##// END OF EJS Templates
2.0.1.0...
paul -
r164:3367da3ef050 patch rev 2
parent child
Show More
@@ -1,273 +1,273
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Mon Jun 23 07:48:42 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Tue Jul 15 15:57:23 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=12 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=2 -DSW_VERSION_N2=0 -DSW_VERSION_N3=1 -DSW_VERSION_N4=0 -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_misc.c \
49 49 ../src/fsw_init.c \
50 50 ../src/fsw_globals.c \
51 51 ../src/fsw_spacewire.c \
52 52 ../src/tc_load_dump_parameters.c \
53 53 ../src/tm_lfr_tc_exe.c \
54 54 ../src/tc_acceptance.c \
55 55 ../src/processing/fsw_processing.c \
56 56 ../src/processing/avf0_prc0.c \
57 57 ../src/processing/avf1_prc1.c \
58 58 ../src/processing/avf2_prc2.c \
59 59 ../src/lfr_cpu_usage_report.c \
60 60 ../src/LFR_basic-parameters/basic_parameters.c
61 61 OBJECTS = obj/wf_handler.o \
62 62 obj/tc_handler.o \
63 63 obj/fsw_misc.o \
64 64 obj/fsw_init.o \
65 65 obj/fsw_globals.o \
66 66 obj/fsw_spacewire.o \
67 67 obj/tc_load_dump_parameters.o \
68 68 obj/tm_lfr_tc_exe.o \
69 69 obj/tc_acceptance.o \
70 70 obj/fsw_processing.o \
71 71 obj/avf0_prc0.o \
72 72 obj/avf1_prc1.o \
73 73 obj/avf2_prc2.o \
74 74 obj/lfr_cpu_usage_report.o \
75 75 obj/basic_parameters.o
76 76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
77 77 /usr/lib64/qt4/mkspecs/common/linux.conf \
78 78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
79 79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
80 80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
81 81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
82 82 /usr/lib64/qt4/mkspecs/qconfig.pri \
83 83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
84 84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
85 85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
86 86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
87 87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
88 88 sparc.pri \
89 89 /usr/lib64/qt4/mkspecs/features/release.prf \
90 90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
91 91 /usr/lib64/qt4/mkspecs/features/shared.prf \
92 92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
93 93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
94 94 /usr/lib64/qt4/mkspecs/features/resources.prf \
95 95 /usr/lib64/qt4/mkspecs/features/uic.prf \
96 96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
97 97 /usr/lib64/qt4/mkspecs/features/lex.prf \
98 98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
99 99 fsw-qt.pro
100 100 QMAKE_TARGET = fsw
101 101 DESTDIR = bin/
102 102 TARGET = bin/fsw
103 103
104 104 first: all
105 105 ####### Implicit rules
106 106
107 107 .SUFFIXES: .o .c .cpp .cc .cxx .C
108 108
109 109 .cpp.o:
110 110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111 111
112 112 .cc.o:
113 113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114 114
115 115 .cxx.o:
116 116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117 117
118 118 .C.o:
119 119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
120 120
121 121 .c.o:
122 122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
123 123
124 124 ####### Build rules
125 125
126 126 all: Makefile $(TARGET)
127 127
128 128 $(TARGET): $(OBJECTS)
129 129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
130 130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
131 131
132 132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
133 133 /usr/lib64/qt4/mkspecs/common/linux.conf \
134 134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
135 135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
136 136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
137 137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
138 138 /usr/lib64/qt4/mkspecs/qconfig.pri \
139 139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
140 140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
141 141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
142 142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
143 143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
144 144 sparc.pri \
145 145 /usr/lib64/qt4/mkspecs/features/release.prf \
146 146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
147 147 /usr/lib64/qt4/mkspecs/features/shared.prf \
148 148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
149 149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
150 150 /usr/lib64/qt4/mkspecs/features/resources.prf \
151 151 /usr/lib64/qt4/mkspecs/features/uic.prf \
152 152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
153 153 /usr/lib64/qt4/mkspecs/features/lex.prf \
154 154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
155 155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
156 156 /usr/lib64/qt4/mkspecs/common/unix.conf:
157 157 /usr/lib64/qt4/mkspecs/common/linux.conf:
158 158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
159 159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
160 160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
161 161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
162 162 /usr/lib64/qt4/mkspecs/qconfig.pri:
163 163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
164 164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
165 165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
166 166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
167 167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
168 168 sparc.pri:
169 169 /usr/lib64/qt4/mkspecs/features/release.prf:
170 170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
171 171 /usr/lib64/qt4/mkspecs/features/shared.prf:
172 172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
173 173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
174 174 /usr/lib64/qt4/mkspecs/features/resources.prf:
175 175 /usr/lib64/qt4/mkspecs/features/uic.prf:
176 176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
177 177 /usr/lib64/qt4/mkspecs/features/lex.prf:
178 178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
179 179 qmake: FORCE
180 180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
181 181
182 182 dist:
183 183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
184 184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
185 185
186 186
187 187 clean:compiler_clean
188 188 -$(DEL_FILE) $(OBJECTS)
189 189 -$(DEL_FILE) *~ core *.core
190 190
191 191
192 192 ####### Sub-libraries
193 193
194 194 distclean: clean
195 195 -$(DEL_FILE) $(TARGET)
196 196 -$(DEL_FILE) Makefile
197 197
198 198
199 199 grmon:
200 200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
201 201
202 202 check: first
203 203
204 204 compiler_rcc_make_all:
205 205 compiler_rcc_clean:
206 206 compiler_uic_make_all:
207 207 compiler_uic_clean:
208 208 compiler_image_collection_make_all: qmake_image_collection.cpp
209 209 compiler_image_collection_clean:
210 210 -$(DEL_FILE) qmake_image_collection.cpp
211 211 compiler_yacc_decl_make_all:
212 212 compiler_yacc_decl_clean:
213 213 compiler_yacc_impl_make_all:
214 214 compiler_yacc_impl_clean:
215 215 compiler_lex_make_all:
216 216 compiler_lex_clean:
217 217 compiler_clean:
218 218
219 219 ####### Compile
220 220
221 221 obj/wf_handler.o: ../src/wf_handler.c
222 222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
223 223
224 224 obj/tc_handler.o: ../src/tc_handler.c
225 225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
226 226
227 227 obj/fsw_misc.o: ../src/fsw_misc.c
228 228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
229 229
230 230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
231 231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
232 232
233 233 obj/fsw_globals.o: ../src/fsw_globals.c
234 234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
235 235
236 236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
237 237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
238 238
239 239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
240 240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
241 241
242 242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
243 243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
244 244
245 245 obj/tc_acceptance.o: ../src/tc_acceptance.c
246 246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
247 247
248 248 obj/fsw_processing.o: ../src/processing/fsw_processing.c
249 249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
250 250
251 251 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
252 252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
253 253
254 254 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
255 255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
256 256
257 257 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
258 258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
259 259
260 260 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
261 261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
262 262
263 263 obj/basic_parameters.o: ../src/LFR_basic-parameters/basic_parameters.c
264 264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/LFR_basic-parameters/basic_parameters.c
265 265
266 266 ####### Install
267 267
268 268 install: FORCE
269 269
270 270 uninstall: FORCE
271 271
272 272 FORCE:
273 273
@@ -1,95 +1,95
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 4 CONFIG += console verbose
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 DEFINES += SW_VERSION_N1=1 # major
11 DEFINES += SW_VERSION_N1=2 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 DEFINES += SW_VERSION_N3=0 # patch
14 DEFINES += SW_VERSION_N4=12 # internal
13 DEFINES += SW_VERSION_N3=1 # patch
14 DEFINES += SW_VERSION_N4=0 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 44 #doxygen.target = doxygen
45 45 #doxygen.commands = doxygen ../doc/Doxyfile
46 46 #QMAKE_EXTRA_TARGETS += doxygen
47 47
48 48 TARGET = fsw
49 49
50 50 INCLUDEPATH += \
51 51 ../src \
52 52 ../header \
53 53 ../header/processing \
54 54 ../src/LFR_basic-parameters
55 55
56 56 SOURCES += \
57 57 ../src/wf_handler.c \
58 58 ../src/tc_handler.c \
59 59 ../src/fsw_misc.c \
60 60 ../src/fsw_init.c \
61 61 ../src/fsw_globals.c \
62 62 ../src/fsw_spacewire.c \
63 63 ../src/tc_load_dump_parameters.c \
64 64 ../src/tm_lfr_tc_exe.c \
65 65 ../src/tc_acceptance.c \
66 66 ../src/processing/fsw_processing.c \
67 67 ../src/processing/avf0_prc0.c \
68 68 ../src/processing/avf1_prc1.c \
69 69 ../src/processing/avf2_prc2.c \
70 70 ../src/lfr_cpu_usage_report.c \
71 71 ../src/LFR_basic-parameters/basic_parameters.c
72 72
73 73 HEADERS += \
74 74 ../header/wf_handler.h \
75 75 ../header/tc_handler.h \
76 76 ../header/grlib_regs.h \
77 77 ../header/fsw_params.h \
78 78 ../header/fsw_misc.h \
79 79 ../header/fsw_init.h \
80 80 ../header/ccsds_types.h \
81 81 ../header/fsw_spacewire.h \
82 82 ../header/tc_load_dump_parameters.h \
83 83 ../header/tm_lfr_tc_exe.h \
84 84 ../header/tc_acceptance.h \
85 85 ../header/fsw_params_nb_bytes.h \
86 86 ../header/fsw_params_processing.h \
87 87 ../header/processing/fsw_processing.h \
88 88 ../header/processing/avf0_prc0.h \
89 89 ../header/processing/avf1_prc1.h \
90 90 ../header/processing/avf2_prc2.h \
91 91 ../header/fsw_params_wf_handler.h \
92 92 ../header/lfr_cpu_usage_report.h \
93 93 ../src/LFR_basic-parameters/basic_parameters.h \
94 94 ../src/LFR_basic-parameters/basic_parameters_params.h
95 95
@@ -1,201 +1,201
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-06-23T07:07:05. -->
3 <!-- Written by QtCreator 3.0.1, 2014-07-15T16:01:49. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.TargetCount</variable>
191 191 <value type="int">1</value>
192 192 </data>
193 193 <data>
194 194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
196 196 </data>
197 197 <data>
198 198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 199 <value type="int">15</value>
200 200 </data>
201 201 </qtcreator>
@@ -1,588 +1,529
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 83 {
84 84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85 85
86 86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87 87
88 88 return 0;
89 89 }
90 90
91 91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 92 {
93 93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94 94
95 95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96 96
97 97 return 0;
98 98 }
99 99
100 100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 101 {
102 102 /** This function sets the scaler reload register of the apbuart module
103 103 *
104 104 * @param regs is the address of the apbuart registers in memory
105 105 * @param value is the value that will be stored in the scaler register
106 106 *
107 107 * The value shall be set by the software to get data on the serial interface.
