##// END OF EJS Templates
3.0.0.13
paul -
r250:0e4f9f3e6a3f R3a
parent child
Show More
@@ -1,1412 +1,1422
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name;
16 rtems_name semq_name;
17 rtems_id semq_id;
17 rtems_id semq_id;
18
18
19 //*****************
19 //*****************
20 // waveform headers
20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
24
24
25 unsigned char previousTimecodeCtr = 0;
25 unsigned char previousTimecodeCtr = 0;
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27
27
28 //***********
28 //***********
29 // RTEMS TASK
29 // RTEMS TASK
30 rtems_task spiq_task(rtems_task_argument unused)
30 rtems_task spiq_task(rtems_task_argument unused)
31 {
31 {
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 *
33 *
34 * @param unused is the starting argument of the RTEMS task
34 * @param unused is the starting argument of the RTEMS task
35 *
35 *
36 */
36 */
37
37
38 rtems_event_set event_out;
38 rtems_event_set event_out;
39 rtems_status_code status;
39 rtems_status_code status;
40 int linkStatus;
40 int linkStatus;
41
41
42 BOOT_PRINTF("in SPIQ *** \n")
42 BOOT_PRINTF("in SPIQ *** \n")
43
43
44 while(true){
44 while(true){
45 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
45 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
46 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
46 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
47
47
48 // [0] SUSPEND RECV AND SEND TASKS
48 // [0] SUSPEND RECV AND SEND TASKS
49 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
49 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
50 if ( status != RTEMS_SUCCESSFUL ) {
50 if ( status != RTEMS_SUCCESSFUL ) {
51 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
51 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
52 }
52 }
53 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
53 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
54 if ( status != RTEMS_SUCCESSFUL ) {
54 if ( status != RTEMS_SUCCESSFUL ) {
55 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
55 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
56 }
56 }
57
57
58 // [1] CHECK THE LINK
58 // [1] CHECK THE LINK
59 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
59 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
60 if ( linkStatus != 5) {
60 if ( linkStatus != 5) {
61 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
61 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
62 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
62 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
63 }
63 }
64
64
65 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
65 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
66 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
66 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
67 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
67 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
68 {
68 {
69 spacewire_compute_stats_offsets();
69 spacewire_compute_stats_offsets();
70 status = spacewire_reset_link( );
70 status = spacewire_reset_link( );
71 }
71 }
72 else // [2.b] in run state, start the link
72 else // [2.b] in run state, start the link
73 {
73 {
74 status = spacewire_stop_and_start_link( fdSPW ); // start the link
74 status = spacewire_stop_and_start_link( fdSPW ); // start the link
75 if ( status != RTEMS_SUCCESSFUL)
75 if ( status != RTEMS_SUCCESSFUL)
76 {
76 {
77 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
77 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
78 }
78 }
79 }
79 }
80
80
81 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
81 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
82 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
82 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
83 {
83 {
84 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
84 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
85 if ( status != RTEMS_SUCCESSFUL ) {
85 if ( status != RTEMS_SUCCESSFUL ) {
86 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
86 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
87 }
87 }
88 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
88 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
89 if ( status != RTEMS_SUCCESSFUL ) {
89 if ( status != RTEMS_SUCCESSFUL ) {
90 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
90 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
91 }
91 }
92 }
92 }
93 else // [3.b] the link is not in run state, go in STANDBY mode
93 else // [3.b] the link is not in run state, go in STANDBY mode
94 {
94 {
95 status = enter_mode_standby();
95 status = enter_mode_standby();
96 if ( status != RTEMS_SUCCESSFUL ) {
96 if ( status != RTEMS_SUCCESSFUL ) {
97 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
97 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
98 }
98 }
99 // wake the WTDG task up to wait for the link recovery
99 // wake the WTDG task up to wait for the link recovery
100 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
100 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
101 status = rtems_task_suspend( RTEMS_SELF );
101 status = rtems_task_suspend( RTEMS_SELF );
102 }
102 }
103 }
103 }
104 }
104 }
105
105
106 rtems_task recv_task( rtems_task_argument unused )
106 rtems_task recv_task( rtems_task_argument unused )
107 {
107 {
108 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
108 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
109 *
109 *
110 * @param unused is the starting argument of the RTEMS task
110 * @param unused is the starting argument of the RTEMS task
111 *
111 *
112 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
112 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
113 * 1. It reads the incoming data.
113 * 1. It reads the incoming data.
114 * 2. Launches the acceptance procedure.
114 * 2. Launches the acceptance procedure.
115 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
115 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
116 *
116 *
117 */
117 */
118
118
119 int len;
119 int len;
120 ccsdsTelecommandPacket_t currentTC;
120 ccsdsTelecommandPacket_t currentTC;
121 unsigned char computed_CRC[ 2 ];
121 unsigned char computed_CRC[ 2 ];
122 unsigned char currentTC_LEN_RCV[ 2 ];
122 unsigned char currentTC_LEN_RCV[ 2 ];
123 unsigned char destinationID;
123 unsigned char destinationID;
124 unsigned int estimatedPacketLength;
124 unsigned int estimatedPacketLength;
125 unsigned int parserCode;
125 unsigned int parserCode;
126 rtems_status_code status;
126 rtems_status_code status;
127 rtems_id queue_recv_id;
127 rtems_id queue_recv_id;
128 rtems_id queue_send_id;
128 rtems_id queue_send_id;
129
129
130 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
130 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
131
131
132 status = get_message_queue_id_recv( &queue_recv_id );
132 status = get_message_queue_id_recv( &queue_recv_id );
133 if (status != RTEMS_SUCCESSFUL)
133 if (status != RTEMS_SUCCESSFUL)
134 {
134 {
135 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
135 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
136 }
136 }
137
137
138 status = get_message_queue_id_send( &queue_send_id );
138 status = get_message_queue_id_send( &queue_send_id );
139 if (status != RTEMS_SUCCESSFUL)
139 if (status != RTEMS_SUCCESSFUL)
140 {
140 {
141 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
141 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
142 }
142 }
143
143
144 BOOT_PRINTF("in RECV *** \n")
144 BOOT_PRINTF("in RECV *** \n")
145
145
146 while(1)
146 while(1)
147 {
147 {
148 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
148 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
149 if (len == -1){ // error during the read call
149 if (len == -1){ // error during the read call
150 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
150 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
151 }
151 }
152 else {
152 else {
153 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
153 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
154 PRINTF("in RECV *** packet lenght too short\n")
154 PRINTF("in RECV *** packet lenght too short\n")
155 }
155 }
156 else {
156 else {
157 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
157 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
158 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
158 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
159 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
159 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
160 // CHECK THE TC
160 // CHECK THE TC
161 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
161 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
162 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
162 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
163 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
163 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
164 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
164 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
165 || (parserCode == WRONG_SRC_ID) )
165 || (parserCode == WRONG_SRC_ID) )
166 { // send TM_LFR_TC_EXE_CORRUPTED
166 { // send TM_LFR_TC_EXE_CORRUPTED
167 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
167 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
168 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
168 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
169 &&
169 &&
170 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
170 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
171 )
171 )
172 {
172 {
173 if ( parserCode == WRONG_SRC_ID )
173 if ( parserCode == WRONG_SRC_ID )
174 {
174 {
175 destinationID = SID_TC_GROUND;
175 destinationID = SID_TC_GROUND;
176 }
176 }
177 else
177 else
178 {
178 {
179 destinationID = currentTC.sourceID;
179 destinationID = currentTC.sourceID;
180 }
180 }
181 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
181 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
182 computed_CRC, currentTC_LEN_RCV,
182 computed_CRC, currentTC_LEN_RCV,
183 destinationID );
183 destinationID );
184 }
184 }
185 }
185 }
186 else
186 else
187 { // send valid TC to the action launcher
187 { // send valid TC to the action launcher
188 status = rtems_message_queue_send( queue_recv_id, &currentTC,
188 status = rtems_message_queue_send( queue_recv_id, &currentTC,
189 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
189 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
190 }
190 }
191 }
191 }
192 }
192 }
193
193
194 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
194 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
195
195
196 }
196 }
197 }
197 }
198
198
199 rtems_task send_task( rtems_task_argument argument)
199 rtems_task send_task( rtems_task_argument argument)
200 {
200 {
201 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
201 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
202 *
202 *
203 * @param unused is the starting argument of the RTEMS task
203 * @param unused is the starting argument of the RTEMS task
204 *
204 *
205 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
205 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
206 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
206 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
207 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
207 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
208 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
208 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
209 * data it contains.
209 * data it contains.
