 }
709 713
710 714 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
711 715 {
712 716 rtems_status_code status;
713 717 rtems_name queue_name;
714 718
715 719 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
716 720
717 721 status = rtems_message_queue_ident( queue_name, 0, queue_id );
718 722
719 723 return status;
720 724 }
721 725
722 726 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
723 727 {
724 728 rtems_status_code status;
725 729 rtems_name queue_name;
726 730
727 731 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
728 732
729 733 status = rtems_message_queue_ident( queue_name, 0, queue_id );
730 734
731 735 return status;
732 736 }
733 737
734 738 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
735 739 {
736 740 rtems_status_code status;
737 741 rtems_name queue_name;
738 742
739 743 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
740 744
741 745 status = rtems_message_queue_ident( queue_name, 0, queue_id );
742 746
743 747 return status;
744 748 }
745 749
746 750 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
747 751 {
748 752 rtems_status_code status;
749 753 rtems_name queue_name;
750 754
751 755 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
752 756
753 757 status = rtems_message_queue_ident( queue_name, 0, queue_id );
754 758
755 759 return status;
756 760 }
757 761
758 762 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
759 763 {
760 764 rtems_status_code status;
761 765 rtems_name queue_name;
762 766
763 767 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
764 768
765 769 status = rtems_message_queue_ident( queue_name, 0, queue_id );
766 770
767 771 return status;
768 772 }
@@ -1,512 +1,578
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12
13 13 unsigned int nb_sm_f0;
14 14 unsigned int nb_sm_f0_aux_f1;
15 15 unsigned int nb_sm_f1;
16 16 unsigned int nb_sm_f0_aux_f2;
17 17
18 18 //************************
19 19 // spectral matrices rings
20 20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 23 ring_node_sm *current_ring_node_sm_f0;
24 24 ring_node_sm *current_ring_node_sm_f1;
25 25 ring_node_sm *current_ring_node_sm_f2;
26 26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 28 ring_node_sm *ring_node_for_averaging_sm_f2;
29 29
30 30 //***********************************************************
31 31 // Interrupt Service Routine for spectral matrices processing
32 32
33 33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
34 34 {
35 unsigned char status;
36 unsigned long long int time_0;
37 unsigned long long int time_1;
38 // STATUS REGISTER
39 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
40 // 10 9 8
41 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
42 // 7 6 5 4 3 2 1 0
43
35 44 //***
36 45 // F0
37 if ( (spectral_matrix_regs->status & 0x1) == 0x01) // check the status_ready_matrix_f0 bit
46 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
47 switch(status)
38 48 {
39 nb_sm_f0 = nb_sm_f0 + 1;
40 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
49 case 0:
50 break;
51 case 3:
52 time_0 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f0_0_coarse_time );
53 time_1 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f0_1_coarse_time );
54 if ( time_0 < time_1 )
41 55 {
42 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
56 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
57 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
58 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
59 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
43 60 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
44 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
45 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
46 {
47 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
48 }
49 nb_sm_f0 = 0;
61 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
62 }
63 else
64 {
65 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
66 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
67 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
68 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
69 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
70 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
50 71 }
51 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
72 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffc; // [1100]
73 break;
74 case 1:
75 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
76 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
77 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
78 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // [1110]
79 break;
80 case 2:
81 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
82 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
83 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
84 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // [1101]
85 break;
52 86 }
53 87
54 88 //***
55 89 // F1
56 if ( (spectral_matrix_regs->status & 0x4) == 0x04) // check the status_ready_matrix_f1 bit
57 {
58 nb_sm_f1 = nb_sm_f1 + 1;
59 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
60 {
61 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
62 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
63 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
64 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
65 {
66 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
67 }
68 nb_sm_f1 = 0;
69 }
70 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffb; // 1011
71 }
90 // if ( (spectral_matrix_regs->status & 0x4) == 0x04) // check the status_ready_matrix_f1 bit
91 // {
92 // nb_sm_f1 = nb_sm_f1 + 1;
93 // if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
94 // {
95 // ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
96 // current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
97 // spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
98 // if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
99 // {
100 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
101 // }
102 // nb_sm_f1 = 0;
103 // }
104 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffb; // 1011
105 // }
72 106
73 107 //***
74 108 // F2
75 if ( (spectral_matrix_regs->status & 0x8) == 0x08) // check the status_ready_matrix_f2 bit
76 {
109 // if ( (spectral_matrix_regs->status & 0x8) == 0x08) // check the status_ready_matrix_f2 bit
110 // {
77 111
78 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
79 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
80 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
81 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
82 {
83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
84 }
85 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff7; // 0111
86 }
112 // ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
113 // current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
114 // spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
115 // if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
116 // {
117 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
118 // }
119 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff7; // 0111
120 // }
87 121
88 122 //************************
89 123 // reset status error bits
90 124 // if ( (spectral_matrix_regs->status & 0x3e0) != 0x00) // [0011 1110 0000] check the status bits
91 125 // {
92 126 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
93 127 // spectral_matrix_regs->status = spectral_matrix_regs->status | 0xfffffc1f; // [1100 0001 1111]
94 128 // }
95 129
96 130 }
97 131
98 132 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
99 133 {
100 134 //***
101 135 // F0
102 136 nb_sm_f0 = nb_sm_f0 + 1;
103 137 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
104 138 {
105 139 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
106 140 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
107 141 {
108 142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
109 143 }
110 144 nb_sm_f0 = 0;
111 145 }
112 146
113 147 //***
114 148 // F1
115 149 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
116 150 if (nb_sm_f0_aux_f1 == 6)
117 151 {
118 152 nb_sm_f0_aux_f1 = 0;
119 153 nb_sm_f1 = nb_sm_f1 + 1;
120 154 }
121 155 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
122 156 {
123 157 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
124 158 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
125 159 {
126 160 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
127 161 }
128 162 nb_sm_f1 = 0;
129 163 }
130 164
131 165 //***
132 166 // F2
133 167 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
134 168 if (nb_sm_f0_aux_f2 == 96)
135 169 {
136 170 nb_sm_f0_aux_f2 = 0;
137 171 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
138 172 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
139 173 {
140 174 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
141 175 }
142 176 }
143 177 }
144 178
145 179 //******************
146 180 // Spectral Matrices
147 181
148 182 void reset_nb_sm( void )
149 183 {
150 184 nb_sm_f0 = 0;
151 185 nb_sm_f0_aux_f1 = 0;
152 186 nb_sm_f0_aux_f2 = 0;
153 187
154 188 nb_sm_f1 = 0;
155 189 }
156 190
157 191 void SM_init_rings( void )
158 192 {
159 193 unsigned char i;
160 194
161 195 // F0 RING
162 196 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
163 197 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
164 198 sm_ring_f0[0].buffer_address =
165 199 (int) &sm_f0[ 0 ];
166 200
167 201 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
168 202 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
169 203 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
170 204 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
171 205
172 206 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
173 207 {
174 208 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
175 209 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
176 210 sm_ring_f0[i].buffer_address =
177 211 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
178 212 }
179 213
180 214 // F1 RING
181 215 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
182 216 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
183 217 sm_ring_f1[0].buffer_address =
184 218 (int) &sm_f1[ 0 ];
185 219
186 220 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
187 221 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
188 222 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
189 223 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
190 224
191 225 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
192 226 {
193 227 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
194 228 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
195 229 sm_ring_f1[i].buffer_address =
196 230 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
197 231 }
198 232
199 233 // F2 RING
200 234 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
201 235 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
