##// END OF EJS Templates
Rev 3.0.0.4...
paul -
r212:273ce8305308 R3
parent child
Show More
@@ -1,54 +1,57
1 #ifndef FSW_MISC_H_INCLUDED
1 #ifndef FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6 #include <grspw.h>
6 #include <grspw.h>
7 #include <grlib_regs.h>
7 #include <grlib_regs.h>
8
8
9 #include "fsw_params.h"
9 #include "fsw_params.h"
10 #include "fsw_spacewire.h"
10 #include "fsw_spacewire.h"
11 #include "lfr_cpu_usage_report.h"
11 #include "lfr_cpu_usage_report.h"
12
12
13 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
13 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
14 rtems_id HK_id; // id of the HK rate monotonic period
14 rtems_id HK_id; // id of the HK rate monotonic period
15
15
16 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
16 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
17 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
17 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
18 void timer_start( gptimer_regs_t *gptimer_regs, unsigned char timer );
18 void timer_start( gptimer_regs_t *gptimer_regs, unsigned char timer );
19 void timer_stop( gptimer_regs_t *gptimer_regs, unsigned char timer );
19 void timer_stop( gptimer_regs_t *gptimer_regs, unsigned char timer );
20 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider);
20 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider);
21
21
22 // SERIAL LINK
22 // SERIAL LINK
23 int send_console_outputs_on_apbuart_port( void );
23 int send_console_outputs_on_apbuart_port( void );
24 int enable_apbuart_transmitter( void );
24 int enable_apbuart_transmitter( void );
25 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
25 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
26
26
27 // RTEMS TASKS
27 // RTEMS TASKS
28 rtems_task stat_task( rtems_task_argument argument );
28 rtems_task stat_task( rtems_task_argument argument );
29 rtems_task hous_task( rtems_task_argument argument );
29 rtems_task hous_task( rtems_task_argument argument );
30 rtems_task dumb_task( rtems_task_argument unused );
30 rtems_task dumb_task( rtems_task_argument unused );
31
31
32 void init_housekeeping_parameters( void );
32 void init_housekeeping_parameters( void );
33 void increment_seq_counter(unsigned short *packetSequenceControl);
33 void increment_seq_counter(unsigned short *packetSequenceControl);
34 void getTime( unsigned char *time);
34 void getTime( unsigned char *time);
35 unsigned long long int getTimeAsUnsignedLongLongInt( );
35 unsigned long long int getTimeAsUnsignedLongLongInt( );
36 void send_dumb_hk( void );
36 void send_dumb_hk( void );
37 void get_temperatures( unsigned char *temperatures );
37 void get_temperatures( unsigned char *temperatures );
38 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
38 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
39 void get_cpu_load( unsigned char *resource_statistics );
39 void get_cpu_load( unsigned char *resource_statistics );
40 void set_hk_lfr_sc_potential_flag( bool state );
41 void set_hk_lfr_calib_enable( bool state );
42
40
43
41 extern int sched_yield( void );
44 extern int sched_yield( void );
42 extern void rtems_cpu_usage_reset();
45 extern void rtems_cpu_usage_reset();
43 extern ring_node *current_ring_node_f3;
46 extern ring_node *current_ring_node_f3;
44 extern ring_node *ring_node_to_send_cwf_f3;
47 extern ring_node *ring_node_to_send_cwf_f3;
45 extern ring_node waveform_ring_f3[];
48 extern ring_node waveform_ring_f3[];
46 extern unsigned short sequenceCounterHK;
49 extern unsigned short sequenceCounterHK;
47
50
48 extern unsigned char hk_lfr_q_sd_fifo_size_max;
51 extern unsigned char hk_lfr_q_sd_fifo_size_max;
49 extern unsigned char hk_lfr_q_rv_fifo_size_max;
52 extern unsigned char hk_lfr_q_rv_fifo_size_max;
50 extern unsigned char hk_lfr_q_p0_fifo_size_max;
53 extern unsigned char hk_lfr_q_p0_fifo_size_max;
51 extern unsigned char hk_lfr_q_p1_fifo_size_max;
54 extern unsigned char hk_lfr_q_p1_fifo_size_max;
52 extern unsigned char hk_lfr_q_p2_fifo_size_max;
55 extern unsigned char hk_lfr_q_p2_fifo_size_max;
53
56
54 #endif // FSW_MISC_H_INCLUDED
57 #endif // FSW_MISC_H_INCLUDED
@@ -1,72 +1,71
1 #ifndef TC_HANDLER_H_INCLUDED
1 #ifndef TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <leon.h>
5 #include <leon.h>
6
6
7 #include "tc_load_dump_parameters.h"
7 #include "tc_load_dump_parameters.h"
8 #include "tc_acceptance.h"
8 #include "tc_acceptance.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 #include "lfr_cpu_usage_report.h"
13 #include "lfr_cpu_usage_report.h"
14
14
15 //****
15 //****
16 // ISR
16 // ISR
17 rtems_isr commutation_isr1( rtems_vector_number vector );
17 rtems_isr commutation_isr1( rtems_vector_number vector );
18 rtems_isr commutation_isr2( rtems_vector_number vector );
18 rtems_isr commutation_isr2( rtems_vector_number vector );
19
19
20 //***********
20 //***********
21 // RTEMS TASK
21 // RTEMS TASK
22 rtems_task actn_task( rtems_task_argument unused );
22 rtems_task actn_task( rtems_task_argument unused );
23
23
24 //***********
24 //***********
25 // TC ACTIONS
25 // TC ACTIONS
26 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
26 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
27 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
27 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
28 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
28 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
29 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
29 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
30 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
30 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
31 int action_update_time( ccsdsTelecommandPacket_t *TC);
31 int action_update_time( ccsdsTelecommandPacket_t *TC);
32
32
33 // mode transition
33 // mode transition
34 int check_mode_value( unsigned char requestedMode );
34 int check_mode_value( unsigned char requestedMode );
35 int check_mode_transition( unsigned char requestedMode );
35 int check_mode_transition( unsigned char requestedMode );
36 int check_transition_date( unsigned int transitionCoarseTime );
36 int check_transition_date( unsigned int transitionCoarseTime );
37 int stop_current_mode( void );
37 int stop_current_mode( void );
38 int enter_mode( unsigned char mode , unsigned int transitionCoarseTime );
38 int enter_mode( unsigned char mode , unsigned int transitionCoarseTime );
39 int restart_science_tasks( unsigned char lfrRequestedMode );
39 int restart_science_tasks( unsigned char lfrRequestedMode );
40 int suspend_science_tasks();
40 int suspend_science_tasks();
41 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
41 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
42 void launch_spectral_matrix( void );
42 void launch_spectral_matrix( void );
43 void launch_spectral_matrix_simu( void );
43 void launch_spectral_matrix_simu( void );
44 void set_sm_irq_onNewMatrix( unsigned char value );
44 void set_sm_irq_onNewMatrix( unsigned char value );
45 void set_sm_irq_onError( unsigned char value );
45 void set_sm_irq_onError( unsigned char value );
46
46
47 // other functions
47 // other functions
48 void updateLFRCurrentMode();
48 void updateLFRCurrentMode();
49 void set_lfr_soft_reset( unsigned char value );
49 void set_lfr_soft_reset( unsigned char value );
50 void reset_lfr( void );
50 void reset_lfr( void );
51 // CALIBRATION
51 // CALIBRATION
52 void setCalibrationPrescaler( unsigned int prescaler );
52 void setCalibrationPrescaler( unsigned int prescaler );
53 void setCalibrationDivisor( unsigned int divisionFactor );
53 void setCalibrationDivisor( unsigned int divisionFactor );
54 void setCalibrationData( void );
54 void setCalibrationData( void );
55 void setCalibrationReload( bool state);
55 void setCalibrationReload( bool state);
56 void setCalibrationEnable( bool state );
56 void setCalibrationEnable( bool state );
57 void setCalibrationInterleaved( bool state );
57 void setCalibrationInterleaved( bool state );
58 void setCalibration( bool state );
58 void setCalibration( bool state );
59 void set_hk_lfr_calib_enable( bool state );
60 void configureCalibration( bool interleaved );
59 void configureCalibration( bool interleaved );
61 //
60 //
62 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
61 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
63 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
62 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
64 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
63 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
65
64
66 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
65 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
67 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
66 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
68
67
69 #endif // TC_HANDLER_H_INCLUDED
68 #endif // TC_HANDLER_H_INCLUDED
70
69
71
70
72
71
@@ -1,530 +1,551
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 {
12 {
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 *
14 *
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 * @param interrupt_level is the interrupt level that the timer drives.
18 * @param interrupt_level is the interrupt level that the timer drives.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 *
20 *
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 *
22 *
23 */
23 */
24
24
25 rtems_status_code status;
25 rtems_status_code status;
26 rtems_isr_entry old_isr_handler;
26 rtems_isr_entry old_isr_handler;
27
27
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29
29
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 if (status!=RTEMS_SUCCESSFUL)
31 if (status!=RTEMS_SUCCESSFUL)
32 {
32 {
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 }
34 }
35
35
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 }
37 }
38
38
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 {
40 {
41 /** This function starts a GPTIMER timer.
41 /** This function starts a GPTIMER timer.
