##// END OF EJS Templates
3.2.0.3...
paul -
r351:5d6b18a25367 R3++ draft
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 f97721719ddb7e088956d5fd3cffb0f9587a041b header/lfr_common_headers
2 e01ac8bd125a79a7af38b0e3ba0330f5be1a3c92 header/lfr_common_headers
@@ -1,120 +1,122
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15 #define NB_BINS_TO_REMOVE 3
16 16 #define FI_INTERVAL_COEFF 0.285
17 17 #define BIN_MIN 0
18 18 #define BIN_MAX 127
19 19 #define DELTAF_F0 96.
20 20 #define DELTAF_F1 16.
21 21 #define DELTAF_F2 1.
22 22 #define DELTAF_DIV 2.
23 23
24 24 #define BIT_RW1_F1 0x80
25 25 #define BIT_RW1_F2 0x40
26 26 #define BIT_RW2_F1 0x20
27 27 #define BIT_RW2_F2 0x10
28 28 #define BIT_RW3_F1 0x08
29 29 #define BIT_RW3_F2 0x04
30 30 #define BIT_RW4_F1 0x02
31 31 #define BIT_RW4_F2 0x01
32 32
33 33 #define WHEEL_1 1
34 34 #define WHEEL_2 2
35 35 #define WHEEL_3 3
36 36 #define WHEEL_4 4
37 37 #define FREQ_1 1
38 38 #define FREQ_2 2
39 39 #define FREQ_3 3
40 40 #define FREQ_4 4
41 41 #define FLAG_OFFSET_WHEELS_1_3 8
42 42 #define FLAG_OFFSET_WHEELS_2_4 4
43 43
44 44 #define FLAG_NAN 0 // Not A NUMBER
45 45 #define FLAG_IAN 1 // Is A Number
46 46
47 47 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
48 48
49 49 extern unsigned short sequenceCounterParameterDump;
50 50 extern unsigned short sequenceCounters_TM_DUMP[];
51 51 extern float k_coeff_intercalib_f0_norm[ ];
52 52 extern float k_coeff_intercalib_f0_sbm[ ];
53 53 extern float k_coeff_intercalib_f1_norm[ ];
54 54 extern float k_coeff_intercalib_f1_sbm[ ];
55 55 extern float k_coeff_intercalib_f2[ ];
56 56 extern fbins_masks_t fbins_masks;
57 57
58 58 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
59 59 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
60 60 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
61 61 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
62 62 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
63 63 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
64 64 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
65 65 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
66 66 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
67 67 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
68 68
69 69 // NORMAL
70 70 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
71 71 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
72 72 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
73 73 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
74 74 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
75 75 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
76 76 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
77 77
78 78 // BURST
79 79 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
80 80 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
81 81
82 82 // SBM1
83 83 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
84 84 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
85 85
86 86 // SBM2
87 87 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
88 88 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
89 89
90 90 // TC_LFR_UPDATE_INFO
91 91 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
92 92 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
93 93 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
94 94 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value );
95 95 void set_hk_lfr_sc_rw_f_flags( void );
96 96 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
97 97 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float sy_lfr_rw_k );
98 98 void build_sy_lfr_rw_mask( unsigned int channel );
99 99 void build_sy_lfr_rw_masks();
100 100 void merge_fbins_masks( void );
101 101
102 102 // FBINS_MASK
103 103 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
104 104
105 105 // TC_LFR_LOAD_PARS_FILTER_PAR
106 int check_sy_lfr_rw_k( ccsdsTelecommandPacket_t *TC, int offset, int* pos, float* value );
107 int check_all_sy_lfr_rw_k( ccsdsTelecommandPacket_t *TC, int *pos, float*value );
106 108 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
107 109
108 110 // KCOEFFICIENTS
109 111 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
110 112 void copyFloatByChar( unsigned char *destination, unsigned char *source );
111 113 void copyInt32ByChar( unsigned char *destination, unsigned char *source );
112 114 void copyInt16ByChar( unsigned char *destination, unsigned char *source );
113 115 void floatToChar( float value, unsigned char* ptr);
114 116
115 117 void init_parameter_dump( void );
116 118 void init_kcoefficients_dump( void );
117 119 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
118 120 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
119 121
120 122 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,107 +1,107
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" OFF)
55 55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "2" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "3" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 105 add_executable(fsw ${SOURCES})
106 106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107 107
@@ -1,830 +1,817
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12 #include "fsw_init.h"
13 13
14 14 unsigned int nb_sm_f0 = 0;
15 15 unsigned int nb_sm_f0_aux_f1= 0;
16 16 unsigned int nb_sm_f1 = 0;
17 17 unsigned int nb_sm_f0_aux_f2= 0;
18 18
19 19 typedef enum restartState_t
20 20 {
21 21 WAIT_FOR_F2,
22 22 WAIT_FOR_F1,
23 23 WAIT_FOR_F0
24 24 } restartState;
25 25
26 26 //************************
27 27 // spectral matrices rings
28 28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ] = {0};
29 29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ] = {0};
30 30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ] = {0};
31 31 ring_node *current_ring_node_sm_f0 = NULL;
32 32 ring_node *current_ring_node_sm_f1 = NULL;
33 33 ring_node *current_ring_node_sm_f2 = NULL;
34 34 ring_node *ring_node_for_averaging_sm_f0= NULL;
35 35 ring_node *ring_node_for_averaging_sm_f1= NULL;
36 36 ring_node *ring_node_for_averaging_sm_f2= NULL;
37 37
38 38 //
39 39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
40 40 {
41 41 ring_node *node;
42 42
43 43 node = NULL;
44 44 switch ( frequencyChannel ) {
45 45 case CHANNELF0:
46 46 node = ring_node_for_averaging_sm_f0;
47 47 break;
48 48 case CHANNELF1:
49 49 node = ring_node_for_averaging_sm_f1;
50 50 break;
51 51 case CHANNELF2:
52 52 node = ring_node_for_averaging_sm_f2;
53 53 break;
54 54 default:
55 55 break;
56 56 }
57 57
58 58 return node;
59 59 }
60 60
61 61 //***********************************************************
62 62 // Interrupt Service Routine for spectral matrices processing
63 63
64 64 void spectral_matrices_isr_f0( int statusReg )
65 65 {
66 66 unsigned char status;
67 67 rtems_status_code status_code;
68 68 ring_node *full_ring_node;
69 69
70 70 status = (unsigned char) (statusReg & BITS_STATUS_F0); // [0011] get the status_ready_matrix_f0_x bits
71 71
72 72 switch(status)
73 73 {
74 74 case 0:
75 75 break;
76 76 case BIT_READY_0_1:
77 77 // UNEXPECTED VALUE
78 78 spectral_matrix_regs->status = BIT_READY_0_1; // [0011]
79 79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
80 80 break;
81 81 case BIT_READY_0:
82 82 full_ring_node = current_ring_node_sm_f0->previous;
83 83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
84 84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
85 85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
86 86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
87 87 // if there are enough ring nodes ready, wake up an AVFx task
88 88 nb_sm_f0 = nb_sm_f0 + 1;
89 89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
90 90 {
91 91 ring_node_for_averaging_sm_f0 = full_ring_node;
92 92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
93 93 {
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
95 95 }
96 96 nb_sm_f0 = 0;
97 97 }
98 98 spectral_matrix_regs->status = BIT_READY_0; // [0000 0001]
99 99 break;
100 100 case BIT_READY_1:
101 101 full_ring_node = current_ring_node_sm_f0->previous;
102 102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
103 103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
104 104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
105 105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
106 106 // if there are enough ring nodes ready, wake up an AVFx task
107 107 nb_sm_f0 = nb_sm_f0 + 1;
108 108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
109 109 {
110 110 ring_node_for_averaging_sm_f0 = full_ring_node;
111 111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
112 112 {
113 113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
114 114 }
115 115 nb_sm_f0 = 0;
116 116 }
117 117 spectral_matrix_regs->status = BIT_READY_1; // [0000 0010]
118 118 break;
119 119 default:
120 120 break;
121 121 }
122 122 }
123 123
124 124 void spectral_matrices_isr_f1( int statusReg )
125 125 {
126 126 rtems_status_code status_code;
127 127 unsigned char status;
128 128 ring_node *full_ring_node;
129 129
130 130 status = (unsigned char) ((statusReg & BITS_STATUS_F1) >> SHIFT_2_BITS); // [1100] get the status_ready_matrix_f1_x bits
131 131
132 132 switch(status)
133 133 {
134 134 case 0:
135 135 break;
136 136 case BIT_READY_0_1:
137 137 // UNEXPECTED VALUE
138 138 spectral_matrix_regs->status = BITS_STATUS_F1; // [1100]
139 139 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
140 140 break;
141 141 case BIT_READY_0:
142 142 full_ring_node = current_ring_node_sm_f1->previous;
143 143 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
144 144 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
145 145 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
146 146 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
147 147 // if there are enough ring nodes ready, wake up an AVFx task
148 148 nb_sm_f1 = nb_sm_f1 + 1;
149 149 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
150 150 {
151 151 ring_node_for_averaging_sm_f1 = full_ring_node;
152 152 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
153 153 {
154 154 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
155 155 }
156 156 nb_sm_f1 = 0;
157 157 }
158 158 spectral_matrix_regs->status = BIT_STATUS_F1_0; // [0000 0100]
159 159 break;
160 160 case BIT_READY_1:
161 161 full_ring_node = current_ring_node_sm_f1->previous;
162 162 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
163 163 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
164 164 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
165 165 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