202 236 sm_ring_f2[0].buffer_address =
203 237 (int) &sm_f2[ 0 ];
204 238
205 239 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
206 240 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
207 241 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
208 242 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
209 243
210 244 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
211 245 {
212 246 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
213 247 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
214 248 sm_ring_f2[i].buffer_address =
215 249 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
216 250 }
217 251
218 252 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
219 253 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
220 254 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
221 255
222 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
223 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
256 spectral_matrix_regs->f0_0_address = sm_ring_f0[0].buffer_address;
257 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->f0_0_address)
224 258 }
225 259
226 260 void SM_generic_init_ring( ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] )
227 261 {
228 262 unsigned char i;
229 263
230 264 //***************
231 265 // BUFFER ADDRESS
232 266 for(i=0; i<nbNodes; i++)
233 267 {
234 268 ring[ i ].buffer_address = (int) &sm_f[ i * TOTAL_SIZE_SM ];
235 269 }
236 270
237 271 //*****
238 272 // NEXT
239 273 ring[ nbNodes - 1 ].next = (ring_node_sm*) &ring[ 0 ];
240 274 for(i=0; i<nbNodes-1; i++)
241 275 {
242 276 ring[ i ].next = (ring_node_sm*) &ring[ i + 1 ];
243 277 }
244 278
245 279 //*********
246 280 // PREVIOUS
247 281 ring[ 0 ].previous = (ring_node_sm*) &ring[ nbNodes -1 ];
248 282 for(i=1; i<nbNodes; i++)
249 283 {
250 284 ring[ i ].previous = (ring_node_sm*) &ring[ i - 1 ];
251 285 }
252 286 }
253 287
254 288 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
255 289 {
256 290 unsigned char i;
257 291
258 292 ring[ nbNodes - 1 ].next
259 293 = (ring_node_asm*) &ring[ 0 ];
260 294
261 295 for(i=0; i<nbNodes-1; i++)
262 296 {
263 297 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
264 298 }
265 299 }
266 300
267 301 void SM_reset_current_ring_nodes( void )
268 302 {
269 current_ring_node_sm_f0 = sm_ring_f0;
270 current_ring_node_sm_f1 = sm_ring_f1;
271 current_ring_node_sm_f2 = sm_ring_f2;
303 current_ring_node_sm_f0 = sm_ring_f0[0].next;
304 current_ring_node_sm_f1 = sm_ring_f1[0].next;
305 current_ring_node_sm_f2 = sm_ring_f2[0].next;
272 306
273 307 ring_node_for_averaging_sm_f0 = sm_ring_f0;
274 308 ring_node_for_averaging_sm_f1 = sm_ring_f1;
275 309 ring_node_for_averaging_sm_f2 = sm_ring_f2;
276 310 }
277 311
278 312 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
279 313 {
280 314 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
281 315 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
282 316 header->reserved = 0x00;
283 317 header->userApplication = CCSDS_USER_APP;
284 318 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
285 319 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
286 320 header->packetSequenceControl[0] = 0xc0;
287 321 header->packetSequenceControl[1] = 0x00;
288 322 header->packetLength[0] = 0x00;
289 323 header->packetLength[1] = 0x00;
290 324 // DATA FIELD HEADER
291 325 header->spare1_pusVersion_spare2 = 0x10;
292 326 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
293 327 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
294 328 header->destinationID = TM_DESTINATION_ID_GROUND;
295 329 // AUXILIARY DATA HEADER
296 330 header->sid = 0x00;
297 331 header->biaStatusInfo = 0x00;
298 332 header->pa_lfr_pkt_cnt_asm = 0x00;
299 333 header->pa_lfr_pkt_nr_asm = 0x00;
300 334 header->time[0] = 0x00;
301 335 header->time[0] = 0x00;
302 336 header->time[0] = 0x00;
303 337 header->time[0] = 0x00;
304 338 header->time[0] = 0x00;
305 339 header->time[0] = 0x00;
306 340 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
307 341 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
308 342 }
309 343
310 344 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
311 345 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
312 346 {
313 347 unsigned int i;
314 348 unsigned int length = 0;
315 349 rtems_status_code status;
316 350
317 351 for (i=0; i<2; i++)
318 352 {
319 353 // (1) BUILD THE DATA
320 354 switch(sid)
321 355 {
322 356 case SID_NORM_ASM_F0:
323 357 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
324 358 spw_ioctl_send->data = &spectral_matrix[
325 359 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
326 360 ];
327 361 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
328 362 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
329 363 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
330 364 break;
331 365 case SID_NORM_ASM_F1:
332 366 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
333 367 spw_ioctl_send->data = &spectral_matrix[
334 368 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
335 369 ];
336 370 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
337 371 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
338 372 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
339 373 break;
340 374 case SID_NORM_ASM_F2:
341 375 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
342 376 spw_ioctl_send->data = &spectral_matrix[
343 377 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
344 378 ];
345 379 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
346 380 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
347 381 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
348 382 break;
349 383 default:
350 384 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
351 385 break;
352 386 }
353 387 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
354 388 spw_ioctl_send->hdr = (char *) header;
355 389 spw_ioctl_send->options = 0;
356 390
357 391 // (2) BUILD THE HEADER
358 392 increment_seq_counter_source_id( header->packetSequenceControl, sid );
359 393 header->packetLength[0] = (unsigned char) (length>>8);
360 394 header->packetLength[1] = (unsigned char) (length);
361 395 header->sid = (unsigned char) sid; // SID
362 396 header->pa_lfr_pkt_cnt_asm = 2;
363 397 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
364 398
365 399 // (3) SET PACKET TIME
366 400 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
367 401 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
368 402 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
369 403 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
370 404 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
371 405 header->time[5] = (unsigned char) (time_management_regs->fine_time);
372 406 //
373 407 header->acquisitionTime[0] = header->time[0];
374 408 header->acquisitionTime[1] = header->time[1];
375 409 header->acquisitionTime[2] = header->time[2];
376 410 header->acquisitionTime[3] = header->time[3];
377 411 header->acquisitionTime[4] = header->time[4];
378 412 header->acquisitionTime[5] = header->time[5];
379 413
380 414 // (4) SEND PACKET
381 415 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
382 416 if (status != RTEMS_SUCCESSFUL) {
383 417 printf("in ASM_send *** ERR %d\n", (int) status);
384 418 }
385 419 }
386 420 }
387 421
388 422 //*****************
389 423 // Basic Parameters
390 424
391 425 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
392 426 unsigned int apid, unsigned char sid,
393 427 unsigned int packetLength, unsigned char blkNr )
394 428 {
395 429 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
396 430 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
397 431 header->reserved = 0x00;
398 432 header->userApplication = CCSDS_USER_APP;
399 433 header->packetID[0] = (unsigned char) (apid >> 8);
400 434 header->packetID[1] = (unsigned char) (apid);
401 435 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
402 436 header->packetSequenceControl[1] = 0x00;
403 437 header->packetLength[0] = (unsigned char) (packetLength >> 8);
404 438 header->packetLength[1] = (unsigned char) (packetLength);
405 439 // DATA FIELD HEADER
406 440 header->spare1_pusVersion_spare2 = 0x10;
407 441 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
408 442 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
409 443 header->destinationID = TM_DESTINATION_ID_GROUND;
410 444 // AUXILIARY DATA HEADER
411 445 header->sid = sid;
412 446 header->biaStatusInfo = 0x00;
413 447 header->time[0] = 0x00;
414 448 header->time[0] = 0x00;
415 449 header->time[0] = 0x00;
416 450 header->time[0] = 0x00;
417 451 header->time[0] = 0x00;
418 452 header->time[0] = 0x00;
419 453 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
420 454 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
421 455 }
422 456
423 457 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
424 458 unsigned int apid, unsigned char sid,
425 459 unsigned int packetLength , unsigned char blkNr)
426 460 {
427 461 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
428 462 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
429 463 header->reserved = 0x00;
430 464 header->userApplication = CCSDS_USER_APP;
431 465 header->packetID[0] = (unsigned char) (apid >> 8);
432 466 header->packetID[1] = (unsigned char) (apid);
433 467 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
434 468 header->packetSequenceControl[1] = 0x00;
435 469 header->packetLength[0] = (unsigned char) (packetLength >> 8);
436 470 header->packetLength[1] = (unsigned char) (packetLength);
437 471 // DATA FIELD HEADER
438 472 header->spare1_pusVersion_spare2 = 0x10;
439 473 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
440 474 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
441 475 header->destinationID = TM_DESTINATION_ID_GROUND;
442 476 // AUXILIARY DATA HEADER
443 477 header->sid = sid;
444 478 header->biaStatusInfo = 0x00;
445 479 header->time[0] = 0x00;
446 480 header->time[0] = 0x00;
447 481 header->time[0] = 0x00;
448 482 header->time[0] = 0x00;
449 483 header->time[0] = 0x00;
450 484 header->time[0] = 0x00;
451 485 header->source_data_spare = 0x00;
452 486 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
453 487 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
454 488 }
455 489
456 490 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
457 491 {
458 492 rtems_status_code status;
459 493
460 494 // SET THE SEQUENCE_CNT PARAMETER
461 495 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
462 496 // SEND PACKET
463 497 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
464 498 if (status != RTEMS_SUCCESSFUL)
465 499 {
466 500 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
467 501 }
468 502 }
469 503
470 504 //******************
471 505 // general functions
472 506
473 507 void reset_spectral_matrix_regs( void )
474 508 {
475 509 /** This function resets the spectral matrices module registers.