42 *
42 *
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 *
45 *
46 */
46 */
47
47
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 }
53 }
54
54
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 {
56 {
57 /** This function stops a GPTIMER timer.
57 /** This function stops a GPTIMER timer.
58 *
58 *
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 *
61 *
62 */
62 */
63
63
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 }
67 }
68
68
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 {
70 {
71 /** This function sets the clock divider of a GPTIMER timer.
71 /** This function sets the clock divider of a GPTIMER timer.
72 *
72 *
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 *
76 *
77 */
77 */
78
78
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 }
80 }
81
81
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 {
83 {
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85
85
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87
87
88 return 0;
88 return 0;
89 }
89 }
90
90
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 {
92 {
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94
94
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96
96
97 return 0;
97 return 0;
98 }
98 }
99
99
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 {
101 {
102 /** This function sets the scaler reload register of the apbuart module
102 /** This function sets the scaler reload register of the apbuart module
103 *
103 *
104 * @param regs is the address of the apbuart registers in memory
104 * @param regs is the address of the apbuart registers in memory
105 * @param value is the value that will be stored in the scaler register
105 * @param value is the value that will be stored in the scaler register
106 *
106 *
107 * The value shall be set by the software to get data on the serial interface.
107 * The value shall be set by the software to get data on the serial interface.
108 *
108 *
109 */
109 */
110
110
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112
112
113 apbuart_regs->scaler = value;
113 apbuart_regs->scaler = value;
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 }
115 }
116
116
117 //************
117 //************
118 // RTEMS TASKS
118 // RTEMS TASKS
119
119
120 rtems_task stat_task(rtems_task_argument argument)
120 rtems_task stat_task(rtems_task_argument argument)
121 {
121 {
122 int i;
122 int i;
123 int j;
123 int j;
124 i = 0;
124 i = 0;
125 j = 0;
125 j = 0;
126 BOOT_PRINTF("in STAT *** \n")
126 BOOT_PRINTF("in STAT *** \n")
127 while(1){
127 while(1){
128 rtems_task_wake_after(1000);
128 rtems_task_wake_after(1000);
129 PRINTF1("%d\n", j)
129 PRINTF1("%d\n", j)
130 if (i == CPU_USAGE_REPORT_PERIOD) {
130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 // #ifdef PRINT_TASK_STATISTICS
131 // #ifdef PRINT_TASK_STATISTICS
132 // rtems_cpu_usage_report();
132 // rtems_cpu_usage_report();
133 // rtems_cpu_usage_reset();
133 // rtems_cpu_usage_reset();
134 // #endif
134 // #endif
135 i = 0;
135 i = 0;
136 }
136 }
137 else i++;
137 else i++;
138 j++;
138 j++;
139 }
139 }
140 }
140 }
141
141
142 rtems_task hous_task(rtems_task_argument argument)
142 rtems_task hous_task(rtems_task_argument argument)
143 {
143 {
144 rtems_status_code status;
144 rtems_status_code status;
145 rtems_status_code spare_status;
145 rtems_status_code spare_status;
146 rtems_id queue_id;
146 rtems_id queue_id;
147 rtems_rate_monotonic_period_status period_status;
147 rtems_rate_monotonic_period_status period_status;
148
148
149 status = get_message_queue_id_send( &queue_id );
149 status = get_message_queue_id_send( &queue_id );
150 if (status != RTEMS_SUCCESSFUL)
150 if (status != RTEMS_SUCCESSFUL)
151 {
151 {
152 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
153 }
153 }
154
154
155 BOOT_PRINTF("in HOUS ***\n")
155 BOOT_PRINTF("in HOUS ***\n")
156
156
157 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
158 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
159 if( status != RTEMS_SUCCESSFUL ) {
159 if( status != RTEMS_SUCCESSFUL ) {
160 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
161 }
161 }
162 }
162 }
163
163
164 status = rtems_rate_monotonic_cancel(HK_id);
164 status = rtems_rate_monotonic_cancel(HK_id);
165 if( status != RTEMS_SUCCESSFUL ) {
165 if( status != RTEMS_SUCCESSFUL ) {
166 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
166 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
167 }
167 }
168 else {
168 else {
169 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
169 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
170 }
170 }
171
171
172 // startup phase
172 // startup phase
173 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
173 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
174 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
174 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
175 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
175 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
176 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
176 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
177 {
177 {
178 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
178 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
179 {
179 {
180 break; // break if LFR is synchronized
180 break; // break if LFR is synchronized
181 }
181 }
182 else
182 else
183 {
183 {
184 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
184 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
185 // sched_yield();
185 // sched_yield();
186 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
186 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
187 }
187 }
188 }
188 }
189 status = rtems_rate_monotonic_cancel(HK_id);
189 status = rtems_rate_monotonic_cancel(HK_id);
190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191
191
192 while(1){ // launch the rate monotonic task
192 while(1){ // launch the rate monotonic task
193 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
193 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
194 if ( status != RTEMS_SUCCESSFUL ) {
194 if ( status != RTEMS_SUCCESSFUL ) {
195 PRINTF1( "in HOUS *** ERR period: %d\n", status);
195 PRINTF1( "in HOUS *** ERR period: %d\n", status);
196 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
196 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
197 }
197 }
198 else {
198 else {
199 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
199 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
200 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
200 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
201 increment_seq_counter( &sequenceCounterHK );
201 increment_seq_counter( &sequenceCounterHK );
202
202
203 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
203 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
204 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
204 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
205 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
205 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
206 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
206 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
207 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
207 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
208 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
208 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
209
209
210 spacewire_update_statistics();
210 spacewire_update_statistics();
211
211
212 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
212 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
213 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
213 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
214 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
214 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
215 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
215 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
216 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
216 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
217
217
218 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
218 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
219 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
219 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
220 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
220 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
221 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
221 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
222 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
222 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
223
223
224 // SEND PACKET
224 // SEND PACKET
225 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
225 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
226 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
226 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
227 if (status != RTEMS_SUCCESSFUL) {
227 if (status != RTEMS_SUCCESSFUL) {
228 PRINTF1("in HOUS *** ERR send: %d\n", status)
228 PRINTF1("in HOUS *** ERR send: %d\n", status)
229 }
229 }
230 }
230 }
231 }
231 }
232
232
233 PRINTF("in HOUS *** deleting task\n")
233 PRINTF("in HOUS *** deleting task\n")
234
234
235 status = rtems_task_delete( RTEMS_SELF ); // should not return
235 status = rtems_task_delete( RTEMS_SELF ); // should not return
236 printf( "rtems_task_delete returned with status of %d.\n", status );
236 printf( "rtems_task_delete returned with status of %d.\n", status );
237 return;
237 return;
238 }
238 }
239
239
240 rtems_task dumb_task( rtems_task_argument unused )
240 rtems_task dumb_task( rtems_task_argument unused )
241 {
241 {
242 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
242 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
243 *
243 *
244 * @param unused is the starting argument of the RTEMS task
244 * @param unused is the starting argument of the RTEMS task
245 *
245 *
246 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
246 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
247 *
247 *
248 */
248 */
249
249
250 unsigned int i;
250 unsigned int i;
251 unsigned int intEventOut;
251 unsigned int intEventOut;
252 unsigned int coarse_time = 0;
252 unsigned int coarse_time = 0;
253 unsigned int fine_time = 0;
253 unsigned int fine_time = 0;
254 rtems_event_set event_out;
254 rtems_event_set event_out;
255
255
256 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
256 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
257 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
257 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
258 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
258 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
259 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
259 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
260 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
260 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
261 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
261 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
262 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
262 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
263 "ready for dump", // RTEMS_EVENT_7
263 "ready for dump", // RTEMS_EVENT_7
264 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
264 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
265 "tick", // RTEMS_EVENT_9
265 "tick", // RTEMS_EVENT_9
266 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
266 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
267 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
267 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
268 };
268 };
269
269
270 BOOT_PRINTF("in DUMB *** \n")
270 BOOT_PRINTF("in DUMB *** \n")
271
271
272 while(1){
272 while(1){
273 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
273 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
274 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
274 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
275 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
275 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
276 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
276 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
277 intEventOut = (unsigned int) event_out;
277 intEventOut = (unsigned int) event_out;
278 for ( i=0; i<32; i++)
278 for ( i=0; i<32; i++)
279 {
279 {
280 if ( ((intEventOut >> i) & 0x0001) != 0)
280 if ( ((intEventOut >> i) & 0x0001) != 0)
281 {
281 {
282 coarse_time = time_management_regs->coarse_time;
282 coarse_time = time_management_regs->coarse_time;
283 fine_time = time_management_regs->fine_time;
283 fine_time = time_management_regs->fine_time;
284 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
284 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
285 if (i==8)
285 if (i==8)
286 {
286 {
287 }
287 }
288 if (i==10)
288 if (i==10)
289 {
289 {
290 }
290 }
291 }
291 }
292 }
292 }
293 }
293 }
294 }
294 }
295
295
296 //*****************************
296 //*****************************
297 // init housekeeping parameters
297 // init housekeeping parameters
298
298
299 void init_housekeeping_parameters( void )
299 void init_housekeeping_parameters( void )
300 {
300 {
301 /** This function initialize the housekeeping_packet global variable with default values.
301 /** This function initialize the housekeeping_packet global variable with default values.