166 166 // if there are enough ring nodes ready, wake up an AVFx task
167 167 nb_sm_f1 = nb_sm_f1 + 1;
168 168 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
169 169 {
170 170 ring_node_for_averaging_sm_f1 = full_ring_node;
171 171 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
172 172 {
173 173 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
174 174 }
175 175 nb_sm_f1 = 0;
176 176 }
177 177 spectral_matrix_regs->status = BIT_STATUS_F1_1; // [1000 0000]
178 178 break;
179 179 default:
180 180 break;
181 181 }
182 182 }
183 183
184 184 void spectral_matrices_isr_f2( int statusReg )
185 185 {
186 186 unsigned char status;
187 187 rtems_status_code status_code;
188 188
189 189 status = (unsigned char) ((statusReg & BITS_STATUS_F2) >> SHIFT_4_BITS); // [0011 0000] get the status_ready_matrix_f2_x bits
190 190
191 191 switch(status)
192 192 {
193 193 case 0:
194 194 break;
195 195 case BIT_READY_0_1:
196 196 // UNEXPECTED VALUE
197 197 spectral_matrix_regs->status = BITS_STATUS_F2; // [0011 0000]
198 198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
199 199 break;
200 200 case BIT_READY_0:
201 201 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
202 202 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
203 203 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
204 204 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
205 205 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
206 206 spectral_matrix_regs->status = BIT_STATUS_F2_0; // [0001 0000]
207 207 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 208 {
209 209 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 210 }
211 211 break;
212 212 case BIT_READY_1:
213 213 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
214 214 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
215 215 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
216 216 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
217 217 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
218 218 spectral_matrix_regs->status = BIT_STATUS_F2_1; // [0010 0000]
219 219 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
220 220 {
221 221 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
222 222 }
223 223 break;
224 224 default:
225 225 break;
226 226 }
227 227 }
228 228
229 229 void spectral_matrix_isr_error_handler( int statusReg )
230 230 {
231 231 // STATUS REGISTER
232 232 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
233 233 // 10 9 8
234 234 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
235 235 // 7 6 5 4 3 2 1 0
236 236 // [bad_component_err] not defined in the last version of the VHDL code
237 237
238 238 rtems_status_code status_code;
239 239
240 240 //***************************************************
241 241 // the ASM status register is copied in the HK packet
242 242 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) ((statusReg & BITS_HK_AA_SM) >> SHIFT_7_BITS); // [0111 1000 0000]
243 243
244 244 if (statusReg & BITS_SM_ERR) // [0111 1100 0000]
245 245 {
246 246 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
247 247 }
248 248
249 249 spectral_matrix_regs->status = spectral_matrix_regs->status & BITS_SM_ERR;
250 250
251 251 }
252 252
253 253 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
254 254 {
255 255 // STATUS REGISTER
256 256 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
257 257 // 10 9 8
258 258 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
259 259 // 7 6 5 4 3 2 1 0
260 260
261 261 int statusReg;
262 262
263 263 static restartState state = WAIT_FOR_F2;
264 264
265 265 statusReg = spectral_matrix_regs->status;
266 266
267 267 if (thisIsAnASMRestart == 0)
268 268 { // this is not a restart sequence, process incoming matrices normally
269 269 spectral_matrices_isr_f0( statusReg );
270 270
271 271 spectral_matrices_isr_f1( statusReg );
272 272
273 273 spectral_matrices_isr_f2( statusReg );
274 274 }
275 275 else
276 276 { // a restart sequence has to be launched
277 277 switch (state) {
278 278 case WAIT_FOR_F2:
279 279 if ((statusReg & BITS_STATUS_F2) != INIT_CHAR) // [0011 0000] check the status_ready_matrix_f2_x bits
280 280 {
281 281 state = WAIT_FOR_F1;
282 282 }
283 283 break;
284 284 case WAIT_FOR_F1:
285 285 if ((statusReg & BITS_STATUS_F1) != INIT_CHAR) // [0000 1100] check the status_ready_matrix_f1_x bits
286 286 {
287 287 state = WAIT_FOR_F0;
288 288 }
289 289 break;
290 290 case WAIT_FOR_F0:
291 291 if ((statusReg & BITS_STATUS_F0) != INIT_CHAR) // [0000 0011] check the status_ready_matrix_f0_x bits
292 292 {
293 293 state = WAIT_FOR_F2;
294 294 thisIsAnASMRestart = 0;
295 295 }
296 296 break;
297 297 default:
298 298 break;
299 299 }
300 300 reset_sm_status();
301 301 }
302 302
303 303 spectral_matrix_isr_error_handler( statusReg );
304 304
305 305 }
306 306
307 307 //******************
308 308 // Spectral Matrices
309 309
310 310 void reset_nb_sm( void )
311 311 {
312 312 nb_sm_f0 = 0;
313 313 nb_sm_f0_aux_f1 = 0;
314 314 nb_sm_f0_aux_f2 = 0;
315 315
316 316 nb_sm_f1 = 0;
317 317 }
318 318
319 319 void SM_init_rings( void )
320 320 {
321 321 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
322 322 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
323 323 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
324 324
325 325 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
326 326 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
327 327 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
328 328 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
329 329 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
330 330 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
331 331 }
332 332
333 333 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
334 334 {
335 335 unsigned char i;
336 336
337 337 ring[ nbNodes - 1 ].next
338 338 = (ring_node_asm*) &ring[ 0 ];
339 339
340 340 for(i=0; i<nbNodes-1; i++)
341 341 {
342 342 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
343 343 }
344 344 }
345 345
346 346 void SM_reset_current_ring_nodes( void )
347 347 {
348 348 current_ring_node_sm_f0 = sm_ring_f0[0].next;
349 349 current_ring_node_sm_f1 = sm_ring_f1[0].next;
350 350 current_ring_node_sm_f2 = sm_ring_f2[0].next;
351 351
352 352 ring_node_for_averaging_sm_f0 = NULL;
353 353 ring_node_for_averaging_sm_f1 = NULL;
354 354 ring_node_for_averaging_sm_f2 = NULL;
355 355 }
356 356
357 357 //*****************
358 358 // Basic Parameters
359 359
360 360 void BP_init_header( bp_packet *packet,
361 361 unsigned int apid, unsigned char sid,
362 362 unsigned int packetLength, unsigned char blkNr )
363 363 {
364 364 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
365 365 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
366 366 packet->reserved = INIT_CHAR;
367 367 packet->userApplication = CCSDS_USER_APP;
368 368 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
369 369 packet->packetID[1] = (unsigned char) (apid);
370 370 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
371 371 packet->packetSequenceControl[1] = INIT_CHAR;
372 372 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
373 373 packet->packetLength[1] = (unsigned char) (packetLength);
374 374 // DATA FIELD HEADER
375 375 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
376 376 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
377 377 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
378 378 packet->destinationID = TM_DESTINATION_ID_GROUND;
379 379 packet->time[BYTE_0] = INIT_CHAR;
380 380 packet->time[BYTE_1] = INIT_CHAR;
381 381 packet->time[BYTE_2] = INIT_CHAR;
382 382 packet->time[BYTE_3] = INIT_CHAR;
383 383 packet->time[BYTE_4] = INIT_CHAR;
384 384 packet->time[BYTE_5] = INIT_CHAR;
385 385 // AUXILIARY DATA HEADER
386 386 packet->sid = sid;
387 387 packet->pa_bia_status_info = INIT_CHAR;
388 388 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
389 389 packet->sy_lfr_common_parameters = INIT_CHAR;
390 390 packet->acquisitionTime[BYTE_0] = INIT_CHAR;
391 391 packet->acquisitionTime[BYTE_1] = INIT_CHAR;
392 392 packet->acquisitionTime[BYTE_2] = INIT_CHAR;
393 393 packet->acquisitionTime[BYTE_3] = INIT_CHAR;
394 394 packet->acquisitionTime[BYTE_4] = INIT_CHAR;
395 395 packet->acquisitionTime[BYTE_5] = INIT_CHAR;
396 396 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
397 397 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
398 398 }
399 399
400 400 void BP_init_header_with_spare( bp_packet_with_spare *packet,
401 401 unsigned int apid, unsigned char sid,
402 402 unsigned int packetLength , unsigned char blkNr)
403 403 {
404 404 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
405 405 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
406 406 packet->reserved = INIT_CHAR;
407 407 packet->userApplication = CCSDS_USER_APP;
408 408 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
409 409 packet->packetID[1] = (unsigned char) (apid);
410 410 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
411 411 packet->packetSequenceControl[1] = INIT_CHAR;
412 412 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
413 413 packet->packetLength[1] = (unsigned char) (packetLength);
414 414 // DATA FIELD HEADER
415 415 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
416 416 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
417 417 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
418 418 packet->destinationID = TM_DESTINATION_ID_GROUND;
419 419 // AUXILIARY DATA HEADER
420 420 packet->sid = sid;
421 421 packet->pa_bia_status_info = INIT_CHAR;
422 422 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
423 423 packet->sy_lfr_common_parameters = INIT_CHAR;
424 424 packet->time[BYTE_0] = INIT_CHAR;
425 425 packet->time[BYTE_1] = INIT_CHAR;
426 426 packet->time[BYTE_2] = INIT_CHAR;
427 427 packet->time[BYTE_3] = INIT_CHAR;
428 428 packet->time[BYTE_4] = INIT_CHAR;
429 429 packet->time[BYTE_5] = INIT_CHAR;
430 430 packet->source_data_spare = INIT_CHAR;
431 431 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
432 432 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
433 433 }
434 434
435 435 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
436 436 {
437 437 rtems_status_code status;
438 438
439 439 // SEND PACKET
440 440 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
441 441 if (status != RTEMS_SUCCESSFUL)
442 442 {
443 443 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
444 444 }
445 445 }
446 446
447 447 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
448 448 {
449 449 /** This function is used to send the BP paquets when needed.
