##// END OF EJS Templates
Correction of a bug in set_sy_lfr_kcoeff (misalignment)
paul -
r340:4f755502e98f R3++ draft
parent child
Show More
@@ -1,119 +1,120
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15 #define NB_BINS_TO_REMOVE 3
16 16 #define FI_INTERVAL_COEFF 0.285
17 17 #define BIN_MIN 0
18 18 #define BIN_MAX 127
19 19 #define DELTAF_F0 96.
20 20 #define DELTAF_F1 16.
21 21 #define DELTAF_F2 1.
22 22 #define DELTAF_DIV 2.
23 23
24 24 #define BIT_RW1_F1 0x80
25 25 #define BIT_RW1_F2 0x40
26 26 #define BIT_RW2_F1 0x20
27 27 #define BIT_RW2_F2 0x10
28 28 #define BIT_RW3_F1 0x08
29 29 #define BIT_RW3_F2 0x04
30 30 #define BIT_RW4_F1 0x02
31 31 #define BIT_RW4_F2 0x01
32 32
33 33 #define WHEEL_1 1
34 34 #define WHEEL_2 2
35 35 #define WHEEL_3 3
36 36 #define WHEEL_4 4
37 37 #define FREQ_1 1
38 38 #define FREQ_2 2
39 39 #define FREQ_3 3
40 40 #define FREQ_4 4
41 41 #define FLAG_OFFSET_WHEELS_1_3 8
42 42 #define FLAG_OFFSET_WHEELS_2_4 4
43 43
44 44 #define FLAG_NAN 0 // Not A NUMBER
45 45 #define FLAG_IAN 1 // Is A Number
46 46
47 47 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
48 48
49 49 extern unsigned short sequenceCounterParameterDump;
50 50 extern unsigned short sequenceCounters_TM_DUMP[];
51 51 extern float k_coeff_intercalib_f0_norm[ ];
52 52 extern float k_coeff_intercalib_f0_sbm[ ];
53 53 extern float k_coeff_intercalib_f1_norm[ ];
54 54 extern float k_coeff_intercalib_f1_sbm[ ];
55 55 extern float k_coeff_intercalib_f2[ ];
56 56 extern fbins_masks_t fbins_masks;
57 57
58 58 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
59 59 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
60 60 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
61 61 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
62 62 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
63 63 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
64 64 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
65 65 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
66 66 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
67 67 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
68 68
69 69 // NORMAL
70 70 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
71 71 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
72 72 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
73 73 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
74 74 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
75 75 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
76 76 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
77 77
78 78 // BURST
79 79 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
80 80 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
81 81
82 82 // SBM1
83 83 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
84 84 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
85 85
86 86 // SBM2
87 87 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
88 88 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
89 89
90 90 // TC_LFR_UPDATE_INFO
91 91 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
92 92 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
93 93 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
94 94 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value );
95 95 void set_hk_lfr_sc_rw_f_flags( void );
96 96 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
97 97 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff );
98 98 void build_sy_lfr_rw_mask( unsigned int channel );
99 99 void build_sy_lfr_rw_masks();
100 100 void merge_fbins_masks( void );
101 101
102 102 // FBINS_MASK
103 103 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
104 104
105 105 // TC_LFR_LOAD_PARS_FILTER_PAR
106 106 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
107 107
108 108 // KCOEFFICIENTS
109 109 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
110 110 void copyFloatByChar( unsigned char *destination, unsigned char *source );
111 111 void copyInt32ByChar( unsigned char *destination, unsigned char *source );
112 void copyInt16ByChar( unsigned char *destination, unsigned char *source );
112 113 void floatToChar( float value, unsigned char* ptr);
113 114
114 115 void init_parameter_dump( void );
115 116 void init_kcoefficients_dump( void );
116 117 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
117 118 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
118 119
119 120 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,1005 +1,1005
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13 13
14 14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 16 {
17 17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 18 *
19 19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 22 * @param interrupt_level is the interrupt level that the timer drives.
23 23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 24 *
25 25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 26 *
27 27 */
28 28
29 29 rtems_status_code status;
30 30 rtems_isr_entry old_isr_handler;
31 31
32 32 old_isr_handler = NULL;
33 33
34 34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35 35
36 36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 37 if (status!=RTEMS_SUCCESSFUL)
38 38 {
39 39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 40 }
41 41
42 42 timer_set_clock_divider( timer, clock_divider);
43 43 }
44 44
45 45 void timer_start(unsigned char timer)
46 46 {
47 47 /** This function starts a GPTIMER timer.
48 48 *
49 49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 51 *
52 52 */
53 53
54 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 59 }
60 60
61 61 void timer_stop(unsigned char timer)
62 62 {
63 63 /** This function stops a GPTIMER timer.
64 64 *
65 65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 67 *
68 68 */
69 69
70 70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 73 }
74 74
75 75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 76 {
77 77 /** This function sets the clock divider of a GPTIMER timer.
78 78 *
79 79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 82 *
83 83 */
84 84
85 85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 86 }
87 87
88 88 // WATCHDOG
89 89
90 90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 91 {
92 92 rtems_status_code status_code;
93 93
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95 95
96 96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97 97
98 98 exit(0);
99 99 }
100 100
101 101 void watchdog_configure(void)
102 102 {
103 103 /** This function configure the watchdog.
104 104 *
105 105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 107 *
108 108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 109 *
110 110 */
111 111
112 112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113 113
114 114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115 115
116 116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 117 }
118 118
119 119 void watchdog_stop(void)
120 120 {
121 121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 122 timer_stop( TIMER_WATCHDOG );
123 123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 124 }
125 125
126 126 void watchdog_reload(void)
127 127 {
128 128 /** This function reloads the watchdog timer counter with the timer reload value.
129 129 *
130 130 * @param void
131 131 *
132 132 * @return void
133 133 *
134 134 */
135 135
136 136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 137 }
138 138
139 139 void watchdog_start(void)
140 140 {
141 141 /** This function starts the watchdog timer.
142 142 *
143 143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 145 *
146 146 */
147 147
148 148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149 149
150 150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154 154
155 155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156 156
157 157 }
158 158
159 159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 160 {
161 161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162 162
163 163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164 164
165 165 return 0;
166 166 }
167 167
168 168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 169 {
170 170 /** This function sets the scaler reload register of the apbuart module
171 171 *
172 172 * @param regs is the address of the apbuart registers in memory
173 173 * @param value is the value that will be stored in the scaler register
174 174 *
175 175 * The value shall be set by the software to get data on the serial interface.
176 176 *
177 177 */
178 178
179 179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180 180
181 181 apbuart_regs->scaler = value;
182 182
183 183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 184 }
185 185
186 186 //************
187 187 // RTEMS TASKS
188 188
189 189 rtems_task load_task(rtems_task_argument argument)
190 190 {
191 191 BOOT_PRINTF("in LOAD *** \n")
192 192
193 193 rtems_status_code status;
194 194 unsigned int i;
195 195 unsigned int j;
196 196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198 198
199 199 watchdog_period_id = RTEMS_ID_NONE;
200 200
201 201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202 202
203 203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 204 if( status != RTEMS_SUCCESSFUL ) {
205 205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 206 }
207 207
208 208 i = 0;
209 209 j = 0;
210 210
211 211 watchdog_configure();
212 212
213 213 watchdog_start();
214 214
215 215 set_sy_lfr_watchdog_enabled( true );
216 216
217 217 while(1){
218 218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 219 watchdog_reload();
220 220 i = i + 1;
221 221 if ( i == WATCHDOG_LOOP_PRINTF )
222 222 {
223 223 i = 0;
224 224 j = j + 1;
225 225 PRINTF1("%d\n", j)
226 226 }
227 227 #ifdef DEBUG_WATCHDOG
228 228 if (j == WATCHDOG_LOOP_DEBUG )
229 229 {
230 230 status = rtems_task_delete(RTEMS_SELF);
231 231 }
232 232 #endif
233 233 }
234 234 }
235 235
236 236 rtems_task hous_task(rtems_task_argument argument)
237 237 {
238 238 rtems_status_code status;
239 239 rtems_status_code spare_status;
240 240 rtems_id queue_id;
241 241 rtems_rate_monotonic_period_status period_status;
242 242 bool isSynchronized;
243 243
244 244 queue_id = RTEMS_ID_NONE;
245 245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 246 isSynchronized = false;
247 247
248 248 status = get_message_queue_id_send( &queue_id );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 252 }
253 253
254 254 BOOT_PRINTF("in HOUS ***\n");
255 255
256 256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 258 if( status != RTEMS_SUCCESSFUL ) {
259 259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 260 }
261 261 }
262 262
263 263 status = rtems_rate_monotonic_cancel(HK_id);
264 264 if( status != RTEMS_SUCCESSFUL ) {
265 265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 266 }
267 267 else {
268 268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 269 }
270 270
271 271 // startup phase
272 272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 277 {
278 278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 279 {
280 280 isSynchronized = true;
281 281 }
282 282 else
283 283 {
284 284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285 285
286 286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 287 }
288 288 }
289 289 status = rtems_rate_monotonic_cancel(HK_id);
290 290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291 291
292 292 set_hk_lfr_reset_cause( POWER_ON );
293 293
294 294 while(1){ // launch the rate monotonic task
295 295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 296 if ( status != RTEMS_SUCCESSFUL ) {
297 297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 299 }
300 300 else {
301 301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 303 increment_seq_counter( &sequenceCounterHK );
304 304
305 305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311 311
312 312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313 313
314 314 spacewire_read_statistics();
315 315
316 316 update_hk_with_grspw_stats();
317 317
318 318 set_hk_lfr_time_not_synchro();
319 319
320 320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325 325
326 326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331 331
332 332 hk_lfr_le_me_he_update();
333 333
334 334 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
335 335 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
336 336
337 337 // SEND PACKET
338 338 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
339 339 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
340 340 if (status != RTEMS_SUCCESSFUL) {
341 341 PRINTF1("in HOUS *** ERR send: %d\n", status)
342 342 }
343 343 }
344 344 }
345 345
346 346 PRINTF("in HOUS *** deleting task\n")
347 347
348 348 status = rtems_task_delete( RTEMS_SELF ); // should not return
349 349
350 350 return;
351 351 }
352 352
353 353 rtems_task avgv_task(rtems_task_argument argument)
354 354 {
355 355 #define MOVING_AVERAGE 16
356 356 rtems_status_code status;
357 357 static unsigned int v[MOVING_AVERAGE] = {0};
358 358 static unsigned int e1[MOVING_AVERAGE] = {0};
359 359 static unsigned int e2[MOVING_AVERAGE] = {0};
360 360 float average_v;
361 361 float average_e1;
362 362 float average_e2;
363 363 float newValue_v;
364 364 float newValue_e1;
365 365 float newValue_e2;
366 366 unsigned char k;
367 367 unsigned char indexOfOldValue;
368 368
369 369 BOOT_PRINTF("in AVGV ***\n");
370 370
371 371 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
372 372 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
373 373 if( status != RTEMS_SUCCESSFUL ) {
374 374 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
375 375 }
376 376 }
377 377
378 378 status = rtems_rate_monotonic_cancel(AVGV_id);
379 379 if( status != RTEMS_SUCCESSFUL ) {
380 380 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
381 381 }
382 382 else {
383 383 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
384 384 }
385 385
386 386 // initialize values
387 387 indexOfOldValue = MOVING_AVERAGE - 1;
388 388 average_v = INIT_FLOAT;
389 389 average_e1 = INIT_FLOAT;
390 390 average_e2 = INIT_FLOAT;
391 391 newValue_v = INIT_FLOAT;
392 392 newValue_e1 = INIT_FLOAT;
393 393 newValue_e2 = INIT_FLOAT;
394 394
395 395 k = INIT_CHAR;
396 396
397 397 while(1)
398 398 { // launch the rate monotonic task
399 399 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
400 400 if ( status != RTEMS_SUCCESSFUL )
401 401 {
402 402 PRINTF1( "in AVGV *** ERR period: %d\n", status);
403 403 }
404 404 else
405 405 {
406 406 // get new values
407 407 newValue_v = waveform_picker_regs->v;
408 408 newValue_e1 = waveform_picker_regs->e1;
409 409 newValue_e2 = waveform_picker_regs->e2;
410 410
411 411 // compute the moving average
412 412 average_v = average_v + newValue_v - v[k];
413 413 average_e1 = average_e1 + newValue_e1 - e1[k];
414 414 average_e2 = average_e2 + newValue_e2 - e2[k];
415 415
416 416 // store new values in buffers
417 417 v[k] = newValue_v;
418 418 e1[k] = newValue_e1;
419 419 e2[k] = newValue_e2;
420 420 }
421 421 if (k == (MOVING_AVERAGE-1))
422 422 {
423 423 k = 0;
424 printf("tick\n");
424 PRINTF("tick\n");
425 425 }
426 426 else
427 427 {
428 428 k++;
429 429 }
430 430 //update int16 values
431 431 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
432 432 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
433 433 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
434 434 }
435 435
436 436 PRINTF("in AVGV *** deleting task\n");
437 437
438 438 status = rtems_task_delete( RTEMS_SELF ); // should not return
439 439
440 440 return;
441 441 }
442 442
443 443 rtems_task dumb_task( rtems_task_argument unused )
444 444 {
445 445 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
446 446 *
447 447 * @param unused is the starting argument of the RTEMS task
448 448 *
449 449 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
450 450 *
451 451 */
452 452
453 453 unsigned int i;
454 454 unsigned int intEventOut;
455 455 unsigned int coarse_time = 0;
456 456 unsigned int fine_time = 0;
457 457 rtems_event_set event_out;
458 458
459 459 event_out = EVENT_SETS_NONE_PENDING;
460 460
461 461 BOOT_PRINTF("in DUMB *** \n")
462 462
463 463 while(1){
464 464 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
465 465 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
466 466 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
467 467 | RTEMS_EVENT_14,
468 468 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
469 469 intEventOut = (unsigned int) event_out;
470 470 for ( i=0; i<NB_RTEMS_EVENTS; i++)
471 471 {
472 472 if ( ((intEventOut >> i) & 1) != 0)
473 473 {
474 474 coarse_time = time_management_regs->coarse_time;
475 475 fine_time = time_management_regs->fine_time;
476 476 if (i==EVENT_12)
477 477 {
478 478 PRINTF1("%s\n", DUMB_MESSAGE_12)
479 479 }
480 480 if (i==EVENT_13)
481 481 {
482 482 PRINTF1("%s\n", DUMB_MESSAGE_13)
483 483 }
484 484 if (i==EVENT_14)
485 485 {
486 486 PRINTF1("%s\n", DUMB_MESSAGE_1)
487 487 }
488 488 }
489 489 }
490 490 }
491 491 }
492 492
493 493 //*****************************
494 494 // init housekeeping parameters
495 495
496 496 void init_housekeeping_parameters( void )
497 497 {
498 498 /** This function initialize the housekeeping_packet global variable with default values.
499 499 *
500 500 */
501 501
502 502 unsigned int i = 0;
503 503 unsigned char *parameters;
504 504 unsigned char sizeOfHK;
505 505
506 506 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
507 507
508 508 parameters = (unsigned char*) &housekeeping_packet;
509 509
510 510 for(i = 0; i< sizeOfHK; i++)
511 511 {
512 512 parameters[i] = INIT_CHAR;
513 513 }
514 514
515 515 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
516 516 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
517 517 housekeeping_packet.reserved = DEFAULT_RESERVED;
518 518 housekeeping_packet.userApplication = CCSDS_USER_APP;
519 519 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
520 520 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
521 521 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
522 522 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
523 523 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
524 524 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
525 525 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
526 526 housekeeping_packet.serviceType = TM_TYPE_HK;
527 527 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
528 528 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
529 529 housekeeping_packet.sid = SID_HK;
530 530
531 531 // init status word
532 532 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
533 533 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
534 534 // init software version
535 535 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
536 536 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
537 537 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
538 538 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
539 539 // init fpga version
540 540 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
541 541 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
542 542 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
543 543 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
544 544
545 545 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
546 546 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
547 547 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
548 548 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
549 549 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
550 550 }
551 551
552 552 void increment_seq_counter( unsigned short *packetSequenceControl )
553 553 {
554 554 /** This function increment the sequence counter passes in argument.
555 555 *
556 556 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
557 557 *
558 558 */
559 559
560 560 unsigned short segmentation_grouping_flag;
561 561 unsigned short sequence_cnt;
562 562
563 563 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
564 564 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
565 565
566 566 if ( sequence_cnt < SEQ_CNT_MAX)
567 567 {
568 568 sequence_cnt = sequence_cnt + 1;
569 569 }
570 570 else
571 571 {
572 572 sequence_cnt = 0;
573 573 }
574 574
575 575 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
576 576 }
577 577
578 578 void getTime( unsigned char *time)
579 579 {
580 580 /** This function write the current local time in the time buffer passed in argument.
581 581 *
582 582 */
583 583
584 584 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
585 585 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
586 586 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
587 587 time[3] = (unsigned char) (time_management_regs->coarse_time);
588 588 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
589 589 time[5] = (unsigned char) (time_management_regs->fine_time);
590 590 }
591 591
592 592 unsigned long long int getTimeAsUnsignedLongLongInt( )
593 593 {
594 594 /** This function write the current local time in the time buffer passed in argument.