302 *
302 *
303 */
303 */
304
304
305 unsigned int i = 0;
305 unsigned int i = 0;
306 unsigned char *parameters;
306 unsigned char *parameters;
307 unsigned char sizeOfHK;
307 unsigned char sizeOfHK;
308
308
309 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
309 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
310
310
311 parameters = (unsigned char*) &housekeeping_packet;
311 parameters = (unsigned char*) &housekeeping_packet;
312
312
313 for(i = 0; i< sizeOfHK; i++)
313 for(i = 0; i< sizeOfHK; i++)
314 {
314 {
315 parameters[i] = 0x00;
315 parameters[i] = 0x00;
316 }
316 }
317
317
318 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
318 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
319 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
319 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
320 housekeeping_packet.reserved = DEFAULT_RESERVED;
320 housekeeping_packet.reserved = DEFAULT_RESERVED;
321 housekeeping_packet.userApplication = CCSDS_USER_APP;
321 housekeeping_packet.userApplication = CCSDS_USER_APP;
322 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
322 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
323 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
323 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
324 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
324 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
325 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
325 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
326 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
326 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
327 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
327 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
328 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
328 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
329 housekeeping_packet.serviceType = TM_TYPE_HK;
329 housekeeping_packet.serviceType = TM_TYPE_HK;
330 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
330 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
331 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
331 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
332 housekeeping_packet.sid = SID_HK;
332 housekeeping_packet.sid = SID_HK;
333
333
334 // init status word
334 // init status word
335 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
335 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
336 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
336 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
337 // init software version
337 // init software version
338 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
338 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
339 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
339 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
340 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
340 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
341 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
341 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
342 // init fpga version
342 // init fpga version
343 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
343 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
344 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
344 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
345 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
345 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
346 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
346 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
347
347
348 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
348 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
349 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
349 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
350 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
350 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
351 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
351 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
352 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
352 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
353 }
353 }
354
354
355 void increment_seq_counter( unsigned short *packetSequenceControl )
355 void increment_seq_counter( unsigned short *packetSequenceControl )
356 {
356 {
357 /** This function increment the sequence counter passes in argument.
357 /** This function increment the sequence counter passes in argument.
358 *
358 *
359 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
359 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
360 *
360 *
361 */
361 */
362
362
363 unsigned short segmentation_grouping_flag;
363 unsigned short segmentation_grouping_flag;
364 unsigned short sequence_cnt;
364 unsigned short sequence_cnt;
365
365
366 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
366 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
367 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
367 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
368
368
369 if ( sequence_cnt < SEQ_CNT_MAX)
369 if ( sequence_cnt < SEQ_CNT_MAX)
370 {
370 {
371 sequence_cnt = sequence_cnt + 1;
371 sequence_cnt = sequence_cnt + 1;
372 }
372 }
373 else
373 else
374 {
374 {
375 sequence_cnt = 0;
375 sequence_cnt = 0;
376 }
376 }
377
377
378 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
378 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
379 }
379 }
380
380
381 void getTime( unsigned char *time)
381 void getTime( unsigned char *time)
382 {
382 {
383 /** This function write the current local time in the time buffer passed in argument.
383 /** This function write the current local time in the time buffer passed in argument.
384 *
384 *
385 */
385 */
386
386
387 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
387 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
388 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
388 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
389 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
389 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
390 time[3] = (unsigned char) (time_management_regs->coarse_time);
390 time[3] = (unsigned char) (time_management_regs->coarse_time);
391 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
391 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
392 time[5] = (unsigned char) (time_management_regs->fine_time);
392 time[5] = (unsigned char) (time_management_regs->fine_time);
393 }
393 }
394
394
395 unsigned long long int getTimeAsUnsignedLongLongInt( )
395 unsigned long long int getTimeAsUnsignedLongLongInt( )
396 {
396 {
397 /** This function write the current local time in the time buffer passed in argument.
397 /** This function write the current local time in the time buffer passed in argument.
398 *
398 *
399 */
399 */
400 unsigned long long int time;
400 unsigned long long int time;
401
401
402 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
402 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
403 + time_management_regs->fine_time;
403 + time_management_regs->fine_time;
404
404
405 return time;
405 return time;
406 }
406 }
407
407
408 void send_dumb_hk( void )
408 void send_dumb_hk( void )
409 {
409 {
410 Packet_TM_LFR_HK_t dummy_hk_packet;
410 Packet_TM_LFR_HK_t dummy_hk_packet;
411 unsigned char *parameters;
411 unsigned char *parameters;
412 unsigned int i;
412 unsigned int i;
413 rtems_id queue_id;
413 rtems_id queue_id;
414
414
415 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
415 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
416 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
416 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
417 dummy_hk_packet.reserved = DEFAULT_RESERVED;
417 dummy_hk_packet.reserved = DEFAULT_RESERVED;
418 dummy_hk_packet.userApplication = CCSDS_USER_APP;
418 dummy_hk_packet.userApplication = CCSDS_USER_APP;
419 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
419 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
420 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
420 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
421 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
421 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
422 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
422 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
423 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
423 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
424 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
424 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
425 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
425 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
426 dummy_hk_packet.serviceType = TM_TYPE_HK;
426 dummy_hk_packet.serviceType = TM_TYPE_HK;
427 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
427 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
428 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
428 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
429 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
429 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
430 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
430 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
431 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
431 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
432 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
432 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
433 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
433 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
434 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
434 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
435 dummy_hk_packet.sid = SID_HK;
435 dummy_hk_packet.sid = SID_HK;
436
436
437 // init status word
437 // init status word
438 dummy_hk_packet.lfr_status_word[0] = 0xff;
438 dummy_hk_packet.lfr_status_word[0] = 0xff;
439 dummy_hk_packet.lfr_status_word[1] = 0xff;
439 dummy_hk_packet.lfr_status_word[1] = 0xff;
440 // init software version
440 // init software version
441 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
441 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
442 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
442 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
443 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
443 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
444 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
444 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
445 // init fpga version
445 // init fpga version
446 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
446 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
447 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
447 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
448 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
448 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
449 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
449 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
450
450
451 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
451 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
452
452
453 for (i=0; i<100; i++)
453 for (i=0; i<100; i++)
