##// END OF EJS Templates
3.0.0.15
paul -
r258:1259d1eafcaf R3a
parent child
Show More
@@ -1,124 +1,124
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options =
3 # CONFIG options =
4 # verbose
4 # verbose
5 # boot_messages
5 # boot_messages
6 # debug_messages
6 # debug_messages
7 # cpu_usage_report
7 # cpu_usage_report
8 # stack_report
8 # stack_report
9 # vhdl_dev
9 # vhdl_dev
10 # debug_tch
10 # debug_tch
11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
12 # debug_watchdog
12 # debug_watchdog
13 CONFIG += console verbose lpp_dpu_destid
13 CONFIG += console verbose lpp_dpu_destid
14 CONFIG -= qt
14 CONFIG -= qt
15
15
16 include(./sparc.pri)
16 include(./sparc.pri)
17
17
18 # flight software version
18 # flight software version
19 SWVERSION=-1-0
19 SWVERSION=-1-0
20 DEFINES += SW_VERSION_N1=3 # major
20 DEFINES += SW_VERSION_N1=3 # major
21 DEFINES += SW_VERSION_N2=0 # minor
21 DEFINES += SW_VERSION_N2=0 # minor
22 DEFINES += SW_VERSION_N3=0 # patch
22 DEFINES += SW_VERSION_N3=0 # patch
23 DEFINES += SW_VERSION_N4=14 # internal
23 DEFINES += SW_VERSION_N4=15 # internal
24
24
25 # <GCOV>
25 # <GCOV>
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
28 # </GCOV>
28 # </GCOV>
29
29
30 # <CHANGE BEFORE FLIGHT>
30 # <CHANGE BEFORE FLIGHT>
31 contains( CONFIG, lpp_dpu_destid ) {
31 contains( CONFIG, lpp_dpu_destid ) {
32 DEFINES += LPP_DPU_DESTID
32 DEFINES += LPP_DPU_DESTID
33 }
33 }
34 # </CHANGE BEFORE FLIGHT>
34 # </CHANGE BEFORE FLIGHT>
35
35
36 contains( CONFIG, debug_tch ) {
36 contains( CONFIG, debug_tch ) {
37 DEFINES += DEBUG_TCH
37 DEFINES += DEBUG_TCH
38 }
38 }
39 DEFINES += MSB_FIRST_TCH
39 DEFINES += MSB_FIRST_TCH
40
40
41 contains( CONFIG, vhdl_dev ) {
41 contains( CONFIG, vhdl_dev ) {
42 DEFINES += VHDL_DEV
42 DEFINES += VHDL_DEV
43 }
43 }
44
44
45 contains( CONFIG, verbose ) {
45 contains( CONFIG, verbose ) {
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
47 }
47 }
48
48
49 contains( CONFIG, debug_messages ) {
49 contains( CONFIG, debug_messages ) {
50 DEFINES += DEBUG_MESSAGES
50 DEFINES += DEBUG_MESSAGES
51 }
51 }
52
52
53 contains( CONFIG, cpu_usage_report ) {
53 contains( CONFIG, cpu_usage_report ) {
54 DEFINES += PRINT_TASK_STATISTICS
54 DEFINES += PRINT_TASK_STATISTICS
55 }
55 }
56
56
57 contains( CONFIG, stack_report ) {
57 contains( CONFIG, stack_report ) {
58 DEFINES += PRINT_STACK_REPORT
58 DEFINES += PRINT_STACK_REPORT
59 }
59 }
60
60
61 contains( CONFIG, boot_messages ) {
61 contains( CONFIG, boot_messages ) {
62 DEFINES += BOOT_MESSAGES
62 DEFINES += BOOT_MESSAGES
63 }
63 }
64
64
65 contains( CONFIG, debug_watchdog ) {
65 contains( CONFIG, debug_watchdog ) {
66 DEFINES += DEBUG_WATCHDOG
66 DEFINES += DEBUG_WATCHDOG
67 }
67 }
68
68
69 #doxygen.target = doxygen
69 #doxygen.target = doxygen
70 #doxygen.commands = doxygen ../doc/Doxyfile
70 #doxygen.commands = doxygen ../doc/Doxyfile
71 #QMAKE_EXTRA_TARGETS += doxygen
71 #QMAKE_EXTRA_TARGETS += doxygen
72
72
73 TARGET = fsw
73 TARGET = fsw
74
74
75 INCLUDEPATH += \
75 INCLUDEPATH += \
76 $${PWD}/../src \
76 $${PWD}/../src \
77 $${PWD}/../header \
77 $${PWD}/../header \
78 $${PWD}/../header/lfr_common_headers \
78 $${PWD}/../header/lfr_common_headers \
79 $${PWD}/../header/processing \
79 $${PWD}/../header/processing \
80 $${PWD}/../LFR_basic-parameters
80 $${PWD}/../LFR_basic-parameters
81
81
82 SOURCES += \
82 SOURCES += \
83 ../src/wf_handler.c \
83 ../src/wf_handler.c \
84 ../src/tc_handler.c \
84 ../src/tc_handler.c \
85 ../src/fsw_misc.c \
85 ../src/fsw_misc.c \
86 ../src/fsw_init.c \
86 ../src/fsw_init.c \
87 ../src/fsw_globals.c \
87 ../src/fsw_globals.c \
88 ../src/fsw_spacewire.c \
88 ../src/fsw_spacewire.c \
89 ../src/tc_load_dump_parameters.c \
89 ../src/tc_load_dump_parameters.c \
90 ../src/tm_lfr_tc_exe.c \
90 ../src/tm_lfr_tc_exe.c \
91 ../src/tc_acceptance.c \
91 ../src/tc_acceptance.c \
92 ../src/processing/fsw_processing.c \
92 ../src/processing/fsw_processing.c \
93 ../src/processing/avf0_prc0.c \
93 ../src/processing/avf0_prc0.c \
94 ../src/processing/avf1_prc1.c \
94 ../src/processing/avf1_prc1.c \
95 ../src/processing/avf2_prc2.c \
95 ../src/processing/avf2_prc2.c \
96 ../src/lfr_cpu_usage_report.c \
96 ../src/lfr_cpu_usage_report.c \
97 ../LFR_basic-parameters/basic_parameters.c
97 ../LFR_basic-parameters/basic_parameters.c
98
98
99 HEADERS += \
99 HEADERS += \
100 ../header/wf_handler.h \
100 ../header/wf_handler.h \
101 ../header/tc_handler.h \
101 ../header/tc_handler.h \
102 ../header/grlib_regs.h \
102 ../header/grlib_regs.h \
103 ../header/fsw_misc.h \
103 ../header/fsw_misc.h \
104 ../header/fsw_init.h \
104 ../header/fsw_init.h \
105 ../header/fsw_spacewire.h \
105 ../header/fsw_spacewire.h \
106 ../header/tc_load_dump_parameters.h \
106 ../header/tc_load_dump_parameters.h \
107 ../header/tm_lfr_tc_exe.h \
107 ../header/tm_lfr_tc_exe.h \
108 ../header/tc_acceptance.h \
108 ../header/tc_acceptance.h \
109 ../header/processing/fsw_processing.h \
109 ../header/processing/fsw_processing.h \
110 ../header/processing/avf0_prc0.h \
110 ../header/processing/avf0_prc0.h \
111 ../header/processing/avf1_prc1.h \
111 ../header/processing/avf1_prc1.h \
112 ../header/processing/avf2_prc2.h \
112 ../header/processing/avf2_prc2.h \
113 ../header/fsw_params_wf_handler.h \
113 ../header/fsw_params_wf_handler.h \
114 ../header/lfr_cpu_usage_report.h \
114 ../header/lfr_cpu_usage_report.h \
115 ../header/lfr_common_headers/ccsds_types.h \
115 ../header/lfr_common_headers/ccsds_types.h \
116 ../header/lfr_common_headers/fsw_params.h \
116 ../header/lfr_common_headers/fsw_params.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
118 ../header/lfr_common_headers/fsw_params_processing.h \
119 ../header/lfr_common_headers/TC_types.h \
119 ../header/lfr_common_headers/TC_types.h \
120 ../header/lfr_common_headers/tm_byte_positions.h \
120 ../header/lfr_common_headers/tm_byte_positions.h \
121 ../LFR_basic-parameters/basic_parameters.h \
121 ../LFR_basic-parameters/basic_parameters.h \
122 ../LFR_basic-parameters/basic_parameters_params.h \
122 ../LFR_basic-parameters/basic_parameters_params.h \
123 ../header/GscMemoryLPP.hpp
123 ../header/GscMemoryLPP.hpp
124
124
@@ -1,1617 +1,1624
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[6];
35 unsigned char time[6];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 status = get_message_queue_id_recv( &queue_rcv_id );
39 status = get_message_queue_id_recv( &queue_rcv_id );
40 if (status != RTEMS_SUCCESSFUL)
40 if (status != RTEMS_SUCCESSFUL)
41 {
41 {
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 }
43 }
44
44
45 status = get_message_queue_id_send( &queue_snd_id );
45 status = get_message_queue_id_send( &queue_snd_id );
46 if (status != RTEMS_SUCCESSFUL)
46 if (status != RTEMS_SUCCESSFUL)
47 {
47 {
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 }
49 }
50
50
51 result = LFR_SUCCESSFUL;
51 result = LFR_SUCCESSFUL;
52 subtype = 0; // subtype of the current TC packet
52 subtype = 0; // subtype of the current TC packet
53
53
54 BOOT_PRINTF("in ACTN *** \n")
54 BOOT_PRINTF("in ACTN *** \n")
55
55
56 while(1)
56 while(1)
57 {
57 {
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 getTime( time ); // set time to the current time
60 getTime( time ); // set time to the current time
61 if (status!=RTEMS_SUCCESSFUL)
61 if (status!=RTEMS_SUCCESSFUL)
62 {
62 {
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 }
64 }
65 else
65 else
66 {
66 {
67 subtype = TC.serviceSubType;
67 subtype = TC.serviceSubType;
68 switch(subtype)
68 switch(subtype)
69 {
69 {
70 case TC_SUBTYPE_RESET:
70 case TC_SUBTYPE_RESET:
71 result = action_reset( &TC, queue_snd_id, time );
71 result = action_reset( &TC, queue_snd_id, time );
72 close_action( &TC, result, queue_snd_id );
72 close_action( &TC, result, queue_snd_id );
73 break;
73 break;
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 case TC_SUBTYPE_LOAD_NORM:
78 case TC_SUBTYPE_LOAD_NORM:
79 result = action_load_normal_par( &TC, queue_snd_id, time );
79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 close_action( &TC, result, queue_snd_id );
80 close_action( &TC, result, queue_snd_id );
81 break;
81 break;
82 case TC_SUBTYPE_LOAD_BURST:
82 case TC_SUBTYPE_LOAD_BURST:
83 result = action_load_burst_par( &TC, queue_snd_id, time );
83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 close_action( &TC, result, queue_snd_id );
84 close_action( &TC, result, queue_snd_id );
85 break;
85 break;
86 case TC_SUBTYPE_LOAD_SBM1:
86 case TC_SUBTYPE_LOAD_SBM1:
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 close_action( &TC, result, queue_snd_id );
88 close_action( &TC, result, queue_snd_id );
89 break;
89 break;
90 case TC_SUBTYPE_LOAD_SBM2:
90 case TC_SUBTYPE_LOAD_SBM2:
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 close_action( &TC, result, queue_snd_id );
92 close_action( &TC, result, queue_snd_id );
93 break;
93 break;
94 case TC_SUBTYPE_DUMP:
94 case TC_SUBTYPE_DUMP:
95 result = action_dump_par( &TC, queue_snd_id );
95 result = action_dump_par( &TC, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 case TC_SUBTYPE_ENTER:
98 case TC_SUBTYPE_ENTER:
99 result = action_enter_mode( &TC, queue_snd_id );
99 result = action_enter_mode( &TC, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
101 break;
101 break;
102 case TC_SUBTYPE_UPDT_INFO:
102 case TC_SUBTYPE_UPDT_INFO:
103 result = action_update_info( &TC, queue_snd_id );
103 result = action_update_info( &TC, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
105 break;
105 break;
106 case TC_SUBTYPE_EN_CAL:
106 case TC_SUBTYPE_EN_CAL:
107 result = action_enable_calibration( &TC, queue_snd_id, time );
107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 close_action( &TC, result, queue_snd_id );
108 close_action( &TC, result, queue_snd_id );
109 break;
109 break;
110 case TC_SUBTYPE_DIS_CAL:
