##// END OF EJS Templates
snapshot resynchronisation modified, correction is multiplied by 2 when above 1...
paul -
r274:4b39bb5ceb61 R3a
parent child
Show More
@@ -1,1312 +1,1310
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 16 ring_node *current_ring_node_f0;
17 17 ring_node *ring_node_to_send_swf_f0;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 20 ring_node *current_ring_node_f1;
21 21 ring_node *ring_node_to_send_swf_f1;
22 22 ring_node *ring_node_to_send_cwf_f1;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 25 ring_node *current_ring_node_f2;
26 26 ring_node *ring_node_to_send_swf_f2;
27 27 ring_node *ring_node_to_send_cwf_f2;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 30 ring_node *current_ring_node_f3;
31 31 ring_node *ring_node_to_send_cwf_f3;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 43 ring_node ring_node_swf1_extracted;
44 44 ring_node ring_node_swf2_extracted;
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case 1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case 2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case 3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case 0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case 1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case 2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
146 146
147 147
148 148 switch(status)
149 149 {
150 150 case 1:
151 151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
152 152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
153 153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
154 154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
155 155 current_ring_node_f2 = current_ring_node_f2->next;
156 156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
157 157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
158 158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
159 159 }
160 160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
161 161 break;
162 162 case 2:
163 163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
164 164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
165 165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
166 166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
167 167 current_ring_node_f2 = current_ring_node_f2->next;
168 168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
169 169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
170 170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
171 171 }
172 172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
173 173 break;
174 174 default:
175 175 break;
176 176 }
177 177 }
178 178
179 179 inline void waveform_isr_normal_sbm1_sbm2( void )
180 180 {
181 181 rtems_status_code status;
182 182
183 183 //***
184 184 // F0
185 185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
186 186 {
187 187 swf0_ready_flag_f1 = true;
188 188 swf0_ready_flag_f2 = true;
189 189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
190 190 current_ring_node_f0 = current_ring_node_f0->next;
191 191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
192 192 {
193 193
194 194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
195 195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
196 196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
197 197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
198 198 }
199 199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
200 200 {
201 201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
202 202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
203 203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
204 204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
205 205 }
206 206 // send an event to the WFRM task for resynchro activities
207 207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
208 208 }
209 209
210 210 //***
211 211 // F1
212 212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
213 213 // (1) change the receiving buffer for the waveform picker
214 214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 215 current_ring_node_f1 = current_ring_node_f1->next;
216 216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
217 217 {
218 218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
222 222 }
223 223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
224 224 {
225 225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
229 229 }
230 230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 232 }
233 233
234 234 //***
235 235 // F2
236 236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
237 237 // (1) change the receiving buffer for the waveform picker
238 238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 240 current_ring_node_f2 = current_ring_node_f2->next;
241 241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
242 242 {
243 243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
247 247 }
248 248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
249 249 {
250 250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
254 254 }
255 255 // (2) send an event for the waveforms transmission
256 256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 257 }
258 258 }
259 259
260 260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 261 {
262 262 /** This is the interrupt sub routine called by the waveform picker core.
263 263 *
264 264 * This ISR launch different actions depending mainly on two pieces of information:
265 265 * 1. the values read in the registers of the waveform picker.
266 266 * 2. the current LFR mode.