450 450 *
451 451 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
452 452 *
453 453 * @return void
454 454 *
455 455 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
456 456 * BURST paquets are sent everytime.
457 457 *
458 458 */
459 459
460 460 rtems_status_code status;
461 461
462 462 // SEND PACKET
463 463 // before lastValidTransitionDate, the data are drops even if they are ready
464 464 // this guarantees that no SBM packets will be received before the requested enter mode time
465 465 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
466 466 {
467 467 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
468 468 if (status != RTEMS_SUCCESSFUL)
469 469 {
470 470 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
471 471 }
472 472 }
473 473 }
474 474
475 475 //******************
476 476 // general functions
477 477
478 478 void reset_sm_status( void )
479 479 {
480 480 // error
481 481 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
482 482 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
483 483 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
484 484 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
485 485
486 486 spectral_matrix_regs->status = BITS_STATUS_REG; // [0111 1111 1111]
487 487 }
488 488
489 489 void reset_spectral_matrix_regs( void )
490 490 {
491 491 /** This function resets the spectral matrices module registers.
492 492 *
493 493 * The registers affected by this function are located at the following offset addresses:
494 494 *
495 495 * - 0x00 config
496 496 * - 0x04 status
497 497 * - 0x08 matrixF0_Address0
498 498 * - 0x10 matrixFO_Address1
499 499 * - 0x14 matrixF1_Address
500 500 * - 0x18 matrixF2_Address
501 501 *
502 502 */
503 503
504 504 set_sm_irq_onError( 0 );
505 505
506 506 set_sm_irq_onNewMatrix( 0 );
507 507
508 508 reset_sm_status();
509 509
510 510 // F1
511 511 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
512 512 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
513 513 // F2
514 514 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
515 515 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
516 516 // F3
517 517 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
518 518 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
519 519
520 520 spectral_matrix_regs->matrix_length = DEFAULT_MATRIX_LENGTH; // 25 * 128 / 16 = 200 = 0xc8
521 521 }
522 522
523 523 void set_time( unsigned char *time, unsigned char * timeInBuffer )
524 524 {
525 525 time[BYTE_0] = timeInBuffer[BYTE_0];
526 526 time[BYTE_1] = timeInBuffer[BYTE_1];
527 527 time[BYTE_2] = timeInBuffer[BYTE_2];
528 528 time[BYTE_3] = timeInBuffer[BYTE_3];
529 529 time[BYTE_4] = timeInBuffer[BYTE_6];
530 530 time[BYTE_5] = timeInBuffer[BYTE_7];
531 531 }
532 532
533 533 unsigned long long int get_acquisition_time( unsigned char *timePtr )
534 534 {
535 535 unsigned long long int acquisitionTimeAslong;
536 536 acquisitionTimeAslong = INIT_CHAR;
537 537 acquisitionTimeAslong =
538 538 ( (unsigned long long int) (timePtr[BYTE_0] & SYNC_BIT_MASK) << SHIFT_5_BYTES ) // [0111 1111] mask the synchronization bit
539 539 + ( (unsigned long long int) timePtr[BYTE_1] << SHIFT_4_BYTES )
540 540 + ( (unsigned long long int) timePtr[BYTE_2] << SHIFT_3_BYTES )
541 541 + ( (unsigned long long int) timePtr[BYTE_3] << SHIFT_2_BYTES )
542 542 + ( (unsigned long long int) timePtr[BYTE_6] << SHIFT_1_BYTE )
543 543 + ( (unsigned long long int) timePtr[BYTE_7] );
544 544 return acquisitionTimeAslong;
545 545 }
546 546
547 547 unsigned char getSID( rtems_event_set event )
548 548 {
549 549 unsigned char sid;
550 550
551 551 rtems_event_set eventSetBURST;
552 552 rtems_event_set eventSetSBM;
553 553
554 554 sid = 0;
555 555
556 556 //******
557 557 // BURST
558 558 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
559 559 | RTEMS_EVENT_BURST_BP1_F1
560 560 | RTEMS_EVENT_BURST_BP2_F0
561 561 | RTEMS_EVENT_BURST_BP2_F1;
562 562
563 563 //****
564 564 // SBM
565 565 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
566 566 | RTEMS_EVENT_SBM_BP1_F1
567 567 | RTEMS_EVENT_SBM_BP2_F0
568 568 | RTEMS_EVENT_SBM_BP2_F1;
569 569
570 570 if (event & eventSetBURST)
571 571 {
572 572 sid = SID_BURST_BP1_F0;
573 573 }
574 574 else if (event & eventSetSBM)
575 575 {
576 576 sid = SID_SBM1_BP1_F0;
577 577 }
578 578 else
579 579 {
580 580 sid = 0;
581 581 }
582 582
583 583 return sid;
584 584 }
585 585
586 586 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
587 587 {
588 588 unsigned int i;
589 589 float re;
590 590 float im;
591 591
592 592 for (i=0; i<NB_BINS_PER_SM; i++){
593 593 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) ];
594 594 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) + 1];
595 595 outputASM[ ( asmComponent *NB_BINS_PER_SM) + i] = re;
596 596 outputASM[ ((asmComponent+1)*NB_BINS_PER_SM) + i] = im;
597 597 }
598 598 }
599 599
600 600 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
601 601 {
602 602 unsigned int i;
603 603 float re;
604 604
605 605 for (i=0; i<NB_BINS_PER_SM; i++){
606 606 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
607 607 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
608 608 }
609 609 }
610 610
611 611 void ASM_patch( float *inputASM, float *outputASM )
612 612 {
613 613 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B2); // b1b2
614 614 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B3 ); // b1b3
615 615 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E1 ); // b1e1
616 616 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E2 ); // b1e2
617 617 extractReImVectors( inputASM, outputASM, ASM_COMP_B2B3 ); // b2b3
618 618 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E1 ); // b2e1
619 619 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E2 ); // b2e2
620 620 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E1 ); // b3e1
621 621 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E2 ); // b3e2
622 622 extractReImVectors( inputASM, outputASM, ASM_COMP_E1E2 ); // e1e2
623 623
624 624 copyReVectors(inputASM, outputASM, ASM_COMP_B1B1 ); // b1b1
625 625 copyReVectors(inputASM, outputASM, ASM_COMP_B2B2 ); // b2b2
626 626 copyReVectors(inputASM, outputASM, ASM_COMP_B3B3); // b3b3
627 627 copyReVectors(inputASM, outputASM, ASM_COMP_E1E1); // e1e1
628 628 copyReVectors(inputASM, outputASM, ASM_COMP_E2E2); // e2e2
629 629 }
630 630
631 631 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
632 632 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
633 633 unsigned char ASMIndexStart,
634 634 unsigned char channel )
635 635 {
636 636 //*************
637 637 // input format
638 638 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
639 639 //**************
640 640 // output format
641 641 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
642 642 //************
643 643 // compression
644 644 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
645 645 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
646 646
647 647 int frequencyBin;
648 648 int asmComponent;
649 649 int offsetASM;
650 650 int offsetCompressed;
651 651 int offsetFBin;
652 652 int fBinMask;
653 653 int k;
654 654
655 655 // BUILD DATA
656 656 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
657 657 {
658 658 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
659 659 {
660 660 offsetCompressed = // NO TIME OFFSET
661 661 (frequencyBin * NB_VALUES_PER_SM)
662 662 + asmComponent;
663 663 offsetASM = // NO TIME OFFSET
664 664 (asmComponent * NB_BINS_PER_SM)
665 665 + ASMIndexStart
666 666 + (frequencyBin * nbBinsToAverage);
667 667 offsetFBin = ASMIndexStart
668 668 + (frequencyBin * nbBinsToAverage);
669 669 compressed_spec_mat[ offsetCompressed ] = 0;
670 670 for ( k = 0; k < nbBinsToAverage; k++ )
671 671 {
672 672 fBinMask = getFBinMask( offsetFBin + k, channel );
673 673 compressed_spec_mat[offsetCompressed ] = compressed_spec_mat[ offsetCompressed ]
674 674 + (averaged_spec_mat[ offsetASM + k ] * fBinMask);
675 675 }
676 676 if (divider != 0)
677 677 {
678 678 compressed_spec_mat[ offsetCompressed ] = compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
679 679 }
680 680 else
681 681 {
682 682 compressed_spec_mat[ offsetCompressed ] = INIT_FLOAT;
683 683 }
684 684 }
685 685 }
686 686
687 687 }
688 688
689 689 int getFBinMask( int index, unsigned char channel )
690 690 {
691 691 unsigned int indexInChar;
692 692 unsigned int indexInTheChar;
693 693 int fbin;
694 694 unsigned char *sy_lfr_fbins_fx_word1;
695 695
696 696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
697 697
698 698 switch(channel)
699 699 {
700 700 case CHANNELF0:
701 701 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
702 702 break;
703 703 case CHANNELF1:
704 704 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
705 705 break;
706 706 case CHANNELF2:
707 707 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
708 708 break;
709 709 default:
710 710 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
711 711 }
712 712
713 713 indexInChar = index >> SHIFT_3_BITS;
714 714 indexInTheChar = index - (indexInChar * BITS_PER_BYTE);
715 715
716 716 fbin = (int) ((sy_lfr_fbins_fx_word1[ BYTES_PER_MASK - 1 - indexInChar] >> indexInTheChar) & 1);
717 717
718 718 return fbin;
719 719 }
720 720
721 721 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
722 722 {
723 723 u_int64_t acquisitionTimeStart;
724 724 u_int64_t acquisitionTimeStop;
725 725 u_int64_t timecodeReference;
726 726 u_int64_t offsetInFineTime;
727 727 u_int64_t shiftInFineTime;
728 728 u_int64_t tBadInFineTime;
729 729 u_int64_t acquisitionTimeRangeMin;
730 730 u_int64_t acquisitionTimeRangeMax;
731 731 unsigned char pasFilteringIsEnabled;
732 732 unsigned char ret;
733 733
734 734 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 1); // [0000 0001]
735 735 ret = 1;
736 736
737 737 // compute acquisition time from caoarseTime and fineTime
738 738 acquisitionTimeStart = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES )
739 739 + (u_int64_t) fineTime;
740 740 switch(channel)
741 741 {
742 742 case CHANNELF0:
743 743 acquisitionTimeStop = acquisitionTimeStart + FINETIME_PER_SM_F0;
744 744 break;
745 745 case CHANNELF1:
746 746 acquisitionTimeStop = acquisitionTimeStart + FINETIME_PER_SM_F1;
747 747 break;
748 748 case CHANNELF2:
749 749 acquisitionTimeStop = acquisitionTimeStart + FINETIME_PER_SM_F2;
750 750 break;
751 751 }
752 752
753 753 // compute the timecode reference
754 754 timecodeReference = (u_int64_t) ( (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