110 case TC_SUBTYPE_DIS_CAL:
111 result = action_disable_calibration( &TC, queue_snd_id, time );
111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 close_action( &TC, result, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
113 break;
113 break;
114 case TC_SUBTYPE_LOAD_K:
114 case TC_SUBTYPE_LOAD_K:
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 case TC_SUBTYPE_DUMP_K:
118 case TC_SUBTYPE_DUMP_K:
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 close_action( &TC, result, queue_snd_id );
120 close_action( &TC, result, queue_snd_id );
121 break;
121 break;
122 case TC_SUBTYPE_LOAD_FBINS:
122 case TC_SUBTYPE_LOAD_FBINS:
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 close_action( &TC, result, queue_snd_id );
124 close_action( &TC, result, queue_snd_id );
125 break;
125 break;
126 case TC_SUBTYPE_UPDT_TIME:
126 case TC_SUBTYPE_UPDT_TIME:
127 result = action_update_time( &TC );
127 result = action_update_time( &TC );
128 close_action( &TC, result, queue_snd_id );
128 close_action( &TC, result, queue_snd_id );
129 break;
129 break;
130 default:
130 default:
131 break;
131 break;
132 }
132 }
133 }
133 }
134 }
134 }
135 }
135 }
136
136
137 //***********
137 //***********
138 // TC ACTIONS
138 // TC ACTIONS
139
139
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 {
141 {
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 *
143 *
144 * @param TC points to the TeleCommand packet that is being processed
144 * @param TC points to the TeleCommand packet that is being processed
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 *
146 *
147 */
147 */
148
148
149 PRINTF("this is the end!!!\n")
149 PRINTF("this is the end!!!\n");
150 exit(0);
150 exit(0);
151
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
153
152 return LFR_DEFAULT;
154 return LFR_DEFAULT;
153 }
155 }
154
156
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
157 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 {
158 {
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
159 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 *
160 *
159 * @param TC points to the TeleCommand packet that is being processed
161 * @param TC points to the TeleCommand packet that is being processed
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
162 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 *
163 *
162 */
164 */
163
165
164 rtems_status_code status;
166 rtems_status_code status;
165 unsigned char requestedMode;
167 unsigned char requestedMode;
166 unsigned int *transitionCoarseTime_ptr;
168 unsigned int *transitionCoarseTime_ptr;
167 unsigned int transitionCoarseTime;
169 unsigned int transitionCoarseTime;
168 unsigned char * bytePosPtr;
170 unsigned char * bytePosPtr;
169
171
170 bytePosPtr = (unsigned char *) &TC->packetID;
172 bytePosPtr = (unsigned char *) &TC->packetID;
171
173
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
174 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
175 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
176 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175
177
176 status = check_mode_value( requestedMode );
178 status = check_mode_value( requestedMode );
177
179
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
180 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 {
181 {
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
182 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 }
183 }
182
184
183 else // the mode value is valid, check the transition
185 else // the mode value is valid, check the transition
184 {
186 {
185 status = check_mode_transition(requestedMode);
187 status = check_mode_transition(requestedMode);
186 if (status != LFR_SUCCESSFUL)
188 if (status != LFR_SUCCESSFUL)
187 {
189 {
188 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
190 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
189 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
191 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
190 }
192 }
191 }
193 }
192
194
193 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
195 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
194 {
196 {
195 status = check_transition_date( transitionCoarseTime );
197 status = check_transition_date( transitionCoarseTime );
196 if (status != LFR_SUCCESSFUL)
198 if (status != LFR_SUCCESSFUL)
197 {
199 {
198 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
200 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
199 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
201 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
200 }
202 }
201 }
203 }
202
204
203 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
204 {
206 {
205 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
206
208
207 update_last_valid_transition_date( transitionCoarseTime );
209 update_last_valid_transition_date( transitionCoarseTime );
208
210
209 switch(requestedMode)
211 switch(requestedMode)
210 {
212 {
211 case LFR_MODE_STANDBY:
213 case LFR_MODE_STANDBY:
212 status = enter_mode_standby();
214 status = enter_mode_standby();
213 break;
215 break;
214 case LFR_MODE_NORMAL:
216 case LFR_MODE_NORMAL:
215 status = enter_mode_normal( transitionCoarseTime );
217 status = enter_mode_normal( transitionCoarseTime );
216 break;
218 break;
217 case LFR_MODE_BURST:
219 case LFR_MODE_BURST:
218 status = enter_mode_burst( transitionCoarseTime );
220 status = enter_mode_burst( transitionCoarseTime );
219 break;
221 break;
220 case LFR_MODE_SBM1:
222 case LFR_MODE_SBM1:
221 status = enter_mode_sbm1( transitionCoarseTime );
223 status = enter_mode_sbm1( transitionCoarseTime );
222 break;
224 break;
223 case LFR_MODE_SBM2:
225 case LFR_MODE_SBM2:
224 status = enter_mode_sbm2( transitionCoarseTime );
226 status = enter_mode_sbm2( transitionCoarseTime );
225 break;
227 break;
226 default:
228 default:
227 break;
229 break;
228 }
230 }
229 }
231 }
230
232
233 if (status != RTEMS_SUCCESSFUL)
234 {
235 status = LFR_EXE_ERROR;
236 }
237
231 return status;
238 return status;
232 }
239 }
233
240
234 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
241 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
235 {
242 {
236 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
243 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
237 *
244 *
238 * @param TC points to the TeleCommand packet that is being processed
245 * @param TC points to the TeleCommand packet that is being processed
239 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
246 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
240 *
247 *
241 * @return LFR directive status code:
248 * @return LFR directive status code:
242 * - LFR_DEFAULT
249 * - LFR_DEFAULT
243 * - LFR_SUCCESSFUL
250 * - LFR_SUCCESSFUL
244 *
251 *
245 */
252 */
246
253
247 unsigned int val;
254 unsigned int val;
248 int result;
255 int result;
249 unsigned int status;
256 unsigned int status;
250 unsigned char mode;
257 unsigned char mode;
251 unsigned char * bytePosPtr;
258 unsigned char * bytePosPtr;
252
259
253 bytePosPtr = (unsigned char *) &TC->packetID;
260 bytePosPtr = (unsigned char *) &TC->packetID;
254
261
255 // check LFR mode
262 // check LFR mode
256 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
263 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
257 status = check_update_info_hk_lfr_mode( mode );
264 status = check_update_info_hk_lfr_mode( mode );
258 if (status == LFR_SUCCESSFUL) // check TDS mode
265 if (status == LFR_SUCCESSFUL) // check TDS mode
259 {
266 {
260 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
267 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
261 status = check_update_info_hk_tds_mode( mode );
268 status = check_update_info_hk_tds_mode( mode );
262 }
269 }
263 if (status == LFR_SUCCESSFUL) // check THR mode
270 if (status == LFR_SUCCESSFUL) // check THR mode
264 {
271 {
265 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
272 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
266 status = check_update_info_hk_thr_mode( mode );
273 status = check_update_info_hk_thr_mode( mode );
267 }
274 }
268 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
275 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
269 {
276 {
270 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
277 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
271 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
278 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
272 val++;
279 val++;
273 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
280 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
274 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
281 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
275 }
282 }
276
283
277 // pa_bia_status_info
284 // pa_bia_status_info
278 // => pa_bia_mode_mux_set 3 bits
285 // => pa_bia_mode_mux_set 3 bits
279 // => pa_bia_mode_hv_enabled 1 bit
286 // => pa_bia_mode_hv_enabled 1 bit
280 // => pa_bia_mode_bias1_enabled 1 bit
287 // => pa_bia_mode_bias1_enabled 1 bit
281 // => pa_bia_mode_bias2_enabled 1 bit
288 // => pa_bia_mode_bias2_enabled 1 bit
282 // => pa_bia_mode_bias3_enabled 1 bit
289 // => pa_bia_mode_bias3_enabled 1 bit
283 // => pa_bia_on_off (cp_dpu_bias_on_off)
290 // => pa_bia_on_off (cp_dpu_bias_on_off)
284 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
291 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
285 pa_bia_status_info = pa_bia_status_info
292 pa_bia_status_info = pa_bia_status_info
286 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
293 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
287
294
288 result = status;
295 result = status;
289
296
290 return result;
297 return result;
291 }
298 }
292
299
293 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
300 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
294 {
301 {