267 267 *
268 268 */
269 269
270 270 // STATUS
271 271 // new error error buffer full
272 272 // 15 14 13 12 11 10 9 8
273 273 // f3 f2 f1 f0 f3 f2 f1 f0
274 274 //
275 275 // ready buffer
276 276 // 7 6 5 4 3 2 1 0
277 277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278 278
279 279 rtems_status_code spare_status;
280 280
281 281 waveforms_isr_f3();
282 282
283 283 //*************************************************
284 284 // copy the status bits in the housekeeping packets
285 285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
287 287
288 288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
289 289 {
290 290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 291 }
292 292
293 293 switch(lfrCurrentMode)
294 294 {
295 295 //********
296 296 // STANDBY
297 297 case LFR_MODE_STANDBY:
298 298 break;
299 299 //**************************
300 300 // LFR NORMAL, SBM1 and SBM2
301 301 case LFR_MODE_NORMAL:
302 302 case LFR_MODE_SBM1:
303 303 case LFR_MODE_SBM2:
304 304 waveform_isr_normal_sbm1_sbm2();
305 305 break;
306 306 //******
307 307 // BURST
308 308 case LFR_MODE_BURST:
309 309 waveforms_isr_burst();
310 310 break;
311 311 //********
312 312 // DEFAULT
313 313 default:
314 314 break;
315 315 }
316 316 }
317 317
318 318 //************
319 319 // RTEMS TASKS
320 320
321 321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 322 {
323 323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 324 *
325 325 * @param unused is the starting argument of the RTEMS task
326 326 *
327 327 * The following data packets are sent by this task:
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 331 *
332 332 */
333 333
334 334 rtems_event_set event_out;
335 335 rtems_id queue_id;
336 336 rtems_status_code status;
337 337 ring_node *ring_node_swf1_extracted_ptr;
338 338 ring_node *ring_node_swf2_extracted_ptr;
339 339
340 340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
341 341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
342 342
343 343 status = get_message_queue_id_send( &queue_id );
344 344 if (status != RTEMS_SUCCESSFUL)
345 345 {
346 346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
347 347 }
348 348
349 349 BOOT_PRINTF("in WFRM ***\n");
350 350
351 351 while(1){
352 352 // wait for an RTEMS_EVENT
353 353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
354 354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
355 355
356 356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
357 357 {
358 358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
359 359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
360 360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
361 361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
362 362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
363 363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
364 364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
365 365 }
366 366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
367 367 {
368 368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
369 369 }
370 370 }
371 371 }
372 372
373 373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
374 374 {
375 375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
376 376 *
377 377 * @param unused is the starting argument of the RTEMS task
378 378 *
379 379 * The following data packet is sent by this task:
380 380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
381 381 *
382 382 */
383 383
384 384 rtems_event_set event_out;
385 385 rtems_id queue_id;
386 386 rtems_status_code status;
387 387 ring_node ring_node_cwf3_light;
388 388 ring_node *ring_node_to_send_cwf;
389 389
390 390 status = get_message_queue_id_send( &queue_id );
391 391 if (status != RTEMS_SUCCESSFUL)
392 392 {
393 393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
394 394 }
395 395
396 396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
397 397
398 398 // init the ring_node_cwf3_light structure
399 399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
400 400 ring_node_cwf3_light.coarseTime = 0x00;
401 401 ring_node_cwf3_light.fineTime = 0x00;
402 402 ring_node_cwf3_light.next = NULL;
403 403 ring_node_cwf3_light.previous = NULL;
404 404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
405 405 ring_node_cwf3_light.status = 0x00;
406 406
407 407 BOOT_PRINTF("in CWF3 ***\n")
408 408
409 409 while(1){
410 410 // wait for an RTEMS_EVENT
411 411 rtems_event_receive( RTEMS_EVENT_0,
412 412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
413 413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
414 414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
415 415 {
416 416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
417 417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
418 418 {
419 419 PRINTF("send CWF_LONG_F3\n")
420 420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
421 421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
422 422 }
423 423 else
424 424 {
425 425 PRINTF("send CWF_F3 (light)\n")
426 426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
427 427 }
428 428
429 429 }
430 430 else
431 431 {
432 432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
433 433 }
434 434 }
435 435 }
436 436
437 437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
438 438 {
439 439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
440 440 *
441 441 * @param unused is the starting argument of the RTEMS task
442 442 *
443 443 * The following data packet is sent by this function:
444 444 * - TM_LFR_SCIENCE_BURST_CWF_F2
445 445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
446 446 *
447 447 */
448 448
449 449 rtems_event_set event_out;
450 450 rtems_id queue_id;
451 451 rtems_status_code status;
452 452 ring_node *ring_node_to_send;
453 453 unsigned long long int acquisitionTimeF0_asLong;
454 454
455 455 acquisitionTimeF0_asLong = 0x00;
456 456
457 457 status = get_message_queue_id_send( &queue_id );
458 458 if (status != RTEMS_SUCCESSFUL)
459 459 {
460 460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
461 461 }
462 462
463 463 BOOT_PRINTF("in CWF2 ***\n")
464 464
465 465 while(1){
466 466 // wait for an RTEMS_EVENT// send the snapshot when built
