##// END OF EJS Templates
Correction of a bug in set_sy_lfr_kcoeff (misalignment)
paul -
r340:4f755502e98f R3++ draft
parent child
Show More
@@ -1,119 +1,120
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6
6
7 #include "fsw_params.h"
7 #include "fsw_params.h"
8 #include "wf_handler.h"
8 #include "wf_handler.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "fsw_misc.h"
10 #include "fsw_misc.h"
11 #include "basic_parameters_params.h"
11 #include "basic_parameters_params.h"
12 #include "avf0_prc0.h"
12 #include "avf0_prc0.h"
13
13
14 #define FLOAT_EQUAL_ZERO 0.001
14 #define FLOAT_EQUAL_ZERO 0.001
15 #define NB_BINS_TO_REMOVE 3
15 #define NB_BINS_TO_REMOVE 3
16 #define FI_INTERVAL_COEFF 0.285
16 #define FI_INTERVAL_COEFF 0.285
17 #define BIN_MIN 0
17 #define BIN_MIN 0
18 #define BIN_MAX 127
18 #define BIN_MAX 127
19 #define DELTAF_F0 96.
19 #define DELTAF_F0 96.
20 #define DELTAF_F1 16.
20 #define DELTAF_F1 16.
21 #define DELTAF_F2 1.
21 #define DELTAF_F2 1.
22 #define DELTAF_DIV 2.
22 #define DELTAF_DIV 2.
23
23
24 #define BIT_RW1_F1 0x80
24 #define BIT_RW1_F1 0x80
25 #define BIT_RW1_F2 0x40
25 #define BIT_RW1_F2 0x40
26 #define BIT_RW2_F1 0x20
26 #define BIT_RW2_F1 0x20
27 #define BIT_RW2_F2 0x10
27 #define BIT_RW2_F2 0x10
28 #define BIT_RW3_F1 0x08
28 #define BIT_RW3_F1 0x08
29 #define BIT_RW3_F2 0x04
29 #define BIT_RW3_F2 0x04
30 #define BIT_RW4_F1 0x02
30 #define BIT_RW4_F1 0x02
31 #define BIT_RW4_F2 0x01
31 #define BIT_RW4_F2 0x01
32
32
33 #define WHEEL_1 1
33 #define WHEEL_1 1
34 #define WHEEL_2 2
34 #define WHEEL_2 2
35 #define WHEEL_3 3
35 #define WHEEL_3 3
36 #define WHEEL_4 4
36 #define WHEEL_4 4
37 #define FREQ_1 1
37 #define FREQ_1 1
38 #define FREQ_2 2
38 #define FREQ_2 2
39 #define FREQ_3 3
39 #define FREQ_3 3
40 #define FREQ_4 4
40 #define FREQ_4 4
41 #define FLAG_OFFSET_WHEELS_1_3 8
41 #define FLAG_OFFSET_WHEELS_1_3 8
42 #define FLAG_OFFSET_WHEELS_2_4 4
42 #define FLAG_OFFSET_WHEELS_2_4 4
43
43
44 #define FLAG_NAN 0 // Not A NUMBER
44 #define FLAG_NAN 0 // Not A NUMBER
45 #define FLAG_IAN 1 // Is A Number
45 #define FLAG_IAN 1 // Is A Number
46
46
47 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
47 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
48
48
49 extern unsigned short sequenceCounterParameterDump;
49 extern unsigned short sequenceCounterParameterDump;
50 extern unsigned short sequenceCounters_TM_DUMP[];
50 extern unsigned short sequenceCounters_TM_DUMP[];
51 extern float k_coeff_intercalib_f0_norm[ ];
51 extern float k_coeff_intercalib_f0_norm[ ];
52 extern float k_coeff_intercalib_f0_sbm[ ];
52 extern float k_coeff_intercalib_f0_sbm[ ];
53 extern float k_coeff_intercalib_f1_norm[ ];
53 extern float k_coeff_intercalib_f1_norm[ ];
54 extern float k_coeff_intercalib_f1_sbm[ ];
54 extern float k_coeff_intercalib_f1_sbm[ ];
55 extern float k_coeff_intercalib_f2[ ];
55 extern float k_coeff_intercalib_f2[ ];
56 extern fbins_masks_t fbins_masks;
56 extern fbins_masks_t fbins_masks;
57
57
58 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
58 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
59 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
59 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
60 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
60 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
61 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
61 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
62 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
62 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
63 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
63 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
64 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
64 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
65 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
65 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
66 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
66 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
67 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
67 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
68
68
69 // NORMAL
69 // NORMAL
70 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
70 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
71 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
71 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
72 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
72 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
73 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
73 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
74 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
74 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
75 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
75 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
76 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
76 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
77
77
78 // BURST
78 // BURST
79 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
79 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
80 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
80 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
81
81
82 // SBM1
82 // SBM1
83 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
83 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
84 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
84 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
85
85
86 // SBM2
86 // SBM2
87 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
87 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
88 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
88 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
89
89
90 // TC_LFR_UPDATE_INFO
90 // TC_LFR_UPDATE_INFO
91 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
91 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
92 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
92 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
93 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
93 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
94 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value );
94 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value );
95 void set_hk_lfr_sc_rw_f_flags( void );
95 void set_hk_lfr_sc_rw_f_flags( void );
96 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
96 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
97 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff );
97 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff );
98 void build_sy_lfr_rw_mask( unsigned int channel );
98 void build_sy_lfr_rw_mask( unsigned int channel );
99 void build_sy_lfr_rw_masks();
99 void build_sy_lfr_rw_masks();
100 void merge_fbins_masks( void );
100 void merge_fbins_masks( void );
101
101
102 // FBINS_MASK
102 // FBINS_MASK
103 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
103 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
104
104
105 // TC_LFR_LOAD_PARS_FILTER_PAR
105 // TC_LFR_LOAD_PARS_FILTER_PAR
106 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
106 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
107
107
108 // KCOEFFICIENTS
108 // KCOEFFICIENTS
109 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
109 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
110 void copyFloatByChar( unsigned char *destination, unsigned char *source );
110 void copyFloatByChar( unsigned char *destination, unsigned char *source );
111 void copyInt32ByChar( unsigned char *destination, unsigned char *source );
111 void copyInt32ByChar( unsigned char *destination, unsigned char *source );
112 void copyInt16ByChar( unsigned char *destination, unsigned char *source );
112 void floatToChar( float value, unsigned char* ptr);
113 void floatToChar( float value, unsigned char* ptr);
113
114
114 void init_parameter_dump( void );
115 void init_parameter_dump( void );
115 void init_kcoefficients_dump( void );
116 void init_kcoefficients_dump( void );
116 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
117 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
117 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
118 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
118
119
119 #endif // TC_LOAD_DUMP_PARAMETERS_H
120 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,1005 +1,1005
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13
13
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 {
16 {
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 *
18 *
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 * @param interrupt_level is the interrupt level that the timer drives.
22 * @param interrupt_level is the interrupt level that the timer drives.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 *
24 *
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 *
26 *
27 */
27 */
28
28
29 rtems_status_code status;
29 rtems_status_code status;
30 rtems_isr_entry old_isr_handler;
30 rtems_isr_entry old_isr_handler;
31
31
32 old_isr_handler = NULL;
32 old_isr_handler = NULL;
33
33
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35
35
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 if (status!=RTEMS_SUCCESSFUL)
37 if (status!=RTEMS_SUCCESSFUL)
38 {
38 {
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 }
40 }
41
41
42 timer_set_clock_divider( timer, clock_divider);
42 timer_set_clock_divider( timer, clock_divider);
43 }
43 }
44
44
45 void timer_start(unsigned char timer)
45 void timer_start(unsigned char timer)
46 {
46 {
47 /** This function starts a GPTIMER timer.
47 /** This function starts a GPTIMER timer.
48 *
48 *
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 *
51 *
52 */
52 */
53
53
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 }
59 }
60
60
61 void timer_stop(unsigned char timer)
61 void timer_stop(unsigned char timer)
62 {
62 {
63 /** This function stops a GPTIMER timer.
63 /** This function stops a GPTIMER timer.
64 *
64 *
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 *
67 *
68 */
68 */
69
69
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 }
73 }
74
74
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 {
76 {
77 /** This function sets the clock divider of a GPTIMER timer.
77 /** This function sets the clock divider of a GPTIMER timer.
78 *
78 *
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 *
82 *
83 */
83 */
84
84
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 }
86 }
87
87
88 // WATCHDOG
88 // WATCHDOG
89
89
90 rtems_isr watchdog_isr( rtems_vector_number vector )
90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 {
91 {
92 rtems_status_code status_code;
92 rtems_status_code status_code;
93
93
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95
95
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97
97
98 exit(0);
98 exit(0);
99 }
99 }
100
100
101 void watchdog_configure(void)
101 void watchdog_configure(void)
102 {
102 {
103 /** This function configure the watchdog.
103 /** This function configure the watchdog.
104 *
104 *
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 *
107 *
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 *
109 *
110 */
110 */
111
111
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113
113
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115
115
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 }
117 }
118
118
119 void watchdog_stop(void)
119 void watchdog_stop(void)
120 {
120 {
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 timer_stop( TIMER_WATCHDOG );
122 timer_stop( TIMER_WATCHDOG );
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 }
124 }
125
125
126 void watchdog_reload(void)
126 void watchdog_reload(void)
127 {
127 {
128 /** This function reloads the watchdog timer counter with the timer reload value.
128 /** This function reloads the watchdog timer counter with the timer reload value.
129 *
129 *
130 * @param void
130 * @param void
131 *
131 *
132 * @return void
132 * @return void
133 *
133 *
134 */
134 */
135
135
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 }
137 }
138
138
139 void watchdog_start(void)
139 void watchdog_start(void)
140 {
140 {
141 /** This function starts the watchdog timer.
141 /** This function starts the watchdog timer.
142 *
142 *
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 *
145 *
146 */
146 */
147
147
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149
149
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154
154
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156
156
157 }
157 }
158
158
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 {
160 {
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162
162
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164
164
165 return 0;
165 return 0;
166 }
166 }
167
167
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 {
169 {
170 /** This function sets the scaler reload register of the apbuart module
170 /** This function sets the scaler reload register of the apbuart module
171 *
171 *
172 * @param regs is the address of the apbuart registers in memory
172 * @param regs is the address of the apbuart registers in memory
173 * @param value is the value that will be stored in the scaler register
173 * @param value is the value that will be stored in the scaler register
174 *
174 *
175 * The value shall be set by the software to get data on the serial interface.
175 * The value shall be set by the software to get data on the serial interface.
176 *
176 *
177 */
177 */
178
178
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180
180
181 apbuart_regs->scaler = value;
181 apbuart_regs->scaler = value;
182
182
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 }
184 }
185
185
186 //************
186 //************
187 // RTEMS TASKS
187 // RTEMS TASKS
188
188
189 rtems_task load_task(rtems_task_argument argument)
189 rtems_task load_task(rtems_task_argument argument)
190 {
190 {
191 BOOT_PRINTF("in LOAD *** \n")
191 BOOT_PRINTF("in LOAD *** \n")
192
192
193 rtems_status_code status;
193 rtems_status_code status;
194 unsigned int i;
194 unsigned int i;
195 unsigned int j;
195 unsigned int j;
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198
198
199 watchdog_period_id = RTEMS_ID_NONE;
199 watchdog_period_id = RTEMS_ID_NONE;
200
200
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202
202
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 if( status != RTEMS_SUCCESSFUL ) {
204 if( status != RTEMS_SUCCESSFUL ) {
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 }
206 }
207
207
208 i = 0;
208 i = 0;
209 j = 0;
209 j = 0;
210
210
211 watchdog_configure();
211 watchdog_configure();
212
212
213 watchdog_start();
213 watchdog_start();
214
214
215 set_sy_lfr_watchdog_enabled( true );
215 set_sy_lfr_watchdog_enabled( true );
216
216
217 while(1){
217 while(1){
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 watchdog_reload();
219 watchdog_reload();
220 i = i + 1;
220 i = i + 1;
221 if ( i == WATCHDOG_LOOP_PRINTF )
221 if ( i == WATCHDOG_LOOP_PRINTF )
222 {
222 {
223 i = 0;
223 i = 0;
224 j = j + 1;
224 j = j + 1;
225 PRINTF1("%d\n", j)
225 PRINTF1("%d\n", j)
226 }
226 }
227 #ifdef DEBUG_WATCHDOG
227 #ifdef DEBUG_WATCHDOG
228 if (j == WATCHDOG_LOOP_DEBUG )
228 if (j == WATCHDOG_LOOP_DEBUG )
229 {
229 {
230 status = rtems_task_delete(RTEMS_SELF);
230 status = rtems_task_delete(RTEMS_SELF);
231 }
231 }
232 #endif
232 #endif
233 }
233 }
234 }
234 }
235
235
236 rtems_task hous_task(rtems_task_argument argument)
236 rtems_task hous_task(rtems_task_argument argument)
237 {
237 {
238 rtems_status_code status;
238 rtems_status_code status;
239 rtems_status_code spare_status;
239 rtems_status_code spare_status;
240 rtems_id queue_id;
240 rtems_id queue_id;
241 rtems_rate_monotonic_period_status period_status;
241 rtems_rate_monotonic_period_status period_status;
242 bool isSynchronized;
242 bool isSynchronized;
243
243
244 queue_id = RTEMS_ID_NONE;
244 queue_id = RTEMS_ID_NONE;
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 isSynchronized = false;
246 isSynchronized = false;
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253
253
254 BOOT_PRINTF("in HOUS ***\n");
254 BOOT_PRINTF("in HOUS ***\n");
255
255
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 if( status != RTEMS_SUCCESSFUL ) {
258 if( status != RTEMS_SUCCESSFUL ) {
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 }
260 }
261 }
261 }
262
262
263 status = rtems_rate_monotonic_cancel(HK_id);
263 status = rtems_rate_monotonic_cancel(HK_id);
264 if( status != RTEMS_SUCCESSFUL ) {
264 if( status != RTEMS_SUCCESSFUL ) {
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 }
266 }
267 else {
267 else {
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 }
269 }
270
270
271 // startup phase
271 // startup phase
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 {
277 {
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 {
279 {
280 isSynchronized = true;
280 isSynchronized = true;
281 }
281 }
282 else
282 else
283 {
283 {
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285
285
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 }
287 }
288 }
288 }
289 status = rtems_rate_monotonic_cancel(HK_id);
289 status = rtems_rate_monotonic_cancel(HK_id);
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291
291
292 set_hk_lfr_reset_cause( POWER_ON );
292 set_hk_lfr_reset_cause( POWER_ON );
293
293
294 while(1){ // launch the rate monotonic task
294 while(1){ // launch the rate monotonic task
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 if ( status != RTEMS_SUCCESSFUL ) {
296 if ( status != RTEMS_SUCCESSFUL ) {
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 }
299 }
300 else {
300 else {
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
304
304
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311
311
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313
313
314 spacewire_read_statistics();
314 spacewire_read_statistics();
315
315
316 update_hk_with_grspw_stats();
316 update_hk_with_grspw_stats();
317
317
318 set_hk_lfr_time_not_synchro();
318 set_hk_lfr_time_not_synchro();
319
319
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325
325
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331
331
332 hk_lfr_le_me_he_update();
332 hk_lfr_le_me_he_update();
333
333
334 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
334 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
335 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
335 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
336
336
337 // SEND PACKET
337 // SEND PACKET
338 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
338 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
339 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
339 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
340 if (status != RTEMS_SUCCESSFUL) {
340 if (status != RTEMS_SUCCESSFUL) {
341 PRINTF1("in HOUS *** ERR send: %d\n", status)
341 PRINTF1("in HOUS *** ERR send: %d\n", status)
342 }
342 }
343 }
343 }
344 }
344 }
345
345
346 PRINTF("in HOUS *** deleting task\n")
346 PRINTF("in HOUS *** deleting task\n")
347
347
348 status = rtems_task_delete( RTEMS_SELF ); // should not return
348 status = rtems_task_delete( RTEMS_SELF ); // should not return
349
349
350 return;
350 return;
351 }
351 }
352
352
353 rtems_task avgv_task(rtems_task_argument argument)
353 rtems_task avgv_task(rtems_task_argument argument)
354 {
354 {
355 #define MOVING_AVERAGE 16
355 #define MOVING_AVERAGE 16
356 rtems_status_code status;
356 rtems_status_code status;
357 static unsigned int v[MOVING_AVERAGE] = {0};
357 static unsigned int v[MOVING_AVERAGE] = {0};
358 static unsigned int e1[MOVING_AVERAGE] = {0};
358 static unsigned int e1[MOVING_AVERAGE] = {0};
359 static unsigned int e2[MOVING_AVERAGE] = {0};
359 static unsigned int e2[MOVING_AVERAGE] = {0};
360 float average_v;
360 float average_v;
361 float average_e1;
361 float average_e1;
362 float average_e2;
362 float average_e2;
363 float newValue_v;
363 float newValue_v;
364 float newValue_e1;
364 float newValue_e1;
365 float newValue_e2;
365 float newValue_e2;
366 unsigned char k;
366 unsigned char k;
367 unsigned char indexOfOldValue;
367 unsigned char indexOfOldValue;
368
368
369 BOOT_PRINTF("in AVGV ***\n");
369 BOOT_PRINTF("in AVGV ***\n");
370
370
371 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
371 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
372 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
372 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
373 if( status != RTEMS_SUCCESSFUL ) {
373 if( status != RTEMS_SUCCESSFUL ) {
374 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
374 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
375 }
375 }
376 }
376 }
377
377
378 status = rtems_rate_monotonic_cancel(AVGV_id);
378 status = rtems_rate_monotonic_cancel(AVGV_id);
379 if( status != RTEMS_SUCCESSFUL ) {
379 if( status != RTEMS_SUCCESSFUL ) {
380 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
380 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
381 }
381 }
382 else {
382 else {
383 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
383 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
384 }
384 }
385
385
386 // initialize values
386 // initialize values
387 indexOfOldValue = MOVING_AVERAGE - 1;
387 indexOfOldValue = MOVING_AVERAGE - 1;
388 average_v = INIT_FLOAT;
388 average_v = INIT_FLOAT;
389 average_e1 = INIT_FLOAT;
389 average_e1 = INIT_FLOAT;
390 average_e2 = INIT_FLOAT;
390 average_e2 = INIT_FLOAT;
391 newValue_v = INIT_FLOAT;
391 newValue_v = INIT_FLOAT;
392 newValue_e1 = INIT_FLOAT;
392 newValue_e1 = INIT_FLOAT;
393 newValue_e2 = INIT_FLOAT;
393 newValue_e2 = INIT_FLOAT;
394
394
395 k = INIT_CHAR;
395 k = INIT_CHAR;
396
396
397 while(1)
397 while(1)
398 { // launch the rate monotonic task
398 { // launch the rate monotonic task
399 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
399 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
400 if ( status != RTEMS_SUCCESSFUL )
400 if ( status != RTEMS_SUCCESSFUL )
401 {
401 {
402 PRINTF1( "in AVGV *** ERR period: %d\n", status);
402 PRINTF1( "in AVGV *** ERR period: %d\n", status);
403 }
403 }
404 else
404 else
405 {
405 {
406 // get new values
406 // get new values
407 newValue_v = waveform_picker_regs->v;
407 newValue_v = waveform_picker_regs->v;
408 newValue_e1 = waveform_picker_regs->e1;
408 newValue_e1 = waveform_picker_regs->e1;
409 newValue_e2 = waveform_picker_regs->e2;
409 newValue_e2 = waveform_picker_regs->e2;
410
410
411 // compute the moving average
411 // compute the moving average
412 average_v = average_v + newValue_v - v[k];
412 average_v = average_v + newValue_v - v[k];
413 average_e1 = average_e1 + newValue_e1 - e1[k];
413 average_e1 = average_e1 + newValue_e1 - e1[k];
414 average_e2 = average_e2 + newValue_e2 - e2[k];
414 average_e2 = average_e2 + newValue_e2 - e2[k];
415
415
416 // store new values in buffers
416 // store new values in buffers
417 v[k] = newValue_v;
417 v[k] = newValue_v;
418 e1[k] = newValue_e1;
418 e1[k] = newValue_e1;
419 e2[k] = newValue_e2;
419 e2[k] = newValue_e2;
420 }
420 }
421 if (k == (MOVING_AVERAGE-1))
421 if (k == (MOVING_AVERAGE-1))
422 {
422 {
423 k = 0;
423 k = 0;
424 printf("tick\n");
424 PRINTF("tick\n");
425 }
425 }
426 else
426 else
427 {
427 {
428 k++;
428 k++;
429 }
429 }
430 //update int16 values
430 //update int16 values
431 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
431 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
432 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
432 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
433 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
433 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
434 }
434 }
435
435
436 PRINTF("in AVGV *** deleting task\n");
436 PRINTF("in AVGV *** deleting task\n");
437
437
438 status = rtems_task_delete( RTEMS_SELF ); // should not return
438 status = rtems_task_delete( RTEMS_SELF ); // should not return
439
439
440 return;
440 return;
441 }
441 }
442
442
443 rtems_task dumb_task( rtems_task_argument unused )
443 rtems_task dumb_task( rtems_task_argument unused )
444 {
444 {
445 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
445 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
446 *
446 *
447 * @param unused is the starting argument of the RTEMS task
447 * @param unused is the starting argument of the RTEMS task
448 *
448 *
449 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
449 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
450 *
450 *
451 */
451 */
452
452
453 unsigned int i;
453 unsigned int i;
454 unsigned int intEventOut;
454 unsigned int intEventOut;
455 unsigned int coarse_time = 0;
455 unsigned int coarse_time = 0;
456 unsigned int fine_time = 0;
456 unsigned int fine_time = 0;
457 rtems_event_set event_out;
457 rtems_event_set event_out;
458
458
459 event_out = EVENT_SETS_NONE_PENDING;
459 event_out = EVENT_SETS_NONE_PENDING;
460
460
461 BOOT_PRINTF("in DUMB *** \n")
461 BOOT_PRINTF("in DUMB *** \n")
462
462
463 while(1){
463 while(1){
464 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
464 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
465 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
465 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
466 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
466 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
467 | RTEMS_EVENT_14,
467 | RTEMS_EVENT_14,
468 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
468 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
469 intEventOut = (unsigned int) event_out;
469 intEventOut = (unsigned int) event_out;
470 for ( i=0; i<NB_RTEMS_EVENTS; i++)
470 for ( i=0; i<NB_RTEMS_EVENTS; i++)
471 {
471 {
472 if ( ((intEventOut >> i) & 1) != 0)
472 if ( ((intEventOut >> i) & 1) != 0)
473 {
473 {
474 coarse_time = time_management_regs->coarse_time;
474 coarse_time = time_management_regs->coarse_time;
475 fine_time = time_management_regs->fine_time;
475 fine_time = time_management_regs->fine_time;
476 if (i==EVENT_12)
476 if (i==EVENT_12)
477 {
477 {
478 PRINTF1("%s\n", DUMB_MESSAGE_12)
478 PRINTF1("%s\n", DUMB_MESSAGE_12)
479 }
479 }
480 if (i==EVENT_13)
480 if (i==EVENT_13)
481 {
481 {
482 PRINTF1("%s\n", DUMB_MESSAGE_13)
482 PRINTF1("%s\n", DUMB_MESSAGE_13)
483 }
483 }
484 if (i==EVENT_14)
484 if (i==EVENT_14)
485 {
485 {
486 PRINTF1("%s\n", DUMB_MESSAGE_1)
486 PRINTF1("%s\n", DUMB_MESSAGE_1)
487 }
487 }
488 }
488 }
489 }
489 }
490 }
490 }
491 }
491 }
492
492
493 //*****************************
493 //*****************************
494 // init housekeeping parameters
494 // init housekeeping parameters
495
495
496 void init_housekeeping_parameters( void )
496 void init_housekeeping_parameters( void )
497 {
497 {
498 /** This function initialize the housekeeping_packet global variable with default values.
498 /** This function initialize the housekeeping_packet global variable with default values.
499 *
499 *
500 */
500 */
501
501
502 unsigned int i = 0;
502 unsigned int i = 0;
503 unsigned char *parameters;
503 unsigned char *parameters;
504 unsigned char sizeOfHK;
504 unsigned char sizeOfHK;
505
505
506 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
506 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
507
507
508 parameters = (unsigned char*) &housekeeping_packet;
508 parameters = (unsigned char*) &housekeeping_packet;
509
509
510 for(i = 0; i< sizeOfHK; i++)
510 for(i = 0; i< sizeOfHK; i++)
511 {
511 {
512 parameters[i] = INIT_CHAR;
512 parameters[i] = INIT_CHAR;
513 }
513 }
514
514
515 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
515 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
516 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
516 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
517 housekeeping_packet.reserved = DEFAULT_RESERVED;
517 housekeeping_packet.reserved = DEFAULT_RESERVED;
518 housekeeping_packet.userApplication = CCSDS_USER_APP;
518 housekeeping_packet.userApplication = CCSDS_USER_APP;
519 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
519 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
520 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
520 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
521 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
521 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
522 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
522 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
523 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
523 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
524 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
524 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
525 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
525 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
526 housekeeping_packet.serviceType = TM_TYPE_HK;
526 housekeeping_packet.serviceType = TM_TYPE_HK;
527 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
527 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
528 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
528 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
529 housekeeping_packet.sid = SID_HK;
529 housekeeping_packet.sid = SID_HK;
530
530
531 // init status word
531 // init status word
532 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
532 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
533 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
533 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
534 // init software version
534 // init software version
535 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
535 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
536 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
536 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
537 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
537 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
538 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
538 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
539 // init fpga version
539 // init fpga version
540 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
540 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
541 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
541 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
542 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
542 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
543 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
543 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
544
544
545 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
545 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
546 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
546 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
547 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
547 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
548 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
548 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
549 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
549 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
550 }
550 }
551
551
552 void increment_seq_counter( unsigned short *packetSequenceControl )
552 void increment_seq_counter( unsigned short *packetSequenceControl )
553 {
553 {
554 /** This function increment the sequence counter passes in argument.
554 /** This function increment the sequence counter passes in argument.
555 *
555 *
556 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
556 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
557 *
557 *
558 */
558 */
559
559
560 unsigned short segmentation_grouping_flag;
560 unsigned short segmentation_grouping_flag;
561 unsigned short sequence_cnt;
561 unsigned short sequence_cnt;
562
562
563 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
563 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
564 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
564 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
565
565
566 if ( sequence_cnt < SEQ_CNT_MAX)
566 if ( sequence_cnt < SEQ_CNT_MAX)
567 {
567 {
568 sequence_cnt = sequence_cnt + 1;
568 sequence_cnt = sequence_cnt + 1;
569 }
569 }
570 else
570 else
571 {
571 {
572 sequence_cnt = 0;
572 sequence_cnt = 0;
573 }
573 }
574
574
575 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
575 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
576 }
576 }
577
577
578 void getTime( unsigned char *time)
578 void getTime( unsigned char *time)
579 {
579 {
580 /** This function write the current local time in the time buffer passed in argument.
580 /** This function write the current local time in the time buffer passed in argument.
581 *
581 *
582 */
582 */
583
583
584 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
584 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
585 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
585 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
586 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
586 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
587 time[3] = (unsigned char) (time_management_regs->coarse_time);
587 time[3] = (unsigned char) (time_management_regs->coarse_time);
588 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
588 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
589 time[5] = (unsigned char) (time_management_regs->fine_time);
589 time[5] = (unsigned char) (time_management_regs->fine_time);
590 }
590 }
591
591
592 unsigned long long int getTimeAsUnsignedLongLongInt( )
592 unsigned long long int getTimeAsUnsignedLongLongInt( )
593 {
593 {
594 /** This function write the current local time in the time buffer passed in argument.
594 /** This function write the current local time in the time buffer passed in argument.