108 108 *
109 109 */
110 110
111 111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112 112
113 113 apbuart_regs->scaler = value;
114 114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 115 }
116 116
117 117 //************
118 118 // RTEMS TASKS
119 119
120 120 rtems_task stat_task(rtems_task_argument argument)
121 121 {
122 122 int i;
123 123 int j;
124 124 i = 0;
125 125 j = 0;
126 126 BOOT_PRINTF("in STAT *** \n")
127 127 while(1){
128 128 rtems_task_wake_after(1000);
129 129 PRINTF1("%d\n", j)
130 130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 131 // #ifdef PRINT_TASK_STATISTICS
132 132 // rtems_cpu_usage_report();
133 133 // rtems_cpu_usage_reset();
134 134 // #endif
135 135 i = 0;
136 136 }
137 137 else i++;
138 138 j++;
139 139 }
140 140 }
141 141
142 142 rtems_task hous_task(rtems_task_argument argument)
143 143 {
144 144 rtems_status_code status;
145 145 rtems_id queue_id;
146 146 rtems_rate_monotonic_period_status period_status;
147 147
148 148 status = get_message_queue_id_send( &queue_id );
149 149 if (status != RTEMS_SUCCESSFUL)
150 150 {
151 151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 152 }
153 153
154 154 BOOT_PRINTF("in HOUS ***\n")
155 155
156 156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 158 if( status != RTEMS_SUCCESSFUL ) {
159 159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 160 }
161 161 }
162 162
163 163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 165 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 166 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 167 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
168 168 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
169 169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 174 housekeeping_packet.serviceType = TM_TYPE_HK;
175 175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 177 housekeeping_packet.sid = SID_HK;
178 178
179 179 status = rtems_rate_monotonic_cancel(HK_id);
180 180 if( status != RTEMS_SUCCESSFUL ) {
181 181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 182 }
183 183 else {
184 184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 185 }
186 186
187 187 // startup phase
188 188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 192 {
193 193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 194 {
195 195 break; // break if LFR is synchronized
196 196 }
197 197 else
198 198 {
199 199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 200 // sched_yield();
201 201 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
202 202 }
203 203 }
204 204 status = rtems_rate_monotonic_cancel(HK_id);
205 205 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
206 206
207 207 while(1){ // launch the rate monotonic task
208 208 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
209 209 if ( status != RTEMS_SUCCESSFUL ) {
210 210 PRINTF1( "in HOUS *** ERR period: %d\n", status);
211 211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 212 }
213 213 else {
214 214 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
215 215 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
216 216 increment_seq_counter( &sequenceCounterHK );
217 217
218 218 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
219 219 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
220 220 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
221 221 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
222 222 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
223 223 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
224 224
225 225 spacewire_update_statistics();
226 226
227 227 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
228 228 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
229 229
230 230 // SEND PACKET
231 231 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
232 232 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
233 233 if (status != RTEMS_SUCCESSFUL) {
234 234 PRINTF1("in HOUS *** ERR send: %d\n", status)
235 235 }
236 236 }
237 237 }
238 238
239 239 PRINTF("in HOUS *** deleting task\n")
240 240
241 241 status = rtems_task_delete( RTEMS_SELF ); // should not return
242 242 printf( "rtems_task_delete returned with status of %d.\n", status );
243 243 return;
244 244 }
245 245
246 246 rtems_task dumb_task( rtems_task_argument unused )
247 247 {
248 248 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
249 249 *
250 250 * @param unused is the starting argument of the RTEMS task
251 251 *
252 252 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
253 253 *
254 254 */
255 255
256 256 unsigned int i;
257 257 unsigned int intEventOut;
258 258 unsigned int coarse_time = 0;
259 259 unsigned int fine_time = 0;
260 260 rtems_event_set event_out;
261 261
262 262 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
263 263 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
264 264 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
265 265 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
266 266 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
267 267 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
268 268 "ERR HK", // RTEMS_EVENT_6
269 269 "ready for dump", // RTEMS_EVENT_7
270 270 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
271 271 "tick", // RTEMS_EVENT_9
272 272 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
273 273 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
274 274 };
275 275
276 276 BOOT_PRINTF("in DUMB *** \n")
277 277
278 278 while(1){
279 279 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
280 280 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
281 281 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
282 282 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
283 283 intEventOut = (unsigned int) event_out;
284 284 for ( i=0; i<32; i++)
285 285 {
286 286 if ( ((intEventOut >> i) & 0x0001) != 0)
287 287 {
288 288 coarse_time = time_management_regs->coarse_time;
289 289 fine_time = time_management_regs->fine_time;
290 290 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
291 291 if (i==8)
292 292 {
293 293 PRINTF1("spectral_matrix_regs->status = %x\n", spectral_matrix_regs->status)
294 294 }
295 295 if (i==10)
296 296 {
297 297 PRINTF1("waveform_picker_regs->status = %x\n", waveform_picker_regs->status)
298 298 }
299 299 }
300 300 }
301 301 }
302 302 }
303 303
304 304 //*****************************
305 305 // init housekeeping parameters
306 306
307 307 void init_housekeeping_parameters( void )
308 308 {
309 309 /** This function initialize the housekeeping_packet global variable with default values.
310 310 *
311 311 */
312 312
313 313 unsigned int i = 0;
314 314 unsigned char *parameters;
315 315
316 316 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
317 317 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
318 318 {
319 319 parameters[i] = 0x00;
320 320 }
321 321 // init status word
322 322 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
323 323 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
324 324 // init software version
325 325 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
326 326 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
327 327 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
328 328 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
329 329 // init fpga version
330 330 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
331 331 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
332 332 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
333 333 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
334 334 }
335 335
336 336 void increment_seq_counter( unsigned short *packetSequenceControl )
337 337 {
338 338 /** This function increment the sequence counter psased in argument.
339 339 *
340 340 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
341 341 *
342 342 */
343 343
344 344 unsigned short segmentation_grouping_flag;
345 345 unsigned short sequence_cnt;
346 346
347 347 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
348 348 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
349 349
350 350 if ( sequence_cnt < SEQ_CNT_MAX)
351 351 {
352 352 sequence_cnt = sequence_cnt + 1;
353 353 }
354 354 else
355 355 {
356 356 sequence_cnt = 0;
357 357 }
358 358
359 359 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
360 360 }
361 361
362 362 void getTime( unsigned char *time)
363 363 {
364 364 /** This function write the current local time in the time buffer passed in argument.
365 365 *
366 366 */
367 367
368 368 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
369 369 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
370 370 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
371 371 time[3] = (unsigned char) (time_management_regs->coarse_time);
372 372 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
373 373 time[5] = (unsigned char) (time_management_regs->fine_time);
374 374 }
375 375
376 376 unsigned long long int getTimeAsUnsignedLongLongInt( )
377 377 {
378 378 /** This function write the current local time in the time buffer passed in argument.
