##// END OF EJS Templates
bug 507 corrected (destination_id of TM_LFR_PARAMETER_DUMP)
paul -
r222:497016d3d9bf R3
parent child
Show More
@@ -1,71 +1,71
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6
6
7 #include "fsw_params.h"
7 #include "fsw_params.h"
8 #include "wf_handler.h"
8 #include "wf_handler.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "fsw_misc.h"
10 #include "fsw_misc.h"
11 #include "basic_parameters_params.h"
11 #include "basic_parameters_params.h"
12 #include "avf0_prc0.h"
12 #include "avf0_prc0.h"
13
13
14 #define FLOAT_EQUAL_ZERO 0.001
14 #define FLOAT_EQUAL_ZERO 0.001
15
15
16 extern unsigned short sequenceCounterParameterDump;
16 extern unsigned short sequenceCounterParameterDump;
17 extern float k_coeff_intercalib_f0_norm[ ];
17 extern float k_coeff_intercalib_f0_norm[ ];
18 extern float k_coeff_intercalib_f0_sbm[ ];
18 extern float k_coeff_intercalib_f0_sbm[ ];
19 extern float k_coeff_intercalib_f1_norm[ ];
19 extern float k_coeff_intercalib_f1_norm[ ];
20 extern float k_coeff_intercalib_f1_sbm[ ];
20 extern float k_coeff_intercalib_f1_sbm[ ];
21 extern float k_coeff_intercalib_f2[ ];
21 extern float k_coeff_intercalib_f2[ ];
22
22
23 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
23 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
24 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
24 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
25 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
25 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
28 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
28 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 int action_dump_par(rtems_id queue_id );
31 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
32
32
33 // NORMAL
33 // NORMAL
34 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
34 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
35 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
35 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
36 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
36 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
37 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
37 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
38 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
38 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
39 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
39 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
40 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
40 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
41
41
42 // BURST
42 // BURST
43 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
43 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
44 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
44 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
45
45
46 // SBM1
46 // SBM1
47 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
47 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
48 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
48 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
49
49
50 // SBM2
50 // SBM2
51 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
51 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
52 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
52 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
53
53
54 // TC_LFR_UPDATE_INFO
54 // TC_LFR_UPDATE_INFO
55 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
55 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
56 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
56 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
57 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
57 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
58
58
59 // FBINS_MASK
59 // FBINS_MASK
60 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
60 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
61
61
62 // KCOEFFICIENTS
62 // KCOEFFICIENTS
63 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
63 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
64 void copyFloatByChar( unsigned char *destination, unsigned char *source );
64 void copyFloatByChar( unsigned char *destination, unsigned char *source );
65
65
66 void init_parameter_dump( void );
66 void init_parameter_dump( void );
67 void init_kcoefficients_dump( void );
67 void init_kcoefficients_dump( void );
68 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
68 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
69 void print_k_coeff();
69 void print_k_coeff();
70
70
71 #endif // TC_LOAD_DUMP_PARAMETERS_H
71 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,1169 +1,1169
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[6];
35 unsigned char time[6];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 status = get_message_queue_id_recv( &queue_rcv_id );
39 status = get_message_queue_id_recv( &queue_rcv_id );
40 if (status != RTEMS_SUCCESSFUL)
40 if (status != RTEMS_SUCCESSFUL)
41 {
41 {
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 }
43 }
44
44
45 status = get_message_queue_id_send( &queue_snd_id );
45 status = get_message_queue_id_send( &queue_snd_id );
46 if (status != RTEMS_SUCCESSFUL)
46 if (status != RTEMS_SUCCESSFUL)
47 {
47 {
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 }
49 }
50
50
51 result = LFR_SUCCESSFUL;
51 result = LFR_SUCCESSFUL;
52 subtype = 0; // subtype of the current TC packet
52 subtype = 0; // subtype of the current TC packet
53
53
54 BOOT_PRINTF("in ACTN *** \n")
54 BOOT_PRINTF("in ACTN *** \n")
55
55
56 while(1)
56 while(1)
57 {
57 {
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 getTime( time ); // set time to the current time
60 getTime( time ); // set time to the current time
61 if (status!=RTEMS_SUCCESSFUL)
61 if (status!=RTEMS_SUCCESSFUL)
62 {
62 {
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 }
64 }
65 else
65 else
66 {
66 {
67 subtype = TC.serviceSubType;
67 subtype = TC.serviceSubType;
68 switch(subtype)
68 switch(subtype)
69 {
69 {
70 case TC_SUBTYPE_RESET:
70 case TC_SUBTYPE_RESET:
71 result = action_reset( &TC, queue_snd_id, time );
71 result = action_reset( &TC, queue_snd_id, time );
72 close_action( &TC, result, queue_snd_id );
72 close_action( &TC, result, queue_snd_id );
73 break;
73 break;
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 case TC_SUBTYPE_LOAD_NORM:
78 case TC_SUBTYPE_LOAD_NORM:
79 result = action_load_normal_par( &TC, queue_snd_id, time );
79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 close_action( &TC, result, queue_snd_id );
80 close_action( &TC, result, queue_snd_id );
81 break;
81 break;
82 case TC_SUBTYPE_LOAD_BURST:
82 case TC_SUBTYPE_LOAD_BURST:
83 result = action_load_burst_par( &TC, queue_snd_id, time );
83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 close_action( &TC, result, queue_snd_id );
84 close_action( &TC, result, queue_snd_id );
85 break;
85 break;
86 case TC_SUBTYPE_LOAD_SBM1:
86 case TC_SUBTYPE_LOAD_SBM1:
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 close_action( &TC, result, queue_snd_id );
88 close_action( &TC, result, queue_snd_id );
89 break;
89 break;
90 case TC_SUBTYPE_LOAD_SBM2:
90 case TC_SUBTYPE_LOAD_SBM2:
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 close_action( &TC, result, queue_snd_id );
92 close_action( &TC, result, queue_snd_id );
93 break;
93 break;
94 case TC_SUBTYPE_DUMP:
94 case TC_SUBTYPE_DUMP:
95 result = action_dump_par( queue_snd_id );
95 result = action_dump_par( &TC, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 case TC_SUBTYPE_ENTER:
98 case TC_SUBTYPE_ENTER:
99 result = action_enter_mode( &TC, queue_snd_id );
99 result = action_enter_mode( &TC, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
101 break;
101 break;
102 case TC_SUBTYPE_UPDT_INFO:
102 case TC_SUBTYPE_UPDT_INFO:
103 result = action_update_info( &TC, queue_snd_id );
103 result = action_update_info( &TC, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
105 break;
105 break;
106 case TC_SUBTYPE_EN_CAL:
106 case TC_SUBTYPE_EN_CAL:
107 result = action_enable_calibration( &TC, queue_snd_id, time );
107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 close_action( &TC, result, queue_snd_id );
108 close_action( &TC, result, queue_snd_id );
109 break;
109 break;
110 case TC_SUBTYPE_DIS_CAL:
110 case TC_SUBTYPE_DIS_CAL:
111 result = action_disable_calibration( &TC, queue_snd_id, time );
111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 close_action( &TC, result, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
113 break;
113 break;
114 case TC_SUBTYPE_LOAD_K:
114 case TC_SUBTYPE_LOAD_K:
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 case TC_SUBTYPE_DUMP_K:
118 case TC_SUBTYPE_DUMP_K:
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 close_action( &TC, result, queue_snd_id );
120 close_action( &TC, result, queue_snd_id );
121 break;
121 break;
122 case TC_SUBTYPE_LOAD_FBINS:
122 case TC_SUBTYPE_LOAD_FBINS:
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 close_action( &TC, result, queue_snd_id );
124 close_action( &TC, result, queue_snd_id );
125 break;
125 break;
126 case TC_SUBTYPE_UPDT_TIME:
126 case TC_SUBTYPE_UPDT_TIME:
127 result = action_update_time( &TC );
127 result = action_update_time( &TC );
128 close_action( &TC, result, queue_snd_id );
128 close_action( &TC, result, queue_snd_id );
129 break;
129 break;
130 default:
130 default:
131 break;
131 break;
132 }
132 }
133 }
133 }
134 }
134 }
135 }
135 }
136
136
137 //***********
137 //***********
138 // TC ACTIONS
138 // TC ACTIONS
139
139
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 {
141 {
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 *
143 *
144 * @param TC points to the TeleCommand packet that is being processed
144 * @param TC points to the TeleCommand packet that is being processed
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 *
146 *
147 */
147 */
148
148
149 printf("this is the end!!!\n");
149 printf("this is the end!!!\n");
150 exit(0);
150 exit(0);
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 return LFR_DEFAULT;
152 return LFR_DEFAULT;
153 }
153 }
154
154
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 {
156 {
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 *
158 *
159 * @param TC points to the TeleCommand packet that is being processed
159 * @param TC points to the TeleCommand packet that is being processed
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 *
161 *
162 */
162 */
163
163
164 rtems_status_code status;
164 rtems_status_code status;
165 unsigned char requestedMode;
165 unsigned char requestedMode;
166 unsigned int *transitionCoarseTime_ptr;
166 unsigned int *transitionCoarseTime_ptr;
167 unsigned int transitionCoarseTime;
167 unsigned int transitionCoarseTime;
168 unsigned char * bytePosPtr;
168 unsigned char * bytePosPtr;
169
169
170 bytePosPtr = (unsigned char *) &TC->packetID;
170 bytePosPtr = (unsigned char *) &TC->packetID;
171
171
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175
175
176 status = check_mode_value( requestedMode );
176 status = check_mode_value( requestedMode );
177
177
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 {
179 {
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 }
181 }
182 else // the mode value is valid, check the transition
182 else // the mode value is valid, check the transition
183 {
183 {
184 status = check_mode_transition(requestedMode);
184 status = check_mode_transition(requestedMode);
185 if (status != LFR_SUCCESSFUL)
185 if (status != LFR_SUCCESSFUL)