476 510 *
477 511 * The registers affected by this function are located at the following offset addresses:
478 512 *
479 513 * - 0x00 config
480 514 * - 0x04 status
481 515 * - 0x08 matrixF0_Address0
482 516 * - 0x10 matrixFO_Address1
483 517 * - 0x14 matrixF1_Address
484 518 * - 0x18 matrixF2_Address
485 519 *
486 520 */
487 521
488 522 spectral_matrix_regs->config = 0x00;
489 523 spectral_matrix_regs->status = 0x00;
490 524
491 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
492 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
493 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
494 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
525 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
526 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
527 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
528 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
529 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
530 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
495 531 }
496 532
497 533 void set_time( unsigned char *time, unsigned char * timeInBuffer )
498 534 {
499 535 // time[0] = timeInBuffer[2];
500 536 // time[1] = timeInBuffer[3];
501 537 // time[2] = timeInBuffer[0];
502 538 // time[3] = timeInBuffer[1];
503 539 // time[4] = timeInBuffer[6];
504 540 // time[5] = timeInBuffer[7];
505 541
506 542 time[0] = timeInBuffer[0];
507 543 time[1] = timeInBuffer[1];
508 544 time[2] = timeInBuffer[2];
509 545 time[3] = timeInBuffer[3];
510 546 time[4] = timeInBuffer[6];
511 547 time[5] = timeInBuffer[7];
512 548 }
549
550 unsigned long long int get_acquisition_time( unsigned char *timePtr )
551 {
552 unsigned long long int acquisitionTimeAslong;
553 acquisitionTimeAslong = 0x00;
554 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
555 + ( (unsigned long long int) timePtr[1] << 32 )
556 + ( timePtr[2] << 24 )
557 + ( timePtr[3] << 16 )
558 + ( timePtr[4] << 8 )
559 + ( timePtr[5] );
560 return acquisitionTimeAslong;
561 }
562
563 void close_matrix_actions( unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
564 ring_node_sm *node_for_averaging, ring_node_sm *ringNode )
565 {
566 *nb_sm = *nb_sm + 1;
567 if (*nb_sm == nb_sm_before_avf)
568 {
569 node_for_averaging = ringNode;
570 if (rtems_event_send( task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
571 {
572 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
573 }
574 *nb_sm = 0;
575 }
576 }
577
578
@@ -1,949 +1,949
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 165 unsigned char * bytePosPtr;
166 166
167 167 bytePosPtr = (unsigned char *) &TC->packetID;
168 168
169 169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 172
173 173 status = check_mode_value( requestedMode );
174 174
175 175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 176 {
177 177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 178 }
179 179 else // the mode value is consistent, check the transition
180 180 {
181 181 status = check_mode_transition(requestedMode);
182 182 if (status != LFR_SUCCESSFUL)
183 183 {
184 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 186 }
187 187 }
188 188
189 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 190 {
191 191 status = check_transition_date( transitionCoarseTime );
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 198 }
199 199 }
200 200
201 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 202 {
203 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 204 status = enter_mode( requestedMode, transitionCoarseTime );
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 211 {
212 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 216 *
217 217 * @return LFR directive status code:
218 218 * - LFR_DEFAULT
219 219 * - LFR_SUCCESSFUL
220 220 *
221 221 */
222 222
223 223 unsigned int val;
224 224 int result;
225 225 unsigned int status;
226 226 unsigned char mode;
227 227 unsigned char * bytePosPtr;
228 228
229 229 bytePosPtr = (unsigned char *) &TC->packetID;
230 230
231 231 // check LFR mode
232 232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 233 status = check_update_info_hk_lfr_mode( mode );
234 234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 235 {
236 236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 237 status = check_update_info_hk_tds_mode( mode );
238 238 }
239 239 if (status == LFR_SUCCESSFUL) // check THR mode
240 240 {
241 241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 242 status = check_update_info_hk_thr_mode( mode );
243 243 }
244 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 245 {
246 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 248 val++;
249 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 251 }
252 252
253 253 result = status;
254 254
255 255 return result;
256 256 }
257 257
258 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 259 {
260 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 261 *
262 262 * @param TC points to the TeleCommand packet that is being processed
263 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 264 *
265 265 */
266 266
267 267 int result;
268 268 unsigned char lfrMode;
269 269
270 270 result = LFR_DEFAULT;
271 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 272
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275
276 276 return result;
277 277 }
278 278
279 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 */
287 287
288 288 int result;
289 289 unsigned char lfrMode;
290 290
291 291 result = LFR_DEFAULT;
292 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 293
294 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 295 result = LFR_DEFAULT;
296 296
297 297 return result;
298 298 }
299 299
300 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 301 {
302 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 303 *
304 304 * @param TC points to the TeleCommand packet that is being processed
305 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 306 *
307 307 * @return LFR_SUCCESSFUL
308 308 *
309 309 */
310 310
311 311 unsigned int val;
312 312
313 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 314 + (TC->dataAndCRC[1] << 16)
315 315 + (TC->dataAndCRC[2] << 8)
316 316 + TC->dataAndCRC[3];
317 317
318 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319 319
320 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 322 val++;
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326 326
327 327 return LFR_SUCCESSFUL;
328 328 }
329 329
330 330 //*******************
331 331 // ENTERING THE MODES
332 332 int check_mode_value( unsigned char requestedMode )
333 333 {
334 334 int status;
335 335
336 336 if ( (requestedMode != LFR_MODE_STANDBY)
337 337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 339 {
340 340 status = LFR_DEFAULT;
341 341 }
342 342 else
343 343 {
344 344 status = LFR_SUCCESSFUL;
345 345 }
346 346
347 347 return status;
348 348 }
349 349
350 350 int check_mode_transition( unsigned char requestedMode )
351 351 {
352 352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 353 *
354 354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 355 *
356 356 * @return LFR directive status codes:
357 357 * - LFR_SUCCESSFUL - the transition is authorized
358 358 * - LFR_DEFAULT - the transition is not authorized
359 359 *
360 360 */
361 361
362 362 int status;
363 363
364 364 switch (requestedMode)
365 365 {
366 366 case LFR_MODE_STANDBY:
367 367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else
371 371 {
372 372 status = LFR_SUCCESSFUL;
373 373 }
374 374 break;
375 375 case LFR_MODE_NORMAL:
376 376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 377 status = LFR_DEFAULT;
378 378 }
379 379 else {
380 380 status = LFR_SUCCESSFUL;
381 381 }
382 382 break;
383 383 case LFR_MODE_BURST:
384 384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 385 status = LFR_DEFAULT;
386 386 }
387 387 else {
388 388 status = LFR_SUCCESSFUL;
389 389 }
390 390 break;
391 391 case LFR_MODE_SBM1:
392 392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 393 status = LFR_DEFAULT;
394 394 }
395 395 else {
396 396 status = LFR_SUCCESSFUL;
397 397 }
398 398 break;
399 399 case LFR_MODE_SBM2:
400 400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 401 status = LFR_DEFAULT;
402 402 }
403 403 else {
404 404 status = LFR_SUCCESSFUL;
405 405 }
406 406 break;
407 407 default:
408 408 status = LFR_DEFAULT;
409 409 break;
410 410 }
411 411
412 412 return status;
413 413 }
414 414
415 415 int check_transition_date( unsigned int transitionCoarseTime )
416 416 {
417 417 int status;
418 418 unsigned int localCoarseTime;
419 419 unsigned int deltaCoarseTime;
420 420
421 421 status = LFR_SUCCESSFUL;
422 422
423 423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 424 {
425 425 status = LFR_SUCCESSFUL;
426 426 }
427 427 else
428 428 {
429 429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) clear interruptions
471 471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473 473
474 474 // (3) reset waveform picker registers
475 475 reset_wfp_burst_enable(); // reset burst and enable bits
476 476 reset_wfp_status(); // reset all the status bits
477 477
478 478 // (4) reset spectral matrices registers
479 479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // <Spectral Matrices simulator>
484 484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 487 // </Spectral Matrices simulator>
488 488
489 489 // suspend several tasks
490 490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 491 status = suspend_science_tasks();
492 492 }
493 493
494 494 if (status != RTEMS_SUCCESSFUL)
495 495 {
496 496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 503 {
504 504 /** This function is launched after a mode transition validation.
505 505 *
506 506 * @param mode is the mode in which LFR will be put.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 511 *
512 512 */
513 513
514 514 rtems_status_code status;
515 515
516 516 //**********************
517 517 // STOP THE CURRENT MODE
518 518 status = stop_current_mode();
519 519 if (status != RTEMS_SUCCESSFUL)
520 520 {
521 521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 522 }
523 523
524 524 //*************************
525 525 // ENTER THE REQUESTED MODE
526 526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 528 {
529 529 #ifdef PRINT_TASK_STATISTICS
530 530 rtems_cpu_usage_reset();
531 531 maxCount = 0;
532 532 #endif
533 533 status = restart_science_tasks( mode );
534 534 launch_waveform_picker( mode, transitionCoarseTime );
535 //launch_spectral_matrix( );
536 launch_spectral_matrix_simu( );
535 launch_spectral_matrix( );
536 // launch_spectral_matrix_simu( );
537 537 }
538 538 else if ( mode == LFR_MODE_STANDBY )
539 539 {
540 540 #ifdef PRINT_TASK_STATISTICS
541 541 rtems_cpu_usage_report();
542 542 #endif
543 543
544 544 #ifdef PRINT_STACK_REPORT
545 545 PRINTF("stack report selected\n")
546 546 rtems_stack_checker_report_usage();
547 547 #endif
548 548 PRINTF1("maxCount = %d\n", maxCount)
549 549 }
550 550 else
551 551 {
552 552 status = RTEMS_UNSATISFIED;
553 553 }
554 554
555 555 if (status != RTEMS_SUCCESSFUL)
556 556 {
557 557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 558 status = RTEMS_UNSATISFIED;
559 559 }
560 560
561 561 return status;
562 562 }
563 563
564 564 int restart_science_tasks(unsigned char lfrRequestedMode )
565 565 {
566 566 /** This function is used to restart all science tasks.