595 595 *
596 596 */
597 597 unsigned long long int time;
598 598
599 599 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
600 600 + time_management_regs->fine_time;
601 601
602 602 return time;
603 603 }
604 604
605 605 void send_dumb_hk( void )
606 606 {
607 607 Packet_TM_LFR_HK_t dummy_hk_packet;
608 608 unsigned char *parameters;
609 609 unsigned int i;
610 610 rtems_id queue_id;
611 611
612 612 queue_id = RTEMS_ID_NONE;
613 613
614 614 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
615 615 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
616 616 dummy_hk_packet.reserved = DEFAULT_RESERVED;
617 617 dummy_hk_packet.userApplication = CCSDS_USER_APP;
618 618 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
619 619 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
620 620 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
621 621 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
622 622 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
623 623 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
624 624 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
625 625 dummy_hk_packet.serviceType = TM_TYPE_HK;
626 626 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
627 627 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
628 628 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
629 629 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
630 630 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
631 631 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
632 632 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
633 633 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
634 634 dummy_hk_packet.sid = SID_HK;
635 635
636 636 // init status word
637 637 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
638 638 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
639 639 // init software version
640 640 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
641 641 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
642 642 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
643 643 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
644 644 // init fpga version
645 645 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
646 646 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
647 647 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
648 648 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
649 649
650 650 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
651 651
652 652 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
653 653 {
654 654 parameters[i] = INT8_ALL_F;
655 655 }
656 656
657 657 get_message_queue_id_send( &queue_id );
658 658
659 659 rtems_message_queue_send( queue_id, &dummy_hk_packet,
660 660 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
661 661 }
662 662
663 663 void get_temperatures( unsigned char *temperatures )
664 664 {
665 665 unsigned char* temp_scm_ptr;
666 666 unsigned char* temp_pcb_ptr;
667 667 unsigned char* temp_fpga_ptr;
668 668
669 669 // SEL1 SEL0
670 670 // 0 0 => PCB
671 671 // 0 1 => FPGA
672 672 // 1 0 => SCM
673 673
674 674 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
675 675 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
676 676 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
677 677
678 678 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
679 679 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
680 680 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
681 681 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
682 682 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
683 683 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
684 684 }
685 685
686 686 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
687 687 {
688 688 unsigned char* v_ptr;
689 689 unsigned char* e1_ptr;
690 690 unsigned char* e2_ptr;
691 691
692 692 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
693 693 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
694 694 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
695 695
696 696 spacecraft_potential[BYTE_0] = v_ptr[0];
697 697 spacecraft_potential[BYTE_1] = v_ptr[1];
698 698 spacecraft_potential[BYTE_2] = e1_ptr[0];
699 699 spacecraft_potential[BYTE_3] = e1_ptr[1];
700 700 spacecraft_potential[BYTE_4] = e2_ptr[0];
701 701 spacecraft_potential[BYTE_5] = e2_ptr[1];
702 702 }
703 703
704 704 void get_cpu_load( unsigned char *resource_statistics )
705 705 {
706 706 unsigned char cpu_load;
707 707
708 708 cpu_load = lfr_rtems_cpu_usage_report();
709 709
710 710 // HK_LFR_CPU_LOAD
711 711 resource_statistics[0] = cpu_load;
712 712
713 713 // HK_LFR_CPU_LOAD_MAX
714 714 if (cpu_load > resource_statistics[1])
715 715 {
716 716 resource_statistics[1] = cpu_load;
717 717 }
718 718
719 719 // CPU_LOAD_AVE
720 720 resource_statistics[BYTE_2] = 0;
721 721
722 722 #ifndef PRINT_TASK_STATISTICS
723 723 rtems_cpu_usage_reset();
724 724 #endif
725 725
726 726 }
727 727
728 728 void set_hk_lfr_sc_potential_flag( bool state )
729 729 {
730 730 if (state == true)
731 731 {
732 732 housekeeping_packet.lfr_status_word[1] =
733 733 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
734 734 }
735 735 else
736 736 {
737 737 housekeeping_packet.lfr_status_word[1] =
738 738 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
739 739 }
740 740 }
741 741
742 742 void set_sy_lfr_pas_filter_enabled( bool state )
743 743 {
744 744 if (state == true)
745 745 {
746 746 housekeeping_packet.lfr_status_word[1] =
747 747 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
748 748 }
749 749 else
750 750 {
751 751 housekeeping_packet.lfr_status_word[1] =
752 752 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
753 753 }
754 754 }
755 755
756 756 void set_sy_lfr_watchdog_enabled( bool state )
757 757 {
758 758 if (state == true)
759 759 {
760 760 housekeeping_packet.lfr_status_word[1] =
761 761 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
762 762 }
763 763 else
764 764 {
765 765 housekeeping_packet.lfr_status_word[1] =
766 766 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
767 767 }
768 768 }
769 769
770 770 void set_hk_lfr_calib_enable( bool state )
771 771 {
772 772 if (state == true)
773 773 {
774 774 housekeeping_packet.lfr_status_word[1] =
775 775 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
776 776 }
777 777 else
778 778 {
779 779 housekeeping_packet.lfr_status_word[1] =
780 780 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
781 781 }
782 782 }
783 783
784 784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
785 785 {
786 786 housekeeping_packet.lfr_status_word[1] =
787 787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
788 788
789 789 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
790 790 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
791 791
792 792 }
793 793
794 794 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
795 795 {
796 796 int delta;
797 797
798 798 delta = 0;
799 799
800 800 if (newValue >= oldValue)
801 801 {
802 802 delta = newValue - oldValue;
803 803 }
804 804 else
805 805 {
806 806 delta = (255 - oldValue) + newValue;
807 807 }
808 808
809 809 *counter = *counter + delta;
810 810 }
811 811
812 812 void hk_lfr_le_update( void )
813 813 {
814 814 static hk_lfr_le_t old_hk_lfr_le = {0};
815 815 hk_lfr_le_t new_hk_lfr_le;
816 816 unsigned int counter;
817 817
818 818 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
819 819
820 820 // DPU
821 821 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
822 822 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
823 823 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
824 824 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
825 825 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
826 826 // TIMECODE
827 827 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
828 828 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
829 829 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
830 830 // TIME
831 831 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
832 832 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
833 833 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
834 834 //AHB
835 835 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
836 836 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
837 837 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
838 838
839 839 // update the le counter
840 840 // DPU
841 841 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
842 842 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
843 843 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
844 844 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
845 845 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
846 846 // TIMECODE
847 847 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
848 848 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
849 849 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
850 850 // TIME
851 851 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
852 852 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
853 853 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
854 854 // AHB
855 855 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
856 856
857 857 // DPU
858 858 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
859 859 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
860 860 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
861 861 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
862 862 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
863 863 // TIMECODE
864 864 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
865 865 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
866 866 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
867 867 // TIME
868 868 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
869 869 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
870 870 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
871 871 //AHB
872 872 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
873 873 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
874 874 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
875 875
876 876 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
877 877 // LE
878 878 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
879 879 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
880 880 }
881 881
882 882 void hk_lfr_me_update( void )
883 883 {
884 884 static hk_lfr_me_t old_hk_lfr_me = {0};
885 885 hk_lfr_me_t new_hk_lfr_me;
886 886 unsigned int counter;
887 887
888 888 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
889 889
890 890 // get the current values
891 891 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
892 892 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
893 893 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
894 894 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
895 895
896 896 // update the me counter
897 897 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
898 898 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
899 899 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
900 900 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
901 901
902 902 // store the counters for the next time
903 903 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
904 904 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
905 905 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
906 906 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
907 907
908 908 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
909 909 // ME
910 910 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
911 911 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
912 912 }
913 913
914 914 void hk_lfr_le_me_he_update()
915 915 {
916 916
917 917 unsigned int hk_lfr_he_cnt;
918 918
919 919 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
920 920
921 921 //update the low severity error counter
922 922 hk_lfr_le_update( );
923 923
924 924 //update the medium severity error counter
925 925 hk_lfr_me_update();
926 926
927 927 //update the high severity error counter
928 928 hk_lfr_he_cnt = 0;
929 929
930 930 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
931 931 // HE
932 932 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
933 933 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
934 934
935 935 }
936 936
937 937 void set_hk_lfr_time_not_synchro()
938 938 {
939 939 static unsigned char synchroLost = 1;
940 940 int synchronizationBit;
941 941
942 942 // get the synchronization bit
943 943 synchronizationBit =
944 944 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
945 945
946 946 switch (synchronizationBit)
947 947 {
948 948 case 0:
949 949 if (synchroLost == 1)
950 950 {
951 951 synchroLost = 0;
952 952 }
953 953 break;
954 954 case 1:
955 955 if (synchroLost == 0 )
956 956 {
957 957 synchroLost = 1;
958 958 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
959 959 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
960 960 }
961 961 break;
962 962 default:
963 963 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
964 964 break;
965 965 }
966 966
967 967 }
968 968
969 969 void set_hk_lfr_ahb_correctable() // CRITICITY L
970 970 {
971 971 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
972 972 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
973 973 * detected errors in the cache, in the integer unit and in the floating point unit.
974 974 *
975 975 * @param void
976 976 *
977 977 * @return void
978 978 *
979 979 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
980 980 *
981 981 */
982 982
983 983 unsigned int ahb_correctable;
984 984 unsigned int instructionErrorCounter;
985 985 unsigned int dataErrorCounter;
986 986 unsigned int fprfErrorCounter;
987 987 unsigned int iurfErrorCounter;
988 988
989 989 instructionErrorCounter = 0;
990 990 dataErrorCounter = 0;
991 991 fprfErrorCounter = 0;
992 992 iurfErrorCounter = 0;
993 993
994 994 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
995 995 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
996 996
997 997 ahb_correctable = instructionErrorCounter
998 998 + dataErrorCounter
999 999 + fprfErrorCounter
1000 1000 + iurfErrorCounter
1001 1001 + housekeeping_packet.hk_lfr_ahb_correctable;
1002 1002
1003 1003 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1004 1004
1005 1005 }
@@ -1,1633 +1,1633
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name = 0;
17 17 rtems_id semq_id = RTEMS_ID_NONE;
18 18
19 19 //*****************
20 20 // waveform headers
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
22 22 Header_TM_LFR_SCIENCE_SWF_t headerSWF = {0};
23 23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
24 24
25 25 unsigned char previousTimecodeCtr = 0;
26 26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27 27
28 28 //***********
29 29 // RTEMS TASK
30 30 rtems_task spiq_task(rtems_task_argument unused)
31 31 {
32 32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 33 *
34 34 * @param unused is the starting argument of the RTEMS task
35 35 *
36 36 */
37 37
38 38 rtems_event_set event_out;
39 39 rtems_status_code status;
40 40 int linkStatus;
41 41
42 42 event_out = EVENT_SETS_NONE_PENDING;
43 43 linkStatus = 0;
44 44
45 45 BOOT_PRINTF("in SPIQ *** \n")
46 46
47 47 while(true){
48 48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
49 49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
50 50
51 51 // [0] SUSPEND RECV AND SEND TASKS
52 52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
53 53 if ( status != RTEMS_SUCCESSFUL ) {
54 54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
55 55 }
56 56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
57 57 if ( status != RTEMS_SUCCESSFUL ) {
58 58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
59 59 }
60 60
61 61 // [1] CHECK THE LINK
62 62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
63 63 if ( linkStatus != SPW_LINK_OK) {
64 64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
65 65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
66 66 }
67 67
68 68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
69 69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
70 70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
71 71 {
72 72 spacewire_read_statistics();
73 73 status = spacewire_several_connect_attemps( );
74 74 }
75 75 else // [2.b] in run state, start the link
76 76 {
77 77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
78 78 if ( status != RTEMS_SUCCESSFUL)
79 79 {
80 80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
81 81 }
82 82 }
83 83
84 84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
85 85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
86 86 {
87 87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
88 88 if ( status != RTEMS_SUCCESSFUL ) {
89 89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
90 90 }
91 91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
92 92 if ( status != RTEMS_SUCCESSFUL ) {
93 93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
94 94 }
95 95 }
96 96 else // [3.b] the link is not in run state, go in STANDBY mode
97 97 {
98 98 status = enter_mode_standby();
99 99 if ( status != RTEMS_SUCCESSFUL )
100 100 {
101 101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
102 102 }
103 103 {
104 104 updateLFRCurrentMode( LFR_MODE_STANDBY );
105 105 }
106 106 // wake the LINK task up to wait for the link recovery
107 107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
108 108 status = rtems_task_suspend( RTEMS_SELF );
109 109 }
110 110 }
111 111 }
112 112
113 113 rtems_task recv_task( rtems_task_argument unused )
114 114 {
115 115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
116 116 *
117 117 * @param unused is the starting argument of the RTEMS task
118 118 *
119 119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
120 120 * 1. It reads the incoming data.
121 121 * 2. Launches the acceptance procedure.
122 122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
123 123 *
124 124 */
125 125
126 126 int len;
127 127 ccsdsTelecommandPacket_t __attribute__((aligned(4))) currentTC;
128 128 unsigned char computed_CRC[ BYTES_PER_CRC ];
129 129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
130 130 unsigned char destinationID;
131 131 unsigned int estimatedPacketLength;
132 132 unsigned int parserCode;
133 133 rtems_status_code status;
134 134 rtems_id queue_recv_id;
135 135 rtems_id queue_send_id;
136 136
137 137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
138 138 destinationID = 0;
139 139 queue_recv_id = RTEMS_ID_NONE;
140 140 queue_send_id = RTEMS_ID_NONE;
141 141
142 142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
143 143
144 144 status = get_message_queue_id_recv( &queue_recv_id );
145 145 if (status != RTEMS_SUCCESSFUL)
146 146 {
147 147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
148 148 }
149 149
150 150 status = get_message_queue_id_send( &queue_send_id );
151 151 if (status != RTEMS_SUCCESSFUL)
152 152 {
153 153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
154 154 }
155 155
156 156 BOOT_PRINTF("in RECV *** \n")
157 157
158 158 while(1)
159 159 {
160 160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
161 161 if (len == -1){ // error during the read call
162 162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
163 163 }
164 164 else {
165 165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
166 166 PRINTF("in RECV *** packet lenght too short\n")
167 167 }
168 168 else {
169 169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
170 PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
171 171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
172 172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
173 173 // CHECK THE TC
174 174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
175 175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
176 176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
177 177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
178 178 || (parserCode == WRONG_SRC_ID) )
179 179 { // send TM_LFR_TC_EXE_CORRUPTED
180 180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
181 181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
182 182 &&
183 183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
184 184 )
185 185 {
186 186 if ( parserCode == WRONG_SRC_ID )
187 187 {
188 188 destinationID = SID_TC_GROUND;
189 189 }
190 190 else
191 191 {
192 192 destinationID = currentTC.sourceID;
193 193 }
194 194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
195 195 computed_CRC, currentTC_LEN_RCV,
196 196 destinationID );
197 197 }
198 198 }
199 199 else
200 200 { // send valid TC to the action launcher
201 201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
202 202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
203 203 }
204 204 }
205 205 }
206 206
207 207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
208 208
209 209 }
210 210 }
211 211
212 212 rtems_task send_task( rtems_task_argument argument)
213 213 {
214 214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
215 215 *
216 216 * @param unused is the starting argument of the RTEMS task
217 217 *
218 218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
219 219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
220 220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
221 221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
222 222 * data it contains.
223 223 *
224 224 */
225 225
226 226 rtems_status_code status; // RTEMS status code
227 227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
228 228 ring_node *incomingRingNodePtr;
229 229 int ring_node_address;
230 230 char *charPtr;
231 231 spw_ioctl_pkt_send *spw_ioctl_send;
232 232 size_t size; // size of the incoming TC packet
233 233 rtems_id queue_send_id;
234 234 unsigned int sid;
235 235 unsigned char sidAsUnsignedChar;
236 236 unsigned char type;
237 237
238 238 incomingRingNodePtr = NULL;
239 239 ring_node_address = 0;
240 240 charPtr = (char *) &ring_node_address;
241 241 size = 0;
242 242 queue_send_id = RTEMS_ID_NONE;
243 243 sid = 0;
244 244 sidAsUnsignedChar = 0;
245 245
246 246 init_header_cwf( &headerCWF );
247 247 init_header_swf( &headerSWF );
248 248 init_header_asm( &headerASM );
249 249
250 250 status = get_message_queue_id_send( &queue_send_id );
251 251 if (status != RTEMS_SUCCESSFUL)
252 252 {
253 253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
254 254 }
255 255
256 256 BOOT_PRINTF("in SEND *** \n")
257 257
258 258 while(1)
259 259 {
260 260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
261 261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
262 262
263 263 if (status!=RTEMS_SUCCESSFUL)
264 264 {
265 265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
266 266 }
267 267 else
268 268 {
269 269 if ( size == sizeof(ring_node*) )
270 270 {
271 271 charPtr[0] = incomingData[0];
272 272 charPtr[1] = incomingData[1];
273 273 charPtr[BYTE_2] = incomingData[BYTE_2];
274 274 charPtr[BYTE_3] = incomingData[BYTE_3];
275 275 incomingRingNodePtr = (ring_node*) ring_node_address;
276 276 sid = incomingRingNodePtr->sid;
277 277 if ( (sid==SID_NORM_CWF_LONG_F3)
278 278 || (sid==SID_BURST_CWF_F2 )
279 279 || (sid==SID_SBM1_CWF_F1 )
280 280 || (sid==SID_SBM2_CWF_F2 ))
281 281 {
282 282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
283 283 }
284 284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
285 285 {
286 286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
287 287 }
288 288 else if ( (sid==SID_NORM_CWF_F3) )
289 289 {
290 290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
291 291 }
292 292 else if (sid==SID_NORM_ASM_F0)
293 293 {
294 294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
295 295 }
296 296 else if (sid==SID_NORM_ASM_F1)
297 297 {
298 298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
299 299 }
300 300 else if (sid==SID_NORM_ASM_F2)
301 301 {
302 302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
303 303 }
304 304 else if ( sid==TM_CODE_K_DUMP )
305 305 {
306 306 spw_send_k_dump( incomingRingNodePtr );
307 307 }
308 308 else
309 309 {
310 310 PRINTF1("unexpected sid = %d\n", sid);
311 311 }
312 312 }
313 313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
314 314 {
315 315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
316 316 sid = sidAsUnsignedChar;
317 317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
318 318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
319 319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
320 320 {
321 321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
322 322 }
323 323
324 324 status = write( fdSPW, incomingData, size );
325 325 if (status == -1){
326 326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
327 327 }
328 328 }
329 329 else // the incoming message is a spw_ioctl_pkt_send structure
330 330 {
331 331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
332 332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
333 333 if (status == -1){
334 334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
335 335 }
336 336 }
337 337 }
338 338
339 339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
340 340
341 341 }
342 342 }
343 343
344 344 rtems_task link_task( rtems_task_argument argument )
345 345 {
346 346 rtems_event_set event_out;
347 347 rtems_status_code status;
348 348 int linkStatus;
349 349
350 350 event_out = EVENT_SETS_NONE_PENDING;
351 351 linkStatus = 0;
352 352
353 353 BOOT_PRINTF("in LINK ***\n")
354 354
355 355 while(1)
356 356 {
357 357 // wait for an RTEMS_EVENT
358 358 rtems_event_receive( RTEMS_EVENT_0,
359 359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
360 360 PRINTF("in LINK *** wait for the link\n")
361 361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
362 362 while( linkStatus != SPW_LINK_OK) // wait for the link
363 363 {
364 364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
365 365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
366 366 watchdog_reload();
367 367 }
368 368
369 369 spacewire_read_statistics();
370 370 status = spacewire_stop_and_start_link( fdSPW );
371 371
372 372 if (status != RTEMS_SUCCESSFUL)
373 373 {
374 374 PRINTF1("in LINK *** ERR link not started %d\n", status)
375 375 }
376 376 else
377 377 {
378 378 PRINTF("in LINK *** OK link started\n")
379 379 }
380 380
381 381 // restart the SPIQ task
382 382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
383 383 if ( status != RTEMS_SUCCESSFUL ) {
384 384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
385 385 }
386 386
387 387 // restart RECV and SEND
388 388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
389 389 if ( status != RTEMS_SUCCESSFUL ) {
390 390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
391 391 }
392 392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
393 393 if ( status != RTEMS_SUCCESSFUL ) {
394 394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
395 395 }
396 396 }
397 397 }
398 398
399 399 //****************
400 400 // OTHER FUNCTIONS
401 401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
402 402 {
403 403 /** This function opens the SpaceWire link.
404 404 *
405 405 * @return a valid file descriptor in case of success, -1 in case of a failure
406 406 *
407 407 */
408 408 rtems_status_code status;
409 409
410 410 status = RTEMS_SUCCESSFUL;
411 411
412 412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
413 413 if ( fdSPW < 0 ) {
414 414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
415 415 }
416 416 else
417 417 {
418 418 status = RTEMS_SUCCESSFUL;
419 419 }
420 420
421 421 return status;
422 422 }
423 423
424 424 int spacewire_start_link( int fd )
425 425 {
426 426 rtems_status_code status;
427 427
428 428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
429 429 // -1 default hardcoded driver timeout
430 430
431 431 return status;
432 432 }
433 433
434 434 int spacewire_stop_and_start_link( int fd )
435 435 {
436 436 rtems_status_code status;
437 437
438 438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
439 439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
440 440 // -1 default hardcoded driver timeout
441 441
442 442 return status;
443 443 }
444 444
445 445 int spacewire_configure_link( int fd )
446 446 {
447 447 /** This function configures the SpaceWire link.
448 448 *
449 449 * @return GR-RTEMS-DRIVER directive status codes:
450 450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
451 451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
452 452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
453 453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
454 454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
455 455 * - 5 EIO - Error when writing to grswp hardware registers.