210 *
210 *
211 */
211 */
212
212
213 rtems_status_code status; // RTEMS status code
213 rtems_status_code status; // RTEMS status code
214 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
214 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
215 ring_node *incomingRingNodePtr;
215 ring_node *incomingRingNodePtr;
216 int ring_node_address;
216 int ring_node_address;
217 char *charPtr;
217 char *charPtr;
218 spw_ioctl_pkt_send *spw_ioctl_send;
218 spw_ioctl_pkt_send *spw_ioctl_send;
219 size_t size; // size of the incoming TC packet
219 size_t size; // size of the incoming TC packet
220 rtems_id queue_send_id;
220 rtems_id queue_send_id;
221 unsigned int sid;
221 unsigned int sid;
222 unsigned char sidAsUnsignedChar;
222 unsigned char sidAsUnsignedChar;
223 unsigned char type;
223 unsigned char type;
224
224
225 incomingRingNodePtr = NULL;
225 incomingRingNodePtr = NULL;
226 ring_node_address = 0;
226 ring_node_address = 0;
227 charPtr = (char *) &ring_node_address;
227 charPtr = (char *) &ring_node_address;
228 sid = 0;
228 sid = 0;
229 sidAsUnsignedChar = 0;
229 sidAsUnsignedChar = 0;
230
230
231 init_header_cwf( &headerCWF );
231 init_header_cwf( &headerCWF );
232 init_header_swf( &headerSWF );
232 init_header_swf( &headerSWF );
233 init_header_asm( &headerASM );
233 init_header_asm( &headerASM );
234
234
235 status = get_message_queue_id_send( &queue_send_id );
235 status = get_message_queue_id_send( &queue_send_id );
236 if (status != RTEMS_SUCCESSFUL)
236 if (status != RTEMS_SUCCESSFUL)
237 {
237 {
238 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
238 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
239 }
239 }
240
240
241 BOOT_PRINTF("in SEND *** \n")
241 BOOT_PRINTF("in SEND *** \n")
242
242
243 while(1)
243 while(1)
244 {
244 {
245 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
245 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
247
247
248 if (status!=RTEMS_SUCCESSFUL)
248 if (status!=RTEMS_SUCCESSFUL)
249 {
249 {
250 PRINTF1("in SEND *** (1) ERR = %d\n", status)
250 PRINTF1("in SEND *** (1) ERR = %d\n", status)
251 }
251 }
252 else
252 else
253 {
253 {
254 if ( size == sizeof(ring_node*) )
254 if ( size == sizeof(ring_node*) )
255 {
255 {
256 charPtr[0] = incomingData[0];
256 charPtr[0] = incomingData[0];
257 charPtr[1] = incomingData[1];
257 charPtr[1] = incomingData[1];
258 charPtr[2] = incomingData[2];
258 charPtr[2] = incomingData[2];
259 charPtr[3] = incomingData[3];
259 charPtr[3] = incomingData[3];
260 incomingRingNodePtr = (ring_node*) ring_node_address;
260 incomingRingNodePtr = (ring_node*) ring_node_address;
261 sid = incomingRingNodePtr->sid;
261 sid = incomingRingNodePtr->sid;
262 if ( (sid==SID_NORM_CWF_LONG_F3)
262 if ( (sid==SID_NORM_CWF_LONG_F3)
263 || (sid==SID_BURST_CWF_F2 )
263 || (sid==SID_BURST_CWF_F2 )
264 || (sid==SID_SBM1_CWF_F1 )
264 || (sid==SID_SBM1_CWF_F1 )
265 || (sid==SID_SBM2_CWF_F2 ))
265 || (sid==SID_SBM2_CWF_F2 ))
266 {
266 {
267 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
267 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
268 }
268 }
269 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
269 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
270 {
270 {
271 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
271 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
272 }
272 }
273 else if ( (sid==SID_NORM_CWF_F3) )
273 else if ( (sid==SID_NORM_CWF_F3) )
274 {
274 {
275 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
275 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
276 }
276 }
277 else if (sid==SID_NORM_ASM_F0)
277 else if (sid==SID_NORM_ASM_F0)
278 {
278 {
279 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
279 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
280 }
280 }
281 else if (sid==SID_NORM_ASM_F1)
281 else if (sid==SID_NORM_ASM_F1)
282 {
282 {
283 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
283 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
284 }
284 }
285 else if (sid==SID_NORM_ASM_F2)
285 else if (sid==SID_NORM_ASM_F2)
286 {
286 {
287 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
287 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
288 }
288 }
289 else if ( sid==TM_CODE_K_DUMP )
289 else if ( sid==TM_CODE_K_DUMP )
290 {
290 {
291 spw_send_k_dump( incomingRingNodePtr );
291 spw_send_k_dump( incomingRingNodePtr );
292 }
292 }
293 else
293 else
294 {
294 {
295 PRINTF1("unexpected sid = %d\n", sid);
295 PRINTF1("unexpected sid = %d\n", sid);
296 }
296 }
297 }
297 }
298 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
298 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
299 {
299 {
300 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
300 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
301 sid = sidAsUnsignedChar;
301 sid = sidAsUnsignedChar;
302 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
302 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
303 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
303 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
304 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
304 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
305 {
305 {
306 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
306 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
307 }
307 }
308
308
309 status = write( fdSPW, incomingData, size );
309 status = write( fdSPW, incomingData, size );
310 if (status == -1){
310 if (status == -1){
311 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
311 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
312 }
312 }
313 }
313 }
314 else // the incoming message is a spw_ioctl_pkt_send structure
314 else // the incoming message is a spw_ioctl_pkt_send structure
315 {
315 {
316 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
316 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
317 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
317 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
318 if (status == -1){
318 if (status == -1){
319 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
319 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
320 }
320 }
321 }
321 }
322 }
322 }
323
323
324 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
324 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
325
325
326 }
326 }
327 }
327 }
328
328
329 rtems_task wtdg_task( rtems_task_argument argument )
329 rtems_task wtdg_task( rtems_task_argument argument )
330 {
330 {
331 rtems_event_set event_out;
331 rtems_event_set event_out;
332 rtems_status_code status;
332 rtems_status_code status;
333 int linkStatus;
333 int linkStatus;
334
334
335 BOOT_PRINTF("in WTDG ***\n")
335 BOOT_PRINTF("in WTDG ***\n")
336
336
337 while(1)
337 while(1)
338 {
338 {
339 // wait for an RTEMS_EVENT
339 // wait for an RTEMS_EVENT
340 rtems_event_receive( RTEMS_EVENT_0,
340 rtems_event_receive( RTEMS_EVENT_0,
341 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
342 PRINTF("in WTDG *** wait for the link\n")
342 PRINTF("in WTDG *** wait for the link\n")
343 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
343 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
344 while( linkStatus != 5) // wait for the link
344 while( linkStatus != 5) // wait for the link
345 {
345 {
346 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
346 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
347 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
347 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
348 }
348 }
349
349
350 status = spacewire_stop_and_start_link( fdSPW );
350 status = spacewire_stop_and_start_link( fdSPW );
351
351
352 if (status != RTEMS_SUCCESSFUL)
352 if (status != RTEMS_SUCCESSFUL)
353 {
353 {
354 PRINTF1("in WTDG *** ERR link not started %d\n", status)
354 PRINTF1("in WTDG *** ERR link not started %d\n", status)
355 }
355 }
356 else
356 else
357 {
357 {
358 PRINTF("in WTDG *** OK link started\n")
358 PRINTF("in WTDG *** OK link started\n")
359 }
359 }
360
360
361 // restart the SPIQ task
361 // restart the SPIQ task
362 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
362 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
363 if ( status != RTEMS_SUCCESSFUL ) {
363 if ( status != RTEMS_SUCCESSFUL ) {
364 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
364 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
365 }
365 }
366
366
367 // restart RECV and SEND
367 // restart RECV and SEND
368 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
368 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
369 if ( status != RTEMS_SUCCESSFUL ) {
369 if ( status != RTEMS_SUCCESSFUL ) {
370 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
370 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
371 }
371 }
372 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
372 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
373 if ( status != RTEMS_SUCCESSFUL ) {
373 if ( status != RTEMS_SUCCESSFUL ) {
374 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
374 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
375 }
375 }
376 }
376 }
377 }
377 }
378
378
379 //****************
379 //****************
380 // OTHER FUNCTIONS
380 // OTHER FUNCTIONS
381 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
381 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
382 {
382 {
383 /** This function opens the SpaceWire link.
383 /** This function opens the SpaceWire link.