467 467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
468 468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
469 469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
470 470 ring_node_to_send = getRingNodeToSendCWF( 2 );
471 471 if (event_out == RTEMS_EVENT_MODE_BURST)
472 472 {
473 473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
474 474 }
475 475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
476 476 {
477 477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
478 478 {
479 479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
480 480 }
481 481 // launch snapshot extraction if needed
482 482 if (extractSWF2 == true)
483 483 {
484 484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
485 485 // extract the snapshot
486 486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
487 487 &ring_node_swf2_extracted, swf2_extracted );
488 488 extractSWF2 = false;
489 489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
490 490 }
491 491 if (swf0_ready_flag_f2 == true)
492 492 {
493 493 extractSWF2 = true;
494 494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
495 495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
496 496 swf0_ready_flag_f2 = false;
497 497 }
498 498 }
499 499 }
500 500 }
501 501
502 502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
503 503 {
504 504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
505 505 *
506 506 * @param unused is the starting argument of the RTEMS task
507 507 *
508 508 * The following data packet is sent by this function:
509 509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
510 510 *
511 511 */
512 512
513 513 rtems_event_set event_out;
514 514 rtems_id queue_id;
515 515 rtems_status_code status;
516 516
517 517 ring_node *ring_node_to_send_cwf;
518 518
519 519 status = get_message_queue_id_send( &queue_id );
520 520 if (status != RTEMS_SUCCESSFUL)
521 521 {
522 522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
523 523 }
524 524
525 525 BOOT_PRINTF("in CWF1 ***\n");
526 526
527 527 while(1){
528 528 // wait for an RTEMS_EVENT
529 529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
530 530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
531 531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
532 532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
533 533 if (lfrCurrentMode == LFR_MODE_SBM1)
534 534 {
535 535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
536 536 if (status != 0)
537 537 {
538 538 PRINTF("cwf sending failed\n")
539 539 }
540 540 }
541 541 // launch snapshot extraction if needed
542 542 if (extractSWF1 == true)
543 543 {
544 544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
545 545 // launch the snapshot extraction
546 546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
547 547 extractSWF1 = false;
548 548 }
549 549 if (swf0_ready_flag_f1 == true)
550 550 {
551 551 extractSWF1 = true;
552 552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
553 553 }
554 554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
555 555 {
556 556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
557 557 swf1_ready = false;
558 558 swf2_ready = false;
559 559 }
560 560 }
561 561 }
562 562
563 563 rtems_task swbd_task(rtems_task_argument argument)
564 564 {
565 565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
566 566 *
567 567 * @param unused is the starting argument of the RTEMS task
568 568 *
569 569 */
570 570
571 571 rtems_event_set event_out;
572 572 unsigned long long int acquisitionTimeF0_asLong;
573 573
574 574 acquisitionTimeF0_asLong = 0x00;
575 575
576 576 BOOT_PRINTF("in SWBD ***\n")
577 577
578 578 while(1){
579 579 // wait for an RTEMS_EVENT
580 580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
581 581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
583 583 {
584 584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
585 585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
586 586 &ring_node_swf1_extracted, swf1_extracted );
587 587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
588 588 }
589 589 else
590 590 {
591 591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
592 592 }
593 593 }
594 594 }
595 595
596 596 //******************
597 597 // general functions
598 598
599 599 void WFP_init_rings( void )
600 600 {
601 601 // F0 RING
602 602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
603 603 // F1 RING
604 604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
605 605 // F2 RING
606 606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
607 607 // F3 RING
608 608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
609 609
610 610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
611 611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
612 612
613 613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
614 614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
615 615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
616 616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
617 617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
618 618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
619 619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
620 620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
621 621
622 622 }
623 623
624 624 void WFP_reset_current_ring_nodes( void )
625 625 {
626 626 current_ring_node_f0 = waveform_ring_f0[0].next;
627 627 current_ring_node_f1 = waveform_ring_f1[0].next;
628 628 current_ring_node_f2 = waveform_ring_f2[0].next;
629 629 current_ring_node_f3 = waveform_ring_f3[0].next;
630 630
631 631 ring_node_to_send_swf_f0 = waveform_ring_f0;
632 632 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 633 ring_node_to_send_swf_f2 = waveform_ring_f2;
634 634
635 635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
636 636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
637 637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
638 638 }
639 639
640 640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
641 641 {
642 642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
643 643 *
644 644 * @param waveform points to the buffer containing the data that will be send.