595 *
595 *
596 */
596 */
597 unsigned long long int time;
597 unsigned long long int time;
598
598
599 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
599 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
600 + time_management_regs->fine_time;
600 + time_management_regs->fine_time;
601
601
602 return time;
602 return time;
603 }
603 }
604
604
605 void send_dumb_hk( void )
605 void send_dumb_hk( void )
606 {
606 {
607 Packet_TM_LFR_HK_t dummy_hk_packet;
607 Packet_TM_LFR_HK_t dummy_hk_packet;
608 unsigned char *parameters;
608 unsigned char *parameters;
609 unsigned int i;
609 unsigned int i;
610 rtems_id queue_id;
610 rtems_id queue_id;
611
611
612 queue_id = RTEMS_ID_NONE;
612 queue_id = RTEMS_ID_NONE;
613
613
614 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
614 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
615 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
615 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
616 dummy_hk_packet.reserved = DEFAULT_RESERVED;
616 dummy_hk_packet.reserved = DEFAULT_RESERVED;
617 dummy_hk_packet.userApplication = CCSDS_USER_APP;
617 dummy_hk_packet.userApplication = CCSDS_USER_APP;
618 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
618 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
619 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
619 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
620 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
620 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
621 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
621 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
622 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
622 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
623 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
623 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
624 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
624 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
625 dummy_hk_packet.serviceType = TM_TYPE_HK;
625 dummy_hk_packet.serviceType = TM_TYPE_HK;
626 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
626 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
627 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
627 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
628 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
628 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
629 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
629 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
630 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
630 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
631 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
631 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
632 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
632 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
633 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
633 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
634 dummy_hk_packet.sid = SID_HK;
634 dummy_hk_packet.sid = SID_HK;
635
635
636 // init status word
636 // init status word
637 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
637 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
638 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
638 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
639 // init software version
639 // init software version
640 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
640 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
641 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
641 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
642 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
642 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
643 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
643 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
644 // init fpga version
644 // init fpga version
645 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
645 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
646 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
646 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
647 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
647 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
648 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
648 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
649
649
650 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
650 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
651
651
652 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
652 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
653 {
653 {
654 parameters[i] = INT8_ALL_F;
654 parameters[i] = INT8_ALL_F;
655 }
655 }
656
656
657 get_message_queue_id_send( &queue_id );
657 get_message_queue_id_send( &queue_id );
658
658
659 rtems_message_queue_send( queue_id, &dummy_hk_packet,
659 rtems_message_queue_send( queue_id, &dummy_hk_packet,
660 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
660 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
661 }
661 }
662
662
663 void get_temperatures( unsigned char *temperatures )
663 void get_temperatures( unsigned char *temperatures )
664 {
664 {
665 unsigned char* temp_scm_ptr;
665 unsigned char* temp_scm_ptr;
666 unsigned char* temp_pcb_ptr;
666 unsigned char* temp_pcb_ptr;
667 unsigned char* temp_fpga_ptr;
667 unsigned char* temp_fpga_ptr;
668
668
669 // SEL1 SEL0
669 // SEL1 SEL0
670 // 0 0 => PCB
670 // 0 0 => PCB
671 // 0 1 => FPGA
671 // 0 1 => FPGA
672 // 1 0 => SCM
672 // 1 0 => SCM
673
673
674 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
674 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
675 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
675 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
676 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
676 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
677
677
678 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
678 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
679 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
679 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
680 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
680 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
681 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
681 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
682 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
682 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
683 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
683 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
684 }
684 }
685
685
686 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
686 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
687 {
687 {
688 unsigned char* v_ptr;
688 unsigned char* v_ptr;
689 unsigned char* e1_ptr;
689 unsigned char* e1_ptr;
690 unsigned char* e2_ptr;
690 unsigned char* e2_ptr;
691
691
692 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
692 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
693 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
693 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
694 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
694 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
695
695
696 spacecraft_potential[BYTE_0] = v_ptr[0];
696 spacecraft_potential[BYTE_0] = v_ptr[0];
697 spacecraft_potential[BYTE_1] = v_ptr[1];
697 spacecraft_potential[BYTE_1] = v_ptr[1];
698 spacecraft_potential[BYTE_2] = e1_ptr[0];
698 spacecraft_potential[BYTE_2] = e1_ptr[0];
699 spacecraft_potential[BYTE_3] = e1_ptr[1];
699 spacecraft_potential[BYTE_3] = e1_ptr[1];
700 spacecraft_potential[BYTE_4] = e2_ptr[0];
700 spacecraft_potential[BYTE_4] = e2_ptr[0];
701 spacecraft_potential[BYTE_5] = e2_ptr[1];
701 spacecraft_potential[BYTE_5] = e2_ptr[1];
702 }
702 }
703
703
704 void get_cpu_load( unsigned char *resource_statistics )
704 void get_cpu_load( unsigned char *resource_statistics )
705 {
705 {
706 unsigned char cpu_load;
706 unsigned char cpu_load;
707
707
708 cpu_load = lfr_rtems_cpu_usage_report();
708 cpu_load = lfr_rtems_cpu_usage_report();
709
709
710 // HK_LFR_CPU_LOAD
710 // HK_LFR_CPU_LOAD
711 resource_statistics[0] = cpu_load;
711 resource_statistics[0] = cpu_load;
712
712
713 // HK_LFR_CPU_LOAD_MAX
713 // HK_LFR_CPU_LOAD_MAX
714 if (cpu_load > resource_statistics[1])
714 if (cpu_load > resource_statistics[1])
715 {
715 {
716 resource_statistics[1] = cpu_load;
716 resource_statistics[1] = cpu_load;
717 }
717 }
718
718
719 // CPU_LOAD_AVE
719 // CPU_LOAD_AVE
720 resource_statistics[BYTE_2] = 0;
720 resource_statistics[BYTE_2] = 0;
721
721
722 #ifndef PRINT_TASK_STATISTICS
722 #ifndef PRINT_TASK_STATISTICS
723 rtems_cpu_usage_reset();
723 rtems_cpu_usage_reset();
724 #endif
724 #endif
725
725
726 }
726 }
727
727
728 void set_hk_lfr_sc_potential_flag( bool state )
728 void set_hk_lfr_sc_potential_flag( bool state )
729 {
729 {
730 if (state == true)
730 if (state == true)
731 {
731 {
732 housekeeping_packet.lfr_status_word[1] =
732 housekeeping_packet.lfr_status_word[1] =
733 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
733 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
734 }
734 }
735 else
735 else
736 {
736 {
737 housekeeping_packet.lfr_status_word[1] =
737 housekeeping_packet.lfr_status_word[1] =
738 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
738 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
739 }
739 }
740 }
740 }
741
741
742 void set_sy_lfr_pas_filter_enabled( bool state )
742 void set_sy_lfr_pas_filter_enabled( bool state )
743 {
743 {
744 if (state == true)
744 if (state == true)
745 {
745 {
746 housekeeping_packet.lfr_status_word[1] =
746 housekeeping_packet.lfr_status_word[1] =
747 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
747 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
748 }
748 }
749 else
749 else
750 {
750 {
751 housekeeping_packet.lfr_status_word[1] =
751 housekeeping_packet.lfr_status_word[1] =
752 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
752 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
753 }
753 }
754 }
754 }
755
755
756 void set_sy_lfr_watchdog_enabled( bool state )
756 void set_sy_lfr_watchdog_enabled( bool state )
757 {
757 {
758 if (state == true)
758 if (state == true)
759 {
759 {
760 housekeeping_packet.lfr_status_word[1] =
760 housekeeping_packet.lfr_status_word[1] =
761 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
761 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
762 }
762 }
763 else
763 else
764 {
764 {
765 housekeeping_packet.lfr_status_word[1] =
765 housekeeping_packet.lfr_status_word[1] =
766 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
766 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
767 }
767 }
768 }
768 }
769
769
770 void set_hk_lfr_calib_enable( bool state )
770 void set_hk_lfr_calib_enable( bool state )
771 {
771 {
772 if (state == true)
772 if (state == true)
773 {
773 {
774 housekeeping_packet.lfr_status_word[1] =
774 housekeeping_packet.lfr_status_word[1] =
775 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
775 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
776 }
776 }
777 else
777 else
778 {
778 {
779 housekeeping_packet.lfr_status_word[1] =
779 housekeeping_packet.lfr_status_word[1] =
780 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
780 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
781 }
781 }
782 }
782 }
783
783
784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
785 {
785 {
786 housekeeping_packet.lfr_status_word[1] =
786 housekeeping_packet.lfr_status_word[1] =
787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
788
788
789 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
789 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
790 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
790 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
791
791
792 }
792 }
793
793
794 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
794 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
795 {
795 {
796 int delta;
796 int delta;
797
797
798 delta = 0;
798 delta = 0;
799
799
800 if (newValue >= oldValue)
800 if (newValue >= oldValue)
801 {
801 {
802 delta = newValue - oldValue;
802 delta = newValue - oldValue;
803 }
803 }
804 else
804 else
805 {
805 {
806 delta = (255 - oldValue) + newValue;
806 delta = (255 - oldValue) + newValue;
807 }
807 }
808
808
809 *counter = *counter + delta;
809 *counter = *counter + delta;
810 }
810 }
811
811
812 void hk_lfr_le_update( void )
812 void hk_lfr_le_update( void )
813 {
813 {
814 static hk_lfr_le_t old_hk_lfr_le = {0};
814 static hk_lfr_le_t old_hk_lfr_le = {0};
815 hk_lfr_le_t new_hk_lfr_le;
815 hk_lfr_le_t new_hk_lfr_le;
816 unsigned int counter;
816 unsigned int counter;
817
817
818 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
818 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
819
819
820 // DPU
820 // DPU
821 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
821 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
822 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
822 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
823 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
823 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
824 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
824 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
825 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
825 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
826 // TIMECODE
826 // TIMECODE
827 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
827 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
828 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
828 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
829 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
829 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
830 // TIME
830 // TIME
831 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
831 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
832 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
832 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
833 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
833 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
834 //AHB
834 //AHB
835 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
835 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
836 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
836 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
837 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
837 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
838
838
839 // update the le counter
839 // update the le counter
840 // DPU
840 // DPU
841 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
841 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
842 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
842 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
843 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
843 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
844 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
844 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
845 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
845 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
846 // TIMECODE
846 // TIMECODE
847 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
847 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
848 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
848 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
849 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
849 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
850 // TIME
850 // TIME
851 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
851 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
852 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
852 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
853 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
853 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
854 // AHB
854 // AHB
855 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
855 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
856
856
857 // DPU
857 // DPU
858 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
858 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
859 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
859 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
860 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
860 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
861 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
861 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
862 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
862 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
863 // TIMECODE
863 // TIMECODE
864 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
864 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
865 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
865 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
866 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
866 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
867 // TIME
867 // TIME
868 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
868 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
869 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
869 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
870 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
870 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
871 //AHB
871 //AHB
872 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
872 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
873 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
873 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
874 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
874 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
875
875
876 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
876 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
877 // LE
877 // LE
878 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
878 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
879 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
879 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
880 }
880 }
881
881
882 void hk_lfr_me_update( void )
882 void hk_lfr_me_update( void )
883 {
883 {
884 static hk_lfr_me_t old_hk_lfr_me = {0};
884 static hk_lfr_me_t old_hk_lfr_me = {0};
885 hk_lfr_me_t new_hk_lfr_me;
885 hk_lfr_me_t new_hk_lfr_me;
886 unsigned int counter;
886 unsigned int counter;
887
887
888 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
888 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
889
889
890 // get the current values
890 // get the current values
891 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
891 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
892 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
892 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
893 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
893 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
894 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
894 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
895
895
896 // update the me counter
896 // update the me counter
897 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
897 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
898 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
898 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
899 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
899 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
900 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
900 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
901
901
902 // store the counters for the next time
902 // store the counters for the next time
903 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
903 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
904 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
904 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
905 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
905 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
906 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
906 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
907
907
908 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
908 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
909 // ME
909 // ME
910 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
910 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
911 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
911 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
912 }
912 }
913
913
914 void hk_lfr_le_me_he_update()
914 void hk_lfr_le_me_he_update()
915 {
915 {
916
916
917 unsigned int hk_lfr_he_cnt;
917 unsigned int hk_lfr_he_cnt;
918
918
919 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
919 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
920
920
921 //update the low severity error counter
921 //update the low severity error counter
922 hk_lfr_le_update( );
922 hk_lfr_le_update( );
923
923
924 //update the medium severity error counter
924 //update the medium severity error counter
925 hk_lfr_me_update();
925 hk_lfr_me_update();
926
926
927 //update the high severity error counter
927 //update the high severity error counter
928 hk_lfr_he_cnt = 0;
928 hk_lfr_he_cnt = 0;
929
929
930 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
930 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
931 // HE
931 // HE
932 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
932 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
933 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
933 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
934
934
935 }
935 }
936
936
937 void set_hk_lfr_time_not_synchro()
937 void set_hk_lfr_time_not_synchro()
938 {
938 {
939 static unsigned char synchroLost = 1;
939 static unsigned char synchroLost = 1;
940 int synchronizationBit;
940 int synchronizationBit;
941
941
942 // get the synchronization bit
942 // get the synchronization bit
943 synchronizationBit =
943 synchronizationBit =
944 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
944 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
945
945
946 switch (synchronizationBit)
946 switch (synchronizationBit)
947 {
947 {
948 case 0:
948 case 0:
949 if (synchroLost == 1)
949 if (synchroLost == 1)
950 {
950 {
951 synchroLost = 0;
951 synchroLost = 0;
952 }
952 }
953 break;
953 break;
954 case 1:
954 case 1:
955 if (synchroLost == 0 )
955 if (synchroLost == 0 )
956 {
956 {
957 synchroLost = 1;
957 synchroLost = 1;
958 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
958 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
959 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
959 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
960 }
960 }
961 break;
961 break;
962 default:
962 default:
963 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
963 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
964 break;
964 break;
965 }
965 }
966
966
967 }
967 }
968
968
969 void set_hk_lfr_ahb_correctable() // CRITICITY L
969 void set_hk_lfr_ahb_correctable() // CRITICITY L
970 {
970 {
971 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
971 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
972 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
972 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
973 * detected errors in the cache, in the integer unit and in the floating point unit.
973 * detected errors in the cache, in the integer unit and in the floating point unit.
974 *
974 *
975 * @param void
975 * @param void
976 *
976 *
977 * @return void
977 * @return void
978 *
978 *
979 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
979 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
980 *
980 *
981 */
981 */
982
982
983 unsigned int ahb_correctable;
983 unsigned int ahb_correctable;
984 unsigned int instructionErrorCounter;
984 unsigned int instructionErrorCounter;
985 unsigned int dataErrorCounter;
985 unsigned int dataErrorCounter;
986 unsigned int fprfErrorCounter;
986 unsigned int fprfErrorCounter;
987 unsigned int iurfErrorCounter;
987 unsigned int iurfErrorCounter;
988
988
989 instructionErrorCounter = 0;
989 instructionErrorCounter = 0;
990 dataErrorCounter = 0;
990 dataErrorCounter = 0;
991 fprfErrorCounter = 0;
991 fprfErrorCounter = 0;
992 iurfErrorCounter = 0;
992 iurfErrorCounter = 0;
993
993
994 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
994 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
995 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
995 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
996
996
997 ahb_correctable = instructionErrorCounter
997 ahb_correctable = instructionErrorCounter
998 + dataErrorCounter
998 + dataErrorCounter
999 + fprfErrorCounter
999 + fprfErrorCounter
1000 + iurfErrorCounter
1000 + iurfErrorCounter
1001 + housekeeping_packet.hk_lfr_ahb_correctable;
1001 + housekeeping_packet.hk_lfr_ahb_correctable;
1002
1002
1003 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1003 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1004
1004
1005 }
1005 }
@@ -1,1633 +1,1633
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name = 0;
16 rtems_name semq_name = 0;
17 rtems_id semq_id = RTEMS_ID_NONE;
17 rtems_id semq_id = RTEMS_ID_NONE;
18
18
19 //*****************
19 //*****************
20 // waveform headers
20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF = {0};
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF = {0};
23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
24
24
25 unsigned char previousTimecodeCtr = 0;
25 unsigned char previousTimecodeCtr = 0;
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27
27
28 //***********
28 //***********
29 // RTEMS TASK
29 // RTEMS TASK
30 rtems_task spiq_task(rtems_task_argument unused)
30 rtems_task spiq_task(rtems_task_argument unused)
31 {
31 {
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 *
33 *
34 * @param unused is the starting argument of the RTEMS task
34 * @param unused is the starting argument of the RTEMS task
35 *
35 *
36 */
36 */
37
37
38 rtems_event_set event_out;
38 rtems_event_set event_out;
39 rtems_status_code status;
39 rtems_status_code status;
40 int linkStatus;
40 int linkStatus;
41
41
42 event_out = EVENT_SETS_NONE_PENDING;
42 event_out = EVENT_SETS_NONE_PENDING;
43 linkStatus = 0;
43 linkStatus = 0;
44
44
45 BOOT_PRINTF("in SPIQ *** \n")
45 BOOT_PRINTF("in SPIQ *** \n")
46
46
47 while(true){
47 while(true){
48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
50
50
51 // [0] SUSPEND RECV AND SEND TASKS
51 // [0] SUSPEND RECV AND SEND TASKS
52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
53 if ( status != RTEMS_SUCCESSFUL ) {
53 if ( status != RTEMS_SUCCESSFUL ) {
54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
55 }
55 }
56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
57 if ( status != RTEMS_SUCCESSFUL ) {
57 if ( status != RTEMS_SUCCESSFUL ) {
58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
59 }
59 }
60
60
61 // [1] CHECK THE LINK
61 // [1] CHECK THE LINK
62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
63 if ( linkStatus != SPW_LINK_OK) {
63 if ( linkStatus != SPW_LINK_OK) {
64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
66 }
66 }
67
67
68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
71 {
71 {
72 spacewire_read_statistics();
72 spacewire_read_statistics();
73 status = spacewire_several_connect_attemps( );
73 status = spacewire_several_connect_attemps( );
74 }
74 }
75 else // [2.b] in run state, start the link
75 else // [2.b] in run state, start the link
76 {
76 {
77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
78 if ( status != RTEMS_SUCCESSFUL)
78 if ( status != RTEMS_SUCCESSFUL)
79 {
79 {
80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
81 }
81 }
82 }
82 }
83
83
84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
86 {
86 {
87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
88 if ( status != RTEMS_SUCCESSFUL ) {
88 if ( status != RTEMS_SUCCESSFUL ) {
89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
90 }
90 }
91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
92 if ( status != RTEMS_SUCCESSFUL ) {
92 if ( status != RTEMS_SUCCESSFUL ) {
93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
94 }
94 }
95 }
95 }
96 else // [3.b] the link is not in run state, go in STANDBY mode
96 else // [3.b] the link is not in run state, go in STANDBY mode
97 {
97 {
98 status = enter_mode_standby();
98 status = enter_mode_standby();
99 if ( status != RTEMS_SUCCESSFUL )
99 if ( status != RTEMS_SUCCESSFUL )
100 {
100 {
101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
102 }
102 }
103 {
103 {
104 updateLFRCurrentMode( LFR_MODE_STANDBY );
104 updateLFRCurrentMode( LFR_MODE_STANDBY );
105 }
105 }
106 // wake the LINK task up to wait for the link recovery
106 // wake the LINK task up to wait for the link recovery
107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
108 status = rtems_task_suspend( RTEMS_SELF );
108 status = rtems_task_suspend( RTEMS_SELF );
109 }
109 }
110 }
110 }
111 }
111 }
112
112
113 rtems_task recv_task( rtems_task_argument unused )
113 rtems_task recv_task( rtems_task_argument unused )
114 {
114 {
115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
116 *
116 *
117 * @param unused is the starting argument of the RTEMS task
117 * @param unused is the starting argument of the RTEMS task
118 *
118 *
119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
120 * 1. It reads the incoming data.
120 * 1. It reads the incoming data.
121 * 2. Launches the acceptance procedure.
121 * 2. Launches the acceptance procedure.
122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
123 *
123 *
124 */
124 */
125
125
126 int len;
126 int len;
127 ccsdsTelecommandPacket_t __attribute__((aligned(4))) currentTC;
127 ccsdsTelecommandPacket_t __attribute__((aligned(4))) currentTC;
128 unsigned char computed_CRC[ BYTES_PER_CRC ];
128 unsigned char computed_CRC[ BYTES_PER_CRC ];
129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
130 unsigned char destinationID;
130 unsigned char destinationID;
131 unsigned int estimatedPacketLength;
131 unsigned int estimatedPacketLength;
132 unsigned int parserCode;
132 unsigned int parserCode;
133 rtems_status_code status;
133 rtems_status_code status;
134 rtems_id queue_recv_id;
134 rtems_id queue_recv_id;
135 rtems_id queue_send_id;
135 rtems_id queue_send_id;
136
136
137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
138 destinationID = 0;
138 destinationID = 0;
139 queue_recv_id = RTEMS_ID_NONE;
139 queue_recv_id = RTEMS_ID_NONE;
140 queue_send_id = RTEMS_ID_NONE;
140 queue_send_id = RTEMS_ID_NONE;
141
141
142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
143
143
144 status = get_message_queue_id_recv( &queue_recv_id );
144 status = get_message_queue_id_recv( &queue_recv_id );
145 if (status != RTEMS_SUCCESSFUL)
145 if (status != RTEMS_SUCCESSFUL)
146 {
146 {
147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
148 }
148 }
149
149
150 status = get_message_queue_id_send( &queue_send_id );
150 status = get_message_queue_id_send( &queue_send_id );
151 if (status != RTEMS_SUCCESSFUL)
151 if (status != RTEMS_SUCCESSFUL)
152 {
152 {
153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
154 }
154 }
155
155
156 BOOT_PRINTF("in RECV *** \n")
156 BOOT_PRINTF("in RECV *** \n")
157
157
158 while(1)
158 while(1)
159 {
159 {
160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
161 if (len == -1){ // error during the read call
161 if (len == -1){ // error during the read call
162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
163 }
163 }
164 else {
164 else {
165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
166 PRINTF("in RECV *** packet lenght too short\n")
166 PRINTF("in RECV *** packet lenght too short\n")
167 }
167 }
168 else {
168 else {
169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
170 PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
173 // CHECK THE TC
173 // CHECK THE TC
174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
178 || (parserCode == WRONG_SRC_ID) )
178 || (parserCode == WRONG_SRC_ID) )
179 { // send TM_LFR_TC_EXE_CORRUPTED
179 { // send TM_LFR_TC_EXE_CORRUPTED
180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
182 &&
182 &&
183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
184 )
184 )
185 {
185 {
186 if ( parserCode == WRONG_SRC_ID )
186 if ( parserCode == WRONG_SRC_ID )
187 {
187 {
188 destinationID = SID_TC_GROUND;
188 destinationID = SID_TC_GROUND;
189 }
189 }
190 else
190 else
191 {
191 {
192 destinationID = currentTC.sourceID;
192 destinationID = currentTC.sourceID;
193 }
193 }
194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
195 computed_CRC, currentTC_LEN_RCV,
195 computed_CRC, currentTC_LEN_RCV,
196 destinationID );
196 destinationID );
197 }
197 }
198 }
198 }
199 else
199 else
200 { // send valid TC to the action launcher
200 { // send valid TC to the action launcher
201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
203 }
203 }
204 }
204 }
205 }
205 }
206
206
207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
208
208
209 }
209 }
210 }
210 }
211
211
212 rtems_task send_task( rtems_task_argument argument)
212 rtems_task send_task( rtems_task_argument argument)
213 {
213 {
214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
215 *
215 *
216 * @param unused is the starting argument of the RTEMS task
216 * @param unused is the starting argument of the RTEMS task
217 *
217 *
218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
222 * data it contains.
222 * data it contains.
223 *
223 *
224 */
224 */
225
225
226 rtems_status_code status; // RTEMS status code
226 rtems_status_code status; // RTEMS status code
227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
228 ring_node *incomingRingNodePtr;
228 ring_node *incomingRingNodePtr;
229 int ring_node_address;
229 int ring_node_address;
230 char *charPtr;
230 char *charPtr;
231 spw_ioctl_pkt_send *spw_ioctl_send;
231 spw_ioctl_pkt_send *spw_ioctl_send;
232 size_t size; // size of the incoming TC packet
232 size_t size; // size of the incoming TC packet
233 rtems_id queue_send_id;
233 rtems_id queue_send_id;
234 unsigned int sid;
234 unsigned int sid;
235 unsigned char sidAsUnsignedChar;
235 unsigned char sidAsUnsignedChar;
236 unsigned char type;
236 unsigned char type;
237
237
238 incomingRingNodePtr = NULL;
238 incomingRingNodePtr = NULL;
239 ring_node_address = 0;
239 ring_node_address = 0;
240 charPtr = (char *) &ring_node_address;
240 charPtr = (char *) &ring_node_address;
241 size = 0;
241 size = 0;
242 queue_send_id = RTEMS_ID_NONE;
242 queue_send_id = RTEMS_ID_NONE;
243 sid = 0;
243 sid = 0;
244 sidAsUnsignedChar = 0;
244 sidAsUnsignedChar = 0;
245
245
246 init_header_cwf( &headerCWF );
246 init_header_cwf( &headerCWF );
247 init_header_swf( &headerSWF );
247 init_header_swf( &headerSWF );
248 init_header_asm( &headerASM );
248 init_header_asm( &headerASM );
249
249
250 status = get_message_queue_id_send( &queue_send_id );
250 status = get_message_queue_id_send( &queue_send_id );
251 if (status != RTEMS_SUCCESSFUL)
251 if (status != RTEMS_SUCCESSFUL)
252 {
252 {
253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
254 }
254 }
255
255
256 BOOT_PRINTF("in SEND *** \n")
256 BOOT_PRINTF("in SEND *** \n")
257
257
258 while(1)
258 while(1)
259 {
259 {
260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
262
262
263 if (status!=RTEMS_SUCCESSFUL)
263 if (status!=RTEMS_SUCCESSFUL)
264 {
264 {
265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
266 }
266 }
267 else
267 else
268 {
268 {
269 if ( size == sizeof(ring_node*) )
269 if ( size == sizeof(ring_node*) )
270 {
270 {
271 charPtr[0] = incomingData[0];
271 charPtr[0] = incomingData[0];
272 charPtr[1] = incomingData[1];
272 charPtr[1] = incomingData[1];
273 charPtr[BYTE_2] = incomingData[BYTE_2];
273 charPtr[BYTE_2] = incomingData[BYTE_2];
274 charPtr[BYTE_3] = incomingData[BYTE_3];
274 charPtr[BYTE_3] = incomingData[BYTE_3];
275 incomingRingNodePtr = (ring_node*) ring_node_address;
275 incomingRingNodePtr = (ring_node*) ring_node_address;
276 sid = incomingRingNodePtr->sid;
276 sid = incomingRingNodePtr->sid;
277 if ( (sid==SID_NORM_CWF_LONG_F3)
277 if ( (sid==SID_NORM_CWF_LONG_F3)
278 || (sid==SID_BURST_CWF_F2 )
278 || (sid==SID_BURST_CWF_F2 )
279 || (sid==SID_SBM1_CWF_F1 )
279 || (sid==SID_SBM1_CWF_F1 )
280 || (sid==SID_SBM2_CWF_F2 ))
280 || (sid==SID_SBM2_CWF_F2 ))
281 {
281 {
282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
283 }
283 }
284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
285 {
285 {
286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
287 }
287 }
288 else if ( (sid==SID_NORM_CWF_F3) )
288 else if ( (sid==SID_NORM_CWF_F3) )
289 {
289 {
290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
291 }
291 }
292 else if (sid==SID_NORM_ASM_F0)
292 else if (sid==SID_NORM_ASM_F0)
293 {
293 {
294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
295 }
295 }
296 else if (sid==SID_NORM_ASM_F1)
296 else if (sid==SID_NORM_ASM_F1)
297 {
297 {
298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
299 }
299 }
300 else if (sid==SID_NORM_ASM_F2)
300 else if (sid==SID_NORM_ASM_F2)
301 {
301 {
302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
303 }
303 }
304 else if ( sid==TM_CODE_K_DUMP )
304 else if ( sid==TM_CODE_K_DUMP )
305 {
305 {
306 spw_send_k_dump( incomingRingNodePtr );
306 spw_send_k_dump( incomingRingNodePtr );
307 }
307 }
308 else
308 else
309 {
309 {
310 PRINTF1("unexpected sid = %d\n", sid);
310 PRINTF1("unexpected sid = %d\n", sid);
311 }
311 }
312 }
312 }
313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
314 {
314 {
315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
316 sid = sidAsUnsignedChar;
316 sid = sidAsUnsignedChar;
317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
320 {
320 {
321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
322 }
322 }
323
323
324 status = write( fdSPW, incomingData, size );
324 status = write( fdSPW, incomingData, size );
325 if (status == -1){
325 if (status == -1){
326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
327 }
327 }
328 }
328 }
329 else // the incoming message is a spw_ioctl_pkt_send structure
329 else // the incoming message is a spw_ioctl_pkt_send structure
330 {
330 {
331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
333 if (status == -1){
333 if (status == -1){
334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
335 }
335 }
336 }
336 }
337 }
337 }
338
338
339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
340
340
341 }
341 }
342 }
342 }
343
343
344 rtems_task link_task( rtems_task_argument argument )
344 rtems_task link_task( rtems_task_argument argument )
345 {
345 {
346 rtems_event_set event_out;
346 rtems_event_set event_out;
347 rtems_status_code status;
347 rtems_status_code status;
348 int linkStatus;
348 int linkStatus;
349
349
350 event_out = EVENT_SETS_NONE_PENDING;
350 event_out = EVENT_SETS_NONE_PENDING;
351 linkStatus = 0;
351 linkStatus = 0;
352
352
353 BOOT_PRINTF("in LINK ***\n")
353 BOOT_PRINTF("in LINK ***\n")
354
354
355 while(1)
355 while(1)
356 {
356 {
357 // wait for an RTEMS_EVENT
357 // wait for an RTEMS_EVENT
358 rtems_event_receive( RTEMS_EVENT_0,
358 rtems_event_receive( RTEMS_EVENT_0,
359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
360 PRINTF("in LINK *** wait for the link\n")
360 PRINTF("in LINK *** wait for the link\n")
361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
362 while( linkStatus != SPW_LINK_OK) // wait for the link
362 while( linkStatus != SPW_LINK_OK) // wait for the link
363 {
363 {
364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
366 watchdog_reload();
366 watchdog_reload();
367 }
367 }
368
368
369 spacewire_read_statistics();
369 spacewire_read_statistics();
370 status = spacewire_stop_and_start_link( fdSPW );
370 status = spacewire_stop_and_start_link( fdSPW );
371
371
372 if (status != RTEMS_SUCCESSFUL)
372 if (status != RTEMS_SUCCESSFUL)
373 {
373 {
374 PRINTF1("in LINK *** ERR link not started %d\n", status)
374 PRINTF1("in LINK *** ERR link not started %d\n", status)
375 }
375 }
376 else
376 else
377 {
377 {
378 PRINTF("in LINK *** OK link started\n")
378 PRINTF("in LINK *** OK link started\n")
379 }
379 }
380
380
381 // restart the SPIQ task
381 // restart the SPIQ task
382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
383 if ( status != RTEMS_SUCCESSFUL ) {
383 if ( status != RTEMS_SUCCESSFUL ) {
384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
385 }
385 }
386
386
387 // restart RECV and SEND
387 // restart RECV and SEND
388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
389 if ( status != RTEMS_SUCCESSFUL ) {
389 if ( status != RTEMS_SUCCESSFUL ) {
390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
391 }
391 }
392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
393 if ( status != RTEMS_SUCCESSFUL ) {
393 if ( status != RTEMS_SUCCESSFUL ) {
394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
395 }
395 }
396 }
396 }
397 }
397 }
398
398
399 //****************
399 //****************
400 // OTHER FUNCTIONS
400 // OTHER FUNCTIONS
401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
402 {
402 {
403 /** This function opens the SpaceWire link.
403 /** This function opens the SpaceWire link.
404 *
404 *
405 * @return a valid file descriptor in case of success, -1 in case of a failure
405 * @return a valid file descriptor in case of success, -1 in case of a failure
406 *
406 *
407 */
407 */
408 rtems_status_code status;
408 rtems_status_code status;
409
409
410 status = RTEMS_SUCCESSFUL;
410 status = RTEMS_SUCCESSFUL;
411
411
412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
413 if ( fdSPW < 0 ) {
413 if ( fdSPW < 0 ) {
414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
415 }
415 }
416 else
416 else
417 {
417 {
418 status = RTEMS_SUCCESSFUL;
418 status = RTEMS_SUCCESSFUL;
419 }
419 }
420
420
421 return status;
421 return status;
422 }
422 }
423
423
424 int spacewire_start_link( int fd )
424 int spacewire_start_link( int fd )
425 {
425 {
426 rtems_status_code status;
426 rtems_status_code status;
427
427
428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
429 // -1 default hardcoded driver timeout
429 // -1 default hardcoded driver timeout
430
430
431 return status;
431 return status;
432 }
432 }
433
433
434 int spacewire_stop_and_start_link( int fd )
434 int spacewire_stop_and_start_link( int fd )
435 {
435 {
436 rtems_status_code status;
436 rtems_status_code status;
437
437
438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
440 // -1 default hardcoded driver timeout
440 // -1 default hardcoded driver timeout
441
441
442 return status;
442 return status;
443 }
443 }
444
444
445 int spacewire_configure_link( int fd )
445 int spacewire_configure_link( int fd )
446 {
446 {
447 /** This function configures the SpaceWire link.