384 *
384 *
385 * @return a valid file descriptor in case of success, -1 in case of a failure
385 * @return a valid file descriptor in case of success, -1 in case of a failure
386 *
386 *
387 */
387 */
388 rtems_status_code status;
388 rtems_status_code status;
389
389
390 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
390 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
391 if ( fdSPW < 0 ) {
391 if ( fdSPW < 0 ) {
392 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
392 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
393 }
393 }
394 else
394 else
395 {
395 {
396 status = RTEMS_SUCCESSFUL;
396 status = RTEMS_SUCCESSFUL;
397 }
397 }
398
398
399 return status;
399 return status;
400 }
400 }
401
401
402 int spacewire_start_link( int fd )
402 int spacewire_start_link( int fd )
403 {
403 {
404 rtems_status_code status;
404 rtems_status_code status;
405
405
406 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
406 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
407 // -1 default hardcoded driver timeout
407 // -1 default hardcoded driver timeout
408
408
409 return status;
409 return status;
410 }
410 }
411
411
412 int spacewire_stop_and_start_link( int fd )
412 int spacewire_stop_and_start_link( int fd )
413 {
413 {
414 rtems_status_code status;
414 rtems_status_code status;
415
415
416 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
416 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
417 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
417 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
418 // -1 default hardcoded driver timeout
418 // -1 default hardcoded driver timeout
419
419
420 return status;
420 return status;
421 }
421 }
422
422
423 int spacewire_configure_link( int fd )
423 int spacewire_configure_link( int fd )
424 {
424 {
425 /** This function configures the SpaceWire link.
425 /** This function configures the SpaceWire link.
426 *
426 *
427 * @return GR-RTEMS-DRIVER directive status codes:
427 * @return GR-RTEMS-DRIVER directive status codes:
428 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
428 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
429 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
429 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
430 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
430 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
431 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
431 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
432 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
432 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
433 * - 5 EIO - Error when writing to grswp hardware registers.
433 * - 5 EIO - Error when writing to grswp hardware registers.
434 * - 2 ENOENT - No such file or directory
434 * - 2 ENOENT - No such file or directory
435 */
435 */
436
436
437 rtems_status_code status;
437 rtems_status_code status;
438
438
439 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
439 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
440 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
440 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
441
441
442 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
442 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
443 if (status!=RTEMS_SUCCESSFUL) {
443 if (status!=RTEMS_SUCCESSFUL) {
444 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
444 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
445 }
445 }
446 //
446 //
447 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
447 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
448 if (status!=RTEMS_SUCCESSFUL) {
448 if (status!=RTEMS_SUCCESSFUL) {
449 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
449 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
450 }
450 }
451 //
451 //
452 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
452 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
453 if (status!=RTEMS_SUCCESSFUL) {
453 if (status!=RTEMS_SUCCESSFUL) {
454 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
454 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
455 }
455 }
456 //
456 //
457 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
457 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
458 if (status!=RTEMS_SUCCESSFUL) {
458 if (status!=RTEMS_SUCCESSFUL) {
459 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
459 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
460 }
460 }
461 //
461 //
462 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
462 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
463 if (status!=RTEMS_SUCCESSFUL) {
463 if (status!=RTEMS_SUCCESSFUL) {
464 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
464 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
465 }
465 }
466 //
466 //
467 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
467 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
468 if (status!=RTEMS_SUCCESSFUL) {
468 if (status!=RTEMS_SUCCESSFUL) {
469 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
469 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
470 }
470 }
471 //
471 //
472 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
472 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
473 if (status!=RTEMS_SUCCESSFUL) {
473 if (status!=RTEMS_SUCCESSFUL) {
474 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
474 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
475 }
475 }
476
476
477 return status;
477 return status;
478 }
478 }
479
479
480 int spacewire_reset_link( void )
480 int spacewire_reset_link( void )
481 {
481 {
482 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
482 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
483 *
483 *
484 * @return RTEMS directive status code:
484 * @return RTEMS directive status code:
485 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
485 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
486 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
486 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
487 *
487 *
488 */
488 */
489
489
490 rtems_status_code status_spw;
490 rtems_status_code status_spw;
491 rtems_status_code status;
491 rtems_status_code status;
492 int i;
492 int i;
493
493
494 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
494 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
495 {
495 {
496 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
496 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
497
497
498 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
498 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
499
499
500 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
500 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
501
501
502 status_spw = spacewire_stop_and_start_link( fdSPW );
502 status_spw = spacewire_stop_and_start_link( fdSPW );
503 if ( status_spw != RTEMS_SUCCESSFUL )
503 if ( status_spw != RTEMS_SUCCESSFUL )
504 {
504 {
505 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
505 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
506 }
506 }
507
507
508 if ( status_spw == RTEMS_SUCCESSFUL)
508 if ( status_spw == RTEMS_SUCCESSFUL)
509 {
509 {
510 break;
510 break;
511 }
511 }
512 }
512 }
513
513
514 return status_spw;
514 return status_spw;
515 }
515 }
516
516
517 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
517 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
518 {
518 {
519 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
519 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
520 *
520 *
521 * @param val is the value, 0 or 1, used to set the value of the NP bit.
521 * @param val is the value, 0 or 1, used to set the value of the NP bit.
522 * @param regAddr is the address of the GRSPW control register.
522 * @param regAddr is the address of the GRSPW control register.
523 *
523 *
524 * NP is the bit 20 of the GRSPW control register.
524 * NP is the bit 20 of the GRSPW control register.
525 *
525 *
526 */
526 */
527
527
528 unsigned int *spwptr = (unsigned int*) regAddr;
528 unsigned int *spwptr = (unsigned int*) regAddr;
529
529
530 if (val == 1) {
530 if (val == 1) {
531 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
531 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
532 }
532 }
533 if (val== 0) {
533 if (val== 0) {
534 *spwptr = *spwptr & 0xffdfffff;
534 *spwptr = *spwptr & 0xffdfffff;
535 }
535 }
536 }
536 }
537
537
538 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
538 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
539 {
539 {
540 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
540 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
541 *
541 *
542 * @param val is the value, 0 or 1, used to set the value of the RE bit.
542 * @param val is the value, 0 or 1, used to set the value of the RE bit.
543 * @param regAddr is the address of the GRSPW control register.
543 * @param regAddr is the address of the GRSPW control register.
544 *
544 *
545 * RE is the bit 16 of the GRSPW control register.
545 * RE is the bit 16 of the GRSPW control register.
546 *
546 *
547 */
547 */
548
548
549 unsigned int *spwptr = (unsigned int*) regAddr;
549 unsigned int *spwptr = (unsigned int*) regAddr;
550
550
551 if (val == 1)
551 if (val == 1)
552 {
552 {
553 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
553 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
554 }
554 }
555 if (val== 0)
555 if (val== 0)
556 {
556 {
557 *spwptr = *spwptr & 0xfffdffff;
557 *spwptr = *spwptr & 0xfffdffff;
558 }
558 }
559 }
559 }
560
560
561 void spacewire_compute_stats_offsets( void )
561 void spacewire_compute_stats_offsets( void )
562 {
562 {
563 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
563 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
564 *
564 *
565 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
565 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
566 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
566 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
567 * during the open systel call).
567 * during the open systel call).