186 {
186 {
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 }
189 }
190 }
190 }
191
191
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
193 {
193 {
194 status = check_transition_date( transitionCoarseTime );
194 status = check_transition_date( transitionCoarseTime );
195 if (status != LFR_SUCCESSFUL)
195 if (status != LFR_SUCCESSFUL)
196 {
196 {
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 }
201 }
202 }
202 }
203
203
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 {
205 {
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 status = enter_mode( requestedMode, transitionCoarseTime );
207 status = enter_mode( requestedMode, transitionCoarseTime );
208 }
208 }
209
209
210 return status;
210 return status;
211 }
211 }
212
212
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
214 {
214 {
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
216 *
216 *
217 * @param TC points to the TeleCommand packet that is being processed
217 * @param TC points to the TeleCommand packet that is being processed
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
219 *
219 *
220 * @return LFR directive status code:
220 * @return LFR directive status code:
221 * - LFR_DEFAULT
221 * - LFR_DEFAULT
222 * - LFR_SUCCESSFUL
222 * - LFR_SUCCESSFUL
223 *
223 *
224 */
224 */
225
225
226 unsigned int val;
226 unsigned int val;
227 int result;
227 int result;
228 unsigned int status;
228 unsigned int status;
229 unsigned char mode;
229 unsigned char mode;
230 unsigned char * bytePosPtr;
230 unsigned char * bytePosPtr;
231
231
232 bytePosPtr = (unsigned char *) &TC->packetID;
232 bytePosPtr = (unsigned char *) &TC->packetID;
233
233
234 // check LFR mode
234 // check LFR mode
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
236 status = check_update_info_hk_lfr_mode( mode );
236 status = check_update_info_hk_lfr_mode( mode );
237 if (status == LFR_SUCCESSFUL) // check TDS mode
237 if (status == LFR_SUCCESSFUL) // check TDS mode
238 {
238 {
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
240 status = check_update_info_hk_tds_mode( mode );
240 status = check_update_info_hk_tds_mode( mode );
241 }
241 }
242 if (status == LFR_SUCCESSFUL) // check THR mode
242 if (status == LFR_SUCCESSFUL) // check THR mode
243 {
243 {
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
245 status = check_update_info_hk_thr_mode( mode );
245 status = check_update_info_hk_thr_mode( mode );
246 }
246 }
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
248 {
248 {
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
251 val++;
251 val++;
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
254 }
254 }
255
255
256 result = status;
256 result = status;
257
257
258 return result;
258 return result;
259 }
259 }
260
260
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 {
262 {
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
264 *
264 *
265 * @param TC points to the TeleCommand packet that is being processed
265 * @param TC points to the TeleCommand packet that is being processed
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 *
267 *
268 */
268 */
269
269
270 int result;
270 int result;
271
271
272 result = LFR_DEFAULT;
272 result = LFR_DEFAULT;
273
273
274 setCalibration( true );
274 setCalibration( true );
275
275
276 result = LFR_SUCCESSFUL;
276 result = LFR_SUCCESSFUL;
277
277
278 return result;
278 return result;
279 }
279 }
280
280
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 {
282 {
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 *
284 *
285 * @param TC points to the TeleCommand packet that is being processed
285 * @param TC points to the TeleCommand packet that is being processed
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 *
287 *
288 */
288 */
289
289
290 int result;
290 int result;
291
291
292 result = LFR_DEFAULT;
292 result = LFR_DEFAULT;
293
293
294 setCalibration( false );
294 setCalibration( false );
295
295
296 result = LFR_SUCCESSFUL;
296 result = LFR_SUCCESSFUL;
297
297
298 return result;
298 return result;
299 }
299 }
300
300
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 {
302 {
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 *
304 *
305 * @param TC points to the TeleCommand packet that is being processed
305 * @param TC points to the TeleCommand packet that is being processed
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 *
307 *
308 * @return LFR_SUCCESSFUL
308 * @return LFR_SUCCESSFUL
309 *
309 *
310 */
310 */
311
311
312 unsigned int val;
312 unsigned int val;
313
313
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 + (TC->dataAndCRC[1] << 16)
315 + (TC->dataAndCRC[1] << 16)
316 + (TC->dataAndCRC[2] << 8)
316 + (TC->dataAndCRC[2] << 8)
317 + TC->dataAndCRC[3];
317 + TC->dataAndCRC[3];
318
318
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 val++;
321 val++;
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324
324
325 return LFR_SUCCESSFUL;
325 return LFR_SUCCESSFUL;
326 }
326 }
327
327
328 //*******************
328 //*******************
329 // ENTERING THE MODES
329 // ENTERING THE MODES
330 int check_mode_value( unsigned char requestedMode )
330 int check_mode_value( unsigned char requestedMode )
331 {
331 {
332 int status;
332 int status;
333
333
334 if ( (requestedMode != LFR_MODE_STANDBY)
334 if ( (requestedMode != LFR_MODE_STANDBY)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 {
337 {
338 status = LFR_DEFAULT;
338 status = LFR_DEFAULT;
339 }
339 }
340 else
340 else
341 {
341 {
342 status = LFR_SUCCESSFUL;
342 status = LFR_SUCCESSFUL;
343 }
343 }
344
344
345 return status;
345 return status;
346 }
346 }
347
347
348 int check_mode_transition( unsigned char requestedMode )
348 int check_mode_transition( unsigned char requestedMode )
349 {
349 {
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 *
351 *
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 *
353 *
354 * @return LFR directive status codes:
354 * @return LFR directive status codes:
355 * - LFR_SUCCESSFUL - the transition is authorized
355 * - LFR_SUCCESSFUL - the transition is authorized
356 * - LFR_DEFAULT - the transition is not authorized
356 * - LFR_DEFAULT - the transition is not authorized
357 *
357 *
358 */
358 */
359
359
360 int status;
360 int status;
361
361
362 switch (requestedMode)
362 switch (requestedMode)
363 {
363 {
364 case LFR_MODE_STANDBY:
364 case LFR_MODE_STANDBY:
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 status = LFR_DEFAULT;
366 status = LFR_DEFAULT;
367 }
367 }
368 else
368 else
369 {
369 {
370 status = LFR_SUCCESSFUL;
370 status = LFR_SUCCESSFUL;
371 }
371 }
372 break;
372 break;
373 case LFR_MODE_NORMAL:
373 case LFR_MODE_NORMAL:
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 status = LFR_DEFAULT;
375 status = LFR_DEFAULT;
376 }
376 }
377 else {
377 else {
378 status = LFR_SUCCESSFUL;
378 status = LFR_SUCCESSFUL;
379 }
379 }
380 break;
380 break;
381 case LFR_MODE_BURST:
381 case LFR_MODE_BURST:
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 status = LFR_DEFAULT;
383 status = LFR_DEFAULT;
384 }
384 }
385 else {
385 else {
386 status = LFR_SUCCESSFUL;
386 status = LFR_SUCCESSFUL;
387 }
387 }
388 break;
388 break;
389 case LFR_MODE_SBM1:
389 case LFR_MODE_SBM1:
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 status = LFR_DEFAULT;
391 status = LFR_DEFAULT;
392 }
392 }
393 else {
393 else {
394 status = LFR_SUCCESSFUL;
394 status = LFR_SUCCESSFUL;
395 }
395 }
396 break;
396 break;
397 case LFR_MODE_SBM2:
397 case LFR_MODE_SBM2:
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 status = LFR_DEFAULT;
399 status = LFR_DEFAULT;
400 }
400 }
401 else {
401 else {
402 status = LFR_SUCCESSFUL;
402 status = LFR_SUCCESSFUL;
403 }
403 }
404 break;
404 break;
405 default:
405 default:
406 status = LFR_DEFAULT;
406 status = LFR_DEFAULT;
407 break;
407 break;
408 }
408 }
409
409
410 return status;
410 return status;
411 }
411 }
412
412
413 int check_transition_date( unsigned int transitionCoarseTime )
413 int check_transition_date( unsigned int transitionCoarseTime )
414 {
414 {
415 int status;
415 int status;
416 unsigned int localCoarseTime;
416 unsigned int localCoarseTime;
417 unsigned int deltaCoarseTime;
417 unsigned int deltaCoarseTime;
418
418
419 status = LFR_SUCCESSFUL;
419 status = LFR_SUCCESSFUL;
420
420
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 {
422 {
423 status = LFR_SUCCESSFUL;
423 status = LFR_SUCCESSFUL;
424 }
424 }
425 else
425 else
426 {
426 {
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428
428
429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
430
430
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 {
432 {
433 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
435 }
435 }
436
436
437 if (status == LFR_SUCCESSFUL)
437 if (status == LFR_SUCCESSFUL)
438 {
438 {
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 {
441 {
442 status = LFR_DEFAULT;
442 status = LFR_DEFAULT;
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 return status;
448 return status;
449 }
449 }
450
450
451 int stop_current_mode( void )
451 int stop_current_mode( void )
452 {
452 {
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 *
454 *
455 * @return RTEMS directive status codes:
455 * @return RTEMS directive status codes:
456 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_INVALID_ID - task id invalid
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 *
459 *
460 */
460 */
461
461
462 rtems_status_code status;
462 rtems_status_code status;
463
463
464 status = RTEMS_SUCCESSFUL;
464 status = RTEMS_SUCCESSFUL;
465
465
466 // (1) mask interruptions
466 // (1) mask interruptions
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469
469
470 // (2) reset waveform picker registers
470 // (2) reset waveform picker registers
471 reset_wfp_burst_enable(); // reset burst and enable bits
471 reset_wfp_burst_enable(); // reset burst and enable bits
472 reset_wfp_status(); // reset all the status bits
472 reset_wfp_status(); // reset all the status bits
473
473
474 // (3) reset spectral matrices registers
474 // (3) reset spectral matrices registers
475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
476 reset_sm_status();
476 reset_sm_status();
477
477
478 // reset lfr VHDL module
478 // reset lfr VHDL module
479 reset_lfr();
479 reset_lfr();
480
480
481 reset_extractSWF(); // reset the extractSWF flag to false
481 reset_extractSWF(); // reset the extractSWF flag to false
482
482
483 // (4) clear interruptions
483 // (4) clear interruptions
484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
486
486
487 // <Spectral Matrices simulator>
487 // <Spectral Matrices simulator>
488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
491 // </Spectral Matrices simulator>
491 // </Spectral Matrices simulator>
492
492
493 // suspend several tasks
493 // suspend several tasks
494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
495 status = suspend_science_tasks();
495 status = suspend_science_tasks();
496 }
496 }
497
497
498 if (status != RTEMS_SUCCESSFUL)
498 if (status != RTEMS_SUCCESSFUL)
499 {
499 {
500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
501 }
501 }
502
502
503 return status;
503 return status;
504 }
504 }
505
505
506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
507 {
507 {
508 /** This function is launched after a mode transition validation.
508 /** This function is launched after a mode transition validation.
509 *
509 *
510 * @param mode is the mode in which LFR will be put.
510 * @param mode is the mode in which LFR will be put.