295 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
302 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
296 *
303 *
297 * @param TC points to the TeleCommand packet that is being processed
304 * @param TC points to the TeleCommand packet that is being processed
298 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
299 *
306 *
300 */
307 */
301
308
302 int result;
309 int result;
303
310
304 result = LFR_DEFAULT;
311 result = LFR_DEFAULT;
305
312
306 setCalibration( true );
313 setCalibration( true );
307
314
308 result = LFR_SUCCESSFUL;
315 result = LFR_SUCCESSFUL;
309
316
310 return result;
317 return result;
311 }
318 }
312
319
313 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
320 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 {
321 {
315 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
322 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
316 *
323 *
317 * @param TC points to the TeleCommand packet that is being processed
324 * @param TC points to the TeleCommand packet that is being processed
318 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
325 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
319 *
326 *
320 */
327 */
321
328
322 int result;
329 int result;
323
330
324 result = LFR_DEFAULT;
331 result = LFR_DEFAULT;
325
332
326 setCalibration( false );
333 setCalibration( false );
327
334
328 result = LFR_SUCCESSFUL;
335 result = LFR_SUCCESSFUL;
329
336
330 return result;
337 return result;
331 }
338 }
332
339
333 int action_update_time(ccsdsTelecommandPacket_t *TC)
340 int action_update_time(ccsdsTelecommandPacket_t *TC)
334 {
341 {
335 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
342 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
336 *
343 *
337 * @param TC points to the TeleCommand packet that is being processed
344 * @param TC points to the TeleCommand packet that is being processed
338 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
345 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
339 *
346 *
340 * @return LFR_SUCCESSFUL
347 * @return LFR_SUCCESSFUL
341 *
348 *
342 */
349 */
343
350
344 unsigned int val;
351 unsigned int val;
345
352
346 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
353 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
347 + (TC->dataAndCRC[1] << 16)
354 + (TC->dataAndCRC[1] << 16)
348 + (TC->dataAndCRC[2] << 8)
355 + (TC->dataAndCRC[2] << 8)
349 + TC->dataAndCRC[3];
356 + TC->dataAndCRC[3];
350
357
351 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
358 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
352 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
359 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
353 val++;
360 val++;
354 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
361 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
355 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
362 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
356
363
357 return LFR_SUCCESSFUL;
364 return LFR_SUCCESSFUL;
358 }
365 }
359
366
360 //*******************
367 //*******************
361 // ENTERING THE MODES
368 // ENTERING THE MODES
362 int check_mode_value( unsigned char requestedMode )
369 int check_mode_value( unsigned char requestedMode )
363 {
370 {
364 int status;
371 int status;
365
372
366 if ( (requestedMode != LFR_MODE_STANDBY)
373 if ( (requestedMode != LFR_MODE_STANDBY)
367 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
374 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
368 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
375 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
369 {
376 {
370 status = LFR_DEFAULT;
377 status = LFR_DEFAULT;
371 }
378 }
372 else
379 else
373 {
380 {
374 status = LFR_SUCCESSFUL;
381 status = LFR_SUCCESSFUL;
375 }
382 }
376
383
377 return status;
384 return status;
378 }
385 }
379
386
380 int check_mode_transition( unsigned char requestedMode )
387 int check_mode_transition( unsigned char requestedMode )
381 {
388 {
382 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
389 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
383 *
390 *
384 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
391 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
385 *
392 *
386 * @return LFR directive status codes:
393 * @return LFR directive status codes:
387 * - LFR_SUCCESSFUL - the transition is authorized
394 * - LFR_SUCCESSFUL - the transition is authorized
388 * - LFR_DEFAULT - the transition is not authorized
395 * - LFR_DEFAULT - the transition is not authorized
389 *
396 *
390 */
397 */
391
398
392 int status;
399 int status;
393
400
394 switch (requestedMode)
401 switch (requestedMode)
395 {
402 {
396 case LFR_MODE_STANDBY:
403 case LFR_MODE_STANDBY:
397 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
404 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
398 status = LFR_DEFAULT;
405 status = LFR_DEFAULT;
399 }
406 }
400 else
407 else
401 {
408 {
402 status = LFR_SUCCESSFUL;
409 status = LFR_SUCCESSFUL;
403 }
410 }
404 break;
411 break;
405 case LFR_MODE_NORMAL:
412 case LFR_MODE_NORMAL:
406 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
413 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
407 status = LFR_DEFAULT;
414 status = LFR_DEFAULT;
408 }
415 }
409 else {
416 else {
410 status = LFR_SUCCESSFUL;
417 status = LFR_SUCCESSFUL;
411 }
418 }
412 break;
419 break;
413 case LFR_MODE_BURST:
420 case LFR_MODE_BURST:
414 if ( lfrCurrentMode == LFR_MODE_BURST ) {
421 if ( lfrCurrentMode == LFR_MODE_BURST ) {
415 status = LFR_DEFAULT;
422 status = LFR_DEFAULT;
416 }
423 }
417 else {
424 else {
418 status = LFR_SUCCESSFUL;
425 status = LFR_SUCCESSFUL;
419 }
426 }
420 break;
427 break;
421 case LFR_MODE_SBM1:
428 case LFR_MODE_SBM1:
422 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
429 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
423 status = LFR_DEFAULT;
430 status = LFR_DEFAULT;
424 }
431 }
425 else {
432 else {
426 status = LFR_SUCCESSFUL;
433 status = LFR_SUCCESSFUL;
427 }
434 }
428 break;
435 break;
429 case LFR_MODE_SBM2:
436 case LFR_MODE_SBM2:
430 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
437 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
431 status = LFR_DEFAULT;
438 status = LFR_DEFAULT;
432 }
439 }
433 else {
440 else {
434 status = LFR_SUCCESSFUL;
441 status = LFR_SUCCESSFUL;
435 }
442 }
436 break;
443 break;
437 default:
444 default:
438 status = LFR_DEFAULT;
445 status = LFR_DEFAULT;
439 break;
446 break;
440 }
447 }
441
448
442 return status;
449 return status;
443 }
450 }
444
451
445 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
452 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
446 {
453 {
447 if (transitionCoarseTime == 0)
454 if (transitionCoarseTime == 0)
448 {
455 {
449 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
456 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
450 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", transitionCoarseTime);
457 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", transitionCoarseTime);
451 }
458 }
452 else
459 else
453 {
460 {
454 lastValidEnterModeTime = transitionCoarseTime;
461 lastValidEnterModeTime = transitionCoarseTime;
455 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
462 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
456 }
463 }
457 }
464 }
458
465
459 int check_transition_date( unsigned int transitionCoarseTime )
466 int check_transition_date( unsigned int transitionCoarseTime )
460 {
467 {
461 int status;
468 int status;
462 unsigned int localCoarseTime;
469 unsigned int localCoarseTime;
463 unsigned int deltaCoarseTime;
470 unsigned int deltaCoarseTime;
464
471
465 status = LFR_SUCCESSFUL;
472 status = LFR_SUCCESSFUL;
466
473
467 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
474 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
468 {
475 {
469 status = LFR_SUCCESSFUL;
476 status = LFR_SUCCESSFUL;
470 }
477 }
471 else
478 else
472 {
479 {
473 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
480 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
474
481
475 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
482 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
476
483
477 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
484 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
478 {
485 {
479 status = LFR_DEFAULT;
486 status = LFR_DEFAULT;
480 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
487 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
481 }
488 }
482
489
483 if (status == LFR_SUCCESSFUL)
490 if (status == LFR_SUCCESSFUL)
484 {
491 {
485 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
492 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
486 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
493 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
487 {
494 {
488 status = LFR_DEFAULT;
495 status = LFR_DEFAULT;
489 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
496 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
490 }
497 }
491 }
498 }
492 }
499 }
493
500
494 return status;
501 return status;
495 }
502 }
496
503
497 int restart_asm_activities( unsigned char lfrRequestedMode )
504 int restart_asm_activities( unsigned char lfrRequestedMode )
498 {
505 {
499 rtems_status_code status;
506 rtems_status_code status;
500
507
501 status = stop_spectral_matrices();
508 status = stop_spectral_matrices();
502
509
503 status = restart_asm_tasks( lfrRequestedMode );
510 status = restart_asm_tasks( lfrRequestedMode );
504
511
505 launch_spectral_matrix();
512 launch_spectral_matrix();
506
513
507 return status;
514 return status;
508 }
515 }
509
516
510 int stop_spectral_matrices( void )
517 int stop_spectral_matrices( void )
511 {
518 {
512 /** This function stops and restarts the current mode average spectral matrices activities.