568 *
568 *
569 */
569 */
570
570
571 spw_stats spacewire_stats_grspw;
571 spw_stats spacewire_stats_grspw;
572 rtems_status_code status;
572 rtems_status_code status;
573
573
574 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
574 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
575
575
576 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
576 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
577 + spacewire_stats.packets_received;
577 + spacewire_stats.packets_received;
578 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
578 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
579 + spacewire_stats.packets_sent;
579 + spacewire_stats.packets_sent;
580 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
580 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
581 + spacewire_stats.parity_err;
581 + spacewire_stats.parity_err;
582 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
582 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
583 + spacewire_stats.disconnect_err;
583 + spacewire_stats.disconnect_err;
584 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
584 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
585 + spacewire_stats.escape_err;
585 + spacewire_stats.escape_err;
586 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
586 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
587 + spacewire_stats.credit_err;
587 + spacewire_stats.credit_err;
588 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
588 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
589 + spacewire_stats.write_sync_err;
589 + spacewire_stats.write_sync_err;
590 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
590 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
591 + spacewire_stats.rx_rmap_header_crc_err;
591 + spacewire_stats.rx_rmap_header_crc_err;
592 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
592 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
593 + spacewire_stats.rx_rmap_data_crc_err;
593 + spacewire_stats.rx_rmap_data_crc_err;
594 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
594 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
595 + spacewire_stats.early_ep;
595 + spacewire_stats.early_ep;
596 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
596 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
597 + spacewire_stats.invalid_address;
597 + spacewire_stats.invalid_address;
598 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
598 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
599 + spacewire_stats.rx_eep_err;
599 + spacewire_stats.rx_eep_err;
600 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
600 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
601 + spacewire_stats.rx_truncated;
601 + spacewire_stats.rx_truncated;
602 }
602 }
603
603
604 void spacewire_update_statistics( void )
604 void spacewire_update_statistics( void )
605 {
605 {
606 rtems_status_code status;
606 rtems_status_code status;
607 spw_stats spacewire_stats_grspw;
607 spw_stats spacewire_stats_grspw;
608
608
609 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
609 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
610
610
611 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
611 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
612 + spacewire_stats_grspw.packets_received;
612 + spacewire_stats_grspw.packets_received;
613 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
613 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
614 + spacewire_stats_grspw.packets_sent;
614 + spacewire_stats_grspw.packets_sent;
615 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
615 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
616 + spacewire_stats_grspw.parity_err;
616 + spacewire_stats_grspw.parity_err;
617 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
617 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
618 + spacewire_stats_grspw.disconnect_err;
618 + spacewire_stats_grspw.disconnect_err;
619 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
619 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
620 + spacewire_stats_grspw.escape_err;
620 + spacewire_stats_grspw.escape_err;
621 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
621 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
622 + spacewire_stats_grspw.credit_err;
622 + spacewire_stats_grspw.credit_err;
623 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
623 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
624 + spacewire_stats_grspw.write_sync_err;
624 + spacewire_stats_grspw.write_sync_err;
625 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
625 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
626 + spacewire_stats_grspw.rx_rmap_header_crc_err;
626 + spacewire_stats_grspw.rx_rmap_header_crc_err;
627 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
627 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
628 + spacewire_stats_grspw.rx_rmap_data_crc_err;
628 + spacewire_stats_grspw.rx_rmap_data_crc_err;
629 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
629 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
630 + spacewire_stats_grspw.early_ep;
630 + spacewire_stats_grspw.early_ep;
631 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
631 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
632 + spacewire_stats_grspw.invalid_address;
632 + spacewire_stats_grspw.invalid_address;
633 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
633 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
634 + spacewire_stats_grspw.rx_eep_err;
634 + spacewire_stats_grspw.rx_eep_err;
635 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
635 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
636 + spacewire_stats_grspw.rx_truncated;
636 + spacewire_stats_grspw.rx_truncated;
637 //spacewire_stats.tx_link_err;
637 //spacewire_stats.tx_link_err;
638
638
639 //****************************
639 //****************************
640 // DPU_SPACEWIRE_IF_STATISTICS
640 // DPU_SPACEWIRE_IF_STATISTICS
641 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
641 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
642 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
642 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
643 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
643 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
644 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
644 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
645 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
645 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
646 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
646 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
647
647
648 //******************************************
648 //******************************************
649 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
649 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
650 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
650 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
651 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
651 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
652 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
652 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
653 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
653 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
654 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
654 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
655
655
656 //*********************************************
656 //*********************************************
657 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
657 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
658 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
658 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
659 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
659 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
660 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
660 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
661 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
661 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
662 }
662 }
663
663
664 void increase_unsigned_char_counter( unsigned char *counter )
664 void increase_unsigned_char_counter( unsigned char *counter )
665 {
665 {
666 // update the number of valid timecodes that have been received
666 // update the number of valid timecodes that have been received
667 if (*counter == 255)
667 if (*counter == 255)
668 {
668 {
669 *counter = 0;
669 *counter = 0;
670 }
670 }
671 else
671 else
672 {
672 {
673 *counter = *counter + 1;
673 *counter = *counter + 1;
674 }
674 }
675 }
675 }
676
676
677 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
677 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
678 {
678 {
679
679
680 unsigned char currentTimecodeCtr;
680 unsigned char currentTimecodeCtr;
681
681
682 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
682 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
683
683
684 if (currentTimecodeCtr == previousTimecodeCtr)
684 if (currentTimecodeCtr == previousTimecodeCtr)
685 {
685 {
686 //************************
686 //************************
687 // HK_LFR_TIMECODE_MISSING
687 // HK_LFR_TIMECODE_MISSING
688 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
688 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
689 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
689 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
690 }
690 }
691 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
691 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
692 {
692 {
693 // the timecode value has changed and the value is valid, this is unexpected because
693 // the timecode value has changed and the value is valid, this is unexpected because
694 // the timer should not have fired, the timecode_irq_handler should have been raised
694 // the timer should not have fired, the timecode_irq_handler should have been raised
695 }
695 }
696 else
696 else
697 {
697 {
698 //************************
698 //************************
699 // HK_LFR_TIMECODE_INVALID
699 // HK_LFR_TIMECODE_INVALID
700 // the timecode value has changed and the value is not valid, no tickout has been generated
700 // the timecode value has changed and the value is not valid, no tickout has been generated
701 // this is why the timer has fired
701 // this is why the timer has fired
702 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
702 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
703 }
703 }
704
704
705 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
705 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
706 }
706 }
707
707
708 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
708 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
709 {
709 {
710 /** This function checks the coherency between the incoming timecode and the last valid timecode.
711 *
712 * @param currentTimecodeCtr is the incoming timecode
713 *
714 * @return returned codes::
715 * - LFR_DEFAULT
716 * - LFR_SUCCESSFUL
717 *
718 */
719
710 static unsigned char firstTickout = 1;
720 static unsigned char firstTickout = 1;
711 unsigned char ret;
721 unsigned char ret;
712
722
713 ret = LFR_DEFAULT;
723 ret = LFR_DEFAULT;
714
724
715 if (firstTickout == 0)
725 if (firstTickout == 0)
716 {
726 {
717 if (currentTimecodeCtr == 0)
727 if (currentTimecodeCtr == 0)
718 {
728 {
719 if (previousTimecodeCtr == 63)
729 if (previousTimecodeCtr == 63)
720 {
730 {
721 ret = LFR_SUCCESSFUL;
731 ret = LFR_SUCCESSFUL;
722 }
732 }
723 else
733 else
724 {
734 {
725 ret = LFR_DEFAULT;
735 ret = LFR_DEFAULT;
726 }
736 }
727 }
737 }
728 else
738 else
729 {
739 {
730 if (currentTimecodeCtr == (previousTimecodeCtr +1))
740 if (currentTimecodeCtr == (previousTimecodeCtr +1))
731 {
741 {
732 ret = LFR_SUCCESSFUL;
742 ret = LFR_SUCCESSFUL;
733 }
743 }
734 else
744 else
735 {
745 {
736 ret = LFR_DEFAULT;
746 ret = LFR_DEFAULT;
737 }
747 }
738 }
748 }
739 }
749 }
740 else
750 else
741 {
751 {
742 firstTickout = 0;
752 firstTickout = 0;
743 ret = LFR_SUCCESSFUL;
753 ret = LFR_SUCCESSFUL;
744 }
754 }
745
755
746 return ret;
756 return ret;
747 }
757 }
748
758
749 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
759 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
750 {
760 {
751 unsigned int ret;
761 unsigned int ret;
752
762
753 ret = LFR_DEFAULT;
763 ret = LFR_DEFAULT;
754
764
755 if (timecode == internalTime)
765 if (timecode == internalTime)
756 {
766 {
757 ret = LFR_SUCCESSFUL;
767 ret = LFR_SUCCESSFUL;
758 }
768 }
759 else
769 else
760 {
770 {
761 ret = LFR_DEFAULT;
771 ret = LFR_DEFAULT;
762 }
772 }
763
773
764 return ret;
774 return ret;
765 }
775 }
766
776
767 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
777 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
768 {
778 {
769 // a tickout has been emitted, perform actions on the incoming timecode
779 // a tickout has been emitted, perform actions on the incoming timecode
770
780
771 unsigned char incomingTimecode;
781 unsigned char incomingTimecode;
772 unsigned char updateTime;
782 unsigned char updateTime;
773 unsigned char internalTime;
783 unsigned char internalTime;
774 rtems_status_code status;
784 rtems_status_code status;
775
785
776 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
786 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
777 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
787 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
778 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
788 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
779
789
780 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
790 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
781
791
782 // update the number of tickout that have been generated
792 // update the number of tickout that have been generated
783 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
793 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
784
794
785 //**************************
795 //**************************
786 // HK_LFR_TIMECODE_ERRONEOUS
796 // HK_LFR_TIMECODE_ERRONEOUS
787 // MISSING and INVALID are handled by the timecode_timer_routine service routine
797 // MISSING and INVALID are handled by the timecode_timer_routine service routine
788 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
798 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
789 {
799 {
790 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
800 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