567 567 *
568 568 * @return RTEMS directive status codes:
569 569 * - RTEMS_SUCCESSFUL - task restarted successfully
570 570 * - RTEMS_INVALID_ID - task id invalid
571 571 * - RTEMS_INCORRECT_STATE - task never started
572 572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 573 *
574 574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 575 *
576 576 */
577 577
578 578 rtems_status_code status[10];
579 579 rtems_status_code ret;
580 580
581 581 ret = RTEMS_SUCCESSFUL;
582 582
583 583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 584 if (status[0] != RTEMS_SUCCESSFUL)
585 585 {
586 586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 587 }
588 588
589 589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 590 if (status[1] != RTEMS_SUCCESSFUL)
591 591 {
592 592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 593 }
594 594
595 595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 596 if (status[2] != RTEMS_SUCCESSFUL)
597 597 {
598 598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 599 }
600 600
601 601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 602 if (status[3] != RTEMS_SUCCESSFUL)
603 603 {
604 604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 605 }
606 606
607 607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 608 if (status[4] != RTEMS_SUCCESSFUL)
609 609 {
610 610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 611 }
612 612
613 613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 614 if (status[5] != RTEMS_SUCCESSFUL)
615 615 {
616 616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 617 }
618 618
619 619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 620 if (status[6] != RTEMS_SUCCESSFUL)
621 621 {
622 622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 623 }
624 624
625 625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 626 if (status[7] != RTEMS_SUCCESSFUL)
627 627 {
628 628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 629 }
630 630
631 631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 632 if (status[8] != RTEMS_SUCCESSFUL)
633 633 {
634 634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 635 }
636 636
637 637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 638 if (status[9] != RTEMS_SUCCESSFUL)
639 639 {
640 640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 641 }
642 642
643 643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
648 648 {
649 649 ret = RTEMS_UNSATISFIED;
650 650 }
651 651
652 652 return ret;
653 653 }
654 654
655 655 int suspend_science_tasks()
656 656 {
657 657 /** This function suspends the science tasks.
658 658 *
659 659 * @return RTEMS directive status codes:
660 660 * - RTEMS_SUCCESSFUL - task restarted successfully
661 661 * - RTEMS_INVALID_ID - task id invalid
662 662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 663 *
664 664 */
665 665
666 666 rtems_status_code status;
667 667
668 668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 669 if (status != RTEMS_SUCCESSFUL)
670 670 {
671 671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 672 }
673 673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 674 {
675 675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 676 if (status != RTEMS_SUCCESSFUL)
677 677 {
678 678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 679 }
680 680 }
681 681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 682 {
683 683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 684 if (status != RTEMS_SUCCESSFUL)
685 685 {
686 686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 687 }
688 688 }
689 689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 690 {
691 691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 692 if (status != RTEMS_SUCCESSFUL)
693 693 {
694 694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 695 }
696 696 }
697 697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 698 {
699 699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 700 if (status != RTEMS_SUCCESSFUL)
701 701 {
702 702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 703 }
704 704 }
705 705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 706 {
707 707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 708 if (status != RTEMS_SUCCESSFUL)
709 709 {
710 710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 711 }
712 712 }
713 713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 714 {
715 715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 716 if (status != RTEMS_SUCCESSFUL)
717 717 {
718 718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 719 }
720 720 }
721 721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 722 {
723 723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 724 if (status != RTEMS_SUCCESSFUL)
725 725 {
726 726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 727 }
728 728 }
729 729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 730 {
731 731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 732 if (status != RTEMS_SUCCESSFUL)
733 733 {
734 734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 735 }
736 736 }
737 737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 738 {
739 739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 740 if (status != RTEMS_SUCCESSFUL)
741 741 {
742 742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 743 }
744 744 }
745 745
746 746 return status;
747 747 }
748 748
749 749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 750 {
751 reset_current_ring_nodes();
751 WFP_reset_current_ring_nodes();
752 752 reset_waveform_picker_regs();
753 753 set_wfp_burst_enable_register( mode );
754 754
755 755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757 757
758 758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 759 if (transitionCoarseTime == 0)
760 760 {
761 761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 762 }
763 763 else
764 764 {
765 765 waveform_picker_regs->start_date = transitionCoarseTime;
766 766 }
767 767 }
768 768
769 769 void launch_spectral_matrix( void )
770 770 {
771 771 SM_reset_current_ring_nodes();
772 772 reset_spectral_matrix_regs();
773 773 reset_nb_sm();
774 774
775 775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 776 grgpio_regs->io_port_direction_register =
777 777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 779 set_irq_on_new_ready_matrix( 1 );
780 780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 782 set_run_matrix_spectral( 1 );
783 783
784 784 }
785 785
786 786 void launch_spectral_matrix_simu( void )
787 787 {
788 788 SM_reset_current_ring_nodes();
789 789 reset_spectral_matrix_regs();
790 790 reset_nb_sm();
791 791
792 792 // Spectral Matrices simulator
793 793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
794 794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
795 795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
796 796 }
797 797
798 798 void set_irq_on_new_ready_matrix( unsigned char value )
799 799 {
800 800 if (value == 1)
801 801 {
802 802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
803 803 }
804 804 else
805 805 {
806 806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
807 807 }
808 808 }
809 809
810 810 void set_run_matrix_spectral( unsigned char value )
811 811 {
812 812 if (value == 1)
813 813 {
814 814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
815 815 }
816 816 else
817 817 {
818 818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
819 819 }
820 820 }
821 821
822 822 //****************
823 823 // CLOSING ACTIONS
824 824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
825 825 {
826 826 /** This function is used to update the HK packets statistics after a successful TC execution.
827 827 *
828 828 * @param TC points to the TC being processed
829 829 * @param time is the time used to date the TC execution
830 830 *
831 831 */
832 832
833 833 unsigned int val;
834 834
835 835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
836 836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
837 837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
838 838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
839 839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
840 840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
841 841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
842 842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
843 843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
844 844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
845 845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
846 846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
847 847
848 848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
849 849 val++;
850 850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
851 851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
852 852 }
853 853
854 854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
855 855 {
856 856 /** This function is used to update the HK packets statistics after a TC rejection.
857 857 *
858 858 * @param TC points to the TC being processed
859 859 * @param time is the time used to date the TC rejection
860 860 *
861 861 */
862 862
863 863 unsigned int val;
864 864
865 865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
866 866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
867 867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
868 868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
869 869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
870 870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
871 871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
872 872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
873 873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
874 874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
875 875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
876 876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
877 877
878 878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
879 879 val++;
880 880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
881 881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
882 882 }
883 883
884 884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
885 885 {
886 886 /** This function is the last step of the TC execution workflow.
887 887 *
888 888 * @param TC points to the TC being processed
889 889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
890 890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
891 891 * @param time is the time used to date the TC execution
892 892 *
893 893 */
894 894
895 895 unsigned char requestedMode;
896 896
897 897 if (result == LFR_SUCCESSFUL)
898 898 {
899 899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
900 900 &
901 901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
902 902 )
903 903 {
904 904 send_tm_lfr_tc_exe_success( TC, queue_id );
905 905 }
906 906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
907 907 {
908 908 //**********************************
909 909 // UPDATE THE LFRMODE LOCAL VARIABLE
910 910 requestedMode = TC->dataAndCRC[1];
911 911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
912 912 updateLFRCurrentMode();
913 913 }
914 914 }
915 915 else if (result == LFR_EXE_ERROR)
916 916 {
917 917 send_tm_lfr_tc_exe_error( TC, queue_id );
918 918 }
919 919 }
920 920
921 921 //***************************
922 922 // Interrupt Service Routines
923 923 rtems_isr commutation_isr1( rtems_vector_number vector )
924 924 {
925 925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
926 926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
927 927 }
928 928 }
929 929
930 930 rtems_isr commutation_isr2( rtems_vector_number vector )
931 931 {
932 932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
933 933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
934 934 }
935 935 }
936 936
937 937 //****************
938 938 // OTHER FUNCTIONS
939 939 void updateLFRCurrentMode()
940 940 {
941 941 /** This function updates the value of the global variable lfrCurrentMode.
942 942 *
943 943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
944 944 *
945 945 */
946 946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
947 947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
948 948 }
949 949
@@ -1,1392 +1,1392
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 31 ring_node *current_ring_node_f0;
32 32 ring_node *ring_node_to_send_swf_f0;
33 33 ring_node *current_ring_node_f1;
34 34 ring_node *ring_node_to_send_swf_f1;
35 35 ring_node *ring_node_to_send_cwf_f1;
36 36 ring_node *current_ring_node_f2;
37 37 ring_node *ring_node_to_send_swf_f2;
38 38 ring_node *ring_node_to_send_cwf_f2;
39 39 ring_node *current_ring_node_f3;
40 40 ring_node *ring_node_to_send_cwf_f3;
41 41
42 42 bool extractSWF = false;
43 43 bool swf_f0_ready = false;
44 44 bool swf_f1_ready = false;
45 45 bool swf_f2_ready = false;
46 46
47 47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48 48
49 49 //*********************
50 50 // Interrupt SubRoutine
51 51
52 52 void reset_extractSWF( void )
53 53 {
54 54 extractSWF = false;
55 55 swf_f0_ready = false;
56 56 swf_f1_ready = false;
57 57 swf_f2_ready = false;
58 58 }
59 59
60 60 rtems_isr waveforms_isr( rtems_vector_number vector )
61 61 {
62 62 /** This is the interrupt sub routine called by the waveform picker core.