379 379 *
380 380 */
381 381 unsigned long long int time;
382 382
383 383 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
384 384 + time_management_regs->fine_time;
385 385
386 386 return time;
387 387 }
388 388
389 389 void send_dumb_hk( void )
390 390 {
391 391 Packet_TM_LFR_HK_t dummy_hk_packet;
392 392 unsigned char *parameters;
393 393 unsigned int i;
394 394 rtems_id queue_id;
395 395
396 396 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
397 397 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
398 398 dummy_hk_packet.reserved = DEFAULT_RESERVED;
399 399 dummy_hk_packet.userApplication = CCSDS_USER_APP;
400 400 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
401 401 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
402 402 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
403 403 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
404 404 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
405 405 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
406 406 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
407 407 dummy_hk_packet.serviceType = TM_TYPE_HK;
408 408 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
409 409 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
410 410 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
411 411 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
412 412 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
413 413 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
414 414 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
415 415 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
416 416 dummy_hk_packet.sid = SID_HK;
417 417
418 418 // init status word
419 419 dummy_hk_packet.lfr_status_word[0] = 0xff;
420 420 dummy_hk_packet.lfr_status_word[1] = 0xff;
421 421 // init software version
422 422 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
423 423 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
424 424 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
425 425 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
426 426 // init fpga version
427 427 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
428 428 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
429 429 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
430 430 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
431 431
432 432 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
433 433
434 434 for (i=0; i<100; i++)
435 435 {
436 436 parameters[i] = 0xff;
437 437 }
438 438
439 439 get_message_queue_id_send( &queue_id );
440 440
441 441 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
442 442 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
443 443 }
444 444
445 void get_v_e1_e2_f3_old( unsigned char *spacecraft_potential )
446 {
447 unsigned int coarseTime;
448 unsigned int acquisitionTime;
449 unsigned int deltaT = 0;
450 unsigned char *bufferPtr;
451
452 unsigned int offset_in_samples;
453 unsigned int offset_in_bytes;
454 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
455
456 if (lfrCurrentMode == LFR_MODE_STANDBY)
457 {
458 spacecraft_potential[0] = 0x00;
459 spacecraft_potential[1] = 0x00;
460 spacecraft_potential[2] = 0x00;
461 spacecraft_potential[3] = 0x00;
462 spacecraft_potential[4] = 0x00;
463 spacecraft_potential[5] = 0x00;
464 }
465 else
466 {
467 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
468 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
469 acquisitionTime = (unsigned int) ( ( bufferPtr[2] & 0x7f ) << 24 )
470 + (unsigned int) ( bufferPtr[3] << 16 )
471 + (unsigned int) ( bufferPtr[0] << 8 )
472 + (unsigned int) ( bufferPtr[1] );
473 if ( coarseTime > acquisitionTime )
474 {
475 deltaT = coarseTime - acquisitionTime;
476 offset_in_samples = (deltaT-1) * f3 ;
477 }
478 else if( coarseTime == acquisitionTime )
479 {
480 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
481 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
482 }
483 else
484 {
485 offset_in_samples = 0;
486 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
487 }
488
489 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
490 {
491 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
492 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
493 }
494 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
495 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
496 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
497 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
498 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
499 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
500 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
501 }
502 }
503
504 445 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
505 446 {
506 447 unsigned int coarseTime;
507 448 unsigned int acquisitionTime;
508 449 unsigned int deltaT = 0;
509 450 unsigned char *bufferPtr;
510 451
511 452 unsigned int offset_in_samples;
512 453 unsigned int offset_in_bytes;
513 454 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
514 455
515 456 if (lfrCurrentMode == LFR_MODE_STANDBY)
516 457 {
517 458 spacecraft_potential[0] = 0x00;
518 459 spacecraft_potential[1] = 0x00;
519 460 spacecraft_potential[2] = 0x00;
520 461 spacecraft_potential[3] = 0x00;
521 462 spacecraft_potential[4] = 0x00;
522 463 spacecraft_potential[5] = 0x00;
523 464 }
524 465 else
525 466 {
526 467 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
527 468 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
528 469 acquisitionTime = (unsigned int) ( ( bufferPtr[0] & 0x7f ) << 24 )
529 470 + (unsigned int) ( bufferPtr[1] << 16 )
530 471 + (unsigned int) ( bufferPtr[2] << 8 )
531 472 + (unsigned int) ( bufferPtr[3] );
532 473 if ( coarseTime > acquisitionTime )
533 474 {
534 475 deltaT = coarseTime - acquisitionTime;
535 476 offset_in_samples = (deltaT-1) * f3 ;
536 477 }
537 478 else if( coarseTime == acquisitionTime )
538 479 {
539 480 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
540 481 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
541 482 }
542 483 else
543 484 {
544 485 offset_in_samples = 0;
545 486 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
546 487 }
547 488
548 489 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
549 490 {
550 491 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
551 492 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
552 493 }
553 494 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
554 495 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
555 496 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
556 497 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
557 498 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
558 499 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
559 500 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
560 501 }
561 502 }
562 503
563 504 void get_cpu_load( unsigned char *resource_statistics )
564 505 {
565 506 unsigned char cpu_load;
566 507
567 508 cpu_load = lfr_rtems_cpu_usage_report();
568 509
569 510 // HK_LFR_CPU_LOAD
570 511 resource_statistics[0] = cpu_load;
571 512
572 513 // HK_LFR_CPU_LOAD_MAX
573 514 if (cpu_load > resource_statistics[1])
574 515 {
575 516 resource_statistics[1] = cpu_load;
576 517 }
577 518
578 519 // CPU_LOAD_AVE
579 520 resource_statistics[2] = 0;
580 521
581 522 #ifndef PRINT_TASK_STATISTICS
582 523 rtems_cpu_usage_reset();
583 524 #endif
584 525
585 526 }
586 527
587 528
588 529
@@ -1,689 +1,689
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12
13 13 unsigned int nb_sm_f0;
14 14 unsigned int nb_sm_f0_aux_f1;
15 15 unsigned int nb_sm_f1;
16 16 unsigned int nb_sm_f0_aux_f2;
17 17
18 18 //************************
19 19 // spectral matrices rings
20 20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 23 ring_node_sm *current_ring_node_sm_f0;
24 24 ring_node_sm *current_ring_node_sm_f1;
25 25 ring_node_sm *current_ring_node_sm_f2;
26 26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 28 ring_node_sm *ring_node_for_averaging_sm_f2;
29 29
30 30 //***********************************************************
31 31 // Interrupt Service Routine for spectral matrices processing
32 32
33 33 void spectral_matrices_isr_f0( void )
34 34 {
35 35 unsigned char status;
36 36 unsigned long long int time_0;
37 37 unsigned long long int time_1;
38 38 unsigned long long int syncBit0;
39 39 unsigned long long int syncBit1;
40 40
41 41 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
42 42
43 43 time_0 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_0_coarse_time );
44 44 time_1 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_1_coarse_time );
45 45 syncBit0 = ( (unsigned long long int) (spectral_matrix_regs->f0_0_coarse_time & 0x80000000) ) << 16;
46 46 syncBit1 = ( (unsigned long long int) (spectral_matrix_regs->f0_1_coarse_time & 0x80000000) ) << 16;
47 47
48 48 switch(status)
49 49 {
50 50 case 0:
51 51 break;
52 52 case 3:
53 53 if ( time_0 < time_1 )
54 54 {
55 55 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
56 56 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
57 57 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
58 58 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
59 59 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
60 60 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
61 61 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
62 62 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
63 63 }
64 64 else
65 65 {
66 66 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
67 67 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
68 68 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
69 69 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
70 70 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
71 71 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
72 72 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
73 73 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
74 74 }
75 75 spectral_matrix_regs->status = 0x03; // [0011]
76 76 break;
77 77 case 1:
78 78 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
79 79 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
80 80 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
81 81 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
82 82 spectral_matrix_regs->status = 0x01; // [0001]
83 83 break;
84 84 case 2:
85 85 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
86 86 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
87 87 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
88 88 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
89 89 spectral_matrix_regs->status = 0x02; // [0010]
90 90 break;
91 91 }
92 92 }
93 93
94 94 void spectral_matrices_isr_f1( void )
95 95 {
96 96 unsigned char status;
97 97 unsigned long long int time;
98 98 unsigned long long int syncBit;
99 99
100 100 status = (spectral_matrix_regs->status & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
101 101
102 102 switch(status)
103 103 {
104 104 case 0:
105 105 break;
106 106 case 3:
107 107 // UNEXPECTED VALUE
108 108 spectral_matrix_regs->status = 0xc0; // [1100]
109 109 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
110 110 break;
111 111 case 1:
112 112 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_0_coarse_time );
113 113 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_0_coarse_time & 0x80000000) ) << 16;
114 114 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
115 115 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
116 116 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
117 117 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
118 118 spectral_matrix_regs->status = 0x04; // [0100]
119 119 break;
120 120 case 2:
121 121 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_1_coarse_time );
122 122 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_1_coarse_time & 0x80000000) ) << 16;
123 123 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
124 124 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
125 125 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
126 126 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
127 127 spectral_matrix_regs->status = 0x08; // [1000]
128 128 break;
129 129 }
130 130 }
131 131
132 132 void spectral_matrices_isr_f2( void )
133 133 {
134 134 unsigned char status;
135 135
136 136 status = (spectral_matrix_regs->status & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
137 137
138 138 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
139 139
140 140 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
141 141
142 142 switch(status)
143 143 {
144 144 case 0:
145 145 break;
146 146 case 3:
147 147 // UNEXPECTED VALUE
148 148 spectral_matrix_regs->status = 0x30; // [0011 0000]
149 149 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
150 150 break;
151 151 case 1:
152 152 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
153 153 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
154 154 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
155 155 spectral_matrix_regs->status = 0x10; // [0001 0000]
156 156 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
157 157 {
158 158 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
159 159 }
160 160 break;
161 161 case 2:
162 162 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
163 163 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
164 164 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
165 165 spectral_matrix_regs->status = 0x20; // [0010 0000]
166 166 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
167 167 {
168 168 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
169 169 }
170 170 break;
171 171 }
172 172 }
173 173
174 174 void spectral_matrix_isr_error_handler( void )
175 175 {
176 176 if (spectral_matrix_regs->status & 0x7c0) // [0111 1100 0000]
177 177 {
178 178 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
179 179 }
180 180 }
181 181
182 182 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
183 183 {
184 184 // STATUS REGISTER
185 185 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
186 186 // 10 9 8
187 187 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
188 188 // 7 6 5 4 3 2 1 0
189 189
190 190 spectral_matrices_isr_f0();