447 /** This function configures the SpaceWire link.
448 *
448 *
449 * @return GR-RTEMS-DRIVER directive status codes:
449 * @return GR-RTEMS-DRIVER directive status codes:
450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
455 * - 5 EIO - Error when writing to grswp hardware registers.
455 * - 5 EIO - Error when writing to grswp hardware registers.
456 * - 2 ENOENT - No such file or directory
456 * - 2 ENOENT - No such file or directory
457 */
457 */
458
458
459 rtems_status_code status;
459 rtems_status_code status;
460
460
461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
463 spw_ioctl_packetsize packetsize;
463 spw_ioctl_packetsize packetsize;
464
464
465 packetsize.rxsize = SPW_RXSIZE;
465 packetsize.rxsize = SPW_RXSIZE;
466 packetsize.txdsize = SPW_TXDSIZE;
466 packetsize.txdsize = SPW_TXDSIZE;
467 packetsize.txhsize = SPW_TXHSIZE;
467 packetsize.txhsize = SPW_TXHSIZE;
468
468
469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
470 if (status!=RTEMS_SUCCESSFUL) {
470 if (status!=RTEMS_SUCCESSFUL) {
471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
472 }
472 }
473 //
473 //
474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
475 if (status!=RTEMS_SUCCESSFUL) {
475 if (status!=RTEMS_SUCCESSFUL) {
476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
477 }
477 }
478 //
478 //
479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
480 if (status!=RTEMS_SUCCESSFUL) {
480 if (status!=RTEMS_SUCCESSFUL) {
481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
482 }
482 }
483 //
483 //
484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
485 if (status!=RTEMS_SUCCESSFUL) {
485 if (status!=RTEMS_SUCCESSFUL) {
486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
487 }
487 }
488 //
488 //
489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
490 if (status!=RTEMS_SUCCESSFUL) {
490 if (status!=RTEMS_SUCCESSFUL) {
491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
492 }
492 }
493 //
493 //
494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
495 if (status!=RTEMS_SUCCESSFUL) {
495 if (status!=RTEMS_SUCCESSFUL) {
496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
497 }
497 }
498 //
498 //
499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
500 if (status!=RTEMS_SUCCESSFUL) {
500 if (status!=RTEMS_SUCCESSFUL) {
501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
502 }
502 }
503 //
503 //
504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
505 if (status!=RTEMS_SUCCESSFUL) {
505 if (status!=RTEMS_SUCCESSFUL) {
506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
507 }
507 }
508
508
509 return status;
509 return status;
510 }
510 }
511
511
512 int spacewire_several_connect_attemps( void )
512 int spacewire_several_connect_attemps( void )
513 {
513 {
514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
515 *
515 *
516 * @return RTEMS directive status code:
516 * @return RTEMS directive status code:
517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
519 *
519 *
520 */
520 */
521
521
522 rtems_status_code status_spw;
522 rtems_status_code status_spw;
523 rtems_status_code status;
523 rtems_status_code status;
524 int i;
524 int i;
525
525
526 status_spw = RTEMS_SUCCESSFUL;
526 status_spw = RTEMS_SUCCESSFUL;
527
527
528 i = 0;
528 i = 0;
529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
530 {
530 {
531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
532
532
533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
534
534
535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
536
536
537 status_spw = spacewire_stop_and_start_link( fdSPW );
537 status_spw = spacewire_stop_and_start_link( fdSPW );
538
538
539 if ( status_spw != RTEMS_SUCCESSFUL )
539 if ( status_spw != RTEMS_SUCCESSFUL )
540 {
540 {
541 i = i + 1;
541 i = i + 1;
542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
543 }
543 }
544 else
544 else
545 {
545 {
546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
547 }
547 }
548 }
548 }
549
549
550 return status_spw;
550 return status_spw;
551 }
551 }
552
552
553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
554 {
554 {
555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
556 *
556 *
557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
558 * @param regAddr is the address of the GRSPW control register.
558 * @param regAddr is the address of the GRSPW control register.
559 *
559 *
560 * NP is the bit 20 of the GRSPW control register.
560 * NP is the bit 20 of the GRSPW control register.
561 *
561 *
562 */
562 */
563
563
564 unsigned int *spwptr = (unsigned int*) regAddr;
564 unsigned int *spwptr = (unsigned int*) regAddr;
565
565
566 if (val == 1) {
566 if (val == 1) {
567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
568 }
568 }
569 if (val== 0) {
569 if (val== 0) {
570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
571 }
571 }
572 }
572 }
573
573
574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
575 {
575 {
576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
577 *
577 *
578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
579 * @param regAddr is the address of the GRSPW control register.
579 * @param regAddr is the address of the GRSPW control register.
580 *
580 *
581 * RE is the bit 16 of the GRSPW control register.
581 * RE is the bit 16 of the GRSPW control register.
582 *
582 *
583 */
583 */
584
584
585 unsigned int *spwptr = (unsigned int*) regAddr;
585 unsigned int *spwptr = (unsigned int*) regAddr;
586
586
587 if (val == 1)
587 if (val == 1)
588 {
588 {
589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
590 }
590 }
591 if (val== 0)
591 if (val== 0)
592 {
592 {
593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
594 }
594 }
595 }
595 }
596
596
597 void spacewire_read_statistics( void )
597 void spacewire_read_statistics( void )
598 {
598 {
599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
600 *
600 *
601 * @param void
601 * @param void
602 *
602 *
603 * @return void
603 * @return void
604 *
604 *
605 * Once they are read, the counters are stored in a global variable used during the building of the
605 * Once they are read, the counters are stored in a global variable used during the building of the
606 * HK packets.
606 * HK packets.
607 *
607 *
608 */
608 */
609
609
610 rtems_status_code status;
610 rtems_status_code status;
611 spw_stats current;
611 spw_stats current;
612
612
613 memset(&current, 0, sizeof(spw_stats));
613 memset(&current, 0, sizeof(spw_stats));
614
614
615 spacewire_get_last_error();
615 spacewire_get_last_error();
616
616
617 // read the current statistics
617 // read the current statistics
618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
619
619
620 // clear the counters
620 // clear the counters
621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
622
622
623 // typedef struct {
623 // typedef struct {
624 // unsigned int tx_link_err; // NOT IN HK
624 // unsigned int tx_link_err; // NOT IN HK
625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
627 // unsigned int rx_eep_err;
627 // unsigned int rx_eep_err;
628 // unsigned int rx_truncated;
628 // unsigned int rx_truncated;
629 // unsigned int parity_err;
629 // unsigned int parity_err;
630 // unsigned int escape_err;
630 // unsigned int escape_err;
631 // unsigned int credit_err;
631 // unsigned int credit_err;
632 // unsigned int write_sync_err;
632 // unsigned int write_sync_err;
633 // unsigned int disconnect_err;
633 // unsigned int disconnect_err;
634 // unsigned int early_ep;
634 // unsigned int early_ep;
635 // unsigned int invalid_address;
635 // unsigned int invalid_address;
636 // unsigned int packets_sent;
636 // unsigned int packets_sent;
637 // unsigned int packets_received;
637 // unsigned int packets_received;
638 // } spw_stats;
638 // } spw_stats;
639
639
640 // rx_eep_err
640 // rx_eep_err
641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
642 // rx_truncated
642 // rx_truncated
643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
644 // parity_err
644 // parity_err
645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
646 // escape_err
646 // escape_err
647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
648 // credit_err
648 // credit_err
649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
650 // write_sync_err
650 // write_sync_err
651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
652 // disconnect_err
652 // disconnect_err
653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
654 // early_ep
654 // early_ep
655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
656 // invalid_address
656 // invalid_address
657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
658 // packets_sent
658 // packets_sent
659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
660 // packets_received
660 // packets_received
661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
662
662
663 }
663 }
664
664
665 void spacewire_get_last_error( void )
665 void spacewire_get_last_error( void )
666 {
666 {
667 static spw_stats previous = {0};
667 static spw_stats previous = {0};
668 spw_stats current;
668 spw_stats current;
669 rtems_status_code status;
669 rtems_status_code status;
670
670
671 unsigned int hk_lfr_last_er_rid;
671 unsigned int hk_lfr_last_er_rid;
672 unsigned char hk_lfr_last_er_code;
672 unsigned char hk_lfr_last_er_code;
673 int coarseTime;
673 int coarseTime;
674 int fineTime;
674 int fineTime;
675 unsigned char update_hk_lfr_last_er;
675 unsigned char update_hk_lfr_last_er;
676
676
677 memset(&current, 0, sizeof(spw_stats));
677 memset(&current, 0, sizeof(spw_stats));
678 hk_lfr_last_er_rid = INIT_CHAR;
678 hk_lfr_last_er_rid = INIT_CHAR;
679 hk_lfr_last_er_code = INIT_CHAR;
679 hk_lfr_last_er_code = INIT_CHAR;
680 update_hk_lfr_last_er = INIT_CHAR;
680 update_hk_lfr_last_er = INIT_CHAR;
681
681
682 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
682 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
683
683
684 // get current time
684 // get current time
685 coarseTime = time_management_regs->coarse_time;
685 coarseTime = time_management_regs->coarse_time;
686 fineTime = time_management_regs->fine_time;
686 fineTime = time_management_regs->fine_time;
687
687
688 // typedef struct {
688 // typedef struct {
689 // unsigned int tx_link_err; // NOT IN HK
689 // unsigned int tx_link_err; // NOT IN HK
690 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
690 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
691 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
691 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
692 // unsigned int rx_eep_err;
692 // unsigned int rx_eep_err;
693 // unsigned int rx_truncated;
693 // unsigned int rx_truncated;
694 // unsigned int parity_err;
694 // unsigned int parity_err;
695 // unsigned int escape_err;
695 // unsigned int escape_err;
696 // unsigned int credit_err;
696 // unsigned int credit_err;
697 // unsigned int write_sync_err;
697 // unsigned int write_sync_err;
698 // unsigned int disconnect_err;
698 // unsigned int disconnect_err;
699 // unsigned int early_ep;
699 // unsigned int early_ep;
700 // unsigned int invalid_address;
700 // unsigned int invalid_address;
701 // unsigned int packets_sent;
701 // unsigned int packets_sent;
702 // unsigned int packets_received;
702 // unsigned int packets_received;
703 // } spw_stats;
703 // } spw_stats;
704
704
705 // tx_link_err *** no code associated to this field
705 // tx_link_err *** no code associated to this field
706 // rx_rmap_header_crc_err *** LE *** in HK
706 // rx_rmap_header_crc_err *** LE *** in HK
707 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
707 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
708 {
708 {
709 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
709 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
710 hk_lfr_last_er_code = CODE_HEADER_CRC;
710 hk_lfr_last_er_code = CODE_HEADER_CRC;
711 update_hk_lfr_last_er = 1;
711 update_hk_lfr_last_er = 1;
712 }
712 }
713 // rx_rmap_data_crc_err *** LE *** NOT IN HK
713 // rx_rmap_data_crc_err *** LE *** NOT IN HK
714 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
714 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
715 {
715 {
716 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
716 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
717 hk_lfr_last_er_code = CODE_DATA_CRC;
717 hk_lfr_last_er_code = CODE_DATA_CRC;
718 update_hk_lfr_last_er = 1;
718 update_hk_lfr_last_er = 1;
719 }
719 }
720 // rx_eep_err
720 // rx_eep_err
721 if (previous.rx_eep_err != current.rx_eep_err)
721 if (previous.rx_eep_err != current.rx_eep_err)
722 {
722 {
723 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
723 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
724 hk_lfr_last_er_code = CODE_EEP;
724 hk_lfr_last_er_code = CODE_EEP;
725 update_hk_lfr_last_er = 1;
725 update_hk_lfr_last_er = 1;
726 }
726 }
727 // rx_truncated
727 // rx_truncated
728 if (previous.rx_truncated != current.rx_truncated)
728 if (previous.rx_truncated != current.rx_truncated)
729 {
729 {
730 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
730 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
731 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
731 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
732 update_hk_lfr_last_er = 1;
732 update_hk_lfr_last_er = 1;
733 }
733 }
734 // parity_err
734 // parity_err
735 if (previous.parity_err != current.parity_err)
735 if (previous.parity_err != current.parity_err)
736 {
736 {
737 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
737 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
738 hk_lfr_last_er_code = CODE_PARITY;
738 hk_lfr_last_er_code = CODE_PARITY;
739 update_hk_lfr_last_er = 1;
739 update_hk_lfr_last_er = 1;
740 }
740 }
741 // escape_err
741 // escape_err
742 if (previous.parity_err != current.parity_err)
742 if (previous.parity_err != current.parity_err)
743 {
743 {
744 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
744 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
745 hk_lfr_last_er_code = CODE_ESCAPE;
745 hk_lfr_last_er_code = CODE_ESCAPE;
746 update_hk_lfr_last_er = 1;
746 update_hk_lfr_last_er = 1;
747 }
747 }
748 // credit_err
748 // credit_err
749 if (previous.credit_err != current.credit_err)
749 if (previous.credit_err != current.credit_err)
750 {
750 {
751 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
751 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
752 hk_lfr_last_er_code = CODE_CREDIT;
752 hk_lfr_last_er_code = CODE_CREDIT;
753 update_hk_lfr_last_er = 1;
753 update_hk_lfr_last_er = 1;
754 }
754 }
755 // write_sync_err
755 // write_sync_err
756 if (previous.write_sync_err != current.write_sync_err)
756 if (previous.write_sync_err != current.write_sync_err)
757 {
757 {
758 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
758 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
759 hk_lfr_last_er_code = CODE_WRITE_SYNC;
759 hk_lfr_last_er_code = CODE_WRITE_SYNC;
760 update_hk_lfr_last_er = 1;
760 update_hk_lfr_last_er = 1;
761 }
761 }
762 // disconnect_err
762 // disconnect_err
763 if (previous.disconnect_err != current.disconnect_err)
763 if (previous.disconnect_err != current.disconnect_err)
764 {
764 {
765 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
765 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
766 hk_lfr_last_er_code = CODE_DISCONNECT;
766 hk_lfr_last_er_code = CODE_DISCONNECT;
767 update_hk_lfr_last_er = 1;
767 update_hk_lfr_last_er = 1;
768 }
768 }
769 // early_ep
769 // early_ep
770 if (previous.early_ep != current.early_ep)
770 if (previous.early_ep != current.early_ep)
771 {
771 {
772 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
772 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
773 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
773 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
774 update_hk_lfr_last_er = 1;
774 update_hk_lfr_last_er = 1;
775 }
775 }
776 // invalid_address
776 // invalid_address
777 if (previous.invalid_address != current.invalid_address)
777 if (previous.invalid_address != current.invalid_address)
778 {
778 {
779 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
779 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
780 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
780 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
781 update_hk_lfr_last_er = 1;
781 update_hk_lfr_last_er = 1;
782 }
782 }
783
783
784 // if a field has changed, update the hk_last_er fields
784 // if a field has changed, update the hk_last_er fields
785 if (update_hk_lfr_last_er == 1)
785 if (update_hk_lfr_last_er == 1)
786 {
786 {
787 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
787 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
788 }
788 }
789
789
790 previous = current;
790 previous = current;
791 }
791 }
792
792
793 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
793 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
794 {
794 {
795 unsigned char *coarseTimePtr;
795 unsigned char *coarseTimePtr;
796 unsigned char *fineTimePtr;
796 unsigned char *fineTimePtr;
797
797
798 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
798 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
799 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
799 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
800
800
801 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
801 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
802 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
802 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
803 housekeeping_packet.hk_lfr_last_er_code = code;
803 housekeeping_packet.hk_lfr_last_er_code = code;
804 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
804 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
805 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
805 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
806 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
806 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
807 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
807 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
808 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
808 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
809 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
809 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
810 }
810 }
811
811
812 void update_hk_with_grspw_stats( void )
812 void update_hk_with_grspw_stats( void )
813 {
813 {
814 //****************************
814 //****************************
815 // DPU_SPACEWIRE_IF_STATISTICS
815 // DPU_SPACEWIRE_IF_STATISTICS
816 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
816 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
817 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
817 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
818 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
818 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
819 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
819 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
820
820
821 //******************************************
821 //******************************************
822 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
822 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
823 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
823 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
824 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
824 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
825 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
825 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
826 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
826 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
827 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
827 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
828
828
829 //*********************************************
829 //*********************************************
830 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
830 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
831 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
831 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
832 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
832 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
833 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
833 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
834 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
834 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
835 }
835 }
836
836
837 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
837 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
838 {
838 {
839 unsigned int *statusRegisterPtr;
839 unsigned int *statusRegisterPtr;
840 unsigned char linkState;
840 unsigned char linkState;
841
841
842 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
842 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
843 linkState =
843 linkState =
844 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
844 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
845
845
846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
847
847
848 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
848 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
849 }
849 }
850
850
851 void increase_unsigned_char_counter( unsigned char *counter )
851 void increase_unsigned_char_counter( unsigned char *counter )
852 {
852 {
853 // update the number of valid timecodes that have been received
853 // update the number of valid timecodes that have been received
854 if (*counter == UINT8_MAX)
854 if (*counter == UINT8_MAX)
855 {
855 {
856 *counter = 0;
856 *counter = 0;
857 }
857 }
858 else
858 else
859 {
859 {
860 *counter = *counter + 1;
860 *counter = *counter + 1;
861 }
861 }
862 }
862 }
863
863
864 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
864 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
865 {
865 {
866 /** This function checks the coherency between the incoming timecode and the last valid timecode.
866 /** This function checks the coherency between the incoming timecode and the last valid timecode.
867 *
867 *
868 * @param currentTimecodeCtr is the incoming timecode
868 * @param currentTimecodeCtr is the incoming timecode
869 *
869 *
870 * @return returned codes::
870 * @return returned codes::
871 * - LFR_DEFAULT
871 * - LFR_DEFAULT
872 * - LFR_SUCCESSFUL
872 * - LFR_SUCCESSFUL
873 *
873 *
874 */
874 */
875
875
876 static unsigned char firstTickout = 1;
876 static unsigned char firstTickout = 1;
877 unsigned char ret;
877 unsigned char ret;
878
878
879 ret = LFR_DEFAULT;
879 ret = LFR_DEFAULT;
880
880
881 if (firstTickout == 0)
881 if (firstTickout == 0)
882 {
882 {
883 if (currentTimecodeCtr == 0)
883 if (currentTimecodeCtr == 0)
884 {
884 {
885 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
885 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
886 {
886 {
887 ret = LFR_SUCCESSFUL;
887 ret = LFR_SUCCESSFUL;
888 }
888 }
889 else
889 else
890 {
890 {
891 ret = LFR_DEFAULT;
891 ret = LFR_DEFAULT;
892 }
892 }
893 }
893 }
894 else
894 else
895 {
895 {
896 if (currentTimecodeCtr == (previousTimecodeCtr +1))
896 if (currentTimecodeCtr == (previousTimecodeCtr +1))
897 {
897 {
898 ret = LFR_SUCCESSFUL;
898 ret = LFR_SUCCESSFUL;
899 }
899 }
900 else
900 else
901 {
901 {
902 ret = LFR_DEFAULT;
902 ret = LFR_DEFAULT;
903 }
903 }
904 }
904 }
905 }
905 }
906 else
906 else
907 {
907 {
908 firstTickout = 0;
908 firstTickout = 0;
909 ret = LFR_SUCCESSFUL;
909 ret = LFR_SUCCESSFUL;
910 }
910 }
911
911
912 return ret;
912 return ret;
913 }
913 }
914
914
915 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
915 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
916 {
916 {
917 unsigned int ret;
917 unsigned int ret;
918
918
919 ret = LFR_DEFAULT;
919 ret = LFR_DEFAULT;
920
920
921 if (timecode == internalTime)
921 if (timecode == internalTime)
922 {
922 {
923 ret = LFR_SUCCESSFUL;
923 ret = LFR_SUCCESSFUL;
924 }
924 }
925 else
925 else
926 {
926 {
927 ret = LFR_DEFAULT;
927 ret = LFR_DEFAULT;
928 }
928 }
929
929
930 return ret;
930 return ret;
931 }
931 }
932
932
933 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
933 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
934 {
934 {
935 // a tickout has been emitted, perform actions on the incoming timecode
935 // a tickout has been emitted, perform actions on the incoming timecode
936
936
937 unsigned char incomingTimecode;
937 unsigned char incomingTimecode;
938 unsigned char updateTime;
938 unsigned char updateTime;
939 unsigned char internalTime;
939 unsigned char internalTime;
940 rtems_status_code status;
940 rtems_status_code status;
941
941
942 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
942 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
943 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
943 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
944 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
944 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
945
945
946 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
946 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
947
947
948 // update the number of tickout that have been generated
948 // update the number of tickout that have been generated
949 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
949 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
950
950
951 //**************************
951 //**************************
952 // HK_LFR_TIMECODE_ERRONEOUS
952 // HK_LFR_TIMECODE_ERRONEOUS
953 // MISSING and INVALID are handled by the timecode_timer_routine service routine
953 // MISSING and INVALID are handled by the timecode_timer_routine service routine
954 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
954 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
955 {
955 {
956 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
956 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
957 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
957 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
958 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
958 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
959 }
959 }
960
960
961 //************************
961 //************************
962 // HK_LFR_TIME_TIMECODE_IT
962 // HK_LFR_TIME_TIMECODE_IT
963 // check the coherency between the SpaceWire timecode and the Internal Time
963 // check the coherency between the SpaceWire timecode and the Internal Time
964 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
964 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
965 {
965 {
966 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
966 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
967 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
967 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
968 }
968 }
969
969
970 //********************
970 //********************
971 // HK_LFR_TIMECODE_CTR
971 // HK_LFR_TIMECODE_CTR
972 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
972 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
973 if (oneTcLfrUpdateTimeReceived == 1)
973 if (oneTcLfrUpdateTimeReceived == 1)
974 {
974 {
975 if ( incomingTimecode != updateTime )
975 if ( incomingTimecode != updateTime )
976 {
976 {
977 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
977 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
978 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
978 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
979 }
979 }
980 }
980 }
981
981
982 // launch the timecode timer to detect missing or invalid timecodes
982 // launch the timecode timer to detect missing or invalid timecodes
983 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
983 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
984 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
984 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
985 if (status != RTEMS_SUCCESSFUL)
985 if (status != RTEMS_SUCCESSFUL)
986 {
986 {
987 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
987 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
988 }
988 }
989 }
989 }
990
990
991 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
991 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
992 {
992 {
993 static unsigned char initStep = 1;
993 static unsigned char initStep = 1;
994
994
995 unsigned char currentTimecodeCtr;
995 unsigned char currentTimecodeCtr;
996
996
997 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
997 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
998
998
999 if (initStep == 1)
999 if (initStep == 1)
1000 {
1000 {
1001 if (currentTimecodeCtr == previousTimecodeCtr)
1001 if (currentTimecodeCtr == previousTimecodeCtr)
1002 {
1002 {
1003 //************************
1003 //************************
1004 // HK_LFR_TIMECODE_MISSING
1004 // HK_LFR_TIMECODE_MISSING
1005 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1005 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1006 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1006 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1007 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1007 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1008 }
1008 }
1009 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1009 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1010 {
1010 {
1011 // the timecode value has changed and the value is valid, this is unexpected because
1011 // the timecode value has changed and the value is valid, this is unexpected because
1012 // the timer should not have fired, the timecode_irq_handler should have been raised
1012 // the timer should not have fired, the timecode_irq_handler should have been raised
1013 }
1013 }
1014 else
1014 else
1015 {
1015 {
1016 //************************
1016 //************************
1017 // HK_LFR_TIMECODE_INVALID
1017 // HK_LFR_TIMECODE_INVALID
1018 // the timecode value has changed and the value is not valid, no tickout has been generated
1018 // the timecode value has changed and the value is not valid, no tickout has been generated
1019 // this is why the timer has fired
1019 // this is why the timer has fired
1020 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1020 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1021 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1021 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1022 }
1022 }
1023 }
1023 }
1024 else
1024 else
1025 {
1025 {
1026 initStep = 1;
1026 initStep = 1;
1027 //************************
1027 //************************
1028 // HK_LFR_TIMECODE_MISSING
1028 // HK_LFR_TIMECODE_MISSING
1029 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1029 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1030 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1030 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1031 }
1031 }
1032
1032
1033 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1033 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1034 }
1034 }
1035
1035
1036 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1036 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1037 {
1037 {
1038 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1038 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1039 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1039 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1040 header->reserved = DEFAULT_RESERVED;
1040 header->reserved = DEFAULT_RESERVED;
1041 header->userApplication = CCSDS_USER_APP;
1041 header->userApplication = CCSDS_USER_APP;
1042 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1042 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1043 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1043 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1044 header->packetLength[0] = INIT_CHAR;
1044 header->packetLength[0] = INIT_CHAR;
1045 header->packetLength[1] = INIT_CHAR;
1045 header->packetLength[1] = INIT_CHAR;
1046 // DATA FIELD HEADER
1046 // DATA FIELD HEADER
1047 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1047 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1048 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1048 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1049 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1049 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1050 header->destinationID = TM_DESTINATION_ID_GROUND;
1050 header->destinationID = TM_DESTINATION_ID_GROUND;
1051 header->time[BYTE_0] = INIT_CHAR;
1051 header->time[BYTE_0] = INIT_CHAR;
1052 header->time[BYTE_1] = INIT_CHAR;
1052 header->time[BYTE_1] = INIT_CHAR;
1053 header->time[BYTE_2] = INIT_CHAR;
1053 header->time[BYTE_2] = INIT_CHAR;
1054 header->time[BYTE_3] = INIT_CHAR;
1054 header->time[BYTE_3] = INIT_CHAR;
1055 header->time[BYTE_4] = INIT_CHAR;
1055 header->time[BYTE_4] = INIT_CHAR;
1056 header->time[BYTE_5] = INIT_CHAR;
1056 header->time[BYTE_5] = INIT_CHAR;
1057 // AUXILIARY DATA HEADER
1057 // AUXILIARY DATA HEADER
1058 header->sid = INIT_CHAR;
1058 header->sid = INIT_CHAR;
1059 header->pa_bia_status_info = DEFAULT_HKBIA;
1059 header->pa_bia_status_info = DEFAULT_HKBIA;
1060 header->blkNr[0] = INIT_CHAR;
1060 header->blkNr[0] = INIT_CHAR;
1061 header->blkNr[1] = INIT_CHAR;
1061 header->blkNr[1] = INIT_CHAR;
1062 }
1062 }
1063
1063
1064 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1064 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1065 {
1065 {
1066 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1066 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1067 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1067 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1068 header->reserved = DEFAULT_RESERVED;
1068 header->reserved = DEFAULT_RESERVED;
1069 header->userApplication = CCSDS_USER_APP;
1069 header->userApplication = CCSDS_USER_APP;
1070 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1070 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1071 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1071 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1072 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1072 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1073 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1073 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1074 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1074 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1075 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1075 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1076 // DATA FIELD HEADER
1076 // DATA FIELD HEADER
1077 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1077 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1078 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1078 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1079 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1079 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1080 header->destinationID = TM_DESTINATION_ID_GROUND;
1080 header->destinationID = TM_DESTINATION_ID_GROUND;
1081 header->time[BYTE_0] = INIT_CHAR;
1081 header->time[BYTE_0] = INIT_CHAR;
1082 header->time[BYTE_1] = INIT_CHAR;
1082 header->time[BYTE_1] = INIT_CHAR;
1083 header->time[BYTE_2] = INIT_CHAR;
1083 header->time[BYTE_2] = INIT_CHAR;
1084 header->time[BYTE_3] = INIT_CHAR;
1084 header->time[BYTE_3] = INIT_CHAR;
1085 header->time[BYTE_4] = INIT_CHAR;
1085 header->time[BYTE_4] = INIT_CHAR;
1086 header->time[BYTE_5] = INIT_CHAR;
1086 header->time[BYTE_5] = INIT_CHAR;
1087 // AUXILIARY DATA HEADER
1087 // AUXILIARY DATA HEADER
1088 header->sid = INIT_CHAR;
1088 header->sid = INIT_CHAR;
1089 header->pa_bia_status_info = DEFAULT_HKBIA;
1089 header->pa_bia_status_info = DEFAULT_HKBIA;
1090 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1090 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1091 header->pktNr = INIT_CHAR;
1091 header->pktNr = INIT_CHAR;
1092 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1092 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1093 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1093 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1094 }
1094 }
1095
1095
1096 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1096 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1097 {
1097 {
1098 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1098 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1099 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1099 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1100 header->reserved = DEFAULT_RESERVED;
1100 header->reserved = DEFAULT_RESERVED;
1101 header->userApplication = CCSDS_USER_APP;
1101 header->userApplication = CCSDS_USER_APP;
1102 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1102 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1103 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1103 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1104 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1104 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1105 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1105 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1106 header->packetLength[0] = INIT_CHAR;
1106 header->packetLength[0] = INIT_CHAR;
1107 header->packetLength[1] = INIT_CHAR;
1107 header->packetLength[1] = INIT_CHAR;
1108 // DATA FIELD HEADER
1108 // DATA FIELD HEADER
1109 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1109 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1110 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1110 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1111 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1111 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1112 header->destinationID = TM_DESTINATION_ID_GROUND;
1112 header->destinationID = TM_DESTINATION_ID_GROUND;
1113 header->time[BYTE_0] = INIT_CHAR;
1113 header->time[BYTE_0] = INIT_CHAR;
1114 header->time[BYTE_1] = INIT_CHAR;
1114 header->time[BYTE_1] = INIT_CHAR;
1115 header->time[BYTE_2] = INIT_CHAR;
1115 header->time[BYTE_2] = INIT_CHAR;
1116 header->time[BYTE_3] = INIT_CHAR;
1116 header->time[BYTE_3] = INIT_CHAR;
1117 header->time[BYTE_4] = INIT_CHAR;
1117 header->time[BYTE_4] = INIT_CHAR;
1118 header->time[BYTE_5] = INIT_CHAR;
1118 header->time[BYTE_5] = INIT_CHAR;
1119 // AUXILIARY DATA HEADER
1119 // AUXILIARY DATA HEADER
1120 header->sid = INIT_CHAR;
1120 header->sid = INIT_CHAR;
1121 header->pa_bia_status_info = INIT_CHAR;
1121 header->pa_bia_status_info = INIT_CHAR;
1122 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1122 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1123 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1123 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1124 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1124 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1125 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1125 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1126 }
1126 }
1127
1127
1128 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1128 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1129 Header_TM_LFR_SCIENCE_CWF_t *header )
1129 Header_TM_LFR_SCIENCE_CWF_t *header )
1130 {
1130 {
1131 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1131 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1132 *
1132 *
1133 * @param waveform points to the buffer containing the data that will be send.
