##// END OF EJS Templates
Bug 657 HK_LFR_xE_CNT doesn't manage the wrap of 8bits counter error
paul -
r336:571c142ee2b3 R3_plus draft
parent child
Show More
@@ -1,988 +1,988
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 old_isr_handler = NULL;
29 29
30 30 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
31 31
32 32 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
33 33 if (status!=RTEMS_SUCCESSFUL)
34 34 {
35 35 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
36 36 }
37 37
38 38 timer_set_clock_divider( timer, clock_divider);
39 39 }
40 40
41 41 void timer_start(unsigned char timer)
42 42 {
43 43 /** This function starts a GPTIMER timer.
44 44 *
45 45 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
46 46 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
47 47 *
48 48 */
49 49
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
53 53 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
54 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
55 55 }
56 56
57 57 void timer_stop(unsigned char timer)
58 58 {
59 59 /** This function stops a GPTIMER timer.
60 60 *
61 61 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
62 62 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
63 63 *
64 64 */
65 65
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
67 67 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
68 68 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
69 69 }
70 70
71 71 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
72 72 {
73 73 /** This function sets the clock divider of a GPTIMER timer.
74 74 *
75 75 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
76 76 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
77 77 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
78 78 *
79 79 */
80 80
81 81 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
82 82 }
83 83
84 84 // WATCHDOG
85 85
86 86 rtems_isr watchdog_isr( rtems_vector_number vector )
87 87 {
88 88 rtems_status_code status_code;
89 89
90 90 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
91 91
92 92 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
93 93
94 94 exit(0);
95 95 }
96 96
97 97 void watchdog_configure(void)
98 98 {
99 99 /** This function configure the watchdog.
100 100 *
101 101 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
102 102 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
103 103 *
104 104 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
105 105 *
106 106 */
107 107
108 108 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
109 109
110 110 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
111 111
112 112 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
113 113 }
114 114
115 115 void watchdog_stop(void)
116 116 {
117 117 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
118 118 timer_stop( TIMER_WATCHDOG );
119 119 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
120 120 }
121 121
122 122 void watchdog_reload(void)
123 123 {
124 124 /** This function reloads the watchdog timer counter with the timer reload value.
125 125 *
126 126 * @param void
127 127 *
128 128 * @return void
129 129 *
130 130 */
131 131
132 132 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
133 133 }
134 134
135 135 void watchdog_start(void)
136 136 {
137 137 /** This function starts the watchdog timer.
138 138 *
139 139 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
140 140 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
141 141 *
142 142 */
143 143
144 144 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
145 145
146 146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
147 147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
148 148 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
149 149 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
150 150
151 151 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
152 152
153 153 }
154 154
155 155 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
156 156 {
157 157 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
158 158
159 159 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
160 160
161 161 return 0;
162 162 }
163 163
164 164 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
165 165 {
166 166 /** This function sets the scaler reload register of the apbuart module
167 167 *
168 168 * @param regs is the address of the apbuart registers in memory
169 169 * @param value is the value that will be stored in the scaler register
170 170 *
171 171 * The value shall be set by the software to get data on the serial interface.