511 *
511 *
512 * @return RTEMS directive status codes:
512 * @return RTEMS directive status codes:
513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
515 *
515 *
516 */
516 */
517
517
518 rtems_status_code status;
518 rtems_status_code status;
519
519
520 //**********************
520 //**********************
521 // STOP THE CURRENT MODE
521 // STOP THE CURRENT MODE
522 status = stop_current_mode();
522 status = stop_current_mode();
523 if (status != RTEMS_SUCCESSFUL)
523 if (status != RTEMS_SUCCESSFUL)
524 {
524 {
525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
526 }
526 }
527
527
528 //*************************
528 //*************************
529 // ENTER THE REQUESTED MODE
529 // ENTER THE REQUESTED MODE
530 if (status == RTEMS_SUCCESSFUL) // if the current mode has been successfully stopped
530 if (status == RTEMS_SUCCESSFUL) // if the current mode has been successfully stopped
531 {
531 {
532 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
532 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
533 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
533 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
534 {
534 {
535 #ifdef PRINT_TASK_STATISTICS
535 #ifdef PRINT_TASK_STATISTICS
536 rtems_cpu_usage_reset();
536 rtems_cpu_usage_reset();
537 #endif
537 #endif
538 status = restart_science_tasks( mode );
538 status = restart_science_tasks( mode );
539 if (status == RTEMS_SUCCESSFUL)
539 if (status == RTEMS_SUCCESSFUL)
540 {
540 {
541 launch_spectral_matrix( );
541 launch_spectral_matrix( );
542 launch_waveform_picker( mode, transitionCoarseTime );
542 launch_waveform_picker( mode, transitionCoarseTime );
543 }
543 }
544 }
544 }
545 else if ( mode == LFR_MODE_STANDBY )
545 else if ( mode == LFR_MODE_STANDBY )
546 {
546 {
547 #ifdef PRINT_TASK_STATISTICS
547 #ifdef PRINT_TASK_STATISTICS
548 rtems_cpu_usage_report();
548 rtems_cpu_usage_report();
549 #endif
549 #endif
550
550
551 #ifdef PRINT_STACK_REPORT
551 #ifdef PRINT_STACK_REPORT
552 PRINTF("stack report selected\n")
552 PRINTF("stack report selected\n")
553 rtems_stack_checker_report_usage();
553 rtems_stack_checker_report_usage();
554 #endif
554 #endif
555 }
555 }
556 else
556 else
557 {
557 {
558 status = RTEMS_UNSATISFIED;
558 status = RTEMS_UNSATISFIED;
559 }
559 }
560 }
560 }
561
561
562 if (status != RTEMS_SUCCESSFUL)
562 if (status != RTEMS_SUCCESSFUL)
563 {
563 {
564 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
564 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
565 status = RTEMS_UNSATISFIED;
565 status = RTEMS_UNSATISFIED;
566 }
566 }
567
567
568 return status;
568 return status;
569 }
569 }
570
570
571 int restart_science_tasks(unsigned char lfrRequestedMode )
571 int restart_science_tasks(unsigned char lfrRequestedMode )
572 {
572 {
573 /** This function is used to restart all science tasks.
573 /** This function is used to restart all science tasks.
574 *
574 *
575 * @return RTEMS directive status codes:
575 * @return RTEMS directive status codes:
576 * - RTEMS_SUCCESSFUL - task restarted successfully
576 * - RTEMS_SUCCESSFUL - task restarted successfully
577 * - RTEMS_INVALID_ID - task id invalid
577 * - RTEMS_INVALID_ID - task id invalid
578 * - RTEMS_INCORRECT_STATE - task never started
578 * - RTEMS_INCORRECT_STATE - task never started
579 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
579 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
580 *
580 *
581 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
581 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
582 *
582 *
583 */
583 */
584
584
585 rtems_status_code status[10];
585 rtems_status_code status[10];
586 rtems_status_code ret;
586 rtems_status_code ret;
587
587
588 ret = RTEMS_SUCCESSFUL;
588 ret = RTEMS_SUCCESSFUL;
589
589
590 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
590 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
591 if (status[0] != RTEMS_SUCCESSFUL)
591 if (status[0] != RTEMS_SUCCESSFUL)
592 {
592 {
593 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
593 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
594 }
594 }
595
595
596 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
596 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
597 if (status[1] != RTEMS_SUCCESSFUL)
597 if (status[1] != RTEMS_SUCCESSFUL)
598 {
598 {
599 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
599 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
600 }
600 }
601
601
602 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
602 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
603 if (status[2] != RTEMS_SUCCESSFUL)
603 if (status[2] != RTEMS_SUCCESSFUL)
604 {
604 {
605 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
605 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
606 }
606 }
607
607
608 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
608 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
609 if (status[3] != RTEMS_SUCCESSFUL)
609 if (status[3] != RTEMS_SUCCESSFUL)
610 {
610 {
611 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
611 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
612 }
612 }
613
613
614 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
614 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
615 if (status[4] != RTEMS_SUCCESSFUL)
615 if (status[4] != RTEMS_SUCCESSFUL)
616 {
616 {
617 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
617 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
618 }
618 }
619
619
620 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
620 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
621 if (status[5] != RTEMS_SUCCESSFUL)
621 if (status[5] != RTEMS_SUCCESSFUL)
622 {
622 {
623 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
623 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
624 }
624 }
625
625
626 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
626 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
627 if (status[6] != RTEMS_SUCCESSFUL)
627 if (status[6] != RTEMS_SUCCESSFUL)
628 {
628 {
629 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
629 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
630 }
630 }
631
631
632 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
632 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
633 if (status[7] != RTEMS_SUCCESSFUL)
633 if (status[7] != RTEMS_SUCCESSFUL)
634 {
634 {
635 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
635 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
636 }
636 }
637
637
638 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
638 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
639 if (status[8] != RTEMS_SUCCESSFUL)
639 if (status[8] != RTEMS_SUCCESSFUL)
640 {
640 {
641 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
641 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
642 }
642 }
643
643
644 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
644 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
645 if (status[9] != RTEMS_SUCCESSFUL)
645 if (status[9] != RTEMS_SUCCESSFUL)
646 {
646 {
647 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
647 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
648 }
648 }
649
649
650 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
650 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
651 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
651 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
652 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
652 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
653 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
653 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
654 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
654 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
655 {
655 {
656 ret = RTEMS_UNSATISFIED;
656 ret = RTEMS_UNSATISFIED;
657 }
657 }
658
658
659 return ret;
659 return ret;
660 }
660 }
661
661
662 int suspend_science_tasks()
662 int suspend_science_tasks()
663 {
663 {
664 /** This function suspends the science tasks.
664 /** This function suspends the science tasks.
665 *
665 *
666 * @return RTEMS directive status codes:
666 * @return RTEMS directive status codes:
667 * - RTEMS_SUCCESSFUL - task restarted successfully
667 * - RTEMS_SUCCESSFUL - task restarted successfully
668 * - RTEMS_INVALID_ID - task id invalid
668 * - RTEMS_INVALID_ID - task id invalid
669 * - RTEMS_ALREADY_SUSPENDED - task already suspended
669 * - RTEMS_ALREADY_SUSPENDED - task already suspended
670 *
670 *
671 */
671 */
672
672
673 rtems_status_code status;
673 rtems_status_code status;
674
674
675 printf("in suspend_science_tasks\n");
675 printf("in suspend_science_tasks\n");
676
676
677 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
677 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
678 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
678 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
679 {
679 {
680 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
680 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
681 }
681 }
682 else
682 else
683 {
683 {
684 status = RTEMS_SUCCESSFUL;
684 status = RTEMS_SUCCESSFUL;
685 }
685 }
686 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
686 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
687 {
687 {
688 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
688 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
689 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
689 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
690 {
690 {
691 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
691 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
692 }
692 }
693 else
693 else
694 {
694 {
695 status = RTEMS_SUCCESSFUL;
695 status = RTEMS_SUCCESSFUL;
696 }
696 }
697 }
697 }
698 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
698 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
699 {
699 {
700 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
700 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
701 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
701 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
702 {
702 {
703 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
703 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
704 }
704 }
705 else
705 else
706 {
706 {
707 status = RTEMS_SUCCESSFUL;
707 status = RTEMS_SUCCESSFUL;
708 }
708 }
709 }
709 }
710 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
710 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
711 {
711 {
712 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
712 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
713 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
713 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
714 {
714 {
715 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
715 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
716 }
716 }
717 else
717 else
718 {
718 {
719 status = RTEMS_SUCCESSFUL;
719 status = RTEMS_SUCCESSFUL;
720 }
720 }
721 }
721 }
722 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
722 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
723 {
723 {
724 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
724 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
725 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
725 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
726 {
726 {
727 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
727 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
728 }
728 }
729 else
729 else
730 {
730 {
731 status = RTEMS_SUCCESSFUL;
731 status = RTEMS_SUCCESSFUL;
732 }
732 }
733 }
733 }
734 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
734 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
735 {
735 {
736 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
736 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
737 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
737 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
738 {
738 {
739 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
739 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
740 }
740 }
741 else
741 else
742 {
742 {
743 status = RTEMS_SUCCESSFUL;
743 status = RTEMS_SUCCESSFUL;
744 }
744 }
745 }
745 }
746 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
746 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
747 {
747 {
748 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
748 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
749 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
749 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
750 {
750 {
751 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
751 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
752 }
752 }
753 else
753 else
754 {
754 {
755 status = RTEMS_SUCCESSFUL;
755 status = RTEMS_SUCCESSFUL;
756 }
756 }
757 }
757 }
758 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
758 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
759 {
759 {
760 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
760 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
761 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
761 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
762 {
762 {
763 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
763 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
764 }
764 }
765 else
765 else
766 {
766 {
767 status = RTEMS_SUCCESSFUL;
767 status = RTEMS_SUCCESSFUL;
768 }
768 }
769 }
769 }
770 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
770 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
771 {
771 {
772 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
772 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
773 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
773 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
774 {
774 {
775 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
775 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
776 }
776 }
777 else
777 else
778 {
778 {
779 status = RTEMS_SUCCESSFUL;
779 status = RTEMS_SUCCESSFUL;
780 }
780 }
781 }
781 }
782 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
782 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
783 {
783 {
784 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
784 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
785 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
785 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
786 {
786 {
787 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
787 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
788 }
788 }
789 else
789 else
790 {
790 {
791 status = RTEMS_SUCCESSFUL;
791 status = RTEMS_SUCCESSFUL;
792 }
792 }
793 }
793 }
794
794
795 return status;
795 return status;
796 }
796 }
797
797
798 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
798 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
799 {
799 {
800 WFP_reset_current_ring_nodes();
800 WFP_reset_current_ring_nodes();
801
801
802 reset_waveform_picker_regs();
802 reset_waveform_picker_regs();
803
803
804 set_wfp_burst_enable_register( mode );
804 set_wfp_burst_enable_register( mode );
805
805
806 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
806 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