454 {
454 {
455 parameters[i] = 0xff;
455 parameters[i] = 0xff;
456 }
456 }
457
457
458 get_message_queue_id_send( &queue_id );
458 get_message_queue_id_send( &queue_id );
459
459
460 rtems_message_queue_send( queue_id, &dummy_hk_packet,
460 rtems_message_queue_send( queue_id, &dummy_hk_packet,
461 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
461 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
462 }
462 }
463
463
464 void get_temperatures( unsigned char *temperatures )
464 void get_temperatures( unsigned char *temperatures )
465 {
465 {
466 unsigned char* temp_scm_ptr;
466 unsigned char* temp_scm_ptr;
467 unsigned char* temp_pcb_ptr;
467 unsigned char* temp_pcb_ptr;
468 unsigned char* temp_fpga_ptr;
468 unsigned char* temp_fpga_ptr;
469
469
470 // SEL1 SEL0
470 // SEL1 SEL0
471 // 0 0 => PCB
471 // 0 0 => PCB
472 // 0 1 => FPGA
472 // 0 1 => FPGA
473 // 1 0 => SCM
473 // 1 0 => SCM
474
474
475 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
475 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
476 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
476 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
477 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
477 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
478
478
479 temperatures[0] = temp_scm_ptr[2];
479 temperatures[0] = temp_scm_ptr[2];
480 temperatures[1] = temp_scm_ptr[3];
480 temperatures[1] = temp_scm_ptr[3];
481 temperatures[2] = temp_pcb_ptr[2];
481 temperatures[2] = temp_pcb_ptr[2];
482 temperatures[3] = temp_pcb_ptr[3];
482 temperatures[3] = temp_pcb_ptr[3];
483 temperatures[4] = temp_fpga_ptr[2];
483 temperatures[4] = temp_fpga_ptr[2];
484 temperatures[5] = temp_fpga_ptr[3];
484 temperatures[5] = temp_fpga_ptr[3];
485 }
485 }
486
486
487 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
487 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
488 {
488 {
489 unsigned char* v_ptr;
489 unsigned char* v_ptr;
490 unsigned char* e1_ptr;
490 unsigned char* e1_ptr;
491 unsigned char* e2_ptr;
491 unsigned char* e2_ptr;
492
492
493 v_ptr = (unsigned char *) &waveform_picker_regs->v;
493 v_ptr = (unsigned char *) &waveform_picker_regs->v;
494 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
494 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
495 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
495 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
496
496
497 spacecraft_potential[0] = v_ptr[2];
497 spacecraft_potential[0] = v_ptr[2];
498 spacecraft_potential[1] = v_ptr[3];
498 spacecraft_potential[1] = v_ptr[3];
499 spacecraft_potential[2] = e1_ptr[2];
499 spacecraft_potential[2] = e1_ptr[2];
500 spacecraft_potential[3] = e1_ptr[3];
500 spacecraft_potential[3] = e1_ptr[3];
501 spacecraft_potential[4] = e2_ptr[2];
501 spacecraft_potential[4] = e2_ptr[2];
502 spacecraft_potential[5] = e2_ptr[3];
502 spacecraft_potential[5] = e2_ptr[3];
503 }
503 }
504
504
505 void get_cpu_load( unsigned char *resource_statistics )
505 void get_cpu_load( unsigned char *resource_statistics )
506 {
506 {
507 unsigned char cpu_load;
507 unsigned char cpu_load;
508
508
509 cpu_load = lfr_rtems_cpu_usage_report();
509 cpu_load = lfr_rtems_cpu_usage_report();
510
510
511 // HK_LFR_CPU_LOAD
511 // HK_LFR_CPU_LOAD
512 resource_statistics[0] = cpu_load;
512 resource_statistics[0] = cpu_load;
513
513
514 // HK_LFR_CPU_LOAD_MAX
514 // HK_LFR_CPU_LOAD_MAX
515 if (cpu_load > resource_statistics[1])
515 if (cpu_load > resource_statistics[1])
516 {
516 {
517 resource_statistics[1] = cpu_load;
517 resource_statistics[1] = cpu_load;
518 }
518 }
519
519
520 // CPU_LOAD_AVE
520 // CPU_LOAD_AVE
521 resource_statistics[2] = 0;
521 resource_statistics[2] = 0;
522
522
523 #ifndef PRINT_TASK_STATISTICS
523 #ifndef PRINT_TASK_STATISTICS
524 rtems_cpu_usage_reset();
524 rtems_cpu_usage_reset();
525 #endif
525 #endif
526
526
527 }
527 }
528
528
529 void set_hk_lfr_sc_potential_flag( bool state )
530 {
531 if (state == true)
532 {
533 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
534 }
535 else
536 {
537 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
538 }
539 }
529
540
530
541 void set_hk_lfr_calib_enable( bool state )
542 {
543 if (state == true)
544 {
545 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
546 }
547 else
548 {
549 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
550 }
551 }
@@ -1,1174 +1,1164
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[6];
35 unsigned char time[6];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 status = get_message_queue_id_recv( &queue_rcv_id );
39 status = get_message_queue_id_recv( &queue_rcv_id );
40 if (status != RTEMS_SUCCESSFUL)
40 if (status != RTEMS_SUCCESSFUL)
41 {
41 {
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 }
43 }
44
44
45 status = get_message_queue_id_send( &queue_snd_id );
45 status = get_message_queue_id_send( &queue_snd_id );
46 if (status != RTEMS_SUCCESSFUL)
46 if (status != RTEMS_SUCCESSFUL)
47 {
47 {
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 }
49 }
50
50
51 result = LFR_SUCCESSFUL;
51 result = LFR_SUCCESSFUL;
52 subtype = 0; // subtype of the current TC packet
52 subtype = 0; // subtype of the current TC packet
53
53
54 BOOT_PRINTF("in ACTN *** \n")
54 BOOT_PRINTF("in ACTN *** \n")
55
55
56 while(1)
56 while(1)
57 {
57 {
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 getTime( time ); // set time to the current time
60 getTime( time ); // set time to the current time
61 if (status!=RTEMS_SUCCESSFUL)
61 if (status!=RTEMS_SUCCESSFUL)
62 {
62 {
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 }
64 }
65 else
65 else
66 {
66 {
67 subtype = TC.serviceSubType;
67 subtype = TC.serviceSubType;
68 switch(subtype)
68 switch(subtype)
69 {
69 {
70 case TC_SUBTYPE_RESET:
70 case TC_SUBTYPE_RESET:
71 result = action_reset( &TC, queue_snd_id, time );
71 result = action_reset( &TC, queue_snd_id, time );
72 close_action( &TC, result, queue_snd_id );
72 close_action( &TC, result, queue_snd_id );
73 break;
73 break;
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 case TC_SUBTYPE_LOAD_NORM:
78 case TC_SUBTYPE_LOAD_NORM:
79 result = action_load_normal_par( &TC, queue_snd_id, time );
79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 close_action( &TC, result, queue_snd_id );
80 close_action( &TC, result, queue_snd_id );
81 break;
81 break;
82 case TC_SUBTYPE_LOAD_BURST:
82 case TC_SUBTYPE_LOAD_BURST:
83 result = action_load_burst_par( &TC, queue_snd_id, time );
83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 close_action( &TC, result, queue_snd_id );
84 close_action( &TC, result, queue_snd_id );
85 break;
85 break;
86 case TC_SUBTYPE_LOAD_SBM1:
86 case TC_SUBTYPE_LOAD_SBM1:
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 close_action( &TC, result, queue_snd_id );
88 close_action( &TC, result, queue_snd_id );
89 break;
89 break;
90 case TC_SUBTYPE_LOAD_SBM2:
90 case TC_SUBTYPE_LOAD_SBM2:
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 close_action( &TC, result, queue_snd_id );
92 close_action( &TC, result, queue_snd_id );
93 break;
93 break;
94 case TC_SUBTYPE_DUMP:
94 case TC_SUBTYPE_DUMP:
95 result = action_dump_par( queue_snd_id );
95 result = action_dump_par( queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 case TC_SUBTYPE_ENTER:
98 case TC_SUBTYPE_ENTER:
99 result = action_enter_mode( &TC, queue_snd_id );
99 result = action_enter_mode( &TC, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
101 break;
101 break;
102 case TC_SUBTYPE_UPDT_INFO:
102 case TC_SUBTYPE_UPDT_INFO:
103 result = action_update_info( &TC, queue_snd_id );
103 result = action_update_info( &TC, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
105 break;
105 break;
106 case TC_SUBTYPE_EN_CAL:
106 case TC_SUBTYPE_EN_CAL:
107 result = action_enable_calibration( &TC, queue_snd_id, time );
107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 close_action( &TC, result, queue_snd_id );
108 close_action( &TC, result, queue_snd_id );
109 break;
109 break;
110 case TC_SUBTYPE_DIS_CAL:
110 case TC_SUBTYPE_DIS_CAL:
111 result = action_disable_calibration( &TC, queue_snd_id, time );
111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 close_action( &TC, result, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
113 break;
113 break;
114 case TC_SUBTYPE_LOAD_K:
114 case TC_SUBTYPE_LOAD_K:
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 case TC_SUBTYPE_DUMP_K:
118 case TC_SUBTYPE_DUMP_K:
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 close_action( &TC, result, queue_snd_id );
120 close_action( &TC, result, queue_snd_id );
121 break;
121 break;
122 case TC_SUBTYPE_LOAD_FBINS:
122 case TC_SUBTYPE_LOAD_FBINS:
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 close_action( &TC, result, queue_snd_id );
124 close_action( &TC, result, queue_snd_id );
125 break;
125 break;
126 case TC_SUBTYPE_UPDT_TIME:
126 case TC_SUBTYPE_UPDT_TIME:
127 result = action_update_time( &TC );
127 result = action_update_time( &TC );
128 close_action( &TC, result, queue_snd_id );
128 close_action( &TC, result, queue_snd_id );
129 break;
129 break;
130 default:
130 default:
131 break;
131 break;
132 }
132 }
133 }
133 }
134 }
134 }
135 }
135 }
136
136
137 //***********
137 //***********
138 // TC ACTIONS
138 // TC ACTIONS
139
139
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 {
141 {
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 *
143 *
144 * @param TC points to the TeleCommand packet that is being processed
144 * @param TC points to the TeleCommand packet that is being processed
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 *
146 *
147 */
147 */
148
148
149 printf("this is the end!!!\n");
149 printf("this is the end!!!\n");
150 exit(0);
150 exit(0);
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 return LFR_DEFAULT;
152 return LFR_DEFAULT;
153 }
153 }
154
154
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 {
156 {
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 *
158 *
159 * @param TC points to the TeleCommand packet that is being processed
159 * @param TC points to the TeleCommand packet that is being processed
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 *
161 *
162 */
162 */
163
163
164 rtems_status_code status;
164 rtems_status_code status;
165 unsigned char requestedMode;
165 unsigned char requestedMode;
166 unsigned int *transitionCoarseTime_ptr;
166 unsigned int *transitionCoarseTime_ptr;
167 unsigned int transitionCoarseTime;
167 unsigned int transitionCoarseTime;
168 unsigned char * bytePosPtr;
168 unsigned char * bytePosPtr;
169
169
170 bytePosPtr = (unsigned char *) &TC->packetID;
170 bytePosPtr = (unsigned char *) &TC->packetID;
171
171
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175
175
176 status = check_mode_value( requestedMode );
176 status = check_mode_value( requestedMode );
177
177
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 {
179 {
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 }
181 }
182 else // the mode value is consistent, check the transition
182 else // the mode value is consistent, check the transition
183 {
183 {
184 status = check_mode_transition(requestedMode);
184 status = check_mode_transition(requestedMode);
185 if (status != LFR_SUCCESSFUL)
185 if (status != LFR_SUCCESSFUL)
186 {
186 {
