##// END OF EJS Templates
printf rw masks for debug just before the emission of a TM_LFR_PARAMETER_DUMP
paul -
r315:53e5264176c3 R3_plus draft
parent child
Show More
@@ -1,1660 +1,1639
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 19 ring_node kcoefficient_node_1;
20 20 ring_node kcoefficient_node_2;
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 193 if (aux > FLOAT_EQUAL_ZERO)
194 194 {
195 195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 196 flag = LFR_DEFAULT;
197 197 }
198 198 }
199 199
200 200 // SET THE PARAMETERS
201 201 if (flag == LFR_SUCCESSFUL)
202 202 {
203 203 flag = set_sy_lfr_s1_bp_p0( TC );
204 204 flag = set_sy_lfr_s1_bp_p1( TC );
205 205 }
206 206
207 207 return flag;
208 208 }
209 209
210 210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 211 {
212 212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 216 *
217 217 */
218 218
219 219 int flag;
220 220 rtems_status_code status;
221 221 unsigned char sy_lfr_s2_bp_p0;
222 222 unsigned char sy_lfr_s2_bp_p1;
223 223 float aux;
224 224
225 225 flag = LFR_SUCCESSFUL;
226 226
227 227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 229 flag = LFR_DEFAULT;
230 230 }
231 231
232 232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 234
235 235 // sy_lfr_s2_bp_p0
236 236 if (flag == LFR_SUCCESSFUL)
237 237 {
238 238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 239 {
240 240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 241 flag = WRONG_APP_DATA;
242 242 }
243 243 }
244 244 // sy_lfr_s2_bp_p1
245 245 if (flag == LFR_SUCCESSFUL)
246 246 {
247 247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 248 {
249 249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 250 flag = WRONG_APP_DATA;
251 251 }
252 252 }
253 253 //******************************************************************
254 254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 255 if (flag == LFR_SUCCESSFUL)
256 256 {
257 257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 260 if (aux > FLOAT_EQUAL_ZERO)
261 261 {
262 262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 263 flag = LFR_DEFAULT;
264 264 }
265 265 }
266 266
267 267 // SET THE PARAMETERS
268 268 if (flag == LFR_SUCCESSFUL)
269 269 {
270 270 flag = set_sy_lfr_s2_bp_p0( TC );
271 271 flag = set_sy_lfr_s2_bp_p1( TC );
272 272 }
273 273
274 274 return flag;
275 275 }
276 276
277 277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 278 {
279 279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 280 *
281 281 * @param TC points to the TeleCommand packet that is being processed
282 282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 283 *
284 284 */
285 285
286 286 int flag;
287 287
288 288 flag = LFR_DEFAULT;
289 289
290 290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 291
292 292 return flag;
293 293 }
294 294
295 295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 296 {
297 297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 298 *
299 299 * @param TC points to the TeleCommand packet that is being processed
300 300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 301 *
302 302 */
303 303
304 304 int flag;
305 305
306 306 flag = LFR_DEFAULT;
307 307
308 308 flag = set_sy_lfr_fbins( TC );
309 309
310 310 return flag;
311 311 }
312 312
313 313 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 314 {
315 315 /** This function updates the LFR registers with the incoming sbm2 parameters.
316 316 *
317 317 * @param TC points to the TeleCommand packet that is being processed
318 318 * @param queue_id is the id of the queue which handles TM related to this execution step
319 319 *
320 320 */
321 321
322 322 int flag;
323 323
324 324 flag = LFR_DEFAULT;
325 325
326 326 flag = check_sy_lfr_filter_parameters( TC, queue_id );
327 327
328 328 if (flag == LFR_SUCCESSFUL)
329 329 {
330 330 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
331 331 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
332 332 parameter_dump_packet.sy_lfr_pas_filter_tbad[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 0 ];
333 333 parameter_dump_packet.sy_lfr_pas_filter_tbad[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 1 ];
334 334 parameter_dump_packet.sy_lfr_pas_filter_tbad[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 2 ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_tbad[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 3 ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_shift[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 0 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_shift[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 1 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_shift[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 2 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_shift[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 3 ];
341 341 parameter_dump_packet.sy_lfr_sc_rw_delta_f[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 0 ];
342 342 parameter_dump_packet.sy_lfr_sc_rw_delta_f[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 1 ];
343 343 parameter_dump_packet.sy_lfr_sc_rw_delta_f[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 2 ];
344 344 parameter_dump_packet.sy_lfr_sc_rw_delta_f[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 3 ];
345 345
346 346 //****************************
347 347 // store PAS filter parameters
348 348 // sy_lfr_pas_filter_enabled
349 349 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
350 350 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & 0x01 );
351 351 // sy_lfr_pas_filter_modulus
352 352 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
353 353 // sy_lfr_pas_filter_tbad
354 354 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
355 355 parameter_dump_packet.sy_lfr_pas_filter_tbad );
356 356 // sy_lfr_pas_filter_offset
357 357 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
358 358 // sy_lfr_pas_filter_shift
359 359 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
360 360 parameter_dump_packet.sy_lfr_pas_filter_shift );
361 361
362 362 //****************************************************
363 363 // store the parameter sy_lfr_sc_rw_delta_f as a float
364 364 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
365 365 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
366 366 }
367 367
368 368 return flag;
369 369 }
370 370
371 371 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
372 372 {
373 373 /** This function updates the LFR registers with the incoming sbm2 parameters.