1133 * @param waveform points to the buffer containing the data that will be send.
1134 * @param sid is the source identifier of the data that will be sent.
1134 * @param sid is the source identifier of the data that will be sent.
1135 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1135 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1136 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1136 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1137 * contain information to setup the transmission of the data packets.
1137 * contain information to setup the transmission of the data packets.
1138 *
1138 *
1139 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1139 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1140 *
1140 *
1141 */
1141 */
1142
1142
1143 unsigned int i;
1143 unsigned int i;
1144 int ret;
1144 int ret;
1145 unsigned int coarseTime;
1145 unsigned int coarseTime;
1146 unsigned int fineTime;
1146 unsigned int fineTime;
1147 rtems_status_code status;
1147 rtems_status_code status;
1148 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1148 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1149 int *dataPtr;
1149 int *dataPtr;
1150 unsigned char sid;
1150 unsigned char sid;
1151
1151
1152 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1152 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1153 spw_ioctl_send_CWF.options = 0;
1153 spw_ioctl_send_CWF.options = 0;
1154
1154
1155 ret = LFR_DEFAULT;
1155 ret = LFR_DEFAULT;
1156 sid = (unsigned char) ring_node_to_send->sid;
1156 sid = (unsigned char) ring_node_to_send->sid;
1157
1157
1158 coarseTime = ring_node_to_send->coarseTime;
1158 coarseTime = ring_node_to_send->coarseTime;
1159 fineTime = ring_node_to_send->fineTime;
1159 fineTime = ring_node_to_send->fineTime;
1160 dataPtr = (int*) ring_node_to_send->buffer_address;
1160 dataPtr = (int*) ring_node_to_send->buffer_address;
1161
1161
1162 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1162 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1163 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1163 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1164 header->pa_bia_status_info = pa_bia_status_info;
1164 header->pa_bia_status_info = pa_bia_status_info;
1165 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1165 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1166 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1166 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1167 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1167 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1168
1168
1169 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1169 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1170 {
1170 {
1171 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1171 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1172 spw_ioctl_send_CWF.hdr = (char*) header;
1172 spw_ioctl_send_CWF.hdr = (char*) header;
1173 // BUILD THE DATA
1173 // BUILD THE DATA
1174 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1174 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1175
1175
1176 // SET PACKET SEQUENCE CONTROL
1176 // SET PACKET SEQUENCE CONTROL
1177 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1177 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1178
1178
1179 // SET SID
1179 // SET SID
1180 header->sid = sid;
1180 header->sid = sid;
1181
1181
1182 // SET PACKET TIME
1182 // SET PACKET TIME
1183 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1183 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1184 //
1184 //
1185 header->time[0] = header->acquisitionTime[0];
1185 header->time[0] = header->acquisitionTime[0];
1186 header->time[1] = header->acquisitionTime[1];
1186 header->time[1] = header->acquisitionTime[1];
1187 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1187 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1188 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1188 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1189 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1189 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1190 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1190 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1191
1191
1192 // SET PACKET ID
1192 // SET PACKET ID
1193 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1193 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1194 {
1194 {
1195 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1195 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1196 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1196 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1197 }
1197 }
1198 else
1198 else
1199 {
1199 {
1200 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1200 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1201 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1201 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1202 }
1202 }
1203
1203
1204 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1204 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1205 if (status != RTEMS_SUCCESSFUL) {
1205 if (status != RTEMS_SUCCESSFUL) {
1206 ret = LFR_DEFAULT;
1206 ret = LFR_DEFAULT;
1207 }
1207 }
1208 }
1208 }
1209
1209
1210 return ret;
1210 return ret;
1211 }
1211 }
1212
1212
1213 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1213 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1214 Header_TM_LFR_SCIENCE_SWF_t *header )
1214 Header_TM_LFR_SCIENCE_SWF_t *header )
1215 {
1215 {
1216 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1216 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1217 *
1217 *
1218 * @param waveform points to the buffer containing the data that will be send.
1218 * @param waveform points to the buffer containing the data that will be send.
1219 * @param sid is the source identifier of the data that will be sent.
1219 * @param sid is the source identifier of the data that will be sent.
1220 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1220 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1221 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1221 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1222 * contain information to setup the transmission of the data packets.
1222 * contain information to setup the transmission of the data packets.
1223 *
1223 *
1224 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1224 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1225 *
1225 *
1226 */
1226 */
1227
1227
1228 unsigned int i;
1228 unsigned int i;
1229 int ret;
1229 int ret;
1230 unsigned int coarseTime;
1230 unsigned int coarseTime;
1231 unsigned int fineTime;
1231 unsigned int fineTime;
1232 rtems_status_code status;
1232 rtems_status_code status;
1233 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1233 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1234 int *dataPtr;
1234 int *dataPtr;
1235 unsigned char sid;
1235 unsigned char sid;
1236
1236
1237 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1237 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1238 spw_ioctl_send_SWF.options = 0;
1238 spw_ioctl_send_SWF.options = 0;
1239
1239
1240 ret = LFR_DEFAULT;
1240 ret = LFR_DEFAULT;
1241
1241
1242 coarseTime = ring_node_to_send->coarseTime;
1242 coarseTime = ring_node_to_send->coarseTime;
1243 fineTime = ring_node_to_send->fineTime;
1243 fineTime = ring_node_to_send->fineTime;
1244 dataPtr = (int*) ring_node_to_send->buffer_address;
1244 dataPtr = (int*) ring_node_to_send->buffer_address;
1245 sid = ring_node_to_send->sid;
1245 sid = ring_node_to_send->sid;
1246
1246
1247 header->pa_bia_status_info = pa_bia_status_info;
1247 header->pa_bia_status_info = pa_bia_status_info;
1248 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1248 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1249
1249
1250 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1250 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1251 {
1251 {
1252 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1252 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1253 spw_ioctl_send_SWF.hdr = (char*) header;
1253 spw_ioctl_send_SWF.hdr = (char*) header;
1254
1254
1255 // SET PACKET SEQUENCE CONTROL
1255 // SET PACKET SEQUENCE CONTROL
1256 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1256 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1257
1257
1258 // SET PACKET LENGTH AND BLKNR
1258 // SET PACKET LENGTH AND BLKNR
1259 if (i == (PKTCNT_SWF-1))
1259 if (i == (PKTCNT_SWF-1))
1260 {
1260 {
1261 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1261 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1262 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1262 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1263 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1263 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1264 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1264 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1265 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1265 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1266 }
1266 }
1267 else
1267 else
1268 {
1268 {
1269 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1269 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1270 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1270 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1271 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1271 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1272 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1272 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1273 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1273 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1274 }
1274 }
1275
1275
1276 // SET PACKET TIME
1276 // SET PACKET TIME
1277 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1277 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1278 //
1278 //
1279 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1279 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1280 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1280 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1281 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1281 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1282 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1282 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1283 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1283 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1284 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1284 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1285
1285
1286 // SET SID
1286 // SET SID
1287 header->sid = sid;
1287 header->sid = sid;
1288
1288
1289 // SET PKTNR
1289 // SET PKTNR
1290 header->pktNr = i+1; // PKT_NR
1290 header->pktNr = i+1; // PKT_NR
1291
1291
1292 // SEND PACKET
1292 // SEND PACKET
1293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1294 if (status != RTEMS_SUCCESSFUL) {
1294 if (status != RTEMS_SUCCESSFUL) {
1295 ret = LFR_DEFAULT;
1295 ret = LFR_DEFAULT;
1296 }
1296 }
1297 }
1297 }
1298
1298
1299 return ret;
1299 return ret;
1300 }
1300 }
1301
1301
1302 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1302 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1303 Header_TM_LFR_SCIENCE_CWF_t *header )
1303 Header_TM_LFR_SCIENCE_CWF_t *header )
1304 {
1304 {
1305 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1305 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1306 *
1306 *
1307 * @param waveform points to the buffer containing the data that will be send.
1307 * @param waveform points to the buffer containing the data that will be send.
1308 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1308 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1309 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1309 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1310 * contain information to setup the transmission of the data packets.
1310 * contain information to setup the transmission of the data packets.
1311 *
1311 *
1312 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1312 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1313 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1313 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1314 *
1314 *
1315 */
1315 */
1316
1316
1317 unsigned int i;
1317 unsigned int i;
1318 int ret;
1318 int ret;
1319 unsigned int coarseTime;
1319 unsigned int coarseTime;
1320 unsigned int fineTime;
1320 unsigned int fineTime;
1321 rtems_status_code status;
1321 rtems_status_code status;
1322 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1322 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1323 char *dataPtr;
1323 char *dataPtr;
1324 unsigned char sid;
1324 unsigned char sid;
1325
1325
1326 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1326 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1327 spw_ioctl_send_CWF.options = 0;
1327 spw_ioctl_send_CWF.options = 0;
1328
1328
1329 ret = LFR_DEFAULT;
1329 ret = LFR_DEFAULT;
1330 sid = ring_node_to_send->sid;
1330 sid = ring_node_to_send->sid;
1331
1331
1332 coarseTime = ring_node_to_send->coarseTime;
1332 coarseTime = ring_node_to_send->coarseTime;
1333 fineTime = ring_node_to_send->fineTime;
1333 fineTime = ring_node_to_send->fineTime;
1334 dataPtr = (char*) ring_node_to_send->buffer_address;
1334 dataPtr = (char*) ring_node_to_send->buffer_address;
1335
1335
1336 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1336 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1337 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1337 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1338 header->pa_bia_status_info = pa_bia_status_info;
1338 header->pa_bia_status_info = pa_bia_status_info;
1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1340 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1340 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1341 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1341 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1342
1342
1343 //*********************
1343 //*********************
1344 // SEND CWF3_light DATA
1344 // SEND CWF3_light DATA
1345 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1345 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1346 {
1346 {
1347 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1347 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1348 spw_ioctl_send_CWF.hdr = (char*) header;
1348 spw_ioctl_send_CWF.hdr = (char*) header;
1349 // BUILD THE DATA
1349 // BUILD THE DATA
1350 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1350 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1351
1351
1352 // SET PACKET SEQUENCE COUNTER
1352 // SET PACKET SEQUENCE COUNTER
1353 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1353 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1354
1354
1355 // SET SID
1355 // SET SID
1356 header->sid = sid;
1356 header->sid = sid;
1357
1357
1358 // SET PACKET TIME
1358 // SET PACKET TIME
1359 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1359 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1360 //
1360 //
1361 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1361 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1362 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1362 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1363 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1363 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1364 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1364 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1365 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1365 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1366 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1366 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1367
1367
1368 // SET PACKET ID
1368 // SET PACKET ID
1369 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1369 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1370 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1370 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1371
1371
1372 // SEND PACKET
1372 // SEND PACKET
1373 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1373 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1374 if (status != RTEMS_SUCCESSFUL) {
1374 if (status != RTEMS_SUCCESSFUL) {
1375 ret = LFR_DEFAULT;
1375 ret = LFR_DEFAULT;
1376 }
1376 }
1377 }
1377 }
1378
1378
1379 return ret;
1379 return ret;
1380 }
1380 }
1381
1381
1382 void spw_send_asm_f0( ring_node *ring_node_to_send,
1382 void spw_send_asm_f0( ring_node *ring_node_to_send,
1383 Header_TM_LFR_SCIENCE_ASM_t *header )
1383 Header_TM_LFR_SCIENCE_ASM_t *header )
1384 {
1384 {
1385 unsigned int i;
1385 unsigned int i;
1386 unsigned int length = 0;
1386 unsigned int length = 0;
1387 rtems_status_code status;
1387 rtems_status_code status;
1388 unsigned int sid;
1388 unsigned int sid;
1389 float *spectral_matrix;
1389 float *spectral_matrix;
1390 int coarseTime;
1390 int coarseTime;
1391 int fineTime;
1391 int fineTime;
1392 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1392 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1393
1393
1394 sid = ring_node_to_send->sid;
1394 sid = ring_node_to_send->sid;
1395 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1395 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1396 coarseTime = ring_node_to_send->coarseTime;
1396 coarseTime = ring_node_to_send->coarseTime;
1397 fineTime = ring_node_to_send->fineTime;
1397 fineTime = ring_node_to_send->fineTime;
1398
1398
1399 header->pa_bia_status_info = pa_bia_status_info;
1399 header->pa_bia_status_info = pa_bia_status_info;
1400 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1400 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1401
1401
1402 for (i=0; i<PKTCNT_ASM; i++)
1402 for (i=0; i<PKTCNT_ASM; i++)
1403 {
1403 {
1404 if ((i==0) || (i==1))
1404 if ((i==0) || (i==1))
1405 {
1405 {
1406 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1406 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1407 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1407 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1408 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1408 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1409 ];
1409 ];
1410 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1410 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1411 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1411 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1412 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1412 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1413 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1413 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1414 }
1414 }
1415 else
1415 else
1416 {
1416 {
1417 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1417 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1418 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1418 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1419 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1419 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1420 ];
1420 ];
1421 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1421 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1422 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1422 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1423 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1423 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1424 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1424 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1425 }
1425 }
1426
1426
1427 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1427 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1428 spw_ioctl_send_ASM.hdr = (char *) header;
1428 spw_ioctl_send_ASM.hdr = (char *) header;
1429 spw_ioctl_send_ASM.options = 0;
1429 spw_ioctl_send_ASM.options = 0;
1430
1430
1431 // (2) BUILD THE HEADER
1431 // (2) BUILD THE HEADER
1432 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1432 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1433 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1433 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1434 header->packetLength[1] = (unsigned char) (length);
1434 header->packetLength[1] = (unsigned char) (length);
1435 header->sid = (unsigned char) sid; // SID
1435 header->sid = (unsigned char) sid; // SID
1436 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1436 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1437 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1437 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1438
1438
1439 // (3) SET PACKET TIME
1439 // (3) SET PACKET TIME
1440 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1440 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1441 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1441 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1442 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1442 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1443 header->time[BYTE_3] = (unsigned char) (coarseTime);
1443 header->time[BYTE_3] = (unsigned char) (coarseTime);
1444 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1444 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1445 header->time[BYTE_5] = (unsigned char) (fineTime);
1445 header->time[BYTE_5] = (unsigned char) (fineTime);
1446 //
1446 //
1447 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1447 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1448 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1448 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1449 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1449 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1450 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1450 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1451 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1451 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1452 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1452 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1453
1453
1454 // (4) SEND PACKET
1454 // (4) SEND PACKET
1455 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1455 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1456 if (status != RTEMS_SUCCESSFUL) {
1456 if (status != RTEMS_SUCCESSFUL) {
1457 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1457 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1458 }
1458 }
1459 }
1459 }
1460 }
1460 }
1461
1461
1462 void spw_send_asm_f1( ring_node *ring_node_to_send,
1462 void spw_send_asm_f1( ring_node *ring_node_to_send,
1463 Header_TM_LFR_SCIENCE_ASM_t *header )
1463 Header_TM_LFR_SCIENCE_ASM_t *header )
1464 {
1464 {
1465 unsigned int i;
1465 unsigned int i;
1466 unsigned int length = 0;
1466 unsigned int length = 0;
1467 rtems_status_code status;
1467 rtems_status_code status;
1468 unsigned int sid;
1468 unsigned int sid;
1469 float *spectral_matrix;
1469 float *spectral_matrix;
1470 int coarseTime;
1470 int coarseTime;
1471 int fineTime;
1471 int fineTime;
1472 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1472 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1473
1473
1474 sid = ring_node_to_send->sid;
1474 sid = ring_node_to_send->sid;
1475 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1475 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1476 coarseTime = ring_node_to_send->coarseTime;
1476 coarseTime = ring_node_to_send->coarseTime;
1477 fineTime = ring_node_to_send->fineTime;
1477 fineTime = ring_node_to_send->fineTime;
1478
1478
1479 header->pa_bia_status_info = pa_bia_status_info;
1479 header->pa_bia_status_info = pa_bia_status_info;
1480 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1480 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1481
1481
1482 for (i=0; i<PKTCNT_ASM; i++)
1482 for (i=0; i<PKTCNT_ASM; i++)
1483 {
1483 {
1484 if ((i==0) || (i==1))
1484 if ((i==0) || (i==1))
1485 {
1485 {
1486 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1486 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1487 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1487 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1488 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1488 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1489 ];
1489 ];
1490 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1490 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1491 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1491 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1492 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1492 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1493 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1493 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1494 }
1494 }
1495 else
1495 else
1496 {
1496 {
1497 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1497 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1498 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1498 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1499 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1499 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1500 ];
1500 ];
1501 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1501 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1502 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1502 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1503 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1503 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1504 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1504 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1505 }
1505 }
1506
1506
1507 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1507 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1508 spw_ioctl_send_ASM.hdr = (char *) header;
1508 spw_ioctl_send_ASM.hdr = (char *) header;
1509 spw_ioctl_send_ASM.options = 0;
1509 spw_ioctl_send_ASM.options = 0;
1510
1510
1511 // (2) BUILD THE HEADER
1511 // (2) BUILD THE HEADER
1512 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1512 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1513 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1513 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1514 header->packetLength[1] = (unsigned char) (length);
1514 header->packetLength[1] = (unsigned char) (length);
1515 header->sid = (unsigned char) sid; // SID
1515 header->sid = (unsigned char) sid; // SID
1516 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1516 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1517 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1517 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1518
1518
1519 // (3) SET PACKET TIME
1519 // (3) SET PACKET TIME
1520 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1520 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1521 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1521 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1522 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1522 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1523 header->time[BYTE_3] = (unsigned char) (coarseTime);
1523 header->time[BYTE_3] = (unsigned char) (coarseTime);
1524 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1524 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1525 header->time[BYTE_5] = (unsigned char) (fineTime);
1525 header->time[BYTE_5] = (unsigned char) (fineTime);
1526 //
1526 //
1527 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1527 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1528 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1528 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1529 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1529 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1530 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1530 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1531 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1531 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1532 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1532 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1533
1533
1534 // (4) SEND PACKET
1534 // (4) SEND PACKET
1535 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1535 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1536 if (status != RTEMS_SUCCESSFUL) {
1536 if (status != RTEMS_SUCCESSFUL) {
1537 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1537 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1538 }
1538 }
1539 }
1539 }
1540 }
1540 }
1541
1541
1542 void spw_send_asm_f2( ring_node *ring_node_to_send,
1542 void spw_send_asm_f2( ring_node *ring_node_to_send,
1543 Header_TM_LFR_SCIENCE_ASM_t *header )
1543 Header_TM_LFR_SCIENCE_ASM_t *header )
1544 {
1544 {
1545 unsigned int i;
1545 unsigned int i;
1546 unsigned int length = 0;
1546 unsigned int length = 0;
1547 rtems_status_code status;
1547 rtems_status_code status;
1548 unsigned int sid;
1548 unsigned int sid;
1549 float *spectral_matrix;
1549 float *spectral_matrix;
1550 int coarseTime;
1550 int coarseTime;
1551 int fineTime;
1551 int fineTime;
1552 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1552 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1553
1553
1554 sid = ring_node_to_send->sid;
1554 sid = ring_node_to_send->sid;
1555 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1555 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1556 coarseTime = ring_node_to_send->coarseTime;
1556 coarseTime = ring_node_to_send->coarseTime;
1557 fineTime = ring_node_to_send->fineTime;
1557 fineTime = ring_node_to_send->fineTime;
1558
1558
1559 header->pa_bia_status_info = pa_bia_status_info;
1559 header->pa_bia_status_info = pa_bia_status_info;
1560 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1560 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1561
1561
1562 for (i=0; i<PKTCNT_ASM; i++)
1562 for (i=0; i<PKTCNT_ASM; i++)
1563 {
1563 {
1564
1564
1565 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1565 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1566 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1566 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1567 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1567 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1568 ];
1568 ];
1569 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1569 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1570 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1570 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1571 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1571 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1572 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1572 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1573
1573
1574 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1574 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1575 spw_ioctl_send_ASM.hdr = (char *) header;
1575 spw_ioctl_send_ASM.hdr = (char *) header;
1576 spw_ioctl_send_ASM.options = 0;
1576 spw_ioctl_send_ASM.options = 0;
1577
1577
1578 // (2) BUILD THE HEADER
1578 // (2) BUILD THE HEADER
1579 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1579 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1580 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1580 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1581 header->packetLength[1] = (unsigned char) (length);
1581 header->packetLength[1] = (unsigned char) (length);
1582 header->sid = (unsigned char) sid; // SID
1582 header->sid = (unsigned char) sid; // SID
1583 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1583 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1584 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1584 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1585
1585
1586 // (3) SET PACKET TIME
1586 // (3) SET PACKET TIME
1587 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1587 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1588 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1588 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1589 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1589 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1590 header->time[BYTE_3] = (unsigned char) (coarseTime);
1590 header->time[BYTE_3] = (unsigned char) (coarseTime);
1591 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1591 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1592 header->time[BYTE_5] = (unsigned char) (fineTime);
1592 header->time[BYTE_5] = (unsigned char) (fineTime);
1593 //
1593 //
1594 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1594 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1595 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1595 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1596 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1596 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1597 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1597 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1598 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1598 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1599 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1599 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1600
1600
1601 // (4) SEND PACKET
1601 // (4) SEND PACKET
1602 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1602 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1603 if (status != RTEMS_SUCCESSFUL) {
1603 if (status != RTEMS_SUCCESSFUL) {
1604 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1604 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1605 }
1605 }
1606 }
1606 }
1607 }
1607 }
1608
1608
1609 void spw_send_k_dump( ring_node *ring_node_to_send )
1609 void spw_send_k_dump( ring_node *ring_node_to_send )
1610 {
1610 {
1611 rtems_status_code status;
1611 rtems_status_code status;
1612 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1612 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1613 unsigned int packetLength;
1613 unsigned int packetLength;
1614 unsigned int size;
1614 unsigned int size;
1615
1615
1616 PRINTF("spw_send_k_dump\n")
1616 PRINTF("spw_send_k_dump\n")
1617
1617
1618 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1618 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1619
1619
1620 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1620 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1621
1621
1622 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1622 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1623
1623
1624 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1624 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1625
1625
1626 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1626 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1627
1627
1628 if (status == -1){
1628 if (status == -1){
1629 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1629 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1630 }
1630 }
1631
1631
1632 ring_node_to_send->status = INIT_CHAR;
1632 ring_node_to_send->status = INIT_CHAR;
1633 }
1633 }
@@ -1,1669 +1,1661
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[BYTES_PER_TIME];
35 unsigned char time[BYTES_PER_TIME];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
40 size = 0;
40 size = 0;
41 queue_rcv_id = RTEMS_ID_NONE;
41 queue_rcv_id = RTEMS_ID_NONE;
42 queue_snd_id = RTEMS_ID_NONE;
42 queue_snd_id = RTEMS_ID_NONE;
43
43
44 status = get_message_queue_id_recv( &queue_rcv_id );
44 status = get_message_queue_id_recv( &queue_rcv_id );
45 if (status != RTEMS_SUCCESSFUL)
45 if (status != RTEMS_SUCCESSFUL)
46 {
46 {
47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
48 }
48 }
49
49
50 status = get_message_queue_id_send( &queue_snd_id );
50 status = get_message_queue_id_send( &queue_snd_id );
51 if (status != RTEMS_SUCCESSFUL)
51 if (status != RTEMS_SUCCESSFUL)
52 {
52 {
53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
54 }
54 }
55
55
56 result = LFR_SUCCESSFUL;
56 result = LFR_SUCCESSFUL;
57 subtype = 0; // subtype of the current TC packet
57 subtype = 0; // subtype of the current TC packet
58
58
59 BOOT_PRINTF("in ACTN *** \n");
59 BOOT_PRINTF("in ACTN *** \n");
60
60
61 while(1)
61 while(1)
62 {
62 {
63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
65 getTime( time ); // set time to the current time
65 getTime( time ); // set time to the current time
66 if (status!=RTEMS_SUCCESSFUL)
66 if (status!=RTEMS_SUCCESSFUL)
67 {
67 {
68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
69 }
69 }
70 else
70 else
71 {
71 {
72 subtype = TC.serviceSubType;
72 subtype = TC.serviceSubType;
73 switch(subtype)
73 switch(subtype)
74 {
74 {
75 case TC_SUBTYPE_RESET:
75 case TC_SUBTYPE_RESET:
76 result = action_reset( &TC, queue_snd_id, time );
76 result = action_reset( &TC, queue_snd_id, time );
77 close_action( &TC, result, queue_snd_id );
77 close_action( &TC, result, queue_snd_id );
78 break;
78 break;
79 case TC_SUBTYPE_LOAD_COMM:
79 case TC_SUBTYPE_LOAD_COMM:
80 result = action_load_common_par( &TC );
80 result = action_load_common_par( &TC );
81 close_action( &TC, result, queue_snd_id );
81 close_action( &TC, result, queue_snd_id );
82 break;
82 break;
83 case TC_SUBTYPE_LOAD_NORM:
83 case TC_SUBTYPE_LOAD_NORM:
84 result = action_load_normal_par( &TC, queue_snd_id, time );
84 result = action_load_normal_par( &TC, queue_snd_id, time );
85 close_action( &TC, result, queue_snd_id );
85 close_action( &TC, result, queue_snd_id );
86 break;
86 break;
87 case TC_SUBTYPE_LOAD_BURST:
87 case TC_SUBTYPE_LOAD_BURST:
88 result = action_load_burst_par( &TC, queue_snd_id, time );
88 result = action_load_burst_par( &TC, queue_snd_id, time );
89 close_action( &TC, result, queue_snd_id );
89 close_action( &TC, result, queue_snd_id );
90 break;
90 break;
91 case TC_SUBTYPE_LOAD_SBM1:
91 case TC_SUBTYPE_LOAD_SBM1:
92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
93 close_action( &TC, result, queue_snd_id );
93 close_action( &TC, result, queue_snd_id );
94 break;
94 break;
95 case TC_SUBTYPE_LOAD_SBM2:
95 case TC_SUBTYPE_LOAD_SBM2:
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
97 close_action( &TC, result, queue_snd_id );
97 close_action( &TC, result, queue_snd_id );
98 break;
98 break;
99 case TC_SUBTYPE_DUMP:
99 case TC_SUBTYPE_DUMP:
100 result = action_dump_par( &TC, queue_snd_id );
100 result = action_dump_par( &TC, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
102 break;
103 case TC_SUBTYPE_ENTER:
103 case TC_SUBTYPE_ENTER:
104 result = action_enter_mode( &TC, queue_snd_id );
104 result = action_enter_mode( &TC, queue_snd_id );
105 close_action( &TC, result, queue_snd_id );
105 close_action( &TC, result, queue_snd_id );
106 break;
106 break;
107 case TC_SUBTYPE_UPDT_INFO:
107 case TC_SUBTYPE_UPDT_INFO:
108 result = action_update_info( &TC, queue_snd_id );
108 result = action_update_info( &TC, queue_snd_id );