645 645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
646 646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
647 647 * contain information to setup the transmission of the data packets.
648 648 *
649 649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
650 650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
651 651 *
652 652 */
653 653
654 654 unsigned int i;
655 655 int ret;
656 656 rtems_status_code status;
657 657
658 658 char *sample;
659 659 int *dataPtr;
660 660
661 661 ret = LFR_DEFAULT;
662 662
663 663 dataPtr = (int*) ring_node_to_send->buffer_address;
664 664
665 665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
666 666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
667 667
668 668 //**********************
669 669 // BUILD CWF3_light DATA
670 670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
671 671 {
672 672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
673 673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
674 674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
675 675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
676 676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
677 677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
678 678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
679 679 }
680 680
681 681 // SEND PACKET
682 682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
683 683 if (status != RTEMS_SUCCESSFUL) {
684 684 ret = LFR_DEFAULT;
685 685 }
686 686
687 687 return ret;
688 688 }
689 689
690 690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
691 691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
692 692 {
693 693 unsigned long long int acquisitionTimeAsLong;
694 694 unsigned char localAcquisitionTime[6];
695 695 double deltaT;
696 696
697 697 deltaT = 0.;
698 698
699 699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
700 700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
701 701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
702 702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
703 703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
704 704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
705 705
706 706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
707 707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
708 708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
709 709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
710 710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
711 711 + ( (unsigned long long int) localAcquisitionTime[5] );
712 712
713 713 switch( sid )
714 714 {
715 715 case SID_NORM_SWF_F0:
716 716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
717 717 break;
718 718
719 719 case SID_NORM_SWF_F1:
720 720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
721 721 break;
722 722
723 723 case SID_NORM_SWF_F2:
724 724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
725 725 break;
726 726
727 727 case SID_SBM1_CWF_F1:
728 728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
729 729 break;
730 730
731 731 case SID_SBM2_CWF_F2:
732 732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
733 733 break;
734 734
735 735 case SID_BURST_CWF_F2:
736 736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
737 737 break;
738 738
739 739 case SID_NORM_CWF_F3:
740 740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
741 741 break;
742 742
743 743 case SID_NORM_CWF_LONG_F3:
744 744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
745 745 break;
746 746
747 747 default:
748 748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
749 749 deltaT = 0.;
750 750 break;
751 751 }
752 752
753 753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
754 754 //
755 755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
756 756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
757 757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
758 758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
759 759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
760 760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
761 761
762 762 }
763 763
764 764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
765 765 unsigned char frequencyChannel,
766 766 unsigned long long int acquisitionTimeF0_asLong,
767 767 ring_node *ring_node_swf_extracted,
768 768 int *swf_extracted)
769 769 {
770 770 unsigned int i;
771 771 unsigned long long int centerTime_asLong;
772 772 unsigned long long int acquisitionTime_asLong;
773 773 unsigned long long int bufferAcquisitionTime_asLong;