374 374 *
375 375 * @param TC points to the TeleCommand packet that is being processed
376 376 * @param queue_id is the id of the queue which handles TM related to this execution step
377 377 *
378 378 */
379 379
380 380 unsigned int address;
381 381 rtems_status_code status;
382 382 unsigned int freq;
383 383 unsigned int bin;
384 384 unsigned int coeff;
385 385 unsigned char *kCoeffPtr;
386 386 unsigned char *kCoeffDumpPtr;
387 387
388 388 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
389 389 // F0 => 11 bins
390 390 // F1 => 13 bins
391 391 // F2 => 12 bins
392 392 // 36 bins to dump in two packets (30 bins max per packet)
393 393
394 394 //*********
395 395 // PACKET 1
396 396 // 11 F0 bins, 13 F1 bins and 6 F2 bins
397 397 kcoefficients_dump_1.destinationID = TC->sourceID;
398 398 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
399 399 for( freq=0;
400 400 freq<NB_BINS_COMPRESSED_SM_F0;
401 401 freq++ )
402 402 {
403 403 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
404 404 bin = freq;
405 405 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
406 406 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
407 407 {
408 408 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
409 409 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
410 410 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
411 411 }
412 412 }
413 413 for( freq=NB_BINS_COMPRESSED_SM_F0;
414 414 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
415 415 freq++ )
416 416 {
417 417 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
418 418 bin = freq - NB_BINS_COMPRESSED_SM_F0;
419 419 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
420 420 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
421 421 {
422 422 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
423 423 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
424 424 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
425 425 }
426 426 }
427 427 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
428 428 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
429 429 freq++ )
430 430 {
431 431 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
432 432 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
433 433 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
434 434 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
435 435 {
436 436 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
437 437 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
438 438 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
439 439 }
440 440 }
441 441 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
442 442 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
443 443 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
444 444 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
445 445 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
446 446 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
447 447 // SEND DATA
448 448 kcoefficient_node_1.status = 1;
449 449 address = (unsigned int) &kcoefficient_node_1;
450 450 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
451 451 if (status != RTEMS_SUCCESSFUL) {
452 452 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
453 453 }
454 454
455 455 //********
456 456 // PACKET 2
457 457 // 6 F2 bins
458 458 kcoefficients_dump_2.destinationID = TC->sourceID;
459 459 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
460 460 for( freq=0; freq<6; freq++ )
461 461 {
462 462 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
463 463 bin = freq + 6;
464 464 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
465 465 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
466 466 {
467 467 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
468 468 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
469 469 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
470 470 }
471 471 }
472 472 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
473 473 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
474 474 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
475 475 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
476 476 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
477 477 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
478 478 // SEND DATA
479 479 kcoefficient_node_2.status = 1;
480 480 address = (unsigned int) &kcoefficient_node_2;
481 481 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
482 482 if (status != RTEMS_SUCCESSFUL) {
483 483 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
484 484 }
485 485
486 486 return status;
487 487 }
488 488
489 489 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 490 {
491 491 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
492 492 *
493 493 * @param queue_id is the id of the queue which handles TM related to this execution step.
494 494 *
495 495 * @return RTEMS directive status codes:
496 496 * - RTEMS_SUCCESSFUL - message sent successfully
497 497 * - RTEMS_INVALID_ID - invalid queue id
498 498 * - RTEMS_INVALID_SIZE - invalid message size
499 499 * - RTEMS_INVALID_ADDRESS - buffer is NULL
500 500 * - RTEMS_UNSATISFIED - out of message buffers
501 501 * - RTEMS_TOO_MANY - queue s limit has been reached
502 502 *
503 503 */
504 504
505 505 int status;
506 int k;
506 507
507 508 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
508 509 parameter_dump_packet.destinationID = TC->sourceID;
509 510
510 511 // UPDATE TIME
511 512 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
512 513 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
513 514 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
514 515 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
515 516 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
516 517 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
517 518 // SEND DATA
519 printf("f0\n");
520 for (k = 0; k<16; k++)
521 {
522 printf("%x ", parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1[k]);
523 }
524 printf("\n");
525 printf("f1\n");
526 for (k = 0; k<16; k++)
527 {
528 printf("%x ", parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1[k]);
529 }
530 printf("\n");
531 printf("f2\n");
532 for (k = 0; k<16; k++)
533 {
534 printf("%x ", parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1[k]);
535 }
536 printf("\n");
537