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 }
189 }
190 }
190 }
191
191
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
193 {
193 {
194 status = check_transition_date( transitionCoarseTime );
194 status = check_transition_date( transitionCoarseTime );
195 if (status != LFR_SUCCESSFUL)
195 if (status != LFR_SUCCESSFUL)
196 {
196 {
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 }
201 }
202 }
202 }
203
203
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 {
205 {
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 status = enter_mode( requestedMode, transitionCoarseTime );
207 status = enter_mode( requestedMode, transitionCoarseTime );
208 }
208 }
209
209
210 return status;
210 return status;
211 }
211 }
212
212
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
214 {
214 {
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
216 *
216 *
217 * @param TC points to the TeleCommand packet that is being processed
217 * @param TC points to the TeleCommand packet that is being processed
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
219 *
219 *
220 * @return LFR directive status code:
220 * @return LFR directive status code:
221 * - LFR_DEFAULT
221 * - LFR_DEFAULT
222 * - LFR_SUCCESSFUL
222 * - LFR_SUCCESSFUL
223 *
223 *
224 */
224 */
225
225
226 unsigned int val;
226 unsigned int val;
227 int result;
227 int result;
228 unsigned int status;
228 unsigned int status;
229 unsigned char mode;
229 unsigned char mode;
230 unsigned char * bytePosPtr;
230 unsigned char * bytePosPtr;
231
231
232 bytePosPtr = (unsigned char *) &TC->packetID;
232 bytePosPtr = (unsigned char *) &TC->packetID;
233
233
234 // check LFR mode
234 // check LFR mode
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
236 status = check_update_info_hk_lfr_mode( mode );
236 status = check_update_info_hk_lfr_mode( mode );
237 if (status == LFR_SUCCESSFUL) // check TDS mode
237 if (status == LFR_SUCCESSFUL) // check TDS mode
238 {
238 {
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
240 status = check_update_info_hk_tds_mode( mode );
240 status = check_update_info_hk_tds_mode( mode );
241 }
241 }
242 if (status == LFR_SUCCESSFUL) // check THR mode
242 if (status == LFR_SUCCESSFUL) // check THR mode
243 {
243 {
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
245 status = check_update_info_hk_thr_mode( mode );
245 status = check_update_info_hk_thr_mode( mode );
246 }
246 }
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
248 {
248 {
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
251 val++;
251 val++;
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
254 }
254 }
255
255
256 result = status;
256 result = status;
257
257
258 return result;
258 return result;
259 }
259 }
260
260
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 {
262 {
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
264 *
264 *
265 * @param TC points to the TeleCommand packet that is being processed
265 * @param TC points to the TeleCommand packet that is being processed
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 *
267 *
268 */
268 */
269
269
270 int result;
270 int result;
271
271
272 result = LFR_DEFAULT;
272 result = LFR_DEFAULT;
273
273
274 setCalibration( true );
274 setCalibration( true );
275
275
276 result = LFR_SUCCESSFUL;
276 result = LFR_SUCCESSFUL;
277
277
278 return result;
278 return result;
279 }
279 }
280
280
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 {
282 {
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 *
284 *
285 * @param TC points to the TeleCommand packet that is being processed
285 * @param TC points to the TeleCommand packet that is being processed
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 *
287 *
288 */
288 */
289
289
290 int result;
290 int result;
291
291
292 result = LFR_DEFAULT;
292 result = LFR_DEFAULT;
293
293
294 setCalibration( false );
294 setCalibration( false );
295
295
296 result = LFR_SUCCESSFUL;
296 result = LFR_SUCCESSFUL;
297
297
298 return result;
298 return result;
299 }
299 }
300
300
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 {
302 {
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 *
304 *
305 * @param TC points to the TeleCommand packet that is being processed
305 * @param TC points to the TeleCommand packet that is being processed
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 *
307 *
308 * @return LFR_SUCCESSFUL
308 * @return LFR_SUCCESSFUL
309 *
309 *
310 */
310 */
311
311
312 unsigned int val;
312 unsigned int val;
313
313
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 + (TC->dataAndCRC[1] << 16)
315 + (TC->dataAndCRC[1] << 16)
316 + (TC->dataAndCRC[2] << 8)
316 + (TC->dataAndCRC[2] << 8)
317 + TC->dataAndCRC[3];
317 + TC->dataAndCRC[3];
318
318
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 val++;
321 val++;
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324
324
325 return LFR_SUCCESSFUL;
325 return LFR_SUCCESSFUL;
326 }
326 }
327
327
328 //*******************
328 //*******************
329 // ENTERING THE MODES
329 // ENTERING THE MODES
330 int check_mode_value( unsigned char requestedMode )
330 int check_mode_value( unsigned char requestedMode )
331 {
331 {
332 int status;
332 int status;
333
333
334 if ( (requestedMode != LFR_MODE_STANDBY)
334 if ( (requestedMode != LFR_MODE_STANDBY)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 {
337 {
338 status = LFR_DEFAULT;
338 status = LFR_DEFAULT;
339 }
339 }
340 else
340 else
341 {
341 {
342 status = LFR_SUCCESSFUL;
342 status = LFR_SUCCESSFUL;
343 }
343 }
344
344
345 return status;
345 return status;
346 }
346 }
347
347
348 int check_mode_transition( unsigned char requestedMode )
348 int check_mode_transition( unsigned char requestedMode )
349 {
349 {
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 *
351 *
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 *
353 *
354 * @return LFR directive status codes:
354 * @return LFR directive status codes:
355 * - LFR_SUCCESSFUL - the transition is authorized
355 * - LFR_SUCCESSFUL - the transition is authorized
356 * - LFR_DEFAULT - the transition is not authorized
356 * - LFR_DEFAULT - the transition is not authorized
357 *
357 *
358 */
358 */
359
359
360 int status;
360 int status;
361
361
362 switch (requestedMode)
362 switch (requestedMode)
363 {
363 {
364 case LFR_MODE_STANDBY:
364 case LFR_MODE_STANDBY:
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 status = LFR_DEFAULT;
366 status = LFR_DEFAULT;
367 }
367 }
368 else
368 else
369 {
369 {
370 status = LFR_SUCCESSFUL;
370 status = LFR_SUCCESSFUL;
371 }
371 }
372 break;
372 break;
373 case LFR_MODE_NORMAL:
373 case LFR_MODE_NORMAL:
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 status = LFR_DEFAULT;
375 status = LFR_DEFAULT;
376 }
376 }
377 else {
377 else {
378 status = LFR_SUCCESSFUL;
378 status = LFR_SUCCESSFUL;
379 }
379 }
380 break;
380 break;
381 case LFR_MODE_BURST:
381 case LFR_MODE_BURST:
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 status = LFR_DEFAULT;
383 status = LFR_DEFAULT;
384 }
384 }
385 else {
385 else {
386 status = LFR_SUCCESSFUL;
386 status = LFR_SUCCESSFUL;
387 }
387 }
388 break;
388 break;
389 case LFR_MODE_SBM1:
389 case LFR_MODE_SBM1:
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 status = LFR_DEFAULT;
391 status = LFR_DEFAULT;
392 }
392 }
393 else {
393 else {
394 status = LFR_SUCCESSFUL;
394 status = LFR_SUCCESSFUL;
395 }
395 }
396 break;
396 break;
397 case LFR_MODE_SBM2:
397 case LFR_MODE_SBM2:
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 status = LFR_DEFAULT;
399 status = LFR_DEFAULT;
400 }
400 }
401 else {
401 else {
402 status = LFR_SUCCESSFUL;
402 status = LFR_SUCCESSFUL;
403 }
403 }
404 break;
404 break;
405 default:
405 default:
406 status = LFR_DEFAULT;
406 status = LFR_DEFAULT;
407 break;
407 break;
408 }
408 }
409
409
410 return status;
410 return status;
411 }
411 }
412
412
413 int check_transition_date( unsigned int transitionCoarseTime )
413 int check_transition_date( unsigned int transitionCoarseTime )
414 {
414 {
415 int status;
415 int status;
416 unsigned int localCoarseTime;
416 unsigned int localCoarseTime;
417 unsigned int deltaCoarseTime;
417 unsigned int deltaCoarseTime;
418
418
419 status = LFR_SUCCESSFUL;
419 status = LFR_SUCCESSFUL;
420
420
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 {
422 {
423 status = LFR_SUCCESSFUL;
423 status = LFR_SUCCESSFUL;
424 }
424 }
425 else
425 else
426 {
426 {
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428
428
429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
430
430
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 {
432 {
433 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
435 }
435 }
436
436
437 if (status == LFR_SUCCESSFUL)
437 if (status == LFR_SUCCESSFUL)
438 {
438 {
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 {
441 {
442 status = LFR_DEFAULT;
442 status = LFR_DEFAULT;
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 return status;
448 return status;
449 }
449 }
450
450
451 int stop_current_mode( void )
451 int stop_current_mode( void )
452 {
452 {
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 *
454 *
455 * @return RTEMS directive status codes:
455 * @return RTEMS directive status codes:
456 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_INVALID_ID - task id invalid
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 *
459 *
460 */
460 */
461
461
462 rtems_status_code status;
462 rtems_status_code status;
463
463
464 status = RTEMS_SUCCESSFUL;
464 status = RTEMS_SUCCESSFUL;
465
465
466 // (1) mask interruptions
466 // (1) mask interruptions
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469
469
470 // (2) reset waveform picker registers
470 // (2) reset waveform picker registers
471 reset_wfp_burst_enable(); // reset burst and enable bits
471 reset_wfp_burst_enable(); // reset burst and enable bits
472 reset_wfp_status(); // reset all the status bits
472 reset_wfp_status(); // reset all the status bits
473
473
474 // (3) reset spectral matrices registers
474 // (3) reset spectral matrices registers
475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
476 reset_sm_status();
476 reset_sm_status();
477
477
478 // reset lfr VHDL module
478 // reset lfr VHDL module
479 reset_lfr();
479 reset_lfr();
480
480
481 reset_extractSWF(); // reset the extractSWF flag to false
481 reset_extractSWF(); // reset the extractSWF flag to false
482
482
483 // (4) clear interruptions
483 // (4) clear interruptions
484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
486
486
487 // <Spectral Matrices simulator>
487 // <Spectral Matrices simulator>
488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
491 // </Spectral Matrices simulator>
491 // </Spectral Matrices simulator>
492
492
493 // suspend several tasks
493 // suspend several tasks
494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
495 status = suspend_science_tasks();
495 status = suspend_science_tasks();
496 }
496 }
497
497
498 if (status != RTEMS_SUCCESSFUL)
498 if (status != RTEMS_SUCCESSFUL)
499 {
499 {
500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
501 }
501 }
502
502
503 return status;
503 return status;
504 }
504 }
505
505
506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
507 {
507 {
508 /** This function is launched after a mode transition validation.