172 172 *
173 173 */
174 174
175 175 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
176 176
177 177 apbuart_regs->scaler = value;
178 178
179 179 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
180 180 }
181 181
182 182 //************
183 183 // RTEMS TASKS
184 184
185 185 rtems_task load_task(rtems_task_argument argument)
186 186 {
187 187 BOOT_PRINTF("in LOAD *** \n")
188 188
189 189 rtems_status_code status;
190 190 unsigned int i;
191 191 unsigned int j;
192 192 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
193 193 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
194 194
195 195 watchdog_period_id = RTEMS_ID_NONE;
196 196
197 197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
198 198
199 199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
200 200 if( status != RTEMS_SUCCESSFUL ) {
201 201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
202 202 }
203 203
204 204 i = 0;
205 205 j = 0;
206 206
207 207 watchdog_configure();
208 208
209 209 watchdog_start();
210 210
211 211 set_sy_lfr_watchdog_enabled( true );
212 212
213 213 while(1){
214 214 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
215 215 watchdog_reload();
216 216 i = i + 1;
217 217 if ( i == WATCHDOG_LOOP_PRINTF )
218 218 {
219 219 i = 0;
220 220 j = j + 1;
221 221 PRINTF1("%d\n", j)
222 222 }
223 223 #ifdef DEBUG_WATCHDOG
224 224 if (j == WATCHDOG_LOOP_DEBUG )
225 225 {
226 226 status = rtems_task_delete(RTEMS_SELF);
227 227 }
228 228 #endif
229 229 }
230 230 }
231 231
232 232 rtems_task hous_task(rtems_task_argument argument)
233 233 {
234 234 rtems_status_code status;
235 235 rtems_status_code spare_status;
236 236 rtems_id queue_id;
237 237 rtems_rate_monotonic_period_status period_status;
238 238 bool isSynchronized;
239 239
240 240 queue_id = RTEMS_ID_NONE;
241 241 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
242 242 isSynchronized = false;
243 243
244 244 status = get_message_queue_id_send( &queue_id );
245 245 if (status != RTEMS_SUCCESSFUL)
246 246 {
247 247 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
248 248 }
249 249
250 250 BOOT_PRINTF("in HOUS ***\n");
251 251
252 252 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
253 253 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
254 254 if( status != RTEMS_SUCCESSFUL ) {
255 255 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
256 256 }
257 257 }
258 258
259 259 status = rtems_rate_monotonic_cancel(HK_id);
260 260 if( status != RTEMS_SUCCESSFUL ) {
261 261 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
262 262 }
263 263 else {
264 264 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
265 265 }
266 266
267 267 // startup phase
268 268 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
269 269 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
270 270 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
271 271 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
272 272 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
273 273 {
274 274 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
275 275 {
276 276 isSynchronized = true;
277 277 }
278 278 else
279 279 {
280 280 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
281 281
282 282 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
283 283 }
284 284 }
285 285 status = rtems_rate_monotonic_cancel(HK_id);
286 286 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
287 287
288 288 set_hk_lfr_reset_cause( POWER_ON );
289 289
290 290 while(1){ // launch the rate monotonic task
291 291 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
292 292 if ( status != RTEMS_SUCCESSFUL ) {
293 293 PRINTF1( "in HOUS *** ERR period: %d\n", status);
294 294 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
295 295 }
296 296 else {
297 297 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
298 298 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
299 299 increment_seq_counter( &sequenceCounterHK );
300 300
301 301 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
302 302 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
303 303 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
304 304 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
305 305 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
306 306 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
307 307
308 308 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
309 309
310 310 spacewire_read_statistics();
311 311
312 312 update_hk_with_grspw_stats();
313 313
314 314 set_hk_lfr_time_not_synchro();
315 315
316 316 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
317 317 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
318 318 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
319 319 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
320 320 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