774 774 unsigned char *ptr1;
775 775 unsigned char *ptr2;
776 776 unsigned char *timeCharPtr;
777 777 unsigned char nb_ring_nodes;
778 778 unsigned long long int frequency_asLong;
779 779 unsigned long long int nbTicksPerSample_asLong;
780 780 unsigned long long int nbSamplesPart1_asLong;
781 781 unsigned long long int sampleOffset_asLong;
782 782
783 783 unsigned int deltaT_F0;
784 784 unsigned int deltaT_F1;
785 785 unsigned long long int deltaT_F2;
786 786
787 787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
788 788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
789 789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
790 790 sampleOffset_asLong = 0x00;
791 791
792 792 // (1) get the f0 acquisition time => the value is passed in argument
793 793
794 794 // (2) compute the central reference time
795 795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
796 796
797 797 // (3) compute the acquisition time of the current snapshot
798 798 switch(frequencyChannel)
799 799 {
800 800 case 1: // 1 is for F1 = 4096 Hz
801 801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
802 802 nb_ring_nodes = NB_RING_NODES_F1;
803 803 frequency_asLong = 4096;
804 804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
805 805 break;
806 806 case 2: // 2 is for F2 = 256 Hz
807 807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
808 808 nb_ring_nodes = NB_RING_NODES_F2;
809 809 frequency_asLong = 256;
810 810 nbTicksPerSample_asLong = 256; // 65536 / 256;
811 811 break;
812 812 default:
813 813 acquisitionTime_asLong = centerTime_asLong;
814 814 frequency_asLong = 256;
815 815 nbTicksPerSample_asLong = 256;
816 816 break;
817 817 }
818 818
819 819 //****************************************************************************
820 820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
821 821 for (i=0; i<nb_ring_nodes; i++)
822 822 {
823 823 //PRINTF1("%d ... ", i);
824 824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
825 825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
826 826 {
827 827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
828 828 break;
829 829 }
830 830 ring_node_to_send = ring_node_to_send->previous;
831 831 }
832 832
833 833 // (5) compute the number of samples to take in the current buffer
834 834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
835 835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
836 836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
837 837
838 838 // (6) compute the final acquisition time
839 839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
840 840 sampleOffset_asLong * nbTicksPerSample_asLong;
841 841
842 842 // (7) copy the acquisition time at the beginning of the extrated snapshot
843 843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
844 844 // fine time
845 845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
846 846 ptr2[2] = ptr1[ 4 + 2 ];
847 847 ptr2[3] = ptr1[ 5 + 2 ];
848 848 // coarse time
849 849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
850 850 ptr2[0] = ptr1[ 0 + 2 ];
851 851 ptr2[1] = ptr1[ 1 + 2 ];
852 852 ptr2[2] = ptr1[ 2 + 2 ];
853 853 ptr2[3] = ptr1[ 3 + 2 ];
854 854
855 855 // re set the synchronization bit
856 856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
857 857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
858 858
859 859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
860 860 {
861 861 nbSamplesPart1_asLong = 0;
862 862 }
863 863 // copy the part 1 of the snapshot in the extracted buffer
864 864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
865 865 {
866 866 swf_extracted[i] =
867 867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
868 868 }
869 869 // copy the part 2 of the snapshot in the extracted buffer
870 870 ring_node_to_send = ring_node_to_send->next;
871 871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
872 872 {
873 873 swf_extracted[i] =
874 874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
875 875 }
876 876 }
877 877
878 878 double computeCorrection( unsigned char *timePtr )
879 879 {
880 880 unsigned long long int acquisitionTime;
881 881 unsigned long long int centerTime;
882 882 unsigned long long int previousTick;
883 883 unsigned long long int nextTick;
884 884 unsigned long long int deltaPreviousTick;
885 885 unsigned long long int deltaNextTick;
886 886 double deltaPrevious_ms;
887 887 double deltaNext_ms;
888 888 double correctionInF2;
889 889
890 890 // get acquisition time in fine time ticks
891 891 acquisitionTime = get_acquisition_time( timePtr );
892 892
893 893 //