456 456 * - 2 ENOENT - No such file or directory
457 457 */
458 458
459 459 rtems_status_code status;
460 460
461 461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
462 462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
463 463 spw_ioctl_packetsize packetsize;
464 464
465 465 packetsize.rxsize = SPW_RXSIZE;
466 466 packetsize.txdsize = SPW_TXDSIZE;
467 467 packetsize.txhsize = SPW_TXHSIZE;
468 468
469 469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
470 470 if (status!=RTEMS_SUCCESSFUL) {
471 471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
472 472 }
473 473 //
474 474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
475 475 if (status!=RTEMS_SUCCESSFUL) {
476 476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
477 477 }
478 478 //
479 479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
480 480 if (status!=RTEMS_SUCCESSFUL) {
481 481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
482 482 }
483 483 //
484 484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
485 485 if (status!=RTEMS_SUCCESSFUL) {
486 486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
487 487 }
488 488 //
489 489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
490 490 if (status!=RTEMS_SUCCESSFUL) {
491 491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
492 492 }
493 493 //
494 494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
495 495 if (status!=RTEMS_SUCCESSFUL) {
496 496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
497 497 }
498 498 //
499 499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
500 500 if (status!=RTEMS_SUCCESSFUL) {
501 501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
502 502 }
503 503 //
504 504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
505 505 if (status!=RTEMS_SUCCESSFUL) {
506 506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
507 507 }
508 508
509 509 return status;
510 510 }
511 511
512 512 int spacewire_several_connect_attemps( void )
513 513 {
514 514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
515 515 *
516 516 * @return RTEMS directive status code:
517 517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
518 518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
519 519 *
520 520 */
521 521
522 522 rtems_status_code status_spw;
523 523 rtems_status_code status;
524 524 int i;
525 525
526 526 status_spw = RTEMS_SUCCESSFUL;
527 527
528 528 i = 0;
529 529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
530 530 {
531 531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
532 532
533 533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
534 534
535 535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
536 536
537 537 status_spw = spacewire_stop_and_start_link( fdSPW );
538 538
539 539 if ( status_spw != RTEMS_SUCCESSFUL )
540 540 {
541 541 i = i + 1;
542 542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
543 543 }
544 544 else
545 545 {
546 546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
547 547 }
548 548 }
549 549
550 550 return status_spw;
551 551 }
552 552
553 553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
554 554 {
555 555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
556 556 *
557 557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
558 558 * @param regAddr is the address of the GRSPW control register.
559 559 *
560 560 * NP is the bit 20 of the GRSPW control register.
561 561 *
562 562 */
563 563
564 564 unsigned int *spwptr = (unsigned int*) regAddr;
565 565
566 566 if (val == 1) {
567 567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
568 568 }
569 569 if (val== 0) {
570 570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
571 571 }
572 572 }
573 573
574 574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
575 575 {
576 576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
577 577 *
578 578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
579 579 * @param regAddr is the address of the GRSPW control register.
580 580 *
581 581 * RE is the bit 16 of the GRSPW control register.
582 582 *
583 583 */
584 584
585 585 unsigned int *spwptr = (unsigned int*) regAddr;
586 586
587 587 if (val == 1)
588 588 {
589 589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
590 590 }
591 591 if (val== 0)
592 592 {
593 593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
594 594 }
595 595 }
596 596
597 597 void spacewire_read_statistics( void )
598 598 {
599 599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
600 600 *
601 601 * @param void
602 602 *
603 603 * @return void
604 604 *
605 605 * Once they are read, the counters are stored in a global variable used during the building of the
606 606 * HK packets.
607 607 *
608 608 */
609 609
610 610 rtems_status_code status;
611 611 spw_stats current;
612 612
613 613 memset(&current, 0, sizeof(spw_stats));
614 614
615 615 spacewire_get_last_error();
616 616
617 617 // read the current statistics
618 618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
619 619
620 620 // clear the counters
621 621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
622 622
623 623 // typedef struct {
624 624 // unsigned int tx_link_err; // NOT IN HK
625 625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
626 626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
627 627 // unsigned int rx_eep_err;
628 628 // unsigned int rx_truncated;
629 629 // unsigned int parity_err;
630 630 // unsigned int escape_err;
631 631 // unsigned int credit_err;
632 632 // unsigned int write_sync_err;
633 633 // unsigned int disconnect_err;
634 634 // unsigned int early_ep;
635 635 // unsigned int invalid_address;
636 636 // unsigned int packets_sent;
637 637 // unsigned int packets_received;
638 638 // } spw_stats;
639 639
640 640 // rx_eep_err
641 641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
642 642 // rx_truncated
643 643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
644 644 // parity_err
645 645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
646 646 // escape_err
647 647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
648 648 // credit_err
649 649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
650 650 // write_sync_err
651 651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
652 652 // disconnect_err
653 653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
654 654 // early_ep
655 655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
656 656 // invalid_address
657 657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
658 658 // packets_sent
659 659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
660 660 // packets_received
661 661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
662 662
663 663 }
664 664
665 665 void spacewire_get_last_error( void )
666 666 {
667 667 static spw_stats previous = {0};
668 668 spw_stats current;
669 669 rtems_status_code status;
670 670
671 671 unsigned int hk_lfr_last_er_rid;
672 672 unsigned char hk_lfr_last_er_code;
673 673 int coarseTime;
674 674 int fineTime;
675 675 unsigned char update_hk_lfr_last_er;
676 676
677 677 memset(&current, 0, sizeof(spw_stats));
678 678 hk_lfr_last_er_rid = INIT_CHAR;
679 679 hk_lfr_last_er_code = INIT_CHAR;
680 680 update_hk_lfr_last_er = INIT_CHAR;
681 681
682 682 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
683 683
684 684 // get current time
685 685 coarseTime = time_management_regs->coarse_time;
686 686 fineTime = time_management_regs->fine_time;
687 687
688 688 // typedef struct {
689 689 // unsigned int tx_link_err; // NOT IN HK
690 690 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
691 691 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
692 692 // unsigned int rx_eep_err;
693 693 // unsigned int rx_truncated;
694 694 // unsigned int parity_err;
695 695 // unsigned int escape_err;
696 696 // unsigned int credit_err;
697 697 // unsigned int write_sync_err;
698 698 // unsigned int disconnect_err;
699 699 // unsigned int early_ep;
700 700 // unsigned int invalid_address;
701 701 // unsigned int packets_sent;
702 702 // unsigned int packets_received;
703 703 // } spw_stats;
704 704
705 705 // tx_link_err *** no code associated to this field
706 706 // rx_rmap_header_crc_err *** LE *** in HK
707 707 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
708 708 {
709 709 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
710 710 hk_lfr_last_er_code = CODE_HEADER_CRC;
711 711 update_hk_lfr_last_er = 1;
712 712 }
713 713 // rx_rmap_data_crc_err *** LE *** NOT IN HK
714 714 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
715 715 {
716 716 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
717 717 hk_lfr_last_er_code = CODE_DATA_CRC;
718 718 update_hk_lfr_last_er = 1;
719 719 }
720 720 // rx_eep_err
721 721 if (previous.rx_eep_err != current.rx_eep_err)
722 722 {
723 723 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
724 724 hk_lfr_last_er_code = CODE_EEP;
725 725 update_hk_lfr_last_er = 1;
726 726 }
727 727 // rx_truncated
728 728 if (previous.rx_truncated != current.rx_truncated)
729 729 {
730 730 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
731 731 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
732 732 update_hk_lfr_last_er = 1;
733 733 }
734 734 // parity_err
735 735 if (previous.parity_err != current.parity_err)
736 736 {
737 737 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
738 738 hk_lfr_last_er_code = CODE_PARITY;
739 739 update_hk_lfr_last_er = 1;
740 740 }
741 741 // escape_err
742 742 if (previous.parity_err != current.parity_err)
743 743 {
744 744 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
745 745 hk_lfr_last_er_code = CODE_ESCAPE;
746 746 update_hk_lfr_last_er = 1;
747 747 }
748 748 // credit_err
749 749 if (previous.credit_err != current.credit_err)
750 750 {
751 751 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
752 752 hk_lfr_last_er_code = CODE_CREDIT;
753 753 update_hk_lfr_last_er = 1;
754 754 }
755 755 // write_sync_err
756 756 if (previous.write_sync_err != current.write_sync_err)
757 757 {
758 758 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
759 759 hk_lfr_last_er_code = CODE_WRITE_SYNC;
760 760 update_hk_lfr_last_er = 1;
761 761 }
762 762 // disconnect_err
763 763 if (previous.disconnect_err != current.disconnect_err)
764 764 {
765 765 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
766 766 hk_lfr_last_er_code = CODE_DISCONNECT;
767 767 update_hk_lfr_last_er = 1;
768 768 }
769 769 // early_ep
770 770 if (previous.early_ep != current.early_ep)
771 771 {
772 772 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
773 773 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
774 774 update_hk_lfr_last_er = 1;
775 775 }
776 776 // invalid_address
777 777 if (previous.invalid_address != current.invalid_address)
778 778 {
779 779 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
780 780 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
781 781 update_hk_lfr_last_er = 1;
782 782 }
783 783
784 784 // if a field has changed, update the hk_last_er fields
785 785 if (update_hk_lfr_last_er == 1)
786 786 {
787 787 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
788 788 }
789 789
790 790 previous = current;
791 791 }
792 792
793 793 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
794 794 {
795 795 unsigned char *coarseTimePtr;
796 796 unsigned char *fineTimePtr;
797 797
798 798 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
799 799 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
800 800
801 801 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
802 802 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
803 803 housekeeping_packet.hk_lfr_last_er_code = code;
804 804 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
805 805 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
806 806 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
807 807 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
808 808 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
809 809 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
810 810 }
811 811
812 812 void update_hk_with_grspw_stats( void )
813 813 {
814 814 //****************************
815 815 // DPU_SPACEWIRE_IF_STATISTICS
816 816 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
817 817 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
818 818 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
819 819 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
820 820
821 821 //******************************************
822 822 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
823 823 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
824 824 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
825 825 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
826 826 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
827 827 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
828 828
829 829 //*********************************************
830 830 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
831 831 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
832 832 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
833 833 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
834 834 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
835 835 }
836 836
837 837 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
838 838 {
839 839 unsigned int *statusRegisterPtr;
840 840 unsigned char linkState;
841 841
842 842 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
843 843 linkState =
844 844 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
845 845
846 846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
847 847
848 848 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
849 849 }
850 850
851 851 void increase_unsigned_char_counter( unsigned char *counter )
852 852 {
853 853 // update the number of valid timecodes that have been received
854 854 if (*counter == UINT8_MAX)
855 855 {
856 856 *counter = 0;
857 857 }
858 858 else
859 859 {
860 860 *counter = *counter + 1;
861 861 }
862 862 }
863 863
864 864 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
865 865 {
866 866 /** This function checks the coherency between the incoming timecode and the last valid timecode.
867 867 *
868 868 * @param currentTimecodeCtr is the incoming timecode
869 869 *
870 870 * @return returned codes::
871 871 * - LFR_DEFAULT
872 872 * - LFR_SUCCESSFUL
873 873 *
874 874 */
875 875
876 876 static unsigned char firstTickout = 1;
877 877 unsigned char ret;
878 878
879 879 ret = LFR_DEFAULT;
880 880
881 881 if (firstTickout == 0)
882 882 {
883 883 if (currentTimecodeCtr == 0)
884 884 {
885 885 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
886 886 {
887 887 ret = LFR_SUCCESSFUL;
888 888 }
889 889 else
890 890 {
891 891 ret = LFR_DEFAULT;
892 892 }
893 893 }
894 894 else
895 895 {
896 896 if (currentTimecodeCtr == (previousTimecodeCtr +1))
897 897 {
898 898 ret = LFR_SUCCESSFUL;
899 899 }
900 900 else
901 901 {
902 902 ret = LFR_DEFAULT;
903 903 }
904 904 }
905 905 }
906 906 else
907 907 {
908 908 firstTickout = 0;
909 909 ret = LFR_SUCCESSFUL;
910 910 }
911 911
912 912 return ret;
913 913 }
914 914
915 915 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
916 916 {
917 917 unsigned int ret;
918 918
919 919 ret = LFR_DEFAULT;
920 920
921 921 if (timecode == internalTime)
922 922 {
923 923 ret = LFR_SUCCESSFUL;
924 924 }
925 925 else
926 926 {
927 927 ret = LFR_DEFAULT;
928 928 }
929 929
930 930 return ret;
931 931 }
932 932
933 933 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
934 934 {
935 935 // a tickout has been emitted, perform actions on the incoming timecode
936 936
937 937 unsigned char incomingTimecode;
938 938 unsigned char updateTime;
939 939 unsigned char internalTime;
940 940 rtems_status_code status;
941 941
942 942 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
943 943 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
944 944 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
945 945
946 946 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
947 947
948 948 // update the number of tickout that have been generated
949 949 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
950 950
951 951 //**************************
952 952 // HK_LFR_TIMECODE_ERRONEOUS
953 953 // MISSING and INVALID are handled by the timecode_timer_routine service routine
954 954 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
955 955 {
956 956 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
957 957 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
958 958 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
959 959 }
960 960
961 961 //************************
962 962 // HK_LFR_TIME_TIMECODE_IT
963 963 // check the coherency between the SpaceWire timecode and the Internal Time
964 964 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
965 965 {
966 966 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
967 967 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
968 968 }
969 969
970 970 //********************
971 971 // HK_LFR_TIMECODE_CTR
972 972 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
973 973 if (oneTcLfrUpdateTimeReceived == 1)
974 974 {
975 975 if ( incomingTimecode != updateTime )
976 976 {
977 977 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
978 978 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
979 979 }
980 980 }
981 981
982 982 // launch the timecode timer to detect missing or invalid timecodes
983 983 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
984 984 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
985 985 if (status != RTEMS_SUCCESSFUL)
986 986 {
987 987 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
988 988 }
989 989 }
990 990
991 991 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
992 992 {
993 993 static unsigned char initStep = 1;
994 994
995 995 unsigned char currentTimecodeCtr;
996 996
997 997 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
998 998
999 999 if (initStep == 1)
1000 1000 {
1001 1001 if (currentTimecodeCtr == previousTimecodeCtr)
1002 1002 {
1003 1003 //************************
1004 1004 // HK_LFR_TIMECODE_MISSING
1005 1005 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1006 1006 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1007 1007 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1008 1008 }
1009 1009 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1010 1010 {
1011 1011 // the timecode value has changed and the value is valid, this is unexpected because
1012 1012 // the timer should not have fired, the timecode_irq_handler should have been raised
1013 1013 }
1014 1014 else
1015 1015 {
1016 1016 //************************
1017 1017 // HK_LFR_TIMECODE_INVALID
1018 1018 // the timecode value has changed and the value is not valid, no tickout has been generated
1019 1019 // this is why the timer has fired
1020 1020 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1021 1021 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1022 1022 }
1023 1023 }
1024 1024 else
1025 1025 {
1026 1026 initStep = 1;
1027 1027 //************************
1028 1028 // HK_LFR_TIMECODE_MISSING
1029 1029 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1030 1030 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1031 1031 }
1032 1032
1033 1033 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1034 1034 }
1035 1035
1036 1036 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1037 1037 {
1038 1038 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1039 1039 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1040 1040 header->reserved = DEFAULT_RESERVED;
1041 1041 header->userApplication = CCSDS_USER_APP;
1042 1042 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1043 1043 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1044 1044 header->packetLength[0] = INIT_CHAR;
1045 1045 header->packetLength[1] = INIT_CHAR;
1046 1046 // DATA FIELD HEADER
1047 1047 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1048 1048 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1049 1049 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1050 1050 header->destinationID = TM_DESTINATION_ID_GROUND;
1051 1051 header->time[BYTE_0] = INIT_CHAR;
1052 1052 header->time[BYTE_1] = INIT_CHAR;
1053 1053 header->time[BYTE_2] = INIT_CHAR;
1054 1054 header->time[BYTE_3] = INIT_CHAR;
1055 1055 header->time[BYTE_4] = INIT_CHAR;
1056 1056 header->time[BYTE_5] = INIT_CHAR;
1057 1057 // AUXILIARY DATA HEADER
1058 1058 header->sid = INIT_CHAR;
1059 1059 header->pa_bia_status_info = DEFAULT_HKBIA;
1060 1060 header->blkNr[0] = INIT_CHAR;
1061 1061 header->blkNr[1] = INIT_CHAR;
1062 1062 }
1063 1063
1064 1064 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1065 1065 {
1066 1066 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1067 1067 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1068 1068 header->reserved = DEFAULT_RESERVED;
1069 1069 header->userApplication = CCSDS_USER_APP;
1070 1070 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1071 1071 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1072 1072 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1073 1073 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1074 1074 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1075 1075 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1076 1076 // DATA FIELD HEADER
1077 1077 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1078 1078 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1079 1079 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1080 1080 header->destinationID = TM_DESTINATION_ID_GROUND;
1081 1081 header->time[BYTE_0] = INIT_CHAR;
1082 1082 header->time[BYTE_1] = INIT_CHAR;
1083 1083 header->time[BYTE_2] = INIT_CHAR;
1084 1084 header->time[BYTE_3] = INIT_CHAR;
1085 1085 header->time[BYTE_4] = INIT_CHAR;
1086 1086 header->time[BYTE_5] = INIT_CHAR;
1087 1087 // AUXILIARY DATA HEADER
1088 1088 header->sid = INIT_CHAR;
1089 1089 header->pa_bia_status_info = DEFAULT_HKBIA;
1090 1090 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1091 1091 header->pktNr = INIT_CHAR;
1092 1092 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1093 1093 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1094 1094 }
1095 1095
1096 1096 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1097 1097 {
1098 1098 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1099 1099 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1100 1100 header->reserved = DEFAULT_RESERVED;
1101 1101 header->userApplication = CCSDS_USER_APP;
1102 1102 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1103 1103 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1104 1104 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1105 1105 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1106 1106 header->packetLength[0] = INIT_CHAR;
1107 1107 header->packetLength[1] = INIT_CHAR;
1108 1108 // DATA FIELD HEADER
1109 1109 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1110 1110 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1111 1111 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1112 1112 header->destinationID = TM_DESTINATION_ID_GROUND;
1113 1113 header->time[BYTE_0] = INIT_CHAR;
1114 1114 header->time[BYTE_1] = INIT_CHAR;
1115 1115 header->time[BYTE_2] = INIT_CHAR;
1116 1116 header->time[BYTE_3] = INIT_CHAR;
1117 1117 header->time[BYTE_4] = INIT_CHAR;
1118 1118 header->time[BYTE_5] = INIT_CHAR;
1119 1119 // AUXILIARY DATA HEADER
1120 1120 header->sid = INIT_CHAR;
1121 1121 header->pa_bia_status_info = INIT_CHAR;
1122 1122 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1123 1123 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1124 1124 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1125 1125 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1126 1126 }
1127 1127
1128 1128 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1129 1129 Header_TM_LFR_SCIENCE_CWF_t *header )
1130 1130 {
1131 1131 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1132 1132 *
1133 1133 * @param waveform points to the buffer containing the data that will be send.
1134 1134 * @param sid is the source identifier of the data that will be sent.
1135 1135 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1136 1136 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1137 1137 * contain information to setup the transmission of the data packets.