191 191
192 192 spectral_matrices_isr_f1();
193 193
194 194 spectral_matrices_isr_f2();
195 195
196 196 // spectral_matrix_isr_error_handler();
197 197 }
198 198
199 199 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
200 200 {
201 201 //***
202 202 // F0
203 203 nb_sm_f0 = nb_sm_f0 + 1;
204 204 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
205 205 {
206 206 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
207 207 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 208 {
209 209 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 210 }
211 211 nb_sm_f0 = 0;
212 212 }
213 213
214 214 //***
215 215 // F1
216 216 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
217 217 if (nb_sm_f0_aux_f1 == 6)
218 218 {
219 219 nb_sm_f0_aux_f1 = 0;
220 220 nb_sm_f1 = nb_sm_f1 + 1;
221 221 }
222 222 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
223 223 {
224 224 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
225 225 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
226 226 {
227 227 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
228 228 }
229 229 nb_sm_f1 = 0;
230 230 }
231 231
232 232 //***
233 233 // F2
234 234 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
235 235 if (nb_sm_f0_aux_f2 == 96)
236 236 {
237 237 nb_sm_f0_aux_f2 = 0;
238 238 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
239 239 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
240 240 {
241 241 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
242 242 }
243 243 }
244 244 }
245 245
246 246 //******************
247 247 // Spectral Matrices
248 248
249 249 void reset_nb_sm( void )
250 250 {
251 251 nb_sm_f0 = 0;
252 252 nb_sm_f0_aux_f1 = 0;
253 253 nb_sm_f0_aux_f2 = 0;
254 254
255 255 nb_sm_f1 = 0;
256 256 }
257 257
258 258 void SM_init_rings( void )
259 259 {
260 260 unsigned char i;
261 261
262 262 // F0 RING
263 263 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
264 264 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
265 265 sm_ring_f0[0].buffer_address =
266 266 (int) &sm_f0[ 0 ];
267 267
268 268 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
269 269 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
270 270 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
271 271 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
272 272
273 273 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
274 274 {
275 275 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
276 276 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
277 277 sm_ring_f0[i].buffer_address =
278 278 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
279 279 }
280 280
281 281 // F1 RING
282 282 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
283 283 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
284 284 sm_ring_f1[0].buffer_address =
285 285 (int) &sm_f1[ 0 ];
286 286
287 287 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
288 288 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
289 289 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
290 290 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
291 291
292 292 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
293 293 {
294 294 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
295 295 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
296 296 sm_ring_f1[i].buffer_address =
297 297 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
298 298 }
299 299
300 300 // F2 RING
301 301 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
302 302 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
303 303 sm_ring_f2[0].buffer_address =
304 304 (int) &sm_f2[ 0 ];
305 305
306 306 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
307 307 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
308 308 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
309 309 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
310 310
311 311 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
312 312 {
313 313 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
314 314 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
315 315 sm_ring_f2[i].buffer_address =
316 316 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
317 317 }
318 318
319 319 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
320 320 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
321 321 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
322 322
323 323 spectral_matrix_regs->f0_0_address = sm_ring_f0[0].buffer_address;
324 324 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->f0_0_address)
325 325 }
326 326
327 327 void SM_generic_init_ring( ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] )
328 328 {
329 329 unsigned char i;
330 330
331 331 //***************
332 332 // BUFFER ADDRESS
333 333 for(i=0; i<nbNodes; i++)
334 334 {
335 335 ring[ i ].buffer_address = (int) &sm_f[ i * TOTAL_SIZE_SM ];
336 336 }
337 337
338 338 //*****
339 339 // NEXT
340 340 ring[ nbNodes - 1 ].next = (ring_node_sm*) &ring[ 0 ];
341 341 for(i=0; i<nbNodes-1; i++)
342 342 {
343 343 ring[ i ].next = (ring_node_sm*) &ring[ i + 1 ];
344 344 }
345 345
346 346 //*********
347 347 // PREVIOUS
348 348 ring[ 0 ].previous = (ring_node_sm*) &ring[ nbNodes -1 ];
349 349 for(i=1; i<nbNodes; i++)
350 350 {
351 351 ring[ i ].previous = (ring_node_sm*) &ring[ i - 1 ];
352 352 }
353 353 }
354 354
355 355 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
356 356 {
357 357 unsigned char i;
358 358
359 359 ring[ nbNodes - 1 ].next
360 360 = (ring_node_asm*) &ring[ 0 ];
361 361
362 362 for(i=0; i<nbNodes-1; i++)
363 363 {
364 364 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
365 365 }
366 366 }
367 367
368 368 void SM_reset_current_ring_nodes( void )
369 369 {
370 370 current_ring_node_sm_f0 = sm_ring_f0[0].next;
371 371 current_ring_node_sm_f1 = sm_ring_f1[0].next;
372 372 current_ring_node_sm_f2 = sm_ring_f2[0].next;
373 373
374 374 ring_node_for_averaging_sm_f0 = sm_ring_f0;
375 375 ring_node_for_averaging_sm_f1 = sm_ring_f1;
376 376 ring_node_for_averaging_sm_f2 = sm_ring_f2;
377 377 }
378 378
379 379 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
380 380 {
381 381 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
382 382 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
383 383 header->reserved = 0x00;
384 384 header->userApplication = CCSDS_USER_APP;
385 385 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
386 386 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
387 387 header->packetSequenceControl[0] = 0xc0;
388 388 header->packetSequenceControl[1] = 0x00;
389 389 header->packetLength[0] = 0x00;
390 390 header->packetLength[1] = 0x00;
391 391 // DATA FIELD HEADER
392 392 header->spare1_pusVersion_spare2 = 0x10;
393 393 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
394 394 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
395 395 header->destinationID = TM_DESTINATION_ID_GROUND;
396 396 // AUXILIARY DATA HEADER
397 397 header->sid = 0x00;
398 398 header->biaStatusInfo = 0x00;
399 399 header->pa_lfr_pkt_cnt_asm = 0x00;
400 400 header->pa_lfr_pkt_nr_asm = 0x00;
401 401 header->time[0] = 0x00;
402 402 header->time[0] = 0x00;
403 403 header->time[0] = 0x00;
404 404 header->time[0] = 0x00;
405 405 header->time[0] = 0x00;
406 406 header->time[0] = 0x00;
407 407 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
408 408 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
409 409 }
410 410
411 411 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
412 412 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
413 413 {
414 414 unsigned int i;
415 415 unsigned int length = 0;
416 416 rtems_status_code status;
417 417
418 418 for (i=0; i<2; i++)
419 419 {
420 420 // (1) BUILD THE DATA
421 421 switch(sid)
422 422 {
423 423 case SID_NORM_ASM_F0:
424 424 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
425 425 spw_ioctl_send->data = &spectral_matrix[
426 426 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
427 427 ];
428 428 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
429 429 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
430 430 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
431 431 break;
432 432 case SID_NORM_ASM_F1:
433 433 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
434 434 spw_ioctl_send->data = &spectral_matrix[
435 435 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
436 436 ];
437 437 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
438 438 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
439 439 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
440 440 break;
441 441 case SID_NORM_ASM_F2:
442 442 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
443 443 spw_ioctl_send->data = &spectral_matrix[
444 444 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
445 445 ];
446 446 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
447 447 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
448 448 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
449 449 break;
450 450 default:
451 451 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
452 452 break;
453 453 }
454 454 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
455 455 spw_ioctl_send->hdr = (char *) header;
456 456 spw_ioctl_send->options = 0;
457 457
458 458 // (2) BUILD THE HEADER
459 459 increment_seq_counter_source_id( header->packetSequenceControl, sid );
460 460 header->packetLength[0] = (unsigned char) (length>>8);
461 461 header->packetLength[1] = (unsigned char) (length);
462 462 header->sid = (unsigned char) sid; // SID
463 463 header->pa_lfr_pkt_cnt_asm = 2;
464 464 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
465 465
466 466 // (3) SET PACKET TIME
467 467 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
468 468 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
469 469 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
470 470 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
471 471 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
472 472 header->time[5] = (unsigned char) (time_management_regs->fine_time);
473 473 //
474 474 header->acquisitionTime[0] = header->time[0];
475 475 header->acquisitionTime[1] = header->time[1];
476 476 header->acquisitionTime[2] = header->time[2];
477 477 header->acquisitionTime[3] = header->time[3];
478 478 header->acquisitionTime[4] = header->time[4];
479 479 header->acquisitionTime[5] = header->time[5];
480 480
481 481 // (4) SEND PACKET
482 482 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
483 483 if (status != RTEMS_SUCCESSFUL) {
484 484 printf("in ASM_send *** ERR %d\n", (int) status);
485 485 }
486 486 }
487 487 }
488 488
489 489 //*****************
490 490 // Basic Parameters
491 491
492 492 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
493 493 unsigned int apid, unsigned char sid,
494 494 unsigned int packetLength, unsigned char blkNr )
495 495 {
496 496 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
497 497 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
498 498 header->reserved = 0x00;
499 499 header->userApplication = CCSDS_USER_APP;
500 500 header->packetID[0] = (unsigned char) (apid >> 8);
501 501 header->packetID[1] = (unsigned char) (apid);
502 502 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
503 503 header->packetSequenceControl[1] = 0x00;
504 504 header->packetLength[0] = (unsigned char) (packetLength >> 8);
505 505 header->packetLength[1] = (unsigned char) (packetLength);
506 506 // DATA FIELD HEADER
507 507 header->spare1_pusVersion_spare2 = 0x10;
508 508 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
509 509 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
510 510 header->destinationID = TM_DESTINATION_ID_GROUND;
511 511 // AUXILIARY DATA HEADER
512 512 header->sid = sid;
513 513 header->biaStatusInfo = 0x00;
514 514 header->time[0] = 0x00;
515 515 header->time[0] = 0x00;
516 516 header->time[0] = 0x00;
517 517 header->time[0] = 0x00;
518 518 header->time[0] = 0x00;
519 519 header->time[0] = 0x00;
520 520 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
521 521 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
522 522 }
523 523
524 524 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
525 525 unsigned int apid, unsigned char sid,
526 526 unsigned int packetLength , unsigned char blkNr)
527 527 {
528 528 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
529 529 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
530 530 header->reserved = 0x00;
531 531 header->userApplication = CCSDS_USER_APP;
532 532 header->packetID[0] = (unsigned char) (apid >> 8);
533 533 header->packetID[1] = (unsigned char) (apid);
534 534 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
535 535 header->packetSequenceControl[1] = 0x00;
536 536 header->packetLength[0] = (unsigned char) (packetLength >> 8);
537 537 header->packetLength[1] = (unsigned char) (packetLength);
538 538 // DATA FIELD HEADER
539 539 header->spare1_pusVersion_spare2 = 0x10;
540 540 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
541 541 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
542 542 header->destinationID = TM_DESTINATION_ID_GROUND;
543 543 // AUXILIARY DATA HEADER
544 544 header->sid = sid;
545 545 header->biaStatusInfo = 0x00;
546 546 header->time[0] = 0x00;
547 547 header->time[0] = 0x00;
548 548 header->time[0] = 0x00;
549 549 header->time[0] = 0x00;
550 550 header->time[0] = 0x00;
551 551 header->time[0] = 0x00;
552 552 header->source_data_spare = 0x00;
553 553 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
554 554 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
555 555 }
556 556
557 557 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
558 558 {
559 559 rtems_status_code status;
560 560
561 561 // SET THE SEQUENCE_CNT PARAMETER
562 562 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
563 563 // SEND PACKET
564 564 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
565 565 if (status != RTEMS_SUCCESSFUL)
566 566 {
567 567 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
568 568 }
569 569 }
570 570
571 571 //******************
572 572 // general functions
573 573
574 574 void reset_spectral_matrix_regs( void )
575 575 {
576 576 /** This function resets the spectral matrices module registers.