321 321
322 322 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
323 323 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
324 324 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
325 325 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
326 326 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
327 327
328 328 hk_lfr_le_me_he_update();
329 329
330 330 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
331 331
332 332 // SEND PACKET
333 333 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
334 334 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
335 335 if (status != RTEMS_SUCCESSFUL) {
336 336 PRINTF1("in HOUS *** ERR send: %d\n", status)
337 337 }
338 338 }
339 339 }
340 340
341 341 PRINTF("in HOUS *** deleting task\n")
342 342
343 343 status = rtems_task_delete( RTEMS_SELF ); // should not return
344 344
345 345 return;
346 346 }
347 347
348 348 rtems_task avgv_task(rtems_task_argument argument)
349 349 {
350 350 #define MOVING_AVERAGE 16
351 351 rtems_status_code status;
352 352 static unsigned int v[MOVING_AVERAGE] = {0};
353 353 static unsigned int e1[MOVING_AVERAGE] = {0};
354 354 static unsigned int e2[MOVING_AVERAGE] = {0};
355 355 float average_v;
356 356 float average_e1;
357 357 float average_e2;
358 358 unsigned char k;
359 359 unsigned char indexOfOldValue;
360 360
361 361 BOOT_PRINTF("in AVGV ***\n");
362 362
363 363 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
364 364 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
365 365 if( status != RTEMS_SUCCESSFUL ) {
366 366 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
367 367 }
368 368 }
369 369
370 370 status = rtems_rate_monotonic_cancel(AVGV_id);
371 371 if( status != RTEMS_SUCCESSFUL ) {
372 372 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
373 373 }
374 374 else {
375 375 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
376 376 }
377 377
378 378 // initialize values
379 379 indexOfOldValue = MOVING_AVERAGE - 1;
380 380 average_v = 0.;
381 381 average_e1 = 0.;
382 382 average_e2 = 0.;
383 383
384 384 k = 0;
385 385
386 386 while(1){ // launch the rate monotonic task
387 387 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
388 388 if ( status != RTEMS_SUCCESSFUL ) {
389 389 PRINTF1( "in AVGV *** ERR period: %d\n", status);
390 390 }
391 391 else {
392 392 // store new value in buffer
393 393 v[k] = waveform_picker_regs->v;
394 394 e1[k] = waveform_picker_regs->e1;
395 395 e2[k] = waveform_picker_regs->e2;
396 396 if (k == (MOVING_AVERAGE - 1))
397 397 {
398 398 indexOfOldValue = 0;
399 399 }
400 400 else
401 401 {
402 402 indexOfOldValue = k + 1;
403 403 }
404 404 average_v = average_v + v[k] - v[indexOfOldValue];
405 405 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
406 406 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
407 407 }
408 408 if (k == (MOVING_AVERAGE-1))
409 409 {
410 410 k = 0;
411 411 PRINTF("tick\n");
412 412 }
413 413 else
414 414 {
415 415 k++;
416 416 }
417 417 }
418 418
419 419 PRINTF("in AVGV *** deleting task\n")
420 420
421 421 status = rtems_task_delete( RTEMS_SELF ); // should not return
422 422
423 423 return;
424 424 }
425 425
426 426 rtems_task dumb_task( rtems_task_argument unused )
427 427 {
428 428 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
429 429 *
430 430 * @param unused is the starting argument of the RTEMS task
431 431 *
432 432 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
433 433 *
434 434 */
435 435
436 436 unsigned int i;
437 437 unsigned int intEventOut;
438 438 unsigned int coarse_time = 0;
439 439 unsigned int fine_time = 0;
440 440 rtems_event_set event_out;
441 441
442 442 event_out = EVENT_SETS_NONE_PENDING;
443 443
444 444 BOOT_PRINTF("in DUMB *** \n")
445 445
446 446 while(1){
447 447 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
448 448 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
449 449 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
450 450 | RTEMS_EVENT_14,
451 451 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
452 452 intEventOut = (unsigned int) event_out;
453 453 for ( i=0; i<NB_RTEMS_EVENTS; i++)
454 454 {
455 455 if ( ((intEventOut >> i) & 1) != 0)
456 456 {
457 457 coarse_time = time_management_regs->coarse_time;
458 458 fine_time = time_management_regs->fine_time;
459 459 if (i==EVENT_12)
460 460 {
461 461 PRINTF1("%s\n", DUMB_MESSAGE_12)
462 462 }
463 463 if (i==EVENT_13)
464 464 {
465 465 PRINTF1("%s\n", DUMB_MESSAGE_13)
466 466 }
467 467 if (i==EVENT_14)
468 468 {
469 469 PRINTF1("%s\n", DUMB_MESSAGE_1)
470 470 }
471 471 }
472 472 }
473 473 }
474 474 }
475 475
476 476 //*****************************
477 477 // init housekeeping parameters
478 478
479 479 void init_housekeeping_parameters( void )
480 480 {
481 481 /** This function initialize the housekeeping_packet global variable with default values.