807 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
807 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
808
808
809 if (transitionCoarseTime == 0)
809 if (transitionCoarseTime == 0)
810 {
810 {
811 waveform_picker_regs->start_date = time_management_regs->coarse_time;
811 waveform_picker_regs->start_date = time_management_regs->coarse_time;
812 }
812 }
813 else
813 else
814 {
814 {
815 waveform_picker_regs->start_date = transitionCoarseTime;
815 waveform_picker_regs->start_date = transitionCoarseTime;
816 }
816 }
817
817
818 }
818 }
819
819
820 void launch_spectral_matrix( void )
820 void launch_spectral_matrix( void )
821 {
821 {
822 SM_reset_current_ring_nodes();
822 SM_reset_current_ring_nodes();
823
823
824 reset_spectral_matrix_regs();
824 reset_spectral_matrix_regs();
825
825
826 reset_nb_sm();
826 reset_nb_sm();
827
827
828 set_sm_irq_onNewMatrix( 1 );
828 set_sm_irq_onNewMatrix( 1 );
829
829
830 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
830 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
831 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
831 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
832
832
833 }
833 }
834
834
835 void launch_spectral_matrix_simu( void )
835 void launch_spectral_matrix_simu( void )
836 {
836 {
837 SM_reset_current_ring_nodes();
837 SM_reset_current_ring_nodes();
838 reset_spectral_matrix_regs();
838 reset_spectral_matrix_regs();
839 reset_nb_sm();
839 reset_nb_sm();
840
840
841 // Spectral Matrices simulator
841 // Spectral Matrices simulator
842 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
842 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
843 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
843 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
844 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
844 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
845 }
845 }
846
846
847 void set_sm_irq_onNewMatrix( unsigned char value )
847 void set_sm_irq_onNewMatrix( unsigned char value )
848 {
848 {
849 if (value == 1)
849 if (value == 1)
850 {
850 {
851 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
851 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
852 }
852 }
853 else
853 else
854 {
854 {
855 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
855 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
856 }
856 }
857 }
857 }
858
858
859 void set_sm_irq_onError( unsigned char value )
859 void set_sm_irq_onError( unsigned char value )
860 {
860 {
861 if (value == 1)
861 if (value == 1)
862 {
862 {
863 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
863 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
864 }
864 }
865 else
865 else
866 {
866 {
867 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
867 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
868 }
868 }
869 }
869 }
870
870
871 //*****************************
871 //*****************************
872 // CONFIGURE CALIBRATION SIGNAL
872 // CONFIGURE CALIBRATION SIGNAL
873 void setCalibrationPrescaler( unsigned int prescaler )
873 void setCalibrationPrescaler( unsigned int prescaler )
874 {
874 {
875 // prescaling of the master clock (25 MHz)
875 // prescaling of the master clock (25 MHz)
876 // master clock is divided by 2^prescaler
876 // master clock is divided by 2^prescaler
877 time_management_regs->calPrescaler = prescaler;
877 time_management_regs->calPrescaler = prescaler;
878 }
878 }
879
879
880 void setCalibrationDivisor( unsigned int divisionFactor )
880 void setCalibrationDivisor( unsigned int divisionFactor )
881 {
881 {
882 // division of the prescaled clock by the division factor
882 // division of the prescaled clock by the division factor
883 time_management_regs->calDivisor = divisionFactor;
883 time_management_regs->calDivisor = divisionFactor;
884 }
884 }
885
885
886 void setCalibrationData( void ){
886 void setCalibrationData( void ){
887 unsigned int k;
887 unsigned int k;
888 unsigned short data;
888 unsigned short data;
889 float val;
889 float val;
890 float f0;
890 float f0;
891 float f1;
891 float f1;
892 float fs;
892 float fs;
893 float Ts;
893 float Ts;
894 float scaleFactor;
894 float scaleFactor;
895
895
896 f0 = 625;
896 f0 = 625;
897 f1 = 10000;
897 f1 = 10000;
898 fs = 160256.410;
898 fs = 160256.410;
899 Ts = 1. / fs;
899 Ts = 1. / fs;
900 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
900 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
901
901
902 time_management_regs->calDataPtr = 0x00;
902 time_management_regs->calDataPtr = 0x00;
903
903
904 // build the signal for the SCM calibration
904 // build the signal for the SCM calibration
905 for (k=0; k<256; k++)
905 for (k=0; k<256; k++)
906 {
906 {
907 val = sin( 2 * pi * f0 * k * Ts )
907 val = sin( 2 * pi * f0 * k * Ts )
908 + sin( 2 * pi * f1 * k * Ts );
908 + sin( 2 * pi * f1 * k * Ts );
909 data = (unsigned short) ((val * scaleFactor) + 2048);
909 data = (unsigned short) ((val * scaleFactor) + 2048);
910 time_management_regs->calData = data & 0xfff;
910 time_management_regs->calData = data & 0xfff;
911 }
911 }
912 }
912 }
913
913
914 void setCalibrationDataInterleaved( void ){
914 void setCalibrationDataInterleaved( void ){
915 unsigned int k;
915 unsigned int k;
916 float val;
916 float val;
917 float f0;
917 float f0;
918 float f1;
918 float f1;
919 float fs;
919 float fs;
920 float Ts;
920 float Ts;
921 unsigned short data[384];
921 unsigned short data[384];
922 unsigned char *dataPtr;
922 unsigned char *dataPtr;
923
923
924 f0 = 625;
924 f0 = 625;
925 f1 = 10000;
925 f1 = 10000;
926 fs = 240384.615;
926 fs = 240384.615;
927 Ts = 1. / fs;
927 Ts = 1. / fs;
928
928
929 time_management_regs->calDataPtr = 0x00;
929 time_management_regs->calDataPtr = 0x00;
930
930
931 // build the signal for the SCM calibration
931 // build the signal for the SCM calibration
932 for (k=0; k<384; k++)
932 for (k=0; k<384; k++)
933 {
933 {
934 val = sin( 2 * pi * f0 * k * Ts )
934 val = sin( 2 * pi * f0 * k * Ts )
935 + sin( 2 * pi * f1 * k * Ts );
935 + sin( 2 * pi * f1 * k * Ts );
936 data[k] = (unsigned short) (val * 512 + 2048);
936 data[k] = (unsigned short) (val * 512 + 2048);
937 }
937 }
938
938
939 // write the signal in interleaved mode
939 // write the signal in interleaved mode
940 for (k=0; k<128; k++)
940 for (k=0; k<128; k++)
941 {
941 {
942 dataPtr = (unsigned char*) &data[k*3 + 2];
942 dataPtr = (unsigned char*) &data[k*3 + 2];
943 time_management_regs->calData = (data[k*3] & 0xfff)
943 time_management_regs->calData = (data[k*3] & 0xfff)
944 + ( (dataPtr[0] & 0x3f) << 12);
944 + ( (dataPtr[0] & 0x3f) << 12);
945 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
945 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
946 + ( (dataPtr[1] & 0x3f) << 12);
946 + ( (dataPtr[1] & 0x3f) << 12);
947 }
947 }
948 }
948 }
949
949
950 void setCalibrationReload( bool state)
950 void setCalibrationReload( bool state)
951 {
951 {
952 if (state == true)
952 if (state == true)
953 {
953 {
954 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
954 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
955 }
955 }
956 else
956 else
957 {
957 {
958 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
958 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
959 }
959 }
960 }
960 }
961
961
962 void setCalibrationEnable( bool state )
962 void setCalibrationEnable( bool state )
963 {
963 {
964 // this bit drives the multiplexer
964 // this bit drives the multiplexer
965 if (state == true)
965 if (state == true)
966 {
966 {
967 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
967 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
968 }
968 }
969 else
969 else
970 {
970 {
971 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
971 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
972 }
972 }
973 }
973 }
974
974
975 void setCalibrationInterleaved( bool state )
975 void setCalibrationInterleaved( bool state )
976 {
976 {
977 // this bit drives the multiplexer
977 // this bit drives the multiplexer
978 if (state == true)
978 if (state == true)
979 {
979 {
980 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
980 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
981 }
981 }
982 else
982 else
983 {
983 {
984 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
984 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
985 }
985 }
986 }
986 }
987
987
988 void setCalibration( bool state )
988 void setCalibration( bool state )
989 {
989 {
990 if (state == true)
990 if (state == true)
991 {
991 {
992 setCalibrationEnable( true );
992 setCalibrationEnable( true );
993 setCalibrationReload( false );
993 setCalibrationReload( false );
994 set_hk_lfr_calib_enable( true );
994 set_hk_lfr_calib_enable( true );
995 }
995 }
996 else
996 else
997 {
997 {
998 setCalibrationEnable( false );
998 setCalibrationEnable( false );
999 setCalibrationReload( true );
999 setCalibrationReload( true );
1000 set_hk_lfr_calib_enable( false );
1000 set_hk_lfr_calib_enable( false );
1001 }
1001 }
1002 }
1002 }
1003
1003
1004 void configureCalibration( bool interleaved )
1004 void configureCalibration( bool interleaved )
1005 {
1005 {
1006 setCalibration( false );
1006 setCalibration( false );
1007 if ( interleaved == true )
1007 if ( interleaved == true )
1008 {
1008 {
1009 setCalibrationInterleaved( true );
1009 setCalibrationInterleaved( true );
1010 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1010 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1011 setCalibrationDivisor( 26 ); // => 240 384
1011 setCalibrationDivisor( 26 ); // => 240 384
1012 setCalibrationDataInterleaved();
1012 setCalibrationDataInterleaved();
1013 }
1013 }
1014 else
1014 else
1015 {
1015 {
1016 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1016 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1017 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1017 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1018 setCalibrationData();
1018 setCalibrationData();
1019 }
1019 }
1020 }
1020 }
1021
1021
1022 //****************
1022 //****************
1023 // CLOSING ACTIONS
1023 // CLOSING ACTIONS
1024 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1024 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1025 {
1025 {
1026 /** This function is used to update the HK packets statistics after a successful TC execution.
1026 /** This function is used to update the HK packets statistics after a successful TC execution.
1027 *
1027 *
1028 * @param TC points to the TC being processed
1028 * @param TC points to the TC being processed
1029 * @param time is the time used to date the TC execution
1029 * @param time is the time used to date the TC execution
1030 *
1030 *
1031 */
1031 */
1032
1032
1033 unsigned int val;
1033 unsigned int val;
1034
1034
1035 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1035 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1036 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1036 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1037 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1037 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1038 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1038 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1039 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1039 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1040 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1040 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1041 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1041 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1042 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1042 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1043 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1043 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1044 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1044 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1045 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1045 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1046 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1046 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1047
1047
1048 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1048 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1049 val++;
1049 val++;
1050 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1050 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1051 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1051 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1052 }
1052 }
1053
1053
1054 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1054 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1055 {
1055 {
1056 /** This function is used to update the HK packets statistics after a TC rejection.
1056 /** This function is used to update the HK packets statistics after a TC rejection.
1057 *
1057 *
1058 * @param TC points to the TC being processed
1058 * @param TC points to the TC being processed
1059 * @param time is the time used to date the TC rejection
1059 * @param time is the time used to date the TC rejection
1060 *
1060 *
1061 */
1061 */
1062
1062
1063 unsigned int val;
1063 unsigned int val;
1064
1064
1065 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1065 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1066 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1066 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1067 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1067 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1068 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1068 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1069 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1069 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1070 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1070 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1071 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1071 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1072 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1072 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1073 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1073 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1074 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1074 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1075 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1075 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1076 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1076 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1077
1077
1078 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1078 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1079 val++;
1079 val++;
1080 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1080 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1081 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1081 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1082 }
1082 }
1083
1083
1084 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1084 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1085 {
1085 {
1086 /** This function is the last step of the TC execution workflow.
1086 /** This function is the last step of the TC execution workflow.