518 538 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
519 539 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
520 540 if (status != RTEMS_SUCCESSFUL) {
521 541 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
522 542 }
523 543
524 544 return status;
525 545 }
526 546
527 547 //***********************
528 548 // NORMAL MODE PARAMETERS
529 549
530 550 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
531 551 {
532 552 unsigned char msb;
533 553 unsigned char lsb;
534 554 int flag;
535 555 float aux;
536 556 rtems_status_code status;
537 557
538 558 unsigned int sy_lfr_n_swf_l;
539 559 unsigned int sy_lfr_n_swf_p;
540 560 unsigned int sy_lfr_n_asm_p;
541 561 unsigned char sy_lfr_n_bp_p0;
542 562 unsigned char sy_lfr_n_bp_p1;
543 563 unsigned char sy_lfr_n_cwf_long_f3;
544 564
545 565 flag = LFR_SUCCESSFUL;
546 566
547 567 //***************
548 568 // get parameters
549 569 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
550 570 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
551 571 sy_lfr_n_swf_l = msb * 256 + lsb;
552 572
553 573 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
554 574 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
555 575 sy_lfr_n_swf_p = msb * 256 + lsb;
556 576
557 577 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
558 578 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
559 579 sy_lfr_n_asm_p = msb * 256 + lsb;
560 580
561 581 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
562 582
563 583 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
564 584
565 585 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
566 586
567 587 //******************
568 588 // check consistency
569 589 // sy_lfr_n_swf_l
570 590 if (sy_lfr_n_swf_l != 2048)
571 591 {
572 592 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
573 593 flag = WRONG_APP_DATA;
574 594 }
575 595 // sy_lfr_n_swf_p
576 596 if (flag == LFR_SUCCESSFUL)
577 597 {
578 598 if ( sy_lfr_n_swf_p < 22 )
579 599 {
580 600 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
581 601 flag = WRONG_APP_DATA;
582 602 }
583 603 }
584 604 // sy_lfr_n_bp_p0
585 605 if (flag == LFR_SUCCESSFUL)
586 606 {
587 607 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
588 608 {
589 609 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
590 610 flag = WRONG_APP_DATA;
591 611 }
592 612 }
593 613 // sy_lfr_n_asm_p
594 614 if (flag == LFR_SUCCESSFUL)
595 615 {
596 616 if (sy_lfr_n_asm_p == 0)
597 617 {
598 618 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
599 619 flag = WRONG_APP_DATA;
600 620 }
601 621 }
602 622 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
603 623 if (flag == LFR_SUCCESSFUL)
604 624 {
605 625 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
606 626 if (aux > FLOAT_EQUAL_ZERO)
607 627 {
608 628 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
609 629 flag = WRONG_APP_DATA;
610 630 }
611 631 }
612 632 // sy_lfr_n_bp_p1
613 633 if (flag == LFR_SUCCESSFUL)
614 634 {
615 635 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
616 636 {
617 637 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
618 638 flag = WRONG_APP_DATA;
619 639 }
620 640 }
621 641 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
622 642 if (flag == LFR_SUCCESSFUL)
623 643 {
624 644 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
625 645 if (aux > FLOAT_EQUAL_ZERO)
626 646 {
627 647 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
628 648 flag = LFR_DEFAULT;
629 649 }
630 650 }
631 651 // sy_lfr_n_cwf_long_f3
632 652
633 653 return flag;
634 654 }
635 655
636 656 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
637 657 {
638 658 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
639 659 *
640 660 * @param TC points to the TeleCommand packet that is being processed
641 661 * @param queue_id is the id of the queue which handles TM related to this execution step
642 662 *
643 663 */
644 664
645 665 int result;
646 666
647 667 result = LFR_SUCCESSFUL;
648 668
649 669 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
650 670 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
651 671
652 672 return result;
653 673 }
654 674
655 675 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
656 676 {
657 677 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
658 678 *
659 679 * @param TC points to the TeleCommand packet that is being processed
660 680 * @param queue_id is the id of the queue which handles TM related to this execution step
661 681 *
662 682 */
663 683
664 684 int result;
665 685
666 686 result = LFR_SUCCESSFUL;
667 687
668 688 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
669 689 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
670 690
671 691 return result;
672 692 }
673 693
674 694 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
675 695 {
676 696 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
677 697 *
678 698 * @param TC points to the TeleCommand packet that is being processed
679 699 * @param queue_id is the id of the queue which handles TM related to this execution step
680 700 *
681 701 */
682 702
683 703 int result;
684 704
685 705 result = LFR_SUCCESSFUL;
686 706
687 707 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
688 708 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
689 709
690 710 return result;
691 711 }
692 712
693 713 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
694 714 {
695 715 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
696 716 *
697 717 * @param TC points to the TeleCommand packet that is being processed
698 718 * @param queue_id is the id of the queue which handles TM related to this execution step
699 719 *
700 720 */
701 721
702 722 int status;
703 723
704 724 status = LFR_SUCCESSFUL;
705 725
706 726 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
707 727
708 728 return status;
709 729 }
710 730
711 731 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
712 732 {
713 733 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
714 734 *
715 735 * @param TC points to the TeleCommand packet that is being processed
716 736 * @param queue_id is the id of the queue which handles TM related to this execution step
717 737 *
718 738 */
719 739
720 740 int status;
721 741
722 742 status = LFR_SUCCESSFUL;
723 743
724 744 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
725 745
726 746 return status;
727 747 }