482 482 *
483 483 */
484 484
485 485 unsigned int i = 0;
486 486 unsigned char *parameters;
487 487 unsigned char sizeOfHK;
488 488
489 489 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
490 490
491 491 parameters = (unsigned char*) &housekeeping_packet;
492 492
493 493 for(i = 0; i< sizeOfHK; i++)
494 494 {
495 495 parameters[i] = INIT_CHAR;
496 496 }
497 497
498 498 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
499 499 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
500 500 housekeeping_packet.reserved = DEFAULT_RESERVED;
501 501 housekeeping_packet.userApplication = CCSDS_USER_APP;
502 502 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
503 503 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
504 504 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
505 505 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
506 506 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
507 507 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
508 508 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
509 509 housekeeping_packet.serviceType = TM_TYPE_HK;
510 510 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
511 511 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
512 512 housekeeping_packet.sid = SID_HK;
513 513
514 514 // init status word
515 515 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
516 516 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
517 517 // init software version
518 518 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
519 519 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
520 520 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
521 521 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
522 522 // init fpga version
523 523 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
524 524 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
525 525 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
526 526 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
527 527
528 528 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
529 529 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
530 530 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
531 531 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
532 532 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
533 533 }
534 534
535 535 void increment_seq_counter( unsigned short *packetSequenceControl )
536 536 {
537 537 /** This function increment the sequence counter passes in argument.
538 538 *
539 539 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
540 540 *
541 541 */
542 542
543 543 unsigned short segmentation_grouping_flag;
544 544 unsigned short sequence_cnt;
545 545
546 546 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
547 547 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
548 548
549 549 if ( sequence_cnt < SEQ_CNT_MAX)
550 550 {
551 551 sequence_cnt = sequence_cnt + 1;
552 552 }
553 553 else
554 554 {
555 555 sequence_cnt = 0;
556 556 }
557 557
558 558 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
559 559 }
560 560
561 561 void getTime( unsigned char *time)
562 562 {
563 563 /** This function write the current local time in the time buffer passed in argument.
564 564 *
565 565 */
566 566
567 567 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
568 568 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
569 569 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
570 570 time[3] = (unsigned char) (time_management_regs->coarse_time);
571 571 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
572 572 time[5] = (unsigned char) (time_management_regs->fine_time);
573 573 }
574 574
575 575 unsigned long long int getTimeAsUnsignedLongLongInt( )
576 576 {
577 577 /** This function write the current local time in the time buffer passed in argument.
578 578 *
579 579 */
580 580 unsigned long long int time;
581 581
582 582 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
583 583 + time_management_regs->fine_time;
584 584
585 585 return time;
586 586 }
587 587
588 588 void send_dumb_hk( void )
589 589 {
590 590 Packet_TM_LFR_HK_t dummy_hk_packet;
591 591 unsigned char *parameters;
592 592 unsigned int i;
593 593 rtems_id queue_id;
594 594
595 595 queue_id = RTEMS_ID_NONE;
596 596
597 597 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
598 598 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
599 599 dummy_hk_packet.reserved = DEFAULT_RESERVED;
600 600 dummy_hk_packet.userApplication = CCSDS_USER_APP;
601 601 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
602 602 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
603 603 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
604 604 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
605 605 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
606 606 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
607 607 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
608 608 dummy_hk_packet.serviceType = TM_TYPE_HK;
609 609 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
610 610 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
611 611 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
612 612 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
613 613 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
614 614 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
615 615 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
616 616 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
617 617 dummy_hk_packet.sid = SID_HK;
618 618
619 619 // init status word
620 620 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
621 621 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
622 622 // init software version
623 623 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
624 624 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
625 625 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
626 626 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
627 627 // init fpga version
628 628 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
629 629 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
630 630 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