519 /** This function stops and restarts the current mode average spectral matrices activities.
513 *
520 *
514 * @return RTEMS directive status codes:
521 * @return RTEMS directive status codes:
515 * - RTEMS_SUCCESSFUL - task restarted successfully
522 * - RTEMS_SUCCESSFUL - task restarted successfully
516 * - RTEMS_INVALID_ID - task id invalid
523 * - RTEMS_INVALID_ID - task id invalid
517 * - RTEMS_ALREADY_SUSPENDED - task already suspended
524 * - RTEMS_ALREADY_SUSPENDED - task already suspended
518 *
525 *
519 */
526 */
520
527
521 rtems_status_code status;
528 rtems_status_code status;
522
529
523 status = RTEMS_SUCCESSFUL;
530 status = RTEMS_SUCCESSFUL;
524
531
525 // (1) mask interruptions
532 // (1) mask interruptions
526 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
533 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
527
534
528 // (2) reset spectral matrices registers
535 // (2) reset spectral matrices registers
529 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
536 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
530 reset_sm_status();
537 reset_sm_status();
531
538
532 // (3) clear interruptions
539 // (3) clear interruptions
533 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
540 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
534
541
535 // suspend several tasks
542 // suspend several tasks
536 if (lfrCurrentMode != LFR_MODE_STANDBY) {
543 if (lfrCurrentMode != LFR_MODE_STANDBY) {
537 status = suspend_asm_tasks();
544 status = suspend_asm_tasks();
538 }
545 }
539
546
540 if (status != RTEMS_SUCCESSFUL)
547 if (status != RTEMS_SUCCESSFUL)
541 {
548 {
542 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
549 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
543 }
550 }
544
551
545 return status;
552 return status;
546 }
553 }
547
554
548 int stop_current_mode( void )
555 int stop_current_mode( void )
549 {
556 {
550 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
557 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
551 *
558 *
552 * @return RTEMS directive status codes:
559 * @return RTEMS directive status codes:
553 * - RTEMS_SUCCESSFUL - task restarted successfully
560 * - RTEMS_SUCCESSFUL - task restarted successfully
554 * - RTEMS_INVALID_ID - task id invalid
561 * - RTEMS_INVALID_ID - task id invalid
555 * - RTEMS_ALREADY_SUSPENDED - task already suspended
562 * - RTEMS_ALREADY_SUSPENDED - task already suspended
556 *
563 *
557 */
564 */
558
565
559 rtems_status_code status;
566 rtems_status_code status;
560
567
561 status = RTEMS_SUCCESSFUL;
568 status = RTEMS_SUCCESSFUL;
562
569
563 // (1) mask interruptions
570 // (1) mask interruptions
564 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
571 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
565 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
572 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
566
573
567 // (2) reset waveform picker registers
574 // (2) reset waveform picker registers
568 reset_wfp_burst_enable(); // reset burst and enable bits
575 reset_wfp_burst_enable(); // reset burst and enable bits
569 reset_wfp_status(); // reset all the status bits
576 reset_wfp_status(); // reset all the status bits
570
577
571 // (3) reset spectral matrices registers
578 // (3) reset spectral matrices registers
572 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
579 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
573 reset_sm_status();
580 reset_sm_status();
574
581
575 // reset lfr VHDL module
582 // reset lfr VHDL module
576 reset_lfr();
583 reset_lfr();
577
584
578 reset_extractSWF(); // reset the extractSWF flag to false
585 reset_extractSWF(); // reset the extractSWF flag to false
579
586
580 // (4) clear interruptions
587 // (4) clear interruptions
581 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
588 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
582 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
589 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
583
590
584 // suspend several tasks
591 // suspend several tasks
585 if (lfrCurrentMode != LFR_MODE_STANDBY) {
592 if (lfrCurrentMode != LFR_MODE_STANDBY) {
586 status = suspend_science_tasks();
593 status = suspend_science_tasks();
587 }
594 }
588
595
589 if (status != RTEMS_SUCCESSFUL)
596 if (status != RTEMS_SUCCESSFUL)
590 {
597 {
591 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
598 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
592 }
599 }
593
600
594 return status;
601 return status;
595 }
602 }
596
603
597 int enter_mode_standby( void )
604 int enter_mode_standby( void )
598 {
605 {
599 /** This function is used to put LFR in the STANDBY mode.
606 /** This function is used to put LFR in the STANDBY mode.
600 *
607 *
601 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
608 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
602 *
609 *
603 * @return RTEMS directive status codes:
610 * @return RTEMS directive status codes:
604 * - RTEMS_SUCCESSFUL - task restarted successfully
611 * - RTEMS_SUCCESSFUL - task restarted successfully
605 * - RTEMS_INVALID_ID - task id invalid
612 * - RTEMS_INVALID_ID - task id invalid
606 * - RTEMS_INCORRECT_STATE - task never started
613 * - RTEMS_INCORRECT_STATE - task never started
607 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
614 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
608 *
615 *
609 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
616 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
610 * is immediate.
617 * is immediate.
611 *
618 *
612 */
619 */
613
620
614 int status;
621 int status;
615
622
616 status = stop_current_mode(); // STOP THE CURRENT MODE
623 status = stop_current_mode(); // STOP THE CURRENT MODE
617
624
618 #ifdef PRINT_TASK_STATISTICS
625 #ifdef PRINT_TASK_STATISTICS
619 rtems_cpu_usage_report();
626 rtems_cpu_usage_report();
620 #endif
627 #endif
621
628
622 #ifdef PRINT_STACK_REPORT
629 #ifdef PRINT_STACK_REPORT
623 PRINTF("stack report selected\n")
630 PRINTF("stack report selected\n")
624 rtems_stack_checker_report_usage();
631 rtems_stack_checker_report_usage();
625 #endif
632 #endif
626
633
627 return status;
634 return status;
628 }
635 }
629
636
630 int enter_mode_normal( unsigned int transitionCoarseTime )
637 int enter_mode_normal( unsigned int transitionCoarseTime )
631 {
638 {
632 /** This function is used to start the NORMAL mode.
639 /** This function is used to start the NORMAL mode.
633 *
640 *
634 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
641 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
635 *
642 *
636 * @return RTEMS directive status codes:
643 * @return RTEMS directive status codes:
637 * - RTEMS_SUCCESSFUL - task restarted successfully
644 * - RTEMS_SUCCESSFUL - task restarted successfully
638 * - RTEMS_INVALID_ID - task id invalid
645 * - RTEMS_INVALID_ID - task id invalid
639 * - RTEMS_INCORRECT_STATE - task never started
646 * - RTEMS_INCORRECT_STATE - task never started
640 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
647 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
641 *
648 *
642 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
649 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
643 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
650 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
644 *
651 *
645 */
652 */
646
653
647 int status;
654 int status;
648
655
649 #ifdef PRINT_TASK_STATISTICS
656 #ifdef PRINT_TASK_STATISTICS
650 rtems_cpu_usage_reset();
657 rtems_cpu_usage_reset();
651 #endif
658 #endif
652
659
653 status = RTEMS_UNSATISFIED;
660 status = RTEMS_UNSATISFIED;
654
661
655 switch( lfrCurrentMode )
662 switch( lfrCurrentMode )
656 {
663 {
657 case LFR_MODE_STANDBY:
664 case LFR_MODE_STANDBY:
658 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
665 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
659 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
666 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
660 {
667 {
661 launch_spectral_matrix( );
668 launch_spectral_matrix( );
662 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
669 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
663 }
670 }
664 break;
671 break;
665 case LFR_MODE_BURST:
672 case LFR_MODE_BURST:
666 status = stop_current_mode(); // stop the current mode
673 status = stop_current_mode(); // stop the current mode
667 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
674 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
668 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
675 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
669 {
676 {
670 launch_spectral_matrix( );
677 launch_spectral_matrix( );
671 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
678 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
672 }
679 }
673 break;
680 break;
674 case LFR_MODE_SBM1:
681 case LFR_MODE_SBM1:
675 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
682 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
676 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
683 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
677 break;
684 break;
678 case LFR_MODE_SBM2:
685 case LFR_MODE_SBM2:
679 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
686 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
680 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
687 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
681 break;
688 break;
682 default:
689 default:
683 break;
690 break;
684 }
691 }
685
692
686 if (status != RTEMS_SUCCESSFUL)
693 if (status != RTEMS_SUCCESSFUL)
687 {
694 {
688 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
695 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
689 status = RTEMS_UNSATISFIED;
696 status = RTEMS_UNSATISFIED;
690 }
697 }
691
698
692 return status;
699 return status;
693 }
700 }
694
701
695 int enter_mode_burst( unsigned int transitionCoarseTime )
702 int enter_mode_burst( unsigned int transitionCoarseTime )
696 {
703 {
697 /** This function is used to start the BURST mode.
704 /** This function is used to start the BURST mode.