755 755 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * CONST_65536 );
756 756
757 757 // compute the acquitionTime range
758 758 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
759 759 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
760 760 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
761 761
762 762 acquisitionTimeRangeMin =
763 763 timecodeReference
764 764 + offsetInFineTime
765 765 + shiftInFineTime
766 766 - acquisitionDurations[channel];
767 767 acquisitionTimeRangeMax =
768 768 timecodeReference
769 769 + offsetInFineTime
770 770 + shiftInFineTime
771 771 + tBadInFineTime;
772 772
773 773 if ( (acquisitionTimeStart >= acquisitionTimeRangeMin)
774 774 && (acquisitionTimeStart <= acquisitionTimeRangeMax)
775 775 && (pasFilteringIsEnabled == 1) )
776 776 {
777 777 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
778 778 }
779 779 else
780 780 {
781 781 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
782 782 }
783 783
784 784 // the last sample of the data used to compute the matrix shall not be INSIDE the range, test it now, it depends on the channel
785 785 if (ret == 1)
786 786 {
787 787 if ( (acquisitionTimeStop >= acquisitionTimeRangeMin)
788 788 && (acquisitionTimeStop <= acquisitionTimeRangeMax)
789 789 && (pasFilteringIsEnabled == 1) )
790 790 {
791 791 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
792 792 }
793 793 else
794 794 {
795 795 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
796 796 }
797 797 }
798 798
799 // printf("coarseTime = %x, fineTime = %x\n",
800 // coarseTime,
801 // fineTime);
802
803 // printf("[ret = %d] *** acquisitionTime = %f, Reference = %f",
804 // ret,
805 // acquisitionTime / 65536.,
806 // timecodeReference / 65536.);
807
808 // printf(", Min = %f, Max = %f\n",
809 // acquisitionTimeRangeMin / 65536.,
810 // acquisitionTimeRangeMax / 65536.);
811
812 799 return ret;
813 800 }
814 801
815 802 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
816 803 {
817 804 unsigned char bin;
818 805 unsigned char kcoeff;
819 806
820 807 for (bin=0; bin<nb_bins_norm; bin++)
821 808 {
822 809 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
823 810 {
824 811 output_kcoeff[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
825 812 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
826 813 output_kcoeff[ ( ( (bin * NB_K_COEFF_PER_BIN ) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ) + 1 ]
827 814 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
828 815 }
829 816 }
830 817 }
@@ -1,1816 +1,1951
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327 unsigned char k;
328 328
329 329 flag = LFR_DEFAULT;
330 330 k = INIT_CHAR;
331 331
332 332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
333 333
334 334 if (flag == LFR_SUCCESSFUL)
335 335 {
336 336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
345 345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
346 346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
349 349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
350 350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
351 351
352 352 //****************************
353 353 // store PAS filter parameters
354 354 // sy_lfr_pas_filter_enabled
355 355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
356 356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
357 357 // sy_lfr_pas_filter_modulus
358 358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
359 359 // sy_lfr_pas_filter_tbad
360 360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
361 361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
362 362 // sy_lfr_pas_filter_offset
363 363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
364 364 // sy_lfr_pas_filter_shift
365 365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
366 366 parameter_dump_packet.sy_lfr_pas_filter_shift );
367 367
368 368 //****************************************************
369 369 // store the parameter sy_lfr_sc_rw_delta_f as a float
370 370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
371 371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
372 372
373 373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
374 374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
375 375 {
376 376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
377 377 }
378 378
379 379 //***********************************************
380 380 // store the parameter sy_lfr_rw.._k.. as a float
381 381 // rw1_k
382 382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
383 383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
384 384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
385 385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
386 386 // rw2_k
387 387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
388 388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
389 389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
390 390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
391 391 // rw3_k
392 392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
393 393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
394 394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
395 395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
396 396 // rw4_k
397 397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
398 398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
399 399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
400 400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
401 401
402 402 }
403 403
404 404 return flag;
405 405 }
406 406
407 407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
408 408 {
409 409 /** This function updates the LFR registers with the incoming sbm2 parameters.
410 410 *
411 411 * @param TC points to the TeleCommand packet that is being processed
412 412 * @param queue_id is the id of the queue which handles TM related to this execution step
413 413 *
414 414 */
415 415
416 416 unsigned int address;
417 417 rtems_status_code status;
418 418 unsigned int freq;
419 419 unsigned int bin;
420 420 unsigned int coeff;
421 421 unsigned char *kCoeffPtr;
422 422 unsigned char *kCoeffDumpPtr;
423 423
424 424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
425 425 // F0 => 11 bins
426 426 // F1 => 13 bins
427 427 // F2 => 12 bins
428 428 // 36 bins to dump in two packets (30 bins max per packet)
429 429
430 430 //*********
431 431 // PACKET 1
432 432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
433 433 kcoefficients_dump_1.destinationID = TC->sourceID;
434 434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
435 435 for( freq = 0;
436 436 freq < NB_BINS_COMPRESSED_SM_F0;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
440 440 bin = freq;
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
442 442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 for( freq = NB_BINS_COMPRESSED_SM_F0;
452 452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
453 453 freq++ )
454 454 {
455 455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
456 456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
457 457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
458 458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
459 459 {
460 460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
461 461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
462 462 ]; // 2 for the kcoeff_frequency
463 463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
464 464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
465 465 }
466 466 }
467 467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
468 468 freq < KCOEFF_BLK_NR_PKT1 ;
469 469 freq++ )
470 470 {
471 471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
472 472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
473 473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
474 474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
475 475 {
476 476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
477 477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
478 478 ]; // 2 for the kcoeff_frequency
479 479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
480 480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
481 481 }
482 482 }
483 483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
484 484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
485 485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
486 486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
487 487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
489 489 // SEND DATA
490 490 kcoefficient_node_1.status = 1;
491 491 address = (unsigned int) &kcoefficient_node_1;
492 492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
493 493 if (status != RTEMS_SUCCESSFUL) {
494 494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
495 495 }
496 496
497 497 //********
498 498 // PACKET 2
499 499 // 6 F2 bins
500 500 kcoefficients_dump_2.destinationID = TC->sourceID;
501 501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
502 502 for( freq = 0;
503 503 freq < KCOEFF_BLK_NR_PKT2;
504 504 freq++ )
505 505 {
506 506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
507 507 bin = freq + KCOEFF_BLK_NR_PKT2;
508 508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
509 509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
510 510 {
511 511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
512 512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
513 513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
514 514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
515 515 }
516 516 }
517 517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
518 518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
519 519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
520 520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
521 521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
522 522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
523 523 // SEND DATA
524 524 kcoefficient_node_2.status = 1;
525 525 address = (unsigned int) &kcoefficient_node_2;
526 526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
527 527 if (status != RTEMS_SUCCESSFUL) {
528 528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
529 529 }
530 530
531 531 return status;
532 532 }
533 533
534 534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
535 535 {
536 536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
537 537 *
538 538 * @param queue_id is the id of the queue which handles TM related to this execution step.