577 577 *
578 578 * The registers affected by this function are located at the following offset addresses:
579 579 *
580 580 * - 0x00 config
581 581 * - 0x04 status
582 582 * - 0x08 matrixF0_Address0
583 583 * - 0x10 matrixFO_Address1
584 584 * - 0x14 matrixF1_Address
585 585 * - 0x18 matrixF2_Address
586 586 *
587 587 */
588 588
589 589 spectral_matrix_regs->config = 0x00;
590 590 spectral_matrix_regs->status = 0x00;
591 591
592 592 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
593 593 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
594 594 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
595 595 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
596 596 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
597 597 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
598 598 }
599 599
600 600 void set_time( unsigned char *time, unsigned char * timeInBuffer )
601 601 {
602 602 time[0] = timeInBuffer[0];
603 603 time[1] = timeInBuffer[1];
604 604 time[2] = timeInBuffer[2];
605 605 time[3] = timeInBuffer[3];
606 606 time[4] = timeInBuffer[6];
607 607 time[5] = timeInBuffer[7];
608 608 }
609 609
610 610 unsigned long long int get_acquisition_time( unsigned char *timePtr )
611 611 {
612 612 unsigned long long int acquisitionTimeAslong;
613 613 acquisitionTimeAslong = 0x00;
614 614 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
615 615 + ( (unsigned long long int) timePtr[1] << 32 )
616 + ( timePtr[2] << 24 )
617 + ( timePtr[3] << 16 )
618 + ( timePtr[6] << 8 )
619 + ( timePtr[7] );
616 + ( (unsigned long long int) timePtr[2] << 24 )
617 + ( (unsigned long long int) timePtr[3] << 16 )
618 + ( (unsigned long long int) timePtr[6] << 8 )
619 + ( (unsigned long long int) timePtr[7] );
620 620 return acquisitionTimeAslong;
621 621 }
622 622
623 623 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
624 624 ring_node_sm *node_for_averaging, ring_node_sm *ringNode,
625 625 unsigned long long int time )
626 626 {
627 627 unsigned char *timePtr;
628 628 unsigned char *coarseTimePtr;
629 629 unsigned char *fineTimePtr;
630 630
631 631 timePtr = (unsigned char *) &time;
632 632 coarseTimePtr = (unsigned char *) &node_for_averaging->coarseTime;
633 633 fineTimePtr = (unsigned char *) &node_for_averaging->fineTime;
634 634
635 635 *nb_sm = *nb_sm + 1;
636 636 if (*nb_sm == nb_sm_before_avf)
637 637 {
638 638 node_for_averaging = ringNode;
639 639 coarseTimePtr[0] = timePtr[2];
640 640 coarseTimePtr[1] = timePtr[3];
641 641 coarseTimePtr[2] = timePtr[4];
642 642 coarseTimePtr[3] = timePtr[5];
643 643 fineTimePtr[2] = timePtr[6];
644 644 fineTimePtr[3] = timePtr[7];
645 645 if (rtems_event_send( task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
646 646 {
647 647 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
648 648 }
649 649 *nb_sm = 0;
650 650 }
651 651 }
652 652
653 653 unsigned char getSID( rtems_event_set event )
654 654 {
655 655 unsigned char sid;
656 656
657 657 rtems_event_set eventSetBURST;
658 658 rtems_event_set eventSetSBM;
659 659
660 660 //******
661 661 // BURST
662 662 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
663 663 | RTEMS_EVENT_BURST_BP1_F1
664 664 | RTEMS_EVENT_BURST_BP2_F0
665 665 | RTEMS_EVENT_BURST_BP2_F1;
666 666
667 667 //****
668 668 // SBM
669 669 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
670 670 | RTEMS_EVENT_SBM_BP1_F1
671 671 | RTEMS_EVENT_SBM_BP2_F0
672 672 | RTEMS_EVENT_SBM_BP2_F1;
673 673
674 674 if (event & eventSetBURST)
675 675 {
676 676 sid = SID_BURST_BP1_F0;
677 677 }
678 678 else if (event & eventSetSBM)
679 679 {
680 680 sid = SID_SBM1_BP1_F0;
681 681 }
682 682 else
683 683 {
684 684 sid = 0;
685 685 }
686 686
687 687 return sid;
688 688 }
689 689
@@ -1,1399 +1,1310
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 31 ring_node *current_ring_node_f0;
32 32 ring_node *ring_node_to_send_swf_f0;
33 33 ring_node *current_ring_node_f1;
34 34 ring_node *ring_node_to_send_swf_f1;
35 35 ring_node *ring_node_to_send_cwf_f1;
36 36 ring_node *current_ring_node_f2;
37 37 ring_node *ring_node_to_send_swf_f2;
38 38 ring_node *ring_node_to_send_cwf_f2;
39 39 ring_node *current_ring_node_f3;
40 40 ring_node *ring_node_to_send_cwf_f3;
41 41
42 42 bool extractSWF = false;
43 43 bool swf_f0_ready = false;
44 44 bool swf_f1_ready = false;
45 45 bool swf_f2_ready = false;
46 46
47 47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48 48
49 49 //*********************
50 50 // Interrupt SubRoutine
51 51
52 52 void reset_extractSWF( void )
53 53 {
54 54 extractSWF = false;
55 55 swf_f0_ready = false;
56 56 swf_f1_ready = false;
57 57 swf_f2_ready = false;
58 58 }
59 59
60 60 rtems_isr waveforms_isr( rtems_vector_number vector )
61 61 {
62 62 /** This is the interrupt sub routine called by the waveform picker core.
63 63 *
64 64 * This ISR launch different actions depending mainly on two pieces of information:
65 65 * 1. the values read in the registers of the waveform picker.
66 66 * 2. the current LFR mode.
67 67 *
68 68 */
69 69
70 70 rtems_status_code status;
71 71
72 72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
73 73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
74 74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
75 75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
76 76 // (1) change the receiving buffer for the waveform picker
77 77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
78 78 current_ring_node_f3 = current_ring_node_f3->next;
79 79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
80 80 // (2) send an event for the waveforms transmission
81 81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
82 82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 83 }
84 84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
85 85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 86 }
87 87 }
88 88
89 89 switch(lfrCurrentMode)
90 90 {
91 91 //********
92 92 // STANDBY
93 93 case(LFR_MODE_STANDBY):
94 94 break;
95 95
96 96 //******
97 97 // NORMAL
98 98 case(LFR_MODE_NORMAL):
99 99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 100 {
101 101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 102 }
103 103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 104 {
105 105 // change F0 ring node
106 106 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 107 current_ring_node_f0 = current_ring_node_f0->next;
108 108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 109 // change F1 ring node
110 110 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 111 current_ring_node_f1 = current_ring_node_f1->next;
112 112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 113 // change F2 ring node
114 114 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 115 current_ring_node_f2 = current_ring_node_f2->next;
116 116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 117 //
118 118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
119 119 {
120 120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 121 }
122 122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
123 123 }
124 124 break;
125 125
126 126 //******
127 127 // BURST
128 128 case(LFR_MODE_BURST):
129 129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
130 130 // (1) change the receiving buffer for the waveform picker
131 131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
132 132 current_ring_node_f2 = current_ring_node_f2->next;
133 133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
134 134 // (2) send an event for the waveforms transmission
135 135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
136 136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 137 }
138 138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
139 139 }
140 140 break;
141 141
142 142 //*****
143 143 // SBM1
144 144 case(LFR_MODE_SBM1):
145 145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
146 146 // (1) change the receiving buffer for the waveform picker
147 147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
148 148 current_ring_node_f1 = current_ring_node_f1->next;
149 149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
150 150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
151 151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
152 152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
153 153 }
154 154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
155 155 swf_f0_ready = true;
156 156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
157 157 }
158 158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
159 159 swf_f2_ready = true;
160 160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
161 161 }
162 162 break;
163 163
164 164 //*****
165 165 // SBM2
166 166 case(LFR_MODE_SBM2):
167 167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
168 168 // (1) change the receiving buffer for the waveform picker
169 169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
170 170 current_ring_node_f2 = current_ring_node_f2->next;
171 171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
172 172 // (2) send an event for the waveforms transmission
173 173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
174 174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
175 175 }
176 176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
177 177 swf_f0_ready = true;
178 178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
179 179 }
180 180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
181 181 swf_f1_ready = true;
182 182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
183 183 }
184 184 break;
185 185
186 186 //********
187 187 // DEFAULT
188 188 default:
189 189 break;
190 190 }
191 191 }
192 192
193 193 //************
194 194 // RTEMS TASKS
195 195
196 196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
197 197 {
198 198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
199 199 *
200 200 * @param unused is the starting argument of the RTEMS task
201 201 *
202 202 * The following data packets are sent by this task:
203 203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
204 204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
205 205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
206 206 *
207 207 */
208 208
209 209 rtems_event_set event_out;
210 210 rtems_id queue_id;
211 211 rtems_status_code status;
212 212
213 213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
214 214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
215 215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
216 216
217 217 status = get_message_queue_id_send( &queue_id );
218 218 if (status != RTEMS_SUCCESSFUL)
219 219 {
220 220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
221 221 }
222 222
223 223 BOOT_PRINTF("in WFRM ***\n")
224 224
225 225 while(1){
226 226 // wait for an RTEMS_EVENT
227 227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
228 228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
229 229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
230 230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
231 231 {
232 232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
233 233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
234 234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
235 235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
236 236 }
237 237 if (event_out == RTEMS_EVENT_MODE_SBM1)
238 238 {
239 239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
240 240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
241 241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
242 242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
243 243 }
244 244 if (event_out == RTEMS_EVENT_MODE_SBM2)
245 245 {
246 246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
247 247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
248 248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
249 249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
250 250 }
251 251 }
252 252 }
253 253
254 254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
255 255 {
256 256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
257 257 *
258 258 * @param unused is the starting argument of the RTEMS task
259 259 *
260 260 * The following data packet is sent by this task:
261 261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
262 262 *
263 263 */
264 264
265 265 rtems_event_set event_out;
266 266 rtems_id queue_id;
267 267 rtems_status_code status;
268 268
269 269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
270 270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
271 271
272 272 status = get_message_queue_id_send( &queue_id );
273 273 if (status != RTEMS_SUCCESSFUL)
274 274 {
275 275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
276 276 }
277 277
278 278 BOOT_PRINTF("in CWF3 ***\n")
279 279
280 280 while(1){
281 281 // wait for an RTEMS_EVENT
282 282 rtems_event_receive( RTEMS_EVENT_0,
283 283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
284 284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
285 285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
286 286 {
287 287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
288 288 {
289 289 PRINTF("send CWF_LONG_F3\n")
290 290 send_waveform_CWF(
291 291 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
292 292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
293 293 }
294 294 else
295 295 {
296 296 PRINTF("send CWF_F3 (light)\n")
297 297 send_waveform_CWF3_light(
298 298 (volatile int*) ring_node_to_send_cwf_f3->buffer_address,
299 299 headerCWF_F3_light, queue_id );
300 300 }
301 301
302 302 }
303 303 else
304 304 {
305 305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
306 306 }
307 307 }
308 308 }
309 309
310 310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
311 311 {
312 312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
313 313 *
314 314 * @param unused is the starting argument of the RTEMS task
315 315 *
316 316 * The following data packet is sent by this function:
317 317 * - TM_LFR_SCIENCE_BURST_CWF_F2
318 318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