109 close_action( &TC, result, queue_snd_id );
109 close_action( &TC, result, queue_snd_id );
110 break;
110 break;
111 case TC_SUBTYPE_EN_CAL:
111 case TC_SUBTYPE_EN_CAL:
112 result = action_enable_calibration( &TC, queue_snd_id, time );
112 result = action_enable_calibration( &TC, queue_snd_id, time );
113 close_action( &TC, result, queue_snd_id );
113 close_action( &TC, result, queue_snd_id );
114 break;
114 break;
115 case TC_SUBTYPE_DIS_CAL:
115 case TC_SUBTYPE_DIS_CAL:
116 result = action_disable_calibration( &TC, queue_snd_id, time );
116 result = action_disable_calibration( &TC, queue_snd_id, time );
117 close_action( &TC, result, queue_snd_id );
117 close_action( &TC, result, queue_snd_id );
118 break;
118 break;
119 case TC_SUBTYPE_LOAD_K:
119 case TC_SUBTYPE_LOAD_K:
120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
121 close_action( &TC, result, queue_snd_id );
122 break;
122 break;
123 case TC_SUBTYPE_DUMP_K:
123 case TC_SUBTYPE_DUMP_K:
124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
125 close_action( &TC, result, queue_snd_id );
125 close_action( &TC, result, queue_snd_id );
126 break;
126 break;
127 case TC_SUBTYPE_LOAD_FBINS:
127 case TC_SUBTYPE_LOAD_FBINS:
128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
129 close_action( &TC, result, queue_snd_id );
129 close_action( &TC, result, queue_snd_id );
130 break;
130 break;
131 case TC_SUBTYPE_LOAD_FILTER_PAR:
131 case TC_SUBTYPE_LOAD_FILTER_PAR:
132 result = action_load_filter_par( &TC, queue_snd_id, time );
132 result = action_load_filter_par( &TC, queue_snd_id, time );
133 close_action( &TC, result, queue_snd_id );
133 close_action( &TC, result, queue_snd_id );
134 break;
134 break;
135 case TC_SUBTYPE_UPDT_TIME:
135 case TC_SUBTYPE_UPDT_TIME:
136 result = action_update_time( &TC );
136 result = action_update_time( &TC );
137 close_action( &TC, result, queue_snd_id );
137 close_action( &TC, result, queue_snd_id );
138 break;
138 break;
139 default:
139 default:
140 break;
140 break;
141 }
141 }
142 }
142 }
143 }
143 }
144 }
144 }
145
145
146 //***********
146 //***********
147 // TC ACTIONS
147 // TC ACTIONS
148
148
149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
150 {
150 {
151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
152 *
152 *
153 * @param TC points to the TeleCommand packet that is being processed
153 * @param TC points to the TeleCommand packet that is being processed
154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
155 *
155 *
156 */
156 */
157
157
158 PRINTF("this is the end!!!\n");
158 PRINTF("this is the end!!!\n");
159 exit(0);
159 exit(0);
160
160
161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
162
162
163 return LFR_DEFAULT;
163 return LFR_DEFAULT;
164 }
164 }
165
165
166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
167 {
167 {
168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
169 *
169 *
170 * @param TC points to the TeleCommand packet that is being processed
170 * @param TC points to the TeleCommand packet that is being processed
171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
172 *
172 *
173 */
173 */
174
174
175 rtems_status_code status;
175 rtems_status_code status;
176 unsigned char requestedMode;
176 unsigned char requestedMode;
177 unsigned int transitionCoarseTime;
177 unsigned int transitionCoarseTime;
178 unsigned char * bytePosPtr;
178 unsigned char * bytePosPtr;
179
179
180 printf("(0)\n");
181 bytePosPtr = (unsigned char *) &TC->packetID;
180 bytePosPtr = (unsigned char *) &TC->packetID;
182 printf("(1)\n");
183 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
181 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
184 printf("(2)\n");
185 copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
182 copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
186 printf("(3)\n");
187 transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK;
183 transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK;
188 printf("(4)\n");
189 status = check_mode_value( requestedMode );
184 status = check_mode_value( requestedMode );
190 printf("(5)\n");
191
185
192 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
186 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
193 {
187 {
194 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
188 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
195 }
189 }
196
190
197 else // the mode value is valid, check the transition
191 else // the mode value is valid, check the transition
198 {
192 {
199 status = check_mode_transition(requestedMode);
193 status = check_mode_transition(requestedMode);
200 if (status != LFR_SUCCESSFUL)
194 if (status != LFR_SUCCESSFUL)
201 {
195 {
202 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
196 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
203 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
197 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
204 }
198 }
205 }
199 }
206
200
207 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
201 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
208 {
202 {
209 status = check_transition_date( transitionCoarseTime );
203 status = check_transition_date( transitionCoarseTime );
210 if (status != LFR_SUCCESSFUL)
204 if (status != LFR_SUCCESSFUL)
211 {
205 {
212 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
206 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
213 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
207 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
214 }
208 }
215 }
209 }
216
210
217 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
211 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
218 {
212 {
219 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
213 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
220
214
221 switch(requestedMode)
215 switch(requestedMode)
222 {
216 {
223 case LFR_MODE_STANDBY:
217 case LFR_MODE_STANDBY:
224 status = enter_mode_standby();
218 status = enter_mode_standby();
225 break;
219 break;
226 case LFR_MODE_NORMAL:
220 case LFR_MODE_NORMAL:
227 status = enter_mode_normal( transitionCoarseTime );
221 status = enter_mode_normal( transitionCoarseTime );
228 break;
222 break;
229 case LFR_MODE_BURST:
223 case LFR_MODE_BURST:
230 status = enter_mode_burst( transitionCoarseTime );
224 status = enter_mode_burst( transitionCoarseTime );
231 break;
225 break;
232 case LFR_MODE_SBM1:
226 case LFR_MODE_SBM1:
233 status = enter_mode_sbm1( transitionCoarseTime );
227 status = enter_mode_sbm1( transitionCoarseTime );
234 break;
228 break;
235 case LFR_MODE_SBM2:
229 case LFR_MODE_SBM2:
236 status = enter_mode_sbm2( transitionCoarseTime );
230 status = enter_mode_sbm2( transitionCoarseTime );
237 break;
231 break;
238 default:
232 default:
239 break;
233 break;
240 }
234 }
241
235
242 if (status != RTEMS_SUCCESSFUL)
236 if (status != RTEMS_SUCCESSFUL)
243 {
237 {
244 status = LFR_EXE_ERROR;
238 status = LFR_EXE_ERROR;
245 }
239 }
246 }
240 }
247
241
248 return status;
242 return status;
249 }
243 }
250
244
251 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
245 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
252 {
246 {
253 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
247 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
254 *
248 *
255 * @param TC points to the TeleCommand packet that is being processed
249 * @param TC points to the TeleCommand packet that is being processed
256 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
250 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
257 *
251 *
258 * @return LFR directive status code:
252 * @return LFR directive status code:
259 * - LFR_DEFAULT
253 * - LFR_DEFAULT
260 * - LFR_SUCCESSFUL
254 * - LFR_SUCCESSFUL
261 *
255 *
262 */
256 */
263
257
264 unsigned int val;
258 unsigned int val;
265 int result;
259 int result;
266 unsigned int status;
260 unsigned int status;
267 unsigned char mode;
261 unsigned char mode;
268 unsigned char * bytePosPtr;
262 unsigned char * bytePosPtr;
269
263
270 bytePosPtr = (unsigned char *) &TC->packetID;
264 bytePosPtr = (unsigned char *) &TC->packetID;
271
265
272 // check LFR mode
266 // check LFR mode
273 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
267 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
274 status = check_update_info_hk_lfr_mode( mode );
268 status = check_update_info_hk_lfr_mode( mode );
275 if (status == LFR_SUCCESSFUL) // check TDS mode
269 if (status == LFR_SUCCESSFUL) // check TDS mode
276 {
270 {
277 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
271 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
278 status = check_update_info_hk_tds_mode( mode );
272 status = check_update_info_hk_tds_mode( mode );
279 }
273 }
280 if (status == LFR_SUCCESSFUL) // check THR mode
274 if (status == LFR_SUCCESSFUL) // check THR mode
281 {
275 {
282 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
276 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
283 status = check_update_info_hk_thr_mode( mode );
277 status = check_update_info_hk_thr_mode( mode );
284 }
278 }
285 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
279 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
286 {
280 {
287 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
281 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
288 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
282 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
289 val++;
283 val++;
290 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
284 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
291 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
285 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
292 }
286 }
293
287
294 // pa_bia_status_info
288 // pa_bia_status_info
295 // => pa_bia_mode_mux_set 3 bits
289 // => pa_bia_mode_mux_set 3 bits
296 // => pa_bia_mode_hv_enabled 1 bit
290 // => pa_bia_mode_hv_enabled 1 bit
297 // => pa_bia_mode_bias1_enabled 1 bit
291 // => pa_bia_mode_bias1_enabled 1 bit
298 // => pa_bia_mode_bias2_enabled 1 bit
292 // => pa_bia_mode_bias2_enabled 1 bit
299 // => pa_bia_mode_bias3_enabled 1 bit
293 // => pa_bia_mode_bias3_enabled 1 bit
300 // => pa_bia_on_off (cp_dpu_bias_on_off)
294 // => pa_bia_on_off (cp_dpu_bias_on_off)
301 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
295 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
302 pa_bia_status_info = pa_bia_status_info
296 pa_bia_status_info = pa_bia_status_info
303 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
297 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
304
298
305 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
299 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
306
300
307 //cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
301 //cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
308 getReactionWheelsFrequencies( TC );
302 getReactionWheelsFrequencies( TC );
309 set_hk_lfr_sc_rw_f_flags();
303 set_hk_lfr_sc_rw_f_flags();
310 build_sy_lfr_rw_masks();
304 build_sy_lfr_rw_masks();
311
305
312 // once the masks are built, they have to be merged with the fbins_mask
306 // once the masks are built, they have to be merged with the fbins_mask
313 merge_fbins_masks();
307 merge_fbins_masks();
314
308
315 result = status;
309 result = status;
316
310
317 return result;
311 return result;
318 }
312 }
319
313
320 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
321 {
315 {
322 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
316 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
323 *
317 *
324 * @param TC points to the TeleCommand packet that is being processed
318 * @param TC points to the TeleCommand packet that is being processed
325 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
319 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
326 *
320 *
327 */
321 */
328
322
329 int result;
323 int result;
330
324
331 result = LFR_DEFAULT;
325 result = LFR_DEFAULT;
332
326
333 setCalibration( true );
327 setCalibration( true );
334
328
335 result = LFR_SUCCESSFUL;
329 result = LFR_SUCCESSFUL;
336
330
337 return result;
331 return result;
338 }
332 }
339
333
340 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
334 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
341 {
335 {
342 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
336 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
343 *
337 *
344 * @param TC points to the TeleCommand packet that is being processed
338 * @param TC points to the TeleCommand packet that is being processed
345 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
339 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
346 *
340 *
347 */
341 */
348
342
349 int result;
343 int result;
350
344
351 result = LFR_DEFAULT;
345 result = LFR_DEFAULT;
352
346
353 setCalibration( false );
347 setCalibration( false );
354
348
355 result = LFR_SUCCESSFUL;
349 result = LFR_SUCCESSFUL;
356
350
357 return result;
351 return result;
358 }
352 }
359
353
360 int action_update_time(ccsdsTelecommandPacket_t *TC)
354 int action_update_time(ccsdsTelecommandPacket_t *TC)
361 {
355 {
362 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
356 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
363 *
357 *
364 * @param TC points to the TeleCommand packet that is being processed
358 * @param TC points to the TeleCommand packet that is being processed
365 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
359 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
366 *
360 *
367 * @return LFR_SUCCESSFUL
361 * @return LFR_SUCCESSFUL
368 *
362 *
369 */
363 */
370
364
371 unsigned int val;
365 unsigned int val;
372
366
373 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
367 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
374 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
368 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
375 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
369 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
376 + TC->dataAndCRC[BYTE_3];
370 + TC->dataAndCRC[BYTE_3];
377
371
378 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
372 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
379 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
373 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
380 val++;
374 val++;
381 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
375 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
382 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
376 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
383
377
384 oneTcLfrUpdateTimeReceived = 1;
378 oneTcLfrUpdateTimeReceived = 1;
385
379
386 return LFR_SUCCESSFUL;
380 return LFR_SUCCESSFUL;
387 }
381 }
388
382
389 //*******************
383 //*******************
390 // ENTERING THE MODES
384 // ENTERING THE MODES
391 int check_mode_value( unsigned char requestedMode )
385 int check_mode_value( unsigned char requestedMode )
392 {
386 {
393 int status;
387 int status;
394
388
395 status = LFR_DEFAULT;
389 status = LFR_DEFAULT;
396
390
397 if ( (requestedMode != LFR_MODE_STANDBY)
391 if ( (requestedMode != LFR_MODE_STANDBY)
398 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
392 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
399 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
393 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
400 {
394 {
401 status = LFR_DEFAULT;
395 status = LFR_DEFAULT;
402 }
396 }
403 else
397 else
404 {
398 {
405 status = LFR_SUCCESSFUL;
399 status = LFR_SUCCESSFUL;
406 }
400 }
407
401
408 return status;
402 return status;
409 }
403 }
410
404
411 int check_mode_transition( unsigned char requestedMode )
405 int check_mode_transition( unsigned char requestedMode )
412 {
406 {
413 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
407 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
414 *
408 *
415 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
409 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
416 *
410 *
417 * @return LFR directive status codes:
411 * @return LFR directive status codes:
418 * - LFR_SUCCESSFUL - the transition is authorized
412 * - LFR_SUCCESSFUL - the transition is authorized
419 * - LFR_DEFAULT - the transition is not authorized
413 * - LFR_DEFAULT - the transition is not authorized
420 *
414 *
421 */
415 */
422
416
423 int status;
417 int status;
424
418
425 switch (requestedMode)
419 switch (requestedMode)
426 {
420 {
427 case LFR_MODE_STANDBY:
421 case LFR_MODE_STANDBY:
428 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
422 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
429 status = LFR_DEFAULT;
423 status = LFR_DEFAULT;
430 }
424 }
431 else
425 else
432 {
426 {
433 status = LFR_SUCCESSFUL;
427 status = LFR_SUCCESSFUL;
434 }
428 }
435 break;
429 break;
436 case LFR_MODE_NORMAL:
430 case LFR_MODE_NORMAL:
437 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
431 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
438 status = LFR_DEFAULT;
432 status = LFR_DEFAULT;
439 }
433 }
440 else {
434 else {
441 status = LFR_SUCCESSFUL;
435 status = LFR_SUCCESSFUL;
442 }
436 }
443 break;
437 break;
444 case LFR_MODE_BURST:
438 case LFR_MODE_BURST:
445 if ( lfrCurrentMode == LFR_MODE_BURST ) {
439 if ( lfrCurrentMode == LFR_MODE_BURST ) {
446 status = LFR_DEFAULT;
440 status = LFR_DEFAULT;
447 }
441 }
448 else {
442 else {
449 status = LFR_SUCCESSFUL;
443 status = LFR_SUCCESSFUL;
450 }
444 }
451 break;
445 break;
452 case LFR_MODE_SBM1:
446 case LFR_MODE_SBM1:
453 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
447 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
454 status = LFR_DEFAULT;
448 status = LFR_DEFAULT;
455 }
449 }
456 else {
450 else {
457 status = LFR_SUCCESSFUL;
451 status = LFR_SUCCESSFUL;
458 }
452 }
459 break;
453 break;
460 case LFR_MODE_SBM2:
454 case LFR_MODE_SBM2:
461 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
455 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
462 status = LFR_DEFAULT;
456 status = LFR_DEFAULT;
463 }
457 }
464 else {
458 else {
465 status = LFR_SUCCESSFUL;
459 status = LFR_SUCCESSFUL;
466 }
460 }
467 break;
461 break;
468 default:
462 default:
469 status = LFR_DEFAULT;
463 status = LFR_DEFAULT;
470 break;
464 break;
471 }
465 }
472
466
473 return status;
467 return status;
474 }
468 }
475
469
476 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
470 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
477 {
471 {
478 if (transitionCoarseTime == 0)
472 if (transitionCoarseTime == 0)
479 {
473 {
480 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
474 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
481 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
475 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
482 }
476 }
483 else
477 else
484 {
478 {
485 lastValidEnterModeTime = transitionCoarseTime;
479 lastValidEnterModeTime = transitionCoarseTime;
486 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
480 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
487 }
481 }
488 }
482 }
489
483
490 int check_transition_date( unsigned int transitionCoarseTime )
484 int check_transition_date( unsigned int transitionCoarseTime )
491 {
485 {
492 int status;
486 int status;
493 unsigned int localCoarseTime;
487 unsigned int localCoarseTime;
494 unsigned int deltaCoarseTime;
488 unsigned int deltaCoarseTime;
495
489
496 status = LFR_SUCCESSFUL;
490 status = LFR_SUCCESSFUL;
497
491
498 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
492 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
499 {
493 {
500 status = LFR_SUCCESSFUL;
494 status = LFR_SUCCESSFUL;
501 }
495 }
502 else
496 else
503 {
497 {
504 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
498 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
505
499
506 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
500 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
507
501
508 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
502 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
509 {
503 {
510 status = LFR_DEFAULT;
504 status = LFR_DEFAULT;
511 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
505 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
512 }
506 }
513
507
514 if (status == LFR_SUCCESSFUL)
508 if (status == LFR_SUCCESSFUL)
515 {
509 {
516 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
510 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
517 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
511 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
518 {
512 {
519 status = LFR_DEFAULT;
513 status = LFR_DEFAULT;
520 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
514 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
521 }
515 }
522 }
516 }
523 }
517 }
524
518
525 return status;
519 return status;
526 }
520 }
527
521
528 int restart_asm_activities( unsigned char lfrRequestedMode )
522 int restart_asm_activities( unsigned char lfrRequestedMode )
529 {
523 {
530 rtems_status_code status;
524 rtems_status_code status;
531
525
532 status = stop_spectral_matrices();
526 status = stop_spectral_matrices();
533
527
534 thisIsAnASMRestart = 1;
528 thisIsAnASMRestart = 1;
535
529
536 status = restart_asm_tasks( lfrRequestedMode );
530 status = restart_asm_tasks( lfrRequestedMode );
537
531
538 launch_spectral_matrix();
532 launch_spectral_matrix();
539
533
540 return status;
534 return status;
541 }
535 }
542
536
543 int stop_spectral_matrices( void )
537 int stop_spectral_matrices( void )
544 {
538 {
545 /** This function stops and restarts the current mode average spectral matrices activities.
539 /** This function stops and restarts the current mode average spectral matrices activities.
546 *
540 *
547 * @return RTEMS directive status codes:
541 * @return RTEMS directive status codes:
548 * - RTEMS_SUCCESSFUL - task restarted successfully
542 * - RTEMS_SUCCESSFUL - task restarted successfully
549 * - RTEMS_INVALID_ID - task id invalid
543 * - RTEMS_INVALID_ID - task id invalid
550 * - RTEMS_ALREADY_SUSPENDED - task already suspended
544 * - RTEMS_ALREADY_SUSPENDED - task already suspended
551 *
545 *
552 */
546 */
553
547
554 rtems_status_code status;
548 rtems_status_code status;
555
549
556 status = RTEMS_SUCCESSFUL;
550 status = RTEMS_SUCCESSFUL;
557
551
558 // (1) mask interruptions
552 // (1) mask interruptions
559 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
553 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
560
554
561 // (2) reset spectral matrices registers
555 // (2) reset spectral matrices registers
562 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
556 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
563 reset_sm_status();
557 reset_sm_status();
564
558
565 // (3) clear interruptions
559 // (3) clear interruptions
566 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
560 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
567
561
568 // suspend several tasks
562 // suspend several tasks
569 if (lfrCurrentMode != LFR_MODE_STANDBY) {
563 if (lfrCurrentMode != LFR_MODE_STANDBY) {
570 status = suspend_asm_tasks();
564 status = suspend_asm_tasks();
571 }
565 }
572
566
573 if (status != RTEMS_SUCCESSFUL)
567 if (status != RTEMS_SUCCESSFUL)
574 {
568 {
575 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
569 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
576 }
570 }
577
571
578 return status;
572 return status;
579 }
573 }
580
574
581 int stop_current_mode( void )
575 int stop_current_mode( void )
582 {
576 {
583 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
577 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
584 *
578 *
585 * @return RTEMS directive status codes:
579 * @return RTEMS directive status codes:
586 * - RTEMS_SUCCESSFUL - task restarted successfully
580 * - RTEMS_SUCCESSFUL - task restarted successfully
587 * - RTEMS_INVALID_ID - task id invalid
581 * - RTEMS_INVALID_ID - task id invalid
588 * - RTEMS_ALREADY_SUSPENDED - task already suspended
582 * - RTEMS_ALREADY_SUSPENDED - task already suspended
589 *
583 *
590 */
584 */
591
585
592 rtems_status_code status;
586 rtems_status_code status;
593
587
594 status = RTEMS_SUCCESSFUL;
588 status = RTEMS_SUCCESSFUL;
595
589
596 // (1) mask interruptions
590 // (1) mask interruptions
597 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
591 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
598 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
592 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
599
593
600 // (2) reset waveform picker registers
594 // (2) reset waveform picker registers
601 reset_wfp_burst_enable(); // reset burst and enable bits
595 reset_wfp_burst_enable(); // reset burst and enable bits
602 reset_wfp_status(); // reset all the status bits
596 reset_wfp_status(); // reset all the status bits
603
597
604 // (3) reset spectral matrices registers
598 // (3) reset spectral matrices registers
605 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
599 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
606 reset_sm_status();
600 reset_sm_status();
607
601
608 // reset lfr VHDL module
602 // reset lfr VHDL module
609 reset_lfr();
603 reset_lfr();
610
604
611 reset_extractSWF(); // reset the extractSWF flag to false
605 reset_extractSWF(); // reset the extractSWF flag to false
612
606
613 // (4) clear interruptions
607 // (4) clear interruptions
614 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
608 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
615 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
609 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
616
610
617 // suspend several tasks
611 // suspend several tasks
618 if (lfrCurrentMode != LFR_MODE_STANDBY) {
612 if (lfrCurrentMode != LFR_MODE_STANDBY) {
619 status = suspend_science_tasks();
613 status = suspend_science_tasks();
620 }
614 }
621
615
622 if (status != RTEMS_SUCCESSFUL)
616 if (status != RTEMS_SUCCESSFUL)
623 {
617 {
624 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
618 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
625 }
619 }
626
620
627 return status;
621 return status;
628 }
622 }
629
623
630 int enter_mode_standby( void )
624 int enter_mode_standby( void )
631 {
625 {
632 /** This function is used to put LFR in the STANDBY mode.
626 /** This function is used to put LFR in the STANDBY mode.
633 *
627 *
634 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
628 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
635 *
629 *
636 * @return RTEMS directive status codes:
630 * @return RTEMS directive status codes:
637 * - RTEMS_SUCCESSFUL - task restarted successfully
631 * - RTEMS_SUCCESSFUL - task restarted successfully
638 * - RTEMS_INVALID_ID - task id invalid
632 * - RTEMS_INVALID_ID - task id invalid
639 * - RTEMS_INCORRECT_STATE - task never started
633 * - RTEMS_INCORRECT_STATE - task never started
640 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
634 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
641 *
635 *
642 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
636 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
643 * is immediate.
637 * is immediate.
644 *
638 *
645 */
639 */
646
640
647 int status;
641 int status;
648
642
649 status = stop_current_mode(); // STOP THE CURRENT MODE
643 status = stop_current_mode(); // STOP THE CURRENT MODE
650
644
651 #ifdef PRINT_TASK_STATISTICS
645 #ifdef PRINT_TASK_STATISTICS
652 rtems_cpu_usage_report();
646 rtems_cpu_usage_report();
653 #endif
647 #endif
654
648
655 #ifdef PRINT_STACK_REPORT
649 #ifdef PRINT_STACK_REPORT
656 PRINTF("stack report selected\n")
650 PRINTF("stack report selected\n")
657 rtems_stack_checker_report_usage();
651 rtems_stack_checker_report_usage();
658 #endif
652 #endif
659
653
660 return status;
654 return status;
661 }
655 }
662
656
663 int enter_mode_normal( unsigned int transitionCoarseTime )
657 int enter_mode_normal( unsigned int transitionCoarseTime )
664 {
658 {
665 /** This function is used to start the NORMAL mode.
659 /** This function is used to start the NORMAL mode.
666 *
660 *
667 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
661 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
668 *
662 *
669 * @return RTEMS directive status codes:
663 * @return RTEMS directive status codes:
670 * - RTEMS_SUCCESSFUL - task restarted successfully
664 * - RTEMS_SUCCESSFUL - task restarted successfully
671 * - RTEMS_INVALID_ID - task id invalid
665 * - RTEMS_INVALID_ID - task id invalid
672 * - RTEMS_INCORRECT_STATE - task never started
666 * - RTEMS_INCORRECT_STATE - task never started
673 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
667 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
674 *
668 *
675 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
669 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
676 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
670 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
677 *
671 *
678 */
672 */
679
673
680 int status;
674 int status;
681
675
682 #ifdef PRINT_TASK_STATISTICS
676 #ifdef PRINT_TASK_STATISTICS
683 rtems_cpu_usage_reset();
677 rtems_cpu_usage_reset();
684 #endif
678 #endif
685
679
686 status = RTEMS_UNSATISFIED;
680 status = RTEMS_UNSATISFIED;
687
681
688 printf("hop\n");
689
690 switch( lfrCurrentMode )
682 switch( lfrCurrentMode )
691 {
683 {
692 case LFR_MODE_STANDBY:
684 case LFR_MODE_STANDBY:
693 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
685 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
694 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
686 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
695 {
687 {
696 launch_spectral_matrix( );
688 launch_spectral_matrix( );
697 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
689 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
698 }
690 }
699 break;
691 break;
700 case LFR_MODE_BURST:
692 case LFR_MODE_BURST:
701 status = stop_current_mode(); // stop the current mode
693 status = stop_current_mode(); // stop the current mode
702 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
694 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
703 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
695 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
704 {
696 {
705 launch_spectral_matrix( );
697 launch_spectral_matrix( );
706 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
698 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
707 }
699 }
708 break;
700 break;
709 case LFR_MODE_SBM1:
701 case LFR_MODE_SBM1:
710 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
702 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
711 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
703 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
712 update_last_valid_transition_date( transitionCoarseTime );
704 update_last_valid_transition_date( transitionCoarseTime );
713 break;
705 break;
714 case LFR_MODE_SBM2:
706 case LFR_MODE_SBM2:
715 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
707 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
716 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
708 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
717 update_last_valid_transition_date( transitionCoarseTime );
709 update_last_valid_transition_date( transitionCoarseTime );
718 break;
710 break;
719 default:
711 default:
720 break;
712 break;
721 }
713 }
722
714
723 if (status != RTEMS_SUCCESSFUL)
715 if (status != RTEMS_SUCCESSFUL)
724 {
716 {
725 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
717 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
726 status = RTEMS_UNSATISFIED;
718 status = RTEMS_UNSATISFIED;
727 }
719 }
728
720
729 return status;
721 return status;
730 }
722 }
731
723
732 int enter_mode_burst( unsigned int transitionCoarseTime )
724 int enter_mode_burst( unsigned int transitionCoarseTime )
733 {
725 {
734 /** This function is used to start the BURST mode.
726 /** This function is used to start the BURST mode.
735 *
727 *
736 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
728 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
737 *
729 *
738 * @return RTEMS directive status codes:
730 * @return RTEMS directive status codes:
739 * - RTEMS_SUCCESSFUL - task restarted successfully
731 * - RTEMS_SUCCESSFUL - task restarted successfully
740 * - RTEMS_INVALID_ID - task id invalid
732 * - RTEMS_INVALID_ID - task id invalid
741 * - RTEMS_INCORRECT_STATE - task never started
733 * - RTEMS_INCORRECT_STATE - task never started
742 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
734 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
743 *
735 *
744 * The way the BURST mode is started does not depend on the LFR current mode.
736 * The way the BURST mode is started does not depend on the LFR current mode.
745 *
737 *
746 */
738 */
747
739
748
740
749 int status;
741 int status;
750
742
751 #ifdef PRINT_TASK_STATISTICS
743 #ifdef PRINT_TASK_STATISTICS
752 rtems_cpu_usage_reset();
744 rtems_cpu_usage_reset();
753 #endif
745 #endif
754
746
755 status = stop_current_mode(); // stop the current mode
747 status = stop_current_mode(); // stop the current mode
756 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
748 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
757 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
749 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
758 {
750 {
759 launch_spectral_matrix( );
751 launch_spectral_matrix( );
760 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
752 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
761 }
753 }
762
754
763 if (status != RTEMS_SUCCESSFUL)
755 if (status != RTEMS_SUCCESSFUL)
764 {
756 {
765 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
757 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
766 status = RTEMS_UNSATISFIED;
758 status = RTEMS_UNSATISFIED;
767 }
759 }
768
760
769 return status;
761 return status;
770 }
762 }
771
763
772 int enter_mode_sbm1( unsigned int transitionCoarseTime )
764 int enter_mode_sbm1( unsigned int transitionCoarseTime )
773 {
765 {
774 /** This function is used to start the SBM1 mode.
766 /** This function is used to start the SBM1 mode.
775 *
767 *
776 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
768 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
777 *
769 *
778 * @return RTEMS directive status codes:
770 * @return RTEMS directive status codes:
779 * - RTEMS_SUCCESSFUL - task restarted successfully
771 * - RTEMS_SUCCESSFUL - task restarted successfully
780 * - RTEMS_INVALID_ID - task id invalid
772 * - RTEMS_INVALID_ID - task id invalid
781 * - RTEMS_INCORRECT_STATE - task never started
773 * - RTEMS_INCORRECT_STATE - task never started
782 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
774 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
783 *
775 *
784 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
776 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
785 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
777 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
786 * cases, the acquisition is completely restarted.
778 * cases, the acquisition is completely restarted.
787 *
779 *
788 */
780 */
789
781
790 int status;
782 int status;
791
783
792 #ifdef PRINT_TASK_STATISTICS
784 #ifdef PRINT_TASK_STATISTICS
793 rtems_cpu_usage_reset();
785 rtems_cpu_usage_reset();
794 #endif
786 #endif
795
787
796 status = RTEMS_UNSATISFIED;
788 status = RTEMS_UNSATISFIED;
797
789
798 switch( lfrCurrentMode )
790 switch( lfrCurrentMode )
799 {
791 {
800 case LFR_MODE_STANDBY:
792 case LFR_MODE_STANDBY:
801 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
793 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
802 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
794 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
803 {
795 {
804 launch_spectral_matrix( );
796 launch_spectral_matrix( );
805 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
797 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
806 }
798 }
807 break;
799 break;
808 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
800 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
809 status = restart_asm_activities( LFR_MODE_SBM1 );
801 status = restart_asm_activities( LFR_MODE_SBM1 );
810 status = LFR_SUCCESSFUL;
802 status = LFR_SUCCESSFUL;
811 update_last_valid_transition_date( transitionCoarseTime );
803 update_last_valid_transition_date( transitionCoarseTime );
812 break;
804 break;
813 case LFR_MODE_BURST:
805 case LFR_MODE_BURST:
814 status = stop_current_mode(); // stop the current mode
806 status = stop_current_mode(); // stop the current mode
815 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
807 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
816 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
808 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
817 {
809 {
818 launch_spectral_matrix( );
810 launch_spectral_matrix( );
819 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
811 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
820 }
812 }
821 break;
813 break;
822 case LFR_MODE_SBM2:
814 case LFR_MODE_SBM2:
823 status = restart_asm_activities( LFR_MODE_SBM1 );
815 status = restart_asm_activities( LFR_MODE_SBM1 );
824 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
816 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
825 update_last_valid_transition_date( transitionCoarseTime );
817 update_last_valid_transition_date( transitionCoarseTime );
826 break;
818 break;
827 default:
819 default:
828 break;
820 break;
829 }
821 }
830
822
831 if (status != RTEMS_SUCCESSFUL)
823 if (status != RTEMS_SUCCESSFUL)
832 {
824 {
833 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
825 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
834 status = RTEMS_UNSATISFIED;
826 status = RTEMS_UNSATISFIED;
835 }
827 }
836
828
837 return status;
829 return status;
838 }
830 }
839
831
840 int enter_mode_sbm2( unsigned int transitionCoarseTime )
832 int enter_mode_sbm2( unsigned int transitionCoarseTime )
841 {
833 {
842 /** This function is used to start the SBM2 mode.
834 /** This function is used to start the SBM2 mode.
843 *
835 *
844 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
836 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
845 *
837 *
846 * @return RTEMS directive status codes:
838 * @return RTEMS directive status codes:
847 * - RTEMS_SUCCESSFUL - task restarted successfully
839 * - RTEMS_SUCCESSFUL - task restarted successfully
848 * - RTEMS_INVALID_ID - task id invalid
840 * - RTEMS_INVALID_ID - task id invalid
849 * - RTEMS_INCORRECT_STATE - task never started
841 * - RTEMS_INCORRECT_STATE - task never started
850 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
842 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
851 *
843 *
852 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
844 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
853 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
845 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
854 * cases, the acquisition is completely restarted.
846 * cases, the acquisition is completely restarted.