539 539 *
540 540 * @return RTEMS directive status codes:
541 541 * - RTEMS_SUCCESSFUL - message sent successfully
542 542 * - RTEMS_INVALID_ID - invalid queue id
543 543 * - RTEMS_INVALID_SIZE - invalid message size
544 544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
545 545 * - RTEMS_UNSATISFIED - out of message buffers
546 546 * - RTEMS_TOO_MANY - queue s limit has been reached
547 547 *
548 548 */
549 549
550 550 int status;
551 551
552 552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
553 553 parameter_dump_packet.destinationID = TC->sourceID;
554 554
555 555 // UPDATE TIME
556 556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
557 557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
558 558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
559 559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
560 560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
561 561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
562 562 // SEND DATA
563 563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
564 564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
565 565 if (status != RTEMS_SUCCESSFUL) {
566 566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
567 567 }
568 568
569 569 return status;
570 570 }
571 571
572 572 //***********************
573 573 // NORMAL MODE PARAMETERS
574 574
575 575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
576 576 {
577 577 unsigned char msb;
578 578 unsigned char lsb;
579 579 int flag;
580 580 float aux;
581 581 rtems_status_code status;
582 582
583 583 unsigned int sy_lfr_n_swf_l;
584 584 unsigned int sy_lfr_n_swf_p;
585 585 unsigned int sy_lfr_n_asm_p;
586 586 unsigned char sy_lfr_n_bp_p0;
587 587 unsigned char sy_lfr_n_bp_p1;
588 588 unsigned char sy_lfr_n_cwf_long_f3;
589 589
590 590 flag = LFR_SUCCESSFUL;
591 591
592 592 //***************
593 593 // get parameters
594 594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
595 595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
596 596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
597 597
598 598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
599 599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
600 600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
601 601
602 602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
603 603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
604 604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
605 605
606 606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
607 607
608 608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
609 609
610 610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
611 611
612 612 //******************
613 613 // check consistency
614 614 // sy_lfr_n_swf_l
615 615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
616 616 {
617 617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
618 618 flag = WRONG_APP_DATA;
619 619 }
620 620 // sy_lfr_n_swf_p
621 621 if (flag == LFR_SUCCESSFUL)
622 622 {
623 623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
624 624 {
625 625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
626 626 flag = WRONG_APP_DATA;
627 627 }
628 628 }
629 629 // sy_lfr_n_bp_p0
630 630 if (flag == LFR_SUCCESSFUL)
631 631 {
632 632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
633 633 {
634 634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
635 635 flag = WRONG_APP_DATA;
636 636 }
637 637 }
638 638 // sy_lfr_n_asm_p
639 639 if (flag == LFR_SUCCESSFUL)
640 640 {
641 641 if (sy_lfr_n_asm_p == 0)
642 642 {
643 643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
644 644 flag = WRONG_APP_DATA;
645 645 }
646 646 }
647 647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
648 648 if (flag == LFR_SUCCESSFUL)
649 649 {
650 650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
651 651 if (aux > FLOAT_EQUAL_ZERO)
652 652 {
653 653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
654 654 flag = WRONG_APP_DATA;
655 655 }
656 656 }
657 657 // sy_lfr_n_bp_p1
658 658 if (flag == LFR_SUCCESSFUL)
659 659 {
660 660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
661 661 {
662 662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
663 663 flag = WRONG_APP_DATA;
664 664 }
665 665 }
666 666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
667 667 if (flag == LFR_SUCCESSFUL)
668 668 {
669 669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
670 670 if (aux > FLOAT_EQUAL_ZERO)
671 671 {
672 672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
673 673 flag = LFR_DEFAULT;
674 674 }
675 675 }
676 676 // sy_lfr_n_cwf_long_f3
677 677
678 678 return flag;
679 679 }
680 680
681 681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
682 682 {
683 683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
684 684 *
685 685 * @param TC points to the TeleCommand packet that is being processed
686 686 * @param queue_id is the id of the queue which handles TM related to this execution step
687 687 *
688 688 */
689 689
690 690 int result;
691 691
692 692 result = LFR_SUCCESSFUL;
693 693
694 694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
695 695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
696 696
697 697 return result;
698 698 }
699 699
700 700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
701 701 {
702 702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
703 703 *
704 704 * @param TC points to the TeleCommand packet that is being processed
705 705 * @param queue_id is the id of the queue which handles TM related to this execution step
706 706 *
707 707 */
708 708
709 709 int result;
710 710
711 711 result = LFR_SUCCESSFUL;
712 712
713 713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
714 714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
715 715
716 716 return result;
717 717 }
718 718
719 719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
720 720 {
721 721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
722 722 *
723 723 * @param TC points to the TeleCommand packet that is being processed
724 724 * @param queue_id is the id of the queue which handles TM related to this execution step
725 725 *
726 726 */
727 727
728 728 int result;
729 729
730 730 result = LFR_SUCCESSFUL;
731 731
732 732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
733 733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
734 734
735 735 return result;
736 736 }
737 737
738 738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
739 739 {
740 740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
741 741 *
742 742 * @param TC points to the TeleCommand packet that is being processed
743 743 * @param queue_id is the id of the queue which handles TM related to this execution step
744 744 *
745 745 */
746 746
747 747 int status;
748 748
749 749 status = LFR_SUCCESSFUL;
750 750
751 751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
752 752
753 753 return status;
754 754 }
755 755
756 756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
757 757 {
758 758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
759 759 *
760 760 * @param TC points to the TeleCommand packet that is being processed
761 761 * @param queue_id is the id of the queue which handles TM related to this execution step
762 762 *
763 763 */
764 764
765 765 int status;
766 766
767 767 status = LFR_SUCCESSFUL;
768 768
769 769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
770 770
771 771 return status;
772 772 }
773 773
774 774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
775 775 {
776 776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
777 777 *
778 778 * @param TC points to the TeleCommand packet that is being processed
779 779 * @param queue_id is the id of the queue which handles TM related to this execution step
780 780 *
781 781 */
782 782
783 783 int status;
784 784
785 785 status = LFR_SUCCESSFUL;
786 786
787 787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
788 788
789 789 return status;
790 790 }
791 791
792 792 //**********************
793 793 // BURST MODE PARAMETERS
794 794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
795 795 {
796 796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
797 797 *
798 798 * @param TC points to the TeleCommand packet that is being processed
799 799 * @param queue_id is the id of the queue which handles TM related to this execution step
800 800 *
801 801 */
802 802
803 803 int status;
804 804
805 805 status = LFR_SUCCESSFUL;
806 806
807 807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
808 808
809 809 return status;
810 810 }
811 811
812 812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
813 813 {
814 814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
815 815 *
816 816 * @param TC points to the TeleCommand packet that is being processed
817 817 * @param queue_id is the id of the queue which handles TM related to this execution step
818 818 *
819 819 */
820 820
821 821 int status;
822 822
823 823 status = LFR_SUCCESSFUL;
824 824
825 825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
826 826
827 827 return status;
828 828 }
829 829
830 830 //*********************
831 831 // SBM1 MODE PARAMETERS
832 832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
833 833 {
834 834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
835 835 *
836 836 * @param TC points to the TeleCommand packet that is being processed
837 837 * @param queue_id is the id of the queue which handles TM related to this execution step
838 838 *
839 839 */
840 840
841 841 int status;
842 842
843 843 status = LFR_SUCCESSFUL;
844 844
845 845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
846 846
847 847 return status;
848 848 }
849 849
850 850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
851 851 {
852 852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
853 853 *
854 854 * @param TC points to the TeleCommand packet that is being processed
855 855 * @param queue_id is the id of the queue which handles TM related to this execution step
856 856 *
857 857 */
858 858
859 859 int status;
860 860
861 861 status = LFR_SUCCESSFUL;
862 862
863 863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
864 864
865 865 return status;
866 866 }
867 867
868 868 //*********************
869 869 // SBM2 MODE PARAMETERS
870 870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
871 871 {
872 872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
873 873 *
874 874 * @param TC points to the TeleCommand packet that is being processed
875 875 * @param queue_id is the id of the queue which handles TM related to this execution step
876 876 *
877 877 */
878 878
879 879 int status;
880 880
881 881 status = LFR_SUCCESSFUL;
882 882
883 883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
884 884
885 885 return status;
886 886 }
887 887
888 888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
889 889 {
890 890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
891 891 *
892 892 * @param TC points to the TeleCommand packet that is being processed
893 893 * @param queue_id is the id of the queue which handles TM related to this execution step
894 894 *
895 895 */
896 896
897 897 int status;
898 898
899 899 status = LFR_SUCCESSFUL;
900 900
901 901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
902 902
903 903 return status;
904 904 }
905 905
906 906 //*******************
907 907 // TC_LFR_UPDATE_INFO
908 908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
909 909 {
910 910 unsigned int status;
911 911
912 912 status = LFR_DEFAULT;
913 913
914 914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
915 915 || (mode == LFR_MODE_BURST)
916 916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
917 917 {
918 918 status = LFR_SUCCESSFUL;
919 919 }
920 920 else
921 921 {
922 922 status = LFR_DEFAULT;
923 923 }
924 924
925 925 return status;
926 926 }
927 927
928 928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
929 929 {
930 930 unsigned int status;
931 931
932 932 status = LFR_DEFAULT;
933 933
934 934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
935 935 || (mode == TDS_MODE_BURST)
936 936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
937 937 || (mode == TDS_MODE_LFM))
938 938 {
939 939 status = LFR_SUCCESSFUL;
940 940 }
941 941 else
942 942 {
943 943 status = LFR_DEFAULT;
944 944 }
945 945
946 946 return status;
947 947 }
948 948