791 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
801 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
792 }
802 }
793
803
794 //************************
804 //************************
795 // HK_LFR_TIME_TIMECODE_IT
805 // HK_LFR_TIME_TIMECODE_IT
796 // check the coherency between the SpaceWire timecode and the Internal Time
806 // check the coherency between the SpaceWire timecode and the Internal Time
797 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
807 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
798 {
808 {
799 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
809 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
800 }
810 }
801
811
802 //********************
812 //********************
803 // HK_LFR_TIMECODE_CTR
813 // HK_LFR_TIMECODE_CTR
804 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
814 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
805 if (incomingTimecode != updateTime)
815 if (incomingTimecode != updateTime)
806 {
816 {
807 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
817 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
808 }
818 }
809
819
810 // launch the timecode timer to detect missing or invalid timecodes
820 // launch the timecode timer to detect missing or invalid timecodes
811 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
821 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
812 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
822 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
813 }
823 }
814
824
815 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
825 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
816 {
826 {
817 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
827 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
818 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
828 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
819 header->reserved = DEFAULT_RESERVED;
829 header->reserved = DEFAULT_RESERVED;
820 header->userApplication = CCSDS_USER_APP;
830 header->userApplication = CCSDS_USER_APP;
821 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
831 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
822 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
832 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
823 header->packetLength[0] = 0x00;
833 header->packetLength[0] = 0x00;
824 header->packetLength[1] = 0x00;
834 header->packetLength[1] = 0x00;
825 // DATA FIELD HEADER
835 // DATA FIELD HEADER
826 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
836 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
827 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
837 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
828 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
838 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
829 header->destinationID = TM_DESTINATION_ID_GROUND;
839 header->destinationID = TM_DESTINATION_ID_GROUND;
830 header->time[0] = 0x00;
840 header->time[0] = 0x00;
831 header->time[0] = 0x00;
841 header->time[0] = 0x00;
832 header->time[0] = 0x00;
842 header->time[0] = 0x00;
833 header->time[0] = 0x00;
843 header->time[0] = 0x00;
834 header->time[0] = 0x00;
844 header->time[0] = 0x00;
835 header->time[0] = 0x00;
845 header->time[0] = 0x00;
836 // AUXILIARY DATA HEADER
846 // AUXILIARY DATA HEADER
837 header->sid = 0x00;
847 header->sid = 0x00;
838 header->hkBIA = DEFAULT_HKBIA;
848 header->hkBIA = DEFAULT_HKBIA;
839 header->blkNr[0] = 0x00;
849 header->blkNr[0] = 0x00;
840 header->blkNr[1] = 0x00;
850 header->blkNr[1] = 0x00;
841 }
851 }
842
852
843 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
853 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
844 {
854 {
845 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
855 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
846 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
856 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
847 header->reserved = DEFAULT_RESERVED;
857 header->reserved = DEFAULT_RESERVED;
848 header->userApplication = CCSDS_USER_APP;
858 header->userApplication = CCSDS_USER_APP;
849 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
859 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
850 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
860 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
851 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
861 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
852 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
862 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
853 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
863 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
854 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
864 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
855 // DATA FIELD HEADER
865 // DATA FIELD HEADER
856 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
866 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
857 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
867 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
858 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
868 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
859 header->destinationID = TM_DESTINATION_ID_GROUND;
869 header->destinationID = TM_DESTINATION_ID_GROUND;
860 header->time[0] = 0x00;
870 header->time[0] = 0x00;
861 header->time[0] = 0x00;
871 header->time[0] = 0x00;
862 header->time[0] = 0x00;
872 header->time[0] = 0x00;
863 header->time[0] = 0x00;
873 header->time[0] = 0x00;
864 header->time[0] = 0x00;
874 header->time[0] = 0x00;
865 header->time[0] = 0x00;
875 header->time[0] = 0x00;
866 // AUXILIARY DATA HEADER
876 // AUXILIARY DATA HEADER
867 header->sid = 0x00;
877 header->sid = 0x00;
868 header->hkBIA = DEFAULT_HKBIA;
878 header->hkBIA = DEFAULT_HKBIA;
869 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
879 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
870 header->pktNr = 0x00;
880 header->pktNr = 0x00;
871 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
881 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
872 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
882 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
873 }
883 }
874
884
875 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
885 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
876 {
886 {
877 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
887 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
878 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
888 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
879 header->reserved = DEFAULT_RESERVED;
889 header->reserved = DEFAULT_RESERVED;
880 header->userApplication = CCSDS_USER_APP;
890 header->userApplication = CCSDS_USER_APP;
881 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
891 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
882 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
892 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
883 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
893 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
884 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
894 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
885 header->packetLength[0] = 0x00;
895 header->packetLength[0] = 0x00;
886 header->packetLength[1] = 0x00;
896 header->packetLength[1] = 0x00;
887 // DATA FIELD HEADER
897 // DATA FIELD HEADER
888 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
898 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
889 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
899 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
890 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
900 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
891 header->destinationID = TM_DESTINATION_ID_GROUND;
901 header->destinationID = TM_DESTINATION_ID_GROUND;
892 header->time[0] = 0x00;
902 header->time[0] = 0x00;
893 header->time[0] = 0x00;
903 header->time[0] = 0x00;
894 header->time[0] = 0x00;
904 header->time[0] = 0x00;
895 header->time[0] = 0x00;
905 header->time[0] = 0x00;
896 header->time[0] = 0x00;
906 header->time[0] = 0x00;
897 header->time[0] = 0x00;
907 header->time[0] = 0x00;
898 // AUXILIARY DATA HEADER
908 // AUXILIARY DATA HEADER
899 header->sid = 0x00;
909 header->sid = 0x00;
900 header->biaStatusInfo = 0x00;
910 header->biaStatusInfo = 0x00;
901 header->pa_lfr_pkt_cnt_asm = 0x00;
911 header->pa_lfr_pkt_cnt_asm = 0x00;
902 header->pa_lfr_pkt_nr_asm = 0x00;
912 header->pa_lfr_pkt_nr_asm = 0x00;
903 header->pa_lfr_asm_blk_nr[0] = 0x00;
913 header->pa_lfr_asm_blk_nr[0] = 0x00;
904 header->pa_lfr_asm_blk_nr[1] = 0x00;
914 header->pa_lfr_asm_blk_nr[1] = 0x00;
905 }
915 }
906
916
907 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
917 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
908 Header_TM_LFR_SCIENCE_CWF_t *header )
918 Header_TM_LFR_SCIENCE_CWF_t *header )
909 {
919 {
910 /** This function sends CWF CCSDS packets (F2, F1 or F0).
920 /** This function sends CWF CCSDS packets (F2, F1 or F0).
911 *
921 *
912 * @param waveform points to the buffer containing the data that will be send.
922 * @param waveform points to the buffer containing the data that will be send.
913 * @param sid is the source identifier of the data that will be sent.
923 * @param sid is the source identifier of the data that will be sent.
914 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
924 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
915 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
925 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
916 * contain information to setup the transmission of the data packets.
926 * contain information to setup the transmission of the data packets.
917 *
927 *
918 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
928 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
919 *
929 *
920 */
930 */
921
931
922 unsigned int i;
932 unsigned int i;
923 int ret;
933 int ret;
924 unsigned int coarseTime;
934 unsigned int coarseTime;
925 unsigned int fineTime;
935 unsigned int fineTime;
926 rtems_status_code status;
936 rtems_status_code status;
927 spw_ioctl_pkt_send spw_ioctl_send_CWF;
937 spw_ioctl_pkt_send spw_ioctl_send_CWF;
928 int *dataPtr;
938 int *dataPtr;
929 unsigned char sid;
939 unsigned char sid;
930
940
931 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
941 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
932 spw_ioctl_send_CWF.options = 0;
942 spw_ioctl_send_CWF.options = 0;
933
943
934 ret = LFR_DEFAULT;
944 ret = LFR_DEFAULT;
935 sid = (unsigned char) ring_node_to_send->sid;
945 sid = (unsigned char) ring_node_to_send->sid;
936
946
937 coarseTime = ring_node_to_send->coarseTime;
947 coarseTime = ring_node_to_send->coarseTime;
938 fineTime = ring_node_to_send->fineTime;
948 fineTime = ring_node_to_send->fineTime;
939 dataPtr = (int*) ring_node_to_send->buffer_address;
949 dataPtr = (int*) ring_node_to_send->buffer_address;
940
950
941 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
951 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
942 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
952 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
943 header->hkBIA = pa_bia_status_info;
953 header->hkBIA = pa_bia_status_info;
944 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
954 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
945 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
955 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
946 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
956 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
947
957
948 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
958 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
949 {
959 {
950 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
960 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
951 spw_ioctl_send_CWF.hdr = (char*) header;
961 spw_ioctl_send_CWF.hdr = (char*) header;
952 // BUILD THE DATA
962 // BUILD THE DATA
953 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
963 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
954
964
955 // SET PACKET SEQUENCE CONTROL
965 // SET PACKET SEQUENCE CONTROL
956 increment_seq_counter_source_id( header->packetSequenceControl, sid );
966 increment_seq_counter_source_id( header->packetSequenceControl, sid );
957
967
958 // SET SID
968 // SET SID
959 header->sid = sid;
969 header->sid = sid;
960
970
961 // SET PACKET TIME
971 // SET PACKET TIME
962 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
972 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
963 //
973 //
964 header->time[0] = header->acquisitionTime[0];
974 header->time[0] = header->acquisitionTime[0];
965 header->time[1] = header->acquisitionTime[1];
975 header->time[1] = header->acquisitionTime[1];
966 header->time[2] = header->acquisitionTime[2];
976 header->time[2] = header->acquisitionTime[2];
967 header->time[3] = header->acquisitionTime[3];
977 header->time[3] = header->acquisitionTime[3];
968 header->time[4] = header->acquisitionTime[4];
978 header->time[4] = header->acquisitionTime[4];
969 header->time[5] = header->acquisitionTime[5];
979 header->time[5] = header->acquisitionTime[5];
970
980
971 // SET PACKET ID
981 // SET PACKET ID
972 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
982 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
973 {
983 {
974 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
984 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
975 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
985 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
976 }
986 }
977 else
987 else
978 {
988 {
979 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
989 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
980 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
990 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
981 }
991 }
982
992
983 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
993 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
984 if (status != RTEMS_SUCCESSFUL) {
994 if (status != RTEMS_SUCCESSFUL) {
985 ret = LFR_DEFAULT;
995 ret = LFR_DEFAULT;
986 }
996 }
987 }
997 }
988
998
989 return ret;
999 return ret;
990 }
1000 }
991
1001
992 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1002 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
993 Header_TM_LFR_SCIENCE_SWF_t *header )
1003 Header_TM_LFR_SCIENCE_SWF_t *header )
994 {
1004 {
995 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1005 /** This function sends SWF CCSDS packets (F2, F1 or F0).