508 /** This function is launched after a mode transition validation.
509 *
509 *
510 * @param mode is the mode in which LFR will be put.
510 * @param mode is the mode in which LFR will be put.
511 *
511 *
512 * @return RTEMS directive status codes:
512 * @return RTEMS directive status codes:
513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
515 *
515 *
516 */
516 */
517
517
518 rtems_status_code status;
518 rtems_status_code status;
519
519
520 //**********************
520 //**********************
521 // STOP THE CURRENT MODE
521 // STOP THE CURRENT MODE
522 status = stop_current_mode();
522 status = stop_current_mode();
523 if (status != RTEMS_SUCCESSFUL)
523 if (status != RTEMS_SUCCESSFUL)
524 {
524 {
525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
526 }
526 }
527
527
528 //*************************
528 //*************************
529 // ENTER THE REQUESTED MODE
529 // ENTER THE REQUESTED MODE
530 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
530 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
531 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
531 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
532 {
532 {
533 #ifdef PRINT_TASK_STATISTICS
533 #ifdef PRINT_TASK_STATISTICS
534 rtems_cpu_usage_reset();
534 rtems_cpu_usage_reset();
535 #endif
535 #endif
536 status = restart_science_tasks( mode );
536 status = restart_science_tasks( mode );
537 launch_spectral_matrix( );
537 launch_spectral_matrix( );
538 launch_waveform_picker( mode, transitionCoarseTime );
538 launch_waveform_picker( mode, transitionCoarseTime );
539 // launch_spectral_matrix_simu( );
539 // launch_spectral_matrix_simu( );
540 }
540 }
541 else if ( mode == LFR_MODE_STANDBY )
541 else if ( mode == LFR_MODE_STANDBY )
542 {
542 {
543 #ifdef PRINT_TASK_STATISTICS
543 #ifdef PRINT_TASK_STATISTICS
544 rtems_cpu_usage_report();
544 rtems_cpu_usage_report();
545 #endif
545 #endif
546
546
547 #ifdef PRINT_STACK_REPORT
547 #ifdef PRINT_STACK_REPORT
548 PRINTF("stack report selected\n")
548 PRINTF("stack report selected\n")
549 rtems_stack_checker_report_usage();
549 rtems_stack_checker_report_usage();
550 #endif
550 #endif
551 }
551 }
552 else
552 else
553 {
553 {
554 status = RTEMS_UNSATISFIED;
554 status = RTEMS_UNSATISFIED;
555 }
555 }
556
556
557 if (status != RTEMS_SUCCESSFUL)
557 if (status != RTEMS_SUCCESSFUL)
558 {
558 {
559 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
559 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
560 status = RTEMS_UNSATISFIED;
560 status = RTEMS_UNSATISFIED;
561 }
561 }
562
562
563 return status;
563 return status;
564 }
564 }
565
565
566 int restart_science_tasks(unsigned char lfrRequestedMode )
566 int restart_science_tasks(unsigned char lfrRequestedMode )
567 {
567 {
568 /** This function is used to restart all science tasks.
568 /** This function is used to restart all science tasks.
569 *
569 *
570 * @return RTEMS directive status codes:
570 * @return RTEMS directive status codes:
571 * - RTEMS_SUCCESSFUL - task restarted successfully
571 * - RTEMS_SUCCESSFUL - task restarted successfully
572 * - RTEMS_INVALID_ID - task id invalid
572 * - RTEMS_INVALID_ID - task id invalid
573 * - RTEMS_INCORRECT_STATE - task never started
573 * - RTEMS_INCORRECT_STATE - task never started
574 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
574 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
575 *
575 *
576 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
576 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
577 *
577 *
578 */
578 */
579
579
580 rtems_status_code status[10];
580 rtems_status_code status[10];
581 rtems_status_code ret;
581 rtems_status_code ret;
582
582
583 ret = RTEMS_SUCCESSFUL;
583 ret = RTEMS_SUCCESSFUL;
584
584
585 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
585 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
586 if (status[0] != RTEMS_SUCCESSFUL)
586 if (status[0] != RTEMS_SUCCESSFUL)
587 {
587 {
588 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
588 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
589 }
589 }
590
590
591 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
591 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
592 if (status[1] != RTEMS_SUCCESSFUL)
592 if (status[1] != RTEMS_SUCCESSFUL)
593 {
593 {
594 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
594 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
595 }
595 }
596
596
597 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
597 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
598 if (status[2] != RTEMS_SUCCESSFUL)
598 if (status[2] != RTEMS_SUCCESSFUL)
599 {
599 {
600 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
600 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
601 }
601 }
602
602
603 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
603 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
604 if (status[3] != RTEMS_SUCCESSFUL)
604 if (status[3] != RTEMS_SUCCESSFUL)
605 {
605 {
606 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
606 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
607 }
607 }
608
608
609 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
609 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
610 if (status[4] != RTEMS_SUCCESSFUL)
610 if (status[4] != RTEMS_SUCCESSFUL)
611 {
611 {
612 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
612 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
613 }
613 }
614
614
615 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
615 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
616 if (status[5] != RTEMS_SUCCESSFUL)
616 if (status[5] != RTEMS_SUCCESSFUL)
617 {
617 {
618 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
618 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
619 }
619 }
620
620
621 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
621 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
622 if (status[6] != RTEMS_SUCCESSFUL)
622 if (status[6] != RTEMS_SUCCESSFUL)
623 {
623 {
624 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
624 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
625 }
625 }
626
626
627 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
627 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
628 if (status[7] != RTEMS_SUCCESSFUL)
628 if (status[7] != RTEMS_SUCCESSFUL)
629 {
629 {
630 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
630 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
631 }
631 }
632
632
633 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
633 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
634 if (status[8] != RTEMS_SUCCESSFUL)
634 if (status[8] != RTEMS_SUCCESSFUL)
635 {
635 {
636 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
636 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
637 }
637 }
638
638
639 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
639 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
640 if (status[9] != RTEMS_SUCCESSFUL)
640 if (status[9] != RTEMS_SUCCESSFUL)
641 {
641 {
642 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
642 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
643 }
643 }
644
644
645 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
645 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
646 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
646 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
647 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
647 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
648 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
648 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
649 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
649 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
650 {
650 {
651 ret = RTEMS_UNSATISFIED;
651 ret = RTEMS_UNSATISFIED;
652 }
652 }
653
653
654 return ret;
654 return ret;
655 }
655 }
656
656
657 int suspend_science_tasks()
657 int suspend_science_tasks()
658 {
658 {
659 /** This function suspends the science tasks.
659 /** This function suspends the science tasks.