949 949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
950 950 {
951 951 unsigned int status;
952 952
953 953 status = LFR_DEFAULT;
954 954
955 955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
956 956 || (mode == THR_MODE_BURST))
957 957 {
958 958 status = LFR_SUCCESSFUL;
959 959 }
960 960 else
961 961 {
962 962 status = LFR_DEFAULT;
963 963 }
964 964
965 965 return status;
966 966 }
967 967
968 968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
969 969 {
970 970 unsigned char flag;
971 971 unsigned char flagPosInByte;
972 972 unsigned char newFlag;
973 973 unsigned char flagMask;
974 974
975 975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
976 976 if (isnan(value))
977 977 {
978 978 flag = FLAG_NAN;
979 979 }
980 980 else
981 981 {
982 982 flag = FLAG_IAN;
983 983 }
984 984
985 985 switch(wheel)
986 986 {
987 987 case WHEEL_1:
988 988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
989 989 flagMask = ~(1 << flagPosInByte);
990 990 newFlag = flag << flagPosInByte;
991 991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
992 992 break;
993 993 case WHEEL_2:
994 994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
995 995 flagMask = ~(1 << flagPosInByte);
996 996 newFlag = flag << flagPosInByte;
997 997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
998 998 break;
999 999 case WHEEL_3:
1000 1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1001 1001 flagMask = ~(1 << flagPosInByte);
1002 1002 newFlag = flag << flagPosInByte;
1003 1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1004 1004 break;
1005 1005 case WHEEL_4:
1006 1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1007 1007 flagMask = ~(1 << flagPosInByte);
1008 1008 newFlag = flag << flagPosInByte;
1009 1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1010 1010 break;
1011 1011 default:
1012 1012 break;
1013 1013 }
1014 1014 }
1015 1015
1016 1016 void set_hk_lfr_sc_rw_f_flags( void )
1017 1017 {
1018 1018 // RW1
1019 1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1020 1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1021 1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1022 1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1023 1023
1024 1024 // RW2
1025 1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1026 1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1027 1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1028 1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1029 1029
1030 1030 // RW3
1031 1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1032 1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1033 1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1034 1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1035 1035
1036 1036 // RW4
1037 1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1038 1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1039 1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1040 1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1041 1041 }
1042 1042
1043 1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1044 1044 {
1045 1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1046 1046 *
1047 1047 * @param TC points to the TeleCommand packet that is being processed
1048 1048 *
1049 1049 */
1050 1050
1051 1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1052 1052
1053 1053 bytePosPtr = (unsigned char *) &TC->packetID;
1054 1054
1055 1055 // rw1_f
1056 1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1057 1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1058 1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1059 1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1060 1060
1061 1061 // rw2_f
1062 1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1063 1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1064 1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1065 1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1066 1066
1067 1067 // rw3_f
1068 1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1069 1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1070 1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1071 1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1072 1072
1073 1073 // rw4_f
1074 1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1075 1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1076 1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1077 1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1078 1078
1079 1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1080 1080
1081 1081 }
1082 1082
1083 1083 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float sy_lfr_rw_k )
1084 1084 {
1085 1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1086 1086 *
1087 1087 * @param fbins_mask
1088 1088 * @param rw_f is the reaction wheel frequency to filter
1089 1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1090 1090 * @param flag [true] filtering enabled [false] filtering disabled
1091 1091 *
1092 1092 * @return void
1093 1093 *
1094 1094 */
1095 1095
1096 1096 float f_RW_min;
1097 1097 float f_RW_MAX;
1098 1098 float fi_min;
1099 1099 float fi_MAX;
1100 1100 float fi;
1101 1101 float deltaBelow;
1102 1102 float deltaAbove;
1103 1103 float freqToFilterOut;
1104 1104 int binBelow;
1105 1105 int binAbove;
1106 1106 int closestBin;
1107 1107 unsigned int whichByte;
1108 1108 int selectedByte;
1109 1109 int bin;
1110 1110 int binToRemove[NB_BINS_TO_REMOVE];
1111 1111 int k;
1112 1112 bool filteringSet;
1113 1113
1114 1114 closestBin = 0;
1115 1115 whichByte = 0;
1116 1116 bin = 0;
1117 1117 filteringSet = false;
1118 1118
1119 1119 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1120 1120 {
1121 1121 binToRemove[k] = -1;
1122 1122 }
1123 1123
1124 1124 if (!isnan(rw_f))
1125 1125 {
1126 1126 // compute the frequency range to filter [ rw_f - delta_f; rw_f + delta_f ]
1127 1127 f_RW_min = rw_f - ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1128 1128 f_RW_MAX = rw_f + ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1129 1129
1130 1130 freqToFilterOut = f_RW_min;
1131 1131 while ( filteringSet == false )
1132 1132 {
1133 1133 // compute the index of the frequency bin immediately below rw_f
1134 1134 binBelow = (int) ( floor( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1135 1135 deltaBelow = freqToFilterOut - binBelow * deltaFreq;
1136 1136
1137 1137 // compute the index of the frequency bin immediately above rw_f
1138 1138 binAbove = (int) ( ceil( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1139 1139 deltaAbove = binAbove * deltaFreq - freqToFilterOut;
1140 1140
1141 1141 // search the closest bin
1142 1142 if (deltaAbove > deltaBelow)
1143 1143 {
1144 1144 closestBin = binBelow;
1145 1145 }
1146 1146 else
1147 1147 {
1148 1148 closestBin = binAbove;
1149 1149 }
1150 1150
1151 1151 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1152 1152 fi = closestBin * deltaFreq;
1153 1153 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1154 1154 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1155 1155
1156 1156 //**************************************************************************************
1157 1157 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1158 1158 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1159 1159 //**************************************************************************************
1160 1160
1161 1161 // 1. IF freqToFilterOut is included in [ fi_min; fi_MAX ]
1162 1162 // => remove f_(i), f_(i-1) and f_(i+1)
1163 1163 if ( ( freqToFilterOut > fi_min ) && ( freqToFilterOut < fi_MAX ) )
1164 1164 {
1165 1165 binToRemove[0] = (closestBin - 1) - 1;
1166 1166 binToRemove[1] = (closestBin) - 1;
1167 1167 binToRemove[2] = (closestBin + 1) - 1;
1168 1168 }
1169 1169 // 2. ELSE
1170 1170 // => remove the two f_(i) which are around f_RW
1171 1171 else
1172 1172 {
1173 1173 binToRemove[0] = (binBelow) - 1;
1174 1174 binToRemove[1] = (binAbove) - 1;
1175 1175 binToRemove[2] = (-1);
1176 1176 }
1177 1177
1178 1178 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1179 1179 {
1180 1180 bin = binToRemove[k];
1181 1181 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1182 1182 {
1183 1183 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1184 1184 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1185 1185 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1186 1186 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1187 1187
1188 1188 }
1189 1189 }
1190 1190
1191 1191 // update freqToFilterOut
1192 1192 if ( freqToFilterOut == f_RW_MAX )
1193 1193 {
1194 1194 filteringSet = true; // end of the loop
1195 1195 }
1196 1196 else
1197 1197 {
1198 1198 freqToFilterOut = freqToFilterOut + deltaFreq;
1199 1199 }
1200 1200
1201 1201 if ( freqToFilterOut > f_RW_MAX)
1202 1202 {
1203 1203 freqToFilterOut = f_RW_MAX;
1204 1204 }
1205 1205 }
1206 1206 }
1207 1207 }
1208 1208
1209 1209 void build_sy_lfr_rw_mask( unsigned int channel )
1210 1210 {
1211 1211 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1212 1212 unsigned char *maskPtr;
1213 1213 double deltaF;
1214 1214 unsigned k;
1215 1215
1216 1216 maskPtr = NULL;
1217 1217 deltaF = DELTAF_F2;
1218 1218
1219 1219 switch (channel)
1220 1220 {
1221 1221 case CHANNELF0:
1222 1222 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1223 1223 deltaF = DELTAF_F0;
1224 1224 break;
1225 1225 case CHANNELF1:
1226 1226 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1227 1227 deltaF = DELTAF_F1;
1228 1228 break;
1229 1229 case CHANNELF2:
1230 1230 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1231 1231 deltaF = DELTAF_F2;
1232 1232 break;
1233 1233 default:
1234 1234 break;
1235 1235 }
1236 1236
1237 1237 for (k = 0; k < BYTES_PER_MASK; k++)
1238 1238 {
1239 1239 local_rw_fbins_mask[k] = INT8_ALL_F;
1240 1240 }
1241 1241
1242 1242 // RW1
1243 1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1244 1244 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1245 1245 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1246 1246 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1247 1247
1248 1248 // RW2
1249 1249 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1250 1250 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1251 1251 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1252 1252 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1253 1253
1254 1254 // RW3
1255 1255 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1256 1256 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1257 1257 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1258 1258 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1259 1259
1260 1260 // RW4
1261 1261 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1262 1262 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1263 1263 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1264 1264 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1265 1265
1266 1266 // update the value of the fbins related to reaction wheels frequency filtering
1267 1267 if (maskPtr != NULL)
1268 1268 {
1269 1269 for (k = 0; k < BYTES_PER_MASK; k++)
1270 1270 {
1271 1271 maskPtr[k] = local_rw_fbins_mask[k];
1272 1272 }
1273 1273 }
1274 1274 }
1275 1275
1276 1276 void build_sy_lfr_rw_masks( void )
1277 1277 {
1278 1278 build_sy_lfr_rw_mask( CHANNELF0 );
1279 1279 build_sy_lfr_rw_mask( CHANNELF1 );
1280 1280 build_sy_lfr_rw_mask( CHANNELF2 );
1281 1281 }
1282 1282
1283 1283 void merge_fbins_masks( void )
1284 1284 {
1285 1285 unsigned char k;
1286 1286
1287 1287 unsigned char *fbins_f0;
1288 1288 unsigned char *fbins_f1;
1289 1289 unsigned char *fbins_f2;
1290 1290 unsigned char *rw_mask_f0;
1291 1291 unsigned char *rw_mask_f1;
1292 1292 unsigned char *rw_mask_f2;
1293 1293
1294 1294 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1295 1295 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1296 1296 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1297 1297 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1298 1298 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1299 1299 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1300 1300
1301 1301 for( k=0; k < BYTES_PER_MASK; k++ )
1302 1302 {
1303 1303 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1304 1304 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1305 1305 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1306 1306 }