1087 *
1087 *
1088 * @param TC points to the TC being processed
1088 * @param TC points to the TC being processed
1089 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1089 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1090 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1090 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1091 * @param time is the time used to date the TC execution
1091 * @param time is the time used to date the TC execution
1092 *
1092 *
1093 */
1093 */
1094
1094
1095 unsigned char requestedMode;
1095 unsigned char requestedMode;
1096
1096
1097 if (result == LFR_SUCCESSFUL)
1097 if (result == LFR_SUCCESSFUL)
1098 {
1098 {
1099 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1099 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1100 &
1100 &
1101 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1101 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1102 )
1102 )
1103 {
1103 {
1104 send_tm_lfr_tc_exe_success( TC, queue_id );
1104 send_tm_lfr_tc_exe_success( TC, queue_id );
1105 }
1105 }
1106 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1106 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1107 {
1107 {
1108 //**********************************
1108 //**********************************
1109 // UPDATE THE LFRMODE LOCAL VARIABLE
1109 // UPDATE THE LFRMODE LOCAL VARIABLE
1110 requestedMode = TC->dataAndCRC[1];
1110 requestedMode = TC->dataAndCRC[1];
1111 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1111 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1112 updateLFRCurrentMode();
1112 updateLFRCurrentMode();
1113 }
1113 }
1114 }
1114 }
1115 else if (result == LFR_EXE_ERROR)
1115 else if (result == LFR_EXE_ERROR)
1116 {
1116 {
1117 send_tm_lfr_tc_exe_error( TC, queue_id );
1117 send_tm_lfr_tc_exe_error( TC, queue_id );
1118 }
1118 }
1119 }
1119 }
1120
1120
1121 //***************************
1121 //***************************
1122 // Interrupt Service Routines
1122 // Interrupt Service Routines
1123 rtems_isr commutation_isr1( rtems_vector_number vector )
1123 rtems_isr commutation_isr1( rtems_vector_number vector )
1124 {
1124 {
1125 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1125 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1126 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1126 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1127 }
1127 }
1128 }
1128 }
1129
1129
1130 rtems_isr commutation_isr2( rtems_vector_number vector )
1130 rtems_isr commutation_isr2( rtems_vector_number vector )
1131 {
1131 {
1132 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1132 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1133 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1133 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1134 }
1134 }
1135 }
1135 }
1136
1136
1137 //****************
1137 //****************
1138 // OTHER FUNCTIONS
1138 // OTHER FUNCTIONS
1139 void updateLFRCurrentMode()
1139 void updateLFRCurrentMode()
1140 {
1140 {
1141 /** This function updates the value of the global variable lfrCurrentMode.
1141 /** This function updates the value of the global variable lfrCurrentMode.
1142 *
1142 *
1143 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1143 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1144 *
1144 *
1145 */
1145 */
1146 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1146 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1147 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1147 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1148 }
1148 }
1149
1149
1150 void set_lfr_soft_reset( unsigned char value )
1150 void set_lfr_soft_reset( unsigned char value )
1151 {
1151 {
1152 if (value == 1)
1152 if (value == 1)
1153 {
1153 {
1154 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1154 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1155 }
1155 }
1156 else
1156 else
1157 {
1157 {
1158 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1158 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1159 }
1159 }
1160 }
1160 }
1161
1161
1162 void reset_lfr( void )
1162 void reset_lfr( void )
1163 {
1163 {
1164 set_lfr_soft_reset( 1 );
1164 set_lfr_soft_reset( 1 );
1165
1165
1166 set_lfr_soft_reset( 0 );
1166 set_lfr_soft_reset( 0 );
1167
1167
1168 set_hk_lfr_sc_potential_flag( true );
1168 set_hk_lfr_sc_potential_flag( true );
1169 }
1169 }
@@ -1,1174 +1,1175
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 ring_node kcoefficient_node_1;
19 ring_node kcoefficient_node_1;
20 ring_node kcoefficient_node_2;
20 ring_node kcoefficient_node_2;
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_common_par_consistency( TC, queue_id );
61 flag = check_common_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0
103 // sy_lfr_b_bp_p0
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1
112 // sy_lfr_b_bp_p1
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET HTE PARAMETERS
135 // SET HTE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 if (aux > FLOAT_EQUAL_ZERO)
193 if (aux > FLOAT_EQUAL_ZERO)
194 {
194 {
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 flag = LFR_DEFAULT;
196 flag = LFR_DEFAULT;
197 }
197 }
198 }
198 }
199
199
200 // SET THE PARAMETERS
200 // SET THE PARAMETERS
201 if (flag == LFR_SUCCESSFUL)
201 if (flag == LFR_SUCCESSFUL)
202 {
202 {
203 flag = set_sy_lfr_s1_bp_p0( TC );
203 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
205 }
205 }
206
206
207 return flag;
207 return flag;
208 }
208 }
209
209
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 {
211 {
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 *
213 *
214 * @param TC points to the TeleCommand packet that is being processed
214 * @param TC points to the TeleCommand packet that is being processed
215 * @param queue_id is the id of the queue which handles TM related to this execution step
215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 *
216 *
217 */
217 */
218
218
219 int flag;
219 int flag;
220 rtems_status_code status;
220 rtems_status_code status;
221 unsigned char sy_lfr_s2_bp_p0;
221 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p1;
222 unsigned char sy_lfr_s2_bp_p1;
223 float aux;
223 float aux;
224
224
225 flag = LFR_SUCCESSFUL;
225 flag = LFR_SUCCESSFUL;
226
226
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 flag = LFR_DEFAULT;
229 flag = LFR_DEFAULT;
230 }
230 }
231
231
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234
234
235 // sy_lfr_s2_bp_p0
235 // sy_lfr_s2_bp_p0
236 if (flag == LFR_SUCCESSFUL)
236 if (flag == LFR_SUCCESSFUL)
237 {
237 {
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 {
239 {
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 flag = WRONG_APP_DATA;
241 flag = WRONG_APP_DATA;
242 }
242 }
243 }
243 }
244 // sy_lfr_s2_bp_p1
244 // sy_lfr_s2_bp_p1
245 if (flag == LFR_SUCCESSFUL)
245 if (flag == LFR_SUCCESSFUL)
246 {
246 {
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 {
248 {
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 flag = WRONG_APP_DATA;
250 flag = WRONG_APP_DATA;
251 }
251 }
252 }
252 }
253 //******************************************************************
253 //******************************************************************
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 if (flag == LFR_SUCCESSFUL)
255 if (flag == LFR_SUCCESSFUL)
256 {
256 {
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 if (aux > FLOAT_EQUAL_ZERO)
260 if (aux > FLOAT_EQUAL_ZERO)
261 {
261 {
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 flag = LFR_DEFAULT;
263 flag = LFR_DEFAULT;
264 }
264 }
265 }
265 }
266
266
267 // SET THE PARAMETERS
267 // SET THE PARAMETERS
268 if (flag == LFR_SUCCESSFUL)
268 if (flag == LFR_SUCCESSFUL)
269 {
269 {
270 flag = set_sy_lfr_s2_bp_p0( TC );
270 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
272 }
272 }
273
273
274 return flag;
274 return flag;
275 }
275 }
276
276
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 {
278 {
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 *
280 *
281 * @param TC points to the TeleCommand packet that is being processed
281 * @param TC points to the TeleCommand packet that is being processed
282 * @param queue_id is the id of the queue which handles TM related to this execution step
282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 *
283 *
284 */
284 */
285
285
286 int flag;
286 int flag;
287
287
288 flag = LFR_DEFAULT;
288 flag = LFR_DEFAULT;
289
289
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291
291
292 return flag;
292 return flag;
293 }
293 }
294
294
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 {
296 {
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 *
298 *
299 * @param TC points to the TeleCommand packet that is being processed
299 * @param TC points to the TeleCommand packet that is being processed
300 * @param queue_id is the id of the queue which handles TM related to this execution step
300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 *
301 *
302 */
302 */
303
303
304 int flag;
304 int flag;
305
305
306 flag = LFR_DEFAULT;
306 flag = LFR_DEFAULT;
307
307
308 flag = set_sy_lfr_fbins( TC );
308 flag = set_sy_lfr_fbins( TC );
309
309
310 return flag;
310 return flag;
311 }
311 }
312
312
313 void printKCoefficients(unsigned int freq, unsigned int bin, float *k_coeff)
313 void printKCoefficients(unsigned int freq, unsigned int bin, float *k_coeff)
314 {
314 {
315 printf("freq = %d *** bin = %d *** (0) %f *** (1) %f *** (2) %f *** (3) %f *** (4) %f\n",
315 printf("freq = %d *** bin = %d *** (0) %f *** (1) %f *** (2) %f *** (3) %f *** (4) %f\n",
316 freq,
316 freq,
317 bin,
317 bin,
318 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 0 ],
318 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 0 ],
319 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 1 ],
319 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 1 ],
320 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 2 ],
320 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 2 ],
321 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 3 ],
321 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 3 ],
322 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 4 ]);
322 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 4 ]);
323 }
323 }
324
324
325 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
325 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
326 {
326 {
327 /** This function updates the LFR registers with the incoming sbm2 parameters.
327 /** This function updates the LFR registers with the incoming sbm2 parameters.