631 631 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
632 632
633 633 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
634 634
635 635 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
636 636 {
637 637 parameters[i] = INT8_ALL_F;
638 638 }
639 639
640 640 get_message_queue_id_send( &queue_id );
641 641
642 642 rtems_message_queue_send( queue_id, &dummy_hk_packet,
643 643 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
644 644 }
645 645
646 646 void get_temperatures( unsigned char *temperatures )
647 647 {
648 648 unsigned char* temp_scm_ptr;
649 649 unsigned char* temp_pcb_ptr;
650 650 unsigned char* temp_fpga_ptr;
651 651
652 652 // SEL1 SEL0
653 653 // 0 0 => PCB
654 654 // 0 1 => FPGA
655 655 // 1 0 => SCM
656 656
657 657 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
658 658 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
659 659 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
660 660
661 661 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
662 662 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
663 663 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
664 664 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
665 665 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
666 666 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
667 667 }
668 668
669 669 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
670 670 {
671 671 unsigned char* v_ptr;
672 672 unsigned char* e1_ptr;
673 673 unsigned char* e2_ptr;
674 674
675 675 v_ptr = (unsigned char *) &waveform_picker_regs->v;
676 676 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
677 677 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
678 678
679 679 spacecraft_potential[ BYTE_0 ] = v_ptr[ BYTE_2 ];
680 680 spacecraft_potential[ BYTE_1 ] = v_ptr[ BYTE_3 ];
681 681 spacecraft_potential[ BYTE_2 ] = e1_ptr[ BYTE_2 ];
682 682 spacecraft_potential[ BYTE_3 ] = e1_ptr[ BYTE_3 ];
683 683 spacecraft_potential[ BYTE_4 ] = e2_ptr[ BYTE_2 ];
684 684 spacecraft_potential[ BYTE_5 ] = e2_ptr[ BYTE_3 ];
685 685 }
686 686
687 687 void get_cpu_load( unsigned char *resource_statistics )
688 688 {
689 689 unsigned char cpu_load;
690 690
691 691 cpu_load = lfr_rtems_cpu_usage_report();
692 692
693 693 // HK_LFR_CPU_LOAD
694 694 resource_statistics[0] = cpu_load;
695 695
696 696 // HK_LFR_CPU_LOAD_MAX
697 697 if (cpu_load > resource_statistics[1])
698 698 {
699 699 resource_statistics[1] = cpu_load;
700 700 }
701 701
702 702 // CPU_LOAD_AVE
703 703 resource_statistics[BYTE_2] = 0;
704 704
705 705 #ifndef PRINT_TASK_STATISTICS
706 706 rtems_cpu_usage_reset();
707 707 #endif
708 708
709 709 }
710 710
711 711 void set_hk_lfr_sc_potential_flag( bool state )
712 712 {
713 713 if (state == true)
714 714 {
715 715 housekeeping_packet.lfr_status_word[1] =
716 716 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
717 717 }
718 718 else
719 719 {
720 720 housekeeping_packet.lfr_status_word[1] =
721 721 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
722 722 }
723 723 }
724 724
725 725 void set_sy_lfr_pas_filter_enabled( bool state )
726 726 {
727 727 if (state == true)
728 728 {
729 729 housekeeping_packet.lfr_status_word[1] =
730 730 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
731 731 }
732 732 else
733 733 {
734 734 housekeeping_packet.lfr_status_word[1] =
735 735 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
736 736 }
737 737 }
738 738
739 739 void set_sy_lfr_watchdog_enabled( bool state )
740 740 {
741 741 if (state == true)
742 742 {
743 743 housekeeping_packet.lfr_status_word[1] =
744 744 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
745 745 }
746 746 else
747 747 {
748 748 housekeeping_packet.lfr_status_word[1] =
749 749 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
750 750 }
751 751 }
752 752
753 753 void set_hk_lfr_calib_enable( bool state )
754 754 {
755 755 if (state == true)
756 756 {
757 757 housekeeping_packet.lfr_status_word[1] =
758 758 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
759 759 }
760 760 else
761 761 {
762 762 housekeeping_packet.lfr_status_word[1] =
763 763 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
764 764 }
765 765 }
766 766
767 767 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
768 768 {
769 769 housekeeping_packet.lfr_status_word[1] =
770 770 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
771 771
772 772 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
773 773 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
774 774
775 775 }
776 776
777 777 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
778 778 {
779 779 int delta;
780 780
781 781 delta = 0;
782 782
783 783 if (newValue >= oldValue)
784 784 {
785 785 delta = newValue - oldValue;
786 786 }
787 787 else
788 788 {
789 delta = (255 - oldValue) + newValue;
789 delta = (CONST_256 - oldValue) + newValue;
790 790 }
791 791
792 792 *counter = *counter + delta;
793 793 }
794 794
795 795 void hk_lfr_le_update( void )
796 796 {
797 797 static hk_lfr_le_t old_hk_lfr_le = {0};
798 798 hk_lfr_le_t new_hk_lfr_le;
799 799 unsigned int counter;
800 800
801 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
801 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
802 802
803 803 // DPU
804 804 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
805 805 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
806 806 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
807 807 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
808 808 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
809 809 // TIMECODE
810 810 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
811 811 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
812 812 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
813 813 // TIME
814 814 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
815 815 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
816 816 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
817 817 //AHB
818 818 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
819 819 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
820 820 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