319 319 *
320 320 */
321 321
322 322 rtems_event_set event_out;
323 323 rtems_id queue_id;
324 324 rtems_status_code status;
325 325
326 326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
327 327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
328 328
329 329 status = get_message_queue_id_send( &queue_id );
330 330 if (status != RTEMS_SUCCESSFUL)
331 331 {
332 332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
333 333 }
334 334
335 335 BOOT_PRINTF("in CWF2 ***\n")
336 336
337 337 while(1){
338 338 // wait for an RTEMS_EVENT
339 339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
340 340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 341 if (event_out == RTEMS_EVENT_MODE_BURST)
342 342 {
343 343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
344 344 }
345 345 if (event_out == RTEMS_EVENT_MODE_SBM2)
346 346 {
347 347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
348 348 // launch snapshot extraction if needed
349 349 if (extractSWF == true)
350 350 {
351 351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
352 352 // extract the snapshot
353 353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
354 354 // send the snapshot when built
355 355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
356 356 extractSWF = false;
357 357 }
358 358 if (swf_f0_ready && swf_f1_ready)
359 359 {
360 360 extractSWF = true;
361 361 swf_f0_ready = false;
362 362 swf_f1_ready = false;
363 363 }
364 364 }
365 365 }
366 366 }
367 367
368 368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
369 369 {
370 370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
371 371 *
372 372 * @param unused is the starting argument of the RTEMS task
373 373 *
374 374 * The following data packet is sent by this function:
375 375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
376 376 *
377 377 */
378 378
379 379 rtems_event_set event_out;
380 380 rtems_id queue_id;
381 381 rtems_status_code status;
382 382
383 383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
384 384
385 385 status = get_message_queue_id_send( &queue_id );
386 386 if (status != RTEMS_SUCCESSFUL)
387 387 {
388 388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
389 389 }
390 390
391 391 BOOT_PRINTF("in CWF1 ***\n")
392 392
393 393 while(1){
394 394 // wait for an RTEMS_EVENT
395 395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
396 396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
397 397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
398 398 // launch snapshot extraction if needed
399 399 if (extractSWF == true)
400 400 {
401 401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
402 402 // launch the snapshot extraction
403 403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
404 404 extractSWF = false;
405 405 }
406 406 if (swf_f0_ready == true)
407 407 {
408 408 extractSWF = true;
409 409 swf_f0_ready = false; // this step shall be executed only one time
410 410 }
411 411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
412 412 {
413 413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
414 414 swf_f1_ready = false;
415 415 swf_f2_ready = false;
416 416 }
417 417 }
418 418 }
419 419
420 420 rtems_task swbd_task(rtems_task_argument argument)
421 421 {
422 422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
423 423 *
424 424 * @param unused is the starting argument of the RTEMS task
425 425 *
426 426 */
427 427
428 428 rtems_event_set event_out;
429 429
430 430 BOOT_PRINTF("in SWBD ***\n")
431 431
432 432 while(1){
433 433 // wait for an RTEMS_EVENT
434 434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
435 435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
436 436 if (event_out == RTEMS_EVENT_MODE_SBM1)
437 437 {
438 438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
439 439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
440 440 }
441 441 else
442 442 {
443 443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
444 444 }
445 445 }
446 446 }
447 447
448 448 //******************
449 449 // general functions
450 450
451 451 void WFP_init_rings( void )
452 452 {
453 453 // F0 RING
454 454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
455 455 // F1 RING
456 456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
457 457 // F2 RING
458 458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
459 459 // F3 RING
460 460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
461 461
462 462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
463 463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
464 464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
465 465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
466 466 }
467 467
468 468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
469 469 {
470 470 unsigned char i;
471 471
472 472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
473 473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
474 474 waveform_ring[0].buffer_address = (int) &wfrm[0];
475 475
476 476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
477 477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
478 478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
479 479
480 480 for(i=1; i<nbNodes-1; i++)
481 481 {
482 482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
483 483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
484 484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
485 485 }
486 486 }
487 487
488 488 void WFP_reset_current_ring_nodes( void )
489 489 {
490 490 current_ring_node_f0 = waveform_ring_f0;
491 491 ring_node_to_send_swf_f0 = waveform_ring_f0;
492 492
493 493 current_ring_node_f1 = waveform_ring_f1;
494 494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
495 495 ring_node_to_send_swf_f1 = waveform_ring_f1;
496 496
497 497 current_ring_node_f2 = waveform_ring_f2;
498 498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
499 499 ring_node_to_send_swf_f2 = waveform_ring_f2;
500 500
501 501 current_ring_node_f3 = waveform_ring_f3;
502 502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
503 503 }
504 504
505 505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
506 506 {
507 507 unsigned char i;
508 508
509 509 for (i=0; i<7; i++)
510 510 {
511 511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
512 512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
513 513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
514 514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
515 515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
516 516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
517 517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
518 518 if (i == 6)
519 519 {
520 520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
521 521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
522 522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
523 523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
524 524 }
525 525 else
526 526 {
527 527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
528 528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
529 529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
530 530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
531 531 }
532 532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
533 533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
534 534 headerSWF[ i ].pktNr = i+1; // PKT_NR
535 535 // DATA FIELD HEADER
536 536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
537 537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
540 540 // AUXILIARY DATA HEADER
541 541 headerSWF[ i ].time[0] = 0x00;
542 542 headerSWF[ i ].time[0] = 0x00;
543 543 headerSWF[ i ].time[0] = 0x00;
544 544 headerSWF[ i ].time[0] = 0x00;
545 545 headerSWF[ i ].time[0] = 0x00;
546 546 headerSWF[ i ].time[0] = 0x00;
547 547 headerSWF[ i ].sid = sid;
548 548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
549 549 }
550 550 return LFR_SUCCESSFUL;
551 551 }
552 552
553 553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
554 554 {
555 555 unsigned int i;
556 556
557 557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
558 558 {
559 559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
560 560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
561 561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
562 562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
563 563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
564 564 {
565 565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
566 566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
567 567 }
568 568 else
569 569 {
570 570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
571 571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
572 572 }
573 573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
574 574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
575 575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
576 576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
577 577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
578 578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
579 579 // DATA FIELD HEADER
580 580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
581 581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
582 582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
583 583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
584 584 // AUXILIARY DATA HEADER
585 585 headerCWF[ i ].sid = sid;
586 586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
587 587 headerCWF[ i ].time[0] = 0x00;
588 588 headerCWF[ i ].time[0] = 0x00;
589 589 headerCWF[ i ].time[0] = 0x00;
590 590 headerCWF[ i ].time[0] = 0x00;
591 591 headerCWF[ i ].time[0] = 0x00;
592 592 headerCWF[ i ].time[0] = 0x00;
593 593 }
594 594 return LFR_SUCCESSFUL;
595 595 }
596 596
597 597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
598 598 {
599 599 unsigned int i;
600 600
601 601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
602 602 {
603 603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
604 604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
605 605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
606 606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
607 607
608 608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
609 609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
610 610
611 611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
613 613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
614 614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
615 615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
616 616
617 617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
618 618 // DATA FIELD HEADER
619 619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
620 620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
621 621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
622 622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
623 623 // AUXILIARY DATA HEADER
624 624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
625 625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
626 626 headerCWF[ i ].time[0] = 0x00;
627 627 headerCWF[ i ].time[0] = 0x00;
628 628 headerCWF[ i ].time[0] = 0x00;
629 629 headerCWF[ i ].time[0] = 0x00;
630 630 headerCWF[ i ].time[0] = 0x00;
631 631 headerCWF[ i ].time[0] = 0x00;
632 632 }
633 633 return LFR_SUCCESSFUL;
634 634 }
635 635
636 636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
637 637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
638 638 {
639 639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
640 640 *
641 641 * @param waveform points to the buffer containing the data that will be send.
642 642 * @param sid is the source identifier of the data that will be sent.
643 643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
644 644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
645 645 * contain information to setup the transmission of the data packets.
646 646 *
647 647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
648 648 *
649 649 */
650 650
651 651 unsigned int i;
652 652 int ret;
653 653 unsigned int coarseTime;
654 654 unsigned int fineTime;
655 655 rtems_status_code status;
656 656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
657 657
658 658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
659 659 spw_ioctl_send_SWF.options = 0;
660 660
661 661 ret = LFR_DEFAULT;
662 662
663 663 coarseTime = waveform[0];
664 664 fineTime = waveform[1];
665 665
666 666 for (i=0; i<7; i++) // send waveform
667 667 {
668 668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
669 669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
670 670 // BUILD THE DATA
671 671 if (i==6) {
672 672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
673 673 }
674 674 else {
675 675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
676 676 }
677 677 // SET PACKET SEQUENCE COUNTER
678 678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
679 679 // SET PACKET TIME
680 680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
681 681 //
682 682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
683 683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
684 684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
685 685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
686 686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
687 687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
688 688 // SEND PACKET
689 689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
690 690 if (status != RTEMS_SUCCESSFUL) {
691 691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
692 692 ret = LFR_DEFAULT;
693 693 }
694 694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
695 695 }
696 696
697 697 return ret;
698 698 }
699 699
700 700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
701 701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
702 702 {
703 703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
704 704 *
705 705 * @param waveform points to the buffer containing the data that will be send.