328 *
328 *
329 * @param TC points to the TeleCommand packet that is being processed
329 * @param TC points to the TeleCommand packet that is being processed
330 * @param queue_id is the id of the queue which handles TM related to this execution step
330 * @param queue_id is the id of the queue which handles TM related to this execution step
331 *
331 *
332 */
332 */
333
333
334 unsigned int address;
334 unsigned int address;
335 rtems_status_code status;
335 rtems_status_code status;
336 unsigned int freq;
336 unsigned int freq;
337 unsigned int bin;
337 unsigned int bin;
338 unsigned int coeff;
338 unsigned int coeff;
339 unsigned char *kCoeffPtr;
339 unsigned char *kCoeffPtr;
340 unsigned char *kCoeffDumpPtr;
340 unsigned char *kCoeffDumpPtr;
341
341
342 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
342 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
343 // F0 => 11 bins
343 // F0 => 11 bins
344 // F1 => 13 bins
344 // F1 => 13 bins
345 // F2 => 12 bins
345 // F2 => 12 bins
346 // 36 bins to dump in two packets (30 bins max per packet)
346 // 36 bins to dump in two packets (30 bins max per packet)
347
347
348 //*********
348 //*********
349 // PACKET 1
349 // PACKET 1
350 // 11 F0 bins, 13 F1 bins and 6 F2 bins
350 // 11 F0 bins, 13 F1 bins and 6 F2 bins
351 kcoefficients_dump_1.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
351 kcoefficients_dump_1.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
352 kcoefficients_dump_1.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
352 kcoefficients_dump_1.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
353 kcoefficients_dump_1.destinationID = TC->sourceID;
353 kcoefficients_dump_1.destinationID = TC->sourceID;
354 increment_seq_counter( &sequenceCounterParameterDump );
354 increment_seq_counter( &sequenceCounterParameterDump );
355 for( freq=0;
355 for( freq=0;
356 freq<NB_BINS_COMPRESSED_SM_F0;
356 freq<NB_BINS_COMPRESSED_SM_F0;
357 freq++ )
357 freq++ )
358 {
358 {
359 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
359 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
360 bin = freq;
360 bin = freq;
361 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
361 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
362 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
362 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
363 {
363 {
364 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
364 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
365 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
365 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
366 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
366 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
367 }
367 }
368 }
368 }
369 for( freq=NB_BINS_COMPRESSED_SM_F0;
369 for( freq=NB_BINS_COMPRESSED_SM_F0;
370 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
370 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
371 freq++ )
371 freq++ )
372 {
372 {
373 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
373 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
374 bin = freq - NB_BINS_COMPRESSED_SM_F0;
374 bin = freq - NB_BINS_COMPRESSED_SM_F0;
375 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
375 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
376 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
376 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
377 {
377 {
378 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
378 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
379 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
379 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
380 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
380 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
381 }
381 }
382 }
382 }
383 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
383 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
384 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
384 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
385 freq++ )
385 freq++ )
386 {
386 {
387 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
387 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
388 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
388 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
389 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
389 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
390 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
390 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
391 {
391 {
392 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
392 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
393 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
393 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
394 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
394 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
395 }
395 }
396 }
396 }
397 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
397 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
398 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
398 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
399 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
399 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
400 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
400 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
401 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
401 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
402 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
402 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
403 // SEND DATA
403 // SEND DATA
404 kcoefficient_node_1.status = 1;
404 kcoefficient_node_1.status = 1;
405 address = (unsigned int) &kcoefficient_node_1;
405 address = (unsigned int) &kcoefficient_node_1;
406 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
406 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
407 if (status != RTEMS_SUCCESSFUL) {
407 if (status != RTEMS_SUCCESSFUL) {
408 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
408 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
409 }
409 }
410
410
411 //********
411 //********
412 // PACKET 2
412 // PACKET 2
413 // 6 F2 bins
413 // 6 F2 bins
414 kcoefficients_dump_2.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
414 kcoefficients_dump_2.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
415 kcoefficients_dump_2.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
415 kcoefficients_dump_2.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
416 kcoefficients_dump_2.destinationID = TC->sourceID;
416 kcoefficients_dump_2.destinationID = TC->sourceID;
417 increment_seq_counter( &sequenceCounterParameterDump );
417 increment_seq_counter( &sequenceCounterParameterDump );
418 for( freq=0; freq<6; freq++ )
418 for( freq=0; freq<6; freq++ )
419 {
419 {
420 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
420 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
421 bin = freq + 6;
421 bin = freq + 6;
422 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
422 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
423 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
423 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
424 {
424 {
425 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
425 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
426 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
426 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
427 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
427 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
428 }
428 }
429 }
429 }
430 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
430 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
431 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
431 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
432 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
432 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
433 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
433 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
434 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
434 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
435 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
435 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
436 // SEND DATA
436 // SEND DATA
437 kcoefficient_node_2.status = 1;
437 kcoefficient_node_2.status = 1;
438 address = (unsigned int) &kcoefficient_node_2;
438 address = (unsigned int) &kcoefficient_node_2;
439 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
439 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
440 if (status != RTEMS_SUCCESSFUL) {
440 if (status != RTEMS_SUCCESSFUL) {
441 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
441 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
442 }
442 }
443
443
444 return status;
444 return status;
445 }
445 }
446
446
447 int action_dump_par( rtems_id queue_id )
447 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
448 {
448 {
449 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
449 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
450 *
450 *
451 * @param queue_id is the id of the queue which handles TM related to this execution step.
451 * @param queue_id is the id of the queue which handles TM related to this execution step.
452 *
452 *
453 * @return RTEMS directive status codes:
453 * @return RTEMS directive status codes:
454 * - RTEMS_SUCCESSFUL - message sent successfully
454 * - RTEMS_SUCCESSFUL - message sent successfully
455 * - RTEMS_INVALID_ID - invalid queue id
455 * - RTEMS_INVALID_ID - invalid queue id
456 * - RTEMS_INVALID_SIZE - invalid message size
456 * - RTEMS_INVALID_SIZE - invalid message size
457 * - RTEMS_INVALID_ADDRESS - buffer is NULL
457 * - RTEMS_INVALID_ADDRESS - buffer is NULL
458 * - RTEMS_UNSATISFIED - out of message buffers
458 * - RTEMS_UNSATISFIED - out of message buffers
459 * - RTEMS_TOO_MANY - queue s limit has been reached
459 * - RTEMS_TOO_MANY - queue s limit has been reached
460 *
460 *
461 */
461 */
462
462
463 int status;
463 int status;
464
464
465 // UPDATE TIME
465 // UPDATE TIME
466 parameter_dump_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
466 parameter_dump_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
467 parameter_dump_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
467 parameter_dump_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
468 increment_seq_counter( &sequenceCounterParameterDump );
468 increment_seq_counter( &sequenceCounterParameterDump );
469 parameter_dump_packet.destinationID = TC->sourceID;
469
470
470 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
471 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
471 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
472 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
472 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
473 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
473 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
474 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
474 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
475 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
475 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
476 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
476 // SEND DATA
477 // SEND DATA
477 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
478 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
478 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
479 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
479 if (status != RTEMS_SUCCESSFUL) {
480 if (status != RTEMS_SUCCESSFUL) {
480 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
481 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
481 }
482 }
482
483
483 return status;
484 return status;
484 }
485 }
485
486
486 //***********************
487 //***********************
487 // NORMAL MODE PARAMETERS
488 // NORMAL MODE PARAMETERS
488
489
489 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 {
491 {
491 unsigned char msb;
492 unsigned char msb;
492 unsigned char lsb;
493 unsigned char lsb;
493 int flag;
494 int flag;
494 float aux;
495 float aux;
495 rtems_status_code status;
496 rtems_status_code status;
496
497
497 unsigned int sy_lfr_n_swf_l;
498 unsigned int sy_lfr_n_swf_l;
498 unsigned int sy_lfr_n_swf_p;
499 unsigned int sy_lfr_n_swf_p;
499 unsigned int sy_lfr_n_asm_p;
500 unsigned int sy_lfr_n_asm_p;
500 unsigned char sy_lfr_n_bp_p0;
501 unsigned char sy_lfr_n_bp_p0;
501 unsigned char sy_lfr_n_bp_p1;
502 unsigned char sy_lfr_n_bp_p1;
502 unsigned char sy_lfr_n_cwf_long_f3;
503 unsigned char sy_lfr_n_cwf_long_f3;
503
504
504 flag = LFR_SUCCESSFUL;
505 flag = LFR_SUCCESSFUL;
505
506
506 //***************
507 //***************
507 // get parameters
508 // get parameters
508 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
509 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
509 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
510 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
510 sy_lfr_n_swf_l = msb * 256 + lsb;
511 sy_lfr_n_swf_l = msb * 256 + lsb;
511
512
512 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
513 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
513 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
514 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
514 sy_lfr_n_swf_p = msb * 256 + lsb;
515 sy_lfr_n_swf_p = msb * 256 + lsb;
515
516
516 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
517 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
517 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
518 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
518 sy_lfr_n_asm_p = msb * 256 + lsb;
519 sy_lfr_n_asm_p = msb * 256 + lsb;
519
520
520 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
521 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
521
522
522 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
523 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
523
524
524 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
525 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
525
526
526 //******************
527 //******************
527 // check consistency
528 // check consistency
528 // sy_lfr_n_swf_l
529 // sy_lfr_n_swf_l
529 if (sy_lfr_n_swf_l != 2048)
530 if (sy_lfr_n_swf_l != 2048)
530 {
531 {
531 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
532 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
532 flag = WRONG_APP_DATA;
533 flag = WRONG_APP_DATA;
533 }
534 }
534 // sy_lfr_n_swf_p
535 // sy_lfr_n_swf_p
535 if (flag == LFR_SUCCESSFUL)
536 if (flag == LFR_SUCCESSFUL)
536 {
537 {
537 if ( sy_lfr_n_swf_p < 16 )
538 if ( sy_lfr_n_swf_p < 16 )
538 {
539 {
539 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
540 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
540 flag = WRONG_APP_DATA;
541 flag = WRONG_APP_DATA;
541 }
542 }
542 }
543 }
543 // sy_lfr_n_bp_p0
544 // sy_lfr_n_bp_p0
544 if (flag == LFR_SUCCESSFUL)
545 if (flag == LFR_SUCCESSFUL)
545 {
546 {
546 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
547 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
547 {
548 {
548 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
549 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
549 flag = WRONG_APP_DATA;
550 flag = WRONG_APP_DATA;
550 }
551 }
551 }
552 }
552 // sy_lfr_n_asm_p
553 // sy_lfr_n_asm_p
553 if (flag == LFR_SUCCESSFUL)
554 if (flag == LFR_SUCCESSFUL)
554 {
555 {
555 if (sy_lfr_n_asm_p == 0)
556 if (sy_lfr_n_asm_p == 0)
556 {
557 {
557 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
558 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
558 flag = WRONG_APP_DATA;
559 flag = WRONG_APP_DATA;
559 }
560 }
560 }
561 }
561 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
562 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
562 if (flag == LFR_SUCCESSFUL)
563 if (flag == LFR_SUCCESSFUL)
563 {
564 {
564 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
565 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
565 if (aux > FLOAT_EQUAL_ZERO)
566 if (aux > FLOAT_EQUAL_ZERO)
566 {
567 {
567 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
568 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
568 flag = WRONG_APP_DATA;
569 flag = WRONG_APP_DATA;
569 }
570 }
570 }
571 }
571 // sy_lfr_n_bp_p1
572 // sy_lfr_n_bp_p1
572 if (flag == LFR_SUCCESSFUL)
573 if (flag == LFR_SUCCESSFUL)
573 {
574 {
574 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
575 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
575 {
576 {
576 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
577 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
577 flag = WRONG_APP_DATA;
578 flag = WRONG_APP_DATA;
578 }
579 }
579 }
580 }
580 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
581 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
581 if (flag == LFR_SUCCESSFUL)
582 if (flag == LFR_SUCCESSFUL)
582 {
583 {
583 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
584 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