698 *
705 *
699 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
706 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
700 *
707 *
701 * @return RTEMS directive status codes:
708 * @return RTEMS directive status codes:
702 * - RTEMS_SUCCESSFUL - task restarted successfully
709 * - RTEMS_SUCCESSFUL - task restarted successfully
703 * - RTEMS_INVALID_ID - task id invalid
710 * - RTEMS_INVALID_ID - task id invalid
704 * - RTEMS_INCORRECT_STATE - task never started
711 * - RTEMS_INCORRECT_STATE - task never started
705 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
712 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
706 *
713 *
707 * The way the BURST mode is started does not depend on the LFR current mode.
714 * The way the BURST mode is started does not depend on the LFR current mode.
708 *
715 *
709 */
716 */
710
717
711
718
712 int status;
719 int status;
713
720
714 #ifdef PRINT_TASK_STATISTICS
721 #ifdef PRINT_TASK_STATISTICS
715 rtems_cpu_usage_reset();
722 rtems_cpu_usage_reset();
716 #endif
723 #endif
717
724
718 status = stop_current_mode(); // stop the current mode
725 status = stop_current_mode(); // stop the current mode
719 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
726 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
720 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
727 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
721 {
728 {
722 launch_spectral_matrix( );
729 launch_spectral_matrix( );
723 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
730 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
724 }
731 }
725
732
726 if (status != RTEMS_SUCCESSFUL)
733 if (status != RTEMS_SUCCESSFUL)
727 {
734 {
728 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
735 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
729 status = RTEMS_UNSATISFIED;
736 status = RTEMS_UNSATISFIED;
730 }
737 }
731
738
732 return status;
739 return status;
733 }
740 }
734
741
735 int enter_mode_sbm1( unsigned int transitionCoarseTime )
742 int enter_mode_sbm1( unsigned int transitionCoarseTime )
736 {
743 {
737 /** This function is used to start the SBM1 mode.
744 /** This function is used to start the SBM1 mode.
738 *
745 *
739 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
746 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
740 *
747 *
741 * @return RTEMS directive status codes:
748 * @return RTEMS directive status codes:
742 * - RTEMS_SUCCESSFUL - task restarted successfully
749 * - RTEMS_SUCCESSFUL - task restarted successfully
743 * - RTEMS_INVALID_ID - task id invalid
750 * - RTEMS_INVALID_ID - task id invalid
744 * - RTEMS_INCORRECT_STATE - task never started
751 * - RTEMS_INCORRECT_STATE - task never started
745 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
752 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
746 *
753 *
747 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
754 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
748 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
755 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
749 * cases, the acquisition is completely restarted.
756 * cases, the acquisition is completely restarted.
750 *
757 *
751 */
758 */
752
759
753 int status;
760 int status;
754
761
755 #ifdef PRINT_TASK_STATISTICS
762 #ifdef PRINT_TASK_STATISTICS
756 rtems_cpu_usage_reset();
763 rtems_cpu_usage_reset();
757 #endif
764 #endif
758
765
759 status = RTEMS_UNSATISFIED;
766 status = RTEMS_UNSATISFIED;
760
767
761 switch( lfrCurrentMode )
768 switch( lfrCurrentMode )
762 {
769 {
763 case LFR_MODE_STANDBY:
770 case LFR_MODE_STANDBY:
764 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
771 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
765 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
772 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
766 {
773 {
767 launch_spectral_matrix( );
774 launch_spectral_matrix( );
768 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
775 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
769 }
776 }
770 break;
777 break;
771 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
778 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
772 restart_asm_activities( LFR_MODE_SBM1 );
779 restart_asm_activities( LFR_MODE_SBM1 );
773 status = LFR_SUCCESSFUL;
780 status = LFR_SUCCESSFUL;
774 break;
781 break;
775 case LFR_MODE_BURST:
782 case LFR_MODE_BURST:
776 status = stop_current_mode(); // stop the current mode
783 status = stop_current_mode(); // stop the current mode
777 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
784 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
778 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
785 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
779 {
786 {
780 launch_spectral_matrix( );
787 launch_spectral_matrix( );
781 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
788 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
782 }
789 }
783 break;
790 break;
784 case LFR_MODE_SBM2:
791 case LFR_MODE_SBM2:
785 restart_asm_activities( LFR_MODE_SBM1 );
792 restart_asm_activities( LFR_MODE_SBM1 );
786 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
793 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
787 break;
794 break;
788 default:
795 default:
789 break;
796 break;
790 }
797 }
791
798
792 if (status != RTEMS_SUCCESSFUL)
799 if (status != RTEMS_SUCCESSFUL)
793 {
800 {
794 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status)
801 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
795 status = RTEMS_UNSATISFIED;
802 status = RTEMS_UNSATISFIED;
796 }
803 }
797
804
798 return status;
805 return status;
799 }
806 }
800
807
801 int enter_mode_sbm2( unsigned int transitionCoarseTime )
808 int enter_mode_sbm2( unsigned int transitionCoarseTime )
802 {
809 {
803 /** This function is used to start the SBM2 mode.
810 /** This function is used to start the SBM2 mode.
804 *
811 *
805 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
812 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
806 *
813 *
807 * @return RTEMS directive status codes:
814 * @return RTEMS directive status codes:
808 * - RTEMS_SUCCESSFUL - task restarted successfully
815 * - RTEMS_SUCCESSFUL - task restarted successfully
809 * - RTEMS_INVALID_ID - task id invalid
816 * - RTEMS_INVALID_ID - task id invalid
810 * - RTEMS_INCORRECT_STATE - task never started
817 * - RTEMS_INCORRECT_STATE - task never started
811 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
818 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
812 *
819 *
813 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
820 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
814 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
821 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
815 * cases, the acquisition is completely restarted.
822 * cases, the acquisition is completely restarted.
816 *
823 *
817 */
824 */
818
825
819 int status;
826 int status;
820
827
821 #ifdef PRINT_TASK_STATISTICS
828 #ifdef PRINT_TASK_STATISTICS
822 rtems_cpu_usage_reset();
829 rtems_cpu_usage_reset();
823 #endif
830 #endif
824
831
825 status = RTEMS_UNSATISFIED;
832 status = RTEMS_UNSATISFIED;
826
833
827 switch( lfrCurrentMode )
834 switch( lfrCurrentMode )
828 {
835 {
829 case LFR_MODE_STANDBY:
836 case LFR_MODE_STANDBY:
830 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
837 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
831 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
838 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
832 {
839 {
833 launch_spectral_matrix( );
840 launch_spectral_matrix( );
834 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
841 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
835 }
842 }
836 break;
843 break;
837 case LFR_MODE_NORMAL:
844 case LFR_MODE_NORMAL:
838 restart_asm_activities( LFR_MODE_SBM2 );
845 restart_asm_activities( LFR_MODE_SBM2 );
839 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
846 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
840 break;
847 break;
841 case LFR_MODE_BURST:
848 case LFR_MODE_BURST:
842 status = stop_current_mode(); // stop the current mode
849 status = stop_current_mode(); // stop the current mode
843 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
850 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
844 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
851 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
845 {
852 {
846 launch_spectral_matrix( );
853 launch_spectral_matrix( );
847 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
854 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
848 }
855 }
849 break;
856 break;
850 case LFR_MODE_SBM1:
857 case LFR_MODE_SBM1:
851 restart_asm_activities( LFR_MODE_SBM2 );
858 restart_asm_activities( LFR_MODE_SBM2 );
852 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
859 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
853 break;
860 break;
854 default:
861 default:
855 break;
862 break;
856 }
863 }
857
864
858 if (status != RTEMS_SUCCESSFUL)
865 if (status != RTEMS_SUCCESSFUL)
859 {
866 {
860 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
867 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
861 status = RTEMS_UNSATISFIED;
868 status = RTEMS_UNSATISFIED;
862 }
869 }
863
870
864 return status;
871 return status;
865 }
872 }
866
873
867 int restart_science_tasks( unsigned char lfrRequestedMode )
874 int restart_science_tasks( unsigned char lfrRequestedMode )
868 {
875 {
869 /** This function is used to restart all science tasks.
876 /** This function is used to restart all science tasks.