821 821
822 822 // update the le counter
823 823 // DPU
824 824 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
825 825 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
826 826 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
827 827 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
828 828 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
829 829 // TIMECODE
830 830 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
831 831 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
832 832 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
833 833 // TIME
834 834 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
835 835 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
836 836 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
837 837 // AHB
838 838 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
839 839
840 840 // DPU
841 841 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
842 842 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
843 843 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
844 844 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
845 845 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
846 846 // TIMECODE
847 847 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
848 848 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
849 849 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
850 850 // TIME
851 851 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
852 852 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
853 853 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
854 854 //AHB
855 855 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
856 856 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
857 857 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
858 858
859 859 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
860 860 // LE
861 861 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
862 862 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
863 863 }
864 864
865 865 void hk_lfr_me_update( void )
866 866 {
867 867 static hk_lfr_me_t old_hk_lfr_me = {0};
868 868 hk_lfr_me_t new_hk_lfr_me;
869 869 unsigned int counter;
870 870
871 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
871 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
872 872
873 873 // get the current values
874 874 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
875 875 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
876 876 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
877 877 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
878 878
879 879 // update the me counter
880 880 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
881 881 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
882 882 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
883 883 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
884 884
885 885 // store the counters for the next time
886 886 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
887 887 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
888 888 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
889 889 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
890 890
891 891 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
892 892 // ME
893 893 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
894 894 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
895 895 }
896 896
897 897 void hk_lfr_le_me_he_update()
898 898 {
899 899
900 900 unsigned int hk_lfr_he_cnt;
901 901
902 902 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
903 903
904 904 //update the low severity error counter
905 905 hk_lfr_le_update( );
906 906
907 907 //update the medium severity error counter
908 908 hk_lfr_me_update();
909 909
910 910 //update the high severity error counter
911 911 hk_lfr_he_cnt = 0;
912 912
913 913 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
914 914 // HE
915 915 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
916 916 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
917 917
918 918 }
919 919
920 920 void set_hk_lfr_time_not_synchro()
921 921 {
922 922 static unsigned char synchroLost = 1;
923 923 int synchronizationBit;
924 924
925 925 // get the synchronization bit
926 926 synchronizationBit =
927 927 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
928 928
929 929 switch (synchronizationBit)
930 930 {
931 931 case 0:
932 932 if (synchroLost == 1)
933 933 {
934 934 synchroLost = 0;
935 935 }
936 936 break;
937 937 case 1:
938 938 if (synchroLost == 0 )
939 939 {
940 940 synchroLost = 1;
941 941 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
942 942 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
943 943 }
944 944 break;
945 945 default:
946 946 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
947 947 break;
948 948 }
949 949
950 950 }
951 951
952 952 void set_hk_lfr_ahb_correctable() // CRITICITY L
953 953 {
954 954 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
955 955 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
956 956 * detected errors in the cache, in the integer unit and in the floating point unit.
957 957 *
958 958 * @param void
959 959 *
960 960 * @return void
961 961 *
962 962 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
963 963 *
964 964 */
965 965
966 966 unsigned int ahb_correctable;
967 967 unsigned int instructionErrorCounter;
968 968 unsigned int dataErrorCounter;
969 969 unsigned int fprfErrorCounter;
970 970 unsigned int iurfErrorCounter;
971 971
972 972 instructionErrorCounter = 0;
973 973 dataErrorCounter = 0;
974 974 fprfErrorCounter = 0;
975 975 iurfErrorCounter = 0;
976 976
977 977 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
978 978 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
979 979
980 980 ahb_correctable = instructionErrorCounter
981 981 + dataErrorCounter
982 982 + fprfErrorCounter
983 983 + iurfErrorCounter
984 984 + housekeeping_packet.hk_lfr_ahb_correctable;
985 985
986 986 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
987 987
988 988 }
General Comments 0
You need to be logged in to leave comments. Login now