728 748
729 749 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
730 750 {
731 751 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
732 752 *
733 753 * @param TC points to the TeleCommand packet that is being processed
734 754 * @param queue_id is the id of the queue which handles TM related to this execution step
735 755 *
736 756 */
737 757
738 758 int status;
739 759
740 760 status = LFR_SUCCESSFUL;
741 761
742 762 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
743 763
744 764 return status;
745 765 }
746 766
747 767 //**********************
748 768 // BURST MODE PARAMETERS
749 769 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
750 770 {
751 771 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
752 772 *
753 773 * @param TC points to the TeleCommand packet that is being processed
754 774 * @param queue_id is the id of the queue which handles TM related to this execution step
755 775 *
756 776 */
757 777
758 778 int status;
759 779
760 780 status = LFR_SUCCESSFUL;
761 781
762 782 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
763 783
764 784 return status;
765 785 }
766 786
767 787 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
768 788 {
769 789 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
770 790 *
771 791 * @param TC points to the TeleCommand packet that is being processed
772 792 * @param queue_id is the id of the queue which handles TM related to this execution step
773 793 *
774 794 */
775 795
776 796 int status;
777 797
778 798 status = LFR_SUCCESSFUL;
779 799
780 800 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
781 801
782 802 return status;
783 803 }
784 804
785 805 //*********************
786 806 // SBM1 MODE PARAMETERS
787 807 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
788 808 {
789 809 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
790 810 *
791 811 * @param TC points to the TeleCommand packet that is being processed
792 812 * @param queue_id is the id of the queue which handles TM related to this execution step
793 813 *
794 814 */
795 815
796 816 int status;
797 817
798 818 status = LFR_SUCCESSFUL;
799 819
800 820 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
801 821
802 822 return status;
803 823 }
804 824
805 825 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
806 826 {
807 827 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
808 828 *
809 829 * @param TC points to the TeleCommand packet that is being processed
810 830 * @param queue_id is the id of the queue which handles TM related to this execution step
811 831 *
812 832 */
813 833
814 834 int status;
815 835
816 836 status = LFR_SUCCESSFUL;
817 837
818 838 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
819 839
820 840 return status;
821 841 }
822 842
823 843 //*********************
824 844 // SBM2 MODE PARAMETERS
825 845 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
826 846 {
827 847 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
828 848 *
829 849 * @param TC points to the TeleCommand packet that is being processed
830 850 * @param queue_id is the id of the queue which handles TM related to this execution step
831 851 *
832 852 */
833 853
834 854 int status;
835 855
836 856 status = LFR_SUCCESSFUL;
837 857
838 858 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
839 859
840 860 return status;
841 861 }
842 862
843 863 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
844 864 {
845 865 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
846 866 *
847 867 * @param TC points to the TeleCommand packet that is being processed
848 868 * @param queue_id is the id of the queue which handles TM related to this execution step
849 869 *
850 870 */
851 871
852 872 int status;
853 873
854 874 status = LFR_SUCCESSFUL;
855 875
856 876 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
857 877
858 878 return status;
859 879 }
860 880
861 881 //*******************
862 882 // TC_LFR_UPDATE_INFO
863 883 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
864 884 {
865 885 unsigned int status;
866 886
867 887 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
868 888 || (mode == LFR_MODE_BURST)
869 889 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
870 890 {
871 891 status = LFR_SUCCESSFUL;
872 892 }
873 893 else
874 894 {
875 895 status = LFR_DEFAULT;
876 896 }
877 897
878 898 return status;
879 899 }
880 900
881 901 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
882 902 {
883 903 unsigned int status;
884 904
885 905 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
886 906 || (mode == TDS_MODE_BURST)
887 907 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
888 908 || (mode == TDS_MODE_LFM))
889 909 {
890 910 status = LFR_SUCCESSFUL;
891 911 }
892 912 else
893 913 {
894 914 status = LFR_DEFAULT;
895 915 }
896 916
897 917 return status;
898 918 }
899 919
900 920 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
901 921 {
902 922 unsigned int status;
903 923
904 924 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
905 925 || (mode == THR_MODE_BURST))
906 926 {
907 927 status = LFR_SUCCESSFUL;
908 928 }
909 929 else
910 930 {
911 931 status = LFR_DEFAULT;
912 932 }
913 933
914 934 return status;
915 935 }
916 936
917 937 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
918 938 {
919 939 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
920 940 *
921 941 * @param TC points to the TeleCommand packet that is being processed
922 942 *
923 943 */
924 944
925 945 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
926 946
927 947 bytePosPtr = (unsigned char *) &TC->packetID;
928 948
929 949 // cp_rpw_sc_rw1_f1
930 950 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
931 951 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
932 952
933 953 // cp_rpw_sc_rw1_f2
934 954 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
935 955 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
936 956
937 957 // cp_rpw_sc_rw2_f1
938 958 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
939 959 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
940 960
941 961 // cp_rpw_sc_rw2_f2
942 962 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
943 963 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
944 964
945 965 // cp_rpw_sc_rw3_f1
946 966 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