870 *
877 *
871 * @return RTEMS directive status codes:
878 * @return RTEMS directive status codes:
872 * - RTEMS_SUCCESSFUL - task restarted successfully
879 * - RTEMS_SUCCESSFUL - task restarted successfully
873 * - RTEMS_INVALID_ID - task id invalid
880 * - RTEMS_INVALID_ID - task id invalid
874 * - RTEMS_INCORRECT_STATE - task never started
881 * - RTEMS_INCORRECT_STATE - task never started
875 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
882 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
876 *
883 *
877 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
884 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
878 *
885 *
879 */
886 */
880
887
881 rtems_status_code status[10];
888 rtems_status_code status[10];
882 rtems_status_code ret;
889 rtems_status_code ret;
883
890
884 ret = RTEMS_SUCCESSFUL;
891 ret = RTEMS_SUCCESSFUL;
885
892
886 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
893 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
887 if (status[0] != RTEMS_SUCCESSFUL)
894 if (status[0] != RTEMS_SUCCESSFUL)
888 {
895 {
889 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
896 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
890 }
897 }
891
898
892 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
899 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
893 if (status[1] != RTEMS_SUCCESSFUL)
900 if (status[1] != RTEMS_SUCCESSFUL)
894 {
901 {
895 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
902 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
896 }
903 }
897
904
898 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
905 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
899 if (status[2] != RTEMS_SUCCESSFUL)
906 if (status[2] != RTEMS_SUCCESSFUL)
900 {
907 {
901 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
908 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
902 }
909 }
903
910
904 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
911 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
905 if (status[3] != RTEMS_SUCCESSFUL)
912 if (status[3] != RTEMS_SUCCESSFUL)
906 {
913 {
907 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
914 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
908 }
915 }
909
916
910 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
917 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
911 if (status[4] != RTEMS_SUCCESSFUL)
918 if (status[4] != RTEMS_SUCCESSFUL)
912 {
919 {
913 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
920 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
914 }
921 }
915
922
916 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
923 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
917 if (status[5] != RTEMS_SUCCESSFUL)
924 if (status[5] != RTEMS_SUCCESSFUL)
918 {
925 {
919 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
926 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
920 }
927 }
921
928
922 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
929 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
923 if (status[6] != RTEMS_SUCCESSFUL)
930 if (status[6] != RTEMS_SUCCESSFUL)
924 {
931 {
925 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
932 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
926 }
933 }
927
934
928 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
935 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
929 if (status[7] != RTEMS_SUCCESSFUL)
936 if (status[7] != RTEMS_SUCCESSFUL)
930 {
937 {
931 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
938 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
932 }
939 }
933
940
934 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
941 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
935 if (status[8] != RTEMS_SUCCESSFUL)
942 if (status[8] != RTEMS_SUCCESSFUL)
936 {
943 {
937 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
944 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
938 }
945 }
939
946
940 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
947 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
941 if (status[9] != RTEMS_SUCCESSFUL)
948 if (status[9] != RTEMS_SUCCESSFUL)
942 {
949 {
943 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
950 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
944 }
951 }
945
952
946 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
953 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
947 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
954 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
948 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
955 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
949 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
956 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
950 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
957 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
951 {
958 {
952 ret = RTEMS_UNSATISFIED;
959 ret = RTEMS_UNSATISFIED;
953 }
960 }
954
961
955 return ret;
962 return ret;
956 }
963 }
957
964
958 int restart_asm_tasks( unsigned char lfrRequestedMode )
965 int restart_asm_tasks( unsigned char lfrRequestedMode )
959 {
966 {
960 /** This function is used to restart average spectral matrices tasks.
967 /** This function is used to restart average spectral matrices tasks.
961 *
968 *
962 * @return RTEMS directive status codes:
969 * @return RTEMS directive status codes:
963 * - RTEMS_SUCCESSFUL - task restarted successfully
970 * - RTEMS_SUCCESSFUL - task restarted successfully
964 * - RTEMS_INVALID_ID - task id invalid
971 * - RTEMS_INVALID_ID - task id invalid
965 * - RTEMS_INCORRECT_STATE - task never started
972 * - RTEMS_INCORRECT_STATE - task never started
966 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
973 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
967 *
974 *
968 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
975 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
969 *
976 *
970 */
977 */
971
978
972 rtems_status_code status[6];
979 rtems_status_code status[6];
973 rtems_status_code ret;
980 rtems_status_code ret;
974
981
975 ret = RTEMS_SUCCESSFUL;
982 ret = RTEMS_SUCCESSFUL;
976
983
977 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
984 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
978 if (status[0] != RTEMS_SUCCESSFUL)
985 if (status[0] != RTEMS_SUCCESSFUL)
979 {
986 {
980 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
987 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
981 }
988 }
982
989
983 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
990 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
984 if (status[1] != RTEMS_SUCCESSFUL)
991 if (status[1] != RTEMS_SUCCESSFUL)
985 {
992 {
986 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
993 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
987 }
994 }
988
995
989 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
996 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
990 if (status[2] != RTEMS_SUCCESSFUL)
997 if (status[2] != RTEMS_SUCCESSFUL)
991 {
998 {
992 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
999 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
993 }
1000 }
994
1001
995 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1002 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
996 if (status[3] != RTEMS_SUCCESSFUL)
1003 if (status[3] != RTEMS_SUCCESSFUL)
997 {
1004 {
998 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
1005 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
999 }
1006 }
1000
1007
1001 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1008 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1002 if (status[4] != RTEMS_SUCCESSFUL)
1009 if (status[4] != RTEMS_SUCCESSFUL)
1003 {
1010 {
1004 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
1011 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
1005 }
1012 }
1006
1013
1007 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1014 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1008 if (status[5] != RTEMS_SUCCESSFUL)
1015 if (status[5] != RTEMS_SUCCESSFUL)
1009 {
1016 {
1010 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
1017 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
1011 }
1018 }
1012
1019
1013 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
1020 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
1014 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
1021 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
1015 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
1022 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
1016 {
1023 {
1017 ret = RTEMS_UNSATISFIED;
1024 ret = RTEMS_UNSATISFIED;
1018 }
1025 }
1019
1026
1020 return ret;
1027 return ret;
1021 }
1028 }
1022
1029
1023 int suspend_science_tasks( void )
1030 int suspend_science_tasks( void )
1024 {
1031 {
1025 /** This function suspends the science tasks.
1032 /** This function suspends the science tasks.
1026 *
1033 *
1027 * @return RTEMS directive status codes:
1034 * @return RTEMS directive status codes:
1028 * - RTEMS_SUCCESSFUL - task restarted successfully
1035 * - RTEMS_SUCCESSFUL - task restarted successfully
1029 * - RTEMS_INVALID_ID - task id invalid
1036 * - RTEMS_INVALID_ID - task id invalid
1030 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1037 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1031 *
1038 *
1032 */
1039 */
1033
1040
1034 rtems_status_code status;
1041 rtems_status_code status;
1035
1042
1036 PRINTF("in suspend_science_tasks\n")
1043 PRINTF("in suspend_science_tasks\n")
1037
1044
1038 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1045 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1039 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1046 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1040 {
1047 {
1041 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1048 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1042 }
1049 }
1043 else
1050 else
1044 {
1051 {
1045 status = RTEMS_SUCCESSFUL;
1052 status = RTEMS_SUCCESSFUL;
1046 }
1053 }
1047 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1054 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1048 {
1055 {
1049 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1056 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1050 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1057 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1051 {
1058 {
1052 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1059 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1053 }
1060 }
1054 else
1061 else
1055 {
1062 {
1056 status = RTEMS_SUCCESSFUL;
1063 status = RTEMS_SUCCESSFUL;
1057 }
1064 }
1058 }
1065 }
1059 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1066 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1060 {
1067 {
1061 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1068 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1062 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1069 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1063 {
1070 {
1064 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1071 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1065 }
1072 }
1066 else
1073 else
1067 {
1074 {
1068 status = RTEMS_SUCCESSFUL;
1075 status = RTEMS_SUCCESSFUL;
1069 }
1076 }
1070 }
1077 }
1071 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1078 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1072 {
1079 {
1073 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1080 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1074 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1081 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1075 {
1082 {
1076 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1083 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1077 }
1084 }
1078 else
1085 else
1079 {
1086 {
1080 status = RTEMS_SUCCESSFUL;
1087 status = RTEMS_SUCCESSFUL;
1081 }
1088 }
1082 }
1089 }
1083 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1090 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1084 {
1091 {
1085 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1092 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1086 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1093 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1087 {
1094 {
1088 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1095 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1089 }
1096 }
1090 else
1097 else
1091 {
1098 {
1092 status = RTEMS_SUCCESSFUL;
1099 status = RTEMS_SUCCESSFUL;
1093 }
1100 }
1094 }
1101 }
1095 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1102 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1096 {
1103 {
1097 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1104 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1098 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1105 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1099 {
1106 {
1100 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1107 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1101 }
1108 }
1102 else
1109 else
1103 {
1110 {
1104 status = RTEMS_SUCCESSFUL;
1111 status = RTEMS_SUCCESSFUL;
1105 }
1112 }
1106 }
1113 }
1107 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1114 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1108 {
1115 {
1109 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1116 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1110 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1117 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1111 {
1118 {
1112 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1119 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1113 }
1120 }
1114 else
1121 else
1115 {
1122 {
1116 status = RTEMS_SUCCESSFUL;
1123 status = RTEMS_SUCCESSFUL;
1117 }
1124 }
1118 }
1125 }
1119 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1126 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1120 {
1127 {
1121 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1128 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1122 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1129 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1123 {
1130 {
1124 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1131 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1125 }
1132 }
1126 else
1133 else
1127 {
1134 {
1128 status = RTEMS_SUCCESSFUL;
1135 status = RTEMS_SUCCESSFUL;
1129 }
1136 }
1130 }
1137 }
1131 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1138 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1132 {
1139 {
1133 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1140 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1134 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1141 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1135 {
1142 {
1136 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1143 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1137 }
1144 }
1138 else
1145 else
1139 {
1146 {
1140 status = RTEMS_SUCCESSFUL;
1147 status = RTEMS_SUCCESSFUL;
1141 }
1148 }
1142 }
1149 }
1143 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1150 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1144 {
1151 {
1145 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1152 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1146 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1153 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1147 {
1154 {
1148 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1155 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1149 }
1156 }
1150 else
1157 else
1151 {
1158 {
1152 status = RTEMS_SUCCESSFUL;
1159 status = RTEMS_SUCCESSFUL;
1153 }
1160 }
1154 }
1161 }
1155
1162
1156 return status;
1163 return status;
1157 }
1164 }
1158
1165
1159 int suspend_asm_tasks( void )
1166 int suspend_asm_tasks( void )
1160 {
1167 {
1161 /** This function suspends the science tasks.
1168 /** This function suspends the science tasks.