63 63 *
64 64 * This ISR launch different actions depending mainly on two pieces of information:
65 65 * 1. the values read in the registers of the waveform picker.
66 66 * 2. the current LFR mode.
67 67 *
68 68 */
69 69
70 70 rtems_status_code status;
71 71
72 72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
73 73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
74 74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
75 75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
76 76 // (1) change the receiving buffer for the waveform picker
77 77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
78 78 current_ring_node_f3 = current_ring_node_f3->next;
79 79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
80 80 // (2) send an event for the waveforms transmission
81 81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
82 82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 83 }
84 84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
85 85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 86 }
87 87 }
88 88
89 89 switch(lfrCurrentMode)
90 90 {
91 91 //********
92 92 // STANDBY
93 93 case(LFR_MODE_STANDBY):
94 94 break;
95 95
96 96 //******
97 97 // NORMAL
98 98 case(LFR_MODE_NORMAL):
99 99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 100 {
101 101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 102 }
103 103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 104 {
105 105 // change F0 ring node
106 106 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 107 current_ring_node_f0 = current_ring_node_f0->next;
108 108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 109 // change F1 ring node
110 110 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 111 current_ring_node_f1 = current_ring_node_f1->next;
112 112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 113 // change F2 ring node
114 114 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 115 current_ring_node_f2 = current_ring_node_f2->next;
116 116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 117 //
118 118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
119 119 {
120 120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 121 }
122 122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
123 123 }
124 124 break;
125 125
126 126 //******
127 127 // BURST
128 128 case(LFR_MODE_BURST):
129 129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
130 130 // (1) change the receiving buffer for the waveform picker
131 131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
132 132 current_ring_node_f2 = current_ring_node_f2->next;
133 133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
134 134 // (2) send an event for the waveforms transmission
135 135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
136 136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 137 }
138 138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
139 139 }
140 140 break;
141 141
142 142 //*****
143 143 // SBM1
144 144 case(LFR_MODE_SBM1):
145 145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
146 146 // (1) change the receiving buffer for the waveform picker
147 147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
148 148 current_ring_node_f1 = current_ring_node_f1->next;
149 149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
150 150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
151 151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
152 152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
153 153 }
154 154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
155 155 swf_f0_ready = true;
156 156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
157 157 }
158 158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
159 159 swf_f2_ready = true;
160 160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
161 161 }
162 162 break;
163 163
164 164 //*****
165 165 // SBM2
166 166 case(LFR_MODE_SBM2):
167 167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
168 168 // (1) change the receiving buffer for the waveform picker
169 169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
170 170 current_ring_node_f2 = current_ring_node_f2->next;
171 171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
172 172 // (2) send an event for the waveforms transmission
173 173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
174 174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
175 175 }
176 176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
177 177 swf_f0_ready = true;
178 178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
179 179 }
180 180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
181 181 swf_f1_ready = true;
182 182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
183 183 }
184 184 break;
185 185
186 186 //********
187 187 // DEFAULT
188 188 default:
189 189 break;
190 190 }
191 191 }
192 192
193 193 //************
194 194 // RTEMS TASKS
195 195
196 196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
197 197 {
198 198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
199 199 *
200 200 * @param unused is the starting argument of the RTEMS task
201 201 *
202 202 * The following data packets are sent by this task:
203 203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
204 204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
205 205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
206 206 *
207 207 */
208 208
209 209 rtems_event_set event_out;
210 210 rtems_id queue_id;
211 211 rtems_status_code status;
212 212
213 213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
214 214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
215 215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
216 216
217 217 status = get_message_queue_id_send( &queue_id );
218 218 if (status != RTEMS_SUCCESSFUL)
219 219 {
220 220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
221 221 }
222 222
223 223 BOOT_PRINTF("in WFRM ***\n")
224 224
225 225 while(1){
226 226 // wait for an RTEMS_EVENT
227 227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
228 228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
229 229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
230 230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
231 231 {
232 232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
233 233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
234 234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
235 235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
236 236 }
237 237 if (event_out == RTEMS_EVENT_MODE_SBM1)
238 238 {
239 239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
240 240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
241 241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
242 242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
243 243 }
244 244 if (event_out == RTEMS_EVENT_MODE_SBM2)
245 245 {
246 246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
247 247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
248 248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
249 249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
250 250 }
251 251 }
252 252 }
253 253
254 254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
255 255 {
256 256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
257 257 *
258 258 * @param unused is the starting argument of the RTEMS task
259 259 *
260 260 * The following data packet is sent by this task:
261 261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
262 262 *
263 263 */
264 264
265 265 rtems_event_set event_out;
266 266 rtems_id queue_id;
267 267 rtems_status_code status;
268 268
269 269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
270 270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
271 271
272 272 status = get_message_queue_id_send( &queue_id );
273 273 if (status != RTEMS_SUCCESSFUL)
274 274 {
275 275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
276 276 }
277 277
278 278 BOOT_PRINTF("in CWF3 ***\n")
279 279
280 280 while(1){
281 281 // wait for an RTEMS_EVENT
282 282 rtems_event_receive( RTEMS_EVENT_0,
283 283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
284 284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
285 285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
286 286 {
287 287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
288 288 {
289 289 PRINTF("send CWF_LONG_F3\n")
290 290 send_waveform_CWF(
291 291 (volatile int*) current_ring_node_f3->buffer_address,
292 292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
293 293 }
294 294 else
295 295 {
296 296 PRINTF("send CWF_F3 (light)\n")
297 297 send_waveform_CWF3_light(
298 298 (volatile int*) current_ring_node_f3->buffer_address,
299 299 headerCWF_F3_light, queue_id );
300 300 }
301 301
302 302 }
303 303 else
304 304 {
305 305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
306 306 }
307 307 }
308 308 }
309 309
310 310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
311 311 {
312 312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
313 313 *
314 314 * @param unused is the starting argument of the RTEMS task
315 315 *
316 316 * The following data packet is sent by this function:
317 317 * - TM_LFR_SCIENCE_BURST_CWF_F2
318 318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
319 319 *
320 320 */
321 321
322 322 rtems_event_set event_out;
323 323 rtems_id queue_id;
324 324 rtems_status_code status;
325 325
326 326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
327 327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
328 328
329 329 status = get_message_queue_id_send( &queue_id );
330 330 if (status != RTEMS_SUCCESSFUL)
331 331 {
332 332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
333 333 }
334 334
335 335 BOOT_PRINTF("in CWF2 ***\n")
336 336
337 337 while(1){
338 338 // wait for an RTEMS_EVENT
339 339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
340 340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 341 if (event_out == RTEMS_EVENT_MODE_BURST)
342 342 {
343 343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
344 344 }
345 345 if (event_out == RTEMS_EVENT_MODE_SBM2)
346 346 {
347 347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
348 348 // launch snapshot extraction if needed
349 349 if (extractSWF == true)
350 350 {
351 351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
352 352 // extract the snapshot
353 353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
354 354 // send the snapshot when built
355 355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
356 356 extractSWF = false;
357 357 }
358 358 if (swf_f0_ready && swf_f1_ready)
359 359 {
360 360 extractSWF = true;
361 361 swf_f0_ready = false;
362 362 swf_f1_ready = false;
363 363 }
364 364 }
365 365 }
366 366 }
367 367
368 368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
369 369 {
370 370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
371 371 *
372 372 * @param unused is the starting argument of the RTEMS task
373 373 *
374 374 * The following data packet is sent by this function:
375 375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
376 376 *
377 377 */
378 378
379 379 rtems_event_set event_out;
380 380 rtems_id queue_id;
381 381 rtems_status_code status;
382 382
383 383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
384 384
385 385 status = get_message_queue_id_send( &queue_id );
386 386 if (status != RTEMS_SUCCESSFUL)
387 387 {
388 388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
389 389 }
390 390
391 391 BOOT_PRINTF("in CWF1 ***\n")
392 392
393 393 while(1){
394 394 // wait for an RTEMS_EVENT
395 395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
396 396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
397 397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
398 398 // launch snapshot extraction if needed
399 399 if (extractSWF == true)
400 400 {
401 401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
402 402 // launch the snapshot extraction
403 403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
404 404 extractSWF = false;
405 405 }
406 406 if (swf_f0_ready == true)
407 407 {
408 408 extractSWF = true;
409 409 swf_f0_ready = false; // this step shall be executed only one time
410 410 }
411 411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
412 412 {
413 413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
414 414 swf_f1_ready = false;
415 415 swf_f2_ready = false;
416 416 }
417 417 }
418 418 }
419 419
420 420 rtems_task swbd_task(rtems_task_argument argument)
421 421 {
422 422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
423 423 *
424 424 * @param unused is the starting argument of the RTEMS task
425 425 *
426 426 */
427 427
428 428 rtems_event_set event_out;
429 429
430 430 BOOT_PRINTF("in SWBD ***\n")
431 431
432 432 while(1){
433 433 // wait for an RTEMS_EVENT
434 434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
435 435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
436 436 if (event_out == RTEMS_EVENT_MODE_SBM1)
437 437 {
438 438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