947 967 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
948 968
949 969 // cp_rpw_sc_rw3_f2
950 970 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
951 971 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
952 972
953 973 // cp_rpw_sc_rw4_f1
954 974 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
955 975 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
956 976
957 977 // cp_rpw_sc_rw4_f2
958 978 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
959 979 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
960 980 }
961 981
962 982 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
963 983 {
964 984 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
965 985 *
966 986 * @param fbins_mask
967 987 * @param rw_f is the reaction wheel frequency to filter
968 988 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
969 989 * @param flag [true] filtering enabled [false] filtering disabled
970 990 *
971 991 * @return void
972 992 *
973 993 */
974 994
975 995 float f_RW_min;
976 996 float f_RW_MAX;
977 997 float fi_min;
978 998 float fi_MAX;
979 999 float fi;
980 1000 float deltaBelow;
981 1001 float deltaAbove;
982 1002 int binBelow;
983 1003 int binAbove;
984 1004 int closestBin;
985 1005 unsigned int whichByte;
986 1006 int selectedByte;
987 1007 int bin;
988 1008 int binToRemove[3];
989 1009 int k;
990 1010
991 1011 whichByte = 0;
992 1012 bin = 0;
993 1013
994 1014 binToRemove[0] = -1;
995 1015 binToRemove[1] = -1;
996 1016 binToRemove[2] = -1;
997 1017
998 1018 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
999 1019 f_RW_min = rw_f - filterPar.sy_lfr_sc_rw_delta_f / 2.;
1000 1020 f_RW_MAX = rw_f + filterPar.sy_lfr_sc_rw_delta_f / 2.;
1001 1021
1002 1022 // compute the index of the frequency bin immediately below rw_f
1003 1023 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1004 1024 deltaBelow = rw_f - binBelow * deltaFreq;
1005 1025
1006 1026 // compute the index of the frequency bin immediately above rw_f
1007 1027 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1008 1028 deltaAbove = binAbove * deltaFreq - rw_f;
1009 1029
1010 1030 // search the closest bin
1011 1031 if (deltaAbove > deltaBelow)
1012 1032 {
1013 1033 closestBin = binBelow;
1014 1034 }
1015 1035 else
1016 1036 {
1017 1037 closestBin = binAbove;
1018 1038 }
1019 1039
1020 1040 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1021 1041 fi = closestBin * deltaFreq;
1022 1042 fi_min = fi - (deltaFreq * 0.285);
1023 1043 fi_MAX = fi + (deltaFreq * 0.285);
1024 1044
1025 1045 //**************************************************************************************
1026 1046 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1027 1047 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1028 1048 //**************************************************************************************
1029 1049
1030 1050 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1031 1051 // => remove f_(i), f_(i-1) and f_(i+1)
1032 1052 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1033 1053 {
1034 1054 binToRemove[0] = (closestBin - 1) - 1;
1035 1055 binToRemove[1] = (closestBin) - 1;
1036 1056 binToRemove[2] = (closestBin + 1) - 1;
1037 1057 }
1038 1058 // 2. ELSE
1039 1059 // => remove the two f_(i) which are around f_RW
1040 1060 else
1041 1061 {
1042 1062 binToRemove[0] = (binBelow) - 1;
1043 1063 binToRemove[1] = (binAbove) - 1;
1044 1064 binToRemove[2] = (-1);
1045 1065 }
1046 1066
1047 1067 for (k = 0; k < 3; k++)
1048 1068 {
1049 1069 bin = binToRemove[k];
1050 1070 if ( (bin >= 0) && (bin <= 127) )
1051 1071 {
1052 1072 if (flag == 1)
1053 1073 {
1054 1074 whichByte = (bin >> 3); // division by 8
1055 1075 selectedByte = ( 1 << (bin - (whichByte * 8)) );
1056 1076 fbins_mask[15 - whichByte] = fbins_mask[15 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1057 1077 }
1058 1078 }
1059 1079 }
1060 1080 }
1061 1081
1062 1082 void build_sy_lfr_rw_mask( unsigned int channel )
1063 1083 {
1064 1084 unsigned char local_rw_fbins_mask[16];
1065 1085 unsigned char *maskPtr;
1066 1086 double deltaF;
1067 1087 unsigned k;
1068 1088
1069 1089 k = 0;
1070 1090
1071 1091 maskPtr = NULL;
1072 1092 deltaF = 1.;
1073 1093
1074 1094 switch (channel)
1075 1095 {
1076 1096 case 0:
1077 1097 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1078 1098 deltaF = 96.;
1079 1099 break;
1080 1100 case 1:
1081 1101 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1082 1102 deltaF = 16.;
1083 1103 break;
1084 1104 case 2:
1085 1105 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1086 1106 deltaF = 1.;
1087 1107 break;
1088 1108 default:
1089 1109 break;
1090 1110 }
1091 1111
1092 1112 for (k = 0; k < 16; k++)
1093 1113 {
1094 1114 local_rw_fbins_mask[k] = 0xff;
1095 1115 }
1096 1116
1097 1117 // RW1 F1
1098 1118 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x80) >> 7 ); // [1000 0000]
1099 1119
1100 1120 // RW1 F2
1101 1121 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x40) >> 6 ); // [0100 0000]
1102 1122
1103 1123 // RW2 F1
1104 1124 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x20) >> 5 ); // [0010 0000]
1105 1125
1106 1126 // RW2 F2
1107 1127 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x10) >> 4 ); // [0001 0000]
1108 1128
1109 1129 // RW3 F1
1110 1130 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x08) >> 3 ); // [0000 1000]
1111 1131
1112 1132 // RW3 F2
1113 1133 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x04) >> 2 ); // [0000 0100]
1114 1134
1115 1135 // RW4 F1
1116 1136 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x02) >> 1 ); // [0000 0010]
1117 1137
1118 1138 // RW4 F2
1119 1139 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x01) ); // [0000 0001]
1120 1140
1121 1141 // update the value of the fbins related to reaction wheels frequency filtering
1122 1142 if (maskPtr != NULL)
1123 1143 {
1124 printf("channel = %d\n", channel);
1125 1144 for (k = 0; k < 16; k++)
1126 1145 {
1127 printf("%x ", local_rw_fbins_mask[k]);
1128 1146 maskPtr[k] = local_rw_fbins_mask[k];
1129 1147 }
1130 printf("\n", local_rw_fbins_mask[k]);
1131 1148 }
1132 1149 }
1133 1150
1134 void print_sy_lfr_rw_masks( void )
1135 {
1136 int k;
1137
1138 printf("cp_rpw_sc_rw1_f1 = %f\n", cp_rpw_sc_rw1_f1);
1139 printf("cp_rpw_sc_rw1_f2 = %f\n", cp_rpw_sc_rw1_f2);
1140 printf("cp_rpw_sc_rw2_f1 = %f\n", cp_rpw_sc_rw2_f1);