584 if (aux > FLOAT_EQUAL_ZERO)
585 if (aux > FLOAT_EQUAL_ZERO)
585 {
586 {
586 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
587 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
587 flag = LFR_DEFAULT;
588 flag = LFR_DEFAULT;
588 }
589 }
589 }
590 }
590 // sy_lfr_n_cwf_long_f3
591 // sy_lfr_n_cwf_long_f3
591
592
592 return flag;
593 return flag;
593 }
594 }
594
595
595 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
596 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
596 {
597 {
597 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
598 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
598 *
599 *
599 * @param TC points to the TeleCommand packet that is being processed
600 * @param TC points to the TeleCommand packet that is being processed
600 * @param queue_id is the id of the queue which handles TM related to this execution step
601 * @param queue_id is the id of the queue which handles TM related to this execution step
601 *
602 *
602 */
603 */
603
604
604 int result;
605 int result;
605
606
606 result = LFR_SUCCESSFUL;
607 result = LFR_SUCCESSFUL;
607
608
608 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
609 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
609 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
610 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
610
611
611 return result;
612 return result;
612 }
613 }
613
614
614 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
615 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
615 {
616 {
616 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
617 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
617 *
618 *
618 * @param TC points to the TeleCommand packet that is being processed
619 * @param TC points to the TeleCommand packet that is being processed
619 * @param queue_id is the id of the queue which handles TM related to this execution step
620 * @param queue_id is the id of the queue which handles TM related to this execution step
620 *
621 *
621 */
622 */
622
623
623 int result;
624 int result;
624
625
625 result = LFR_SUCCESSFUL;
626 result = LFR_SUCCESSFUL;
626
627
627 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
628 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
628 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
629 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
629
630
630 return result;
631 return result;
631 }
632 }
632
633
633 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
634 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
634 {
635 {
635 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
636 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
636 *
637 *
637 * @param TC points to the TeleCommand packet that is being processed
638 * @param TC points to the TeleCommand packet that is being processed
638 * @param queue_id is the id of the queue which handles TM related to this execution step
639 * @param queue_id is the id of the queue which handles TM related to this execution step
639 *
640 *
640 */
641 */
641
642
642 int result;
643 int result;
643
644
644 result = LFR_SUCCESSFUL;
645 result = LFR_SUCCESSFUL;
645
646
646 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
647 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
647 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
648 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
648
649
649 return result;
650 return result;
650 }
651 }
651
652
652 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
653 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
653 {
654 {
654 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
655 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
655 *
656 *
656 * @param TC points to the TeleCommand packet that is being processed
657 * @param TC points to the TeleCommand packet that is being processed
657 * @param queue_id is the id of the queue which handles TM related to this execution step
658 * @param queue_id is the id of the queue which handles TM related to this execution step
658 *
659 *
659 */
660 */
660
661
661 int status;
662 int status;
662
663
663 status = LFR_SUCCESSFUL;
664 status = LFR_SUCCESSFUL;
664
665
665 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
666 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
666
667
667 return status;
668 return status;
668 }
669 }
669
670
670 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
671 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
671 {
672 {
672 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
673 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
673 *
674 *
674 * @param TC points to the TeleCommand packet that is being processed
675 * @param TC points to the TeleCommand packet that is being processed
675 * @param queue_id is the id of the queue which handles TM related to this execution step
676 * @param queue_id is the id of the queue which handles TM related to this execution step
676 *
677 *
677 */
678 */
678
679
679 int status;
680 int status;
680
681
681 status = LFR_SUCCESSFUL;
682 status = LFR_SUCCESSFUL;
682
683
683 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
684 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
684
685
685 return status;
686 return status;
686 }
687 }
687
688
688 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
689 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
689 {
690 {
690 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
691 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
691 *
692 *
692 * @param TC points to the TeleCommand packet that is being processed
693 * @param TC points to the TeleCommand packet that is being processed
693 * @param queue_id is the id of the queue which handles TM related to this execution step
694 * @param queue_id is the id of the queue which handles TM related to this execution step
694 *
695 *
695 */
696 */
696
697
697 int status;
698 int status;
698
699
699 status = LFR_SUCCESSFUL;
700 status = LFR_SUCCESSFUL;
700
701
701 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
702 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
702
703
703 return status;
704 return status;
704 }
705 }
705
706
706 //**********************
707 //**********************
707 // BURST MODE PARAMETERS
708 // BURST MODE PARAMETERS
708 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
709 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
709 {
710 {
710 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
711 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
711 *
712 *
712 * @param TC points to the TeleCommand packet that is being processed
713 * @param TC points to the TeleCommand packet that is being processed
713 * @param queue_id is the id of the queue which handles TM related to this execution step
714 * @param queue_id is the id of the queue which handles TM related to this execution step
714 *
715 *
715 */
716 */
716
717
717 int status;
718 int status;
718
719
719 status = LFR_SUCCESSFUL;
720 status = LFR_SUCCESSFUL;
720
721
721 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
722 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
722
723
723 return status;
724 return status;
724 }
725 }
725
726
726 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
727 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
727 {
728 {
728 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
729 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
729 *
730 *
730 * @param TC points to the TeleCommand packet that is being processed
731 * @param TC points to the TeleCommand packet that is being processed
731 * @param queue_id is the id of the queue which handles TM related to this execution step
732 * @param queue_id is the id of the queue which handles TM related to this execution step
732 *
733 *
733 */
734 */
734
735
735 int status;
736 int status;
736
737
737 status = LFR_SUCCESSFUL;
738 status = LFR_SUCCESSFUL;
738
739
739 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
740 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
740
741
741 return status;
742 return status;
742 }
743 }
743
744
744 //*********************
745 //*********************
745 // SBM1 MODE PARAMETERS
746 // SBM1 MODE PARAMETERS
746 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
747 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
747 {
748 {
748 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
749 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
749 *
750 *
750 * @param TC points to the TeleCommand packet that is being processed
751 * @param TC points to the TeleCommand packet that is being processed
751 * @param queue_id is the id of the queue which handles TM related to this execution step
752 * @param queue_id is the id of the queue which handles TM related to this execution step
752 *
753 *
753 */
754 */
754
755
755 int status;
756 int status;
756
757
757 status = LFR_SUCCESSFUL;
758 status = LFR_SUCCESSFUL;
758
759
759 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
760 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
760
761
761 return status;
762 return status;
762 }
763 }
763
764
764 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
765 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
765 {
766 {
766 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
767 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
767 *
768 *
768 * @param TC points to the TeleCommand packet that is being processed
769 * @param TC points to the TeleCommand packet that is being processed
769 * @param queue_id is the id of the queue which handles TM related to this execution step
770 * @param queue_id is the id of the queue which handles TM related to this execution step
770 *
771 *
771 */
772 */
772
773
773 int status;
774 int status;
774
775
775 status = LFR_SUCCESSFUL;
776 status = LFR_SUCCESSFUL;
776
777
777 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
778 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
778
779
779 return status;
780 return status;
780 }
781 }
781
782
782 //*********************
783 //*********************
783 // SBM2 MODE PARAMETERS
784 // SBM2 MODE PARAMETERS
784 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
785 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
785 {
786 {
786 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
787 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
787 *
788 *
788 * @param TC points to the TeleCommand packet that is being processed
789 * @param TC points to the TeleCommand packet that is being processed
789 * @param queue_id is the id of the queue which handles TM related to this execution step
790 * @param queue_id is the id of the queue which handles TM related to this execution step
790 *
791 *
791 */
792 */
792
793
793 int status;
794 int status;
794
795
795 status = LFR_SUCCESSFUL;
796 status = LFR_SUCCESSFUL;
796
797
797 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
798 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
798
799
799 return status;
800 return status;
800 }
801 }
801
802
802 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
803 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
803 {
804 {
804 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
805 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
805 *
806 *
806 * @param TC points to the TeleCommand packet that is being processed
807 * @param TC points to the TeleCommand packet that is being processed
807 * @param queue_id is the id of the queue which handles TM related to this execution step
808 * @param queue_id is the id of the queue which handles TM related to this execution step
808 *
809 *
809 */
810 */
810
811
811 int status;
812 int status;
812
813
813 status = LFR_SUCCESSFUL;
814 status = LFR_SUCCESSFUL;
814
815
815 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
816 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
816
817
817 return status;
818 return status;
818 }
819 }
819
820
820 //*******************
821 //*******************
821 // TC_LFR_UPDATE_INFO
822 // TC_LFR_UPDATE_INFO
822 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
823 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
823 {
824 {
824 unsigned int status;
825 unsigned int status;
825
826
826 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
827 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
827 || (mode == LFR_MODE_BURST)
828 || (mode == LFR_MODE_BURST)
828 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
829 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
829 {
830 {
830 status = LFR_SUCCESSFUL;
831 status = LFR_SUCCESSFUL;
831 }
832 }
832 else
833 else
833 {
834 {
834 status = LFR_DEFAULT;
835 status = LFR_DEFAULT;
835 }
836 }
836
837
837 return status;
838 return status;
838 }
839 }
839
840
840 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
841 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
841 {
842 {
842 unsigned int status;
843 unsigned int status;
843
844
844 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
845 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
845 || (mode == TDS_MODE_BURST)
846 || (mode == TDS_MODE_BURST)
846 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
847 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
847 || (mode == TDS_MODE_LFM))
848 || (mode == TDS_MODE_LFM))
848 {
849 {
849 status = LFR_SUCCESSFUL;
850 status = LFR_SUCCESSFUL;
850 }
851 }
851 else
852 else
852 {
853 {
853 status = LFR_DEFAULT;
854 status = LFR_DEFAULT;
854 }
855 }
855
856
856 return status;
857 return status;
857 }
858 }
858
859
859 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
860 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
860 {
861 {
861 unsigned int status;
862 unsigned int status;
862
863
863 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
864 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
864 || (mode == THR_MODE_BURST))
865 || (mode == THR_MODE_BURST))
865 {
866 {
866 status = LFR_SUCCESSFUL;
867 status = LFR_SUCCESSFUL;
867 }
868 }
868 else
869 else
869 {
870 {
870 status = LFR_DEFAULT;
871 status = LFR_DEFAULT;
871 }
872 }
872
873
873 return status;
874 return status;
874 }
875 }
875
876
876 //***********
877 //***********
877 // FBINS MASK
878 // FBINS MASK
878
879
879 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
880 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
880 {
881 {
881 int status;
882 int status;
882 unsigned int k;
883 unsigned int k;
883 unsigned char *fbins_mask_dump;
884 unsigned char *fbins_mask_dump;
884 unsigned char *fbins_mask_TC;
885 unsigned char *fbins_mask_TC;
885
886
886 status = LFR_SUCCESSFUL;
887 status = LFR_SUCCESSFUL;
887
888
888 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
889 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
889 fbins_mask_TC = TC->dataAndCRC;
890 fbins_mask_TC = TC->dataAndCRC;
890
891
891 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
892 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
892 {
893 {
893 fbins_mask_dump[k] = fbins_mask_TC[k];
894 fbins_mask_dump[k] = fbins_mask_TC[k];
894 }
895 }
895 for (k=0; k < NB_FBINS_MASKS; k++)
896 for (k=0; k < NB_FBINS_MASKS; k++)
896 {
897 {
897 unsigned char *auxPtr;
898 unsigned char *auxPtr;
898 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
899 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
899 printf("%x %x %x %x\n", auxPtr[0], auxPtr[1], auxPtr[2], auxPtr[3]);
900 printf("%x %x %x %x\n", auxPtr[0], auxPtr[1], auxPtr[2], auxPtr[3]);
900 }
901 }
901
902
902
903
903 return status;
904 return status;
904 }
905 }
905
906
906 //**************
907 //**************
907 // KCOEFFICIENTS
908 // KCOEFFICIENTS
908 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
909 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
909 {
910 {
910 unsigned int kcoeff;
911 unsigned int kcoeff;
911 unsigned short sy_lfr_kcoeff_frequency;
912 unsigned short sy_lfr_kcoeff_frequency;
912 unsigned short bin;
913 unsigned short bin;
913 unsigned short *freqPtr;
914 unsigned short *freqPtr;
914 float *kcoeffPtr_norm;
915 float *kcoeffPtr_norm;
915 float *kcoeffPtr_sbm;
916 float *kcoeffPtr_sbm;
916 int status;
917 int status;
917 unsigned char *kcoeffLoadPtr;
918 unsigned char *kcoeffLoadPtr;
918 unsigned char *kcoeffNormPtr;
919 unsigned char *kcoeffNormPtr;
919 unsigned char *kcoeffSbmPtr_a;
920 unsigned char *kcoeffSbmPtr_a;
920 unsigned char *kcoeffSbmPtr_b;
921 unsigned char *kcoeffSbmPtr_b;
921
922
922 status = LFR_SUCCESSFUL;
923 status = LFR_SUCCESSFUL;
923
924
924 kcoeffPtr_norm = NULL;
925 kcoeffPtr_norm = NULL;
925 kcoeffPtr_sbm = NULL;
926 kcoeffPtr_sbm = NULL;
926 bin = 0;
927 bin = 0;
927
928
928 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
929 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
929 sy_lfr_kcoeff_frequency = *freqPtr;
930 sy_lfr_kcoeff_frequency = *freqPtr;
930
931
931 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
932 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
932 {
933 {
933 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