439 439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
440 440 }
441 441 else
442 442 {
443 443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
444 444 }
445 445 }
446 446 }
447 447
448 448 //******************
449 449 // general functions
450 450
451 void init_waveform_rings( void )
451 void WFP_init_rings( void )
452 452 {
453 453 // F0 RING
454 454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
455 455 // F1 RING
456 456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
457 457 // F2 RING
458 458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
459 459 // F3 RING
460 460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
461 461
462 462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
463 463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
464 464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
465 465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
466 466 }
467 467
468 468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
469 469 {
470 470 unsigned char i;
471 471
472 472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
473 473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
474 474 waveform_ring[0].buffer_address = (int) &wfrm[0];
475 475
476 476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
477 477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
478 478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
479 479
480 480 for(i=1; i<nbNodes-1; i++)
481 481 {
482 482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
483 483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
484 484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
485 485 }
486 486 }
487 487
488 void reset_current_ring_nodes( void )
488 void WFP_reset_current_ring_nodes( void )
489 489 {
490 490 current_ring_node_f0 = waveform_ring_f0;
491 491 ring_node_to_send_swf_f0 = waveform_ring_f0;
492 492
493 493 current_ring_node_f1 = waveform_ring_f1;
494 494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
495 495 ring_node_to_send_swf_f1 = waveform_ring_f1;
496 496
497 497 current_ring_node_f2 = waveform_ring_f2;
498 498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
499 499 ring_node_to_send_swf_f2 = waveform_ring_f2;
500 500
501 501 current_ring_node_f3 = waveform_ring_f3;
502 502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
503 503 }
504 504
505 505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
506 506 {
507 507 unsigned char i;
508 508
509 509 for (i=0; i<7; i++)
510 510 {
511 511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
512 512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
513 513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
514 514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
515 515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
516 516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
517 517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
518 518 if (i == 6)
519 519 {
520 520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
521 521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
522 522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
523 523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
524 524 }
525 525 else
526 526 {
527 527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
528 528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
529 529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
530 530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
531 531 }
532 532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
533 533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
534 534 headerSWF[ i ].pktNr = i+1; // PKT_NR
535 535 // DATA FIELD HEADER
536 536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
537 537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
540 540 // AUXILIARY DATA HEADER
541 541 headerSWF[ i ].time[0] = 0x00;
542 542 headerSWF[ i ].time[0] = 0x00;
543 543 headerSWF[ i ].time[0] = 0x00;
544 544 headerSWF[ i ].time[0] = 0x00;
545 545 headerSWF[ i ].time[0] = 0x00;
546 546 headerSWF[ i ].time[0] = 0x00;
547 547 headerSWF[ i ].sid = sid;
548 548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
549 549 }
550 550 return LFR_SUCCESSFUL;
551 551 }
552 552
553 553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
554 554 {
555 555 unsigned int i;
556 556
557 557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
558 558 {
559 559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
560 560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
561 561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
562 562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
563 563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
564 564 {
565 565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
566 566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
567 567 }
568 568 else
569 569 {
570 570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
571 571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
572 572 }
573 573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
574 574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
575 575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
576 576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
577 577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
578 578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
579 579 // DATA FIELD HEADER
580 580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
581 581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
582 582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
583 583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
584 584 // AUXILIARY DATA HEADER
585 585 headerCWF[ i ].sid = sid;
586 586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
587 587 headerCWF[ i ].time[0] = 0x00;
588 588 headerCWF[ i ].time[0] = 0x00;
589 589 headerCWF[ i ].time[0] = 0x00;
590 590 headerCWF[ i ].time[0] = 0x00;
591 591 headerCWF[ i ].time[0] = 0x00;
592 592 headerCWF[ i ].time[0] = 0x00;
593 593 }
594 594 return LFR_SUCCESSFUL;
595 595 }
596 596
597 597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
598 598 {
599 599 unsigned int i;
600 600
601 601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
602 602 {
603 603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
604 604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
605 605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
606 606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
607 607
608 608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
609 609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
610 610
611 611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
613 613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
614 614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
615 615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
616 616
617 617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
618 618 // DATA FIELD HEADER
619 619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
620 620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
621 621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
622 622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
623 623 // AUXILIARY DATA HEADER
624 624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
625 625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
626 626 headerCWF[ i ].time[0] = 0x00;
627 627 headerCWF[ i ].time[0] = 0x00;
628 628 headerCWF[ i ].time[0] = 0x00;
629 629 headerCWF[ i ].time[0] = 0x00;
630 630 headerCWF[ i ].time[0] = 0x00;
631 631 headerCWF[ i ].time[0] = 0x00;
632 632 }
633 633 return LFR_SUCCESSFUL;
634 634 }
635 635
636 636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
637 637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
638 638 {
639 639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
640 640 *
641 641 * @param waveform points to the buffer containing the data that will be send.
642 642 * @param sid is the source identifier of the data that will be sent.
643 643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
644 644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
645 645 * contain information to setup the transmission of the data packets.
646 646 *
647 647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
648 648 *
649 649 */
650 650
651 651 unsigned int i;
652 652 int ret;
653 653 unsigned int coarseTime;
654 654 unsigned int fineTime;
655 655 rtems_status_code status;
656 656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
657 657
658 658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
659 659 spw_ioctl_send_SWF.options = 0;
660 660
661 661 ret = LFR_DEFAULT;
662 662
663 663 coarseTime = waveform[0];
664 664 fineTime = waveform[1];
665 665
666 666 for (i=0; i<7; i++) // send waveform
667 667 {
668 668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
669 669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
670 670 // BUILD THE DATA
671 671 if (i==6) {
672 672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
673 673 }
674 674 else {
675 675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
676 676 }
677 677 // SET PACKET SEQUENCE COUNTER
678 678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
679 679 // SET PACKET TIME
680 680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
681 681 //
682 682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
683 683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
684 684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
685 685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
686 686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
687 687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
688 688 // SEND PACKET
689 689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
690 690 if (status != RTEMS_SUCCESSFUL) {
691 691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
692 692 ret = LFR_DEFAULT;
693 693 }
694 694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
695 695 }
696 696
697 697 return ret;
698 698 }
699 699
700 700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
701 701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
702 702 {
703 703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
704 704 *
705 705 * @param waveform points to the buffer containing the data that will be send.
706 706 * @param sid is the source identifier of the data that will be sent.
707 707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
708 708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
709 709 * contain information to setup the transmission of the data packets.
710 710 *
711 711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
712 712 *
713 713 */
714 714
715 715 unsigned int i;
716 716 int ret;
717 717 unsigned int coarseTime;
718 718 unsigned int fineTime;
719 719 rtems_status_code status;
720 720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
721 721
722 722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
723 723 spw_ioctl_send_CWF.options = 0;
724 724
725 725 ret = LFR_DEFAULT;
726 726
727 727 coarseTime = waveform[0];
728 728 fineTime = waveform[1];
729 729
730 730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
731 731 {
732 732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
733 733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
734 734 // BUILD THE DATA
735 735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
736 736 // SET PACKET SEQUENCE COUNTER
737 737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
738 738 // SET PACKET TIME
739 739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
740 740 //
741 741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
742 742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
743 743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
744 744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
745 745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
746 746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
747 747 // SEND PACKET
748 748 if (sid == SID_NORM_CWF_LONG_F3)
749 749 {
750 750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
751 751 if (status != RTEMS_SUCCESSFUL) {
752 752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
753 753 ret = LFR_DEFAULT;
754 754 }
755 755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
756 756 }
757 757 else
758 758 {
759 759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
760 760 if (status != RTEMS_SUCCESSFUL) {
761 761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
762 762 ret = LFR_DEFAULT;
763 763 }
764 764 }
765 765 }
766 766
767 767 return ret;
768 768 }
769 769
770 770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 771 {
772 772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
773 773 *
774 774 * @param waveform points to the buffer containing the data that will be send.
775 775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
776 776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
777 777 * contain information to setup the transmission of the data packets.