660 *
660 *
661 * @return RTEMS directive status codes:
661 * @return RTEMS directive status codes:
662 * - RTEMS_SUCCESSFUL - task restarted successfully
662 * - RTEMS_SUCCESSFUL - task restarted successfully
663 * - RTEMS_INVALID_ID - task id invalid
663 * - RTEMS_INVALID_ID - task id invalid
664 * - RTEMS_ALREADY_SUSPENDED - task already suspended
664 * - RTEMS_ALREADY_SUSPENDED - task already suspended
665 *
665 *
666 */
666 */
667
667
668 rtems_status_code status;
668 rtems_status_code status;
669
669
670 printf("in suspend_science_tasks\n");
670 printf("in suspend_science_tasks\n");
671
671
672 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
672 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
673 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
673 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
674 {
674 {
675 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
675 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
676 }
676 }
677 else
677 else
678 {
678 {
679 status = RTEMS_SUCCESSFUL;
679 status = RTEMS_SUCCESSFUL;
680 }
680 }
681 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
681 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
682 {
682 {
683 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
683 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
684 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
684 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
685 {
685 {
686 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
686 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
687 }
687 }
688 else
688 else
689 {
689 {
690 status = RTEMS_SUCCESSFUL;
690 status = RTEMS_SUCCESSFUL;
691 }
691 }
692 }
692 }
693 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
693 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
694 {
694 {
695 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
695 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
696 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
696 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
697 {
697 {
698 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
698 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
699 }
699 }
700 else
700 else
701 {
701 {
702 status = RTEMS_SUCCESSFUL;
702 status = RTEMS_SUCCESSFUL;
703 }
703 }
704 }
704 }
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
706 {
706 {
707 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
707 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
708 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
708 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
709 {
709 {
710 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
710 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
711 }
711 }
712 else
712 else
713 {
713 {
714 status = RTEMS_SUCCESSFUL;
714 status = RTEMS_SUCCESSFUL;
715 }
715 }
716 }
716 }
717 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
717 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
718 {
718 {
719 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
719 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
720 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
720 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
721 {
721 {
722 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
722 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
723 }
723 }
724 else
724 else
725 {
725 {
726 status = RTEMS_SUCCESSFUL;
726 status = RTEMS_SUCCESSFUL;
727 }
727 }
728 }
728 }
729 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
729 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
730 {
730 {
731 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
731 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
732 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
732 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
733 {
733 {
734 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
734 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
735 }
735 }
736 else
736 else
737 {
737 {
738 status = RTEMS_SUCCESSFUL;
738 status = RTEMS_SUCCESSFUL;
739 }
739 }
740 }
740 }
741 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
741 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
742 {
742 {
743 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
743 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
744 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
744 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
745 {
745 {
746 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
746 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
747 }
747 }
748 else
748 else
749 {
749 {
750 status = RTEMS_SUCCESSFUL;
750 status = RTEMS_SUCCESSFUL;
751 }
751 }
752 }
752 }
753 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
753 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
754 {
754 {
755 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
755 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
756 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
756 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
757 {
757 {
758 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
758 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
759 }
759 }
760 else
760 else
761 {
761 {
762 status = RTEMS_SUCCESSFUL;
762 status = RTEMS_SUCCESSFUL;
763 }
763 }
764 }
764 }
765 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
765 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
766 {
766 {
767 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
767 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
768 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
768 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
769 {
769 {
770 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
770 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
771 }
771 }
772 else
772 else
773 {
773 {
774 status = RTEMS_SUCCESSFUL;
774 status = RTEMS_SUCCESSFUL;
775 }
775 }
776 }
776 }
777 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
777 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
778 {
778 {
779 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
779 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
780 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
780 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
781 {
781 {
782 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
782 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
783 }
783 }
784 else
784 else
785 {
785 {
786 status = RTEMS_SUCCESSFUL;
786 status = RTEMS_SUCCESSFUL;
787 }
787 }
788 }
788 }
789
789
790 return status;
790 return status;
791 }
791 }
792
792
793 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
793 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
794 {
794 {
795 WFP_reset_current_ring_nodes();
795 WFP_reset_current_ring_nodes();
796
796
797 reset_waveform_picker_regs();
797 reset_waveform_picker_regs();
798
798
799 set_wfp_burst_enable_register( mode );
799 set_wfp_burst_enable_register( mode );
800
800
801 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
801 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
802 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
802 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
803
803
804 if (transitionCoarseTime == 0)
804 if (transitionCoarseTime == 0)
805 {
805 {
806 waveform_picker_regs->start_date = time_management_regs->coarse_time;
806 waveform_picker_regs->start_date = time_management_regs->coarse_time;
807 }
807 }
808 else
808 else
809 {
809 {
810 waveform_picker_regs->start_date = transitionCoarseTime;
810 waveform_picker_regs->start_date = transitionCoarseTime;
811 }
811 }
812
812
813 }
813 }
814
814
815 void launch_spectral_matrix( void )
815 void launch_spectral_matrix( void )
816 {
816 {
817 SM_reset_current_ring_nodes();
817 SM_reset_current_ring_nodes();
818
818
819 reset_spectral_matrix_regs();
819 reset_spectral_matrix_regs();
820
820
821 reset_nb_sm();
821 reset_nb_sm();
822
822
823 set_sm_irq_onNewMatrix( 1 );
823 set_sm_irq_onNewMatrix( 1 );
824
824
825 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
825 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
826 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
826 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
827
827
828 }
828 }
829
829
830 void launch_spectral_matrix_simu( void )
830 void launch_spectral_matrix_simu( void )
831 {
831 {
832 SM_reset_current_ring_nodes();
832 SM_reset_current_ring_nodes();
833 reset_spectral_matrix_regs();
833 reset_spectral_matrix_regs();
834 reset_nb_sm();
834 reset_nb_sm();
835
835
836 // Spectral Matrices simulator
836 // Spectral Matrices simulator
837 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
837 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
838 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
838 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
839 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
839 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
840 }
840 }
841
841
842 void set_sm_irq_onNewMatrix( unsigned char value )
842 void set_sm_irq_onNewMatrix( unsigned char value )
843 {
843 {
844 if (value == 1)
844 if (value == 1)
845 {
845 {
846 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
846 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
847 }
847 }
848 else
848 else
849 {
849 {
850 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
850 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
851 }
851 }
852 }
852 }
853
853
854 void set_sm_irq_onError( unsigned char value )
854 void set_sm_irq_onError( unsigned char value )
855 {
855 {
856 if (value == 1)
856 if (value == 1)
857 {
857 {
858 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
858 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
859 }
859 }
860 else
860 else
861 {
861 {
862 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
862 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
863 }
863 }
864 }
864 }
865
865
866 //*****************************
866 //*****************************
867 // CONFIGURE CALIBRATION SIGNAL
867 // CONFIGURE CALIBRATION SIGNAL
868 void setCalibrationPrescaler( unsigned int prescaler )
868 void setCalibrationPrescaler( unsigned int prescaler )
869 {
869 {
870 // prescaling of the master clock (25 MHz)
870 // prescaling of the master clock (25 MHz)
871 // master clock is divided by 2^prescaler
871 // master clock is divided by 2^prescaler
872 time_management_regs->calPrescaler = prescaler;
872 time_management_regs->calPrescaler = prescaler;
873 }
873 }
874
874
875 void setCalibrationDivisor( unsigned int divisionFactor )
875 void setCalibrationDivisor( unsigned int divisionFactor )
876 {
876 {
877 // division of the prescaled clock by the division factor
877 // division of the prescaled clock by the division factor
878 time_management_regs->calDivisor = divisionFactor;
878 time_management_regs->calDivisor = divisionFactor;
879 }
879 }
880
880
881 void setCalibrationData( void ){
881 void setCalibrationData( void ){
882 unsigned int k;
882 unsigned int k;
883 unsigned short data;
883 unsigned short data;
884 float val;
884 float val;
885 float f0;
885 float f0;
886 float f1;
886 float f1;
887 float fs;
887 float fs;
888 float Ts;
888 float Ts;
889 float scaleFactor;
889 float scaleFactor;
890
890
891 f0 = 625;
891 f0 = 625;
892 f1 = 10000;
892 f1 = 10000;
893 fs = 160256.410;
893 fs = 160256.410;
894 Ts = 1. / fs;
894 Ts = 1. / fs;
895 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
895 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
896
896
897 time_management_regs->calDataPtr = 0x00;
897 time_management_regs->calDataPtr = 0x00;
898
898
899 // build the signal for the SCM calibration
899 // build the signal for the SCM calibration
900 for (k=0; k<256; k++)
900 for (k=0; k<256; k++)
901 {
901 {
902 val = sin( 2 * pi * f0 * k * Ts )
902 val = sin( 2 * pi * f0 * k * Ts )
903 + sin( 2 * pi * f1 * k * Ts );
903 + sin( 2 * pi * f1 * k * Ts );
904 data = (unsigned short) ((val * scaleFactor) + 2048);
904 data = (unsigned short) ((val * scaleFactor) + 2048);
905 time_management_regs->calData = data & 0xfff;
905 time_management_regs->calData = data & 0xfff;
906 }
906 }
907 }
907 }
908
908
909 void setCalibrationDataInterleaved( void ){
909 void setCalibrationDataInterleaved( void ){
910 unsigned int k;
910 unsigned int k;
911 float val;
911 float val;
912 float f0;
912 float f0;
913 float f1;
913 float f1;
914 float fs;
914 float fs;
915 float Ts;
915 float Ts;
916 unsigned short data[384];
916 unsigned short data[384];
917 unsigned char *dataPtr;
917 unsigned char *dataPtr;
918
918
919 f0 = 625;
919 f0 = 625;
920 f1 = 10000;
920 f1 = 10000;
921 fs = 240384.615;
921 fs = 240384.615;
922 Ts = 1. / fs;
922 Ts = 1. / fs;
923
923
924 time_management_regs->calDataPtr = 0x00;
924 time_management_regs->calDataPtr = 0x00;
925
925
926 // build the signal for the SCM calibration
926 // build the signal for the SCM calibration
927 for (k=0; k<384; k++)
927 for (k=0; k<384; k++)
928 {
928 {
929 val = sin( 2 * pi * f0 * k * Ts )
929 val = sin( 2 * pi * f0 * k * Ts )
930 + sin( 2 * pi * f1 * k * Ts );
930 + sin( 2 * pi * f1 * k * Ts );
931 data[k] = (unsigned short) (val * 512 + 2048);
931 data[k] = (unsigned short) (val * 512 + 2048);
932 }
932 }
933
933
934 // write the signal in interleaved mode
934 // write the signal in interleaved mode
935 for (k=0; k<128; k++)
935 for (k=0; k<128; k++)
936 {
936 {
937 dataPtr = (unsigned char*) &data[k*3 + 2];