934 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
934 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
935 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
935 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
936 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
936 status = LFR_DEFAULT;
937 status = LFR_DEFAULT;
937 }
938 }
938 else
939 else
939 {
940 {
940 if ( ( sy_lfr_kcoeff_frequency >= 0 )
941 if ( ( sy_lfr_kcoeff_frequency >= 0 )
941 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
942 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
942 {
943 {
943 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
944 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
944 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
945 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
945 bin = sy_lfr_kcoeff_frequency;
946 bin = sy_lfr_kcoeff_frequency;
946 }
947 }
947 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
948 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
948 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
949 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
949 {
950 {
950 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
951 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
951 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
952 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
952 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
953 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
953 }
954 }
954 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
955 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
955 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
956 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
956 {
957 {
957 kcoeffPtr_norm = k_coeff_intercalib_f2;
958 kcoeffPtr_norm = k_coeff_intercalib_f2;
958 kcoeffPtr_sbm = NULL;
959 kcoeffPtr_sbm = NULL;
959 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
960 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
960 }
961 }
961 }
962 }
962
963
963 printf("in set_sy_lfr_kcoeff *** freq = %d, bin = %d\n", sy_lfr_kcoeff_frequency, bin);
964 printf("in set_sy_lfr_kcoeff *** freq = %d, bin = %d\n", sy_lfr_kcoeff_frequency, bin);
964
965
965 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
966 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
966 {
967 {
967 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
968 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
968 {
969 {
969 // destination
970 // destination
970 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
971 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
971 // source
972 // source
972 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
973 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
973 // copy source to destination
974 // copy source to destination
974 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
975 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
975 }
976 }
976 }
977 }
977
978
978 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
979 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
979 {
980 {
980 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
981 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
981 {
982 {
982 // destination
983 // destination
983 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
984 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
984 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
985 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
985 // source
986 // source
986 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
987 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
987 // copy source to destination
988 // copy source to destination
988 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
989 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
989 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
990 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
990 }
991 }
991 }
992 }
992
993
993 // print_k_coeff();
994 // print_k_coeff();
994
995
995 return status;
996 return status;
996 }
997 }
997
998
998 void copyFloatByChar( unsigned char *destination, unsigned char *source )
999 void copyFloatByChar( unsigned char *destination, unsigned char *source )
999 {
1000 {
1000 destination[0] = source[0];
1001 destination[0] = source[0];
1001 destination[1] = source[1];
1002 destination[1] = source[1];
1002 destination[2] = source[2];
1003 destination[2] = source[2];
1003 destination[3] = source[3];
1004 destination[3] = source[3];
1004 }
1005 }
1005
1006
1006 //**********
1007 //**********
1007 // init dump
1008 // init dump
1008
1009
1009 void init_parameter_dump( void )
1010 void init_parameter_dump( void )
1010 {
1011 {
1011 /** This function initialize the parameter_dump_packet global variable with default values.
1012 /** This function initialize the parameter_dump_packet global variable with default values.
1012 *
1013 *
1013 */
1014 */
1014
1015
1015 unsigned int k;
1016 unsigned int k;
1016
1017
1017 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1018 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1018 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1019 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1019 parameter_dump_packet.reserved = CCSDS_RESERVED;
1020 parameter_dump_packet.reserved = CCSDS_RESERVED;
1020 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1021 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1021 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1022 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1022 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1023 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1023 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1024 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1024 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1025 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1025 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1026 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1026 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1027 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1027 // DATA FIELD HEADER
1028 // DATA FIELD HEADER
1028 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1029 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1029 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1030 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1030 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1031 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1031 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1032 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1032 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1033 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1033 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1034 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1034 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1035 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1035 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1036 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1036 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1037 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1037 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1038 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1038 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1039 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1039
1040
1040 //******************
1041 //******************
1041 // COMMON PARAMETERS
1042 // COMMON PARAMETERS
1042 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1043 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1043 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1044 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1044
1045
1045 //******************
1046 //******************
1046 // NORMAL PARAMETERS
1047 // NORMAL PARAMETERS
1047 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1048 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1048 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1049 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1049 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1050 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1050 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1051 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1051 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1052 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1052 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1053 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1053 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1054 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1054 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1055 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1055 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1056 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1056
1057
1057 //*****************
1058 //*****************
1058 // BURST PARAMETERS
1059 // BURST PARAMETERS
1059 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1060 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1060 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1061 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1061
1062
1062 //****************
1063 //****************
1063 // SBM1 PARAMETERS
1064 // SBM1 PARAMETERS
1064 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1065 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1065 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1066 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1066
1067
1067 //****************
1068 //****************
1068 // SBM2 PARAMETERS
1069 // SBM2 PARAMETERS
1069 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1070 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1070 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1071 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1071
1072
1072 //************
1073 //************
1073 // FBINS MASKS
1074 // FBINS MASKS
1074 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1075 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1075 {
1076 {
1076 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1077 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1077 }
1078 }
1078 }
1079 }
1079
1080
1080 void init_kcoefficients_dump( void )
1081 void init_kcoefficients_dump( void )
1081 {
1082 {
1082 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1083 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1083 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1084 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1084
1085
1085 kcoefficient_node_1.previous = NULL;
1086 kcoefficient_node_1.previous = NULL;
1086 kcoefficient_node_1.next = NULL;
1087 kcoefficient_node_1.next = NULL;
1087 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1088 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1088 kcoefficient_node_1.coarseTime = 0x00;
1089 kcoefficient_node_1.coarseTime = 0x00;
1089 kcoefficient_node_1.fineTime = 0x00;
1090 kcoefficient_node_1.fineTime = 0x00;
1090 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1091 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1091 kcoefficient_node_1.status = 0x00;
1092 kcoefficient_node_1.status = 0x00;
1092
1093
1093 kcoefficient_node_2.previous = NULL;
1094 kcoefficient_node_2.previous = NULL;
1094 kcoefficient_node_2.next = NULL;
1095 kcoefficient_node_2.next = NULL;
1095 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1096 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1096 kcoefficient_node_2.coarseTime = 0x00;
1097 kcoefficient_node_2.coarseTime = 0x00;
1097 kcoefficient_node_2.fineTime = 0x00;
1098 kcoefficient_node_2.fineTime = 0x00;
1098 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1099 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1099 kcoefficient_node_2.status = 0x00;
1100 kcoefficient_node_2.status = 0x00;
1100 }
1101 }
1101
1102
1102 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1103 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1103 {
1104 {
1104 unsigned int k;
1105 unsigned int k;
1105 unsigned int packetLength;
1106 unsigned int packetLength;
1106
1107
1107 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1108 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1108
1109
1109 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1110 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1110 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1111 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1111 kcoefficients_dump->reserved = CCSDS_RESERVED;
1112 kcoefficients_dump->reserved = CCSDS_RESERVED;
1112 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1113 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1113 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1114 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1114 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1115 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1115 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1116 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1116 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1117 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1117 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1118 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1118 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1119 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1119 // DATA FIELD HEADER
1120 // DATA FIELD HEADER
1120 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1121 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1121 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1122 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1122 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1123 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1123 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1124 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1124 kcoefficients_dump->time[0] = 0x00;
1125 kcoefficients_dump->time[0] = 0x00;
1125 kcoefficients_dump->time[1] = 0x00;
1126 kcoefficients_dump->time[1] = 0x00;
1126 kcoefficients_dump->time[2] = 0x00;
1127 kcoefficients_dump->time[2] = 0x00;
1127 kcoefficients_dump->time[3] = 0x00;
1128 kcoefficients_dump->time[3] = 0x00;
1128 kcoefficients_dump->time[4] = 0x00;
1129 kcoefficients_dump->time[4] = 0x00;
1129 kcoefficients_dump->time[5] = 0x00;
1130 kcoefficients_dump->time[5] = 0x00;
1130 kcoefficients_dump->sid = SID_K_DUMP;
1131 kcoefficients_dump->sid = SID_K_DUMP;
1131
1132
1132 kcoefficients_dump->pkt_cnt = 2;
1133 kcoefficients_dump->pkt_cnt = 2;
1133 kcoefficients_dump->pkt_nr = pkt_nr;
1134 kcoefficients_dump->pkt_nr = pkt_nr;
1134 kcoefficients_dump->blk_nr = blk_nr;
1135 kcoefficients_dump->blk_nr = blk_nr;
1135
1136
1136 //******************
1137 //******************
1137 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1138 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1138 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1139 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1139 for (k=0; k<3900; k++)
1140 for (k=0; k<3900; k++)
1140 {
1141 {
1141 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1142 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1142 }
1143 }
1143 }
1144 }
1144
1145
1145 void print_k_coeff()
1146 void print_k_coeff()
1146 {
1147 {
1147 unsigned int kcoeff;
1148 unsigned int kcoeff;
1148 unsigned int bin;
1149 unsigned int bin;
1149
1150
1150 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1151 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1151 {
1152 {
1152 printf("kcoeff = %d *** ", kcoeff);
1153 printf("kcoeff = %d *** ", kcoeff);
1153 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1154 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1154 {
1155 {
1155 printf( "%f ", k_coeff_intercalib_f0_norm[bin*NB_K_COEFF_PER_BIN+kcoeff] );
1156 printf( "%f ", k_coeff_intercalib_f0_norm[bin*NB_K_COEFF_PER_BIN+kcoeff] );
1156 }
1157 }
1157 printf("\n");
1158 printf("\n");
1158 }
1159 }
1159
1160
1160 printf("\n");
1161 printf("\n");
1161
1162
1162 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1163 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1163 {
1164 {
1164 printf("kcoeff = %d *** ", kcoeff);
1165 printf("kcoeff = %d *** ", kcoeff);
1165 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1166 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1166 {
1167 {
1167 printf( "[%f, %f] ",
1168 printf( "[%f, %f] ",
1168 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN )*2 + kcoeff],
1169 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN )*2 + kcoeff],
1169 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN+1)*2 + kcoeff]);
1170 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN+1)*2 + kcoeff]);
1170 }
1171 }
1171 printf("\n");
1172 printf("\n");
1172 }
1173 }
1173 }
1174 }
1174
1175
General Comments 0
You need to be logged in to leave comments. Login now