1141 printf("cp_rpw_sc_rw2_f2 = %f\n", cp_rpw_sc_rw2_f2);
1142 printf("cp_rpw_sc_rw3_f1 = %f\n", cp_rpw_sc_rw3_f1);
1143 printf("cp_rpw_sc_rw3_f2 = %f\n", cp_rpw_sc_rw3_f2);
1144 printf("cp_rpw_sc_rw4_f1 = %f\n", cp_rpw_sc_rw4_f1);
1145 printf("cp_rpw_sc_rw4_f2 = %f\n", cp_rpw_sc_rw4_f2);
1146
1147 printf("f0\n");
1148 for (k = 0; k < 16; k++)
1149 {
1150 printf("%x ", parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1[k] );
1151 }
1152 printf("\n");
1153
1154 printf("f1\n");
1155 for (k = 0; k < 16; k++)
1156 {
1157 printf("%x ", parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1[k] );
1158 }
1159 printf("\n");
1160
1161 printf("f2\n");
1162 for (k = 0; k < 16; k++)
1163 {
1164 printf("%x ", parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1[k] );
1165 }
1166 printf("\n");
1167
1168 }
1169
1170 1151 void build_sy_lfr_rw_masks( void )
1171 1152 {
1172 1153 build_sy_lfr_rw_mask( 0 );
1173 1154 build_sy_lfr_rw_mask( 1 );
1174 1155 build_sy_lfr_rw_mask( 2 );
1175 1156
1176 print_sy_lfr_rw_masks();
1177
1178 1157 merge_fbins_masks();
1179 1158 }
1180 1159
1181 1160 void merge_fbins_masks( void )
1182 1161 {
1183 1162 unsigned char k;
1184 1163
1185 1164 unsigned char *fbins_f0;
1186 1165 unsigned char *fbins_f1;
1187 1166 unsigned char *fbins_f2;
1188 1167 unsigned char *rw_mask_f0;
1189 1168 unsigned char *rw_mask_f1;
1190 1169 unsigned char *rw_mask_f2;
1191 1170
1192 1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
1193 1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins.fx.f1_word1;
1194 1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins.fx.f2_word1;
1195 1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1196 1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1197 1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1198 1177
1199 1178 for( k=0; k < 16; k++ )
1200 1179 {
1201 1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1202 1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1203 1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1204 1183 }
1205 1184 }
1206 1185
1207 1186 //***********
1208 1187 // FBINS MASK
1209 1188
1210 1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1211 1190 {
1212 1191 int status;
1213 1192 unsigned int k;
1214 1193 unsigned char *fbins_mask_dump;
1215 1194 unsigned char *fbins_mask_TC;
1216 1195
1217 1196 status = LFR_SUCCESSFUL;
1218 1197
1219 1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins.raw;
1220 1199 fbins_mask_TC = TC->dataAndCRC;
1221 1200
1222 1201 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1223 1202 {
1224 1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1225 1204 }
1226 1205
1227 1206 return status;
1228 1207 }
1229 1208
1230 1209 //***************************
1231 1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1232 1211
1233 1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1234 1213 {
1235 1214 int flag;
1236 1215 rtems_status_code status;
1237 1216
1238 1217 unsigned char sy_lfr_pas_filter_enabled;
1239 1218 unsigned char sy_lfr_pas_filter_modulus;
1240 1219 float sy_lfr_pas_filter_tbad;
1241 1220 unsigned char sy_lfr_pas_filter_offset;
1242 1221 float sy_lfr_pas_filter_shift;
1243 1222 float sy_lfr_sc_rw_delta_f;
1244 1223 char *parPtr;
1245 1224
1246 1225 flag = LFR_SUCCESSFUL;
1247 1226 sy_lfr_pas_filter_tbad = 0.0;
1248 1227 sy_lfr_pas_filter_shift = 0.0;
1249 1228 sy_lfr_sc_rw_delta_f = 0.0;
1250 1229 parPtr = NULL;
1251 1230
1252 1231 //***************
1253 1232 // get parameters
1254 1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & 0x01; // [0000 0001]
1255 1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1256 1235 copyFloatByChar(
1257 1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1258 1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1259 1238 );
1260 1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1261 1240 copyFloatByChar(
1262 1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1263 1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1264 1243 );
1265 1244 copyFloatByChar(
1266 1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1267 1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1268 1247 );
1269 1248
1270 1249 //******************
1271 1250 // CHECK CONSISTENCY
1272 1251
1273 1252 //**************************
1274 1253 // sy_lfr_pas_filter_enabled
1275 1254 // nothing to check, value is 0 or 1
1276 1255
1277 1256 //**************************
1278 1257 // sy_lfr_pas_filter_modulus
1279 1258 if ( (sy_lfr_pas_filter_modulus < 4) || (sy_lfr_pas_filter_modulus > 8) )
1280 1259 {
1281 1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS+10, sy_lfr_pas_filter_modulus );
1282 1261 flag = WRONG_APP_DATA;
1283 1262 }
1284 1263
1285 1264 //***********************
1286 1265 // sy_lfr_pas_filter_tbad
1287 1266 if ( (sy_lfr_pas_filter_tbad < 0.0) || (sy_lfr_pas_filter_tbad > 4.0) )
1288 1267 {
1289 1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1290 1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD+10, parPtr[3] );
1291 1270 flag = WRONG_APP_DATA;
1292 1271 }
1293 1272
1294 1273 //*************************
1295 1274 // sy_lfr_pas_filter_offset
1296 1275 if (flag == LFR_SUCCESSFUL)
1297 1276 {
1298 1277 if ( (sy_lfr_pas_filter_offset < 0) || (sy_lfr_pas_filter_offset > 7) )
1299 1278 {
1300 1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET+10, sy_lfr_pas_filter_offset );
1301 1280 flag = WRONG_APP_DATA;
1302 1281 }
1303 1282 }
1304 1283
1305 1284 //************************
1306 1285 // sy_lfr_pas_filter_shift
1307 1286 if ( (sy_lfr_pas_filter_shift < 0.0) || (sy_lfr_pas_filter_shift > 1.0) )
1308 1287 {
1309 1288 parPtr = (char*) &sy_lfr_pas_filter_shift;
1310 1289 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT+10, parPtr[3] );
1311 1290 flag = WRONG_APP_DATA;
1312 1291 }
1313 1292
1314 1293 //*********************
1315 1294 // sy_lfr_sc_rw_delta_f
1316 1295 // nothing to check, no default value in the ICD
1317 1296
1318 1297 return flag;
1319 1298 }
1320 1299
1321 1300 //**************
1322 1301 // KCOEFFICIENTS
1323 1302 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1324 1303 {
1325 1304 unsigned int kcoeff;
1326 1305 unsigned short sy_lfr_kcoeff_frequency;
1327 1306 unsigned short bin;
1328 1307 unsigned short *freqPtr;
1329 1308 float *kcoeffPtr_norm;
1330 1309 float *kcoeffPtr_sbm;