1162 *
1169 *
1163 * @return RTEMS directive status codes:
1170 * @return RTEMS directive status codes:
1164 * - RTEMS_SUCCESSFUL - task restarted successfully
1171 * - RTEMS_SUCCESSFUL - task restarted successfully
1165 * - RTEMS_INVALID_ID - task id invalid
1172 * - RTEMS_INVALID_ID - task id invalid
1166 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1173 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1167 *
1174 *
1168 */
1175 */
1169
1176
1170 rtems_status_code status;
1177 rtems_status_code status;
1171
1178
1172 PRINTF("in suspend_science_tasks\n")
1179 PRINTF("in suspend_science_tasks\n")
1173
1180
1174 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1181 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1175 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1182 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1176 {
1183 {
1177 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1184 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1178 }
1185 }
1179 else
1186 else
1180 {
1187 {
1181 status = RTEMS_SUCCESSFUL;
1188 status = RTEMS_SUCCESSFUL;
1182 }
1189 }
1183
1190
1184 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1191 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1185 {
1192 {
1186 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1193 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1187 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1194 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1188 {
1195 {
1189 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1196 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1190 }
1197 }
1191 else
1198 else
1192 {
1199 {
1193 status = RTEMS_SUCCESSFUL;
1200 status = RTEMS_SUCCESSFUL;
1194 }
1201 }
1195 }
1202 }
1196
1203
1197 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1204 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1198 {
1205 {
1199 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1206 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1200 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1207 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1201 {
1208 {
1202 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1209 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1203 }
1210 }
1204 else
1211 else
1205 {
1212 {
1206 status = RTEMS_SUCCESSFUL;
1213 status = RTEMS_SUCCESSFUL;
1207 }
1214 }
1208 }
1215 }
1209
1216
1210 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1217 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1211 {
1218 {
1212 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1219 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1213 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1220 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1214 {
1221 {
1215 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1222 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1216 }
1223 }
1217 else
1224 else
1218 {
1225 {
1219 status = RTEMS_SUCCESSFUL;
1226 status = RTEMS_SUCCESSFUL;
1220 }
1227 }
1221 }
1228 }
1222
1229
1223 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1230 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1224 {
1231 {
1225 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1232 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1226 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1233 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1227 {
1234 {
1228 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1235 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1229 }
1236 }
1230 else
1237 else
1231 {
1238 {
1232 status = RTEMS_SUCCESSFUL;
1239 status = RTEMS_SUCCESSFUL;
1233 }
1240 }
1234 }
1241 }
1235
1242
1236 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1243 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1237 {
1244 {
1238 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1245 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1239 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1246 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1240 {
1247 {
1241 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1248 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1242 }
1249 }
1243 else
1250 else
1244 {
1251 {
1245 status = RTEMS_SUCCESSFUL;
1252 status = RTEMS_SUCCESSFUL;
1246 }
1253 }
1247 }
1254 }
1248
1255
1249 return status;
1256 return status;
1250 }
1257 }
1251
1258
1252 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1259 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1253 {
1260 {
1254
1261
1255 WFP_reset_current_ring_nodes();
1262 WFP_reset_current_ring_nodes();
1256
1263
1257 reset_waveform_picker_regs();
1264 reset_waveform_picker_regs();
1258
1265
1259 set_wfp_burst_enable_register( mode );
1266 set_wfp_burst_enable_register( mode );
1260
1267
1261 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1268 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1262 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1269 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1263
1270
1264 if (transitionCoarseTime == 0)
1271 if (transitionCoarseTime == 0)
1265 {
1272 {
1266 // instant transition means transition on the next valid date
1273 // instant transition means transition on the next valid date
1267 // this is mandatory to have a good snapshot period a a good correction of the snapshot period
1274 // this is mandatory to have a good snapshot period a a good correction of the snapshot period
1268 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1275 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1269 }
1276 }
1270 else
1277 else
1271 {
1278 {
1272 waveform_picker_regs->start_date = transitionCoarseTime;
1279 waveform_picker_regs->start_date = transitionCoarseTime;
1273 }
1280 }
1274
1281
1275 update_last_valid_transition_date(waveform_picker_regs->start_date);
1282 update_last_valid_transition_date(waveform_picker_regs->start_date);
1276
1283
1277 }
1284 }
1278
1285
1279 void launch_spectral_matrix( void )
1286 void launch_spectral_matrix( void )
1280 {
1287 {
1281 SM_reset_current_ring_nodes();
1288 SM_reset_current_ring_nodes();
1282
1289
1283 reset_spectral_matrix_regs();
1290 reset_spectral_matrix_regs();
1284
1291
1285 reset_nb_sm();
1292 reset_nb_sm();
1286
1293
1287 set_sm_irq_onNewMatrix( 1 );
1294 set_sm_irq_onNewMatrix( 1 );
1288
1295
1289 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1296 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1290 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1297 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1291
1298
1292 }
1299 }
1293
1300
1294 void set_sm_irq_onNewMatrix( unsigned char value )
1301 void set_sm_irq_onNewMatrix( unsigned char value )
1295 {
1302 {
1296 if (value == 1)
1303 if (value == 1)
1297 {
1304 {
1298 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1305 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1299 }
1306 }
1300 else
1307 else
1301 {
1308 {
1302 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1309 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1303 }
1310 }
1304 }
1311 }
1305
1312
1306 void set_sm_irq_onError( unsigned char value )
1313 void set_sm_irq_onError( unsigned char value )
1307 {
1314 {
1308 if (value == 1)
1315 if (value == 1)
1309 {
1316 {
1310 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1317 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1311 }
1318 }
1312 else
1319 else
1313 {
1320 {
1314 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1321 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1315 }
1322 }
1316 }
1323 }
1317
1324
1318 //*****************************
1325 //*****************************
1319 // CONFIGURE CALIBRATION SIGNAL
1326 // CONFIGURE CALIBRATION SIGNAL
1320 void setCalibrationPrescaler( unsigned int prescaler )
1327 void setCalibrationPrescaler( unsigned int prescaler )
1321 {
1328 {
1322 // prescaling of the master clock (25 MHz)
1329 // prescaling of the master clock (25 MHz)
1323 // master clock is divided by 2^prescaler
1330 // master clock is divided by 2^prescaler
1324 time_management_regs->calPrescaler = prescaler;
1331 time_management_regs->calPrescaler = prescaler;
1325 }
1332 }
1326
1333
1327 void setCalibrationDivisor( unsigned int divisionFactor )
1334 void setCalibrationDivisor( unsigned int divisionFactor )
1328 {
1335 {
1329 // division of the prescaled clock by the division factor
1336 // division of the prescaled clock by the division factor
1330 time_management_regs->calDivisor = divisionFactor;
1337 time_management_regs->calDivisor = divisionFactor;
1331 }
1338 }
1332
1339
1333 void setCalibrationData( void ){
1340 void setCalibrationData( void ){
1334 unsigned int k;
1341 unsigned int k;
1335 unsigned short data;
1342 unsigned short data;
1336 float val;
1343 float val;
1337 float f0;
1344 float f0;
1338 float f1;
1345 float f1;
1339 float fs;
1346 float fs;
1340 float Ts;
1347 float Ts;
1341 float scaleFactor;
1348 float scaleFactor;
1342
1349
1343 f0 = 625;
1350 f0 = 625;
1344 f1 = 10000;
1351 f1 = 10000;
1345 fs = 160256.410;
1352 fs = 160256.410;
1346 Ts = 1. / fs;
1353 Ts = 1. / fs;
1347 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1354 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1348
1355
1349 time_management_regs->calDataPtr = 0x00;
1356 time_management_regs->calDataPtr = 0x00;
1350
1357
1351 // build the signal for the SCM calibration
1358 // build the signal for the SCM calibration
1352 for (k=0; k<256; k++)
1359 for (k=0; k<256; k++)
1353 {
1360 {
1354 val = sin( 2 * pi * f0 * k * Ts )
1361 val = sin( 2 * pi * f0 * k * Ts )
1355 + sin( 2 * pi * f1 * k * Ts );
1362 + sin( 2 * pi * f1 * k * Ts );
1356 data = (unsigned short) ((val * scaleFactor) + 2048);
1363 data = (unsigned short) ((val * scaleFactor) + 2048);
1357 time_management_regs->calData = data & 0xfff;
1364 time_management_regs->calData = data & 0xfff;
1358 }
1365 }
1359 }
1366 }
1360
1367
1361 void setCalibrationDataInterleaved( void ){
1368 void setCalibrationDataInterleaved( void ){
1362 unsigned int k;
1369 unsigned int k;
1363 float val;
1370 float val;
1364 float f0;
1371 float f0;
1365 float f1;
1372 float f1;
1366 float fs;
1373 float fs;
1367 float Ts;
1374 float Ts;
1368 unsigned short data[384];
1375 unsigned short data[384];
1369 unsigned char *dataPtr;
1376 unsigned char *dataPtr;
1370
1377
1371 f0 = 625;
1378 f0 = 625;
1372 f1 = 10000;
1379 f1 = 10000;
1373 fs = 240384.615;
1380 fs = 240384.615;
1374 Ts = 1. / fs;
1381 Ts = 1. / fs;
1375
1382
1376 time_management_regs->calDataPtr = 0x00;
1383 time_management_regs->calDataPtr = 0x00;
1377
1384
1378 // build the signal for the SCM calibration
1385 // build the signal for the SCM calibration
1379 for (k=0; k<384; k++)
1386 for (k=0; k<384; k++)
1380 {
1387 {
1381 val = sin( 2 * pi * f0 * k * Ts )
1388 val = sin( 2 * pi * f0 * k * Ts )
1382 + sin( 2 * pi * f1 * k * Ts );
1389 + sin( 2 * pi * f1 * k * Ts );
1383 data[k] = (unsigned short) (val * 512 + 2048);
1390 data[k] = (unsigned short) (val * 512 + 2048);
1384 }
1391 }
1385
1392
1386 // write the signal in interleaved mode
1393 // write the signal in interleaved mode
1387 for (k=0; k<128; k++)
1394 for (k=0; k<128; k++)
1388 {
1395 {
1389 dataPtr = (unsigned char*) &data[k*3 + 2];
1396 dataPtr = (unsigned char*) &data[k*3 + 2];
1390 time_management_regs->calData = (data[k*3] & 0xfff)
1397 time_management_regs->calData = (data[k*3] & 0xfff)
1391 + ( (dataPtr[0] & 0x3f) << 12);
1398 + ( (dataPtr[0] & 0x3f) << 12);
1392 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1399 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1393 + ( (dataPtr[1] & 0x3f) << 12);
1400 + ( (dataPtr[1] & 0x3f) << 12);
1394 }
1401 }
1395 }
1402 }
1396
1403
1397 void setCalibrationReload( bool state)
1404 void setCalibrationReload( bool state)
1398 {
1405 {
1399 if (state == true)
1406 if (state == true)
1400 {
1407 {
1401 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1408 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1402 }
1409 }
1403 else
1410 else
1404 {
1411 {
1405 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1412 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1406 }
1413 }
1407 }
1414 }
1408
1415
1409 void setCalibrationEnable( bool state )
1416 void setCalibrationEnable( bool state )
1410 {
1417 {
1411 // this bit drives the multiplexer
1418 // this bit drives the multiplexer