855 *
847 *
856 */
848 */
857
849
858 int status;
850 int status;
859
851
860 #ifdef PRINT_TASK_STATISTICS
852 #ifdef PRINT_TASK_STATISTICS
861 rtems_cpu_usage_reset();
853 rtems_cpu_usage_reset();
862 #endif
854 #endif
863
855
864 status = RTEMS_UNSATISFIED;
856 status = RTEMS_UNSATISFIED;
865
857
866 switch( lfrCurrentMode )
858 switch( lfrCurrentMode )
867 {
859 {
868 case LFR_MODE_STANDBY:
860 case LFR_MODE_STANDBY:
869 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
861 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
870 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
862 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
871 {
863 {
872 launch_spectral_matrix( );
864 launch_spectral_matrix( );
873 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
865 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
874 }
866 }
875 break;
867 break;
876 case LFR_MODE_NORMAL:
868 case LFR_MODE_NORMAL:
877 status = restart_asm_activities( LFR_MODE_SBM2 );
869 status = restart_asm_activities( LFR_MODE_SBM2 );
878 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
870 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
879 update_last_valid_transition_date( transitionCoarseTime );
871 update_last_valid_transition_date( transitionCoarseTime );
880 break;
872 break;
881 case LFR_MODE_BURST:
873 case LFR_MODE_BURST:
882 status = stop_current_mode(); // stop the current mode
874 status = stop_current_mode(); // stop the current mode
883 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
875 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
884 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
876 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
885 {
877 {
886 launch_spectral_matrix( );
878 launch_spectral_matrix( );
887 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
879 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
888 }
880 }
889 break;
881 break;
890 case LFR_MODE_SBM1:
882 case LFR_MODE_SBM1:
891 status = restart_asm_activities( LFR_MODE_SBM2 );
883 status = restart_asm_activities( LFR_MODE_SBM2 );
892 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
884 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
893 update_last_valid_transition_date( transitionCoarseTime );
885 update_last_valid_transition_date( transitionCoarseTime );
894 break;
886 break;
895 default:
887 default:
896 break;
888 break;
897 }
889 }
898
890
899 if (status != RTEMS_SUCCESSFUL)
891 if (status != RTEMS_SUCCESSFUL)
900 {
892 {
901 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
893 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
902 status = RTEMS_UNSATISFIED;
894 status = RTEMS_UNSATISFIED;
903 }
895 }
904
896
905 return status;
897 return status;
906 }
898 }
907
899
908 int restart_science_tasks( unsigned char lfrRequestedMode )
900 int restart_science_tasks( unsigned char lfrRequestedMode )
909 {
901 {
910 /** This function is used to restart all science tasks.
902 /** This function is used to restart all science tasks.
911 *
903 *
912 * @return RTEMS directive status codes:
904 * @return RTEMS directive status codes:
913 * - RTEMS_SUCCESSFUL - task restarted successfully
905 * - RTEMS_SUCCESSFUL - task restarted successfully
914 * - RTEMS_INVALID_ID - task id invalid
906 * - RTEMS_INVALID_ID - task id invalid
915 * - RTEMS_INCORRECT_STATE - task never started
907 * - RTEMS_INCORRECT_STATE - task never started
916 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
908 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
917 *
909 *
918 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
910 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
919 *
911 *
920 */
912 */
921
913
922 rtems_status_code status[NB_SCIENCE_TASKS];
914 rtems_status_code status[NB_SCIENCE_TASKS];
923 rtems_status_code ret;
915 rtems_status_code ret;
924
916
925 ret = RTEMS_SUCCESSFUL;
917 ret = RTEMS_SUCCESSFUL;
926
918
927 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
919 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
928 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
920 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
929 {
921 {
930 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
922 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
931 }
923 }
932
924
933 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
925 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
934 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
926 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
935 {
927 {
936 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
928 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
937 }
929 }
938
930
939 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
931 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
940 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
932 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
941 {
933 {
942 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
934 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
943 }
935 }
944
936
945 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
937 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
946 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
938 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
947 {
939 {
948 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
940 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
949 }
941 }
950
942
951 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
943 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
952 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
944 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
953 {
945 {
954 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
946 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
955 }
947 }
956
948
957 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
949 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
958 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
950 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
959 {
951 {
960 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
952 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
961 }
953 }
962
954
963 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
955 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
964 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
956 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
965 {
957 {
966 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
958 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
967 }
959 }
968
960
969 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
961 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
970 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
962 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
971 {
963 {
972 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
964 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
973 }
965 }
974
966
975 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
967 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
976 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
968 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
977 {
969 {
978 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
970 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
979 }
971 }
980
972
981 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
973 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
982 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
974 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
983 {
975 {
984 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
976 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
985 }
977 }
986
978
987 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
979 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
988 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
980 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
989 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
981 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
990 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
982 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
991 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
983 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
992 {
984 {
993 ret = RTEMS_UNSATISFIED;
985 ret = RTEMS_UNSATISFIED;
994 }
986 }
995
987
996 return ret;
988 return ret;
997 }
989 }
998
990
999 int restart_asm_tasks( unsigned char lfrRequestedMode )
991 int restart_asm_tasks( unsigned char lfrRequestedMode )
1000 {
992 {
1001 /** This function is used to restart average spectral matrices tasks.
993 /** This function is used to restart average spectral matrices tasks.
1002 *
994 *
1003 * @return RTEMS directive status codes:
995 * @return RTEMS directive status codes:
1004 * - RTEMS_SUCCESSFUL - task restarted successfully
996 * - RTEMS_SUCCESSFUL - task restarted successfully
1005 * - RTEMS_INVALID_ID - task id invalid
997 * - RTEMS_INVALID_ID - task id invalid
1006 * - RTEMS_INCORRECT_STATE - task never started
998 * - RTEMS_INCORRECT_STATE - task never started
1007 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
999 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
1008 *
1000 *
1009 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
1001 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
1010 *
1002 *
1011 */
1003 */
1012
1004
1013 rtems_status_code status[NB_ASM_TASKS];
1005 rtems_status_code status[NB_ASM_TASKS];
1014 rtems_status_code ret;
1006 rtems_status_code ret;
1015
1007
1016 ret = RTEMS_SUCCESSFUL;
1008 ret = RTEMS_SUCCESSFUL;
1017
1009
1018 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1010 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1019 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1011 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1020 {
1012 {
1021 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1013 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1022 }
1014 }
1023
1015
1024 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1016 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1025 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1017 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1026 {
1018 {
1027 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1019 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1028 }
1020 }
1029
1021
1030 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1022 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1031 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1023 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1032 {
1024 {
1033 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1025 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1034 }
1026 }
1035
1027
1036 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1028 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1037 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1029 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1038 {
1030 {
1039 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1031 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1040 }
1032 }
1041
1033
1042 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1034 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1043 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1035 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1044 {
1036 {
1045 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1037 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1046 }
1038 }
1047
1039
1048 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1040 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1049 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1041 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1050 {
1042 {
1051 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1043 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1052 }
1044 }
1053
1045
1054 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1046 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1055 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1047 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1056 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1048 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1057 {
1049 {
1058 ret = RTEMS_UNSATISFIED;
1050 ret = RTEMS_UNSATISFIED;
1059 }
1051 }
1060
1052
1061 return ret;
1053 return ret;
1062 }
1054 }
1063
1055
1064 int suspend_science_tasks( void )
1056 int suspend_science_tasks( void )
1065 {
1057 {
1066 /** This function suspends the science tasks.
1058 /** This function suspends the science tasks.
1067 *
1059 *
1068 * @return RTEMS directive status codes:
1060 * @return RTEMS directive status codes:
1069 * - RTEMS_SUCCESSFUL - task restarted successfully
1061 * - RTEMS_SUCCESSFUL - task restarted successfully
1070 * - RTEMS_INVALID_ID - task id invalid
1062 * - RTEMS_INVALID_ID - task id invalid
1071 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1063 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1072 *
1064 *
1073 */
1065 */
1074
1066
1075 rtems_status_code status;
1067 rtems_status_code status;
1076
1068
1077 PRINTF("in suspend_science_tasks\n")
1069 PRINTF("in suspend_science_tasks\n")
1078
1070
1079 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1071 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1080 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1072 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1081 {
1073 {
1082 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1074 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1083 }
1075 }
1084 else
1076 else
1085 {
1077 {
1086 status = RTEMS_SUCCESSFUL;
1078 status = RTEMS_SUCCESSFUL;
1087 }
1079 }
1088 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1080 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1089 {
1081 {
1090 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1082 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1091 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1083 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1092 {
1084 {
1093 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1085 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1094 }
1086 }
1095 else
1087 else
1096 {
1088 {
1097 status = RTEMS_SUCCESSFUL;
1089 status = RTEMS_SUCCESSFUL;
1098 }
1090 }
1099 }
1091 }
1100 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1092 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1101 {
1093 {
1102 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1094 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1103 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1095 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1104 {
1096 {
1105 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1097 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1106 }
1098 }
1107 else
1099 else
1108 {
1100 {
1109 status = RTEMS_SUCCESSFUL;
1101 status = RTEMS_SUCCESSFUL;
1110 }
1102 }
1111 }
1103 }
1112 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1104 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1113 {
1105 {
1114 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1106 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1115 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1107 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1116 {
1108 {
1117 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1109 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1118 }
1110 }
1119 else
1111 else
1120 {
1112 {
1121 status = RTEMS_SUCCESSFUL;
1113 status = RTEMS_SUCCESSFUL;
1122 }
1114 }
1123 }
1115 }
1124 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1116 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1125 {
1117 {
1126 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1118 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1127 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1119 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1128 {
1120 {
1129 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1121 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1130 }
1122 }
1131 else
1123 else
1132 {
1124 {
1133 status = RTEMS_SUCCESSFUL;
1125 status = RTEMS_SUCCESSFUL;
1134 }
1126 }
1135 }
1127 }
1136 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1128 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1137 {
1129 {
1138 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1130 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1139 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1131 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1140 {
1132 {
1141 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1133 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1142 }
1134 }
1143 else
1135 else
1144 {
1136 {
1145 status = RTEMS_SUCCESSFUL;
1137 status = RTEMS_SUCCESSFUL;
1146 }
1138 }
1147 }
1139 }
1148 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1140 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1149 {
1141 {
1150 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1142 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1151 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1143 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1152 {
1144 {
1153 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1145 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1154 }
1146 }
1155 else
1147 else
1156 {
1148 {
1157 status = RTEMS_SUCCESSFUL;
1149 status = RTEMS_SUCCESSFUL;
1158 }
1150 }
1159 }
1151 }
1160 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1152 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1161 {
1153 {
1162 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1154 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1163 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1155 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1164 {
1156 {
1165 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1157 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1166 }
1158 }
1167 else
1159 else
1168 {
1160 {
1169 status = RTEMS_SUCCESSFUL;
1161 status = RTEMS_SUCCESSFUL;
1170 }
1162 }
1171 }
1163 }
1172 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1164 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1173 {
1165 {
1174 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1166 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1175 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1167 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1176 {
1168 {
1177 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1169 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1178 }
1170 }
1179 else
1171 else
1180 {
1172 {
1181 status = RTEMS_SUCCESSFUL;
1173 status = RTEMS_SUCCESSFUL;
1182 }
1174 }
1183 }
1175 }
1184 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1176 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1185 {
1177 {
1186 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1178 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1187 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1179 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1188 {
1180 {
1189 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1181 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1190 }
1182 }
1191 else
1183 else
1192 {
1184 {
1193 status = RTEMS_SUCCESSFUL;
1185 status = RTEMS_SUCCESSFUL;
1194 }
1186 }
1195 }
1187 }
1196
1188
1197 return status;
1189 return status;
1198 }
1190 }
1199
1191
1200 int suspend_asm_tasks( void )
1192 int suspend_asm_tasks( void )
1201 {
1193 {
1202 /** This function suspends the science tasks.
1194 /** This function suspends the science tasks.
1203 *
1195 *
1204 * @return RTEMS directive status codes:
1196 * @return RTEMS directive status codes:
1205 * - RTEMS_SUCCESSFUL - task restarted successfully
1197 * - RTEMS_SUCCESSFUL - task restarted successfully
1206 * - RTEMS_INVALID_ID - task id invalid
1198 * - RTEMS_INVALID_ID - task id invalid
1207 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1199 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1208 *
1200 *
1209 */
1201 */
1210
1202
1211 rtems_status_code status;
1203 rtems_status_code status;
1212
1204
1213 PRINTF("in suspend_science_tasks\n")
1205 PRINTF("in suspend_science_tasks\n")
1214
1206
1215 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1207 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1216 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1208 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1217 {
1209 {
1218 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1210 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1219 }
1211 }
1220 else
1212 else
1221 {
1213 {
1222 status = RTEMS_SUCCESSFUL;
1214 status = RTEMS_SUCCESSFUL;
1223 }
1215 }
1224
1216
1225 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1217 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1226 {
1218 {
1227 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1219 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1228 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1220 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1229 {
1221 {
1230 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1222 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1231 }
1223 }
1232 else
1224 else
1233 {
1225 {
1234 status = RTEMS_SUCCESSFUL;
1226 status = RTEMS_SUCCESSFUL;
1235 }
1227 }
1236 }
1228 }
1237
1229
1238 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1230 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1239 {
1231 {
1240 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1232 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1241 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1233 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1242 {
1234 {
1243 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1235 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1244 }
1236 }
1245 else
1237 else
1246 {
1238 {
1247 status = RTEMS_SUCCESSFUL;
1239 status = RTEMS_SUCCESSFUL;
1248 }
1240 }
1249 }
1241 }
1250
1242
1251 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1243 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1252 {
1244 {
1253 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1245 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1254 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1246 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1255 {
1247 {
1256 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1248 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1257 }
1249 }
1258 else
1250 else
1259 {
1251 {
1260 status = RTEMS_SUCCESSFUL;
1252 status = RTEMS_SUCCESSFUL;
1261 }
1253 }
1262 }
1254 }
1263
1255
1264 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1256 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1265 {
1257 {
1266 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1258 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1267 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1259 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1268 {
1260 {
1269 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1261 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1270 }
1262 }
1271 else
1263 else
1272 {
1264 {
1273 status = RTEMS_SUCCESSFUL;
1265 status = RTEMS_SUCCESSFUL;
1274 }
1266 }
1275 }
1267 }
1276
1268
1277 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1269 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1278 {
1270 {
1279 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1271 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1280 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1272 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1281 {
1273 {
1282 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1274 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1283 }
1275 }
1284 else
1276 else
1285 {
1277 {
1286 status = RTEMS_SUCCESSFUL;
1278 status = RTEMS_SUCCESSFUL;
1287 }
1279 }
1288 }
1280 }
1289
1281
1290 return status;
1282 return status;
1291 }
1283 }
1292
1284
1293 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1285 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1294 {
1286 {
1295
1287
1296 WFP_reset_current_ring_nodes();
1288 WFP_reset_current_ring_nodes();
1297
1289
1298 reset_waveform_picker_regs();
1290 reset_waveform_picker_regs();
1299
1291
1300 set_wfp_burst_enable_register( mode );
1292 set_wfp_burst_enable_register( mode );
1301
1293
1302 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1294 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1303 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1295 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1304
1296
1305 if (transitionCoarseTime == 0)
1297 if (transitionCoarseTime == 0)
1306 {
1298 {
1307 // instant transition means transition on the next valid date
1299 // instant transition means transition on the next valid date
1308 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1300 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1309 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1301 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1310 }
1302 }
1311 else
1303 else
1312 {
1304 {
1313 waveform_picker_regs->start_date = transitionCoarseTime;
1305 waveform_picker_regs->start_date = transitionCoarseTime;
1314 }
1306 }
1315
1307
1316 update_last_valid_transition_date(waveform_picker_regs->start_date);
1308 update_last_valid_transition_date(waveform_picker_regs->start_date);
1317
1309
1318 }
1310 }
1319
1311
1320 void launch_spectral_matrix( void )
1312 void launch_spectral_matrix( void )
1321 {
1313 {
1322 SM_reset_current_ring_nodes();
1314 SM_reset_current_ring_nodes();
1323
1315
1324 reset_spectral_matrix_regs();
1316 reset_spectral_matrix_regs();
1325
1317
1326 reset_nb_sm();
1318 reset_nb_sm();
1327
1319
1328 set_sm_irq_onNewMatrix( 1 );
1320 set_sm_irq_onNewMatrix( 1 );
1329
1321
1330 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1322 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1331 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1323 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1332
1324
1333 }
1325 }
1334
1326
1335 void set_sm_irq_onNewMatrix( unsigned char value )
1327 void set_sm_irq_onNewMatrix( unsigned char value )
1336 {
1328 {
1337 if (value == 1)
1329 if (value == 1)
1338 {
1330 {
1339 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1331 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1340 }
1332 }
1341 else
1333 else
1342 {
1334 {
1343 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1335 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1344 }
1336 }
1345 }
1337 }
1346
1338
1347 void set_sm_irq_onError( unsigned char value )
1339 void set_sm_irq_onError( unsigned char value )
1348 {
1340 {
1349 if (value == 1)
1341 if (value == 1)
1350 {
1342 {
1351 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1343 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1352 }
1344 }
1353 else
1345 else
1354 {
1346 {
1355 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1347 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1356 }
1348 }
1357 }
1349 }
1358
1350
1359 //*****************************
1351 //*****************************
1360 // CONFIGURE CALIBRATION SIGNAL
1352 // CONFIGURE CALIBRATION SIGNAL
1361 void setCalibrationPrescaler( unsigned int prescaler )
1353 void setCalibrationPrescaler( unsigned int prescaler )
1362 {
1354 {
1363 // prescaling of the master clock (25 MHz)
1355 // prescaling of the master clock (25 MHz)
1364 // master clock is divided by 2^prescaler
1356 // master clock is divided by 2^prescaler
1365 time_management_regs->calPrescaler = prescaler;
1357 time_management_regs->calPrescaler = prescaler;
1366 }
1358 }
1367
1359
1368 void setCalibrationDivisor( unsigned int divisionFactor )
1360 void setCalibrationDivisor( unsigned int divisionFactor )
1369 {
1361 {
1370 // division of the prescaled clock by the division factor
1362 // division of the prescaled clock by the division factor
1371 time_management_regs->calDivisor = divisionFactor;
1363 time_management_regs->calDivisor = divisionFactor;
1372 }
1364 }
1373
1365
1374 void setCalibrationData( void )
1366 void setCalibrationData( void )
1375 {
1367 {
1376 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1368 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1377 *
1369 *
1378 * @param void
1370 * @param void
1379 *
1371 *
1380 * @return void
1372 * @return void
1381 *
1373 *
1382 */
1374 */
1383
1375
1384 unsigned int k;
1376 unsigned int k;
1385 unsigned short data;
1377 unsigned short data;
1386 float val;
1378 float val;
1387 float Ts;
1379 float Ts;
1388
1380
1389 time_management_regs->calDataPtr = INIT_CHAR;
1381 time_management_regs->calDataPtr = INIT_CHAR;
1390
1382
1391 Ts = 1 / CAL_FS;
1383 Ts = 1 / CAL_FS;
1392
1384
1393 // build the signal for the SCM calibration
1385 // build the signal for the SCM calibration
1394 for (k = 0; k < CAL_NB_PTS; k++)
1386 for (k = 0; k < CAL_NB_PTS; k++)
1395 {
1387 {
1396 val = CAL_A0 * sin( CAL_W0 * k * Ts )
1388 val = CAL_A0 * sin( CAL_W0 * k * Ts )
1397 + CAL_A1 * sin( CAL_W1 * k * Ts );
1389 + CAL_A1 * sin( CAL_W1 * k * Ts );
1398 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1390 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1399 time_management_regs->calData = data & CAL_DATA_MASK;
1391 time_management_regs->calData = data & CAL_DATA_MASK;
1400 }
1392 }
1401 }
1393 }
1402
1394
1403 void setCalibrationDataInterleaved( void )
1395 void setCalibrationDataInterleaved( void )
1404 {
1396 {
1405 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1397 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1406 *
1398 *
1407 * @param void
1399 * @param void
1408 *
1400 *
1409 * @return void
1401 * @return void
1410 *
1402 *
1411 * In interleaved mode, one can store more values than in normal mode.
1403 * In interleaved mode, one can store more values than in normal mode.
1412 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1404 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1413 * T store 3 values, one need two write operations.
1405 * T store 3 values, one need two write operations.
1414 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1406 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1415 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1407 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1416 *
1408 *
1417 */
1409 */
1418
1410
1419 unsigned int k;
1411 unsigned int k;
1420 float val;
1412 float val;
1421 float Ts;
1413 float Ts;
1422 unsigned short data[CAL_NB_PTS_INTER];
1414 unsigned short data[CAL_NB_PTS_INTER];
1423 unsigned char *dataPtr;
1415 unsigned char *dataPtr;
1424
1416
1425 Ts = 1 / CAL_FS_INTER;
1417 Ts = 1 / CAL_FS_INTER;
1426
1418
1427 time_management_regs->calDataPtr = INIT_CHAR;
1419 time_management_regs->calDataPtr = INIT_CHAR;
1428
1420
1429 // build the signal for the SCM calibration
1421 // build the signal for the SCM calibration
1430 for (k=0; k<CAL_NB_PTS_INTER; k++)
1422 for (k=0; k<CAL_NB_PTS_INTER; k++)
1431 {
1423 {
1432 val = sin( 2 * pi * CAL_F0 * k * Ts )
1424 val = sin( 2 * pi * CAL_F0 * k * Ts )
1433 + sin( 2 * pi * CAL_F1 * k * Ts );
1425 + sin( 2 * pi * CAL_F1 * k * Ts );
1434 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1426 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1435 }
1427 }
1436
1428
1437 // write the signal in interleaved mode
1429 // write the signal in interleaved mode
1438 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1430 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1439 {
1431 {
1440 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1432 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1441 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1433 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1442 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1434 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1443 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1435 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1444 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1436 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1445 }
1437 }
1446 }
1438 }
1447
1439
1448 void setCalibrationReload( bool state)
1440 void setCalibrationReload( bool state)
1449 {
1441 {
1450 if (state == true)
1442 if (state == true)
1451 {
1443 {
1452 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1444 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1453 }
1445 }
1454 else
1446 else
1455 {
1447 {
1456 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1448 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1457 }
1449 }
1458 }
1450 }
1459
1451
1460 void setCalibrationEnable( bool state )
1452 void setCalibrationEnable( bool state )
1461 {
1453 {
1462 // this bit drives the multiplexer
1454 // this bit drives the multiplexer
1463 if (state == true)
1455 if (state == true)
1464 {
1456 {
1465 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1457 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1466 }
1458 }
1467 else
1459 else
1468 {
1460 {
1469 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1461 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1470 }
1462 }
1471 }
1463 }
1472
1464
1473 void setCalibrationInterleaved( bool state )
1465 void setCalibrationInterleaved( bool state )
1474 {
1466 {
1475 // this bit drives the multiplexer
1467 // this bit drives the multiplexer
1476 if (state == true)
1468 if (state == true)
1477 {
1469 {
1478 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1470 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1479 }
1471 }
1480 else
1472 else
1481 {
1473 {
1482 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1474 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1483 }
1475 }
1484 }
1476 }
1485
1477
1486 void setCalibration( bool state )
1478 void setCalibration( bool state )
1487 {
1479 {
1488 if (state == true)
1480 if (state == true)
1489 {
1481 {
1490 setCalibrationEnable( true );
1482 setCalibrationEnable( true );
1491 setCalibrationReload( false );
1483 setCalibrationReload( false );
1492 set_hk_lfr_calib_enable( true );
1484 set_hk_lfr_calib_enable( true );
1493 }
1485 }
1494 else
1486 else
1495 {
1487 {
1496 setCalibrationEnable( false );
1488 setCalibrationEnable( false );
1497 setCalibrationReload( true );
1489 setCalibrationReload( true );
1498 set_hk_lfr_calib_enable( false );
1490 set_hk_lfr_calib_enable( false );
1499 }
1491 }
1500 }
1492 }
1501
1493
1502 void configureCalibration( bool interleaved )
1494 void configureCalibration( bool interleaved )
1503 {
1495 {
1504 setCalibration( false );
1496 setCalibration( false );
1505 if ( interleaved == true )
1497 if ( interleaved == true )
1506 {
1498 {
1507 setCalibrationInterleaved( true );
1499 setCalibrationInterleaved( true );
1508 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1500 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1509 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1501 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1510 setCalibrationDataInterleaved();
1502 setCalibrationDataInterleaved();
1511 }
1503 }
1512 else
1504 else
1513 {
1505 {
1514 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1506 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1515 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1507 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1516 setCalibrationData();
1508 setCalibrationData();
1517 }
1509 }
1518 }
1510 }
1519
1511
1520 //****************
1512 //****************
1521 // CLOSING ACTIONS
1513 // CLOSING ACTIONS
1522 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1514 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1523 {
1515 {
1524 /** This function is used to update the HK packets statistics after a successful TC execution.
1516 /** This function is used to update the HK packets statistics after a successful TC execution.
1525 *
1517 *
1526 * @param TC points to the TC being processed
1518 * @param TC points to the TC being processed
1527 * @param time is the time used to date the TC execution
1519 * @param time is the time used to date the TC execution
1528 *
1520 *
1529 */
1521 */
1530
1522
1531 unsigned int val;
1523 unsigned int val;
1532
1524
1533 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1525 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1534 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1526 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1535 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1527 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1536 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1528 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1537 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1529 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1538 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1530 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1539 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1531 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1540 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1532 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1541 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1533 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1542 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1534 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1543 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1535 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1544 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1536 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1545
1537
1546 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1538 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1547 val++;
1539 val++;
1548 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1540 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1549 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1541 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1550 }
1542 }
1551
1543
1552 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1544 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1553 {
1545 {
1554 /** This function is used to update the HK packets statistics after a TC rejection.
1546 /** This function is used to update the HK packets statistics after a TC rejection.
1555 *
1547 *
1556 * @param TC points to the TC being processed
1548 * @param TC points to the TC being processed
1557 * @param time is the time used to date the TC rejection
1549 * @param time is the time used to date the TC rejection
1558 *
1550 *
1559 */
1551 */
1560
1552
1561 unsigned int val;
1553 unsigned int val;
1562
1554
1563 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1555 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1564 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1556 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1565 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1557 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1566 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1558 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1567 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1559 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1568 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1560 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1569 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1561 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1570 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1562 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1571 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1563 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1572 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1564 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1573 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1565 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1574 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1566 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1575
1567
1576 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1568 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1577 val++;
1569 val++;
1578 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1570 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1579 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1571 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1580 }
1572 }
1581
1573
1582 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1574 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1583 {
1575 {
1584 /** This function is the last step of the TC execution workflow.
1576 /** This function is the last step of the TC execution workflow.
1585 *
1577 *
1586 * @param TC points to the TC being processed
1578 * @param TC points to the TC being processed
1587 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1579 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1588 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1580 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1589 * @param time is the time used to date the TC execution
1581 * @param time is the time used to date the TC execution
1590 *
1582 *
1591 */
1583 */
1592
1584
1593 unsigned char requestedMode;
1585 unsigned char requestedMode;
1594
1586
1595 if (result == LFR_SUCCESSFUL)
1587 if (result == LFR_SUCCESSFUL)
1596 {
1588 {
1597 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1589 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1598 &
1590 &
1599 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1591 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1600 )
1592 )
1601 {
1593 {
1602 send_tm_lfr_tc_exe_success( TC, queue_id );
1594 send_tm_lfr_tc_exe_success( TC, queue_id );
1603 }
1595 }
1604 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1596 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1605 {
1597 {
1606 //**********************************
1598 //**********************************
1607 // UPDATE THE LFRMODE LOCAL VARIABLE
1599 // UPDATE THE LFRMODE LOCAL VARIABLE
1608 requestedMode = TC->dataAndCRC[1];
1600 requestedMode = TC->dataAndCRC[1];
1609 updateLFRCurrentMode( requestedMode );
1601 updateLFRCurrentMode( requestedMode );
1610 }
1602 }
1611 }
1603 }
1612 else if (result == LFR_EXE_ERROR)
1604 else if (result == LFR_EXE_ERROR)
1613 {
1605 {
1614 send_tm_lfr_tc_exe_error( TC, queue_id );
1606 send_tm_lfr_tc_exe_error( TC, queue_id );
1615 }
1607 }
1616 }
1608 }
1617
1609
1618 //***************************
1610 //***************************
1619 // Interrupt Service Routines
1611 // Interrupt Service Routines
1620 rtems_isr commutation_isr1( rtems_vector_number vector )
1612 rtems_isr commutation_isr1( rtems_vector_number vector )
1621 {
1613 {
1622 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1614 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1623 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1615 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1624 }
1616 }
1625 }
1617 }
1626
1618
1627 rtems_isr commutation_isr2( rtems_vector_number vector )
1619 rtems_isr commutation_isr2( rtems_vector_number vector )
1628 {
1620 {
1629 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1621 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1630 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1622 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1631 }
1623 }
1632 }
1624 }
1633
1625
1634 //****************
1626 //****************
1635 // OTHER FUNCTIONS
1627 // OTHER FUNCTIONS
1636 void updateLFRCurrentMode( unsigned char requestedMode )
1628 void updateLFRCurrentMode( unsigned char requestedMode )
1637 {
1629 {
1638 /** This function updates the value of the global variable lfrCurrentMode.
1630 /** This function updates the value of the global variable lfrCurrentMode.