778 778 *
779 779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
780 780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
781 781 *
782 782 */
783 783
784 784 unsigned int i;
785 785 int ret;
786 786 unsigned int coarseTime;
787 787 unsigned int fineTime;
788 788 rtems_status_code status;
789 789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 790 char *sample;
791 791
792 792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
793 793 spw_ioctl_send_CWF.options = 0;
794 794
795 795 ret = LFR_DEFAULT;
796 796
797 797 //**********************
798 798 // BUILD CWF3_light DATA
799 799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
800 800 {
801 801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
802 802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
803 803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
804 804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
805 805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
806 806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
807 807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
808 808 }
809 809
810 810 coarseTime = waveform[0];
811 811 fineTime = waveform[1];
812 812
813 813 //*********************
814 814 // SEND CWF3_light DATA
815 815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
816 816 {
817 817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
818 818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
819 819 // BUILD THE DATA
820 820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
821 821 // SET PACKET SEQUENCE COUNTER
822 822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
823 823 // SET PACKET TIME
824 824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
825 825 //
826 826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
827 827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
828 828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
829 829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
830 830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
831 831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
832 832 // SEND PACKET
833 833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 834 if (status != RTEMS_SUCCESSFUL) {
835 835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
836 836 ret = LFR_DEFAULT;
837 837 }
838 838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
839 839 }
840 840
841 841 return ret;
842 842 }
843 843
844 844 void compute_acquisition_time_old( unsigned int coarseTime, unsigned int fineTime,
845 845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
846 846 {
847 847 unsigned long long int acquisitionTimeAsLong;
848 848 unsigned char localAcquisitionTime[6];
849 849 double deltaT;
850 850
851 851 deltaT = 0.;
852 852
853 853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
854 854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
855 855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
856 856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
857 857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
858 858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
859 859
860 860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
861 861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
862 862 + ( localAcquisitionTime[2] << 24 )
863 863 + ( localAcquisitionTime[3] << 16 )
864 864 + ( localAcquisitionTime[4] << 8 )
865 865 + ( localAcquisitionTime[5] );
866 866
867 867 switch( sid )
868 868 {
869 869 case SID_NORM_SWF_F0:
870 870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
871 871 break;
872 872
873 873 case SID_NORM_SWF_F1:
874 874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
875 875 break;
876 876
877 877 case SID_NORM_SWF_F2:
878 878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
879 879 break;
880 880
881 881 case SID_SBM1_CWF_F1:
882 882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
883 883 break;
884 884
885 885 case SID_SBM2_CWF_F2:
886 886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
887 887 break;
888 888
889 889 case SID_BURST_CWF_F2:
890 890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
891 891 break;
892 892
893 893 case SID_NORM_CWF_F3:
894 894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
895 895 break;
896 896
897 897 case SID_NORM_CWF_LONG_F3:
898 898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
899 899 break;
900 900
901 901 default:
902 902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
903 903 deltaT = 0.;
904 904 break;
905 905 }
906 906
907 907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
908 908 //
909 909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
910 910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
911 911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
912 912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
913 913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
914 914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
915 915
916 916 }
917 917
918 918 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
919 919 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
920 920 {
921 921 unsigned long long int acquisitionTimeAsLong;
922 922 unsigned char localAcquisitionTime[6];
923 923 double deltaT;
924 924
925 925 deltaT = 0.;
926 926
927 927 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
928 928 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
929 929 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
930 930 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
931 931 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
932 932 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
933 933
934 934 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
935 935 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
936 936 + ( localAcquisitionTime[2] << 24 )
937 937 + ( localAcquisitionTime[3] << 16 )
938 938 + ( localAcquisitionTime[4] << 8 )
939 939 + ( localAcquisitionTime[5] );
940 940
941 941 switch( sid )
942 942 {
943 943 case SID_NORM_SWF_F0:
944 944 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
945 945 break;
946 946
947 947 case SID_NORM_SWF_F1:
948 948 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
949 949 break;
950 950
951 951 case SID_NORM_SWF_F2:
952 952 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
953 953 break;
954 954
955 955 case SID_SBM1_CWF_F1:
956 956 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
957 957 break;
958 958
959 959 case SID_SBM2_CWF_F2:
960 960 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
961 961 break;
962 962
963 963 case SID_BURST_CWF_F2:
964 964 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
965 965 break;
966 966
967 967 case SID_NORM_CWF_F3:
968 968 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
969 969 break;
970 970
971 971 case SID_NORM_CWF_LONG_F3:
972 972 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
973 973 break;
974 974
975 975 default:
976 976 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
977 977 deltaT = 0.;
978 978 break;
979 979 }
980 980
981 981 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
982 982 //
983 983 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
984 984 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
985 985 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
986 986 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
987 987 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
988 988 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
989 989
990 990 }
991 991
992 992 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
993 993 {
994 994 unsigned int i;
995 995 unsigned long long int centerTime_asLong;
996 996 unsigned long long int acquisitionTimeF0_asLong;
997 997 unsigned long long int acquisitionTime_asLong;
998 998 unsigned long long int bufferAcquisitionTime_asLong;
999 999 unsigned char *ptr1;
1000 1000 unsigned char *ptr2;
1001 1001 unsigned char nb_ring_nodes;
1002 1002 unsigned long long int frequency_asLong;
1003 1003 unsigned long long int nbTicksPerSample_asLong;
1004 1004 unsigned long long int nbSamplesPart1_asLong;
1005 1005 unsigned long long int sampleOffset_asLong;
1006 1006
1007 1007 unsigned int deltaT_F0;
1008 1008 unsigned int deltaT_F1;
1009 1009 unsigned long long int deltaT_F2;
1010 1010
1011 1011 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1012 1012 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1013 1013 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1014 1014 sampleOffset_asLong = 0x00;
1015 1015
1016 1016 // (1) get the f0 acquisition time
1017 1017 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1018 1018
1019 1019 // (2) compute the central reference time
1020 1020 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1021 1021
1022 1022 // (3) compute the acquisition time of the current snapshot
1023 1023 switch(frequencyChannel)
1024 1024 {
1025 1025 case 1: // 1 is for F1 = 4096 Hz
1026 1026 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1027 1027 nb_ring_nodes = NB_RING_NODES_F1;
1028 1028 frequency_asLong = 4096;
1029 1029 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1030 1030 break;
1031 1031 case 2: // 2 is for F2 = 256 Hz
1032 1032 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1033 1033 nb_ring_nodes = NB_RING_NODES_F2;
1034 1034 frequency_asLong = 256;
1035 1035 nbTicksPerSample_asLong = 256; // 65536 / 256;
1036 1036 break;
1037 1037 default:
1038 1038 acquisitionTime_asLong = centerTime_asLong;
1039 1039 frequency_asLong = 256;
1040 1040 nbTicksPerSample_asLong = 256;
1041 1041 break;
1042 1042 }
1043 1043
1044 1044 //****************************************************************************
1045 1045 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1046 1046 for (i=0; i<nb_ring_nodes; i++)
1047 1047 {
1048 1048 PRINTF1("%d ... ", i)
1049 1049 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1050 1050 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1051 1051 {
1052 1052 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1053 1053 break;
1054 1054 }
1055 1055 ring_node_to_send = ring_node_to_send->previous;
1056 1056 }
1057 1057
1058 1058 // (5) compute the number of samples to take in the current buffer
1059 1059 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1060 1060 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1061 1061 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1062 1062
1063 1063 // (6) compute the final acquisition time
1064 1064 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1065 1065 sampleOffset_asLong * nbTicksPerSample_asLong;
1066 1066
1067 1067 // (7) copy the acquisition time at the beginning of the extrated snapshot
1068 1068 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1069 1069 ptr2 = (unsigned char*) wf_snap_extracted;
1070 1070 ptr2[0] = ptr1[ 2 + 2 ];
1071 1071 ptr2[1] = ptr1[ 3 + 2 ];
1072 1072 ptr2[2] = ptr1[ 0 + 2 ];
1073 1073 ptr2[3] = ptr1[ 1 + 2 ];
1074 1074 ptr2[4] = ptr1[ 4 + 2 ];
1075 1075 ptr2[5] = ptr1[ 5 + 2 ];
1076 1076
1077 1077 // re set the synchronization bit
1078 1078
1079 1079
1080 1080 // copy the part 1 of the snapshot in the extracted buffer
1081 1081 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1082 1082 {
1083 1083 wf_snap_extracted[i + TIME_OFFSET] =
1084 1084 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1085 1085 }
1086 1086 // copy the part 2 of the snapshot in the extracted buffer
1087 1087 ring_node_to_send = ring_node_to_send->next;
1088 1088 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1089 1089 {
1090 1090 wf_snap_extracted[i + TIME_OFFSET] =
1091 1091 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1092 1092 }
1093 1093 }
1094 1094
1095 1095 void build_acquisition_time_old( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1096 1096 {
1097 1097 unsigned char *acquisitionTimeCharPtr;
1098 1098
1099 1099 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1100 1100
1101 1101 *acquisitionTimeAslong = 0x00;
1102 1102 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1103 1103 + ( acquisitionTimeCharPtr[1] << 16 )
1104 1104 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1105 1105 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1106 1106 + ( acquisitionTimeCharPtr[4] << 8 )
1107 1107 + ( acquisitionTimeCharPtr[5] );
1108 1108 }
1109 1109
1110 1110 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1111 1111 {
1112 1112 unsigned char *acquisitionTimeCharPtr;
1113 1113
1114 1114 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1115 1115
1116 1116 *acquisitionTimeAslong = 0x00;
1117 1117 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1118 1118 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1119 1119 + ( acquisitionTimeCharPtr[2] << 24 )
1120 1120 + ( acquisitionTimeCharPtr[3] << 16 )
1121 1121 + ( acquisitionTimeCharPtr[4] << 8 )
1122 1122 + ( acquisitionTimeCharPtr[5] );
1123 1123 }
1124 1124
1125 1125 //**************
1126 1126 // wfp registers
1127 1127 void reset_wfp_burst_enable(void)
1128 1128 {
1129 1129 /** This function resets the waveform picker burst_enable register.