1138 1138 *
1139 1139 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1140 1140 *
1141 1141 */
1142 1142
1143 1143 unsigned int i;
1144 1144 int ret;
1145 1145 unsigned int coarseTime;
1146 1146 unsigned int fineTime;
1147 1147 rtems_status_code status;
1148 1148 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1149 1149 int *dataPtr;
1150 1150 unsigned char sid;
1151 1151
1152 1152 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1153 1153 spw_ioctl_send_CWF.options = 0;
1154 1154
1155 1155 ret = LFR_DEFAULT;
1156 1156 sid = (unsigned char) ring_node_to_send->sid;
1157 1157
1158 1158 coarseTime = ring_node_to_send->coarseTime;
1159 1159 fineTime = ring_node_to_send->fineTime;
1160 1160 dataPtr = (int*) ring_node_to_send->buffer_address;
1161 1161
1162 1162 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1163 1163 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1164 1164 header->pa_bia_status_info = pa_bia_status_info;
1165 1165 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1166 1166 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1167 1167 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1168 1168
1169 1169 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1170 1170 {
1171 1171 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1172 1172 spw_ioctl_send_CWF.hdr = (char*) header;
1173 1173 // BUILD THE DATA
1174 1174 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1175 1175
1176 1176 // SET PACKET SEQUENCE CONTROL
1177 1177 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1178 1178
1179 1179 // SET SID
1180 1180 header->sid = sid;
1181 1181
1182 1182 // SET PACKET TIME
1183 1183 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1184 1184 //
1185 1185 header->time[0] = header->acquisitionTime[0];
1186 1186 header->time[1] = header->acquisitionTime[1];
1187 1187 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1188 1188 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1189 1189 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1190 1190 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1191 1191
1192 1192 // SET PACKET ID
1193 1193 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1194 1194 {
1195 1195 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1196 1196 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1197 1197 }
1198 1198 else
1199 1199 {
1200 1200 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1201 1201 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1202 1202 }
1203 1203
1204 1204 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1205 1205 if (status != RTEMS_SUCCESSFUL) {
1206 1206 ret = LFR_DEFAULT;
1207 1207 }
1208 1208 }
1209 1209
1210 1210 return ret;
1211 1211 }
1212 1212
1213 1213 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1214 1214 Header_TM_LFR_SCIENCE_SWF_t *header )
1215 1215 {
1216 1216 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1217 1217 *
1218 1218 * @param waveform points to the buffer containing the data that will be send.
1219 1219 * @param sid is the source identifier of the data that will be sent.
1220 1220 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1221 1221 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1222 1222 * contain information to setup the transmission of the data packets.
1223 1223 *
1224 1224 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1225 1225 *
1226 1226 */
1227 1227
1228 1228 unsigned int i;
1229 1229 int ret;
1230 1230 unsigned int coarseTime;
1231 1231 unsigned int fineTime;
1232 1232 rtems_status_code status;
1233 1233 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1234 1234 int *dataPtr;
1235 1235 unsigned char sid;
1236 1236
1237 1237 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1238 1238 spw_ioctl_send_SWF.options = 0;
1239 1239
1240 1240 ret = LFR_DEFAULT;
1241 1241
1242 1242 coarseTime = ring_node_to_send->coarseTime;
1243 1243 fineTime = ring_node_to_send->fineTime;
1244 1244 dataPtr = (int*) ring_node_to_send->buffer_address;
1245 1245 sid = ring_node_to_send->sid;
1246 1246
1247 1247 header->pa_bia_status_info = pa_bia_status_info;
1248 1248 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1249 1249
1250 1250 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1251 1251 {
1252 1252 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1253 1253 spw_ioctl_send_SWF.hdr = (char*) header;
1254 1254
1255 1255 // SET PACKET SEQUENCE CONTROL
1256 1256 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1257 1257
1258 1258 // SET PACKET LENGTH AND BLKNR
1259 1259 if (i == (PKTCNT_SWF-1))
1260 1260 {
1261 1261 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1262 1262 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1263 1263 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1264 1264 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1265 1265 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1266 1266 }
1267 1267 else
1268 1268 {
1269 1269 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1270 1270 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1271 1271 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1272 1272 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1273 1273 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1274 1274 }
1275 1275
1276 1276 // SET PACKET TIME
1277 1277 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1278 1278 //
1279 1279 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1280 1280 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1281 1281 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1282 1282 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1283 1283 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1284 1284 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1285 1285
1286 1286 // SET SID
1287 1287 header->sid = sid;
1288 1288
1289 1289 // SET PKTNR
1290 1290 header->pktNr = i+1; // PKT_NR
1291 1291
1292 1292 // SEND PACKET
1293 1293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1294 1294 if (status != RTEMS_SUCCESSFUL) {
1295 1295 ret = LFR_DEFAULT;
1296 1296 }
1297 1297 }
1298 1298
1299 1299 return ret;
1300 1300 }
1301 1301
1302 1302 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1303 1303 Header_TM_LFR_SCIENCE_CWF_t *header )
1304 1304 {
1305 1305 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1306 1306 *
1307 1307 * @param waveform points to the buffer containing the data that will be send.
1308 1308 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1309 1309 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1310 1310 * contain information to setup the transmission of the data packets.
1311 1311 *
1312 1312 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1313 1313 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1314 1314 *
1315 1315 */
1316 1316
1317 1317 unsigned int i;
1318 1318 int ret;
1319 1319 unsigned int coarseTime;
1320 1320 unsigned int fineTime;
1321 1321 rtems_status_code status;
1322 1322 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1323 1323 char *dataPtr;
1324 1324 unsigned char sid;
1325 1325
1326 1326 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1327 1327 spw_ioctl_send_CWF.options = 0;
1328 1328
1329 1329 ret = LFR_DEFAULT;
1330 1330 sid = ring_node_to_send->sid;
1331 1331
1332 1332 coarseTime = ring_node_to_send->coarseTime;
1333 1333 fineTime = ring_node_to_send->fineTime;
1334 1334 dataPtr = (char*) ring_node_to_send->buffer_address;
1335 1335
1336 1336 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1337 1337 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1338 1338 header->pa_bia_status_info = pa_bia_status_info;
1339 1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1340 1340 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1341 1341 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1342 1342
1343 1343 //*********************
1344 1344 // SEND CWF3_light DATA
1345 1345 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1346 1346 {
1347 1347 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1348 1348 spw_ioctl_send_CWF.hdr = (char*) header;
1349 1349 // BUILD THE DATA
1350 1350 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1351 1351
1352 1352 // SET PACKET SEQUENCE COUNTER
1353 1353 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1354 1354
1355 1355 // SET SID
1356 1356 header->sid = sid;
1357 1357
1358 1358 // SET PACKET TIME
1359 1359 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1360 1360 //
1361 1361 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1362 1362 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1363 1363 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1364 1364 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1365 1365 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1366 1366 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1367 1367
1368 1368 // SET PACKET ID
1369 1369 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1370 1370 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1371 1371
1372 1372 // SEND PACKET
1373 1373 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1374 1374 if (status != RTEMS_SUCCESSFUL) {
1375 1375 ret = LFR_DEFAULT;
1376 1376 }
1377 1377 }
1378 1378
1379 1379 return ret;
1380 1380 }
1381 1381
1382 1382 void spw_send_asm_f0( ring_node *ring_node_to_send,
1383 1383 Header_TM_LFR_SCIENCE_ASM_t *header )
1384 1384 {
1385 1385 unsigned int i;
1386 1386 unsigned int length = 0;
1387 1387 rtems_status_code status;
1388 1388 unsigned int sid;
1389 1389 float *spectral_matrix;
1390 1390 int coarseTime;
1391 1391 int fineTime;
1392 1392 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1393 1393
1394 1394 sid = ring_node_to_send->sid;
1395 1395 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1396 1396 coarseTime = ring_node_to_send->coarseTime;
1397 1397 fineTime = ring_node_to_send->fineTime;
1398 1398
1399 1399 header->pa_bia_status_info = pa_bia_status_info;
1400 1400 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1401 1401
1402 1402 for (i=0; i<PKTCNT_ASM; i++)
1403 1403 {
1404 1404 if ((i==0) || (i==1))
1405 1405 {
1406 1406 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1407 1407 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1408 1408 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1409 1409 ];
1410 1410 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1411 1411 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1412 1412 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1413 1413 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1414 1414 }
1415 1415 else
1416 1416 {
1417 1417 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1418 1418 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1419 1419 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1420 1420 ];
1421 1421 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1422 1422 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1423 1423 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1424 1424 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1425 1425 }
1426 1426
1427 1427 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1428 1428 spw_ioctl_send_ASM.hdr = (char *) header;
1429 1429 spw_ioctl_send_ASM.options = 0;
1430 1430
1431 1431 // (2) BUILD THE HEADER
1432 1432 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1433 1433 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1434 1434 header->packetLength[1] = (unsigned char) (length);
1435 1435 header->sid = (unsigned char) sid; // SID
1436 1436 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1437 1437 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1438 1438
1439 1439 // (3) SET PACKET TIME
1440 1440 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1441 1441 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1442 1442 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1443 1443 header->time[BYTE_3] = (unsigned char) (coarseTime);
1444 1444 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1445 1445 header->time[BYTE_5] = (unsigned char) (fineTime);
1446 1446 //
1447 1447 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1448 1448 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1449 1449 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1450 1450 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1451 1451 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1452 1452 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1453 1453
1454 1454 // (4) SEND PACKET
1455 1455 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1456 1456 if (status != RTEMS_SUCCESSFUL) {
1457 1457 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1458 1458 }
1459 1459 }
1460 1460 }
1461 1461
1462 1462 void spw_send_asm_f1( ring_node *ring_node_to_send,
1463 1463 Header_TM_LFR_SCIENCE_ASM_t *header )
1464 1464 {
1465 1465 unsigned int i;
1466 1466 unsigned int length = 0;
1467 1467 rtems_status_code status;
1468 1468 unsigned int sid;
1469 1469 float *spectral_matrix;
1470 1470 int coarseTime;
1471 1471 int fineTime;
1472 1472 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1473 1473
1474 1474 sid = ring_node_to_send->sid;
1475 1475 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1476 1476 coarseTime = ring_node_to_send->coarseTime;
1477 1477 fineTime = ring_node_to_send->fineTime;
1478 1478
1479 1479 header->pa_bia_status_info = pa_bia_status_info;
1480 1480 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1481 1481
1482 1482 for (i=0; i<PKTCNT_ASM; i++)
1483 1483 {
1484 1484 if ((i==0) || (i==1))
1485 1485 {
1486 1486 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1487 1487 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1488 1488 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1489 1489 ];
1490 1490 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1491 1491 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1492 1492 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1493 1493 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1494 1494 }
1495 1495 else
1496 1496 {
1497 1497 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1498 1498 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1499 1499 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1500 1500 ];
1501 1501 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1502 1502 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1503 1503 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1504 1504 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1505 1505 }
1506 1506
1507 1507 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1508 1508 spw_ioctl_send_ASM.hdr = (char *) header;
1509 1509 spw_ioctl_send_ASM.options = 0;
1510 1510
1511 1511 // (2) BUILD THE HEADER
1512 1512 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1513 1513 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1514 1514 header->packetLength[1] = (unsigned char) (length);
1515 1515 header->sid = (unsigned char) sid; // SID
1516 1516 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1517 1517 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1518 1518
1519 1519 // (3) SET PACKET TIME
1520 1520 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1521 1521 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1522 1522 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1523 1523 header->time[BYTE_3] = (unsigned char) (coarseTime);
1524 1524 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1525 1525 header->time[BYTE_5] = (unsigned char) (fineTime);
1526 1526 //
1527 1527 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1528 1528 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1529 1529 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1530 1530 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1531 1531 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1532 1532 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1533 1533
1534 1534 // (4) SEND PACKET
1535 1535 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1536 1536 if (status != RTEMS_SUCCESSFUL) {
1537 1537 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1538 1538 }
1539 1539 }
1540 1540 }
1541 1541
1542 1542 void spw_send_asm_f2( ring_node *ring_node_to_send,
1543 1543 Header_TM_LFR_SCIENCE_ASM_t *header )
1544 1544 {
1545 1545 unsigned int i;
1546 1546 unsigned int length = 0;
1547 1547 rtems_status_code status;
1548 1548 unsigned int sid;
1549 1549 float *spectral_matrix;
1550 1550 int coarseTime;
1551 1551 int fineTime;
1552 1552 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1553 1553
1554 1554 sid = ring_node_to_send->sid;
1555 1555 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1556 1556 coarseTime = ring_node_to_send->coarseTime;
1557 1557 fineTime = ring_node_to_send->fineTime;
1558 1558
1559 1559 header->pa_bia_status_info = pa_bia_status_info;
1560 1560 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1561 1561
1562 1562 for (i=0; i<PKTCNT_ASM; i++)
1563 1563 {
1564 1564
1565 1565 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1566 1566 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1567 1567 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1568 1568 ];
1569 1569 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1570 1570 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1571 1571 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1572 1572 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1573 1573
1574 1574 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1575 1575 spw_ioctl_send_ASM.hdr = (char *) header;
1576 1576 spw_ioctl_send_ASM.options = 0;
1577 1577
1578 1578 // (2) BUILD THE HEADER
1579 1579 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1580 1580 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1581 1581 header->packetLength[1] = (unsigned char) (length);
1582 1582 header->sid = (unsigned char) sid; // SID
1583 1583 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1584 1584 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1585 1585
1586 1586 // (3) SET PACKET TIME
1587 1587 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1588 1588 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1589 1589 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1590 1590 header->time[BYTE_3] = (unsigned char) (coarseTime);
1591 1591 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1592 1592 header->time[BYTE_5] = (unsigned char) (fineTime);
1593 1593 //
1594 1594 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1595 1595 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1596 1596 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1597 1597 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1598 1598 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1599 1599 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1600 1600
1601 1601 // (4) SEND PACKET
1602 1602 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1603 1603 if (status != RTEMS_SUCCESSFUL) {
1604 1604 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1605 1605 }
1606 1606 }
1607 1607 }
1608 1608
1609 1609 void spw_send_k_dump( ring_node *ring_node_to_send )
1610 1610 {
1611 1611 rtems_status_code status;
1612 1612 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1613 1613 unsigned int packetLength;
1614 1614 unsigned int size;
1615 1615
1616 1616 PRINTF("spw_send_k_dump\n")
1617 1617
1618 1618 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1619 1619
1620 1620 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1621 1621
1622 1622 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1623 1623
1624 1624 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1625 1625
1626 1626 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1627 1627
1628 1628 if (status == -1){
1629 1629 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1630 1630 }
1631 1631
1632 1632 ring_node_to_send->status = INIT_CHAR;
1633 1633 }
@@ -1,1669 +1,1661
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14 #include "math.h"
15 15
16 16 //***********
17 17 // RTEMS TASK
18 18
19 19 rtems_task actn_task( rtems_task_argument unused )
20 20 {
21 21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 22 *
23 23 * @param unused is the starting argument of the RTEMS task
24 24 *
25 25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 26 * on the incoming TeleCommand.