706 706 * @param sid is the source identifier of the data that will be sent.
707 707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
708 708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
709 709 * contain information to setup the transmission of the data packets.
710 710 *
711 711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
712 712 *
713 713 */
714 714
715 715 unsigned int i;
716 716 int ret;
717 717 unsigned int coarseTime;
718 718 unsigned int fineTime;
719 719 rtems_status_code status;
720 720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
721 721
722 722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
723 723 spw_ioctl_send_CWF.options = 0;
724 724
725 725 ret = LFR_DEFAULT;
726 726
727 727 coarseTime = waveform[0];
728 728 fineTime = waveform[1];
729 729
730 730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
731 731 {
732 732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
733 733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
734 734 // BUILD THE DATA
735 735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
736 736 // SET PACKET SEQUENCE COUNTER
737 737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
738 738 // SET PACKET TIME
739 739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
740 740 //
741 741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
742 742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
743 743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
744 744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
745 745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
746 746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
747 747 // SEND PACKET
748 748 if (sid == SID_NORM_CWF_LONG_F3)
749 749 {
750 750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
751 751 if (status != RTEMS_SUCCESSFUL) {
752 752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
753 753 ret = LFR_DEFAULT;
754 754 }
755 755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
756 756 }
757 757 else
758 758 {
759 759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
760 760 if (status != RTEMS_SUCCESSFUL) {
761 761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
762 762 ret = LFR_DEFAULT;
763 763 }
764 764 }
765 765 }
766 766
767 767 return ret;
768 768 }
769 769
770 770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 771 {
772 772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
773 773 *
774 774 * @param waveform points to the buffer containing the data that will be send.
775 775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
776 776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
777 777 * contain information to setup the transmission of the data packets.
778 778 *
779 779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
780 780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
781 781 *
782 782 */
783 783
784 784 unsigned int i;
785 785 int ret;
786 786 unsigned int coarseTime;
787 787 unsigned int fineTime;
788 788 rtems_status_code status;
789 789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 790 char *sample;
791 791
792 792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
793 793 spw_ioctl_send_CWF.options = 0;
794 794
795 795 ret = LFR_DEFAULT;
796 796
797 797 //**********************
798 798 // BUILD CWF3_light DATA
799 799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
800 800 {
801 801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
802 802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
803 803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
804 804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
805 805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
806 806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
807 807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
808 808 }
809 809
810 810 coarseTime = waveform[0];
811 811 fineTime = waveform[1];
812 812
813 813 //*********************
814 814 // SEND CWF3_light DATA
815 815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
816 816 {
817 817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
818 818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
819 819 // BUILD THE DATA
820 820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
821 821 // SET PACKET SEQUENCE COUNTER
822 822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
823 823 // SET PACKET TIME
824 824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
825 825 //
826 826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
827 827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
828 828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
829 829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
830 830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
831 831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
832 832 // SEND PACKET
833 833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 834 if (status != RTEMS_SUCCESSFUL) {
835 835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
836 836 ret = LFR_DEFAULT;
837 837 }
838 838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
839 839 }
840 840
841 841 return ret;
842 842 }
843 843
844 void compute_acquisition_time_old( unsigned int coarseTime, unsigned int fineTime,
845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
846 {
847 unsigned long long int acquisitionTimeAsLong;
848 unsigned char localAcquisitionTime[6];
849 double deltaT;
850
851 deltaT = 0.;
852
853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
859
860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
862 + ( localAcquisitionTime[2] << 24 )
863 + ( localAcquisitionTime[3] << 16 )
864 + ( localAcquisitionTime[4] << 8 )
865 + ( localAcquisitionTime[5] );
866
867 switch( sid )
868 {
869 case SID_NORM_SWF_F0:
870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
871 break;
872
873 case SID_NORM_SWF_F1:
874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
875 break;
876
877 case SID_NORM_SWF_F2:
878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
879 break;
880
881 case SID_SBM1_CWF_F1:
882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
883 break;
884
885 case SID_SBM2_CWF_F2:
886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
887 break;
888
889 case SID_BURST_CWF_F2:
890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
891 break;
892
893 case SID_NORM_CWF_F3:
894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
895 break;
896
897 case SID_NORM_CWF_LONG_F3:
898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
899 break;
900
901 default:
902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
903 deltaT = 0.;
904 break;
905 }
906
907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
908 //
909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
915
916 }
917
918 844 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
919 845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
920 846 {
921 847 unsigned long long int acquisitionTimeAsLong;
922 848 unsigned char localAcquisitionTime[6];
923 849 double deltaT;
924 850
925 851 deltaT = 0.;
926 852
927 853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
928 854 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
929 855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
930 856 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
931 857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
932 858 localAcquisitionTime[5] = (unsigned char) ( fineTime );
933 859
934 860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
935 861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
936 + ( localAcquisitionTime[2] << 24 )
937 + ( localAcquisitionTime[3] << 16 )
938 + ( localAcquisitionTime[4] << 8 )
939 + ( localAcquisitionTime[5] );
862 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
863 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
864 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
865 + ( (unsigned long long int) localAcquisitionTime[5] );
940 866
941 867 switch( sid )
942 868 {
943 869 case SID_NORM_SWF_F0:
944 870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
945 871 break;
946 872
947 873 case SID_NORM_SWF_F1:
948 874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
949 875 break;
950 876
951 877 case SID_NORM_SWF_F2:
952 878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
953 879 break;
954 880
955 881 case SID_SBM1_CWF_F1:
956 882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
957 883 break;
958 884
959 885 case SID_SBM2_CWF_F2:
960 886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
961 887 break;
962 888
963 889 case SID_BURST_CWF_F2:
964 890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
965 891 break;
966 892
967 893 case SID_NORM_CWF_F3:
968 894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
969 895 break;
970 896
971 897 case SID_NORM_CWF_LONG_F3:
972 898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
973 899 break;
974 900
975 901 default:
976 902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
977 903 deltaT = 0.;
978 904 break;
979 905 }
980 906
981 907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
982 908 //
983 909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
984 910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
985 911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
986 912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
987 913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
988 914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
989 915
990 916 }
991 917
992 918 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
993 919 {
994 920 unsigned int i;
995 921 unsigned long long int centerTime_asLong;
996 922 unsigned long long int acquisitionTimeF0_asLong;
997 923 unsigned long long int acquisitionTime_asLong;
998 924 unsigned long long int bufferAcquisitionTime_asLong;
999 925 unsigned char *ptr1;
1000 926 unsigned char *ptr2;
1001 927 unsigned char *timeCharPtr;
1002 928 unsigned char nb_ring_nodes;
1003 929 unsigned long long int frequency_asLong;
1004 930 unsigned long long int nbTicksPerSample_asLong;
1005 931 unsigned long long int nbSamplesPart1_asLong;
1006 932 unsigned long long int sampleOffset_asLong;
1007 933
1008 934 unsigned int deltaT_F0;
1009 935 unsigned int deltaT_F1;
1010 936 unsigned long long int deltaT_F2;
1011 937
1012 938 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1013 939 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1014 940 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1015 941 sampleOffset_asLong = 0x00;
1016 942
1017 943 // (1) get the f0 acquisition time
1018 944 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1019 945
1020 946 // (2) compute the central reference time
1021 947 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1022 948
1023 949 // (3) compute the acquisition time of the current snapshot
1024 950 switch(frequencyChannel)
1025 951 {
1026 952 case 1: // 1 is for F1 = 4096 Hz
1027 953 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1028 954 nb_ring_nodes = NB_RING_NODES_F1;
1029 955 frequency_asLong = 4096;
1030 956 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1031 957 break;
1032 958 case 2: // 2 is for F2 = 256 Hz
1033 959 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1034 960 nb_ring_nodes = NB_RING_NODES_F2;
1035 961 frequency_asLong = 256;
1036 962 nbTicksPerSample_asLong = 256; // 65536 / 256;
1037 963 break;
1038 964 default:
1039 965 acquisitionTime_asLong = centerTime_asLong;
1040 966 frequency_asLong = 256;
1041 967 nbTicksPerSample_asLong = 256;
1042 968 break;
1043 969 }
1044 970
1045 971 //****************************************************************************
1046 972 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1047 973 for (i=0; i<nb_ring_nodes; i++)
1048 974 {
1049 975 PRINTF1("%d ... ", i)
1050 976 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1051 977 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1052 978 {
1053 979 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1054 980 break;
1055 981 }
1056 982 ring_node_to_send = ring_node_to_send->previous;
1057 983 }
1058 984
1059 985 // (5) compute the number of samples to take in the current buffer
1060 986 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1061 987 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1062 988 PRINTF2("sampleOffset_asLong = %llx, nbSamplesPart1_asLong = %llx\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1063 989
1064 990 // (6) compute the final acquisition time
1065 991 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1066 992 sampleOffset_asLong * nbTicksPerSample_asLong;
1067 993
1068 994 // (7) copy the acquisition time at the beginning of the extrated snapshot
1069 995 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1070 996 ptr2 = (unsigned char*) wf_snap_extracted;
1071 997 ptr2[0] = ptr1[ 0 + 2 ];
1072 998 ptr2[1] = ptr1[ 1 + 2 ];
1073 999 ptr2[2] = ptr1[ 2 + 2 ];
1074 1000 ptr2[3] = ptr1[ 3 + 2 ];
1075 1001 ptr2[6] = ptr1[ 4 + 2 ];
1076 1002 ptr2[7] = ptr1[ 5 + 2 ];
1077 1003
1078 1004 // re set the synchronization bit
1079 1005 timeCharPtr = (unsigned char*) ring_node_to_send->buffer_address;
1080 1006 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1081 1007
1082 1008 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1083 1009 {
1084 1010 nbSamplesPart1_asLong = 0;
1085 1011 }
1086 1012 // copy the part 1 of the snapshot in the extracted buffer
1087 1013 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1088 1014 {
1089 1015 wf_snap_extracted[i + TIME_OFFSET] =
1090 1016 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1091 1017 }
1092 1018 // copy the part 2 of the snapshot in the extracted buffer
1093 1019 ring_node_to_send = ring_node_to_send->next;
1094 1020 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1095 1021 {
1096 1022 wf_snap_extracted[i + TIME_OFFSET] =
1097 1023 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1098 1024 }
1099 1025 }
1100 1026
1101 void build_acquisition_time_old( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1102 {
1103 unsigned char *acquisitionTimeCharPtr;
1104
1105 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1106
1107 *acquisitionTimeAslong = 0x00;
1108 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1109 + ( acquisitionTimeCharPtr[1] << 16 )
1110 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1111 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1112 + ( acquisitionTimeCharPtr[4] << 8 )
1113 + ( acquisitionTimeCharPtr[5] );
1114 }
1115
1116 1027 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1117 1028 {
1118 1029 unsigned char *acquisitionTimeCharPtr;
1119 1030
1120 1031 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1121 1032
1122 1033 *acquisitionTimeAslong = 0x00;
1123 1034 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1124 1035 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1125 + ( acquisitionTimeCharPtr[2] << 24 )
1126 + ( acquisitionTimeCharPtr[3] << 16 )
1127 + ( acquisitionTimeCharPtr[6] << 8 )
1128 + ( acquisitionTimeCharPtr[7] );
1036 + ( (unsigned long long int) acquisitionTimeCharPtr[2] << 24 )
1037 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 16 )
1038 + ( (unsigned long long int) acquisitionTimeCharPtr[6] << 8 )
1039 + ( (unsigned long long int) acquisitionTimeCharPtr[7] );
1129 1040 }
1130 1041
1131 1042 //**************
1132 1043 // wfp registers
1133 1044 void reset_wfp_burst_enable(void)
1134 1045 {
1135 1046 /** This function resets the waveform picker burst_enable register.