1412 if (state == true)
1419 if (state == true)
1413 {
1420 {
1414 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1421 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1415 }
1422 }
1416 else
1423 else
1417 {
1424 {
1418 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1425 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1419 }
1426 }
1420 }
1427 }
1421
1428
1422 void setCalibrationInterleaved( bool state )
1429 void setCalibrationInterleaved( bool state )
1423 {
1430 {
1424 // this bit drives the multiplexer
1431 // this bit drives the multiplexer
1425 if (state == true)
1432 if (state == true)
1426 {
1433 {
1427 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1434 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1428 }
1435 }
1429 else
1436 else
1430 {
1437 {
1431 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1438 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1432 }
1439 }
1433 }
1440 }
1434
1441
1435 void setCalibration( bool state )
1442 void setCalibration( bool state )
1436 {
1443 {
1437 if (state == true)
1444 if (state == true)
1438 {
1445 {
1439 setCalibrationEnable( true );
1446 setCalibrationEnable( true );
1440 setCalibrationReload( false );
1447 setCalibrationReload( false );
1441 set_hk_lfr_calib_enable( true );
1448 set_hk_lfr_calib_enable( true );
1442 }
1449 }
1443 else
1450 else
1444 {
1451 {
1445 setCalibrationEnable( false );
1452 setCalibrationEnable( false );
1446 setCalibrationReload( true );
1453 setCalibrationReload( true );
1447 set_hk_lfr_calib_enable( false );
1454 set_hk_lfr_calib_enable( false );
1448 }
1455 }
1449 }
1456 }
1450
1457
1451 void configureCalibration( bool interleaved )
1458 void configureCalibration( bool interleaved )
1452 {
1459 {
1453 setCalibration( false );
1460 setCalibration( false );
1454 if ( interleaved == true )
1461 if ( interleaved == true )
1455 {
1462 {
1456 setCalibrationInterleaved( true );
1463 setCalibrationInterleaved( true );
1457 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1464 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1458 setCalibrationDivisor( 26 ); // => 240 384
1465 setCalibrationDivisor( 26 ); // => 240 384
1459 setCalibrationDataInterleaved();
1466 setCalibrationDataInterleaved();
1460 }
1467 }
1461 else
1468 else
1462 {
1469 {
1463 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1470 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1464 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1471 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1465 setCalibrationData();
1472 setCalibrationData();
1466 }
1473 }
1467 }
1474 }
1468
1475
1469 //****************
1476 //****************
1470 // CLOSING ACTIONS
1477 // CLOSING ACTIONS
1471 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1478 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1472 {
1479 {
1473 /** This function is used to update the HK packets statistics after a successful TC execution.
1480 /** This function is used to update the HK packets statistics after a successful TC execution.
1474 *
1481 *
1475 * @param TC points to the TC being processed
1482 * @param TC points to the TC being processed
1476 * @param time is the time used to date the TC execution
1483 * @param time is the time used to date the TC execution
1477 *
1484 *
1478 */
1485 */
1479
1486
1480 unsigned int val;
1487 unsigned int val;
1481
1488
1482 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1489 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1483 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1490 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1484 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1491 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1485 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1492 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1486 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1493 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1487 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1494 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1488 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1495 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1489 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1496 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1490 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1497 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1491 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1498 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1492 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1499 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1493 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1500 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1494
1501
1495 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1502 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1496 val++;
1503 val++;
1497 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1504 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1498 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1505 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1499 }
1506 }
1500
1507
1501 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1508 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1502 {
1509 {
1503 /** This function is used to update the HK packets statistics after a TC rejection.
1510 /** This function is used to update the HK packets statistics after a TC rejection.
1504 *
1511 *
1505 * @param TC points to the TC being processed
1512 * @param TC points to the TC being processed
1506 * @param time is the time used to date the TC rejection
1513 * @param time is the time used to date the TC rejection
1507 *
1514 *
1508 */
1515 */
1509
1516
1510 unsigned int val;
1517 unsigned int val;
1511
1518
1512 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1519 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1513 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1520 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1514 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1521 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1515 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1522 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1516 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1523 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1517 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1524 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1518 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1525 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1519 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1526 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1520 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1527 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1521 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1528 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1522 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1529 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1523 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1530 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1524
1531
1525 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1532 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1526 val++;
1533 val++;
1527 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1534 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1528 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1535 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1529 }
1536 }
1530
1537
1531 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1538 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1532 {
1539 {
1533 /** This function is the last step of the TC execution workflow.
1540 /** This function is the last step of the TC execution workflow.
1534 *
1541 *
1535 * @param TC points to the TC being processed
1542 * @param TC points to the TC being processed
1536 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1543 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1537 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1544 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1538 * @param time is the time used to date the TC execution
1545 * @param time is the time used to date the TC execution
1539 *
1546 *
1540 */
1547 */
1541
1548
1542 unsigned char requestedMode;
1549 unsigned char requestedMode;
1543
1550
1544 if (result == LFR_SUCCESSFUL)
1551 if (result == LFR_SUCCESSFUL)
1545 {
1552 {
1546 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1553 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1547 &
1554 &
1548 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1555 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1549 )
1556 )
1550 {
1557 {
1551 send_tm_lfr_tc_exe_success( TC, queue_id );
1558 send_tm_lfr_tc_exe_success( TC, queue_id );
1552 }
1559 }
1553 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1560 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1554 {
1561 {
1555 //**********************************
1562 //**********************************
1556 // UPDATE THE LFRMODE LOCAL VARIABLE
1563 // UPDATE THE LFRMODE LOCAL VARIABLE
1557 requestedMode = TC->dataAndCRC[1];
1564 requestedMode = TC->dataAndCRC[1];
1558 updateLFRCurrentMode( requestedMode );
1565 updateLFRCurrentMode( requestedMode );
1559 }
1566 }
1560 }
1567 }
1561 else if (result == LFR_EXE_ERROR)
1568 else if (result == LFR_EXE_ERROR)
1562 {
1569 {
1563 send_tm_lfr_tc_exe_error( TC, queue_id );
1570 send_tm_lfr_tc_exe_error( TC, queue_id );
1564 }
1571 }
1565 }
1572 }
1566
1573
1567 //***************************
1574 //***************************
1568 // Interrupt Service Routines
1575 // Interrupt Service Routines
1569 rtems_isr commutation_isr1( rtems_vector_number vector )
1576 rtems_isr commutation_isr1( rtems_vector_number vector )
1570 {
1577 {
1571 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1578 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1572 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1579 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1573 }
1580 }
1574 }
1581 }
1575
1582
1576 rtems_isr commutation_isr2( rtems_vector_number vector )
1583 rtems_isr commutation_isr2( rtems_vector_number vector )
1577 {
1584 {
1578 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1585 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1579 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1586 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1580 }
1587 }
1581 }
1588 }
1582
1589
1583 //****************
1590 //****************
1584 // OTHER FUNCTIONS
1591 // OTHER FUNCTIONS
1585 void updateLFRCurrentMode( unsigned char requestedMode )
1592 void updateLFRCurrentMode( unsigned char requestedMode )
1586 {
1593 {
1587 /** This function updates the value of the global variable lfrCurrentMode.
1594 /** This function updates the value of the global variable lfrCurrentMode.
1588 *
1595 *
1589 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1596 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1590 *
1597 *
1591 */
1598 */
1592
1599
1593 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1600 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1594 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1601 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1595 lfrCurrentMode = requestedMode;
1602 lfrCurrentMode = requestedMode;
1596 }
1603 }
1597
1604
1598 void set_lfr_soft_reset( unsigned char value )
1605 void set_lfr_soft_reset( unsigned char value )
1599 {
1606 {
1600 if (value == 1)
1607 if (value == 1)
1601 {
1608 {
1602 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1609 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1603 }
1610 }
1604 else
1611 else
1605 {
1612 {
1606 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1613 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1607 }
1614 }
1608 }
1615 }
1609
1616
1610 void reset_lfr( void )
1617 void reset_lfr( void )
1611 {
1618 {
1612 set_lfr_soft_reset( 1 );
1619 set_lfr_soft_reset( 1 );
1613
1620
1614 set_lfr_soft_reset( 0 );
1621 set_lfr_soft_reset( 0 );
1615
1622
1616 set_hk_lfr_sc_potential_flag( true );
1623 set_hk_lfr_sc_potential_flag( true );
1617 }
1624 }
General Comments 0
You need to be logged in to leave comments. Login now