27 27 *
28 28 */
29 29
30 30 int result;
31 31 rtems_status_code status; // RTEMS status code
32 32 ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task
33 33 size_t size; // size of the incoming TC packet
34 34 unsigned char subtype; // subtype of the current TC packet
35 35 unsigned char time[BYTES_PER_TIME];
36 36 rtems_id queue_rcv_id;
37 37 rtems_id queue_snd_id;
38 38
39 39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
40 40 size = 0;
41 41 queue_rcv_id = RTEMS_ID_NONE;
42 42 queue_snd_id = RTEMS_ID_NONE;
43 43
44 44 status = get_message_queue_id_recv( &queue_rcv_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
48 48 }
49 49
50 50 status = get_message_queue_id_send( &queue_snd_id );
51 51 if (status != RTEMS_SUCCESSFUL)
52 52 {
53 53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
54 54 }
55 55
56 56 result = LFR_SUCCESSFUL;
57 57 subtype = 0; // subtype of the current TC packet
58 58
59 59 BOOT_PRINTF("in ACTN *** \n");
60 60
61 61 while(1)
62 62 {
63 63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
64 64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
65 65 getTime( time ); // set time to the current time
66 66 if (status!=RTEMS_SUCCESSFUL)
67 67 {
68 68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
69 69 }
70 70 else
71 71 {
72 72 subtype = TC.serviceSubType;
73 73 switch(subtype)
74 74 {
75 75 case TC_SUBTYPE_RESET:
76 76 result = action_reset( &TC, queue_snd_id, time );
77 77 close_action( &TC, result, queue_snd_id );
78 78 break;
79 79 case TC_SUBTYPE_LOAD_COMM:
80 80 result = action_load_common_par( &TC );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 case TC_SUBTYPE_LOAD_NORM:
84 84 result = action_load_normal_par( &TC, queue_snd_id, time );
85 85 close_action( &TC, result, queue_snd_id );
86 86 break;
87 87 case TC_SUBTYPE_LOAD_BURST:
88 88 result = action_load_burst_par( &TC, queue_snd_id, time );
89 89 close_action( &TC, result, queue_snd_id );
90 90 break;
91 91 case TC_SUBTYPE_LOAD_SBM1:
92 92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
93 93 close_action( &TC, result, queue_snd_id );
94 94 break;
95 95 case TC_SUBTYPE_LOAD_SBM2:
96 96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
97 97 close_action( &TC, result, queue_snd_id );
98 98 break;
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( &TC, queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 case TC_SUBTYPE_ENTER:
104 104 result = action_enter_mode( &TC, queue_snd_id );
105 105 close_action( &TC, result, queue_snd_id );
106 106 break;
107 107 case TC_SUBTYPE_UPDT_INFO:
108 108 result = action_update_info( &TC, queue_snd_id );
109 109 close_action( &TC, result, queue_snd_id );
110 110 break;
111 111 case TC_SUBTYPE_EN_CAL:
112 112 result = action_enable_calibration( &TC, queue_snd_id, time );
113 113 close_action( &TC, result, queue_snd_id );
114 114 break;
115 115 case TC_SUBTYPE_DIS_CAL:
116 116 result = action_disable_calibration( &TC, queue_snd_id, time );
117 117 close_action( &TC, result, queue_snd_id );
118 118 break;
119 119 case TC_SUBTYPE_LOAD_K:
120 120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 case TC_SUBTYPE_DUMP_K:
124 124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
125 125 close_action( &TC, result, queue_snd_id );
126 126 break;
127 127 case TC_SUBTYPE_LOAD_FBINS:
128 128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
129 129 close_action( &TC, result, queue_snd_id );
130 130 break;
131 131 case TC_SUBTYPE_LOAD_FILTER_PAR:
132 132 result = action_load_filter_par( &TC, queue_snd_id, time );
133 133 close_action( &TC, result, queue_snd_id );
134 134 break;
135 135 case TC_SUBTYPE_UPDT_TIME:
136 136 result = action_update_time( &TC );
137 137 close_action( &TC, result, queue_snd_id );
138 138 break;
139 139 default:
140 140 break;
141 141 }
142 142 }
143 143 }
144 144 }
145 145
146 146 //***********
147 147 // TC ACTIONS
148 148
149 149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
150 150 {
151 151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
152 152 *
153 153 * @param TC points to the TeleCommand packet that is being processed
154 154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
155 155 *
156 156 */
157 157
158 158 PRINTF("this is the end!!!\n");
159 159 exit(0);
160 160
161 161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
162 162
163 163 return LFR_DEFAULT;
164 164 }
165 165
166 166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
167 167 {
168 168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
169 169 *
170 170 * @param TC points to the TeleCommand packet that is being processed
171 171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
172 172 *
173 173 */
174 174
175 175 rtems_status_code status;
176 176 unsigned char requestedMode;
177 177 unsigned int transitionCoarseTime;
178 178 unsigned char * bytePosPtr;
179 179
180 printf("(0)\n");
181 180 bytePosPtr = (unsigned char *) &TC->packetID;
182 printf("(1)\n");
183 181 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
184 printf("(2)\n");
185 182 copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
186 printf("(3)\n");
187 183 transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK;
188 printf("(4)\n");
189 184 status = check_mode_value( requestedMode );
190 printf("(5)\n");
191 185
192 186 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
193 187 {
194 188 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
195 189 }
196 190
197 191 else // the mode value is valid, check the transition
198 192 {
199 193 status = check_mode_transition(requestedMode);
200 194 if (status != LFR_SUCCESSFUL)
201 195 {
202 196 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
203 197 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
204 198 }
205 199 }
206 200
207 201 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
208 202 {
209 203 status = check_transition_date( transitionCoarseTime );
210 204 if (status != LFR_SUCCESSFUL)
211 205 {
212 206 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
213 207 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
214 208 }
215 209 }
216 210
217 211 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
218 212 {
219 213 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
220 214
221 215 switch(requestedMode)
222 216 {
223 217 case LFR_MODE_STANDBY:
224 218 status = enter_mode_standby();
225 219 break;
226 220 case LFR_MODE_NORMAL:
227 221 status = enter_mode_normal( transitionCoarseTime );
228 222 break;
229 223 case LFR_MODE_BURST:
230 224 status = enter_mode_burst( transitionCoarseTime );
231 225 break;
232 226 case LFR_MODE_SBM1:
233 227 status = enter_mode_sbm1( transitionCoarseTime );
234 228 break;
235 229 case LFR_MODE_SBM2:
236 230 status = enter_mode_sbm2( transitionCoarseTime );
237 231 break;
238 232 default:
239 233 break;
240 234 }
241 235
242 236 if (status != RTEMS_SUCCESSFUL)
243 237 {
244 238 status = LFR_EXE_ERROR;
245 239 }
246 240 }
247 241
248 242 return status;
249 243 }
250 244
251 245 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
252 246 {
253 247 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
254 248 *
255 249 * @param TC points to the TeleCommand packet that is being processed
256 250 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
257 251 *
258 252 * @return LFR directive status code:
259 253 * - LFR_DEFAULT
260 254 * - LFR_SUCCESSFUL
261 255 *
262 256 */
263 257
264 258 unsigned int val;
265 259 int result;
266 260 unsigned int status;
267 261 unsigned char mode;
268 262 unsigned char * bytePosPtr;
269 263
270 264 bytePosPtr = (unsigned char *) &TC->packetID;
271 265
272 266 // check LFR mode
273 267 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
274 268 status = check_update_info_hk_lfr_mode( mode );
275 269 if (status == LFR_SUCCESSFUL) // check TDS mode
276 270 {
277 271 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
278 272 status = check_update_info_hk_tds_mode( mode );
279 273 }
280 274 if (status == LFR_SUCCESSFUL) // check THR mode
281 275 {
282 276 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
283 277 status = check_update_info_hk_thr_mode( mode );
284 278 }
285 279 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
286 280 {
287 281 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
288 282 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
289 283 val++;
290 284 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
291 285 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
292 286 }
293 287
294 288 // pa_bia_status_info
295 289 // => pa_bia_mode_mux_set 3 bits
296 290 // => pa_bia_mode_hv_enabled 1 bit
297 291 // => pa_bia_mode_bias1_enabled 1 bit
298 292 // => pa_bia_mode_bias2_enabled 1 bit
299 293 // => pa_bia_mode_bias3_enabled 1 bit
300 294 // => pa_bia_on_off (cp_dpu_bias_on_off)
301 295 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
302 296 pa_bia_status_info = pa_bia_status_info
303 297 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
304 298
305 299 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
306 300
307 301 //cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
308 302 getReactionWheelsFrequencies( TC );
309 303 set_hk_lfr_sc_rw_f_flags();
310 304 build_sy_lfr_rw_masks();
311 305
312 306 // once the masks are built, they have to be merged with the fbins_mask
313 307 merge_fbins_masks();
314 308
315 309 result = status;
316 310
317 311 return result;
318 312 }
319 313
320 314 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
321 315 {
322 316 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
323 317 *
324 318 * @param TC points to the TeleCommand packet that is being processed
325 319 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
326 320 *
327 321 */
328 322
329 323 int result;
330 324
331 325 result = LFR_DEFAULT;
332 326
333 327 setCalibration( true );
334 328
335 329 result = LFR_SUCCESSFUL;
336 330
337 331 return result;
338 332 }
339 333
340 334 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
341 335 {
342 336 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
343 337 *
344 338 * @param TC points to the TeleCommand packet that is being processed
345 339 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
346 340 *
347 341 */
348 342
349 343 int result;
350 344
351 345 result = LFR_DEFAULT;
352 346
353 347 setCalibration( false );
354 348
355 349 result = LFR_SUCCESSFUL;
356 350
357 351 return result;
358 352 }
359 353
360 354 int action_update_time(ccsdsTelecommandPacket_t *TC)
361 355 {
362 356 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
363 357 *
364 358 * @param TC points to the TeleCommand packet that is being processed
365 359 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
366 360 *
367 361 * @return LFR_SUCCESSFUL
368 362 *
369 363 */
370 364
371 365 unsigned int val;
372 366
373 367 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
374 368 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
375 369 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
376 370 + TC->dataAndCRC[BYTE_3];
377 371
378 372 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
379 373 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
380 374 val++;
381 375 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
382 376 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
383 377
384 378 oneTcLfrUpdateTimeReceived = 1;
385 379
386 380 return LFR_SUCCESSFUL;
387 381 }
388 382
389 383 //*******************
390 384 // ENTERING THE MODES
391 385 int check_mode_value( unsigned char requestedMode )
392 386 {
393 387 int status;
394 388
395 389 status = LFR_DEFAULT;
396 390
397 391 if ( (requestedMode != LFR_MODE_STANDBY)
398 392 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
399 393 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
400 394 {
401 395 status = LFR_DEFAULT;
402 396 }
403 397 else
404 398 {
405 399 status = LFR_SUCCESSFUL;
406 400 }
407 401
408 402 return status;
409 403 }
410 404
411 405 int check_mode_transition( unsigned char requestedMode )
412 406 {
413 407 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
414 408 *
415 409 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
416 410 *
417 411 * @return LFR directive status codes:
418 412 * - LFR_SUCCESSFUL - the transition is authorized
419 413 * - LFR_DEFAULT - the transition is not authorized
420 414 *
421 415 */
422 416
423 417 int status;
424 418
425 419 switch (requestedMode)
426 420 {
427 421 case LFR_MODE_STANDBY:
428 422 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
429 423 status = LFR_DEFAULT;
430 424 }
431 425 else
432 426 {
433 427 status = LFR_SUCCESSFUL;
434 428 }
435 429 break;
436 430 case LFR_MODE_NORMAL:
437 431 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
438 432 status = LFR_DEFAULT;
439 433 }
440 434 else {
441 435 status = LFR_SUCCESSFUL;
442 436 }
443 437 break;
444 438 case LFR_MODE_BURST:
445 439 if ( lfrCurrentMode == LFR_MODE_BURST ) {
446 440 status = LFR_DEFAULT;
447 441 }
448 442 else {
449 443 status = LFR_SUCCESSFUL;
450 444 }
451 445 break;
452 446 case LFR_MODE_SBM1:
453 447 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
454 448 status = LFR_DEFAULT;
455 449 }
456 450 else {
457 451 status = LFR_SUCCESSFUL;
458 452 }
459 453 break;
460 454 case LFR_MODE_SBM2:
461 455 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
462 456 status = LFR_DEFAULT;
463 457 }
464 458 else {
465 459 status = LFR_SUCCESSFUL;
466 460 }
467 461 break;
468 462 default:
469 463 status = LFR_DEFAULT;
470 464 break;
471 465 }
472 466
473 467 return status;
474 468 }
475 469
476 470 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
477 471 {
478 472 if (transitionCoarseTime == 0)
479 473 {
480 474 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
481 475 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
482 476 }
483 477 else
484 478 {
485 479 lastValidEnterModeTime = transitionCoarseTime;
486 480 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
487 481 }
488 482 }
489 483
490 484 int check_transition_date( unsigned int transitionCoarseTime )
491 485 {
492 486 int status;
493 487 unsigned int localCoarseTime;
494 488 unsigned int deltaCoarseTime;
495 489
496 490 status = LFR_SUCCESSFUL;
497 491
498 492 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
499 493 {
500 494 status = LFR_SUCCESSFUL;
501 495 }
502 496 else
503 497 {
504 498 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
505 499
506 500 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
507 501
508 502 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
509 503 {
510 504 status = LFR_DEFAULT;
511 505 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
512 506 }
513 507
514 508 if (status == LFR_SUCCESSFUL)
515 509 {
516 510 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
517 511 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
518 512 {
519 513 status = LFR_DEFAULT;
520 514 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
521 515 }
522 516 }
523 517 }
524 518
525 519 return status;
526 520 }
527 521
528 522 int restart_asm_activities( unsigned char lfrRequestedMode )
529 523 {
530 524 rtems_status_code status;
531 525
532 526 status = stop_spectral_matrices();
533 527
534 528 thisIsAnASMRestart = 1;
535 529
536 530 status = restart_asm_tasks( lfrRequestedMode );
537 531
538 532 launch_spectral_matrix();
539 533
540 534 return status;
541 535 }
542 536
543 537 int stop_spectral_matrices( void )
544 538 {
545 539 /** This function stops and restarts the current mode average spectral matrices activities.
546 540 *
547 541 * @return RTEMS directive status codes:
548 542 * - RTEMS_SUCCESSFUL - task restarted successfully
549 543 * - RTEMS_INVALID_ID - task id invalid
550 544 * - RTEMS_ALREADY_SUSPENDED - task already suspended
551 545 *
552 546 */
553 547
554 548 rtems_status_code status;
555 549
556 550 status = RTEMS_SUCCESSFUL;
557 551
558 552 // (1) mask interruptions
559 553 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
560 554
561 555 // (2) reset spectral matrices registers
562 556 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
563 557 reset_sm_status();
564 558
565 559 // (3) clear interruptions
566 560 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
567 561
568 562 // suspend several tasks
569 563 if (lfrCurrentMode != LFR_MODE_STANDBY) {
570 564 status = suspend_asm_tasks();
571 565 }
572 566
573 567 if (status != RTEMS_SUCCESSFUL)
574 568 {
575 569 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
576 570 }
577 571
578 572 return status;
579 573 }
580 574
581 575 int stop_current_mode( void )
582 576 {
583 577 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
584 578 *
585 579 * @return RTEMS directive status codes:
586 580 * - RTEMS_SUCCESSFUL - task restarted successfully
587 581 * - RTEMS_INVALID_ID - task id invalid
588 582 * - RTEMS_ALREADY_SUSPENDED - task already suspended
589 583 *
590 584 */
591 585
592 586 rtems_status_code status;
593 587
594 588 status = RTEMS_SUCCESSFUL;
595 589
596 590 // (1) mask interruptions
597 591 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
598 592 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
599 593
600 594 // (2) reset waveform picker registers
601 595 reset_wfp_burst_enable(); // reset burst and enable bits
602 596 reset_wfp_status(); // reset all the status bits
603 597
604 598 // (3) reset spectral matrices registers
605 599 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
606 600 reset_sm_status();
607 601
608 602 // reset lfr VHDL module
609 603 reset_lfr();
610 604
611 605 reset_extractSWF(); // reset the extractSWF flag to false
612 606
613 607 // (4) clear interruptions
614 608 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
615 609 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
616 610
617 611 // suspend several tasks
618 612 if (lfrCurrentMode != LFR_MODE_STANDBY) {
619 613 status = suspend_science_tasks();
620 614 }
621 615
622 616 if (status != RTEMS_SUCCESSFUL)
623 617 {
624 618 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
625 619 }
626 620
627 621 return status;
628 622 }
629 623
630 624 int enter_mode_standby( void )
631 625 {
632 626 /** This function is used to put LFR in the STANDBY mode.
633 627 *
634 628 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
635 629 *
636 630 * @return RTEMS directive status codes:
637 631 * - RTEMS_SUCCESSFUL - task restarted successfully
638 632 * - RTEMS_INVALID_ID - task id invalid
639 633 * - RTEMS_INCORRECT_STATE - task never started
640 634 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
641 635 *
642 636 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
643 637 * is immediate.
644 638 *
645 639 */
646 640
647 641 int status;
648 642
649 643 status = stop_current_mode(); // STOP THE CURRENT MODE
650 644
651 645 #ifdef PRINT_TASK_STATISTICS
652 646 rtems_cpu_usage_report();
653 647 #endif
654 648
655 649 #ifdef PRINT_STACK_REPORT
656 650 PRINTF("stack report selected\n")
657 651 rtems_stack_checker_report_usage();
658 652 #endif
659 653
660 654 return status;
661 655 }
662 656
663 657 int enter_mode_normal( unsigned int transitionCoarseTime )
664 658 {
665 659 /** This function is used to start the NORMAL mode.
666 660 *
667 661 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
668 662 *
669 663 * @return RTEMS directive status codes:
670 664 * - RTEMS_SUCCESSFUL - task restarted successfully
671 665 * - RTEMS_INVALID_ID - task id invalid
672 666 * - RTEMS_INCORRECT_STATE - task never started
673 667 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
674 668 *
675 669 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
676 670 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
677 671 *
678 672 */
679 673
680 674 int status;
681 675
682 676 #ifdef PRINT_TASK_STATISTICS
683 677 rtems_cpu_usage_reset();
684 678 #endif
685 679
686 680 status = RTEMS_UNSATISFIED;
687 681
688 printf("hop\n");
689
690 682 switch( lfrCurrentMode )
691 683 {
692 684 case LFR_MODE_STANDBY:
693 685 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
694 686 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
695 687 {
696 688 launch_spectral_matrix( );
697 689 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
698 690 }
699 691 break;
700 692 case LFR_MODE_BURST:
701 693 status = stop_current_mode(); // stop the current mode
702 694 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
703 695 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
704 696 {
705 697 launch_spectral_matrix( );
706 698 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
707 699 }
708 700 break;
709 701 case LFR_MODE_SBM1:
710 702 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
711 703 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
712 704 update_last_valid_transition_date( transitionCoarseTime );
713 705 break;
714 706 case LFR_MODE_SBM2:
715 707 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
716 708 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
717 709 update_last_valid_transition_date( transitionCoarseTime );
718 710 break;
719 711 default:
720 712 break;
721 713 }
722 714
723 715 if (status != RTEMS_SUCCESSFUL)
724 716 {
725 717 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
726 718 status = RTEMS_UNSATISFIED;
727 719 }
728 720
729 721 return status;
730 722 }
731 723
732 724 int enter_mode_burst( unsigned int transitionCoarseTime )
733 725 {
734 726 /** This function is used to start the BURST mode.
735 727 *
736 728 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
737 729 *
738 730 * @return RTEMS directive status codes:
739 731 * - RTEMS_SUCCESSFUL - task restarted successfully
740 732 * - RTEMS_INVALID_ID - task id invalid
741 733 * - RTEMS_INCORRECT_STATE - task never started
742 734 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
743 735 *
744 736 * The way the BURST mode is started does not depend on the LFR current mode.
745 737 *
746 738 */
747 739
748 740
749 741 int status;
750 742
751 743 #ifdef PRINT_TASK_STATISTICS
752 744 rtems_cpu_usage_reset();
753 745 #endif
754 746
755 747 status = stop_current_mode(); // stop the current mode
756 748 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
757 749 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
758 750 {
759 751 launch_spectral_matrix( );
760 752 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
761 753 }
762 754
763 755 if (status != RTEMS_SUCCESSFUL)
764 756 {
765 757 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
766 758 status = RTEMS_UNSATISFIED;
767 759 }
768 760
769 761 return status;
770 762 }
771 763
772 764 int enter_mode_sbm1( unsigned int transitionCoarseTime )
773 765 {
774 766 /** This function is used to start the SBM1 mode.
775 767 *
776 768 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
777 769 *
778 770 * @return RTEMS directive status codes:
779 771 * - RTEMS_SUCCESSFUL - task restarted successfully
780 772 * - RTEMS_INVALID_ID - task id invalid
781 773 * - RTEMS_INCORRECT_STATE - task never started
782 774 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
783 775 *
784 776 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
785 777 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
786 778 * cases, the acquisition is completely restarted.
787 779 *
788 780 */
789 781
790 782 int status;
791 783
792 784 #ifdef PRINT_TASK_STATISTICS
793 785 rtems_cpu_usage_reset();
794 786 #endif
795 787
796 788 status = RTEMS_UNSATISFIED;
797 789
798 790 switch( lfrCurrentMode )
799 791 {
800 792 case LFR_MODE_STANDBY:
801 793 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
802 794 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
803 795 {
804 796 launch_spectral_matrix( );
805 797 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
806 798 }
807 799 break;
808 800 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
809 801 status = restart_asm_activities( LFR_MODE_SBM1 );
810 802 status = LFR_SUCCESSFUL;
811 803 update_last_valid_transition_date( transitionCoarseTime );
812 804 break;
813 805 case LFR_MODE_BURST:
814 806 status = stop_current_mode(); // stop the current mode
815 807 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
816 808 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
817 809 {
818 810 launch_spectral_matrix( );
819 811 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
820 812 }
821 813 break;
822 814 case LFR_MODE_SBM2:
823 815 status = restart_asm_activities( LFR_MODE_SBM1 );
824 816 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
825 817 update_last_valid_transition_date( transitionCoarseTime );
826 818 break;
827 819 default:
828 820 break;
829 821 }
830 822
831 823 if (status != RTEMS_SUCCESSFUL)
832 824 {
833 825 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
834 826 status = RTEMS_UNSATISFIED;
835 827 }
836 828
837 829 return status;
838 830 }
839 831
840 832 int enter_mode_sbm2( unsigned int transitionCoarseTime )
841 833 {
842 834 /** This function is used to start the SBM2 mode.
843 835 *
844 836 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
845 837 *
846 838 * @return RTEMS directive status codes:
847 839 * - RTEMS_SUCCESSFUL - task restarted successfully
848 840 * - RTEMS_INVALID_ID - task id invalid
849 841 * - RTEMS_INCORRECT_STATE - task never started
850 842 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
851 843 *
852 844 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
853 845 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
854 846 * cases, the acquisition is completely restarted.
855 847 *
856 848 */
857 849
858 850 int status;
859 851
860 852 #ifdef PRINT_TASK_STATISTICS
861 853 rtems_cpu_usage_reset();
862 854 #endif
863 855
864 856 status = RTEMS_UNSATISFIED;
865 857
866 858 switch( lfrCurrentMode )
867 859 {
868 860 case LFR_MODE_STANDBY:
869 861 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
870 862 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
871 863 {
872 864 launch_spectral_matrix( );
873 865 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
874 866 }
875 867 break;
876 868 case LFR_MODE_NORMAL:
877 869 status = restart_asm_activities( LFR_MODE_SBM2 );
878 870 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
879 871 update_last_valid_transition_date( transitionCoarseTime );
880 872 break;
881 873 case LFR_MODE_BURST:
882 874 status = stop_current_mode(); // stop the current mode
883 875 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
884 876 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
885 877 {
886 878 launch_spectral_matrix( );
887 879 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
888 880 }
889 881 break;
890 882 case LFR_MODE_SBM1:
891 883 status = restart_asm_activities( LFR_MODE_SBM2 );
892 884 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
893 885 update_last_valid_transition_date( transitionCoarseTime );
894 886 break;
895 887 default:
896 888 break;
897 889 }
898 890
899 891 if (status != RTEMS_SUCCESSFUL)
900 892 {
901 893 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
902 894 status = RTEMS_UNSATISFIED;
903 895 }
904 896
905 897 return status;
906 898 }
907 899
908 900 int restart_science_tasks( unsigned char lfrRequestedMode )
909 901 {
910 902 /** This function is used to restart all science tasks.