1307 1307 }
1308 1308
1309 1309 //***********
1310 1310 // FBINS MASK
1311 1311
1312 1312 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1313 1313 {
1314 1314 int status;
1315 1315 unsigned int k;
1316 1316 unsigned char *fbins_mask_dump;
1317 1317 unsigned char *fbins_mask_TC;
1318 1318
1319 1319 status = LFR_SUCCESSFUL;
1320 1320
1321 1321 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1322 1322 fbins_mask_TC = TC->dataAndCRC;
1323 1323
1324 1324 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1325 1325 {
1326 1326 fbins_mask_dump[k] = fbins_mask_TC[k];
1327 1327 }
1328 1328
1329 1329 return status;
1330 1330 }
1331 1331
1332 1332 //***************************
1333 1333 // TC_LFR_LOAD_PAS_FILTER_PAR
1334 1334
1335 int check_sy_lfr_rw_k( ccsdsTelecommandPacket_t *TC, int offset, int* pos, float* value )
1336 {
1337 float rw_k;
1338 int ret;
1339
1340 ret = LFR_SUCCESSFUL;
1341 rw_k = INIT_FLOAT;
1342
1343 copyFloatByChar( (unsigned char*) &rw_k, (unsigned char*) &TC->dataAndCRC[ offset ] );
1344
1345 *pos = offset;
1346 *value = rw_k;
1347
1348 if (rw_k < MIN_SY_LFR_RW_K)
1349 {
1350 ret = WRONG_APP_DATA;
1351 }
1352
1353 return ret;
1354 }
1355
1356 int check_all_sy_lfr_rw_k( ccsdsTelecommandPacket_t *TC, int *pos, float*value )
1357 {
1358 int ret;
1359
1360 ret = LFR_SUCCESSFUL;
1361
1362 //****
1363 //****
1364 // RW1
1365 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K1, pos, value ); // K1
1366 if (ret == LFR_SUCCESSFUL) // K2
1367 {
1368 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K2, pos, value );
1369 }
1370 if (ret == LFR_SUCCESSFUL) // K3
1371 {
1372 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K3, pos, value );
1373 }
1374 if (ret == LFR_SUCCESSFUL) // K4
1375 {
1376 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K4, pos, value );
1377 }
1378
1379 //****
1380 //****
1381 // RW2
1382 if (ret == LFR_SUCCESSFUL) // K1
1383 {
1384 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K1, pos, value );
1385 }
1386 if (ret == LFR_SUCCESSFUL) // K2
1387 {
1388 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K2, pos, value );
1389 }
1390 if (ret == LFR_SUCCESSFUL) // K3
1391 {
1392 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K3, pos, value );
1393 }
1394 if (ret == LFR_SUCCESSFUL) // K4
1395 {
1396 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K4, pos, value );
1397 }
1398
1399 //****
1400 //****
1401 // RW3
1402 if (ret == LFR_SUCCESSFUL) // K1
1403 {
1404 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K1, pos, value );
1405 }
1406 if (ret == LFR_SUCCESSFUL) // K2
1407 {
1408 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K2, pos, value );
1409 }
1410 if (ret == LFR_SUCCESSFUL) // K3
1411 {
1412 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K3, pos, value );
1413 }
1414 if (ret == LFR_SUCCESSFUL) // K4
1415 {
1416 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K4, pos, value );
1417 }
1418
1419 //****
1420 //****
1421 // RW4
1422 if (ret == LFR_SUCCESSFUL) // K1
1423 {
1424 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K1, pos, value );
1425 }
1426 if (ret == LFR_SUCCESSFUL) // K2
1427 {
1428 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K2, pos, value );
1429 }
1430 if (ret == LFR_SUCCESSFUL) // K3
1431 {
1432 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K3, pos, value );
1433 }
1434 if (ret == LFR_SUCCESSFUL) // K4
1435 {
1436 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K4, pos, value );
1437 }
1438
1439
1440
1441 return ret;
1442 }
1443
1335 1444 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1336 1445 {
1337 1446 int flag;
1338 1447 rtems_status_code status;
1339 1448
1340 1449 unsigned char sy_lfr_pas_filter_enabled;
1341 1450 unsigned char sy_lfr_pas_filter_modulus;
1342 1451 float sy_lfr_pas_filter_tbad;
1343 1452 unsigned char sy_lfr_pas_filter_offset;
1344 1453 float sy_lfr_pas_filter_shift;
1345 1454 float sy_lfr_sc_rw_delta_f;
1346 1455 char *parPtr;
1456 int *datafield_pos;
1457 float *rw_k;
1347 1458
1348 1459 flag = LFR_SUCCESSFUL;
1349 1460 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1350 1461 sy_lfr_pas_filter_shift = INIT_FLOAT;
1351 1462 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1352 1463 parPtr = NULL;
1464 datafield_pos = NULL;
1465 rw_k = NULL;
1466
1467 *datafield_pos = LFR_DEFAULT_ALT;
1468 *rw_k = INIT_FLOAT;
1353 1469
1354 1470 //***************
1355 1471 // get parameters
1356 1472 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1357 1473 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1358 1474 copyFloatByChar(
1359 1475 (unsigned char*) &sy_lfr_pas_filter_tbad,
1360 1476 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1361 1477 );
1362 1478 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1363 1479 copyFloatByChar(
1364 1480 (unsigned char*) &sy_lfr_pas_filter_shift,
1365 1481 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1366 1482 );
1367 1483 copyFloatByChar(
1368 1484 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1369 1485 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1370 1486 );
1371 1487
1372 1488 //******************
1373 1489 // CHECK CONSISTENCY
1374 1490
1375 1491 //**************************
1376 1492 // sy_lfr_pas_filter_enabled
1377 1493 // nothing to check, value is 0 or 1
1378 1494
1379 1495 //**************************
1380 1496 // sy_lfr_pas_filter_modulus
1381 1497 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1382 1498 {
1383 1499 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1384 1500 flag = WRONG_APP_DATA;
1385 1501 }
1386 1502
1387 1503 //***********************
1388 1504 // sy_lfr_pas_filter_tbad
1389 1505 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1390 1506 {
1391 1507 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1392 1508 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1393 1509 flag = WRONG_APP_DATA;
1394 1510 }
1395 1511
1396 1512 //*************************
1397 1513 // sy_lfr_pas_filter_offset
1398 1514 if (flag == LFR_SUCCESSFUL)
1399 1515 {
1400 1516 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1401 1517 {
1402 1518 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1403 1519 flag = WRONG_APP_DATA;
1404 1520 }
1405 1521 }
1406 1522
1407 1523 //************************
1408 1524 // sy_lfr_pas_filter_shift
1409 1525 if (flag == LFR_SUCCESSFUL)
1410 1526 {
1411 1527 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1412 1528 {
1413 1529 parPtr = (char*) &sy_lfr_pas_filter_shift;
1414 1530 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1415 1531 flag = WRONG_APP_DATA;
1416 1532 }
1417 1533 }
1418 1534
1419 1535 //*************************************
1420 1536 // check global coherency of the values
1421 1537 if (flag == LFR_SUCCESSFUL)
1422 1538 {
1423 1539 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1424 1540 {
1425 1541 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1426 1542 flag = WRONG_APP_DATA;
1427 1543 }
1428 1544 }
1429 1545
1430 1546 //*********************
1431 1547 // sy_lfr_sc_rw_delta_f
1432 // nothing to check, no default value in the ICD
1548 if (flag == LFR_SUCCESSFUL)
1549 {
1550 if ( sy_lfr_sc_rw_delta_f < MIN_SY_LFR_SC_RW_DELTA_F )
1551 {
1552 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + DATAFIELD_OFFSET, sy_lfr_sc_rw_delta_f );
1553 flag = WRONG_APP_DATA;
1554 }
1555 }
1556
1557 //************
1558 // sy_lfr_rw_k
1559 if (flag == LFR_SUCCESSFUL)
1560 {
1561 flag = check_all_sy_lfr_rw_k( TC, datafield_pos, rw_k );
1562 if (flag != LFR_SUCCESSFUL)
1563 {
1564 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, *datafield_pos + DATAFIELD_OFFSET, *rw_k );
1565 }
1566 }
1567
1433 1568
1434 1569 return flag;
1435 1570 }
1436 1571
1437 1572 //**************
1438 1573 // KCOEFFICIENTS
1439 1574 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1440 1575 {
1441 1576 unsigned int kcoeff;
1442 1577 unsigned short sy_lfr_kcoeff_frequency;
1443 1578 unsigned short bin;
1444 1579 float *kcoeffPtr_norm;
1445 1580 float *kcoeffPtr_sbm;
1446 1581 int status;
1447 1582 unsigned char *kcoeffLoadPtr;
1448 1583 unsigned char *kcoeffNormPtr;
1449 1584 unsigned char *kcoeffSbmPtr_a;
1450 1585 unsigned char *kcoeffSbmPtr_b;
1451 1586
1452 1587 sy_lfr_kcoeff_frequency = 0;
1453 1588 bin = 0;
1454 1589 kcoeffPtr_norm = NULL;
1455 1590 kcoeffPtr_sbm = NULL;
1456 1591 status = LFR_SUCCESSFUL;
1457 1592
1458 1593 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1459 1594 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1460 1595
1461 1596
1462 1597 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1463 1598 {
1464 1599 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1465 1600 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1466 1601 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1467 1602 status = LFR_DEFAULT;
1468 1603 }
1469 1604 else
1470 1605 {
1471 1606 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1472 1607 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1473 1608 {
1474 1609 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1475 1610 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1476 1611 bin = sy_lfr_kcoeff_frequency;
1477 1612 }
1478 1613 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1479 1614 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1480 1615 {
1481 1616 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1482 1617 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1483 1618 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1484 1619 }
1485 1620 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1486 1621 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1487 1622 {
1488 1623 kcoeffPtr_norm = k_coeff_intercalib_f2;
1489 1624 kcoeffPtr_sbm = NULL;
1490 1625 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1491 1626 }
1492 1627 }
1493 1628
1494 1629 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1495 1630 {
1496 1631 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1497 1632 {
1498 1633 // destination
1499 1634 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1500 1635 // source
1501 1636 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1502 1637 // copy source to destination
1503 1638 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1504 1639 }
1505 1640 }
1506 1641
1507 1642 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1508 1643 {
1509 1644 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1510 1645 {
1511 1646 // destination
1512 1647 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1513 1648 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1514 1649 // source
1515 1650 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1516 1651 // copy source to destination
1517 1652 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1518 1653 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1519 1654 }
1520 1655 }
1521 1656
1522 1657 // print_k_coeff();
1523 1658
1524 1659 return status;
1525 1660 }
1526 1661
1527 1662 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1528 1663 {
1529 1664 destination[BYTE_0] = source[BYTE_0];
1530 1665 destination[BYTE_1] = source[BYTE_1];
1531 1666 destination[BYTE_2] = source[BYTE_2];
1532 1667 destination[BYTE_3] = source[BYTE_3];
1533 1668 }
1534 1669
1535 1670 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1536 1671 {
1537 1672 destination[BYTE_0] = source[BYTE_0];
1538 1673 destination[BYTE_1] = source[BYTE_1];
1539 1674 destination[BYTE_2] = source[BYTE_2];
1540 1675 destination[BYTE_3] = source[BYTE_3];
1541 1676 }
1542 1677
1543 1678 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1544 1679 {
1545 1680 destination[BYTE_0] = source[BYTE_0];
1546 1681 destination[BYTE_1] = source[BYTE_1];
1547 1682 }
1548 1683
1549 1684 void floatToChar( float value, unsigned char* ptr)
1550 1685 {
1551 1686 unsigned char* valuePtr;
1552 1687
1553 1688 valuePtr = (unsigned char*) &value;
1554 1689
1555 1690 ptr[BYTE_0] = valuePtr[BYTE_0];
1556 1691 ptr[BYTE_1] = valuePtr[BYTE_1];
1557 1692 ptr[BYTE_2] = valuePtr[BYTE_2];
1558 1693 ptr[BYTE_3] = valuePtr[BYTE_3];
1559 1694 }
1560 1695
1561 1696 //**********
1562 1697 // init dump
1563 1698
1564 1699 void init_parameter_dump( void )
1565 1700 {
1566 1701 /** This function initialize the parameter_dump_packet global variable with default values.