1130 1130 *
1131 1131 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1132 1132 *
1133 1133 */
1134 1134
1135 1135 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1136 1136 }
1137 1137
1138 1138 void reset_wfp_status( void )
1139 1139 {
1140 1140 /** This function resets the waveform picker status register.
1141 1141 *
1142 1142 * All status bits are set to 0 [new_err full_err full].
1143 1143 *
1144 1144 */
1145 1145
1146 1146 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1147 1147 }
1148 1148
1149 1149 void reset_waveform_picker_regs(void)
1150 1150 {
1151 1151 /** This function resets the waveform picker module registers.
1152 1152 *
1153 1153 * The registers affected by this function are located at the following offset addresses:
1154 1154 * - 0x00 data_shaping
1155 1155 * - 0x04 run_burst_enable
1156 1156 * - 0x08 addr_data_f0
1157 1157 * - 0x0C addr_data_f1
1158 1158 * - 0x10 addr_data_f2
1159 1159 * - 0x14 addr_data_f3
1160 1160 * - 0x18 status
1161 1161 * - 0x1C delta_snapshot
1162 1162 * - 0x20 delta_f0
1163 1163 * - 0x24 delta_f0_2
1164 1164 * - 0x28 delta_f1
1165 1165 * - 0x2c delta_f2
1166 1166 * - 0x30 nb_data_by_buffer
1167 1167 * - 0x34 nb_snapshot_param
1168 1168 * - 0x38 start_date
1169 1169 * - 0x3c nb_word_in_buffer
1170 1170 *
1171 1171 */
1172 1172
1173 1173 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1174 1174 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1175 1175 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1176 1176 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1177 1177 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1178 1178 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1179 1179 reset_wfp_status(); // 0x18
1180 1180 //
1181 1181 set_wfp_delta_snapshot(); // 0x1c
1182 1182 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1183 1183 set_wfp_delta_f1(); // 0x28
1184 1184 set_wfp_delta_f2(); // 0x2c
1185 1185 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1186 1186 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1187 1187 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1188 1188 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1189 1189 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1190 1190 // 2688 = 8 * 336
1191 1191 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1192 1192 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1193 1193 waveform_picker_regs->start_date = 0x00; // 0x38
1194 1194 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1195 1195 }
1196 1196
1197 1197 void set_wfp_data_shaping( void )
1198 1198 {
1199 1199 /** This function sets the data_shaping register of the waveform picker module.
1200 1200 *
1201 1201 * The value is read from one field of the parameter_dump_packet structure:\n
1202 1202 * bw_sp0_sp1_r0_r1
1203 1203 *
1204 1204 */
1205 1205
1206 1206 unsigned char data_shaping;
1207 1207
1208 1208 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1209 1209 // waveform picker : [R1 R0 SP1 SP0 BW]
1210 1210
1211 1211 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1212 1212
1213 1213 waveform_picker_regs->data_shaping =
1214 1214 ( (data_shaping & 0x10) >> 4 ) // BW
1215 1215 + ( (data_shaping & 0x08) >> 2 ) // SP0
1216 1216 + ( (data_shaping & 0x04) ) // SP1
1217 1217 + ( (data_shaping & 0x02) << 2 ) // R0
1218 1218 + ( (data_shaping & 0x01) << 4 ); // R1
1219 1219 }
1220 1220
1221 1221 void set_wfp_burst_enable_register( unsigned char mode )
1222 1222 {
1223 1223 /** This function sets the waveform picker burst_enable register depending on the mode.
1224 1224 *
1225 1225 * @param mode is the LFR mode to launch.
1226 1226 *
1227 1227 * The burst bits shall be before the enable bits.
1228 1228 *
1229 1229 */
1230 1230
1231 1231 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1232 1232 // the burst bits shall be set first, before the enable bits
1233 1233 switch(mode) {
1234 1234 case(LFR_MODE_NORMAL):
1235 1235 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1236 1236 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1237 1237 break;
1238 1238 case(LFR_MODE_BURST):
1239 1239 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1240 1240 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1241 1241 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1242 1242 break;
1243 1243 case(LFR_MODE_SBM1):
1244 1244 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1245 1245 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1246 1246 break;
1247 1247 case(LFR_MODE_SBM2):
1248 1248 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1249 1249 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1250 1250 break;
1251 1251 default:
1252 1252 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1253 1253 break;
1254 1254 }
1255 1255 }
1256 1256
1257 1257 void set_wfp_delta_snapshot( void )
1258 1258 {
1259 1259 /** This function sets the delta_snapshot register of the waveform picker module.
1260 1260 *
1261 1261 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1262 1262 * - sy_lfr_n_swf_p[0]
1263 1263 * - sy_lfr_n_swf_p[1]
1264 1264 *
1265 1265 */
1266 1266
1267 1267 unsigned int delta_snapshot;
1268 1268 unsigned int delta_snapshot_in_T2;
1269 1269
1270 1270 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1271 1271 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1272 1272
1273 1273 delta_snapshot_in_T2 = delta_snapshot * 256;
1274 1274 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1275 1275 }
1276 1276
1277 1277 void set_wfp_delta_f0_f0_2( void )
1278 1278 {
1279 1279 unsigned int delta_snapshot;
1280 1280 unsigned int nb_samples_per_snapshot;
1281 1281 float delta_f0_in_float;
1282 1282
1283 1283 delta_snapshot = waveform_picker_regs->delta_snapshot;
1284 1284 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1285 1285 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1286 1286
1287 1287 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1288 1288 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1289 1289 }
1290 1290
1291 1291 void set_wfp_delta_f1( void )
1292 1292 {
1293 1293 unsigned int delta_snapshot;
1294 1294 unsigned int nb_samples_per_snapshot;
1295 1295 float delta_f1_in_float;
1296 1296
1297 1297 delta_snapshot = waveform_picker_regs->delta_snapshot;
1298 1298 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1299 1299 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1300 1300
1301 1301 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1302 1302 }
1303 1303
1304 1304 void set_wfp_delta_f2()
1305 1305 {
1306 1306 unsigned int delta_snapshot;
1307 1307 unsigned int nb_samples_per_snapshot;
1308 1308
1309 1309 delta_snapshot = waveform_picker_regs->delta_snapshot;
1310 1310 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1311 1311
1312 1312 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1313 1313 }
1314 1314
1315 1315 //*****************
1316 1316 // local parameters
1317 1317
1318 1318 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1319 1319 {
1320 1320 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1321 1321 *
1322 1322 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1323 1323 * @param sid is the source identifier of the packet being updated.
1324 1324 *
1325 1325 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1326 1326 * The sequence counters shall wrap around from 2^14 to zero.
1327 1327 * The sequence counter shall start at zero at startup.
1328 1328 *
1329 1329 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1330 1330 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1331 1331 *
1332 1332 */
1333 1333
1334 1334 unsigned short *sequence_cnt;
1335 1335 unsigned short segmentation_grouping_flag;
1336 1336 unsigned short new_packet_sequence_control;
1337 1337 rtems_mode initial_mode_set;
1338 1338 rtems_mode current_mode_set;
1339 1339 rtems_status_code status;
1340 1340
1341 1341 //******************************************
1342 1342 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1343 1343 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1344 1344
1345 1345 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1346 1346 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1347 1347 || (sid == SID_BURST_CWF_F2)
1348 1348 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1349 1349 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1350 1350 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1351 1351 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1352 1352 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1353 1353 {
1354 1354 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1355 1355 }
1356 1356 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1357 1357 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1358 1358 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1359 1359 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1360 1360 {
1361 1361 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1362 1362 }
1363 1363 else
1364 1364 {
1365 1365 sequence_cnt = (unsigned short *) NULL;
1366 1366 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1367 1367 }
1368 1368
1369 1369 if (sequence_cnt != NULL)
1370 1370 {
1371 1371 // increment the sequence counter
1372 1372 if ( *sequence_cnt < SEQ_CNT_MAX)
1373 1373 {
1374 1374 *sequence_cnt = *sequence_cnt + 1;
1375 1375 }
1376 1376 else
1377 1377 {
1378 1378 *sequence_cnt = 0;
1379 1379 }
1380 1380 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1381 1381 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1382 1382
1383 1383 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1384 1384
1385 1385 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1386 1386 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1387 1387 }
1388 1388
1389 1389 //***********************************
1390 1390 // RESET THE MODE OF THE CALLING TASK
1391 1391 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1392 1392 }
General Comments 0
You need to be logged in to leave comments. Login now