996 *
1006 *
997 * @param waveform points to the buffer containing the data that will be send.
1007 * @param waveform points to the buffer containing the data that will be send.
998 * @param sid is the source identifier of the data that will be sent.
1008 * @param sid is the source identifier of the data that will be sent.
999 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1009 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1000 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1010 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1001 * contain information to setup the transmission of the data packets.
1011 * contain information to setup the transmission of the data packets.
1002 *
1012 *
1003 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1013 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1004 *
1014 *
1005 */
1015 */
1006
1016
1007 unsigned int i;
1017 unsigned int i;
1008 int ret;
1018 int ret;
1009 unsigned int coarseTime;
1019 unsigned int coarseTime;
1010 unsigned int fineTime;
1020 unsigned int fineTime;
1011 rtems_status_code status;
1021 rtems_status_code status;
1012 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1022 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1013 int *dataPtr;
1023 int *dataPtr;
1014 unsigned char sid;
1024 unsigned char sid;
1015
1025
1016 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1026 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1017 spw_ioctl_send_SWF.options = 0;
1027 spw_ioctl_send_SWF.options = 0;
1018
1028
1019 ret = LFR_DEFAULT;
1029 ret = LFR_DEFAULT;
1020
1030
1021 coarseTime = ring_node_to_send->coarseTime;
1031 coarseTime = ring_node_to_send->coarseTime;
1022 fineTime = ring_node_to_send->fineTime;
1032 fineTime = ring_node_to_send->fineTime;
1023 dataPtr = (int*) ring_node_to_send->buffer_address;
1033 dataPtr = (int*) ring_node_to_send->buffer_address;
1024 sid = ring_node_to_send->sid;
1034 sid = ring_node_to_send->sid;
1025
1035
1026 header->hkBIA = pa_bia_status_info;
1036 header->hkBIA = pa_bia_status_info;
1027 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1037 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1028
1038
1029 for (i=0; i<7; i++) // send waveform
1039 for (i=0; i<7; i++) // send waveform
1030 {
1040 {
1031 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1041 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1032 spw_ioctl_send_SWF.hdr = (char*) header;
1042 spw_ioctl_send_SWF.hdr = (char*) header;
1033
1043
1034 // SET PACKET SEQUENCE CONTROL
1044 // SET PACKET SEQUENCE CONTROL
1035 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1045 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1036
1046
1037 // SET PACKET LENGTH AND BLKNR
1047 // SET PACKET LENGTH AND BLKNR
1038 if (i == 6)
1048 if (i == 6)
1039 {
1049 {
1040 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1050 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1041 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
1051 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
1042 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1052 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1043 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
1053 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
1044 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1054 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1045 }
1055 }
1046 else
1056 else
1047 {
1057 {
1048 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1058 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1049 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
1059 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
1050 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1060 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1051 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
1061 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
1052 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1062 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1053 }
1063 }
1054
1064
1055 // SET PACKET TIME
1065 // SET PACKET TIME
1056 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1066 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1057 //
1067 //
1058 header->time[0] = header->acquisitionTime[0];
1068 header->time[0] = header->acquisitionTime[0];
1059 header->time[1] = header->acquisitionTime[1];
1069 header->time[1] = header->acquisitionTime[1];
1060 header->time[2] = header->acquisitionTime[2];
1070 header->time[2] = header->acquisitionTime[2];
1061 header->time[3] = header->acquisitionTime[3];
1071 header->time[3] = header->acquisitionTime[3];
1062 header->time[4] = header->acquisitionTime[4];
1072 header->time[4] = header->acquisitionTime[4];
1063 header->time[5] = header->acquisitionTime[5];
1073 header->time[5] = header->acquisitionTime[5];
1064
1074
1065 // SET SID
1075 // SET SID
1066 header->sid = sid;
1076 header->sid = sid;
1067
1077
1068 // SET PKTNR
1078 // SET PKTNR
1069 header->pktNr = i+1; // PKT_NR
1079 header->pktNr = i+1; // PKT_NR
1070
1080
1071 // SEND PACKET
1081 // SEND PACKET
1072 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1082 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1073 if (status != RTEMS_SUCCESSFUL) {
1083 if (status != RTEMS_SUCCESSFUL) {
1074 ret = LFR_DEFAULT;
1084 ret = LFR_DEFAULT;
1075 }
1085 }
1076 }
1086 }
1077
1087
1078 return ret;
1088 return ret;
1079 }
1089 }
1080
1090
1081 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1091 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1082 Header_TM_LFR_SCIENCE_CWF_t *header )
1092 Header_TM_LFR_SCIENCE_CWF_t *header )
1083 {
1093 {
1084 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1094 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1085 *
1095 *
1086 * @param waveform points to the buffer containing the data that will be send.
1096 * @param waveform points to the buffer containing the data that will be send.
1087 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1097 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1088 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1098 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1089 * contain information to setup the transmission of the data packets.
1099 * contain information to setup the transmission of the data packets.