1331 1310 int status;
1332 1311 unsigned char *kcoeffLoadPtr;
1333 1312 unsigned char *kcoeffNormPtr;
1334 1313 unsigned char *kcoeffSbmPtr_a;
1335 1314 unsigned char *kcoeffSbmPtr_b;
1336 1315
1337 1316 status = LFR_SUCCESSFUL;
1338 1317
1339 1318 kcoeffPtr_norm = NULL;
1340 1319 kcoeffPtr_sbm = NULL;
1341 1320 bin = 0;
1342 1321
1343 1322 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1344 1323 sy_lfr_kcoeff_frequency = *freqPtr;
1345 1324
1346 1325 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1347 1326 {
1348 1327 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1349 1328 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
1350 1329 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1351 1330 status = LFR_DEFAULT;
1352 1331 }
1353 1332 else
1354 1333 {
1355 1334 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1356 1335 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1357 1336 {
1358 1337 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1359 1338 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1360 1339 bin = sy_lfr_kcoeff_frequency;
1361 1340 }
1362 1341 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1363 1342 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1364 1343 {
1365 1344 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1366 1345 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1367 1346 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1368 1347 }
1369 1348 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1370 1349 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1371 1350 {
1372 1351 kcoeffPtr_norm = k_coeff_intercalib_f2;
1373 1352 kcoeffPtr_sbm = NULL;
1374 1353 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1375 1354 }
1376 1355 }
1377 1356
1378 1357 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1379 1358 {
1380 1359 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1381 1360 {
1382 1361 // destination
1383 1362 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1384 1363 // source
1385 1364 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1386 1365 // copy source to destination
1387 1366 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1388 1367 }
1389 1368 }
1390 1369
1391 1370 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1392 1371 {
1393 1372 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1394 1373 {
1395 1374 // destination
1396 1375 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
1397 1376 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
1398 1377 // source
1399 1378 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1400 1379 // copy source to destination
1401 1380 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1402 1381 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1403 1382 }
1404 1383 }
1405 1384
1406 1385 // print_k_coeff();
1407 1386
1408 1387 return status;
1409 1388 }
1410 1389
1411 1390 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1412 1391 {
1413 1392 destination[0] = source[0];
1414 1393 destination[1] = source[1];
1415 1394 destination[2] = source[2];
1416 1395 destination[3] = source[3];
1417 1396 }
1418 1397
1419 1398 void floatToChar( float value, unsigned char* ptr)
1420 1399 {
1421 1400 unsigned char* valuePtr;
1422 1401
1423 1402 valuePtr = (unsigned char*) &value;
1424 1403 ptr[0] = valuePtr[0];
1425 1404 ptr[1] = valuePtr[1];
1426 1405 ptr[2] = valuePtr[2];
1427 1406 ptr[3] = valuePtr[3];
1428 1407 }
1429 1408
1430 1409 //**********
1431 1410 // init dump
1432 1411
1433 1412 void init_parameter_dump( void )
1434 1413 {
1435 1414 /** This function initialize the parameter_dump_packet global variable with default values.
1436 1415 *
1437 1416 */
1438 1417
1439 1418 unsigned int k;
1440 1419
1441 1420 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1442 1421 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1443 1422 parameter_dump_packet.reserved = CCSDS_RESERVED;
1444 1423 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1445 1424 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1446 1425 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1447 1426 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1448 1427 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1449 1428 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1450 1429 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1451 1430 // DATA FIELD HEADER
1452 1431 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1453 1432 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1454 1433 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1455 1434 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1456 1435 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1457 1436 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1458 1437 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1459 1438 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1460 1439 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1461 1440 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1462 1441 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1463 1442
1464 1443 //******************
1465 1444 // COMMON PARAMETERS
1466 1445 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1467 1446 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1468 1447
1469 1448 //******************
1470 1449 // NORMAL PARAMETERS
1471 1450 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1472 1451 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1473 1452 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1474 1453 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1475 1454 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1476 1455 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1477 1456 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1478 1457 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1479 1458 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1480 1459
1481 1460 //*****************
1482 1461 // BURST PARAMETERS
1483 1462 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1484 1463 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1485 1464
1486 1465 //****************
1487 1466 // SBM1 PARAMETERS
1488 1467 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1489 1468 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1490 1469
1491 1470 //****************