937 dataPtr = (unsigned char*) &data[k*3 + 2];
938 time_management_regs->calData = (data[k*3] & 0xfff)
938 time_management_regs->calData = (data[k*3] & 0xfff)
939 + ( (dataPtr[0] & 0x3f) << 12);
939 + ( (dataPtr[0] & 0x3f) << 12);
940 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
940 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
941 + ( (dataPtr[1] & 0x3f) << 12);
941 + ( (dataPtr[1] & 0x3f) << 12);
942 }
942 }
943 }
943 }
944
944
945 void setCalibrationReload( bool state)
945 void setCalibrationReload( bool state)
946 {
946 {
947 if (state == true)
947 if (state == true)
948 {
948 {
949 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
949 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
950 }
950 }
951 else
951 else
952 {
952 {
953 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
953 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
954 }
954 }
955 }
955 }
956
956
957 void setCalibrationEnable( bool state )
957 void setCalibrationEnable( bool state )
958 {
958 {
959 // this bit drives the multiplexer
959 // this bit drives the multiplexer
960 if (state == true)
960 if (state == true)
961 {
961 {
962 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
962 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
963 }
963 }
964 else
964 else
965 {
965 {
966 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
966 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
967 }
967 }
968 }
968 }
969
969
970 void setCalibrationInterleaved( bool state )
970 void setCalibrationInterleaved( bool state )
971 {
971 {
972 // this bit drives the multiplexer
972 // this bit drives the multiplexer
973 if (state == true)
973 if (state == true)
974 {
974 {
975 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
975 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
976 }
976 }
977 else
977 else
978 {
978 {
979 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
979 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
980 }
980 }
981 }
981 }
982
982
983 void setCalibration( bool state )
983 void setCalibration( bool state )
984 {
984 {
985 if (state == true)
985 if (state == true)
986 {
986 {
987 setCalibrationEnable( true );
987 setCalibrationEnable( true );
988 setCalibrationReload( false );
988 setCalibrationReload( false );
989 set_hk_lfr_calib_enable( true );
989 set_hk_lfr_calib_enable( true );
990 }
990 }
991 else
991 else
992 {
992 {
993 setCalibrationEnable( false );
993 setCalibrationEnable( false );
994 setCalibrationReload( true );
994 setCalibrationReload( true );
995 set_hk_lfr_calib_enable( false );
995 set_hk_lfr_calib_enable( false );
996 }
996 }
997 }
997 }
998
998
999 void set_hk_lfr_calib_enable( bool state )
1000 {
1001 if (state == true)
1002 {
1003 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
1004 }
1005 else
1006 {
1007 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
1008 }
1009 }
1010
1011 void configureCalibration( bool interleaved )
999 void configureCalibration( bool interleaved )
1012 {
1000 {
1013 setCalibration( false );
1001 setCalibration( false );
1014 if ( interleaved == true )
1002 if ( interleaved == true )
1015 {
1003 {
1016 setCalibrationInterleaved( true );
1004 setCalibrationInterleaved( true );
1017 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1005 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1018 setCalibrationDivisor( 26 ); // => 240 384
1006 setCalibrationDivisor( 26 ); // => 240 384
1019 setCalibrationDataInterleaved();
1007 setCalibrationDataInterleaved();
1020 }
1008 }
1021 else
1009 else
1022 {
1010 {
1023 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1011 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1024 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1012 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1025 setCalibrationData();
1013 setCalibrationData();
1026 }
1014 }
1027 }
1015 }
1028
1016
1029 //****************
1017 //****************
1030 // CLOSING ACTIONS
1018 // CLOSING ACTIONS
1031 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1019 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1032 {
1020 {
1033 /** This function is used to update the HK packets statistics after a successful TC execution.
1021 /** This function is used to update the HK packets statistics after a successful TC execution.
1034 *
1022 *
1035 * @param TC points to the TC being processed
1023 * @param TC points to the TC being processed
1036 * @param time is the time used to date the TC execution
1024 * @param time is the time used to date the TC execution
1037 *
1025 *
1038 */
1026 */
1039
1027
1040 unsigned int val;
1028 unsigned int val;
1041
1029
1042 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1030 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1043 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1031 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1044 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1032 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1045 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1033 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1046 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1034 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1047 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1035 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1048 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1036 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1049 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1037 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1050 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1038 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1051 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1039 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1052 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1040 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1053 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1041 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1054
1042
1055 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1043 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1056 val++;
1044 val++;
1057 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1045 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1058 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1046 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1059 }
1047 }
1060
1048
1061 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1049 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1062 {
1050 {
1063 /** This function is used to update the HK packets statistics after a TC rejection.
1051 /** This function is used to update the HK packets statistics after a TC rejection.
1064 *
1052 *
1065 * @param TC points to the TC being processed
1053 * @param TC points to the TC being processed
1066 * @param time is the time used to date the TC rejection
1054 * @param time is the time used to date the TC rejection
1067 *
1055 *
1068 */
1056 */
1069
1057
1070 unsigned int val;
1058 unsigned int val;
1071
1059
1072 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1060 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1073 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1061 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1074 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1062 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1075 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1063 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1076 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1064 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1077 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1065 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1078 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1066 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1079 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1067 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1080 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1068 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1081 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1069 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1082 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1070 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1083 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1071 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1084
1072
1085 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1073 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1086 val++;
1074 val++;
1087 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1075 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1088 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1076 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1089 }
1077 }
1090
1078
1091 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1079 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1092 {
1080 {
1093 /** This function is the last step of the TC execution workflow.
1081 /** This function is the last step of the TC execution workflow.
1094 *
1082 *
1095 * @param TC points to the TC being processed
1083 * @param TC points to the TC being processed
1096 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1084 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1097 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1085 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1098 * @param time is the time used to date the TC execution
1086 * @param time is the time used to date the TC execution
1099 *
1087 *
1100 */
1088 */
1101
1089
1102 unsigned char requestedMode;
1090 unsigned char requestedMode;
1103
1091
1104 if (result == LFR_SUCCESSFUL)
1092 if (result == LFR_SUCCESSFUL)
1105 {
1093 {
1106 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1094 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1107 &
1095 &
1108 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1096 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1109 )
1097 )
1110 {
1098 {
1111 send_tm_lfr_tc_exe_success( TC, queue_id );
1099 send_tm_lfr_tc_exe_success( TC, queue_id );
1112 }
1100 }
1113 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1101 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1114 {
1102 {
1115 //**********************************
1103 //**********************************
1116 // UPDATE THE LFRMODE LOCAL VARIABLE
1104 // UPDATE THE LFRMODE LOCAL VARIABLE
1117 requestedMode = TC->dataAndCRC[1];
1105 requestedMode = TC->dataAndCRC[1];
1118 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1106 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1119 updateLFRCurrentMode();
1107 updateLFRCurrentMode();
1120 }
1108 }
1121 }
1109 }
1122 else if (result == LFR_EXE_ERROR)
1110 else if (result == LFR_EXE_ERROR)
1123 {
1111 {
1124 send_tm_lfr_tc_exe_error( TC, queue_id );
1112 send_tm_lfr_tc_exe_error( TC, queue_id );
1125 }
1113 }
1126 }
1114 }
1127
1115
1128 //***************************
1116 //***************************
1129 // Interrupt Service Routines
1117 // Interrupt Service Routines
1130 rtems_isr commutation_isr1( rtems_vector_number vector )
1118 rtems_isr commutation_isr1( rtems_vector_number vector )
1131 {
1119 {
1132 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1120 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1133 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1121 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1134 }
1122 }
1135 }
1123 }
1136
1124
1137 rtems_isr commutation_isr2( rtems_vector_number vector )
1125 rtems_isr commutation_isr2( rtems_vector_number vector )
1138 {
1126 {
1139 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1127 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1140 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1128 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1141 }
1129 }
1142 }
1130 }
1143
1131
1144 //****************
1132 //****************
1145 // OTHER FUNCTIONS
1133 // OTHER FUNCTIONS
1146 void updateLFRCurrentMode()
1134 void updateLFRCurrentMode()
1147 {
1135 {
1148 /** This function updates the value of the global variable lfrCurrentMode.
1136 /** This function updates the value of the global variable lfrCurrentMode.
1149 *
1137 *
1150 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1138 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1151 *
1139 *
1152 */
1140 */
1153 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1141 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1154 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1142 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1155 }
1143 }
1156
1144
1157 void set_lfr_soft_reset( unsigned char value )
1145 void set_lfr_soft_reset( unsigned char value )
1158 {
1146 {
1159 if (value == 1)
1147 if (value == 1)
1160 {
1148 {
1161 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1149 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1162 }
1150 }
1163 else
1151 else
1164 {
1152 {
1165 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1153 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1166 }
1154 }
1167 }
1155 }
1168
1156
1169 void reset_lfr( void )
1157 void reset_lfr( void )
1170 {
1158 {
1171 set_lfr_soft_reset( 1 );
1159 set_lfr_soft_reset( 1 );
1172
1160
1173 set_lfr_soft_reset( 0 );
1161 set_lfr_soft_reset( 0 );
1162
1163 set_hk_lfr_sc_potential_flag( true );
1174 }
1164 }
General Comments 0
You need to be logged in to leave comments. Login now