1090 *
1100 *
1091 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1101 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1092 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1102 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1093 *
1103 *
1094 */
1104 */
1095
1105
1096 unsigned int i;
1106 unsigned int i;
1097 int ret;
1107 int ret;
1098 unsigned int coarseTime;
1108 unsigned int coarseTime;
1099 unsigned int fineTime;
1109 unsigned int fineTime;
1100 rtems_status_code status;
1110 rtems_status_code status;
1101 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1111 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1102 char *dataPtr;
1112 char *dataPtr;
1103 unsigned char sid;
1113 unsigned char sid;
1104
1114
1105 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1115 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1106 spw_ioctl_send_CWF.options = 0;
1116 spw_ioctl_send_CWF.options = 0;
1107
1117
1108 ret = LFR_DEFAULT;
1118 ret = LFR_DEFAULT;
1109 sid = ring_node_to_send->sid;
1119 sid = ring_node_to_send->sid;
1110
1120
1111 coarseTime = ring_node_to_send->coarseTime;
1121 coarseTime = ring_node_to_send->coarseTime;
1112 fineTime = ring_node_to_send->fineTime;
1122 fineTime = ring_node_to_send->fineTime;
1113 dataPtr = (char*) ring_node_to_send->buffer_address;
1123 dataPtr = (char*) ring_node_to_send->buffer_address;
1114
1124
1115 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
1125 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
1116 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1126 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1117 header->hkBIA = pa_bia_status_info;
1127 header->hkBIA = pa_bia_status_info;
1118 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1128 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1119 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
1129 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
1120 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1130 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1121
1131
1122 //*********************
1132 //*********************
1123 // SEND CWF3_light DATA
1133 // SEND CWF3_light DATA
1124 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1134 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1125 {
1135 {
1126 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1136 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1127 spw_ioctl_send_CWF.hdr = (char*) header;
1137 spw_ioctl_send_CWF.hdr = (char*) header;
1128 // BUILD THE DATA
1138 // BUILD THE DATA
1129 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1139 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1130
1140
1131 // SET PACKET SEQUENCE COUNTER
1141 // SET PACKET SEQUENCE COUNTER
1132 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1142 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1133
1143
1134 // SET SID
1144 // SET SID
1135 header->sid = sid;
1145 header->sid = sid;
1136
1146
1137 // SET PACKET TIME
1147 // SET PACKET TIME
1138 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1148 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1139 //
1149 //
1140 header->time[0] = header->acquisitionTime[0];
1150 header->time[0] = header->acquisitionTime[0];
1141 header->time[1] = header->acquisitionTime[1];
1151 header->time[1] = header->acquisitionTime[1];
1142 header->time[2] = header->acquisitionTime[2];
1152 header->time[2] = header->acquisitionTime[2];
1143 header->time[3] = header->acquisitionTime[3];
1153 header->time[3] = header->acquisitionTime[3];
1144 header->time[4] = header->acquisitionTime[4];
1154 header->time[4] = header->acquisitionTime[4];
1145 header->time[5] = header->acquisitionTime[5];
1155 header->time[5] = header->acquisitionTime[5];
1146
1156
1147 // SET PACKET ID
1157 // SET PACKET ID
1148 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1158 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1149 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1159 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1150
1160
1151 // SEND PACKET
1161 // SEND PACKET
1152 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1162 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1153 if (status != RTEMS_SUCCESSFUL) {
1163 if (status != RTEMS_SUCCESSFUL) {
1154 ret = LFR_DEFAULT;
1164 ret = LFR_DEFAULT;
1155 }
1165 }
1156 }
1166 }
1157
1167
1158 return ret;
1168 return ret;
1159 }
1169 }
1160
1170
1161 void spw_send_asm_f0( ring_node *ring_node_to_send,
1171 void spw_send_asm_f0( ring_node *ring_node_to_send,
1162 Header_TM_LFR_SCIENCE_ASM_t *header )
1172 Header_TM_LFR_SCIENCE_ASM_t *header )
1163 {
1173 {
1164 unsigned int i;
1174 unsigned int i;
1165 unsigned int length = 0;
1175 unsigned int length = 0;
1166 rtems_status_code status;
1176 rtems_status_code status;
1167 unsigned int sid;
1177 unsigned int sid;
1168 float *spectral_matrix;
1178 float *spectral_matrix;
1169 int coarseTime;
1179 int coarseTime;
1170 int fineTime;
1180 int fineTime;
1171 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1181 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1172
1182
1173 sid = ring_node_to_send->sid;
1183 sid = ring_node_to_send->sid;
1174 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1184 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1175 coarseTime = ring_node_to_send->coarseTime;
1185 coarseTime = ring_node_to_send->coarseTime;
1176 fineTime = ring_node_to_send->fineTime;
1186 fineTime = ring_node_to_send->fineTime;
1177
1187
1178 header->biaStatusInfo = pa_bia_status_info;
1188 header->biaStatusInfo = pa_bia_status_info;
1179 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1189 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1180
1190
1181 for (i=0; i<3; i++)
1191 for (i=0; i<3; i++)
1182 {
1192 {
1183 if ((i==0) || (i==1))
1193 if ((i==0) || (i==1))
1184 {
1194 {
1185 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1195 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1186 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1196 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1187 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1197 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1188 ];
1198 ];
1189 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1199 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1190 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1200 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1191 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> 8 ); // BLK_NR MSB
1201 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> 8 ); // BLK_NR MSB
1192 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1202 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1193 }
1203 }
1194 else
1204 else
1195 {
1205 {
1196 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1206 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1197 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1207 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1198 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1208 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1199 ];
1209 ];
1200 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1210 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1201 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1211 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1202 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> 8 ); // BLK_NR MSB
1212 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> 8 ); // BLK_NR MSB
1203 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1213 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1204 }
1214 }
1205
1215
1206 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1216 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1207 spw_ioctl_send_ASM.hdr = (char *) header;
1217 spw_ioctl_send_ASM.hdr = (char *) header;
1208 spw_ioctl_send_ASM.options = 0;
1218 spw_ioctl_send_ASM.options = 0;
1209
1219
1210 // (2) BUILD THE HEADER
1220 // (2) BUILD THE HEADER
1211 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1221 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1212 header->packetLength[0] = (unsigned char) (length>>8);
1222 header->packetLength[0] = (unsigned char) (length>>8);
1213 header->packetLength[1] = (unsigned char) (length);
1223 header->packetLength[1] = (unsigned char) (length);
1214 header->sid = (unsigned char) sid; // SID
1224 header->sid = (unsigned char) sid; // SID
1215 header->pa_lfr_pkt_cnt_asm = 3;
1225 header->pa_lfr_pkt_cnt_asm = 3;
1216 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1226 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1217
1227
1218 // (3) SET PACKET TIME
1228 // (3) SET PACKET TIME
1219 header->time[0] = (unsigned char) (coarseTime>>24);
1229 header->time[0] = (unsigned char) (coarseTime>>24);
1220 header->time[1] = (unsigned char) (coarseTime>>16);
1230 header->time[1] = (unsigned char) (coarseTime>>16);
1221 header->time[2] = (unsigned char) (coarseTime>>8);
1231 header->time[2] = (unsigned char) (coarseTime>>8);
1222 header->time[3] = (unsigned char) (coarseTime);
1232 header->time[3] = (unsigned char) (coarseTime);
1223 header->time[4] = (unsigned char) (fineTime>>8);
1233 header->time[4] = (unsigned char) (fineTime>>8);
1224 header->time[5] = (unsigned char) (fineTime);
1234 header->time[5] = (unsigned char) (fineTime);
1225 //
1235 //
1226 header->acquisitionTime[0] = header->time[0];
1236 header->acquisitionTime[0] = header->time[0];
1227 header->acquisitionTime[1] = header->time[1];
1237 header->acquisitionTime[1] = header->time[1];
1228 header->acquisitionTime[2] = header->time[2];
1238 header->acquisitionTime[2] = header->time[2];
1229 header->acquisitionTime[3] = header->time[3];
1239 header->acquisitionTime[3] = header->time[3];
1230 header->acquisitionTime[4] = header->time[4];
1240 header->acquisitionTime[4] = header->time[4];
1231 header->acquisitionTime[5] = header->time[5];
1241 header->acquisitionTime[5] = header->time[5];
1232
1242
1233 // (4) SEND PACKET
1243 // (4) SEND PACKET
1234 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1244 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1235 if (status != RTEMS_SUCCESSFUL) {
1245 if (status != RTEMS_SUCCESSFUL) {
1236 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1246 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1237 }
1247 }
1238 }
1248 }
1239 }
1249 }
1240
1250
1241 void spw_send_asm_f1( ring_node *ring_node_to_send,
1251 void spw_send_asm_f1( ring_node *ring_node_to_send,
1242 Header_TM_LFR_SCIENCE_ASM_t *header )
1252 Header_TM_LFR_SCIENCE_ASM_t *header )
1243 {
1253 {
1244 unsigned int i;
1254 unsigned int i;
1245 unsigned int length = 0;
1255 unsigned int length = 0;
1246 rtems_status_code status;
1256 rtems_status_code status;
1247 unsigned int sid;
1257 unsigned int sid;
1248 float *spectral_matrix;
1258 float *spectral_matrix;
1249 int coarseTime;
1259 int coarseTime;
1250 int fineTime;
1260 int fineTime;
1251 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1261 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1252
1262
1253 sid = ring_node_to_send->sid;
1263 sid = ring_node_to_send->sid;
1254 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1264 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1255 coarseTime = ring_node_to_send->coarseTime;
1265 coarseTime = ring_node_to_send->coarseTime;
1256 fineTime = ring_node_to_send->fineTime;
1266 fineTime = ring_node_to_send->fineTime;