1492 1471 // SBM2 PARAMETERS
1493 1472 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1494 1473 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1495 1474
1496 1475 //************
1497 1476 // FBINS MASKS
1498 1477 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1499 1478 {
1500 1479 parameter_dump_packet.sy_lfr_fbins.raw[k] = 0xff;
1501 1480 }
1502 1481
1503 1482 // PAS FILTER PARAMETERS
1504 1483 parameter_dump_packet.pa_rpw_spare8_2 = 0x00;
1505 1484 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = 0x00;
1506 1485 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1507 1486 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1508 1487 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1509 1488 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1510 1489 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1511 1490
1512 1491 // LFR_RW_MASK
1513 1492 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1514 1493 {
1515 1494 parameter_dump_packet.sy_lfr_rw_mask.raw[k] = 0xff;
1516 1495 }
1517 1496 }
1518 1497
1519 1498 void init_kcoefficients_dump( void )
1520 1499 {
1521 1500 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1522 1501 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1523 1502
1524 1503 kcoefficient_node_1.previous = NULL;
1525 1504 kcoefficient_node_1.next = NULL;
1526 1505 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1527 1506 kcoefficient_node_1.coarseTime = 0x00;
1528 1507 kcoefficient_node_1.fineTime = 0x00;
1529 1508 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1530 1509 kcoefficient_node_1.status = 0x00;
1531 1510
1532 1511 kcoefficient_node_2.previous = NULL;
1533 1512 kcoefficient_node_2.next = NULL;
1534 1513 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1535 1514 kcoefficient_node_2.coarseTime = 0x00;
1536 1515 kcoefficient_node_2.fineTime = 0x00;
1537 1516 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1538 1517 kcoefficient_node_2.status = 0x00;
1539 1518 }
1540 1519
1541 1520 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1542 1521 {
1543 1522 unsigned int k;
1544 1523 unsigned int packetLength;
1545 1524
1546 1525 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1547 1526
1548 1527 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1549 1528 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1550 1529 kcoefficients_dump->reserved = CCSDS_RESERVED;
1551 1530 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1552 1531 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1553 1532 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1554 1533 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1555 1534 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1556 1535 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1557 1536 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1558 1537 // DATA FIELD HEADER
1559 1538 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1560 1539 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1561 1540 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1562 1541 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1563 1542 kcoefficients_dump->time[0] = 0x00;
1564 1543 kcoefficients_dump->time[1] = 0x00;
1565 1544 kcoefficients_dump->time[2] = 0x00;
1566 1545 kcoefficients_dump->time[3] = 0x00;
1567 1546 kcoefficients_dump->time[4] = 0x00;
1568 1547 kcoefficients_dump->time[5] = 0x00;
1569 1548 kcoefficients_dump->sid = SID_K_DUMP;
1570 1549
1571 1550 kcoefficients_dump->pkt_cnt = 2;
1572 1551 kcoefficients_dump->pkt_nr = pkt_nr;
1573 1552 kcoefficients_dump->blk_nr = blk_nr;
1574 1553
1575 1554 //******************
1576 1555 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1577 1556 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1578 1557 for (k=0; k<3900; k++)
1579 1558 {
1580 1559 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1581 1560 }
1582 1561 }
1583 1562
1584 1563 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1585 1564 {
1586 1565 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1587 1566 *
1588 1567 * @param packet_sequence_control points to the packet sequence control which will be incremented
1589 1568 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1590 1569 *
1591 1570 * If the destination ID is not known, a dedicated counter is incremented.
1592 1571 *
1593 1572 */
1594 1573
1595 1574 unsigned short sequence_cnt;
1596 1575 unsigned short segmentation_grouping_flag;
1597 1576 unsigned short new_packet_sequence_control;
1598 1577 unsigned char i;
1599 1578
1600 1579 switch (destination_id)
1601 1580 {
1602 1581 case SID_TC_GROUND:
1603 1582 i = GROUND;
1604 1583 break;
1605 1584 case SID_TC_MISSION_TIMELINE:
1606 1585 i = MISSION_TIMELINE;
1607 1586 break;
1608 1587 case SID_TC_TC_SEQUENCES:
1609 1588 i = TC_SEQUENCES;
1610 1589 break;
1611 1590 case SID_TC_RECOVERY_ACTION_CMD:
1612 1591 i = RECOVERY_ACTION_CMD;
1613 1592 break;
1614 1593 case SID_TC_BACKUP_MISSION_TIMELINE:
1615 1594 i = BACKUP_MISSION_TIMELINE;
1616 1595 break;
1617 1596 case SID_TC_DIRECT_CMD:
1618 1597 i = DIRECT_CMD;
1619 1598 break;
1620 1599 case SID_TC_SPARE_GRD_SRC1:
1621 1600 i = SPARE_GRD_SRC1;
1622 1601 break;
1623 1602 case SID_TC_SPARE_GRD_SRC2:
1624 1603 i = SPARE_GRD_SRC2;
1625 1604 break;
1626 1605 case SID_TC_OBCP:
1627 1606 i = OBCP;
1628 1607 break;
1629 1608 case SID_TC_SYSTEM_CONTROL:
1630 1609 i = SYSTEM_CONTROL;
1631 1610 break;
1632 1611 case SID_TC_AOCS:
1633 1612 i = AOCS;
1634 1613 break;
1635 1614 case SID_TC_RPW_INTERNAL:
1636 1615 i = RPW_INTERNAL;
1637 1616 break;
1638 1617 default:
1639 1618 i = GROUND;
1640 1619 break;
1641 1620 }
1642 1621
1643 1622 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1644 1623 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1645 1624
1646 1625 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1647 1626
1648 1627 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1649 1628 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1650 1629
1651 1630 // increment the sequence counter
1652 1631 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1653 1632 {
1654 1633 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1655 1634 }
1656 1635 else
1657 1636 {
1658 1637 sequenceCounters_TM_DUMP[ i ] = 0;
1659 1638 }
1660 1639 }
General Comments 0
You need to be logged in to leave comments. Login now