1639 *
1631 *
1640 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1632 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1641 *
1633 *
1642 */
1634 */
1643
1635
1644 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1636 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1645 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1637 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1646 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1638 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1647 lfrCurrentMode = requestedMode;
1639 lfrCurrentMode = requestedMode;
1648 }
1640 }
1649
1641
1650 void set_lfr_soft_reset( unsigned char value )
1642 void set_lfr_soft_reset( unsigned char value )
1651 {
1643 {
1652 if (value == 1)
1644 if (value == 1)
1653 {
1645 {
1654 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1646 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1655 }
1647 }
1656 else
1648 else
1657 {
1649 {
1658 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1650 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1659 }
1651 }
1660 }
1652 }
1661
1653
1662 void reset_lfr( void )
1654 void reset_lfr( void )
1663 {
1655 {
1664 set_lfr_soft_reset( 1 );
1656 set_lfr_soft_reset( 1 );
1665
1657
1666 set_lfr_soft_reset( 0 );
1658 set_lfr_soft_reset( 0 );
1667
1659
1668 set_hk_lfr_sc_potential_flag( true );
1660 set_hk_lfr_sc_potential_flag( true );
1669 }
1661 }
@@ -1,1788 +1,1794
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 ring_node kcoefficient_node_1 = {0};
19 ring_node kcoefficient_node_1 = {0};
20 ring_node kcoefficient_node_2 = {0};
20 ring_node kcoefficient_node_2 = {0};
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_normal_par_consistency( TC, queue_id );
61 flag = check_normal_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET THE PARAMETERS
135 // SET THE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 if (aux > FLOAT_EQUAL_ZERO)
194 if (aux > FLOAT_EQUAL_ZERO)
195 {
195 {
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 flag = LFR_DEFAULT;
197 flag = LFR_DEFAULT;
198 }
198 }
199 }
199 }
200
200
201 // SET THE PARAMETERS
201 // SET THE PARAMETERS
202 if (flag == LFR_SUCCESSFUL)
202 if (flag == LFR_SUCCESSFUL)
203 {
203 {
204 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p0( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
206 }
206 }
207
207
208 return flag;
208 return flag;
209 }
209 }
210
210
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 {
212 {
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 *
214 *
215 * @param TC points to the TeleCommand packet that is being processed
215 * @param TC points to the TeleCommand packet that is being processed
216 * @param queue_id is the id of the queue which handles TM related to this execution step
216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 *
217 *
218 */
218 */
219
219
220 int flag;
220 int flag;
221 rtems_status_code status;
221 rtems_status_code status;
222 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p0;
223 unsigned char sy_lfr_s2_bp_p1;
223 unsigned char sy_lfr_s2_bp_p1;
224 float aux;
224 float aux;
225
225
226 flag = LFR_SUCCESSFUL;
226 flag = LFR_SUCCESSFUL;
227
227
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 flag = LFR_DEFAULT;
230 flag = LFR_DEFAULT;
231 }
231 }
232
232
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235
235
236 // sy_lfr_s2_bp_p0
236 // sy_lfr_s2_bp_p0
237 if (flag == LFR_SUCCESSFUL)
237 if (flag == LFR_SUCCESSFUL)
238 {
238 {
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 {
240 {
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 flag = WRONG_APP_DATA;
242 flag = WRONG_APP_DATA;
243 }
243 }
244 }
244 }
245 // sy_lfr_s2_bp_p1
245 // sy_lfr_s2_bp_p1
246 if (flag == LFR_SUCCESSFUL)
246 if (flag == LFR_SUCCESSFUL)
247 {
247 {
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 {
249 {
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 flag = WRONG_APP_DATA;
251 flag = WRONG_APP_DATA;
252 }
252 }
253 }
253 }
254 //******************************************************************
254 //******************************************************************
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 if (flag == LFR_SUCCESSFUL)
256 if (flag == LFR_SUCCESSFUL)
257 {
257 {
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 if (aux > FLOAT_EQUAL_ZERO)
261 if (aux > FLOAT_EQUAL_ZERO)
262 {
262 {
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 flag = LFR_DEFAULT;
264 flag = LFR_DEFAULT;
265 }
265 }
266 }
266 }
267
267
268 // SET THE PARAMETERS
268 // SET THE PARAMETERS
269 if (flag == LFR_SUCCESSFUL)
269 if (flag == LFR_SUCCESSFUL)
270 {
270 {
271 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p0( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
273 }
273 }
274
274
275 return flag;
275 return flag;
276 }
276 }
277
277
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 {
279 {
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 *
281 *
282 * @param TC points to the TeleCommand packet that is being processed
282 * @param TC points to the TeleCommand packet that is being processed
283 * @param queue_id is the id of the queue which handles TM related to this execution step
283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 *
284 *
285 */
285 */
286
286
287 int flag;
287 int flag;
288
288
289 flag = LFR_DEFAULT;
289 flag = LFR_DEFAULT;
290
290
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292
292
293 return flag;
293 return flag;
294 }
294 }
295
295
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 {
297 {
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 *
299 *
300 * @param TC points to the TeleCommand packet that is being processed
300 * @param TC points to the TeleCommand packet that is being processed
301 * @param queue_id is the id of the queue which handles TM related to this execution step
301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 *
302 *
303 */
303 */
304
304
305 int flag;
305 int flag;
306
306
307 flag = LFR_DEFAULT;
307 flag = LFR_DEFAULT;
308
308
309 flag = set_sy_lfr_fbins( TC );
309 flag = set_sy_lfr_fbins( TC );
310
310
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 merge_fbins_masks();
312 merge_fbins_masks();
313
313
314 return flag;
314 return flag;
315 }
315 }
316
316
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 {
318 {
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 *
320 *
321 * @param TC points to the TeleCommand packet that is being processed
321 * @param TC points to the TeleCommand packet that is being processed
322 * @param queue_id is the id of the queue which handles TM related to this execution step
322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 *
323 *
324 */
324 */
325
325
326 int flag;
326 int flag;
327 unsigned char k;
327 unsigned char k;
328
328
329 flag = LFR_DEFAULT;
329 flag = LFR_DEFAULT;
330 k = INIT_CHAR;
330 k = INIT_CHAR;
331
331
332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
333
333
334 if (flag == LFR_SUCCESSFUL)
334 if (flag == LFR_SUCCESSFUL)
335 {
335 {
336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
351
351
352 //****************************
352 //****************************
353 // store PAS filter parameters
353 // store PAS filter parameters
354 // sy_lfr_pas_filter_enabled
354 // sy_lfr_pas_filter_enabled
355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
357 // sy_lfr_pas_filter_modulus
357 // sy_lfr_pas_filter_modulus
358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
359 // sy_lfr_pas_filter_tbad
359 // sy_lfr_pas_filter_tbad
360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
362 // sy_lfr_pas_filter_offset
362 // sy_lfr_pas_filter_offset
363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
364 // sy_lfr_pas_filter_shift
364 // sy_lfr_pas_filter_shift
365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
366 parameter_dump_packet.sy_lfr_pas_filter_shift );
366 parameter_dump_packet.sy_lfr_pas_filter_shift );
367
367
368 //****************************************************
368 //****************************************************
369 // store the parameter sy_lfr_sc_rw_delta_f as a float
369 // store the parameter sy_lfr_sc_rw_delta_f as a float
370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
372
372
373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
375 {
375 {
376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
377 }
377 }
378
378
379 //***********************************************
379 //***********************************************
380 // store the parameter sy_lfr_rw.._k.. as a float
380 // store the parameter sy_lfr_rw.._k.. as a float
381 // rw1_k
381 // rw1_k
382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
386 // rw2_k
386 // rw2_k
387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
391 // rw3_k
391 // rw3_k
392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
396 // rw4_k
396 // rw4_k
397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
401
401
402 }
402 }
403
403
404 return flag;
404 return flag;
405 }
405 }
406
406
407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
408 {
408 {
409 /** This function updates the LFR registers with the incoming sbm2 parameters.
409 /** This function updates the LFR registers with the incoming sbm2 parameters.
410 *
410 *
411 * @param TC points to the TeleCommand packet that is being processed
411 * @param TC points to the TeleCommand packet that is being processed
412 * @param queue_id is the id of the queue which handles TM related to this execution step
412 * @param queue_id is the id of the queue which handles TM related to this execution step
413 *
413 *
414 */
414 */
415
415
416 unsigned int address;
416 unsigned int address;
417 rtems_status_code status;
417 rtems_status_code status;
418 unsigned int freq;
418 unsigned int freq;
419 unsigned int bin;
419 unsigned int bin;
420 unsigned int coeff;
420 unsigned int coeff;
421 unsigned char *kCoeffPtr;
421 unsigned char *kCoeffPtr;
422 unsigned char *kCoeffDumpPtr;
422 unsigned char *kCoeffDumpPtr;
423
423
424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
425 // F0 => 11 bins
425 // F0 => 11 bins
426 // F1 => 13 bins
426 // F1 => 13 bins
427 // F2 => 12 bins
427 // F2 => 12 bins
428 // 36 bins to dump in two packets (30 bins max per packet)
428 // 36 bins to dump in two packets (30 bins max per packet)
429
429
430 //*********
430 //*********
431 // PACKET 1
431 // PACKET 1
432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
433 kcoefficients_dump_1.destinationID = TC->sourceID;
433 kcoefficients_dump_1.destinationID = TC->sourceID;
434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
435 for( freq = 0;
435 for( freq = 0;
436 freq < NB_BINS_COMPRESSED_SM_F0;
436 freq < NB_BINS_COMPRESSED_SM_F0;
437 freq++ )
437 freq++ )
438 {
438 {
439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
440 bin = freq;
440 bin = freq;
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
443 {
443 {
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 ]; // 2 for the kcoeff_frequency
446 ]; // 2 for the kcoeff_frequency
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 }
449 }
450 }
450 }
451 for( freq = NB_BINS_COMPRESSED_SM_F0;
451 for( freq = NB_BINS_COMPRESSED_SM_F0;
452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
453 freq++ )
453 freq++ )
454 {
454 {
455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
459 {
459 {
460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
462 ]; // 2 for the kcoeff_frequency
462 ]; // 2 for the kcoeff_frequency
463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
465 }
465 }
466 }
466 }
467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
468 freq < KCOEFF_BLK_NR_PKT1 ;
468 freq < KCOEFF_BLK_NR_PKT1 ;
469 freq++ )
469 freq++ )
470 {
470 {
471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
475 {
475 {
476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
478 ]; // 2 for the kcoeff_frequency
478 ]; // 2 for the kcoeff_frequency
479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
481 }
481 }
482 }
482 }
483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
489 // SEND DATA
489 // SEND DATA
490 kcoefficient_node_1.status = 1;
490 kcoefficient_node_1.status = 1;
491 address = (unsigned int) &kcoefficient_node_1;
491 address = (unsigned int) &kcoefficient_node_1;
492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
493 if (status != RTEMS_SUCCESSFUL) {
493 if (status != RTEMS_SUCCESSFUL) {
494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
495 }
495 }
496
496
497 //********
497 //********
498 // PACKET 2
498 // PACKET 2
499 // 6 F2 bins
499 // 6 F2 bins
500 kcoefficients_dump_2.destinationID = TC->sourceID;
500 kcoefficients_dump_2.destinationID = TC->sourceID;
501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
502 for( freq = 0;
502 for( freq = 0;
503 freq < KCOEFF_BLK_NR_PKT2;
503 freq < KCOEFF_BLK_NR_PKT2;
504 freq++ )
504 freq++ )
505 {
505 {
506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
507 bin = freq + KCOEFF_BLK_NR_PKT2;
507 bin = freq + KCOEFF_BLK_NR_PKT2;
508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
510 {
510 {
511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
515 }
515 }
516 }
516 }
517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
523 // SEND DATA
523 // SEND DATA
524 kcoefficient_node_2.status = 1;
524 kcoefficient_node_2.status = 1;
525 address = (unsigned int) &kcoefficient_node_2;
525 address = (unsigned int) &kcoefficient_node_2;
526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
527 if (status != RTEMS_SUCCESSFUL) {
527 if (status != RTEMS_SUCCESSFUL) {
528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
529 }
529 }
530
530
531 return status;
531 return status;
532 }
532 }
533
533
534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
535 {
535 {
536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
537 *
537 *
538 * @param queue_id is the id of the queue which handles TM related to this execution step.
538 * @param queue_id is the id of the queue which handles TM related to this execution step.
539 *
539 *
540 * @return RTEMS directive status codes:
540 * @return RTEMS directive status codes:
541 * - RTEMS_SUCCESSFUL - message sent successfully
541 * - RTEMS_SUCCESSFUL - message sent successfully
542 * - RTEMS_INVALID_ID - invalid queue id
542 * - RTEMS_INVALID_ID - invalid queue id
543 * - RTEMS_INVALID_SIZE - invalid message size
543 * - RTEMS_INVALID_SIZE - invalid message size
544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
545 * - RTEMS_UNSATISFIED - out of message buffers
545 * - RTEMS_UNSATISFIED - out of message buffers
546 * - RTEMS_TOO_MANY - queue s limit has been reached
546 * - RTEMS_TOO_MANY - queue s limit has been reached
547 *
547 *
548 */
548 */
549
549
550 int status;
550 int status;
551
551
552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
553 parameter_dump_packet.destinationID = TC->sourceID;
553 parameter_dump_packet.destinationID = TC->sourceID;
554
554
555 // UPDATE TIME
555 // UPDATE TIME
556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
562 // SEND DATA
562 // SEND DATA
563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
565 if (status != RTEMS_SUCCESSFUL) {
565 if (status != RTEMS_SUCCESSFUL) {
566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
567 }
567 }
568
568
569 return status;
569 return status;
570 }
570 }
571
571
572 //***********************
572 //***********************
573 // NORMAL MODE PARAMETERS
573 // NORMAL MODE PARAMETERS
574
574
575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
576 {
576 {
577 unsigned char msb;
577 unsigned char msb;
578 unsigned char lsb;
578 unsigned char lsb;
579 int flag;
579 int flag;
580 float aux;
580 float aux;
581 rtems_status_code status;
581 rtems_status_code status;
582
582
583 unsigned int sy_lfr_n_swf_l;
583 unsigned int sy_lfr_n_swf_l;
584 unsigned int sy_lfr_n_swf_p;
584 unsigned int sy_lfr_n_swf_p;
585 unsigned int sy_lfr_n_asm_p;
585 unsigned int sy_lfr_n_asm_p;
586 unsigned char sy_lfr_n_bp_p0;
586 unsigned char sy_lfr_n_bp_p0;
587 unsigned char sy_lfr_n_bp_p1;
587 unsigned char sy_lfr_n_bp_p1;
588 unsigned char sy_lfr_n_cwf_long_f3;
588 unsigned char sy_lfr_n_cwf_long_f3;
589
589
590 flag = LFR_SUCCESSFUL;
590 flag = LFR_SUCCESSFUL;
591
591
592 //***************
592 //***************
593 // get parameters
593 // get parameters
594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
597
597
598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
601
601
602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
605
605
606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
607
607
608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
609
609
610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
611
611
612 //******************
612 //******************
613 // check consistency
613 // check consistency
614 // sy_lfr_n_swf_l
614 // sy_lfr_n_swf_l
615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
616 {
616 {
617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
618 flag = WRONG_APP_DATA;
618 flag = WRONG_APP_DATA;
619 }
619 }
620 // sy_lfr_n_swf_p
620 // sy_lfr_n_swf_p
621 if (flag == LFR_SUCCESSFUL)
621 if (flag == LFR_SUCCESSFUL)
622 {
622 {
623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
624 {
624 {
625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
626 flag = WRONG_APP_DATA;
626 flag = WRONG_APP_DATA;
627 }
627 }
628 }
628 }
629 // sy_lfr_n_bp_p0
629 // sy_lfr_n_bp_p0
630 if (flag == LFR_SUCCESSFUL)
630 if (flag == LFR_SUCCESSFUL)
631 {
631 {
632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
633 {
633 {
634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
635 flag = WRONG_APP_DATA;
635 flag = WRONG_APP_DATA;
636 }
636 }
637 }
637 }
638 // sy_lfr_n_asm_p
638 // sy_lfr_n_asm_p
639 if (flag == LFR_SUCCESSFUL)
639 if (flag == LFR_SUCCESSFUL)
640 {
640 {
641 if (sy_lfr_n_asm_p == 0)
641 if (sy_lfr_n_asm_p == 0)
642 {
642 {
643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
644 flag = WRONG_APP_DATA;
644 flag = WRONG_APP_DATA;
645 }
645 }
646 }
646 }
647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
648 if (flag == LFR_SUCCESSFUL)
648 if (flag == LFR_SUCCESSFUL)
649 {
649 {
650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
651 if (aux > FLOAT_EQUAL_ZERO)
651 if (aux > FLOAT_EQUAL_ZERO)
652 {
652 {
653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
654 flag = WRONG_APP_DATA;
654 flag = WRONG_APP_DATA;
655 }
655 }
656 }
656 }
657 // sy_lfr_n_bp_p1
657 // sy_lfr_n_bp_p1
658 if (flag == LFR_SUCCESSFUL)
658 if (flag == LFR_SUCCESSFUL)
659 {
659 {
660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
661 {
661 {
662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
663 flag = WRONG_APP_DATA;
663 flag = WRONG_APP_DATA;
664 }
664 }
665 }
665 }
666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
667 if (flag == LFR_SUCCESSFUL)
667 if (flag == LFR_SUCCESSFUL)
668 {
668 {
669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
670 if (aux > FLOAT_EQUAL_ZERO)
670 if (aux > FLOAT_EQUAL_ZERO)
671 {
671 {
672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
673 flag = LFR_DEFAULT;
673 flag = LFR_DEFAULT;
674 }
674 }
675 }
675 }
676 // sy_lfr_n_cwf_long_f3
676 // sy_lfr_n_cwf_long_f3
677
677
678 return flag;
678 return flag;
679 }
679 }
680
680
681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
682 {
682 {
683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
684 *
684 *
685 * @param TC points to the TeleCommand packet that is being processed
685 * @param TC points to the TeleCommand packet that is being processed
686 * @param queue_id is the id of the queue which handles TM related to this execution step
686 * @param queue_id is the id of the queue which handles TM related to this execution step
687 *
687 *
688 */
688 */
689
689
690 int result;
690 int result;
691
691
692 result = LFR_SUCCESSFUL;
692 result = LFR_SUCCESSFUL;
693
693
694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
696
696
697 return result;
697 return result;
698 }
698 }
699
699
700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
701 {
701 {
702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
703 *
703 *
704 * @param TC points to the TeleCommand packet that is being processed
704 * @param TC points to the TeleCommand packet that is being processed
705 * @param queue_id is the id of the queue which handles TM related to this execution step
705 * @param queue_id is the id of the queue which handles TM related to this execution step
706 *
706 *
707 */
707 */
708
708
709 int result;
709 int result;
710
710
711 result = LFR_SUCCESSFUL;
711 result = LFR_SUCCESSFUL;
712
712
713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
715
715
716 return result;
716 return result;
717 }
717 }
718
718
719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
720 {
720 {
721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
722 *
722 *
723 * @param TC points to the TeleCommand packet that is being processed
723 * @param TC points to the TeleCommand packet that is being processed
724 * @param queue_id is the id of the queue which handles TM related to this execution step
724 * @param queue_id is the id of the queue which handles TM related to this execution step
725 *
725 *
726 */
726 */
727
727
728 int result;
728 int result;
729
729
730 result = LFR_SUCCESSFUL;
730 result = LFR_SUCCESSFUL;
731
731
732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
734
734
735 return result;
735 return result;
736 }
736 }
737
737
738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
739 {
739 {
740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
741 *
741 *
742 * @param TC points to the TeleCommand packet that is being processed
742 * @param TC points to the TeleCommand packet that is being processed
743 * @param queue_id is the id of the queue which handles TM related to this execution step
743 * @param queue_id is the id of the queue which handles TM related to this execution step
744 *
744 *
745 */
745 */
746
746
747 int status;
747 int status;
748
748
749 status = LFR_SUCCESSFUL;
749 status = LFR_SUCCESSFUL;
750
750
751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
752
752
753 return status;
753 return status;
754 }
754 }
755
755
756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
757 {
757 {
758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
759 *
759 *
760 * @param TC points to the TeleCommand packet that is being processed
760 * @param TC points to the TeleCommand packet that is being processed
761 * @param queue_id is the id of the queue which handles TM related to this execution step
761 * @param queue_id is the id of the queue which handles TM related to this execution step
762 *
762 *
763 */
763 */
764
764
765 int status;
765 int status;
766
766
767 status = LFR_SUCCESSFUL;
767 status = LFR_SUCCESSFUL;
768
768
769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
770
770
771 return status;
771 return status;
772 }
772 }
773
773
774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
775 {
775 {
776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
777 *
777 *
778 * @param TC points to the TeleCommand packet that is being processed
778 * @param TC points to the TeleCommand packet that is being processed
779 * @param queue_id is the id of the queue which handles TM related to this execution step
779 * @param queue_id is the id of the queue which handles TM related to this execution step
780 *
780 *
781 */
781 */
782
782
783 int status;
783 int status;
784
784
785 status = LFR_SUCCESSFUL;
785 status = LFR_SUCCESSFUL;
786
786
787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
788
788
789 return status;
789 return status;
790 }
790 }
791
791
792 //**********************
792 //**********************
793 // BURST MODE PARAMETERS
793 // BURST MODE PARAMETERS
794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
795 {
795 {
796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
797 *
797 *
798 * @param TC points to the TeleCommand packet that is being processed
798 * @param TC points to the TeleCommand packet that is being processed
799 * @param queue_id is the id of the queue which handles TM related to this execution step
799 * @param queue_id is the id of the queue which handles TM related to this execution step
800 *
800 *
801 */
801 */
802
802
803 int status;
803 int status;
804
804
805 status = LFR_SUCCESSFUL;
805 status = LFR_SUCCESSFUL;
806
806
807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
808
808
809 return status;
809 return status;
810 }
810 }
811
811
812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
813 {
813 {
814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
815 *
815 *
816 * @param TC points to the TeleCommand packet that is being processed
816 * @param TC points to the TeleCommand packet that is being processed
817 * @param queue_id is the id of the queue which handles TM related to this execution step
817 * @param queue_id is the id of the queue which handles TM related to this execution step
818 *
818 *
819 */
819 */
820
820
821 int status;
821 int status;
822
822
823 status = LFR_SUCCESSFUL;
823 status = LFR_SUCCESSFUL;
824
824
825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
826
826
827 return status;
827 return status;
828 }
828 }
829
829
830 //*********************
830 //*********************
831 // SBM1 MODE PARAMETERS
831 // SBM1 MODE PARAMETERS
832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
833 {
833 {
834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
835 *
835 *
836 * @param TC points to the TeleCommand packet that is being processed
836 * @param TC points to the TeleCommand packet that is being processed
837 * @param queue_id is the id of the queue which handles TM related to this execution step
837 * @param queue_id is the id of the queue which handles TM related to this execution step
838 *
838 *
839 */
839 */
840
840
841 int status;
841 int status;
842
842
843 status = LFR_SUCCESSFUL;
843 status = LFR_SUCCESSFUL;
844
844
845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
846
846
847 return status;
847 return status;
848 }
848 }
849
849
850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
851 {
851 {
852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
853 *
853 *
854 * @param TC points to the TeleCommand packet that is being processed
854 * @param TC points to the TeleCommand packet that is being processed
855 * @param queue_id is the id of the queue which handles TM related to this execution step
855 * @param queue_id is the id of the queue which handles TM related to this execution step
856 *
856 *
857 */
857 */
858
858
859 int status;
859 int status;
860
860
861 status = LFR_SUCCESSFUL;
861 status = LFR_SUCCESSFUL;
862
862
863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
864
864
865 return status;
865 return status;
866 }
866 }
867
867
868 //*********************
868 //*********************
869 // SBM2 MODE PARAMETERS
869 // SBM2 MODE PARAMETERS
870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
871 {
871 {
872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
873 *
873 *
874 * @param TC points to the TeleCommand packet that is being processed
874 * @param TC points to the TeleCommand packet that is being processed
875 * @param queue_id is the id of the queue which handles TM related to this execution step
875 * @param queue_id is the id of the queue which handles TM related to this execution step
876 *
876 *
877 */
877 */
878
878
879 int status;
879 int status;
880
880
881 status = LFR_SUCCESSFUL;
881 status = LFR_SUCCESSFUL;
882
882
883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
884
884
885 return status;
885 return status;
886 }
886 }
887
887
888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
889 {
889 {
890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
891 *
891 *
892 * @param TC points to the TeleCommand packet that is being processed
892 * @param TC points to the TeleCommand packet that is being processed
893 * @param queue_id is the id of the queue which handles TM related to this execution step
893 * @param queue_id is the id of the queue which handles TM related to this execution step
894 *
894 *
895 */
895 */
896
896
897 int status;
897 int status;
898
898
899 status = LFR_SUCCESSFUL;
899 status = LFR_SUCCESSFUL;
900
900
901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
902
902
903 return status;
903 return status;
904 }
904 }
905
905
906 //*******************
906 //*******************
907 // TC_LFR_UPDATE_INFO
907 // TC_LFR_UPDATE_INFO
908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
909 {
909 {
910 unsigned int status;
910 unsigned int status;
911
911
912 status = LFR_DEFAULT;
912 status = LFR_DEFAULT;
913
913
914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
915 || (mode == LFR_MODE_BURST)
915 || (mode == LFR_MODE_BURST)
916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
917 {
917 {
918 status = LFR_SUCCESSFUL;
918 status = LFR_SUCCESSFUL;
919 }
919 }
920 else
920 else
921 {
921 {
922 status = LFR_DEFAULT;
922 status = LFR_DEFAULT;
923 }
923 }
924
924
925 return status;
925 return status;
926 }
926 }
927
927
928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
929 {
929 {
930 unsigned int status;
930 unsigned int status;
931
931
932 status = LFR_DEFAULT;
932 status = LFR_DEFAULT;
933
933
934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
935 || (mode == TDS_MODE_BURST)
935 || (mode == TDS_MODE_BURST)
936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
937 || (mode == TDS_MODE_LFM))
937 || (mode == TDS_MODE_LFM))
938 {
938 {
939 status = LFR_SUCCESSFUL;
939 status = LFR_SUCCESSFUL;
940 }
940 }
941 else
941 else
942 {
942 {
943 status = LFR_DEFAULT;
943 status = LFR_DEFAULT;
944 }
944 }
945
945
946 return status;
946 return status;
947 }
947 }
948
948
949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
950 {
950 {
951 unsigned int status;
951 unsigned int status;
952
952
953 status = LFR_DEFAULT;
953 status = LFR_DEFAULT;
954
954
955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
956 || (mode == THR_MODE_BURST))
956 || (mode == THR_MODE_BURST))
957 {
957 {
958 status = LFR_SUCCESSFUL;
958 status = LFR_SUCCESSFUL;
959 }
959 }
960 else
960 else
961 {
961 {
962 status = LFR_DEFAULT;
962 status = LFR_DEFAULT;
963 }
963 }
964
964
965 return status;
965 return status;
966 }
966 }
967
967
968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
969 {
969 {
970 unsigned char flag;
970 unsigned char flag;
971 unsigned char flagPosInByte;
971 unsigned char flagPosInByte;
972 unsigned char newFlag;
972 unsigned char newFlag;
973 unsigned char flagMask;
973 unsigned char flagMask;
974
974
975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
976 if (isnan(value))
976 if (isnan(value))
977 {
977 {
978 flag = FLAG_NAN;
978 flag = FLAG_NAN;
979 }
979 }
980 else
980 else
981 {
981 {
982 flag = FLAG_IAN;
982 flag = FLAG_IAN;
983 }
983 }
984
984
985 switch(wheel)
985 switch(wheel)
986 {
986 {
987 case WHEEL_1:
987 case WHEEL_1:
988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
989 flagMask = ~(1 << flagPosInByte);
989 flagMask = ~(1 << flagPosInByte);
990 newFlag = flag << flagPosInByte;
990 newFlag = flag << flagPosInByte;
991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
992 break;
992 break;
993 case WHEEL_2:
993 case WHEEL_2:
994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
995 flagMask = ~(1 << flagPosInByte);
995 flagMask = ~(1 << flagPosInByte);
996 newFlag = flag << flagPosInByte;
996 newFlag = flag << flagPosInByte;
997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
998 break;
998 break;
999 case WHEEL_3:
999 case WHEEL_3:
1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1001 flagMask = ~(1 << flagPosInByte);
1001 flagMask = ~(1 << flagPosInByte);
1002 newFlag = flag << flagPosInByte;
1002 newFlag = flag << flagPosInByte;
1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1004 break;
1004 break;
1005 case WHEEL_4:
1005 case WHEEL_4:
1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1007 flagMask = ~(1 << flagPosInByte);
1007 flagMask = ~(1 << flagPosInByte);
1008 newFlag = flag << flagPosInByte;
1008 newFlag = flag << flagPosInByte;
1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1010 break;
1010 break;
1011 default:
1011 default:
1012 break;
1012 break;
1013 }
1013 }
1014 }
1014 }
1015
1015
1016 void set_hk_lfr_sc_rw_f_flags( void )
1016 void set_hk_lfr_sc_rw_f_flags( void )
1017 {
1017 {
1018 // RW1
1018 // RW1
1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1023
1023
1024 // RW2
1024 // RW2
1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1029
1029
1030 // RW3
1030 // RW3
1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1035
1035
1036 // RW4
1036 // RW4
1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1041 }
1041 }
1042
1042
1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1044 {
1044 {
1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1046 *
1046 *
1047 * @param TC points to the TeleCommand packet that is being processed
1047 * @param TC points to the TeleCommand packet that is being processed
1048 *
1048 *
1049 */
1049 */
1050
1050
1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1052
1052
1053 bytePosPtr = (unsigned char *) &TC->packetID;
1053 bytePosPtr = (unsigned char *) &TC->packetID;
1054
1054
1055 // rw1_f
1055 // rw1_f
1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1060
1060
1061 // rw2_f
1061 // rw2_f
1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1066
1066
1067 // rw3_f
1067 // rw3_f
1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1072
1072
1073 // rw4_f
1073 // rw4_f
1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1078
1078
1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1080
1080
1081 }
1081 }
1082
1082
1083 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff )
1083 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff )
1084 {
1084 {
1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1086 *
1086 *
1087 * @param fbins_mask
1087 * @param fbins_mask
1088 * @param rw_f is the reaction wheel frequency to filter
1088 * @param rw_f is the reaction wheel frequency to filter
1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1090 * @param flag [true] filtering enabled [false] filtering disabled
1090 * @param flag [true] filtering enabled [false] filtering disabled
1091 *
1091 *
1092 * @return void
1092 * @return void
1093 *
1093 *
1094 */
1094 */
1095
1095
1096 float f_RW_min;
1096 float f_RW_min;
1097 float f_RW_MAX;
1097 float f_RW_MAX;
1098 float fi_min;
1098 float fi_min;
1099 float fi_MAX;
1099 float fi_MAX;
1100 float fi;
1100 float fi;
1101 float deltaBelow;
1101 float deltaBelow;
1102 float deltaAbove;
1102 float deltaAbove;
1103 int binBelow;
1103 int binBelow;
1104 int binAbove;
1104 int binAbove;
1105 int closestBin;
1105 int closestBin;
1106 unsigned int whichByte;
1106 unsigned int whichByte;
1107 int selectedByte;
1107 int selectedByte;
1108 int bin;
1108 int bin;
1109 int binToRemove[NB_BINS_TO_REMOVE];
1109 int binToRemove[NB_BINS_TO_REMOVE];
1110 int i;
1110 int i;
1111
1111
1112 closestBin = 0;
1112 closestBin = 0;
1113 whichByte = 0;
1113 whichByte = 0;
1114 bin = 0;
1114 bin = 0;
1115
1115
1116 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1116 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1117 {
1117 {
1118 binToRemove[i] = -1;
1118 binToRemove[i] = -1;
1119 }
1119 }
1120
1120
1121 if (!isnan(rw_f))
1121 if (!isnan(rw_f))
1122 {
1122 {
1123
1123
1124 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1124 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1125 f_RW_min = rw_f - ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1125 f_RW_min = rw_f - ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1126 f_RW_MAX = rw_f + ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1126 f_RW_MAX = rw_f + ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1127
1127
1128 // compute the index of the frequency bin immediately below rw_f
1128 // compute the index of the frequency bin immediately below rw_f
1129 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1129 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1130 deltaBelow = rw_f - binBelow * deltaFreq;
1130 deltaBelow = rw_f - binBelow * deltaFreq;
1131
1131
1132 // compute the index of the frequency bin immediately above rw_f
1132 // compute the index of the frequency bin immediately above rw_f
1133 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1133 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1134 deltaAbove = binAbove * deltaFreq - rw_f;
1134 deltaAbove = binAbove * deltaFreq - rw_f;
1135
1135
1136 // search the closest bin
1136 // search the closest bin
1137 if (deltaAbove > deltaBelow)
1137 if (deltaAbove > deltaBelow)
1138 {
1138 {
1139 closestBin = binBelow;
1139 closestBin = binBelow;
1140 }
1140 }
1141 else
1141 else
1142 {
1142 {
1143 closestBin = binAbove;
1143 closestBin = binAbove;
1144 }
1144 }
1145
1145
1146 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1146 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1147 fi = closestBin * deltaFreq;
1147 fi = closestBin * deltaFreq;
1148 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1148 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1149 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1149 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1150
1150
1151 //**************************************************************************************
1151 //**************************************************************************************
1152 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1152 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1153 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1153 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1154 //**************************************************************************************
1154 //**************************************************************************************
1155
1155
1156 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1156 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1157 // => remove f_(i), f_(i-1) and f_(i+1)
1157 // => remove f_(i), f_(i-1) and f_(i+1)
1158 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1158 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1159 {
1159 {
1160 binToRemove[0] = (closestBin - 1) - 1;
1160 binToRemove[0] = (closestBin - 1) - 1;
1161 binToRemove[1] = (closestBin) - 1;
1161 binToRemove[1] = (closestBin) - 1;
1162 binToRemove[2] = (closestBin + 1) - 1;
1162 binToRemove[2] = (closestBin + 1) - 1;
1163 }
1163 }
1164 // 2. ELSE
1164 // 2. ELSE
1165 // => remove the two f_(i) which are around f_RW
1165 // => remove the two f_(i) which are around f_RW
1166 else
1166 else
1167 {
1167 {
1168 binToRemove[0] = (binBelow) - 1;
1168 binToRemove[0] = (binBelow) - 1;
1169 binToRemove[1] = (binAbove) - 1;
1169 binToRemove[1] = (binAbove) - 1;
1170 binToRemove[2] = (-1);
1170 binToRemove[2] = (-1);
1171 }
1171 }
1172
1172
1173 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1173 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1174 {
1174 {
1175 bin = binToRemove[i];
1175 bin = binToRemove[i];