1257
1267
1258 header->biaStatusInfo = pa_bia_status_info;
1268 header->biaStatusInfo = pa_bia_status_info;
1259 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1269 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1260
1270
1261 for (i=0; i<3; i++)
1271 for (i=0; i<3; i++)
1262 {
1272 {
1263 if ((i==0) || (i==1))
1273 if ((i==0) || (i==1))
1264 {
1274 {
1265 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1275 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1266 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1276 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1267 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1277 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1268 ];
1278 ];
1269 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1279 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1270 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1280 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1271 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> 8 ); // BLK_NR MSB
1281 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> 8 ); // BLK_NR MSB
1272 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1282 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1273 }
1283 }
1274 else
1284 else
1275 {
1285 {
1276 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1286 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1277 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1287 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1278 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1288 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1279 ];
1289 ];
1280 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1290 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1281 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1291 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1282 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> 8 ); // BLK_NR MSB
1292 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> 8 ); // BLK_NR MSB
1283 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1293 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1284 }
1294 }
1285
1295
1286 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1296 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1287 spw_ioctl_send_ASM.hdr = (char *) header;
1297 spw_ioctl_send_ASM.hdr = (char *) header;
1288 spw_ioctl_send_ASM.options = 0;
1298 spw_ioctl_send_ASM.options = 0;
1289
1299
1290 // (2) BUILD THE HEADER
1300 // (2) BUILD THE HEADER
1291 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1301 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1292 header->packetLength[0] = (unsigned char) (length>>8);
1302 header->packetLength[0] = (unsigned char) (length>>8);
1293 header->packetLength[1] = (unsigned char) (length);
1303 header->packetLength[1] = (unsigned char) (length);
1294 header->sid = (unsigned char) sid; // SID
1304 header->sid = (unsigned char) sid; // SID
1295 header->pa_lfr_pkt_cnt_asm = 3;
1305 header->pa_lfr_pkt_cnt_asm = 3;
1296 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1306 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1297
1307
1298 // (3) SET PACKET TIME
1308 // (3) SET PACKET TIME
1299 header->time[0] = (unsigned char) (coarseTime>>24);
1309 header->time[0] = (unsigned char) (coarseTime>>24);
1300 header->time[1] = (unsigned char) (coarseTime>>16);
1310 header->time[1] = (unsigned char) (coarseTime>>16);
1301 header->time[2] = (unsigned char) (coarseTime>>8);
1311 header->time[2] = (unsigned char) (coarseTime>>8);
1302 header->time[3] = (unsigned char) (coarseTime);
1312 header->time[3] = (unsigned char) (coarseTime);
1303 header->time[4] = (unsigned char) (fineTime>>8);
1313 header->time[4] = (unsigned char) (fineTime>>8);
1304 header->time[5] = (unsigned char) (fineTime);
1314 header->time[5] = (unsigned char) (fineTime);
1305 //
1315 //
1306 header->acquisitionTime[0] = header->time[0];
1316 header->acquisitionTime[0] = header->time[0];
1307 header->acquisitionTime[1] = header->time[1];
1317 header->acquisitionTime[1] = header->time[1];
1308 header->acquisitionTime[2] = header->time[2];
1318 header->acquisitionTime[2] = header->time[2];
1309 header->acquisitionTime[3] = header->time[3];
1319 header->acquisitionTime[3] = header->time[3];
1310 header->acquisitionTime[4] = header->time[4];
1320 header->acquisitionTime[4] = header->time[4];
1311 header->acquisitionTime[5] = header->time[5];
1321 header->acquisitionTime[5] = header->time[5];
1312
1322
1313 // (4) SEND PACKET
1323 // (4) SEND PACKET
1314 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1324 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1315 if (status != RTEMS_SUCCESSFUL) {
1325 if (status != RTEMS_SUCCESSFUL) {
1316 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1326 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1317 }
1327 }
1318 }
1328 }
1319 }
1329 }
1320
1330
1321 void spw_send_asm_f2( ring_node *ring_node_to_send,
1331 void spw_send_asm_f2( ring_node *ring_node_to_send,
1322 Header_TM_LFR_SCIENCE_ASM_t *header )
1332 Header_TM_LFR_SCIENCE_ASM_t *header )
1323 {
1333 {
1324 unsigned int i;
1334 unsigned int i;
1325 unsigned int length = 0;
1335 unsigned int length = 0;
1326 rtems_status_code status;
1336 rtems_status_code status;
1327 unsigned int sid;
1337 unsigned int sid;
1328 float *spectral_matrix;
1338 float *spectral_matrix;
1329 int coarseTime;
1339 int coarseTime;
1330 int fineTime;
1340 int fineTime;
1331 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1341 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1332
1342
1333 sid = ring_node_to_send->sid;
1343 sid = ring_node_to_send->sid;
1334 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1344 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1335 coarseTime = ring_node_to_send->coarseTime;
1345 coarseTime = ring_node_to_send->coarseTime;
1336 fineTime = ring_node_to_send->fineTime;
1346 fineTime = ring_node_to_send->fineTime;
1337
1347
1338 header->biaStatusInfo = pa_bia_status_info;
1348 header->biaStatusInfo = pa_bia_status_info;
1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1349 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1340
1350
1341 for (i=0; i<3; i++)
1351 for (i=0; i<3; i++)
1342 {
1352 {
1343
1353
1344 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1354 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1345 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1355 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1346 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1356 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1347 ];
1357 ];
1348 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1358 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1349 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1359 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1350 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1360 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1351 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1361 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1352
1362
1353 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1363 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1354 spw_ioctl_send_ASM.hdr = (char *) header;
1364 spw_ioctl_send_ASM.hdr = (char *) header;
1355 spw_ioctl_send_ASM.options = 0;
1365 spw_ioctl_send_ASM.options = 0;
1356
1366
1357 // (2) BUILD THE HEADER
1367 // (2) BUILD THE HEADER
1358 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1368 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1359 header->packetLength[0] = (unsigned char) (length>>8);
1369 header->packetLength[0] = (unsigned char) (length>>8);
1360 header->packetLength[1] = (unsigned char) (length);
1370 header->packetLength[1] = (unsigned char) (length);
1361 header->sid = (unsigned char) sid; // SID
1371 header->sid = (unsigned char) sid; // SID
1362 header->pa_lfr_pkt_cnt_asm = 3;
1372 header->pa_lfr_pkt_cnt_asm = 3;
1363 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1373 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1364
1374
1365 // (3) SET PACKET TIME
1375 // (3) SET PACKET TIME
1366 header->time[0] = (unsigned char) (coarseTime>>24);
1376 header->time[0] = (unsigned char) (coarseTime>>24);
1367 header->time[1] = (unsigned char) (coarseTime>>16);
1377 header->time[1] = (unsigned char) (coarseTime>>16);
1368 header->time[2] = (unsigned char) (coarseTime>>8);
1378 header->time[2] = (unsigned char) (coarseTime>>8);
1369 header->time[3] = (unsigned char) (coarseTime);
1379 header->time[3] = (unsigned char) (coarseTime);
1370 header->time[4] = (unsigned char) (fineTime>>8);
1380 header->time[4] = (unsigned char) (fineTime>>8);
1371 header->time[5] = (unsigned char) (fineTime);
1381 header->time[5] = (unsigned char) (fineTime);
1372 //
1382 //
1373 header->acquisitionTime[0] = header->time[0];
1383 header->acquisitionTime[0] = header->time[0];
1374 header->acquisitionTime[1] = header->time[1];
1384 header->acquisitionTime[1] = header->time[1];
1375 header->acquisitionTime[2] = header->time[2];
1385 header->acquisitionTime[2] = header->time[2];
1376 header->acquisitionTime[3] = header->time[3];
1386 header->acquisitionTime[3] = header->time[3];
1377 header->acquisitionTime[4] = header->time[4];
1387 header->acquisitionTime[4] = header->time[4];
1378 header->acquisitionTime[5] = header->time[5];
1388 header->acquisitionTime[5] = header->time[5];
1379
1389
1380 // (4) SEND PACKET
1390 // (4) SEND PACKET
1381 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1391 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1382 if (status != RTEMS_SUCCESSFUL) {
1392 if (status != RTEMS_SUCCESSFUL) {
1383 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1393 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1384 }
1394 }
1385 }
1395 }
1386 }
1396 }
1387
1397
1388 void spw_send_k_dump( ring_node *ring_node_to_send )
1398 void spw_send_k_dump( ring_node *ring_node_to_send )
1389 {
1399 {
1390 rtems_status_code status;
1400 rtems_status_code status;
1391 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1401 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1392 unsigned int packetLength;
1402 unsigned int packetLength;
1393 unsigned int size;
1403 unsigned int size;
1394
1404
1395 PRINTF("spw_send_k_dump\n")
1405 PRINTF("spw_send_k_dump\n")
1396
1406
1397 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1407 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1398
1408
1399 packetLength = kcoefficients_dump->packetLength[0] * 256 + kcoefficients_dump->packetLength[1];
1409 packetLength = kcoefficients_dump->packetLength[0] * 256 + kcoefficients_dump->packetLength[1];
1400
1410
1401 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1411 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1402
1412
1403 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1413 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1404
1414
1405 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1415 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1406
1416
1407 if (status == -1){
1417 if (status == -1){
1408 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1418 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1409 }
1419 }
1410
1420
1411 ring_node_to_send->status = 0x00;
1421 ring_node_to_send->status = 0x00;
1412 }
1422 }
General Comments 0
You need to be logged in to leave comments. Login now