911 903 *
912 904 * @return RTEMS directive status codes:
913 905 * - RTEMS_SUCCESSFUL - task restarted successfully
914 906 * - RTEMS_INVALID_ID - task id invalid
915 907 * - RTEMS_INCORRECT_STATE - task never started
916 908 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
917 909 *
918 910 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
919 911 *
920 912 */
921 913
922 914 rtems_status_code status[NB_SCIENCE_TASKS];
923 915 rtems_status_code ret;
924 916
925 917 ret = RTEMS_SUCCESSFUL;
926 918
927 919 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
928 920 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
929 921 {
930 922 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
931 923 }
932 924
933 925 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
934 926 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
935 927 {
936 928 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
937 929 }
938 930
939 931 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
940 932 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
941 933 {
942 934 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
943 935 }
944 936
945 937 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
946 938 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
947 939 {
948 940 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
949 941 }
950 942
951 943 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
952 944 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
953 945 {
954 946 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
955 947 }
956 948
957 949 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
958 950 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
959 951 {
960 952 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
961 953 }
962 954
963 955 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
964 956 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
965 957 {
966 958 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
967 959 }
968 960
969 961 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
970 962 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
971 963 {
972 964 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
973 965 }
974 966
975 967 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
976 968 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
977 969 {
978 970 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
979 971 }
980 972
981 973 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
982 974 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
983 975 {
984 976 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
985 977 }
986 978
987 979 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
988 980 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
989 981 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
990 982 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
991 983 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
992 984 {
993 985 ret = RTEMS_UNSATISFIED;
994 986 }
995 987
996 988 return ret;
997 989 }
998 990
999 991 int restart_asm_tasks( unsigned char lfrRequestedMode )
1000 992 {
1001 993 /** This function is used to restart average spectral matrices tasks.
1002 994 *
1003 995 * @return RTEMS directive status codes:
1004 996 * - RTEMS_SUCCESSFUL - task restarted successfully
1005 997 * - RTEMS_INVALID_ID - task id invalid
1006 998 * - RTEMS_INCORRECT_STATE - task never started
1007 999 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
1008 1000 *
1009 1001 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
1010 1002 *
1011 1003 */
1012 1004
1013 1005 rtems_status_code status[NB_ASM_TASKS];
1014 1006 rtems_status_code ret;
1015 1007
1016 1008 ret = RTEMS_SUCCESSFUL;
1017 1009
1018 1010 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1019 1011 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1020 1012 {
1021 1013 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1022 1014 }
1023 1015
1024 1016 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1025 1017 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1026 1018 {
1027 1019 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1028 1020 }
1029 1021
1030 1022 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1031 1023 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1032 1024 {
1033 1025 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1034 1026 }
1035 1027
1036 1028 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1037 1029 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1038 1030 {
1039 1031 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1040 1032 }
1041 1033
1042 1034 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1043 1035 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1044 1036 {
1045 1037 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1046 1038 }
1047 1039
1048 1040 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1049 1041 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1050 1042 {
1051 1043 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1052 1044 }
1053 1045
1054 1046 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1055 1047 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1056 1048 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1057 1049 {
1058 1050 ret = RTEMS_UNSATISFIED;
1059 1051 }
1060 1052
1061 1053 return ret;
1062 1054 }
1063 1055
1064 1056 int suspend_science_tasks( void )
1065 1057 {
1066 1058 /** This function suspends the science tasks.
1067 1059 *
1068 1060 * @return RTEMS directive status codes:
1069 1061 * - RTEMS_SUCCESSFUL - task restarted successfully
1070 1062 * - RTEMS_INVALID_ID - task id invalid
1071 1063 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1072 1064 *
1073 1065 */
1074 1066
1075 1067 rtems_status_code status;
1076 1068
1077 1069 PRINTF("in suspend_science_tasks\n")
1078 1070
1079 1071 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1080 1072 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1081 1073 {
1082 1074 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1083 1075 }
1084 1076 else
1085 1077 {
1086 1078 status = RTEMS_SUCCESSFUL;
1087 1079 }
1088 1080 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1089 1081 {
1090 1082 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1091 1083 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1092 1084 {
1093 1085 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1094 1086 }
1095 1087 else
1096 1088 {
1097 1089 status = RTEMS_SUCCESSFUL;
1098 1090 }
1099 1091 }
1100 1092 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1101 1093 {
1102 1094 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1103 1095 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1104 1096 {
1105 1097 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1106 1098 }
1107 1099 else
1108 1100 {
1109 1101 status = RTEMS_SUCCESSFUL;
1110 1102 }
1111 1103 }
1112 1104 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1113 1105 {
1114 1106 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1115 1107 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1116 1108 {
1117 1109 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1118 1110 }
1119 1111 else
1120 1112 {
1121 1113 status = RTEMS_SUCCESSFUL;
1122 1114 }
1123 1115 }
1124 1116 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1125 1117 {
1126 1118 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1127 1119 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1128 1120 {
1129 1121 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1130 1122 }
1131 1123 else
1132 1124 {
1133 1125 status = RTEMS_SUCCESSFUL;
1134 1126 }
1135 1127 }
1136 1128 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1137 1129 {
1138 1130 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1139 1131 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1140 1132 {
1141 1133 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1142 1134 }
1143 1135 else
1144 1136 {
1145 1137 status = RTEMS_SUCCESSFUL;
1146 1138 }
1147 1139 }
1148 1140 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1149 1141 {
1150 1142 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1151 1143 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1152 1144 {
1153 1145 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1154 1146 }
1155 1147 else
1156 1148 {
1157 1149 status = RTEMS_SUCCESSFUL;
1158 1150 }
1159 1151 }
1160 1152 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1161 1153 {
1162 1154 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1163 1155 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1164 1156 {
1165 1157 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1166 1158 }
1167 1159 else
1168 1160 {
1169 1161 status = RTEMS_SUCCESSFUL;
1170 1162 }
1171 1163 }
1172 1164 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1173 1165 {
1174 1166 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1175 1167 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1176 1168 {
1177 1169 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1178 1170 }
1179 1171 else
1180 1172 {
1181 1173 status = RTEMS_SUCCESSFUL;
1182 1174 }
1183 1175 }
1184 1176 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1185 1177 {
1186 1178 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1187 1179 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1188 1180 {
1189 1181 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1190 1182 }
1191 1183 else
1192 1184 {
1193 1185 status = RTEMS_SUCCESSFUL;
1194 1186 }
1195 1187 }
1196 1188
1197 1189 return status;
1198 1190 }
1199 1191
1200 1192 int suspend_asm_tasks( void )
1201 1193 {
1202 1194 /** This function suspends the science tasks.
1203 1195 *
1204 1196 * @return RTEMS directive status codes:
1205 1197 * - RTEMS_SUCCESSFUL - task restarted successfully
1206 1198 * - RTEMS_INVALID_ID - task id invalid
1207 1199 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1208 1200 *
1209 1201 */
1210 1202
1211 1203 rtems_status_code status;
1212 1204
1213 1205 PRINTF("in suspend_science_tasks\n")
1214 1206
1215 1207 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1216 1208 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1217 1209 {
1218 1210 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1219 1211 }
1220 1212 else
1221 1213 {
1222 1214 status = RTEMS_SUCCESSFUL;
1223 1215 }
1224 1216
1225 1217 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1226 1218 {
1227 1219 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1228 1220 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1229 1221 {
1230 1222 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1231 1223 }
1232 1224 else
1233 1225 {
1234 1226 status = RTEMS_SUCCESSFUL;
1235 1227 }
1236 1228 }
1237 1229
1238 1230 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1239 1231 {
1240 1232 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1241 1233 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1242 1234 {
1243 1235 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1244 1236 }
1245 1237 else
1246 1238 {
1247 1239 status = RTEMS_SUCCESSFUL;
1248 1240 }
1249 1241 }
1250 1242
1251 1243 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1252 1244 {
1253 1245 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1254 1246 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1255 1247 {
1256 1248 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1257 1249 }
1258 1250 else
1259 1251 {
1260 1252 status = RTEMS_SUCCESSFUL;
1261 1253 }
1262 1254 }
1263 1255
1264 1256 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1265 1257 {
1266 1258 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1267 1259 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1268 1260 {
1269 1261 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1270 1262 }
1271 1263 else
1272 1264 {
1273 1265 status = RTEMS_SUCCESSFUL;
1274 1266 }
1275 1267 }
1276 1268
1277 1269 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1278 1270 {
1279 1271 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1280 1272 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1281 1273 {
1282 1274 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1283 1275 }
1284 1276 else
1285 1277 {
1286 1278 status = RTEMS_SUCCESSFUL;
1287 1279 }
1288 1280 }
1289 1281
1290 1282 return status;
1291 1283 }
1292 1284
1293 1285 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1294 1286 {
1295 1287
1296 1288 WFP_reset_current_ring_nodes();
1297 1289
1298 1290 reset_waveform_picker_regs();
1299 1291
1300 1292 set_wfp_burst_enable_register( mode );
1301 1293
1302 1294 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1303 1295 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1304 1296
1305 1297 if (transitionCoarseTime == 0)
1306 1298 {
1307 1299 // instant transition means transition on the next valid date
1308 1300 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1309 1301 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1310 1302 }
1311 1303 else
1312 1304 {
1313 1305 waveform_picker_regs->start_date = transitionCoarseTime;
1314 1306 }
1315 1307
1316 1308 update_last_valid_transition_date(waveform_picker_regs->start_date);
1317 1309
1318 1310 }
1319 1311
1320 1312 void launch_spectral_matrix( void )
1321 1313 {
1322 1314 SM_reset_current_ring_nodes();
1323 1315
1324 1316 reset_spectral_matrix_regs();
1325 1317
1326 1318 reset_nb_sm();
1327 1319
1328 1320 set_sm_irq_onNewMatrix( 1 );
1329 1321
1330 1322 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1331 1323 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1332 1324
1333 1325 }
1334 1326
1335 1327 void set_sm_irq_onNewMatrix( unsigned char value )
1336 1328 {
1337 1329 if (value == 1)
1338 1330 {
1339 1331 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1340 1332 }
1341 1333 else
1342 1334 {
1343 1335 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1344 1336 }
1345 1337 }
1346 1338
1347 1339 void set_sm_irq_onError( unsigned char value )
1348 1340 {
1349 1341 if (value == 1)
1350 1342 {
1351 1343 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1352 1344 }
1353 1345 else
1354 1346 {
1355 1347 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1356 1348 }
1357 1349 }
1358 1350
1359 1351 //*****************************
1360 1352 // CONFIGURE CALIBRATION SIGNAL
1361 1353 void setCalibrationPrescaler( unsigned int prescaler )
1362 1354 {
1363 1355 // prescaling of the master clock (25 MHz)
1364 1356 // master clock is divided by 2^prescaler
1365 1357 time_management_regs->calPrescaler = prescaler;
1366 1358 }
1367 1359
1368 1360 void setCalibrationDivisor( unsigned int divisionFactor )
1369 1361 {
1370 1362 // division of the prescaled clock by the division factor
1371 1363 time_management_regs->calDivisor = divisionFactor;
1372 1364 }
1373 1365
1374 1366 void setCalibrationData( void )
1375 1367 {
1376 1368 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1377 1369 *
1378 1370 * @param void
1379 1371 *
1380 1372 * @return void
1381 1373 *
1382 1374 */
1383 1375
1384 1376 unsigned int k;
1385 1377 unsigned short data;
1386 1378 float val;
1387 1379 float Ts;
1388 1380
1389 1381 time_management_regs->calDataPtr = INIT_CHAR;
1390 1382
1391 1383 Ts = 1 / CAL_FS;
1392 1384
1393 1385 // build the signal for the SCM calibration
1394 1386 for (k = 0; k < CAL_NB_PTS; k++)
1395 1387 {
1396 1388 val = CAL_A0 * sin( CAL_W0 * k * Ts )
1397 1389 + CAL_A1 * sin( CAL_W1 * k * Ts );
1398 1390 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1399 1391 time_management_regs->calData = data & CAL_DATA_MASK;
1400 1392 }
1401 1393 }
1402 1394
1403 1395 void setCalibrationDataInterleaved( void )
1404 1396 {
1405 1397 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1406 1398 *
1407 1399 * @param void
1408 1400 *
1409 1401 * @return void
1410 1402 *
1411 1403 * In interleaved mode, one can store more values than in normal mode.
1412 1404 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1413 1405 * T store 3 values, one need two write operations.
1414 1406 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1415 1407 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1416 1408 *
1417 1409 */
1418 1410
1419 1411 unsigned int k;
1420 1412 float val;
1421 1413 float Ts;
1422 1414 unsigned short data[CAL_NB_PTS_INTER];
1423 1415 unsigned char *dataPtr;
1424 1416
1425 1417 Ts = 1 / CAL_FS_INTER;
1426 1418
1427 1419 time_management_regs->calDataPtr = INIT_CHAR;
1428 1420
1429 1421 // build the signal for the SCM calibration
1430 1422 for (k=0; k<CAL_NB_PTS_INTER; k++)
1431 1423 {
1432 1424 val = sin( 2 * pi * CAL_F0 * k * Ts )
1433 1425 + sin( 2 * pi * CAL_F1 * k * Ts );
1434 1426 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1435 1427 }
1436 1428
1437 1429 // write the signal in interleaved mode
1438 1430 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1439 1431 {
1440 1432 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1441 1433 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1442 1434 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1443 1435 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1444 1436 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1445 1437 }
1446 1438 }
1447 1439
1448 1440 void setCalibrationReload( bool state)
1449 1441 {
1450 1442 if (state == true)
1451 1443 {
1452 1444 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1453 1445 }
1454 1446 else
1455 1447 {
1456 1448 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1457 1449 }
1458 1450 }
1459 1451
1460 1452 void setCalibrationEnable( bool state )
1461 1453 {
1462 1454 // this bit drives the multiplexer
1463 1455 if (state == true)
1464 1456 {
1465 1457 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1466 1458 }
1467 1459 else
1468 1460 {
1469 1461 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1470 1462 }
1471 1463 }
1472 1464
1473 1465 void setCalibrationInterleaved( bool state )
1474 1466 {
1475 1467 // this bit drives the multiplexer
1476 1468 if (state == true)
1477 1469 {
1478 1470 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1479 1471 }
1480 1472 else
1481 1473 {
1482 1474 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1483 1475 }
1484 1476 }
1485 1477
1486 1478 void setCalibration( bool state )
1487 1479 {
1488 1480 if (state == true)
1489 1481 {
1490 1482 setCalibrationEnable( true );
1491 1483 setCalibrationReload( false );
1492 1484 set_hk_lfr_calib_enable( true );
1493 1485 }
1494 1486 else
1495 1487 {
1496 1488 setCalibrationEnable( false );
1497 1489 setCalibrationReload( true );
1498 1490 set_hk_lfr_calib_enable( false );
1499 1491 }
1500 1492 }
1501 1493
1502 1494 void configureCalibration( bool interleaved )
1503 1495 {
1504 1496 setCalibration( false );
1505 1497 if ( interleaved == true )
1506 1498 {
1507 1499 setCalibrationInterleaved( true );
1508 1500 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1509 1501 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1510 1502 setCalibrationDataInterleaved();
1511 1503 }
1512 1504 else
1513 1505 {
1514 1506 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1515 1507 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1516 1508 setCalibrationData();
1517 1509 }
1518 1510 }
1519 1511
1520 1512 //****************
1521 1513 // CLOSING ACTIONS
1522 1514 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1523 1515 {
1524 1516 /** This function is used to update the HK packets statistics after a successful TC execution.
1525 1517 *
1526 1518 * @param TC points to the TC being processed
1527 1519 * @param time is the time used to date the TC execution
1528 1520 *
1529 1521 */
1530 1522
1531 1523 unsigned int val;
1532 1524
1533 1525 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1534 1526 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1535 1527 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1536 1528 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1537 1529 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1538 1530 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1539 1531 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1540 1532 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1541 1533 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1542 1534 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1543 1535 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1544 1536 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1545 1537
1546 1538 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1547 1539 val++;
1548 1540 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1549 1541 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1550 1542 }
1551 1543
1552 1544 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1553 1545 {
1554 1546 /** This function is used to update the HK packets statistics after a TC rejection.
1555 1547 *
1556 1548 * @param TC points to the TC being processed
1557 1549 * @param time is the time used to date the TC rejection
1558 1550 *
1559 1551 */
1560 1552
1561 1553 unsigned int val;
1562 1554
1563 1555 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1564 1556 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1565 1557 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1566 1558 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1567 1559 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1568 1560 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1569 1561 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1570 1562 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1571 1563 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1572 1564 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1573 1565 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1574 1566 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1575 1567
1576 1568 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1577 1569 val++;
1578 1570 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1579 1571 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1580 1572 }
1581 1573
1582 1574 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1583 1575 {
1584 1576 /** This function is the last step of the TC execution workflow.
1585 1577 *
1586 1578 * @param TC points to the TC being processed
1587 1579 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1588 1580 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1589 1581 * @param time is the time used to date the TC execution
1590 1582 *
1591 1583 */
1592 1584
1593 1585 unsigned char requestedMode;
1594 1586
1595 1587 if (result == LFR_SUCCESSFUL)
1596 1588 {
1597 1589 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1598 1590 &
1599 1591 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1600 1592 )
1601 1593 {
1602 1594 send_tm_lfr_tc_exe_success( TC, queue_id );
1603 1595 }
1604 1596 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1605 1597 {
1606 1598 //**********************************
1607 1599 // UPDATE THE LFRMODE LOCAL VARIABLE
1608 1600 requestedMode = TC->dataAndCRC[1];
1609 1601 updateLFRCurrentMode( requestedMode );
1610 1602 }
1611 1603 }
1612 1604 else if (result == LFR_EXE_ERROR)
1613 1605 {
1614 1606 send_tm_lfr_tc_exe_error( TC, queue_id );
1615 1607 }
1616 1608 }
1617 1609
1618 1610 //***************************
1619 1611 // Interrupt Service Routines
1620 1612 rtems_isr commutation_isr1( rtems_vector_number vector )
1621 1613 {
1622 1614 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1623 1615 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1624 1616 }
1625 1617 }
1626 1618
1627 1619 rtems_isr commutation_isr2( rtems_vector_number vector )
1628 1620 {
1629 1621 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1630 1622 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1631 1623 }
1632 1624 }
1633 1625
1634 1626 //****************
1635 1627 // OTHER FUNCTIONS
1636 1628 void updateLFRCurrentMode( unsigned char requestedMode )
1637 1629 {
1638 1630 /** This function updates the value of the global variable lfrCurrentMode.