1176 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1176 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1177 {
1177 {
1178
1178
1179 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1179 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1180 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1180 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1181 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1181 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1182 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1182 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1183 }
1183 }
1184 }
1184 }
1185 }
1185 }
1186 }
1186 }
1187
1187
1188 void build_sy_lfr_rw_mask( unsigned int channel )
1188 void build_sy_lfr_rw_mask( unsigned int channel )
1189 {
1189 {
1190 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1190 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1191 unsigned char *maskPtr;
1191 unsigned char *maskPtr;
1192 double deltaF;
1192 double deltaF;
1193 unsigned k;
1193 unsigned k;
1194
1194
1195 maskPtr = NULL;
1195 maskPtr = NULL;
1196 deltaF = DELTAF_F2;
1196 deltaF = DELTAF_F2;
1197
1197
1198 switch (channel)
1198 switch (channel)
1199 {
1199 {
1200 case CHANNELF0:
1200 case CHANNELF0:
1201 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1201 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1202 deltaF = DELTAF_F0;
1202 deltaF = DELTAF_F0;
1203 break;
1203 break;
1204 case CHANNELF1:
1204 case CHANNELF1:
1205 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1205 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1206 deltaF = DELTAF_F1;
1206 deltaF = DELTAF_F1;
1207 break;
1207 break;
1208 case CHANNELF2:
1208 case CHANNELF2:
1209 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1209 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1210 deltaF = DELTAF_F2;
1210 deltaF = DELTAF_F2;
1211 break;
1211 break;
1212 default:
1212 default:
1213 break;
1213 break;
1214 }
1214 }
1215
1215
1216 for (k = 0; k < BYTES_PER_MASK; k++)
1216 for (k = 0; k < BYTES_PER_MASK; k++)
1217 {
1217 {
1218 local_rw_fbins_mask[k] = INT8_ALL_F;
1218 local_rw_fbins_mask[k] = INT8_ALL_F;
1219 }
1219 }
1220
1220
1221 // RW1
1221 // RW1
1222 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1222 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1223 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1223 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1226
1226
1227 // RW2
1227 // RW2
1228 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1228 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1229 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1229 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1232
1232
1233 // RW3
1233 // RW3
1234 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1234 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1235 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1235 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1236 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1236 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1237 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1237 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1238
1238
1239 // RW4
1239 // RW4
1240 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1240 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1241 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1241 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1242 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1242 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1244
1244
1245 // update the value of the fbins related to reaction wheels frequency filtering
1245 // update the value of the fbins related to reaction wheels frequency filtering
1246 if (maskPtr != NULL)
1246 if (maskPtr != NULL)
1247 {
1247 {
1248 for (k = 0; k < BYTES_PER_MASK; k++)
1248 for (k = 0; k < BYTES_PER_MASK; k++)
1249 {
1249 {
1250 maskPtr[k] = local_rw_fbins_mask[k];
1250 maskPtr[k] = local_rw_fbins_mask[k];
1251 }
1251 }
1252 }
1252 }
1253 }
1253 }
1254
1254
1255 void build_sy_lfr_rw_masks( void )
1255 void build_sy_lfr_rw_masks( void )
1256 {
1256 {
1257 build_sy_lfr_rw_mask( CHANNELF0 );
1257 build_sy_lfr_rw_mask( CHANNELF0 );
1258 build_sy_lfr_rw_mask( CHANNELF1 );
1258 build_sy_lfr_rw_mask( CHANNELF1 );
1259 build_sy_lfr_rw_mask( CHANNELF2 );
1259 build_sy_lfr_rw_mask( CHANNELF2 );
1260 }
1260 }
1261
1261
1262 void merge_fbins_masks( void )
1262 void merge_fbins_masks( void )
1263 {
1263 {
1264 unsigned char k;
1264 unsigned char k;
1265
1265
1266 unsigned char *fbins_f0;
1266 unsigned char *fbins_f0;
1267 unsigned char *fbins_f1;
1267 unsigned char *fbins_f1;
1268 unsigned char *fbins_f2;
1268 unsigned char *fbins_f2;
1269 unsigned char *rw_mask_f0;
1269 unsigned char *rw_mask_f0;
1270 unsigned char *rw_mask_f1;
1270 unsigned char *rw_mask_f1;
1271 unsigned char *rw_mask_f2;
1271 unsigned char *rw_mask_f2;
1272
1272
1273 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1273 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1274 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1274 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1275 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1275 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1276 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1276 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1277 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1277 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1278 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1278 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1279
1279
1280 for( k=0; k < BYTES_PER_MASK; k++ )
1280 for( k=0; k < BYTES_PER_MASK; k++ )
1281 {
1281 {
1282 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1282 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1283 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1283 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1284 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1284 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1285 }
1285 }
1286 }
1286 }
1287
1287
1288 //***********
1288 //***********
1289 // FBINS MASK
1289 // FBINS MASK
1290
1290
1291 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1291 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1292 {
1292 {
1293 int status;
1293 int status;
1294 unsigned int k;
1294 unsigned int k;
1295 unsigned char *fbins_mask_dump;
1295 unsigned char *fbins_mask_dump;
1296 unsigned char *fbins_mask_TC;
1296 unsigned char *fbins_mask_TC;
1297
1297
1298 status = LFR_SUCCESSFUL;
1298 status = LFR_SUCCESSFUL;
1299
1299
1300 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1300 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1301 fbins_mask_TC = TC->dataAndCRC;
1301 fbins_mask_TC = TC->dataAndCRC;
1302
1302
1303 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1303 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1304 {
1304 {
1305 fbins_mask_dump[k] = fbins_mask_TC[k];
1305 fbins_mask_dump[k] = fbins_mask_TC[k];
1306 }
1306 }
1307
1307
1308 return status;
1308 return status;
1309 }
1309 }
1310
1310
1311 //***************************
1311 //***************************
1312 // TC_LFR_LOAD_PAS_FILTER_PAR
1312 // TC_LFR_LOAD_PAS_FILTER_PAR
1313
1313
1314 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1314 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1315 {
1315 {
1316 int flag;
1316 int flag;
1317 rtems_status_code status;
1317 rtems_status_code status;
1318
1318
1319 unsigned char sy_lfr_pas_filter_enabled;
1319 unsigned char sy_lfr_pas_filter_enabled;
1320 unsigned char sy_lfr_pas_filter_modulus;
1320 unsigned char sy_lfr_pas_filter_modulus;
1321 float sy_lfr_pas_filter_tbad;
1321 float sy_lfr_pas_filter_tbad;
1322 unsigned char sy_lfr_pas_filter_offset;
1322 unsigned char sy_lfr_pas_filter_offset;
1323 float sy_lfr_pas_filter_shift;
1323 float sy_lfr_pas_filter_shift;
1324 float sy_lfr_sc_rw_delta_f;
1324 float sy_lfr_sc_rw_delta_f;
1325 char *parPtr;
1325 char *parPtr;
1326
1326
1327 flag = LFR_SUCCESSFUL;
1327 flag = LFR_SUCCESSFUL;
1328 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1328 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1329 sy_lfr_pas_filter_shift = INIT_FLOAT;
1329 sy_lfr_pas_filter_shift = INIT_FLOAT;
1330 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1330 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1331 parPtr = NULL;
1331 parPtr = NULL;
1332
1332
1333 //***************
1333 //***************
1334 // get parameters
1334 // get parameters
1335 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1335 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1336 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1336 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1337 copyFloatByChar(
1337 copyFloatByChar(
1338 (unsigned char*) &sy_lfr_pas_filter_tbad,
1338 (unsigned char*) &sy_lfr_pas_filter_tbad,
1339 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1339 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1340 );
1340 );
1341 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1341 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1342 copyFloatByChar(
1342 copyFloatByChar(
1343 (unsigned char*) &sy_lfr_pas_filter_shift,
1343 (unsigned char*) &sy_lfr_pas_filter_shift,
1344 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1344 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1345 );
1345 );
1346 copyFloatByChar(
1346 copyFloatByChar(
1347 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1347 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1348 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1348 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1349 );
1349 );
1350
1350
1351 //******************
1351 //******************
1352 // CHECK CONSISTENCY
1352 // CHECK CONSISTENCY
1353
1353
1354 //**************************
1354 //**************************
1355 // sy_lfr_pas_filter_enabled
1355 // sy_lfr_pas_filter_enabled
1356 // nothing to check, value is 0 or 1
1356 // nothing to check, value is 0 or 1
1357
1357
1358 //**************************
1358 //**************************
1359 // sy_lfr_pas_filter_modulus
1359 // sy_lfr_pas_filter_modulus
1360 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1360 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1361 {
1361 {
1362 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1362 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1363 flag = WRONG_APP_DATA;
1363 flag = WRONG_APP_DATA;
1364 }
1364 }
1365
1365
1366 //***********************
1366 //***********************
1367 // sy_lfr_pas_filter_tbad
1367 // sy_lfr_pas_filter_tbad
1368 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1368 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1369 {
1369 {
1370 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1370 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1371 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1371 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1372 flag = WRONG_APP_DATA;
1372 flag = WRONG_APP_DATA;
1373 }
1373 }
1374
1374
1375 //*************************
1375 //*************************
1376 // sy_lfr_pas_filter_offset
1376 // sy_lfr_pas_filter_offset
1377 if (flag == LFR_SUCCESSFUL)
1377 if (flag == LFR_SUCCESSFUL)
1378 {
1378 {
1379 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1379 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1380 {
1380 {
1381 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1381 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1382 flag = WRONG_APP_DATA;
1382 flag = WRONG_APP_DATA;
1383 }
1383 }
1384 }
1384 }
1385
1385
1386 //************************
1386 //************************
1387 // sy_lfr_pas_filter_shift
1387 // sy_lfr_pas_filter_shift
1388 if (flag == LFR_SUCCESSFUL)
1388 if (flag == LFR_SUCCESSFUL)
1389 {
1389 {
1390 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1390 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1391 {
1391 {
1392 parPtr = (char*) &sy_lfr_pas_filter_shift;
1392 parPtr = (char*) &sy_lfr_pas_filter_shift;
1393 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1393 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1394 flag = WRONG_APP_DATA;
1394 flag = WRONG_APP_DATA;
1395 }
1395 }
1396 }
1396 }
1397
1397
1398 //*************************************
1398 //*************************************
1399 // check global coherency of the values
1399 // check global coherency of the values
1400 if (flag == LFR_SUCCESSFUL)
1400 if (flag == LFR_SUCCESSFUL)
1401 {
1401 {
1402 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1402 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1403 {
1403 {
1404 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1404 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1405 flag = WRONG_APP_DATA;
1405 flag = WRONG_APP_DATA;
1406 }
1406 }
1407 }
1407 }
1408
1408
1409 //*********************
1409 //*********************
1410 // sy_lfr_sc_rw_delta_f
1410 // sy_lfr_sc_rw_delta_f
1411 // nothing to check, no default value in the ICD
1411 // nothing to check, no default value in the ICD
1412
1412
1413 return flag;
1413 return flag;
1414 }
1414 }
1415
1415
1416 //**************
1416 //**************
1417 // KCOEFFICIENTS
1417 // KCOEFFICIENTS
1418 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1418 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1419 {
1419 {
1420 unsigned int kcoeff;
1420 unsigned int kcoeff;
1421 unsigned short sy_lfr_kcoeff_frequency;
1421 unsigned short sy_lfr_kcoeff_frequency;
1422 unsigned short bin;
1422 unsigned short bin;
1423 unsigned short *freqPtr;
1424 float *kcoeffPtr_norm;
1423 float *kcoeffPtr_norm;
1425 float *kcoeffPtr_sbm;
1424 float *kcoeffPtr_sbm;
1426 int status;
1425 int status;
1427 unsigned char *kcoeffLoadPtr;
1426 unsigned char *kcoeffLoadPtr;
1428 unsigned char *kcoeffNormPtr;
1427 unsigned char *kcoeffNormPtr;
1429 unsigned char *kcoeffSbmPtr_a;
1428 unsigned char *kcoeffSbmPtr_a;
1430 unsigned char *kcoeffSbmPtr_b;
1429 unsigned char *kcoeffSbmPtr_b;
1431
1430
1432 status = LFR_SUCCESSFUL;
1431 sy_lfr_kcoeff_frequency = 0;
1433
1432 bin = 0;
1434 kcoeffPtr_norm = NULL;
1433 kcoeffPtr_norm = NULL;
1435 kcoeffPtr_sbm = NULL;
1434 kcoeffPtr_sbm = NULL;
1436 bin = 0;
1435 status = LFR_SUCCESSFUL;
1437
1436
1438 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1437 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1439 sy_lfr_kcoeff_frequency = *freqPtr;
1438 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1439
1440
1440
1441 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1441 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1442 {
1442 {
1443 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1443 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1444 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1444 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1445 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1445 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1446 status = LFR_DEFAULT;
1446 status = LFR_DEFAULT;
1447 }
1447 }
1448 else
1448 else
1449 {
1449 {
1450 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1450 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1451 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1451 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1452 {
1452 {
1453 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1453 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1454 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1454 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1455 bin = sy_lfr_kcoeff_frequency;
1455 bin = sy_lfr_kcoeff_frequency;
1456 }
1456 }
1457 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1457 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1458 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1458 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1459 {
1459 {
1460 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1460 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1461 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1461 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1462 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1462 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1463 }
1463 }
1464 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1464 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1465 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1465 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1466 {
1466 {
1467 kcoeffPtr_norm = k_coeff_intercalib_f2;
1467 kcoeffPtr_norm = k_coeff_intercalib_f2;
1468 kcoeffPtr_sbm = NULL;
1468 kcoeffPtr_sbm = NULL;
1469 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1469 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1470 }
1470 }
1471 }
1471 }
1472
1472
1473 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1473 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1474 {
1474 {
1475 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1475 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1476 {
1476 {
1477 // destination
1477 // destination
1478 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1478 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1479 // source
1479 // source
1480 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1480 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1481 // copy source to destination
1481 // copy source to destination
1482 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1482 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1483 }
1483 }
1484 }
1484 }
1485
1485
1486 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1486 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1487 {
1487 {
1488 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1488 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1489 {
1489 {
1490 // destination
1490 // destination
1491 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1491 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1492 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1492 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1493 // source
1493 // source
1494 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1494 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1495 // copy source to destination
1495 // copy source to destination
1496 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1496 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1497 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1497 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1498 }
1498 }
1499 }
1499 }
1500
1500
1501 // print_k_coeff();
1501 // print_k_coeff();
1502
1502
1503 return status;
1503 return status;
1504 }
1504 }
1505
1505
1506 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1506 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1507 {
1507 {
1508 destination[BYTE_0] = source[BYTE_0];
1508 destination[BYTE_0] = source[BYTE_0];
1509 destination[BYTE_1] = source[BYTE_1];
1509 destination[BYTE_1] = source[BYTE_1];
1510 destination[BYTE_2] = source[BYTE_2];
1510 destination[BYTE_2] = source[BYTE_2];
1511 destination[BYTE_3] = source[BYTE_3];
1511 destination[BYTE_3] = source[BYTE_3];
1512 }
1512 }
1513
1513
1514 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1514 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1515 {
1515 {
1516 destination[BYTE_0] = source[BYTE_0];
1516 destination[BYTE_0] = source[BYTE_0];
1517 destination[BYTE_1] = source[BYTE_1];
1517 destination[BYTE_1] = source[BYTE_1];
1518 destination[BYTE_2] = source[BYTE_2];
1518 destination[BYTE_2] = source[BYTE_2];
1519 destination[BYTE_3] = source[BYTE_3];
1519 destination[BYTE_3] = source[BYTE_3];
1520 }
1520 }
1521
1521
1522 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1523 {
1524 destination[BYTE_0] = source[BYTE_0];
1525 destination[BYTE_1] = source[BYTE_1];
1526 }
1527
1522 void floatToChar( float value, unsigned char* ptr)
1528 void floatToChar( float value, unsigned char* ptr)
1523 {
1529 {
1524 unsigned char* valuePtr;
1530 unsigned char* valuePtr;
1525
1531
1526 valuePtr = (unsigned char*) &value;
1532 valuePtr = (unsigned char*) &value;
1527 ptr[BYTE_0] = valuePtr[BYTE_0];
1533 ptr[BYTE_0] = valuePtr[BYTE_0];
1528 ptr[BYTE_1] = valuePtr[BYTE_1];
1534 ptr[BYTE_1] = valuePtr[BYTE_1];
1529 ptr[BYTE_2] = valuePtr[BYTE_2];
1535 ptr[BYTE_2] = valuePtr[BYTE_2];
1530 ptr[BYTE_3] = valuePtr[BYTE_3];
1536 ptr[BYTE_3] = valuePtr[BYTE_3];
1531 }
1537 }
1532
1538
1533 //**********
1539 //**********
1534 // init dump
1540 // init dump
1535
1541
1536 void init_parameter_dump( void )
1542 void init_parameter_dump( void )
1537 {
1543 {
1538 /** This function initialize the parameter_dump_packet global variable with default values.
1544 /** This function initialize the parameter_dump_packet global variable with default values.
1539 *
1545 *
1540 */
1546 */
1541
1547
1542 unsigned int k;
1548 unsigned int k;
1543
1549
1544 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1550 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1545 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1551 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1546 parameter_dump_packet.reserved = CCSDS_RESERVED;
1552 parameter_dump_packet.reserved = CCSDS_RESERVED;
1547 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1553 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1548 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1554 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1549 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1555 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1550 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1556 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1551 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1557 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1552 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1558 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1553 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1559 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1554 // DATA FIELD HEADER
1560 // DATA FIELD HEADER
1555 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1561 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1556 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1562 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1557 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1563 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1558 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1564 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1559 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1565 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1560 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1566 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1561 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1567 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1562 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1568 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1563 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1569 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1564 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1570 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1565 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1571 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1566
1572
1567 //******************
1573 //******************
1568 // COMMON PARAMETERS
1574 // COMMON PARAMETERS
1569 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1575 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1570 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1576 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1571
1577
1572 //******************
1578 //******************
1573 // NORMAL PARAMETERS
1579 // NORMAL PARAMETERS
1574 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1580 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1575 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1581 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1576 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1582 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1577 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1583 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1578 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1584 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1579 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1585 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1580 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1586 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1581 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1587 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1582 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1588 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1583
1589
1584 //*****************
1590 //*****************
1585 // BURST PARAMETERS
1591 // BURST PARAMETERS
1586 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1592 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1587 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1593 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1588
1594
1589 //****************
1595 //****************
1590 // SBM1 PARAMETERS
1596 // SBM1 PARAMETERS
1591 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1597 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1592 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1598 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1593
1599
1594 //****************
1600 //****************
1595 // SBM2 PARAMETERS
1601 // SBM2 PARAMETERS
1596 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1602 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1597 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1603 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1598
1604
1599 //************
1605 //************
1600 // FBINS MASKS
1606 // FBINS MASKS
1601 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1607 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1602 {
1608 {
1603 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1609 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1604 }
1610 }
1605
1611
1606 // PAS FILTER PARAMETERS
1612 // PAS FILTER PARAMETERS
1607 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1613 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1608 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1614 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1609 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1615 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1610 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1616 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1611 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1617 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1612 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1618 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1613 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1619 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1614
1620
1615 // RW1_K
1621 // RW1_K
1616 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1622 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1617 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1623 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1618 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1624 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1619 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1625 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1620 // RW2_K
1626 // RW2_K
1621 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1627 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1622 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1628 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1623 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1629 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1624 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1630 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1625 // RW3_K
1631 // RW3_K
1626 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1632 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1627 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1633 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1628 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1634 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1629 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1635 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1630 // RW4_K
1636 // RW4_K
1631 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1637 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1632 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1638 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1633 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1639 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1634 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1640 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1635
1641
1636 // LFR_RW_MASK
1642 // LFR_RW_MASK
1637 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1643 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1638 {
1644 {
1639 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1645 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1640 }
1646 }
1641
1647
1642 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1648 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1643 merge_fbins_masks();
1649 merge_fbins_masks();
1644 }
1650 }
1645
1651
1646 void init_kcoefficients_dump( void )
1652 void init_kcoefficients_dump( void )
1647 {
1653 {
1648 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1654 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1649 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1655 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1650
1656
1651 kcoefficient_node_1.previous = NULL;
1657 kcoefficient_node_1.previous = NULL;
1652 kcoefficient_node_1.next = NULL;
1658 kcoefficient_node_1.next = NULL;
1653 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1659 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1654 kcoefficient_node_1.coarseTime = INIT_CHAR;
1660 kcoefficient_node_1.coarseTime = INIT_CHAR;
1655 kcoefficient_node_1.fineTime = INIT_CHAR;
1661 kcoefficient_node_1.fineTime = INIT_CHAR;
1656 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1662 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1657 kcoefficient_node_1.status = INIT_CHAR;
1663 kcoefficient_node_1.status = INIT_CHAR;
1658
1664
1659 kcoefficient_node_2.previous = NULL;
1665 kcoefficient_node_2.previous = NULL;
1660 kcoefficient_node_2.next = NULL;
1666 kcoefficient_node_2.next = NULL;
1661 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1667 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1662 kcoefficient_node_2.coarseTime = INIT_CHAR;
1668 kcoefficient_node_2.coarseTime = INIT_CHAR;
1663 kcoefficient_node_2.fineTime = INIT_CHAR;
1669 kcoefficient_node_2.fineTime = INIT_CHAR;
1664 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1670 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1665 kcoefficient_node_2.status = INIT_CHAR;
1671 kcoefficient_node_2.status = INIT_CHAR;
1666 }
1672 }
1667
1673
1668 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1674 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1669 {
1675 {
1670 unsigned int k;
1676 unsigned int k;
1671 unsigned int packetLength;
1677 unsigned int packetLength;
1672
1678
1673 packetLength =
1679 packetLength =
1674 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1680 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1675
1681
1676 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1682 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1677 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1683 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1678 kcoefficients_dump->reserved = CCSDS_RESERVED;
1684 kcoefficients_dump->reserved = CCSDS_RESERVED;
1679 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1685 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1680 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1686 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1681 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1687 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1682 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1688 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1683 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1689 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1684 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1690 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1685 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1691 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1686 // DATA FIELD HEADER
1692 // DATA FIELD HEADER
1687 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1693 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1688 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1694 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1689 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1695 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1690 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1696 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1691 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1697 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1692 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1698 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1693 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1699 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1694 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1700 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1695 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1701 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1696 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1702 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1697 kcoefficients_dump->sid = SID_K_DUMP;
1703 kcoefficients_dump->sid = SID_K_DUMP;
1698
1704
1699 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1705 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1700 kcoefficients_dump->pkt_nr = PKTNR_1;
1706 kcoefficients_dump->pkt_nr = PKTNR_1;
1701 kcoefficients_dump->blk_nr = blk_nr;
1707 kcoefficients_dump->blk_nr = blk_nr;
1702
1708
1703 //******************
1709 //******************
1704 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1710 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1705 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1711 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1706 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1712 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1707 {
1713 {
1708 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1714 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1709 }
1715 }
1710 }
1716 }
1711
1717
1712 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1718 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1713 {
1719 {
1714 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1720 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1715 *
1721 *
1716 * @param packet_sequence_control points to the packet sequence control which will be incremented
1722 * @param packet_sequence_control points to the packet sequence control which will be incremented
1717 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1723 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1718 *
1724 *
1719 * If the destination ID is not known, a dedicated counter is incremented.
1725 * If the destination ID is not known, a dedicated counter is incremented.
1720 *
1726 *
1721 */
1727 */
1722
1728
1723 unsigned short sequence_cnt;
1729 unsigned short sequence_cnt;
1724 unsigned short segmentation_grouping_flag;
1730 unsigned short segmentation_grouping_flag;
1725 unsigned short new_packet_sequence_control;
1731 unsigned short new_packet_sequence_control;
1726 unsigned char i;
1732 unsigned char i;
1727
1733
1728 switch (destination_id)
1734 switch (destination_id)
1729 {
1735 {
1730 case SID_TC_GROUND:
1736 case SID_TC_GROUND:
1731 i = GROUND;
1737 i = GROUND;
1732 break;
1738 break;
1733 case SID_TC_MISSION_TIMELINE:
1739 case SID_TC_MISSION_TIMELINE:
1734 i = MISSION_TIMELINE;
1740 i = MISSION_TIMELINE;
1735 break;
1741 break;
1736 case SID_TC_TC_SEQUENCES:
1742 case SID_TC_TC_SEQUENCES:
1737 i = TC_SEQUENCES;
1743 i = TC_SEQUENCES;
1738 break;
1744 break;
1739 case SID_TC_RECOVERY_ACTION_CMD:
1745 case SID_TC_RECOVERY_ACTION_CMD:
1740 i = RECOVERY_ACTION_CMD;
1746 i = RECOVERY_ACTION_CMD;
1741 break;
1747 break;
1742 case SID_TC_BACKUP_MISSION_TIMELINE:
1748 case SID_TC_BACKUP_MISSION_TIMELINE:
1743 i = BACKUP_MISSION_TIMELINE;
1749 i = BACKUP_MISSION_TIMELINE;
1744 break;
1750 break;
1745 case SID_TC_DIRECT_CMD:
1751 case SID_TC_DIRECT_CMD:
1746 i = DIRECT_CMD;
1752 i = DIRECT_CMD;
1747 break;
1753 break;
1748 case SID_TC_SPARE_GRD_SRC1:
1754 case SID_TC_SPARE_GRD_SRC1:
1749 i = SPARE_GRD_SRC1;
1755 i = SPARE_GRD_SRC1;
1750 break;
1756 break;
1751 case SID_TC_SPARE_GRD_SRC2:
1757 case SID_TC_SPARE_GRD_SRC2:
1752 i = SPARE_GRD_SRC2;
1758 i = SPARE_GRD_SRC2;
1753 break;
1759 break;
1754 case SID_TC_OBCP:
1760 case SID_TC_OBCP:
1755 i = OBCP;
1761 i = OBCP;
1756 break;
1762 break;
1757 case SID_TC_SYSTEM_CONTROL:
1763 case SID_TC_SYSTEM_CONTROL:
1758 i = SYSTEM_CONTROL;
1764 i = SYSTEM_CONTROL;
1759 break;
1765 break;
1760 case SID_TC_AOCS:
1766 case SID_TC_AOCS:
1761 i = AOCS;
1767 i = AOCS;
1762 break;
1768 break;
1763 case SID_TC_RPW_INTERNAL:
1769 case SID_TC_RPW_INTERNAL:
1764 i = RPW_INTERNAL;
1770 i = RPW_INTERNAL;
1765 break;
1771 break;
1766 default:
1772 default:
1767 i = GROUND;
1773 i = GROUND;
1768 break;
1774 break;
1769 }
1775 }
1770
1776
1771 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1777 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1772 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1778 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1773
1779
1774 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1780 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1775
1781
1776 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1782 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1777 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1783 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1778
1784
1779 // increment the sequence counter
1785 // increment the sequence counter
1780 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1786 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1781 {
1787 {
1782 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1788 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1783 }
1789 }
1784 else
1790 else
1785 {
1791 {
1786 sequenceCounters_TM_DUMP[ i ] = 0;
1792 sequenceCounters_TM_DUMP[ i ] = 0;
1787 }
1793 }
1788 }
1794 }
General Comments 0
You need to be logged in to leave comments. Login now