1567 1702 *
1568 1703 */
1569 1704
1570 1705 unsigned int k;
1571 1706
1572 1707 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1573 1708 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1574 1709 parameter_dump_packet.reserved = CCSDS_RESERVED;
1575 1710 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1576 1711 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1577 1712 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1578 1713 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1579 1714 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1580 1715 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1581 1716 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1582 1717 // DATA FIELD HEADER
1583 1718 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1584 1719 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1585 1720 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1586 1721 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1587 1722 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1588 1723 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1589 1724 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1590 1725 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1591 1726 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1592 1727 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1593 1728 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1594 1729
1595 1730 //******************
1596 1731 // COMMON PARAMETERS
1597 1732 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1598 1733 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1599 1734
1600 1735 //******************
1601 1736 // NORMAL PARAMETERS
1602 1737 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1603 1738 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1604 1739 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1605 1740 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1606 1741 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1607 1742 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1608 1743 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1609 1744 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1610 1745 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1611 1746
1612 1747 //*****************
1613 1748 // BURST PARAMETERS
1614 1749 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1615 1750 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1616 1751
1617 1752 //****************
1618 1753 // SBM1 PARAMETERS
1619 1754 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1620 1755 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1621 1756
1622 1757 //****************
1623 1758 // SBM2 PARAMETERS
1624 1759 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1625 1760 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1626 1761
1627 1762 //************
1628 1763 // FBINS MASKS
1629 1764 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1630 1765 {
1631 1766 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1632 1767 }
1633 1768
1634 1769 // PAS FILTER PARAMETERS
1635 1770 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1636 1771 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1637 1772 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1638 1773 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1639 1774 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1640 1775 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1641 1776 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1642 1777
1643 1778 // RW1_K
1644 1779 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1645 1780 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1646 1781 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1647 1782 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1648 1783 // RW2_K
1649 1784 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1650 1785 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1651 1786 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1652 1787 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1653 1788 // RW3_K
1654 1789 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1655 1790 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1656 1791 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1657 1792 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1658 1793 // RW4_K
1659 1794 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1660 1795 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1661 1796 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1662 1797 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1663 1798
1664 1799 // LFR_RW_MASK
1665 1800 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1666 1801 {
1667 1802 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1668 1803 }
1669 1804
1670 1805 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1671 1806 merge_fbins_masks();
1672 1807 }
1673 1808
1674 1809 void init_kcoefficients_dump( void )
1675 1810 {
1676 1811 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1677 1812 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1678 1813
1679 1814 kcoefficient_node_1.previous = NULL;
1680 1815 kcoefficient_node_1.next = NULL;
1681 1816 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1682 1817 kcoefficient_node_1.coarseTime = INIT_CHAR;
1683 1818 kcoefficient_node_1.fineTime = INIT_CHAR;
1684 1819 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1685 1820 kcoefficient_node_1.status = INIT_CHAR;
1686 1821
1687 1822 kcoefficient_node_2.previous = NULL;
1688 1823 kcoefficient_node_2.next = NULL;
1689 1824 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1690 1825 kcoefficient_node_2.coarseTime = INIT_CHAR;
1691 1826 kcoefficient_node_2.fineTime = INIT_CHAR;
1692 1827 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1693 1828 kcoefficient_node_2.status = INIT_CHAR;
1694 1829 }
1695 1830
1696 1831 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1697 1832 {
1698 1833 unsigned int k;
1699 1834 unsigned int packetLength;
1700 1835
1701 1836 packetLength =
1702 1837 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1703 1838
1704 1839 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1705 1840 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1706 1841 kcoefficients_dump->reserved = CCSDS_RESERVED;
1707 1842 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1708 1843 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1709 1844 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1710 1845 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1711 1846 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1712 1847 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1713 1848 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1714 1849 // DATA FIELD HEADER
1715 1850 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1716 1851 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1717 1852 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1718 1853 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1719 1854 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1720 1855 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1721 1856 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1722 1857 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1723 1858 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1724 1859 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1725 1860 kcoefficients_dump->sid = SID_K_DUMP;
1726 1861
1727 1862 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1728 1863 kcoefficients_dump->pkt_nr = PKTNR_1;
1729 1864 kcoefficients_dump->blk_nr = blk_nr;
1730 1865
1731 1866 //******************
1732 1867 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1733 1868 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1734 1869 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1735 1870 {
1736 1871 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1737 1872 }
1738 1873 }
1739 1874
1740 1875 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1741 1876 {
1742 1877 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1743 1878 *
1744 1879 * @param packet_sequence_control points to the packet sequence control which will be incremented
1745 1880 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1746 1881 *
1747 1882 * If the destination ID is not known, a dedicated counter is incremented.
1748 1883 *
1749 1884 */
1750 1885
1751 1886 unsigned short sequence_cnt;
1752 1887 unsigned short segmentation_grouping_flag;
1753 1888 unsigned short new_packet_sequence_control;
1754 1889 unsigned char i;
1755 1890
1756 1891 switch (destination_id)
1757 1892 {
1758 1893 case SID_TC_GROUND:
1759 1894 i = GROUND;
1760 1895 break;
1761 1896 case SID_TC_MISSION_TIMELINE:
1762 1897 i = MISSION_TIMELINE;
1763 1898 break;
1764 1899 case SID_TC_TC_SEQUENCES:
1765 1900 i = TC_SEQUENCES;
1766 1901 break;
1767 1902 case SID_TC_RECOVERY_ACTION_CMD:
1768 1903 i = RECOVERY_ACTION_CMD;
1769 1904 break;
1770 1905 case SID_TC_BACKUP_MISSION_TIMELINE:
1771 1906 i = BACKUP_MISSION_TIMELINE;
1772 1907 break;
1773 1908 case SID_TC_DIRECT_CMD:
1774 1909 i = DIRECT_CMD;
1775 1910 break;
1776 1911 case SID_TC_SPARE_GRD_SRC1:
1777 1912 i = SPARE_GRD_SRC1;
1778 1913 break;
1779 1914 case SID_TC_SPARE_GRD_SRC2:
1780 1915 i = SPARE_GRD_SRC2;
1781 1916 break;
1782 1917 case SID_TC_OBCP:
1783 1918 i = OBCP;
1784 1919 break;
1785 1920 case SID_TC_SYSTEM_CONTROL:
1786 1921 i = SYSTEM_CONTROL;
1787 1922 break;
1788 1923 case SID_TC_AOCS:
1789 1924 i = AOCS;
1790 1925 break;
1791 1926 case SID_TC_RPW_INTERNAL:
1792 1927 i = RPW_INTERNAL;
1793 1928 break;
1794 1929 default:
1795 1930 i = GROUND;
1796 1931 break;
1797 1932 }
1798 1933
1799 1934 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1800 1935 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1801 1936
1802 1937 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1803 1938
1804 1939 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1805 1940 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1806 1941
1807 1942 // increment the sequence counter
1808 1943 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1809 1944 {
1810 1945 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1811 1946 }
1812 1947 else
1813 1948 {
1814 1949 sequenceCounters_TM_DUMP[ i ] = 0;
1815 1950 }
1816 1951 }
General Comments 0
You need to be logged in to leave comments. Login now