1639 1631 *
1640 1632 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1641 1633 *
1642 1634 */
1643 1635
1644 1636 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1645 1637 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1646 1638 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1647 1639 lfrCurrentMode = requestedMode;
1648 1640 }
1649 1641
1650 1642 void set_lfr_soft_reset( unsigned char value )
1651 1643 {
1652 1644 if (value == 1)
1653 1645 {
1654 1646 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1655 1647 }
1656 1648 else
1657 1649 {
1658 1650 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1659 1651 }
1660 1652 }
1661 1653
1662 1654 void reset_lfr( void )
1663 1655 {
1664 1656 set_lfr_soft_reset( 1 );
1665 1657
1666 1658 set_lfr_soft_reset( 0 );
1667 1659
1668 1660 set_hk_lfr_sc_potential_flag( true );
1669 1661 }
@@ -1,1788 +1,1794
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327 unsigned char k;
328 328
329 329 flag = LFR_DEFAULT;
330 330 k = INIT_CHAR;
331 331
332 332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
333 333
334 334 if (flag == LFR_SUCCESSFUL)
335 335 {
336 336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
345 345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
346 346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
349 349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
350 350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
351 351
352 352 //****************************
353 353 // store PAS filter parameters
354 354 // sy_lfr_pas_filter_enabled
355 355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
356 356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
357 357 // sy_lfr_pas_filter_modulus
358 358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
359 359 // sy_lfr_pas_filter_tbad
360 360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
361 361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
362 362 // sy_lfr_pas_filter_offset
363 363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
364 364 // sy_lfr_pas_filter_shift
365 365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
366 366 parameter_dump_packet.sy_lfr_pas_filter_shift );
367 367
368 368 //****************************************************
369 369 // store the parameter sy_lfr_sc_rw_delta_f as a float
370 370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
371 371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
372 372
373 373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
374 374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
375 375 {
376 376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
377 377 }
378 378
379 379 //***********************************************
380 380 // store the parameter sy_lfr_rw.._k.. as a float
381 381 // rw1_k
382 382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
383 383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
384 384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
385 385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
386 386 // rw2_k
387 387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
388 388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
389 389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
390 390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
391 391 // rw3_k
392 392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
393 393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
394 394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
395 395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
396 396 // rw4_k
397 397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
398 398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
399 399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
400 400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
401 401
402 402 }
403 403
404 404 return flag;
405 405 }
406 406
407 407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
408 408 {
409 409 /** This function updates the LFR registers with the incoming sbm2 parameters.
410 410 *
411 411 * @param TC points to the TeleCommand packet that is being processed
412 412 * @param queue_id is the id of the queue which handles TM related to this execution step
413 413 *
414 414 */
415 415
416 416 unsigned int address;
417 417 rtems_status_code status;
418 418 unsigned int freq;
419 419 unsigned int bin;
420 420 unsigned int coeff;
421 421 unsigned char *kCoeffPtr;
422 422 unsigned char *kCoeffDumpPtr;
423 423
424 424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
425 425 // F0 => 11 bins
426 426 // F1 => 13 bins
427 427 // F2 => 12 bins
428 428 // 36 bins to dump in two packets (30 bins max per packet)
429 429
430 430 //*********
431 431 // PACKET 1
432 432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
433 433 kcoefficients_dump_1.destinationID = TC->sourceID;
434 434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
435 435 for( freq = 0;
436 436 freq < NB_BINS_COMPRESSED_SM_F0;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
440 440 bin = freq;
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
442 442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 for( freq = NB_BINS_COMPRESSED_SM_F0;
452 452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
453 453 freq++ )
454 454 {
455 455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
456 456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
457 457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
458 458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
459 459 {
460 460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
461 461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
462 462 ]; // 2 for the kcoeff_frequency
463 463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
464 464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
465 465 }
466 466 }
467 467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
468 468 freq < KCOEFF_BLK_NR_PKT1 ;
469 469 freq++ )
470 470 {
471 471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
472 472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
473 473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
474 474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
475 475 {
476 476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
477 477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
478 478 ]; // 2 for the kcoeff_frequency
479 479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
480 480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
481 481 }
482 482 }
483 483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
484 484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
485 485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
486 486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
487 487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
489 489 // SEND DATA
490 490 kcoefficient_node_1.status = 1;
491 491 address = (unsigned int) &kcoefficient_node_1;
492 492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
493 493 if (status != RTEMS_SUCCESSFUL) {
494 494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
495 495 }
496 496
497 497 //********
498 498 // PACKET 2
499 499 // 6 F2 bins
500 500 kcoefficients_dump_2.destinationID = TC->sourceID;
501 501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
502 502 for( freq = 0;
503 503 freq < KCOEFF_BLK_NR_PKT2;
504 504 freq++ )
505 505 {
506 506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
507 507 bin = freq + KCOEFF_BLK_NR_PKT2;
508 508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
509 509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
510 510 {
511 511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
512 512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
513 513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
514 514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
515 515 }
516 516 }
517 517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
518 518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
519 519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
520 520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
521 521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
522 522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
523 523 // SEND DATA
524 524 kcoefficient_node_2.status = 1;
525 525 address = (unsigned int) &kcoefficient_node_2;
526 526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
527 527 if (status != RTEMS_SUCCESSFUL) {
528 528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
529 529 }
530 530
531 531 return status;
532 532 }
533 533
534 534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
535 535 {
536 536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
537 537 *
538 538 * @param queue_id is the id of the queue which handles TM related to this execution step.
539 539 *
540 540 * @return RTEMS directive status codes:
541 541 * - RTEMS_SUCCESSFUL - message sent successfully
542 542 * - RTEMS_INVALID_ID - invalid queue id
543 543 * - RTEMS_INVALID_SIZE - invalid message size
544 544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
545 545 * - RTEMS_UNSATISFIED - out of message buffers
546 546 * - RTEMS_TOO_MANY - queue s limit has been reached
547 547 *
548 548 */
549 549
550 550 int status;
551 551
552 552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
553 553 parameter_dump_packet.destinationID = TC->sourceID;
554 554
555 555 // UPDATE TIME
556 556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
557 557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
558 558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
559 559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
560 560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
561 561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
562 562 // SEND DATA
563 563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
564 564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
565 565 if (status != RTEMS_SUCCESSFUL) {
566 566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
567 567 }
568 568
569 569 return status;
570 570 }
571 571
572 572 //***********************
573 573 // NORMAL MODE PARAMETERS
574 574
575 575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
576 576 {
577 577 unsigned char msb;
578 578 unsigned char lsb;
579 579 int flag;
580 580 float aux;
581 581 rtems_status_code status;
582 582
583 583 unsigned int sy_lfr_n_swf_l;
584 584 unsigned int sy_lfr_n_swf_p;
585 585 unsigned int sy_lfr_n_asm_p;
586 586 unsigned char sy_lfr_n_bp_p0;
587 587 unsigned char sy_lfr_n_bp_p1;
588 588 unsigned char sy_lfr_n_cwf_long_f3;
589 589
590 590 flag = LFR_SUCCESSFUL;
591 591
592 592 //***************
593 593 // get parameters
594 594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
595 595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
596 596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
597 597
598 598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
599 599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
600 600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
601 601
602 602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
603 603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
604 604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
605 605
606 606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
607 607
608 608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
609 609
610 610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
611 611
612 612 //******************
613 613 // check consistency
614 614 // sy_lfr_n_swf_l
615 615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
616 616 {
617 617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
618 618 flag = WRONG_APP_DATA;
619 619 }
620 620 // sy_lfr_n_swf_p
621 621 if (flag == LFR_SUCCESSFUL)
622 622 {
623 623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
624 624 {
625 625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
626 626 flag = WRONG_APP_DATA;
627 627 }
628 628 }
629 629 // sy_lfr_n_bp_p0
630 630 if (flag == LFR_SUCCESSFUL)
631 631 {
632 632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
633 633 {
634 634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
635 635 flag = WRONG_APP_DATA;
636 636 }
637 637 }
638 638 // sy_lfr_n_asm_p
639 639 if (flag == LFR_SUCCESSFUL)
640 640 {
641 641 if (sy_lfr_n_asm_p == 0)
642 642 {
643 643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
644 644 flag = WRONG_APP_DATA;
645 645 }
646 646 }
647 647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
648 648 if (flag == LFR_SUCCESSFUL)
649 649 {
650 650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
651 651 if (aux > FLOAT_EQUAL_ZERO)
652 652 {
653 653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
654 654 flag = WRONG_APP_DATA;
655 655 }
656 656 }
657 657 // sy_lfr_n_bp_p1
658 658 if (flag == LFR_SUCCESSFUL)
659 659 {
660 660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
661 661 {
662 662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
663 663 flag = WRONG_APP_DATA;
664 664 }
665 665 }
666 666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
667 667 if (flag == LFR_SUCCESSFUL)
668 668 {
669 669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
670 670 if (aux > FLOAT_EQUAL_ZERO)
671 671 {
672 672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
673 673 flag = LFR_DEFAULT;
674 674 }
675 675 }
676 676 // sy_lfr_n_cwf_long_f3
677 677
678 678 return flag;
679 679 }
680 680
681 681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
682 682 {
683 683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
684 684 *
685 685 * @param TC points to the TeleCommand packet that is being processed
686 686 * @param queue_id is the id of the queue which handles TM related to this execution step
687 687 *
688 688 */
689 689
690 690 int result;
691 691
692 692 result = LFR_SUCCESSFUL;
693 693
694 694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
695 695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
696 696
697 697 return result;
698 698 }
699 699
700 700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
701 701 {
702 702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
703 703 *
704 704 * @param TC points to the TeleCommand packet that is being processed
705 705 * @param queue_id is the id of the queue which handles TM related to this execution step
706 706 *
707 707 */
708 708
709 709 int result;
710 710
711 711 result = LFR_SUCCESSFUL;
712 712
713 713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
714 714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
715 715
716 716 return result;
717 717 }
718 718
719 719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
720 720 {
721 721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
722 722 *
723 723 * @param TC points to the TeleCommand packet that is being processed
724 724 * @param queue_id is the id of the queue which handles TM related to this execution step
725 725 *
726 726 */
727 727
728 728 int result;
729 729
730 730 result = LFR_SUCCESSFUL;
731 731
732 732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
733 733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
734 734
735 735 return result;
736 736 }
737 737
738 738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
739 739 {
740 740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
741 741 *
742 742 * @param TC points to the TeleCommand packet that is being processed
743 743 * @param queue_id is the id of the queue which handles TM related to this execution step
744 744 *
745 745 */
746 746
747 747 int status;
748 748
749 749 status = LFR_SUCCESSFUL;
750 750
751 751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
752 752
753 753 return status;
754 754 }
755 755
756 756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
757 757 {
758 758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
759 759 *
760 760 * @param TC points to the TeleCommand packet that is being processed
761 761 * @param queue_id is the id of the queue which handles TM related to this execution step
762 762 *
763 763 */
764 764
765 765 int status;
766 766
767 767 status = LFR_SUCCESSFUL;
768 768
769 769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
770 770
771 771 return status;
772 772 }
773 773
774 774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
775 775 {
776 776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
777 777 *
778 778 * @param TC points to the TeleCommand packet that is being processed
779 779 * @param queue_id is the id of the queue which handles TM related to this execution step
780 780 *
781 781 */
782 782
783 783 int status;
784 784
785 785 status = LFR_SUCCESSFUL;
786 786
787 787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
788 788
789 789 return status;
790 790 }
791 791
792 792 //**********************
793 793 // BURST MODE PARAMETERS
794 794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
795 795 {
796 796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
797 797 *
798 798 * @param TC points to the TeleCommand packet that is being processed
799 799 * @param queue_id is the id of the queue which handles TM related to this execution step
800 800 *
801 801 */
802 802
803 803 int status;
804 804
805 805 status = LFR_SUCCESSFUL;
806 806
807 807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
808 808
809 809 return status;
810 810 }
811 811
812 812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
813 813 {
814 814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
815 815 *
816 816 * @param TC points to the TeleCommand packet that is being processed
817 817 * @param queue_id is the id of the queue which handles TM related to this execution step
818 818 *
819 819 */
820 820
821 821 int status;
822 822
823 823 status = LFR_SUCCESSFUL;
824 824
825 825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
826 826
827 827 return status;
828 828 }
829 829
830 830 //*********************
831 831 // SBM1 MODE PARAMETERS
832 832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
833 833 {
834 834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
835 835 *
836 836 * @param TC points to the TeleCommand packet that is being processed
837 837 * @param queue_id is the id of the queue which handles TM related to this execution step
838 838 *
839 839 */
840 840
841 841 int status;
842 842
843 843 status = LFR_SUCCESSFUL;
844 844
845 845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
846 846
847 847 return status;
848 848 }
849 849
850 850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
851 851 {
852 852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
853 853 *
854 854 * @param TC points to the TeleCommand packet that is being processed
855 855 * @param queue_id is the id of the queue which handles TM related to this execution step
856 856 *
857 857 */
858 858
859 859 int status;
860 860
861 861 status = LFR_SUCCESSFUL;
862 862
863 863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
864 864
865 865 return status;
866 866 }
867 867
868 868 //*********************
869 869 // SBM2 MODE PARAMETERS
870 870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
871 871 {
872 872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
873 873 *
874 874 * @param TC points to the TeleCommand packet that is being processed
875 875 * @param queue_id is the id of the queue which handles TM related to this execution step
876 876 *
877 877 */
878 878
879 879 int status;
880 880
881 881 status = LFR_SUCCESSFUL;
882 882
883 883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
884 884
885 885 return status;
886 886 }
887 887
888 888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
889 889 {
890 890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
891 891 *
892 892 * @param TC points to the TeleCommand packet that is being processed
893 893 * @param queue_id is the id of the queue which handles TM related to this execution step
894 894 *
895 895 */
896 896
897 897 int status;
898 898
899 899 status = LFR_SUCCESSFUL;
900 900
901 901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
902 902
903 903 return status;
904 904 }
905 905
906 906 //*******************
907 907 // TC_LFR_UPDATE_INFO
908 908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
909 909 {
910 910 unsigned int status;
911 911
912 912 status = LFR_DEFAULT;
913 913
914 914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
915 915 || (mode == LFR_MODE_BURST)
916 916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
917 917 {
918 918 status = LFR_SUCCESSFUL;
919 919 }
920 920 else
921 921 {
922 922 status = LFR_DEFAULT;
923 923 }
924 924
925 925 return status;
926 926 }
927 927
928 928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
929 929 {
930 930 unsigned int status;
931 931
932 932 status = LFR_DEFAULT;
933 933
934 934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
935 935 || (mode == TDS_MODE_BURST)
936 936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
937 937 || (mode == TDS_MODE_LFM))
938 938 {
939 939 status = LFR_SUCCESSFUL;
940 940 }
941 941 else
942 942 {
943 943 status = LFR_DEFAULT;
944 944 }
945 945
946 946 return status;
947 947 }
948 948
949 949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
950 950 {
951 951 unsigned int status;
952 952
953 953 status = LFR_DEFAULT;
954 954
955 955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
956 956 || (mode == THR_MODE_BURST))
957 957 {
958 958 status = LFR_SUCCESSFUL;
959 959 }
960 960 else
961 961 {
962 962 status = LFR_DEFAULT;
963 963 }
964 964
965 965 return status;
966 966 }
967 967
968 968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
969 969 {
970 970 unsigned char flag;
971 971 unsigned char flagPosInByte;
972 972 unsigned char newFlag;
973 973 unsigned char flagMask;
974 974
975 975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
976 976 if (isnan(value))
977 977 {
978 978 flag = FLAG_NAN;
979 979 }
980 980 else
981 981 {
982 982 flag = FLAG_IAN;
983 983 }
984 984
985 985 switch(wheel)
986 986 {
987 987 case WHEEL_1:
988 988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
989 989 flagMask = ~(1 << flagPosInByte);
990 990 newFlag = flag << flagPosInByte;
991 991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
992 992 break;
993 993 case WHEEL_2:
994 994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
995 995 flagMask = ~(1 << flagPosInByte);
996 996 newFlag = flag << flagPosInByte;
997 997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
998 998 break;
999 999 case WHEEL_3:
1000 1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1001 1001 flagMask = ~(1 << flagPosInByte);
1002 1002 newFlag = flag << flagPosInByte;
1003 1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1004 1004 break;
1005 1005 case WHEEL_4:
1006 1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1007 1007 flagMask = ~(1 << flagPosInByte);
1008 1008 newFlag = flag << flagPosInByte;
1009 1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1010 1010 break;
1011 1011 default:
1012 1012 break;
1013 1013 }
1014 1014 }
1015 1015
1016 1016 void set_hk_lfr_sc_rw_f_flags( void )
1017 1017 {
1018 1018 // RW1
1019 1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1020 1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1021 1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1022 1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1023 1023
1024 1024 // RW2
1025 1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1026 1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1027 1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1028 1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1029 1029
1030 1030 // RW3
1031 1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1032 1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1033 1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1034 1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1035 1035
1036 1036 // RW4
1037 1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1038 1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1039 1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1040 1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1041 1041 }
1042 1042
1043 1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1044 1044 {
1045 1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1046 1046 *
1047 1047 * @param TC points to the TeleCommand packet that is being processed
1048 1048 *
1049 1049 */
1050 1050
1051 1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1052 1052
1053 1053 bytePosPtr = (unsigned char *) &TC->packetID;
1054 1054
1055 1055 // rw1_f
1056 1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1057 1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1058 1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1059 1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1060 1060
1061 1061 // rw2_f
1062 1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1063 1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1064 1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1065 1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1066 1066
1067 1067 // rw3_f
1068 1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1069 1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1070 1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1071 1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1072 1072
1073 1073 // rw4_f
1074 1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1075 1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1076 1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1077 1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1078 1078
1079 1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1080 1080
1081 1081 }
1082 1082
1083 1083 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff )
1084 1084 {
1085 1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1086 1086 *
1087 1087 * @param fbins_mask
1088 1088 * @param rw_f is the reaction wheel frequency to filter
1089 1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1090 1090 * @param flag [true] filtering enabled [false] filtering disabled