1136 1047 *
1137 1048 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1138 1049 *
1139 1050 */
1140 1051
1141 1052 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1142 1053 }
1143 1054
1144 1055 void reset_wfp_status( void )
1145 1056 {
1146 1057 /** This function resets the waveform picker status register.
1147 1058 *
1148 1059 * All status bits are set to 0 [new_err full_err full].
1149 1060 *
1150 1061 */
1151 1062
1152 1063 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1153 1064 }
1154 1065
1155 1066 void reset_waveform_picker_regs(void)
1156 1067 {
1157 1068 /** This function resets the waveform picker module registers.
1158 1069 *
1159 1070 * The registers affected by this function are located at the following offset addresses:
1160 1071 * - 0x00 data_shaping
1161 1072 * - 0x04 run_burst_enable
1162 1073 * - 0x08 addr_data_f0
1163 1074 * - 0x0C addr_data_f1
1164 1075 * - 0x10 addr_data_f2
1165 1076 * - 0x14 addr_data_f3
1166 1077 * - 0x18 status
1167 1078 * - 0x1C delta_snapshot
1168 1079 * - 0x20 delta_f0
1169 1080 * - 0x24 delta_f0_2
1170 1081 * - 0x28 delta_f1
1171 1082 * - 0x2c delta_f2
1172 1083 * - 0x30 nb_data_by_buffer
1173 1084 * - 0x34 nb_snapshot_param
1174 1085 * - 0x38 start_date
1175 1086 * - 0x3c nb_word_in_buffer
1176 1087 *
1177 1088 */
1178 1089
1179 1090 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1180 1091 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1181 1092 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1182 1093 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1183 1094 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1184 1095 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1185 1096 reset_wfp_status(); // 0x18
1186 1097 //
1187 1098 set_wfp_delta_snapshot(); // 0x1c
1188 1099 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1189 1100 set_wfp_delta_f1(); // 0x28
1190 1101 set_wfp_delta_f2(); // 0x2c
1191 1102 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1192 1103 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1193 1104 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1194 1105 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1195 1106 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1196 1107 // 2688 = 8 * 336
1197 1108 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1198 1109 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1199 1110 waveform_picker_regs->start_date = 0x00; // 0x38
1200 1111 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1201 1112 }
1202 1113
1203 1114 void set_wfp_data_shaping( void )
1204 1115 {
1205 1116 /** This function sets the data_shaping register of the waveform picker module.
1206 1117 *
1207 1118 * The value is read from one field of the parameter_dump_packet structure:\n
1208 1119 * bw_sp0_sp1_r0_r1
1209 1120 *
1210 1121 */
1211 1122
1212 1123 unsigned char data_shaping;
1213 1124
1214 1125 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1215 1126 // waveform picker : [R1 R0 SP1 SP0 BW]
1216 1127
1217 1128 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1218 1129
1219 1130 waveform_picker_regs->data_shaping =
1220 1131 ( (data_shaping & 0x10) >> 4 ) // BW
1221 1132 + ( (data_shaping & 0x08) >> 2 ) // SP0
1222 1133 + ( (data_shaping & 0x04) ) // SP1
1223 1134 + ( (data_shaping & 0x02) << 2 ) // R0
1224 1135 + ( (data_shaping & 0x01) << 4 ); // R1
1225 1136 }
1226 1137
1227 1138 void set_wfp_burst_enable_register( unsigned char mode )
1228 1139 {
1229 1140 /** This function sets the waveform picker burst_enable register depending on the mode.
1230 1141 *
1231 1142 * @param mode is the LFR mode to launch.
1232 1143 *
1233 1144 * The burst bits shall be before the enable bits.
1234 1145 *
1235 1146 */
1236 1147
1237 1148 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1238 1149 // the burst bits shall be set first, before the enable bits
1239 1150 switch(mode) {
1240 1151 case(LFR_MODE_NORMAL):
1241 1152 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1242 1153 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1243 1154 break;
1244 1155 case(LFR_MODE_BURST):
1245 1156 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1246 1157 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1247 1158 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1248 1159 break;
1249 1160 case(LFR_MODE_SBM1):
1250 1161 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1251 1162 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1252 1163 break;
1253 1164 case(LFR_MODE_SBM2):
1254 1165 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1255 1166 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1256 1167 break;
1257 1168 default:
1258 1169 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1259 1170 break;
1260 1171 }
1261 1172 }
1262 1173
1263 1174 void set_wfp_delta_snapshot( void )
1264 1175 {
1265 1176 /** This function sets the delta_snapshot register of the waveform picker module.
1266 1177 *
1267 1178 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1268 1179 * - sy_lfr_n_swf_p[0]
1269 1180 * - sy_lfr_n_swf_p[1]
1270 1181 *
1271 1182 */
1272 1183
1273 1184 unsigned int delta_snapshot;
1274 1185 unsigned int delta_snapshot_in_T2;
1275 1186
1276 1187 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1277 1188 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1278 1189
1279 1190 delta_snapshot_in_T2 = delta_snapshot * 256;
1280 1191 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1281 1192 }
1282 1193
1283 1194 void set_wfp_delta_f0_f0_2( void )
1284 1195 {
1285 1196 unsigned int delta_snapshot;
1286 1197 unsigned int nb_samples_per_snapshot;
1287 1198 float delta_f0_in_float;
1288 1199
1289 1200 delta_snapshot = waveform_picker_regs->delta_snapshot;
1290 1201 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1291 1202 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1292 1203
1293 1204 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1294 1205 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1295 1206 }
1296 1207
1297 1208 void set_wfp_delta_f1( void )
1298 1209 {
1299 1210 unsigned int delta_snapshot;
1300 1211 unsigned int nb_samples_per_snapshot;
1301 1212 float delta_f1_in_float;
1302 1213
1303 1214 delta_snapshot = waveform_picker_regs->delta_snapshot;
1304 1215 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1305 1216 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1306 1217
1307 1218 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1308 1219 }
1309 1220
1310 1221 void set_wfp_delta_f2()
1311 1222 {
1312 1223 unsigned int delta_snapshot;
1313 1224 unsigned int nb_samples_per_snapshot;
1314 1225
1315 1226 delta_snapshot = waveform_picker_regs->delta_snapshot;
1316 1227 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1317 1228
1318 1229 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1319 1230 }
1320 1231
1321 1232 //*****************
1322 1233 // local parameters
1323 1234
1324 1235 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1325 1236 {
1326 1237 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1327 1238 *
1328 1239 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1329 1240 * @param sid is the source identifier of the packet being updated.
1330 1241 *
1331 1242 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1332 1243 * The sequence counters shall wrap around from 2^14 to zero.
1333 1244 * The sequence counter shall start at zero at startup.
1334 1245 *
1335 1246 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1336 1247 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1337 1248 *
1338 1249 */
1339 1250
1340 1251 unsigned short *sequence_cnt;
1341 1252 unsigned short segmentation_grouping_flag;
1342 1253 unsigned short new_packet_sequence_control;
1343 1254 rtems_mode initial_mode_set;
1344 1255 rtems_mode current_mode_set;
1345 1256 rtems_status_code status;
1346 1257
1347 1258 //******************************************
1348 1259 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1349 1260 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1350 1261
1351 1262 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1352 1263 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1353 1264 || (sid == SID_BURST_CWF_F2)
1354 1265 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1355 1266 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1356 1267 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1357 1268 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1358 1269 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1359 1270 {
1360 1271 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1361 1272 }
1362 1273 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1363 1274 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1364 1275 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1365 1276 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1366 1277 {
1367 1278 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1368 1279 }
1369 1280 else
1370 1281 {
1371 1282 sequence_cnt = (unsigned short *) NULL;
1372 1283 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1373 1284 }
1374 1285
1375 1286 if (sequence_cnt != NULL)
1376 1287 {
1377 1288 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1378 1289 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1379 1290
1380 1291 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1381 1292
1382 1293 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1383 1294 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1384 1295
1385 1296 // increment the sequence counter
1386 1297 if ( *sequence_cnt < SEQ_CNT_MAX)
1387 1298 {
1388 1299 *sequence_cnt = *sequence_cnt + 1;
1389 1300 }
1390 1301 else
1391 1302 {
1392 1303 *sequence_cnt = 0;
1393 1304 }
1394 1305 }
1395 1306
1396 1307 //***********************************
1397 1308 // RESET THE MODE OF THE CALLING TASK
1398 1309 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1399 1310 }
General Comments 0
You need to be logged in to leave comments. Login now