1091 1091 *
1092 1092 * @return void
1093 1093 *
1094 1094 */
1095 1095
1096 1096 float f_RW_min;
1097 1097 float f_RW_MAX;
1098 1098 float fi_min;
1099 1099 float fi_MAX;
1100 1100 float fi;
1101 1101 float deltaBelow;
1102 1102 float deltaAbove;
1103 1103 int binBelow;
1104 1104 int binAbove;
1105 1105 int closestBin;
1106 1106 unsigned int whichByte;
1107 1107 int selectedByte;
1108 1108 int bin;
1109 1109 int binToRemove[NB_BINS_TO_REMOVE];
1110 1110 int i;
1111 1111
1112 1112 closestBin = 0;
1113 1113 whichByte = 0;
1114 1114 bin = 0;
1115 1115
1116 1116 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1117 1117 {
1118 1118 binToRemove[i] = -1;
1119 1119 }
1120 1120
1121 1121 if (!isnan(rw_f))
1122 1122 {
1123 1123
1124 1124 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1125 1125 f_RW_min = rw_f - ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1126 1126 f_RW_MAX = rw_f + ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1127 1127
1128 1128 // compute the index of the frequency bin immediately below rw_f
1129 1129 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1130 1130 deltaBelow = rw_f - binBelow * deltaFreq;
1131 1131
1132 1132 // compute the index of the frequency bin immediately above rw_f
1133 1133 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1134 1134 deltaAbove = binAbove * deltaFreq - rw_f;
1135 1135
1136 1136 // search the closest bin
1137 1137 if (deltaAbove > deltaBelow)
1138 1138 {
1139 1139 closestBin = binBelow;
1140 1140 }
1141 1141 else
1142 1142 {
1143 1143 closestBin = binAbove;
1144 1144 }
1145 1145
1146 1146 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1147 1147 fi = closestBin * deltaFreq;
1148 1148 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1149 1149 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1150 1150
1151 1151 //**************************************************************************************
1152 1152 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1153 1153 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1154 1154 //**************************************************************************************
1155 1155
1156 1156 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1157 1157 // => remove f_(i), f_(i-1) and f_(i+1)
1158 1158 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1159 1159 {
1160 1160 binToRemove[0] = (closestBin - 1) - 1;
1161 1161 binToRemove[1] = (closestBin) - 1;
1162 1162 binToRemove[2] = (closestBin + 1) - 1;
1163 1163 }
1164 1164 // 2. ELSE
1165 1165 // => remove the two f_(i) which are around f_RW
1166 1166 else
1167 1167 {
1168 1168 binToRemove[0] = (binBelow) - 1;
1169 1169 binToRemove[1] = (binAbove) - 1;
1170 1170 binToRemove[2] = (-1);
1171 1171 }
1172 1172
1173 1173 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1174 1174 {
1175 1175 bin = binToRemove[i];
1176 1176 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1177 1177 {
1178 1178
1179 1179 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1180 1180 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1181 1181 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1182 1182 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1183 1183 }
1184 1184 }
1185 1185 }
1186 1186 }
1187 1187
1188 1188 void build_sy_lfr_rw_mask( unsigned int channel )
1189 1189 {
1190 1190 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1191 1191 unsigned char *maskPtr;
1192 1192 double deltaF;
1193 1193 unsigned k;
1194 1194
1195 1195 maskPtr = NULL;
1196 1196 deltaF = DELTAF_F2;
1197 1197
1198 1198 switch (channel)
1199 1199 {
1200 1200 case CHANNELF0:
1201 1201 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1202 1202 deltaF = DELTAF_F0;
1203 1203 break;
1204 1204 case CHANNELF1:
1205 1205 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1206 1206 deltaF = DELTAF_F1;
1207 1207 break;
1208 1208 case CHANNELF2:
1209 1209 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1210 1210 deltaF = DELTAF_F2;
1211 1211 break;
1212 1212 default:
1213 1213 break;
1214 1214 }
1215 1215
1216 1216 for (k = 0; k < BYTES_PER_MASK; k++)
1217 1217 {
1218 1218 local_rw_fbins_mask[k] = INT8_ALL_F;
1219 1219 }
1220 1220
1221 1221 // RW1
1222 1222 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1223 1223 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1224 1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1225 1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1226 1226
1227 1227 // RW2
1228 1228 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1229 1229 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1230 1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1231 1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1232 1232
1233 1233 // RW3
1234 1234 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1235 1235 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1236 1236 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1237 1237 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1238 1238
1239 1239 // RW4
1240 1240 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1241 1241 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1242 1242 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1243 1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1244 1244
1245 1245 // update the value of the fbins related to reaction wheels frequency filtering
1246 1246 if (maskPtr != NULL)
1247 1247 {
1248 1248 for (k = 0; k < BYTES_PER_MASK; k++)
1249 1249 {
1250 1250 maskPtr[k] = local_rw_fbins_mask[k];
1251 1251 }
1252 1252 }
1253 1253 }
1254 1254
1255 1255 void build_sy_lfr_rw_masks( void )
1256 1256 {
1257 1257 build_sy_lfr_rw_mask( CHANNELF0 );
1258 1258 build_sy_lfr_rw_mask( CHANNELF1 );
1259 1259 build_sy_lfr_rw_mask( CHANNELF2 );
1260 1260 }
1261 1261
1262 1262 void merge_fbins_masks( void )
1263 1263 {
1264 1264 unsigned char k;
1265 1265
1266 1266 unsigned char *fbins_f0;
1267 1267 unsigned char *fbins_f1;
1268 1268 unsigned char *fbins_f2;
1269 1269 unsigned char *rw_mask_f0;
1270 1270 unsigned char *rw_mask_f1;
1271 1271 unsigned char *rw_mask_f2;
1272 1272
1273 1273 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1274 1274 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1275 1275 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1276 1276 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1277 1277 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1278 1278 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1279 1279
1280 1280 for( k=0; k < BYTES_PER_MASK; k++ )
1281 1281 {
1282 1282 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1283 1283 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1284 1284 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1285 1285 }
1286 1286 }
1287 1287
1288 1288 //***********
1289 1289 // FBINS MASK
1290 1290
1291 1291 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1292 1292 {
1293 1293 int status;
1294 1294 unsigned int k;
1295 1295 unsigned char *fbins_mask_dump;
1296 1296 unsigned char *fbins_mask_TC;
1297 1297
1298 1298 status = LFR_SUCCESSFUL;
1299 1299
1300 1300 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1301 1301 fbins_mask_TC = TC->dataAndCRC;
1302 1302
1303 1303 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1304 1304 {
1305 1305 fbins_mask_dump[k] = fbins_mask_TC[k];
1306 1306 }
1307 1307
1308 1308 return status;
1309 1309 }
1310 1310
1311 1311 //***************************
1312 1312 // TC_LFR_LOAD_PAS_FILTER_PAR
1313 1313
1314 1314 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1315 1315 {
1316 1316 int flag;
1317 1317 rtems_status_code status;
1318 1318
1319 1319 unsigned char sy_lfr_pas_filter_enabled;
1320 1320 unsigned char sy_lfr_pas_filter_modulus;
1321 1321 float sy_lfr_pas_filter_tbad;
1322 1322 unsigned char sy_lfr_pas_filter_offset;
1323 1323 float sy_lfr_pas_filter_shift;
1324 1324 float sy_lfr_sc_rw_delta_f;
1325 1325 char *parPtr;
1326 1326
1327 1327 flag = LFR_SUCCESSFUL;
1328 1328 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1329 1329 sy_lfr_pas_filter_shift = INIT_FLOAT;
1330 1330 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1331 1331 parPtr = NULL;
1332 1332
1333 1333 //***************
1334 1334 // get parameters
1335 1335 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1336 1336 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1337 1337 copyFloatByChar(
1338 1338 (unsigned char*) &sy_lfr_pas_filter_tbad,
1339 1339 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1340 1340 );
1341 1341 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1342 1342 copyFloatByChar(
1343 1343 (unsigned char*) &sy_lfr_pas_filter_shift,
1344 1344 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1345 1345 );
1346 1346 copyFloatByChar(
1347 1347 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1348 1348 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1349 1349 );
1350 1350
1351 1351 //******************
1352 1352 // CHECK CONSISTENCY
1353 1353
1354 1354 //**************************
1355 1355 // sy_lfr_pas_filter_enabled
1356 1356 // nothing to check, value is 0 or 1
1357 1357
1358 1358 //**************************
1359 1359 // sy_lfr_pas_filter_modulus
1360 1360 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1361 1361 {
1362 1362 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1363 1363 flag = WRONG_APP_DATA;
1364 1364 }
1365 1365
1366 1366 //***********************
1367 1367 // sy_lfr_pas_filter_tbad
1368 1368 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1369 1369 {
1370 1370 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1371 1371 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1372 1372 flag = WRONG_APP_DATA;
1373 1373 }
1374 1374
1375 1375 //*************************
1376 1376 // sy_lfr_pas_filter_offset
1377 1377 if (flag == LFR_SUCCESSFUL)
1378 1378 {
1379 1379 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1380 1380 {
1381 1381 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1382 1382 flag = WRONG_APP_DATA;
1383 1383 }
1384 1384 }
1385 1385
1386 1386 //************************
1387 1387 // sy_lfr_pas_filter_shift
1388 1388 if (flag == LFR_SUCCESSFUL)
1389 1389 {
1390 1390 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1391 1391 {
1392 1392 parPtr = (char*) &sy_lfr_pas_filter_shift;
1393 1393 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1394 1394 flag = WRONG_APP_DATA;
1395 1395 }
1396 1396 }
1397 1397
1398 1398 //*************************************
1399 1399 // check global coherency of the values
1400 1400 if (flag == LFR_SUCCESSFUL)
1401 1401 {
1402 1402 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1403 1403 {
1404 1404 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1405 1405 flag = WRONG_APP_DATA;
1406 1406 }
1407 1407 }
1408 1408
1409 1409 //*********************
1410 1410 // sy_lfr_sc_rw_delta_f
1411 1411 // nothing to check, no default value in the ICD
1412 1412
1413 1413 return flag;
1414 1414 }
1415 1415
1416 1416 //**************
1417 1417 // KCOEFFICIENTS
1418 1418 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1419 1419 {
1420 1420 unsigned int kcoeff;
1421 1421 unsigned short sy_lfr_kcoeff_frequency;
1422 1422 unsigned short bin;
1423 unsigned short *freqPtr;
1424 1423 float *kcoeffPtr_norm;
1425 1424 float *kcoeffPtr_sbm;
1426 1425 int status;
1427 1426 unsigned char *kcoeffLoadPtr;
1428 1427 unsigned char *kcoeffNormPtr;
1429 1428 unsigned char *kcoeffSbmPtr_a;
1430 1429 unsigned char *kcoeffSbmPtr_b;
1431 1430
1432 status = LFR_SUCCESSFUL;
1433
1431 sy_lfr_kcoeff_frequency = 0;
1432 bin = 0;
1434 1433 kcoeffPtr_norm = NULL;
1435 1434 kcoeffPtr_sbm = NULL;
1436 bin = 0;
1435 status = LFR_SUCCESSFUL;
1437 1436
1438 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1439 sy_lfr_kcoeff_frequency = *freqPtr;
1437 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1438 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1439
1440 1440
1441 1441 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1442 1442 {
1443 1443 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1444 1444 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1445 1445 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1446 1446 status = LFR_DEFAULT;
1447 1447 }
1448 1448 else
1449 1449 {
1450 1450 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1451 1451 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1452 1452 {
1453 1453 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1454 1454 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1455 1455 bin = sy_lfr_kcoeff_frequency;
1456 1456 }
1457 1457 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1458 1458 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1459 1459 {
1460 1460 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1461 1461 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1462 1462 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1463 1463 }
1464 1464 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1465 1465 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1466 1466 {
1467 1467 kcoeffPtr_norm = k_coeff_intercalib_f2;
1468 1468 kcoeffPtr_sbm = NULL;
1469 1469 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1470 1470 }
1471 1471 }
1472 1472
1473 1473 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1474 1474 {
1475 1475 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1476 1476 {
1477 1477 // destination
1478 1478 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1479 1479 // source
1480 1480 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1481 1481 // copy source to destination
1482 1482 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1483 1483 }
1484 1484 }
1485 1485
1486 1486 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1487 1487 {
1488 1488 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1489 1489 {
1490 1490 // destination
1491 1491 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1492 1492 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1493 1493 // source
1494 1494 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1495 1495 // copy source to destination
1496 1496 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1497 1497 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1498 1498 }
1499 1499 }
1500 1500
1501 1501 // print_k_coeff();
1502 1502
1503 1503 return status;
1504 1504 }
1505 1505
1506 1506 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1507 1507 {
1508 1508 destination[BYTE_0] = source[BYTE_0];
1509 1509 destination[BYTE_1] = source[BYTE_1];
1510 1510 destination[BYTE_2] = source[BYTE_2];
1511 1511 destination[BYTE_3] = source[BYTE_3];
1512 1512 }
1513 1513
1514 1514 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1515 1515 {
1516 1516 destination[BYTE_0] = source[BYTE_0];
1517 1517 destination[BYTE_1] = source[BYTE_1];
1518 1518 destination[BYTE_2] = source[BYTE_2];
1519 1519 destination[BYTE_3] = source[BYTE_3];
1520 1520 }
1521 1521
1522 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1523 {
1524 destination[BYTE_0] = source[BYTE_0];
1525 destination[BYTE_1] = source[BYTE_1];
1526 }
1527
1522 1528 void floatToChar( float value, unsigned char* ptr)
1523 1529 {
1524 1530 unsigned char* valuePtr;
1525 1531
1526 1532 valuePtr = (unsigned char*) &value;
1527 1533 ptr[BYTE_0] = valuePtr[BYTE_0];
1528 1534 ptr[BYTE_1] = valuePtr[BYTE_1];
1529 1535 ptr[BYTE_2] = valuePtr[BYTE_2];
1530 1536 ptr[BYTE_3] = valuePtr[BYTE_3];
1531 1537 }
1532 1538
1533 1539 //**********
1534 1540 // init dump
1535 1541
1536 1542 void init_parameter_dump( void )
1537 1543 {
1538 1544 /** This function initialize the parameter_dump_packet global variable with default values.
1539 1545 *
1540 1546 */
1541 1547
1542 1548 unsigned int k;
1543 1549
1544 1550 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1545 1551 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1546 1552 parameter_dump_packet.reserved = CCSDS_RESERVED;
1547 1553 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1548 1554 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1549 1555 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1550 1556 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1551 1557 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1552 1558 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1553 1559 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1554 1560 // DATA FIELD HEADER
1555 1561 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1556 1562 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1557 1563 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1558 1564 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1559 1565 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1560 1566 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1561 1567 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1562 1568 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1563 1569 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1564 1570 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1565 1571 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1566 1572
1567 1573 //******************
1568 1574 // COMMON PARAMETERS
1569 1575 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1570 1576 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1571 1577
1572 1578 //******************
1573 1579 // NORMAL PARAMETERS
1574 1580 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1575 1581 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1576 1582 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1577 1583 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1578 1584 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1579 1585 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1580 1586 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1581 1587 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1582 1588 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1583 1589
1584 1590 //*****************
1585 1591 // BURST PARAMETERS
1586 1592 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1587 1593 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1588 1594
1589 1595 //****************
1590 1596 // SBM1 PARAMETERS
1591 1597 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1592 1598 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1593 1599
1594 1600 //****************
1595 1601 // SBM2 PARAMETERS
1596 1602 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1597 1603 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1598 1604
1599 1605 //************
1600 1606 // FBINS MASKS
1601 1607 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1602 1608 {
1603 1609 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1604 1610 }
1605 1611
1606 1612 // PAS FILTER PARAMETERS
1607 1613 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1608 1614 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1609 1615 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1610 1616 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1611 1617 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1612 1618 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1613 1619 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1614 1620
1615 1621 // RW1_K
1616 1622 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1617 1623 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1618 1624 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1619 1625 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1620 1626 // RW2_K
1621 1627 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1622 1628 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1623 1629 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1624 1630 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1625 1631 // RW3_K
1626 1632 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1627 1633 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1628 1634 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1629 1635 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1630 1636 // RW4_K
1631 1637 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1632 1638 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1633 1639 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1634 1640 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1635 1641
1636 1642 // LFR_RW_MASK
1637 1643 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1638 1644 {
1639 1645 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1640 1646 }
1641 1647
1642 1648 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1643 1649 merge_fbins_masks();
1644 1650 }
1645 1651
1646 1652 void init_kcoefficients_dump( void )
1647 1653 {
1648 1654 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1649 1655 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1650 1656
1651 1657 kcoefficient_node_1.previous = NULL;
1652 1658 kcoefficient_node_1.next = NULL;
1653 1659 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1654 1660 kcoefficient_node_1.coarseTime = INIT_CHAR;
1655 1661 kcoefficient_node_1.fineTime = INIT_CHAR;
1656 1662 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1657 1663 kcoefficient_node_1.status = INIT_CHAR;
1658 1664
1659 1665 kcoefficient_node_2.previous = NULL;
1660 1666 kcoefficient_node_2.next = NULL;
1661 1667 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1662 1668 kcoefficient_node_2.coarseTime = INIT_CHAR;
1663 1669 kcoefficient_node_2.fineTime = INIT_CHAR;
1664 1670 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1665 1671 kcoefficient_node_2.status = INIT_CHAR;
1666 1672 }
1667 1673
1668 1674 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1669 1675 {
1670 1676 unsigned int k;
1671 1677 unsigned int packetLength;
1672 1678
1673 1679 packetLength =
1674 1680 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1675 1681
1676 1682 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1677 1683 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1678 1684 kcoefficients_dump->reserved = CCSDS_RESERVED;
1679 1685 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1680 1686 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1681 1687 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1682 1688 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1683 1689 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1684 1690 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1685 1691 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1686 1692 // DATA FIELD HEADER
1687 1693 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1688 1694 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1689 1695 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1690 1696 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1691 1697 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1692 1698 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1693 1699 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1694 1700 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1695 1701 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1696 1702 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1697 1703 kcoefficients_dump->sid = SID_K_DUMP;
1698 1704
1699 1705 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1700 1706 kcoefficients_dump->pkt_nr = PKTNR_1;
1701 1707 kcoefficients_dump->blk_nr = blk_nr;
1702 1708
1703 1709 //******************
1704 1710 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1705 1711 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1706 1712 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1707 1713 {
1708 1714 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1709 1715 }
1710 1716 }
1711 1717
1712 1718 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1713 1719 {
1714 1720 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1715 1721 *
1716 1722 * @param packet_sequence_control points to the packet sequence control which will be incremented
1717 1723 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1718 1724 *
1719 1725 * If the destination ID is not known, a dedicated counter is incremented.
1720 1726 *
1721 1727 */
1722 1728
1723 1729 unsigned short sequence_cnt;
1724 1730 unsigned short segmentation_grouping_flag;
1725 1731 unsigned short new_packet_sequence_control;
1726 1732 unsigned char i;
1727 1733
1728 1734 switch (destination_id)
1729 1735 {
1730 1736 case SID_TC_GROUND:
1731 1737 i = GROUND;
1732 1738 break;
1733 1739 case SID_TC_MISSION_TIMELINE:
1734 1740 i = MISSION_TIMELINE;
1735 1741 break;
1736 1742 case SID_TC_TC_SEQUENCES:
1737 1743 i = TC_SEQUENCES;
1738 1744 break;
1739 1745 case SID_TC_RECOVERY_ACTION_CMD:
1740 1746 i = RECOVERY_ACTION_CMD;
1741 1747 break;
1742 1748 case SID_TC_BACKUP_MISSION_TIMELINE:
1743 1749 i = BACKUP_MISSION_TIMELINE;
1744 1750 break;
1745 1751 case SID_TC_DIRECT_CMD:
1746 1752 i = DIRECT_CMD;
1747 1753 break;
1748 1754 case SID_TC_SPARE_GRD_SRC1:
1749 1755 i = SPARE_GRD_SRC1;
1750 1756 break;
1751 1757 case SID_TC_SPARE_GRD_SRC2:
1752 1758 i = SPARE_GRD_SRC2;
1753 1759 break;
1754 1760 case SID_TC_OBCP:
1755 1761 i = OBCP;
1756 1762 break;
1757 1763 case SID_TC_SYSTEM_CONTROL:
1758 1764 i = SYSTEM_CONTROL;
1759 1765 break;
1760 1766 case SID_TC_AOCS:
1761 1767 i = AOCS;
1762 1768 break;
1763 1769 case SID_TC_RPW_INTERNAL:
1764 1770 i = RPW_INTERNAL;
1765 1771 break;
1766 1772 default:
1767 1773 i = GROUND;
1768 1774 break;
1769 1775 }
1770 1776
1771 1777 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1772 1778 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1773 1779
1774 1780 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1775 1781
1776 1782 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1777 1783 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1778 1784
1779 1785 // increment the sequence counter
1780 1786 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1781 1787 {
1782 1788 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1783 1789 }
1784 1790 else
1785 1791 {
1786 1792 sequenceCounters_TM_DUMP[ i ] = 0;
1787 1793 }
1788 1794 }
General Comments 0
You need to be logged in to leave comments. Login now